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Automatic parameter selection for multi-speed multi-agent pathfinding solver
ANDREAS ROSENFELD
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Abstract
Multi-agent pathfinding is a study focused on finding collision-free paths for multiple
agents in a shared environment in order for the agents to reach designated destina-
tions. As the problem is well researched, more and more sophisticated algorithms
are available that utilize different parameters to fine-tune the search for these solu-
tions. In this paper, we demonstrate the combining of multi-agent pathfinding with
machine learning to perform such parameter selection dynamically. This selection
is approached as an image classification problem, where unseen problem instances
are divided between a collection of available parameter values. For this, typical ve-
hicular road traffic scenarios were implemented for experimentation. The presented
results give new knowledge for this previously unstudied approach indicating that
there are cases in which visual representation of the problem is sufficient as the
dynamic selection can perform better when compared to a fixed setting. There-
fore, demonstrating the potential that machine learning can be used to improve the
performance of a multi-agent pathfinding algorithm without needing to develop it
further.

Keywords: computer science, multi-agent pathfinding, machine learning, transfer
learning, AlexNet, parameter selection, urban scenarios.
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1
Introduction

In the multi-agent pathfinding (MAPF) problem, the task is to find paths for mul-
tiple agents, each having a specific start and end location. A valid solution is a
set of paths that would allow each agent to navigate from its start location to its
end location without conflicts, meaning the agents do not collide with each other.
Collisions between agents happen when agents occupy or traverse the same location
at the same time, and thus, need to be avoided in the planning of the solution.
Within the literature, common objectives for a solution are to minimize the sum
of the individual path costs of all agents, or to minimize the maximum individual
path cost (known as the makespan). Finding such optimal conflict-free solutions is
NP-hard [1, 2] as the computational complexity of the problem grows exponentially
with the number of agents.
However, many MAPF solvers have been developed, which can model, and thus con-
tribute to, a wide array of industrial and commercial settings. Such problems, that
can benefit from numerous teams of agents (e.g. automated robots) cooperating
and moving efficiently within their environment, include, for example, GPS naviga-
tion [3], traffic control [4], aviation [5], and video games [6]. Additionally, another
critical, but natural, application example includes automated warehousing systems
[7] such as Amazon order-fulfillment centers (Figure 1.1). In this setting, warehouse
robots need to operate autonomously in a grid-like environment between inventory
stations and storage locations to move inventory pods. Each robot can carry one
pod at a time, either to the inventory station for shipping or back to an empty stor-
age location. Most of the warehouse space is filled with storage locations separated
by narrow corridors that allow only one-way traffic. Therefore, path planning is
needed to avoid collisions and to enable the agents to work fast and efficiently.

Figure 1.1: Amazon warehouse as a MAPF problem, with inventory stations (left
side of figure) and storage locations (green cells) [7].

1



1. Introduction

As such, MAPF problems have been studied intensively since the 1980s [8], and the
resulting solvers can be classified in many different ways. Since MAPF is NP-hard, a
natural distinction between algorithms comes in terms of optimality. Optimal solvers
are practical up to a relatively small number of agents, while sub-optimal solvers
aim to trade-off optimality for faster runtime. Examples of optimal algorithms
include Conflict Based Search (CBS) [9] and M* [10], while sub-optimal ones cover
Hierarchical Cooperative A* (HCA*) [6] and Enhanced-CBS (ECBS) [11], to name
a few. Some additional straightforward contrasts between solvers are:

• Coupled, i.e., teams of agents are considered as a compound system, on which
single-agent pathplanning is applied vs. decoupled, i.e., individual paths
are found separately for each agent in combination with collision avoidance
methods [8].

• Offline, i.e., the problem instance is given as is and a solution is calculated
before execution vs. online, i.e., new agents/obstacles appear during the
running time, and paths are recalculated during execution [12].

• Discrete time, i.e., agents operate in discrete time, where each action has a
uniform duration and is associated with one time step vs. continuous time,
i.e., agents’ actions happen independently within specific time intervals [13].

Currently, no single MAPF algorithm is considered the best one in all situations
[14, 15].
In the field of machine learning, computer vision tasks such as image classification
have shown increasingly better results in the last decade with the use of Convolu-
tional Neural Networks (CNNs). Even though the preceding idea of CNNs can be
regarded to originate from 1980, with the modern framework being established in
the 1990s [16]. This recent success can be attributed to the convergence of several
trends, namely, the increasing availability of data, significant improvements in spe-
cialized computer hardware, and a vast selection of many useful machine learning
libraries. The last allows the use of neural networks on a variety of problems. Most
significantly, such libraries can provide pretrained CNN models, which already per-
form well on general visual problems, but can be further utilized and trained in a
more specialized setting, as MAPF.
In this thesis, we plan to combine MAPF with machine learning in the context
of parameter selection. For this, we will be working with Continuous-Time with
Discrete-Speeds (CTDS) [17], an optimal MAPF solver, which finds paths for agents
in a decoupled, offline manner and operates in continuous time. Additionally, the
model accepts a set of speeds, that dictates the possible speeds that can be used
by the agents. However, it is unclear how to perform this parameter selection.
Therefore, we present the idea of using a pretrained CNN as an oracle that helps us
automatically select the optimal speed parameter before solving a specific MAPF
problem instance. To analyze the performance of our suggested machine learning
approach, we will design various vehicular road traffic scenarios such as highways,
intersection, and roundabout, to experiment on.

2



1. Introduction

1.1 Related work

Over the years, various MAPF algorithms have been developed, each having their
own strategy to solve MAPF problems and, therefore, performing better on different
instances. As such, Sigurdson et al. [15] explored automatic algorithm selection in
the context of multi-agent video game maps. They used 20 maps from the game
Baulder’s Gate II and produced MAPF problems of various types - all agents as-
signed randomly, all agents moving from one side to another, all agents moving from
the center of the map to the outside, among others - for a total of seven problem
types. For the algorithm selection, three distinct MAPF algorithms were considered,
each with its strengths and weaknesses. With this setup, they trained an off-the-shelf
deep neural network to automatically select a fitting algorithm for MAPF instances
on the chosen maps. For this, problem instances were represented as images, where
colored pixels illustrated the following information: white - unblocked node, black
- blocked node, green - start location of an agent, and red - goal location of an
agent. Their dataset consisted of 2800 samples, as they used 20 maps, where for
every map, 20 MAPF instances were created for each of the seven problem types. As
their primary evaluation metric, they used the completion rate and demonstrated
that their approach performed better than any of the individual algorithms. One
of the benefits of such an approach is that it does not require the development of
new MAPF algorithms. However, at the same time, it expects the implementation
of multiple preexisting algorithms.
In preceding work to the previous, Sigurdson and Bulitko [18] also explored au-
tomatic algorithm selection, but in the single-agent domain. Intending to find a
pathfinding algorithm with the lowest expected suboptimality, they created a port-
folio of algorithms to select from. Similarly, they approach the dynamic algorithm
selection as a traditional image classification problem with graphs based on sev-
eral video game maps. In their dataset, 342 maps were considered from various
vide-games as the search graphs, for a total of over 17100 MAPF problems. They
demonstrated the performance of the algorithm selection on four different granu-
larity levels: game-type, per-game, per-map, and per-problem. With the lowest
expected suboptimality as the evaluation metric, the results showed that there is
potential to achieve better results with dynamic algorithm selection rather than
always choosing a single algorithm.
This project differs from earlier work as we shift the focus from virtual video-game
MAPF problems to more realistic problems based on vehicular road traffic scenar-
ios. Moreover, the automatic algorithm selection is reformulated as the automatic
parameter selection allowing to develop a systematic way to work with a single
algorithm extensively.
We note the existence of alternative optimization approaches, such as the one by
Petig et al. [19]. Moreover, there are algorithms for cooperatively facilitating safe
manoeuvres that are needed for the implementation of the studied use cases [20, 21,
22, 23, 24, 25, 26]. We offer the reader to consider the implementation of the studied
techniques using simulations approaches, as in [27, 28, 29].
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1. Introduction

1.2 Our contribution
Our work contributes to the field of MAPF by describing the automatic parameter
selection approach and applying it on various vehicular road networks. As the
CTDS model [17] comes from recent research, the work has also assisted in making
the implementation of the MAPF model more robust. The automatic parameter
selection approach permits the use of different variables dynamically to solve new
unseen MAPF problem instances. This is beneficial as different instances might
require separate parameters depending on the problem setup to achieve a better
solution. The results from our experiments showed that this dynamic selection -
based on the number of speeds available to the agents, and thus enabling smoother
interaction between the agents, if needed - can perform better when compared to a
fixed setting. In the best cases, our per-graph model was able to perform 2.04 times
better than the best deterministic selection. For the model trained on combined
data from multiple graphs, the same measure was 1.88 times better than the best
deterministic selection. This was measured by comparing the differences to the
optimal cost between the best deterministic selection and our dynamic selection.
In conclusion, the work suggests a connection between the visual representation
of a MAPF problem and its solution with the potential to improve it further via
parameter selection. The novel results obtained from this vision-based learning
approach may help to provide a state-of-the-art improvement to the vital problem
of planning for autonomous vehicle transportation.

4



2
Background

In the following chapter, background information of the two main fields - multi-
agent pathfinding and machine learning - is given along with the formulation of the
automatic parameter selection problem. Fundamentally, the combining of these two
fields is done in this project to solve the presented selection problem.

2.1 Multi-agent pathfinding

In this section, the MAPF problem within the CTDS model [17] is explained along
with the algorithm to solve such problems. In further chapters, we treat this MAPF
solver as a black box, which is applied in order to generate data for the automatic
parameter selection problem, described in the following Section 2.2.

2.1.1 Continuous-time with discrete speeds model
The CTDS model [17] considers actions in continuous time, meaning that the actions
of the agents do not take uniform time at each time step, as is the case with discrete-
time models. An important factor is also the attempt to relax the assumption that
agents can stop and accelerate instantaneously. For this, the model supports for the
agents the ability to use a discrete set of speeds speeds = {smin, .., smax}, allowing
them to accelerate between them and thus, enabling for smoother speed changes
and better arrival time.

2.1.1.1 MAPF problem

In this model, the MAPF problem consists of a directed graph G = (V,E), where
each node v ∈ V represents locations and each edge (v, v′) ∈ E the possible connec-
tions between the nodes. Additionally, we have a set of agents A = {a1, .., ak}, where
each agent ai ∈ A is described as a pair of unique start and end nodes (vistart, vigoal).
Agents traverse the graph by transitioning between states st = (v ∈ V, t ∈ R, s ∈
speeds). The triple is defined by

• the position of the agent (v),
• the time when the agent is in that position (t), and
• the speed of the agent at that time (s).

5



2. Background

A solution to the problem is a set of collision free paths P = {p1, .., pk}, where for
each agent ai ∈ A the path pi = (st{vistart, 0, sistart}, .., st{vigoal, tgoal, sigoal}) encodes
transitions (actions) between states to traverse beginning from the assigned start
node to the goal node.
In the next section, we will introduce an optimal solver, which will be used in this
project, that finds such solutions.

2.1.1.2 Solver

The solver works in an alternating fashion between finding optimal single-agent
paths (low-level search), and then, based on conflicts between the individual paths,
constructing a binary constraint tree (CT) by adding new nodes until an optimal
multi-agent solution is found (high-level search), assuming one exists. At first, the
root node of the CT has no constraints. After the initial low-level search, conflicts, if
found, are resolved by imposing constraints on the actions of the agents. Each new
constraints adds two child nodes in the CT, as each conflict between two agents can
be solved in two ways: allowing an action for one agent and disallowing an action for
the other during a specific time interval, or vice versa. This back and forth between
the two levels continues until a goal node in the CT is reached, meaning that all
constraints are satisfied, and thus all conflicts are resolved. Particularly, the cost
of the final solution is the minimum that can be achieved, which is defined for the
solver as the sum of the individual path costs (SIC):

SIC(P ) =
∑
pi∈P

cost(pi) (2.1)

where the cost of an single path pi is the arrival time at the goal node:

cost(pi) = tgoal (2.2)

To illustrate this, we consider the following example. Figure 2.1 represents a MAPF
problem with agents a1 = (0, 2) and a2 = (3, 4). Additionally, the discrete set of
speeds speeds = {0, 1} is given.

0 1 2

3

4

Figure 2.1: MAPF problem instance, with two agents a1 = (0, 2) and a2 = (3, 4).
Start nodes shown in green, and goal nodes in red.
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2. Background

In order to find an optimal solution, a CT (Figure 2.2) is built starting from the root
node, where there are no constraints. The first low-level search gives a corresponding
solution P0, but right away there is a conflict as both agents try to enter node 1
at the same time. This situation is resolved by adding two additional child nodes
(N1 and N2) to the root node. The first one (N1) constrains a1 by forcing it to wait
until a2 has entered node 1 before allowing a1 to start moving, and vice-versa for
the other CT node N2. The search ultimately stops here as both N1 and N2 are goal
nodes, because there are no more conflicts and both agents are at their goal nodes.
Also, the solutions P1 and P2 are equivalent as SIC(P1) = SIC(P2).

CT root node:
no constraints

low-level:
finds solution P0:
p1 = ({0, 0, 0}, {1, 20, 1}, {2, 30, 1}) 
p2 = ({3, 0, 0}, {1, 20, 1}, {4, 30, 1})

high-level:
conflict: a1 and a2 enter st{1, 20, 1}

CT node N1:
constraint on a1

low-level:
finds solution P1:
p1 = ({0, 0, 0}, {0, 20, 0}, {1, 40, 1}, 
{2, 50, 1}) 
p2 = ({3, 0, 0}, {1, 20, 1}, {4, 30, 1})

high-level:
no conflicts, goal node

CT node N2:
constraint on a2

low-level:
finds solution P2:
p1 = ({0, 0, 0}, {1, 20, 1}, {2, 30, 1}) 
p2 = ({3, 0, 0}, {3, 20, 0}, {1, 40, 1}, 
{4, 50, 1})

high-level:
no conflicts, goal node

Figure 2.2: Constraint tree demonstrating the interaction between the high-level
and low-level search.

2.1.2 Target system
MAPF models and the solutions from these models are typically abstractions of the
real world and thus try to imitate it in a more or less simplified manner. As such,
the closest model with regards to the real world, can be described with the concept
of the target system. In essence, it can be thought of as a subset of the real world,
where information is filtered in favor of the most critical and possibly simplified

7



2. Background

(e.g., utilizing discrete values) to achieve a satisfactory result. It is necessary, as in
the real world, many dynamic forces are constantly involved in the movements of
the agents that change continuously. Concerning MAPF, the more interesting ones
are the kinematic: the velocity, acceleration, and displacement of the agents, and
spacial: the distance and positioning between the agents. This is contrary to other
physical forces such as gravity, friction between the tires and the road, or the air
resistance force applied to a moving agent, to name a few examples. The presented
CTDS model is also a target system, but optimal solutions here might not translate
well to more complex target systems that are a step closer to the real world. For this
reason, in this project, we also consider a target system that can take a solution from
the CTDS model, and apply an optimization and transformation step to translate
it to a fully continuous solution that can be simulated on a game engine [30].

2.2 Parameter selection problem
The automatic parameter selection problem is a variation of the automatic algorithm
selection problem [31]. For our case, we define the problem by a tuple (I,S, C),
where:

• I = {i1, .., in} is a set of MAPF problem instances,
• S = {speeds1, .., speedsm} is a set of set of speeds that can be used to solve

each instance i ∈ I, and
• C : I ×S → R is a function that returns the cost of the solution when solving

problem instance i with a speed set speeds ∈ S.
For this problem, the solution is a mapping π : I → S that maps each problem
instance i ∈ I to a specific set of speeds speeds ∈ S. The total cost of the solution
T (π) is the sum of the individual costs of the solutions for each problem instance:

T (π) =
∑
i∈I
C(π(i), i) (2.3)

In this setting, the optimal solution is defined as:

π∗ = argmin
π
T (π) (2.4)

Meaning, for each problem instance i ∈ I the optimal mapping π∗ always chooses
the speed set speeds ∈ S that results in the smallest individual cost C(π(i), i).
Accordingly, it also results in the smallest total cost T (π).

2.3 Machine learning
In order to develop a mapping π, we will look towards machine learning to solve
the task of classification. Machine learning is known as the ability to utilize raw
data by extracting patterns from it by an artificial intelligence system to acquire
their own knowledge [32, Chapter 1]. In classification, a learning algorithm - capa-
ble of learning from data - is tasked to identify into which available category some

8



2. Background

input belongs [32, Section 5.1.1]. To approach this task, we present an overview
of neural networks (NNs) to better understand AlexNet [33], a pretrained Convolu-
tional Neural Network, that we will be working with by utilizing transfer learning.
A more detailed view into the subject can be found in the book "Deep Learning" by
Goodfellow et al. [32].

2.3.1 Neural networks
Deep feedforward neural networks are typical machine learning models, intending
to approximate some function f to map an input x to an output y. The goal
with this mapping y = f(x; θ) is to learn the values of the parameters θ to achieve
the best function approximation. The feedforward property comes from the fact
that information flows from x, through intermediate computations defining f , to
the output y. NNs are called networks as they are commonly composed of many
different functions that define these intermediate computations, giving structure to
the overall network. These functions are also known as layers, which determine the
depth of the model. As an illustration, Figure 2.3 represents an abstract neural
network. Lastly, the term neural is inspired by neuroscience [32, Chapter 6].

Figure 2.3: An abstract neural network, with four layers. The middle layers are
referred to as hidden since the training data does not reveal the desired output for
them [32, Chapter 6].

2.3.1.1 Convolutional Neural Networks

Convolutional Neural Networks are deep learning architectures further inspired by
visual perception mechanisms found in nature [16, Section 1]. They are specialized
for handling data with a known grid-like topology, such as image data - a two-
dimensional grid of pixels [32, Chapter 9]. Fundamental CNN components include
three types of layers: convolutional, pooling, and fully-connected [16, Section 2].
The convolutional layer consists of multiple convolution kernels to compute corre-
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2. Background

sponding feature maps of feature representations of the inputs. The kernel can be
perceived as a small filter that represents some visual feature. It is applied over all
the spatial locations of the input and learned during the training of the network. In
detail, a neuron in the feature map is connected to adjacent neurons in the previous
layer - known as the receptive field of the neuron. The feature map is the results of
the convolution of the input with a kernel that is passed through an element-wise
nonlinear activation function. Such activation functions are advantageous for multi-
layer networks as they allow for the detection of nonlinear features [16, Section 2].
One of the most common and recommended [32, Chapter 6] activation function to
use is the rectified linear unit (ReLU) [34] defined by y = max(0, x).
The pooling layer is usually between two convolutional layers and downsizes the
resolution of the feature maps to achieve shift-invariance [16, Section 2]. Meaning,
it can be seen as a summary statistic of neighboring neurons to help make the input
invariant to translations, i.e., more robust in terms of detecting the presence of fea-
tures rather than the exact pixel-perfect positioning of features. One commonly used
pooling operation is max pooling [35], where the maximum output of a rectangular
neighborhood is reported [32, Section 9.3].
Fully-connected layers connect all neurons in a previous layer to all neurons in the
current layer. With this, the aim is to perform high-level reasoning and generate
global semantic information. Additionally, the last layer of the CNN is the output
layer, which is commonly a softmax operator for classification tasks. From here, the
optimum machine learning parameters θ can be learned by minimizing a suitable
loss function [16, Section 2].

2.3.1.2 Splitting of the data

The main challenge in machine learning is generalization [32, Section 5.2], i.e., to
perform well on previously unseen data. When training a machine learning model,
the data is typically split into training, validation, and test sets. The training
set is the dataset that is used for learning the internal parameters θ. Moreover,
during training, the model is evaluated with the help of a validation set. This
provides feedback on the initial success of the training and helps guide the tuning of
hyperparameters, such as the learning rate. After the model is completely trained,
the performance is measured on a test set of previously unseen data. How this
splitting of the data is done percentage-wise depends on the problem. Datasets
with millions of samples might only need a fragment for validation and testing,
while on smaller sets, the ratio between the different sets needs to be smaller. An
important assumption on the overall training and evaluation process is that all the
data samples are independent from each other, and furthermore, that the different
datasets are identically distributed [32, Section 5.2].

2.3.2 Transfer learning
Transfer learning refers to the application of knowledge from one setting to better
generalize in another setting [32, Section 15.2]. In the context of supervised learning
- where each example in the dataset is associated with a target or a label [32, Section
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5.1.3] - it can be understood as a situation where the input is the same, but the
target is changed between the two settings. We apply this practice with the use of a
pretrained CNNmodel known as AlexNet [33] by one of the authors Alex Krizhevsky.
The attribute pretrained is used as a description because it can be seen as a first step
of the whole training process [Section 15.1][32]. In the case of AlexNet, it has been
trained on the ImageNet dataset [36], consisting of over 15 million images labeled
roughly into 22 thousand different categories. The advantage of using a pretrained
CNN lies in the fact that if there is significantly more data in the first setting, then
that can help to generalize from only very few examples in the second setting [32,
Section 15.2]. Thus, decreasing the need for a vast dataset in the second setting,
which in our case is in the MAPF domain.
AlexNet [33] consists of multiple basic CNN components, described in Section 2.3.1.1,
that are applied sequentially. The Listing 2.1 provides an overview of the structure
that was used in this project. In general, the input image is processed through
the convolutional layers (nn.Conv2d), an activation function (nn.ReLU), and pool-
ing layers (nn.MaxPool2d). These modules are grouped into a sequential container
(nn.Sequential). A fully-connected layer (nn.Linear) is used eventually to connect
the information to the possible class labels. For example, if the classification is de-
fined between five possible labels, then the last layer would consist of five neurons.
Lastly, a softmax operation [32, Section 4.1] (nn.Softmax) can be used to associate
the result of the computation to class probabilities in the range [0, 1], and with a
total sum of 1.

Code Listing 2.1: Pseudocode of AlexNet based on the PyTorch library [37].
s e l f . f e a t u r e s = nn . Sequent i a l (

nn . Conv2d ( . . ) ,
nn .ReLU ( . . ) ,
nn . MaxPool2d ( . . ) ,
nn . Conv2d ( . . ) ,
nn .ReLU ( . . ) ,
nn . MaxPool2d ( . . ) ,
nn . Conv2d ( . . ) ,
nn .ReLU ( . . ) ,
nn . Conv2d ( . . ) ,
nn .ReLU ( . . ) ,
nn . Conv2d ( . . ) ,
nn .ReLU ( . . ) ,
nn . MaxPool2d ( . . ) )

s e l f . c l a s s i f i e r = nn . Sequent i a l (
nn . Linear ( . . ) ,
nn . Softmax ( . . ) )

Moreover, as we are dealing with unbalanced datasets, then the weights for the
different classes in the machine learning model can be adjusted accordingly. For
example, assume a context of two classes, X and Y, with nX = 1000 and nY =
2000 samples. In this case, we would want the samples in the class that has fewer

11



2. Background

datapoints (class X) to have more weight in the learning process. By default, these
weights are set to one. In order to balance an uneven distribution of the data,
the weights of any class C can be changed to the value of dividing the size of the
largest class to the size of class C. Accordingly, in this example, class X would get a
weight of nY

nX
= 2 and class Y would get nY

nY
= 1. This technique is known as weight

balancing [38].
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3
Approach

We approach the parameter selection problem for MAPF as an image classification
problem, drawing motivation from Sigurdson et al. [15]. An overview of this process
is given in Figure 3.1. The set I of MAPF problem instances will consist of vehicular
road network scenarios, described in Section 4.2. To train the machine learning
model and learn the mapping π, we pre-process each MAPF problem instance i ∈
I into a form of an image. Additionally, we define a set of possible labels that
correspond to speed sets from the set S via the classification π(i), in order to be
used by the MAPF solver.

Set ℐ of MAPF
problem
instances

Pre-processing

Machine 
learning 
model

mapping π

MAPF
solver

i: G = (V, E); A

i: as image

classification π(i)

cost
C(π(i), i)

Figure 3.1: Illustration of the workflow between the different components.

Once we have a classification π(i) for a given instance i ∈ I, we can find the cost of
a single solution, defined as:

C(π(i), i) = w ·MSavg + (1− w) · |π(i)| (3.1)
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where MSavg denotes the average makespan of the MAPF solution Pi:

MSavg = SIC(Pi)
|Ai|

(3.2)

Here, |Ai| is the cardinality of set Ai, i.e. the number of agents within a given
problem instance i ∈ I. Similarly, |π(i)| is the cardinality of the assigned speed set
speeds ∈ S for a given problem instance i ∈ I.
The additional weight parameter w = [0, 1] allows for balancing the ratio between
the two addends in Equation 3.1. The first one focuses on lowering the average
makespan, a direct measure of the real cost. While the second one imposes a penalty
on the number of speeds, which affects the search space of the solver and, thus, the
time it takes to find a solution.
It follows that the total cost of the solution T (π) (Equation 2.3) can be then ex-
panded to:

T (π) =
∑
i∈I

(w ·MSavg + (1− w) · |π(i)|) (3.3)

which is the function we will be looking to minimize.
When comparing the two extreme cases, w = 1 and w = 0, then a value must be
found that allows to generate a dataset where one class does not dominate over the
others in terms of sample size. In the former case, when w = 1, the class with the
most speeds would always have an equal or better SIC value, as more speeds allow
for more improvement possibilities for the resulting MAPF solution. Thus, because
we are only looking at the average makespan, all instances would be classified into
the same class - the one with the biggest number of speeds. In the latter case,
when w = 0, the class with the least speeds would always have a smaller total cost
T (π), because all the focus is on the number of speeds that is used. Thus again, all
instances would be classified into the same class - the one with the smallest number
of speeds.
With this approach, we expect for the machine learning model to be able to identify
important features from the input images and to apply them automatically. These
features might include, for example, the specific graph setting, and the positioning
of the agents.

3.1 Pre-processing
Pre-processing is used to allow for the machine learning model to make use of
datasets comprising of MAPF problem instances.
In this preliminary step, an instance, represented by a graph G and a set of agents
A, is translated to an image. Additionally, the image is resized to match the input of
the machine learning network, 227×227 pixels. By doing so, we enable the machine
learning model to use such an image as input.
With this translation, we lose specific individual information of the agents as the
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connection between a specific agent’s start and goal nodes is anonymized. At the
same time, we gain knowledge of the topological positioning between the agents.
This is done to better enable the machine learning model to focus on the topological
information between the agents as it is highly relevant to the proposed visual ap-
proach. Additional features come with the risk of making the visual MAPF problem
instance representation excessively detailed, potentially overshadowing the topologi-
cal features of the input. Additionally, when the instance representation grows more
and more detailed, then the demand for a more extensive dataset is also increased
as a more complex representation would be harder for the machine learning model
to make use of.
In the pre-processed images, a starting position of an agent is illustrated with a
green node, a goal location with a red node, and all other nodes are grey. Figure
3.2 displays two such images of problem instances that are produced after pre-
processing.

Figure 3.2: Two samples of pre-processed MAPF problem instances. Upper: high-
way scenario with two agents. Lower: highway exit scenario with seven agents.
Starting locations (green nodes) and goal locations (red nodes) of the agents are
represented anonymously.

15



3. Approach

16



4
Evaluation

This chapter provides the context for the evaluation of our approach by first stating
the proposed research questions. Secondly, the different vehicular road traffic sce-
narios are presented on which the MAPF problem instances are based on along with
the relevant parameters of the experiments. Additionally, the evaluation criteria as
well as the experiment plan are given to tackle the established research questions.
Lastly, the evaluation environment is described.

4.1 Research questions
We evaluate our automatic parameter selection π approach by investigating multiple
experiments. First, we look at each of the road scenarios, described in Section 4.2,
individually, and train separate models to learn a graph-specific mapping. Then, we
form combinations of datasets to train more general models. With this approach,
we aim to answer the following research questions:

• Q1. Can a learned mapping perform better than any of the deterministic
mappings, i.e., only using a specific set of speeds? If the learned mapping can
achieve consistently better results, then this would be a clear indicator that
the machine learning approach is working.

• Q2. Would a machine learning model achieve better results when trained on a
combined dataset compared to a model only trained on a single graph-specific
dataset? With this, we aim to see if the learned mapping π can be made more
robust in terms of the MAPF instances to generalize better.

• Q3. Is it worthwhile to learn a mapping between two different speed sets - one
with two speeds and the other with four speeds - for the automatic parameter
selection? Here, an answer would allow arguing for or against this approach,
depending on the application field.

• Q4. How does the cost of a single solution C(π(i), i) (Equation 3.1) of a
single MAPF problem instance i compare to the cost in the target system? As
C(π(i), i) is a penalty-based function, a correlation between the two would give
a hint on how the machine learning model would perform in a more realistic
setting. Furthermore, it can help argue if the agents’ behavior from using more
speeds in the CTDS model [17] can be translated to improved behavior in the
target system.
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4.2 Test cases
To experiment with the proposed approach, five different road scenarios were de-
signed and implemented: highway, highway exit, highway entrance, roundabout,
and intersection. Each road component is defined as a graph G = (V,E), where
each node v ∈ V represents a location on the road. Such nodes are connected via
directed edges (v, v′) ∈ E that allow agents to traverse between different locations in
order to reach their goal nodes. As a result, these graphs allow for the robust repre-
sentation of everyday road traffic situations within the CTDS model. Additionally,
a standalone 8x8 grid case was also considered.
In the following, we will introduce the graphs in detail. Universally, each road
graph incorporates 16 possible start nodes (displayed in blue) and specific goal
nodes (displayed in red), enabling us to generate MAPF problems within a fixed
range in terms of the number of agents. At the same time, we can ensure that in
each generated instance, the start and goal nodes of the agents are connected, and
thus, the MAPF solution encodes a logical path in the road scenario. Naturally,
these graphs do not represent all scenarios that arise in traffic but rather try to
exemplify typical road sections that are part of a bigger road network that can
consist of multiple similar fundamental parts.

4.2.1 Highway
The highway graph can be seen in Figure 4.1. It represents a one-way two-lane road,
where lane vertices are connected by

1. forward edges if both vertices are on the same lane, and
2. switch edges if they connect vertices on different lanes.

This setup allows agents to perform overtaking maneuvers to reach their assigned
goal nodes. These goal nodes are only connected via forward edges in order to regard
the agents who have reached their goal vertex as they would have exited the highway
by the MAPF solver.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23 24 25 26 27

Figure 4.1: Highway graph, with 16 starting nodes (in blue) and 2 possible goal
nodes (in red).

4.2.2 Highway exit
Similar to the highway, the highway exit graph can be seen in Figure 4.2. In addition
to all the highway aspects, it also incorporates an off-ramp from the main highway
allowing agents to possibly exit towards an added goal node.
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Figure 4.2: Highway exit graph, with 16 starting nodes (in blue) and 3 possible
goal nodes (in red).

4.2.3 Highway entrance
Also similar to the highway, the highway entrance graph can be seen in Figure 4.3.
Contrary to the highway exit, the highway entrance models an on-ramp to the main
highway allowing agents to possibly merge into ongoing traffic.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23 24 25 26 27

28

29
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31

Figure 4.3: Highway entrance graph, with 16 starting nodes (in blue) and 2 possible
goal nodes (in red).

4.2.4 Roundabout
The roundabout graph, shown in Figure 4.4, consists of four incoming two-lanes
roads, that represent ending segments of the highway graph. Additionally, there are
four outgoing one-way exit lanes, that model the possible exits off the roundabout.
When assigning agents with possible start and goal nodes, then there are no limi-
tations for this selection, as all goal locations are reachable from all start locations.
Figure 4.5 depicts this relation to the reachable nodes for one of the incoming lanes.
This is similar for the other incoming lanes. Additionally, extreme maneuvers while
on the roundabout are not allowed. Specifically, when an agent is in the inner lane
of the roundabout, it can only exit this inner lane when going towards the nearest
immediate goal node. An example of this is presented in the caption of Figure 4.4.
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Figure 4.4: Roundabout graph, with 16 starting nodes (in blue) and 4 possible
goal nodes (in red). Extreme maneuver example: if an agent starts at node 0 and
has a goal node 39, then the agent can not traverse the following path segment:
59→ 45→ 46 to to reach the goal node. Exiting the inner lane of the roundabout
(represented by nodes 56-63) is only allowed when moving towards the nearest goal
node.
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Figure 4.5: Roundabout graph, highlighting (in orange) the reachable nodes for
one of the incoming lanes to reach the goal nodes (in red). Other lanes are identical.

4.2.5 Intersection
The intersection graph, shown in Figure 4.6, also consists of four incoming two-lanes
roads, that represent ending segments of the highway graph. These lanes intertwine
in the middle, and ultimately form connections to the goal nodes by paths that
either go straight, left, or right when looking from the perspective of the incoming
lane. Here, the possible goal nodes for agents depend on the incoming lane. Figure
4.7 highlights this relation for one of the incoming lanes, but it is similar to all other
lanes as well. Additionally, similar to the roundabout, extreme maneuvers on the
intersection are also not allowed. Meaning, sudden 90 degree turns when crossing
the intersection are disallowed. This is enforced in the CTDS model by checking the
angle of the next possible action. In detail, consider the case where an agent arrived
from a previous node to the current node, and is considering moving to the next
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node. Then, the angle forming between the previous-current-next nodes determines
the validity of the considered action. An example of this is presented in the caption
of Figure 4.6.
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Figure 4.6: Intersection graph, with 16 starting nodes (in blue) and 8 possible
goal nodes (in red). Extreme maneuver example: if an agent starts at node 0 and
has a goal node 23, then the lane switch can not happen within the following path
segment: 49→ 50→ 54→ 55.
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Figure 4.7: Intersection graph, highlighting (in orange) the reachable nodes for
one of the incoming lanes to reach the goal nodes (in red). Other lanes are identical.

4.2.6 Grid

The 8x8 grid can be seen in Figure 4.8. In this graph, all nodes are connected
to all adjacent neighboring nodes, allowing agents to move between them. Also, a
connection between any two nodes v1 and v2 represents two directed edges (v1, v2)
and (v2, v1).
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Figure 4.8: Grid graph, with 64 nodes where each node is connected to all four,
three, or two neighboring nodes in the case of an inner, edge, or corner node, re-
spectively.

4.3 Parameters

4.3.1 Number of agents
In a similar setting as to our highway graph, it has been shown that there is po-
tential for small performance gains with more than two speeds [17]. For this, the
MAPF problem instances should not be too overcrowded. By this, we mean that the
number of agents should not be too high in order to preserve meaningful topological
positioning between the agents. For example, consider the situation when we have
16 agents, the maximum in our setting, and all the starting positions are occupied by
these 16 agents. Because of anonymous mapping between a specific agent’s start and
goal nodes, all such instances would be equivalent to the machine learning model.
In fact, the pre-processed input images would appear exactly the same, even if the
individual agents differ across the various instances. This would have a significantly
negative effect on the learning capability of our proposed models.
Additionally, because we are working with an optimal MAPF solver, the time it
takes to find a solution increases exponentially with the number of agents. At some
point, the time required to find a solution is too much to produce an adequately
sized dataset in a reasonable timeframe, as the number of agents grows too high.
Based on previous research by Sigurdson et al. [15], we can reason by analogy that
the dataset used for learning by the machine learning model should be in a similar
range of 140 samples for each graph and number of agents. Also, we would want to
have the same number of samples between the different numbers of agents within a
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graph for a uniform assessment. Therefore, a limit had to be decided upon, and for
our experiments, we fixed the size of the set of agents A = {a1, .., ak} in the range
k = [2, 7] for the different road scenarios. For the standalone grid test case, the
range k = [5, 13] was analyzed.

4.3.2 Set of speeds
The experiments focus on learning a mapping between using two different sets of
speeds on the suggested road scenarios. From the parameter selection problem
(Section 2.2), we define S = {speedA, speedB} as:

• speedA = {smin, smax}, and
• speedB = {smin, 1

3smax,
2
3smax, smax},

where smax = 10.
Correspondingly, this defines the possible labels of the classes A and B for classifi-
cation.

4.3.3 Cost function weight
The weight parameter w from Equation 3.1 determines the balance between the SIC
and the assigned penalty. Moreover, it also dictates the distribution of the generated
data between the available classes. As such, it has to be chosen carefully to allow
for a reasonably balanced dataset to be formed. This allows the machine learning
model to learn better, as it can train on more samples from each possible class.
Otherwise, the learning process is hindered critically, if one class is too dominant
or severely underrepresented. Ultimately, we set the weight parameter w = 0.95 as
it produced an acceptably balanced final dataset allowing for the representation of
different instances that benefit from fewer or more speeds. Thus, providing a setting
where dynamic mapping could present an advantage over a fixed parameter in the
considered graphs.

4.4 Evaluation criteria
As our evaluation criteria, we will use the total cost function T (π) from Equation
3.3. The learned mapping π, and the corresponding cost T (π) will be compared to:

• deterministic mappings, i.e., always using a specific speed set from S and
thus, labeling all instances as belonging only to class A or B (corresponding
to mappings πA and πB, respectively),

• π∗, the optimal solution, which always selects the best speed set for every
instance, and

• a worst mapping, which always selects the worst speed set.
Additionally, we will correlate the costs from the CTDS model to the costs in the
target system. To achieve this, a subset of generated samples will be solved for the
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target system allowing for a comparison between the relevant costs. In addition to
the single cost C(π(i), i) of a sample i we will look at the SIC time (Equation 2.1)
of the solution in the CTDS model and the target system.

4.5 Experiment plan
The experiment plan is focused on investigating how a learned mapping π performs
when trained on different datasets. The experiments consider datasets comprised
of MAPF instances from a single graph and multiple graphs. We refer to the re-
sulting learned mappings trained on these datasets as per-graph and multi-graph
mappings, respectively. In detail, we will train and evaluate different mappings
with the following experiments.

• Per-graph mappings. In these experiments, a dataset is generated (see dis-
cussion in Section 4.6) on each of the test cases, described in Section 4.2. The
per-graph mappings are trained only on datasets of MAPF problem instances
from a single graph and, thus, show the performance of a graph-specific ma-
chine learning model. Once a model is trained, a test set is used to compare
the total cost values across the different mappings. The optimal mapping π∗
(Equation 2.4) and the corresponding total cost T (π∗) (Equation 3.3) represent
a perfect model, which always chooses the correct class label for each instance.
Additionally, it serves as a lower bound for the machine learning model’s per-
formance as the correct label translates to the speed set that achieves the
lowest individual cost for each problem instance. We are interested in the
learned mapping π and how it compares to the deterministic mappings (πA
and πB) to answer the research questions Q1 and Q3, established in Section
4.1. The per-graph mappings are based on datasets on the following test cases
from Section 4.2, with a reference experiment name given in parenthesis:
– grid (Exp.G),
– highway (Exp.H),
– highway exit (Exp. E),
– highway entrance (Exp.N),
– roundabout (Exp.R), and
– intersection (Exp. I).

• Multi-graph mappings. In these experiments, the generated datasets from
the per-graph experiments are combined to form more diverse datasets con-
sisting of MAPF problem instances from multiple graphs. The aim of this
is to show the performance of a potentially more robust machine learning
model than in the previous experiments. Again, once a model is trained, a
test set - this time consisting of instances from multiple graphs - is used to
compare the total cost values across the different mappings. Similarly, the
optimal mapping π∗ (Equation 2.4) and the corresponding total cost T (π∗)
(Equation 3.3) represent a perfect model, which always chooses the correct
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class label for each instance. Additionally, it serves as a lower bound for the
machine learning model’s performance as the correct label translates to the
speed set that achieves the lowest individual cost for each problem instance.
We are interested in the learned mapping π and how it compares to the deter-
ministic mappings (πA and πB) to answer the research questions Q2 and Q3,
established in Section 4.1. The multi-graph mappings are based on datasets
on the following combination of test cases from Section 4.2, with a reference
experiment name given in parenthesis:
– highway, highway exit, and highway entrance (Exp.HEN),
– roundabout and intersection (Exp.RI), and
– all five test cases together (Exp.HENRI).

The combinations for Exp. HEN and Exp. RI are motivated by the fact that
test cases on which the MAPF problem instances are generated on share a
similar structure. The motivation for Exp. HENRI lies in the interest to see
how the dynamic selection performs when this is not the case and is trained
on the complete dataset.

• Comparison with target system In the interest of making a preliminary
calibration with the target system (see discussion in Section 2.1.2), a subset
of samples will we randomly examined from the best performing per-graph
mapping dataset. As the total cost T (π) for a set of instances and the single
solution cost C(π(i), i) for an individual instance i are values from a penalty-
based function set in the CTDS model, a comparison is needed between the
SIC (Equation 2.1) values in the CTDS model and the target system. We are
interested in this correlation to answer the research question Q4, established
in Section 4.1.

4.6 Data generation
In order to generate datasets composed of MAPF problem instances, agents are
assigned random start and goal vertices, depending on the specific test case from
Section 4.2. For the presented road scenarios, the selection of possible start and goal
vertices depends on the current graph on which the data generation is being done.
When considering MAPF problem instances on the 8x8 grid, this selection is not
limited and, thus, all nodes are acknowledged. For each agent within an instance,
a random independent start node, along with a random goal node, is chosen. In
the road scenarios, goal nodes can be the same between different agents because
once an agent reaches the assigned goal node, it is assumed to continue moving and,
therefore, as exiting the graph. For the 8x8 grid, this is not the case.
Moreover, each single instance i ∈ I is fed to the MAPF solver to find the cor-
responding individual cost C(π(i), i) (Equation 3.1) of the solutions, depending on
the defined speed sets in S. Once the solutions are available, a comparison is made
to label the problem instance i as belonging under the speed set speeds ∈ S that
achieved the lowest cost.
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4.7 Evaluation environment
The data generation was implemented and handled on a standalone Intel machine
(NUC7i7BNH) with an i7-7567U processor. Also, for finding a single MAPF solu-
tion, a timeout limit of 30 minutes was set. The utilized CTDS model and MAPF
solver were implemented in the programming language C++.
The data pre-processing and the learning of the different mappings were coded
in the programming language Python on a mid-range computer. For the machine
learning model, we used the PyTorch [37] machine learning library’s implementation
of AlexNet [33]. Here, the output layer of the model was modified to match the
possible number of classification labels. Additionally, the weights of the classes were
also adjusted according to the used datasets.

4.8 Problem space
When discussing the number of possible MAPF problem instances for the presented
graphs, the automatic parameter selection approach can be more favorable over a
manual setting, as there is a vast number of possible problem combinations. Only
considering two agents already raises the scale of possible problem combinations to
103. For example, on the intersection graph with two agents, the first agent has 16
available starting positions, and the second 15. Furthermore, there are four possible
goal positions for both agents. Therefore, the number of different combinations is
16×15×42 > 103.With seven agents, the scale is in the order of 1010. For example,
on the intersection graph with seven agents, again, the first agent has 16 available
starting positions, the second 15, until the seventh has 10 possible starting positions
available. Ultimately, the number of different combinations is unfathomable as we
have 16× 15× ...× 10× 47 > 1010 possible problem instances.

4.9 Limitations
Lastly, the presented work includes the following know limitations. The automatic
parameter selection approach was tested with the use of a single MAPF algorithm
because, currently, only one is known that incorporates the use of discrete speeds.
Using this approach on other solvers would be an interesting expansion to gain
additional knowledge on the potential of the presented method. Also, the number
of configurations were limited, as the number of agents and the size of the available
set of speeds both grow the search space exponentially for finding MAPF solutions
within the CTDS model [17]. Additionally, the execution time for finding a solution
was not taken into account but modeled as a uniform penalty across the different
instances.
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Results

In this chapter, we present the results of our parameter selection π approach, which
was applied with datasets of MAPF problem instances based on the introduced test
cases from Section 4.2. First, we describe the final dataset, which was formed to train
and evaluate the machine learning models. Then, we present the results of the per-
graph and multi-graph mappings that show that we were able to constantly achieve
better or on-par results when compared to the deterministic selections. Lastly,
a correlation between the values from the CTDS model and the target system is
presented, indicating parallelism between the two as an argument for the proposed
approach. The chapter is concluded with an overall discussion.

5.1 Final dataset
In total, the final dataset consisted of 5040 MAPF problem instances, which were
formed into training, validation, and test sets, resulting in a 71.4%, 14.3%, and
14.3% split, respectively (see discussion in Section 2.3.1.2). For the highway test
cases, we created 140 MAPF problem instances for each number of agents, for a
total of 840 samples for each graph. For the roundabout and intersection test cases,
this number was adjusted to 210, for a total of 1260 samples for each graph. The
training sets in sum composed of 3600 samples, with ultimately 65.5% belonging
to class A and 34.5% to class B (see Section 4.3.2). A more detailed overview of
the class ratios across the different graphs is given in Table 5.1. An additional 720
samples formed the test sets, on which the results of the learned mapping π are
reported.

graph number of graphs class A class B
highway 1 68.3% 31.7%

highway exit 1 68.5% 31.5%
highway entrance 1 60.3% 39.7%

roundabout 1 77.7% 22.3%
intersection 1 53.0% 47.0%

all 5 65.5% 34.5%

Table 5.1: Results of the data generation showing the data composition of the
training sets for the different graphs.

The 8x8 grid graph was not accounted for in the final dataset for reasons that are
explained in the next section.

29



5. Results

5.2 Per-graph mappings
Exp. G: For the experiment Exp. G from Section 4.5, we started by creating 100
MAPF problem instances for each number of agents for the formation of the training
set. Here, the expectation was to have a dataset, where each class is sufficiently
represented to allow for the training of a machine learning model. However, the data
generation revealed that the machine learning approach could not be applied in this
case, as all 900 generated instances were classified into class A. Therefore, there was
nothing to be gained with the use of dynamic mapping. This result is unexpected,
but in hindsight, reasonable, as the possible distances between randomly assigned
start and goal nodes can be extremely minimal - even next to each other. In this
case, the use of more speeds does not pose any advantage. Furthermore, when there
are conflicts between any two agents, then they can be quite easily solved on the grid
without needing to consider the use of more speeds. This is because, in most cases,
multiple shortest paths exist between any two start and goal node pairs that share
the same Manhattan distance. Thus, stopping or speed changes can be avoided - as
a solution with conflicts can be discarded for a conflict-free solution, but with the
same path length - and again, using more speeds does not present an advantage.
Exp. H: Figure 5.1 refers to the experiment Exp. H from Section 4.5. Here, we
expect the machine learning model and the resulting mapping π to perform better
than the two deterministic mappings πA and πB for a successful result. This is
because we assume the machine learning model to make use of the data it is trained
on to learn to recognize useful features from the instances. When looking at the
differences with the optimal total cost T (π∗), we can see that our model achieved the
smallest difference among the different mappings. The learned dynamic selection
(π) was able to perform 1.54 times better than the best deterministic selection (πA)
when comparing the differences to the optimal. Therefore, the expectation for this
experiment was met as the training of the model produced a successful result.
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Figure 5.1: Results for Exp. H: difference with the optimal total cost T (π∗) com-
pared to the total costs for the deterministic mappings (πA and πB), our model (π
in green), and a worst mapping.

Exp. E: Figure 5.2 refers to the experiment Exp. E from Section 4.5. Here, we
expect the machine learning model and the resulting mapping π to perform better
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than the two deterministic mappings πA and πB for a successful result. This is
because we assume the machine learning model to make use of the data it is trained
on to learn to recognize useful features from the instances. When looking at the
differences with the optimal total cost T (π∗), we can see that our model achieved the
smallest difference among the different mappings. The learned dynamic selection
(π) was able to perform 1.76 times better than the best deterministic selection (πA)
when comparing the differences to the optimal. Therefore, the expectation for this
experiment was met as the training of the model produced a successful result.
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Figure 5.2: Results for Exp. E: difference with the optimal total cost T (π∗) com-
pared to the total costs for the deterministic mappings (πA and πB), our model (π
in green), and a worst mapping.

Exp. N: Figure 5.3 refers to the experiment Exp. N from Section 4.5. Here, we
expect the machine learning model and the resulting mapping π to perform better
than the two deterministic mappings πA and πB for a successful result. This is
because we assume the machine learning model to make use of the data it is trained
on to learn to recognize useful features from the instances. When looking at the
differences with the optimal total cost T (π∗), we can see that our model achieved the
smallest difference among the different mappings. The learned dynamic selection
(π) was able to perform 2.04 times better than the best deterministic selection (πB)
when comparing the differences to the optimal. Therefore, the expectation for this
experiment was met as the training of the model produced a successful result.
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Figure 5.3: Results for Exp. N: difference with the optimal total cost T (π∗) com-
pared to the total costs for the deterministic mappings (πA and πB), our model (π
in green), and a worst mapping.

Exp.R: Figure 5.4 refers to the experiment Exp.R from Section 4.5. Here, we expect
the machine learning model and the resulting mapping π to perform better than the
two deterministic mappings πA and πB for a successful result. This is because we
assume the machine learning model to make use of the data it is trained on to learn
to recognize useful features from the instances. When looking at the differences with
the optimal total cost T (π∗), we can see that our model did not achieve the smallest
difference among the different mappings. The learned dynamic selection (π) was
1.05 times worse than the best deterministic selection (πA) when comparing the
differences to the optimal. Therefore, the expectation for this experiment was not
met as the training of the model did not produce a successful result. A possible cause
for this might be the underrepresentation of class B samples within this dataset (see
Section 5.1). Considering a larger dataset might help fix this, but we estimate the
reason for this result to lie in the setup of the graph. Meaning, the two circular
lanes that permit the anticlockwise flow of agents within the roundabout allow to
better avoid conflicts between the agents than in the other test cases. Thus, in this
case, using more speeds is not that beneficial as stopping or speed changes can be
better avoided.
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Figure 5.4: Results for Exp. R: difference with the optimal total cost T (π∗) com-
pared to the total costs for the deterministic mappings (πA and πB), our model (π
in green), and a worst mapping.
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Exp. I: Figure 5.5 refers to the experiment Exp. I from Section 4.5. Here, we
expect the machine learning model and the resulting mapping π to perform better
than the two deterministic mappings πA and πB for a successful result. This is
because we assume the machine learning model to make use of the data it is trained
on to learn to recognize useful features from the instances. When looking at the
differences with the optimal total cost T (π∗), we can see that our model achieved the
smallest difference among the different mappings. The learned dynamic selection
(π) was able to perform 1.36 times better than the best deterministic selection (πB)
when comparing the differences to the optimal. Therefore, the expectation for this
experiment was met as the training of the model produced a successful result.
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Figure 5.5: Results for Exp. I: difference with the optimal total cost T (π∗) com-
pared to the total costs for the deterministic mappings (πA and πB), our model (π
in green), and a worst mapping.

Table 5.2 summarises the per-graph mapping results and shows how the results
compare to the optimal mapping percentage-wise. The per-graph mapping results
demonstrate that our dynamic parameter selection performed better than the best
deterministic selection in four test cases out of the total five. This matches our
expectations for the machine learning model to make use of the input features to
learn the mapping π. However, the single worse, but almost on-par performance in
the experiment Exp.R was unexpected and may be explained by the underrepresen-
tation of class B samples within the dataset. In other words, for these instances, the
performance of the deterministic mapping πA was already very close to the optimal.
As stated, considering a larger dataset might help, but the inherent reason for this
result is esimated to come from the graph setup that allows to better avoid conflicts
between the agents.

Exp.H Exp. E Exp.N Exp.R Exp. I
πA +0.43% +0.37% +0.61% +0.20% +0.78%
πB +0.64% +0.64% +0.51% +0.56% +0.60%
π +0.28% +0.21% +0.25% +0.21% +0.44%

Worst +1.06% +1.00% +1.12% +0.76% +1.39%

Table 5.2: Per-graph mappings total cost value differences with the optimal map-
ping π∗ in percentages.
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5.3 Multi-graph mappings

Exp.HEN: Figure 5.6 refers to the experiment Exp.HEN from Section 4.5. Here,
we expect the machine learning model and the resulting mapping π to perform better
than the two deterministic mappings πA and πB for a successful result. Addition-
ally, we expect π to perform better than the per-graph mappings from experiments
Exp.H, Exp.E and Exp.N, which on average performed 1.78 times better than the
best deterministic selections when comparing the differences to the optimal. This
is because the machine learning model has access to more data, and instances from
one graph can share features that apply to instances from another graph, potentially
improving the learning. When looking at the difference with the optimal total cost
T (π∗), we can see that our model achieved the smallest difference among the dif-
ferent mappings. The learned dynamic selection (π) was able to perform 1.88 times
better than the best deterministic selection (πA) when comparing the differences to
the optimal. Therefore, the expectation for this experiment was met as the training
of the model produced a successful result.
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Figure 5.6: Results for Exp. HEN: difference with the optimal total cost T (π∗)
compared to the total costs for the deterministic mappings (πA and πB), our model
(π in green), and a worst mapping.

Exp.RI: Figure 5.7 refers to the experiment Exp.RI from Section 4.5. Here, we ex-
pect the machine learning model and the resulting mapping π to perform better than
the two deterministic mappings πA and πB for a successful result. Additionally, we
expect π to perform better than the per-graph mappings from experiments Exp. R
and Exp.I. This is because the machine learning model has access to more data, and
instances from one graph can share features that apply to instances from another
graph, potentially improving the learning. When looking at the difference with the
optimal total cost T (π∗), we can see that our model achieved the smallest difference
among the different mappings. The learned dynamic selection (π) was able to per-
form 1.56 times better than the best deterministic selection (πA) when comparing
the differences to the optimal. Therefore, the expectation for this experiment was
met as the training of the model produced a successful result.
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Figure 5.7: Results for Exp. RI: difference with the optimal total cost T (π∗)
compared to the total costs for the deterministic mappings (πA and πB), our model
(π in green), and a worst mapping.

Exp. HENRI: Figure 5.8 refers to the experiment Exp. HENRI from Section 4.5.
Here, we expect the machine learning model and the resulting mapping π to perform
better than the two deterministic mappings πA and πB for a successful result. This is
because we assume the machine learning model to make use of the data it is trained
on to learn to recognize useful features from the instances. When looking at the
difference with the optimal total cost T (π∗), we can see that our model achieved the
smallest difference among the different mappings. The learned dynamic selection
(π) was able to perform 1.36 times better than the best deterministic selection (πA)
when comparing the differences to the optimal. Therefore, the expectation for this
experiment was met as the training of the model produced a successful result.
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Figure 5.8: Results for Exp.HENRI: difference with the optimal total cost T (π∗)
compared to the total costs for the deterministic mappings (πA and πB), our model
(π in green), and a worst mapping.

Table 5.3 summarises the multi-graph mapping results and shows how the results
compare to the optimal mapping percentage-wise. The multi-graph mapping results
demonstrate that our dynamic parameter selection performed better than the best
deterministic selection in all three test cases. This matches our expectations for the
machine learning model to make use of the input features to learn the mapping π.
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Additionally, it could be said that for Exp. HEN and Exp. RI the performance was
better when comparing with the performance of the graph-specific mappings from
which the data combinations were used. Lastly, with the Exp.HENRI, it seems that
the choice of training a more generalized model on data from all five test cases is
possible as it performed better than any of the deterministic mappings. However,
this result is the worst between the three multi-graph mappings. The reason for this
may be in the missing structure between all of the test cases, that is present in the
data combinations of experiments Exp.HEN and Exp.RI.

Exp.HEN Exp.RI Exp.HENRI
πA +0.47% +0.42% +0.45%
πB +0.59% +0.58% +0.58%
π +0.25% +0.27% +0.33%

Worst +1.06% +1.00% +1.03%

Table 5.3: Multi-graph mappings total cost value differences with the optimal
mapping π∗ in percentages.

5.4 Comparison with target system
Figure 5.9 examines the distinct solutions from six randomly selected MAPF in-
stances from the experiment Exp. N dataset as it achieved the best performance
between the per-graph mappings. It features the SIC values in the CTDS model
and the target system between solutions with different number of agents using the
defined set of speeds from S (see Section 4.3.2) for the different instances, and also
the single solution cost from the penalty-based function C(π(i), i) (Equation 3.1).
The expectation here is that the SIC values in the CTDS model and the target
system behave in a similar manner and that they show a logical connection to the
single solution cost C(π(i), i) of a MAPF instance i and, therefore, also to the total
cost T (π) (Equation 3.3) comprised of multiple instances i ∈ I. We expect this
because we assume that the agents’ behavior from using more speeds in the CTDS
model can be translated to improved behavior in the target system if an instance i
is labeled to use more speeds (π(i) = B).
The comparison shows that when an instance i was categorized under class A (π(i) =
A), i.e., to use fewer speeds, then the SIC values are equal both in the CTDS model
and the target system when using the different speed sets. This is because using
more speeds can only make the final solution better in terms of the SIC time. As
the SIC times are equal, then it is better to use fewer speeds as using more speeds
does not give an advantage. Also, using fewer speeds allows the solution to be found
quicker as the computational complexity grows with the number of available speeds.
Thus, the reduced penalty applied to the single cost C(π(i), i) for using fewer speeds
allows us to label the instance into class A. This connection is also visible in the
equal SIC values for the target system.
Correspondingly, when an instance i was categorized under class B (π(i) = B), i.e.,
to use more speeds, then the SIC values are lower both in the CTDS model and
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the target system with the use of speed set speedB. Here, the focus lies rather in
the fact that the values improve in a similar manner, rather than the exact size
of the improvement. This shows that using more speeds for these instances is also
beneficial in the target system. Thus, the expectation for this experiment is met, as
the behavior with the use of the different speed sets between the SIC values in the
CTDS model and the target system is similar. Also, the logical connection to the
penalty-based functions is revealed because equal solutions in terms of the SIC time
are penalized in favor of the least expensive one in the CTDS model as well as the
target system. Therefore, suggesting that the proposed machine learning approach
can also be translated to the target system as possible gains present in the CTDS
model can also be manifested in the target system.
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Figure 5.9: Comparison of values in the CTDS model and the target system (TS)
using the speedsets speedA and speedB for different instances i with k agents.

5.5 Discussion
Coming back to the research questions established in Section 4.1, we have presented
the results of the implementation of the automatic parameter selection to learn a
mapping π. With this approach, the results showed that the learned per-graph and
multi-graph mappings were able to constantly perform better or on-par in compar-
ison to the fixed deterministic selections on the established road scenarios. Thus,
answering the first research question (Q1) and suggesting that machine learning can
be used to achieve better performance than any of the deterministic mappings as
the learned features from a visual instance representation are sufficient. However,
as was learned from Exp.R, this comes with the expectation that the problem setup
allows for the generation of instances where both cases - using more speeds and
using fewer speeds - are better balanced. Additionally, Exp.G showed that the use
of more speeds did not present any advantage in this case because conflicts could
be easily avoided in the grid environment, and, therefore, a dynamic mapping could
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not be applicable as a fixed setting was always preferred.
Moreover, regarding the second research question (Q2), the multi-graph results in-
dicated the potential to train a more robust machine learning model on different
problem settings. Like the per-graph mappings, the dynamic mappings were still
able to perform better than the deterministic mappings. At the same time, even
expressing small gains over the per-graph mappings, but this comes with the ex-
pectation that the instances from different graphs share a similar structure. With
this, we mean that there is potential for instances from one graph to have features
that apply to instances from another graph, In more detail, consider an instance
that is on the highway entrance graph. If agents within this graph are not assigned
start nodes from the on-ramp to the main highway, then essentially this same in-
stance can also be represented by only using the highway graph. Therefore, features
from the highway entrance instance could be applied to an instance on the highway
graph during the training of a machine learning model. This connection can also be
reasoned to exist between different roundabout and intersection instances, as both
share a similar setup of four incoming two-lane roads that model the possible start
nodes for the agents. Furthermore, with Exp.HENRI, where a model was trained on
MAPF problem instances from all of the five road test cases, the dynamic mapping
was still able to outperform the fixed mappings. However, we can see an overall de-
cline in the quality of the result when compared to the other multi-graph mappings.
Thus, indicating that specialiced machine learning models - that focus on test cases
with a similar structure - could be preferred over very robust models that try to
achieve towards a Jack-of-all-trades styled implementation.
When discussing the third research question (Q3), the proposed problem setup of
using two speeds vs. four speeds presented the possible improvement to be slightly
under 1%. Although, this is to be expected as the presented road environments are
relatively small compared to a bigger road system, consisting of multiple such minor
parts, where there is more possibility for improvement. Learning from Exp. G, an
important factor to consider is the setup of the applied problem. If most conflicts can
be avoided without loss in arrival time by regarding other paths, then this approach
might not be worthwhile as it is hard to find instances where more speeds impose a
potential improvement.
Lastly, concerning the fourth research question (Q4), we demonstrated that there
exists a correlation between the single solution cost C(π(i), i) for a MAPF problem
instance i and the SIC values in the CTDS model and the target system. This
comparison showed that gains in the CTDS model could be manifested in the target
system as the agents’ behavior from using more speeds in the CTDS model can be
translated to improved behavior in the target system. Therefore, the use of dynamic
mapping can also be beneficial in a framework based on the target system.
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In this thesis, we formulated the automatic parameter selection problem and pre-
sented the application of a deep neural network to approach this problem. By doing
so, a mapping was learned that is able to connect a MAPF problem instance to
a suitable speed parameter. This dynamic parameter selection approach was ex-
perimented on with MAPF problem instances from various vehicular road traffic
scenarios.
The results showed that a visual representation of MAPF problems is sufficient as
there are cases in which the dynamic selection was able to perform better when
compared to a fixed setting. One of the benefits of the presented approach is that
it allows to work with a single MAPF algorithm extensively without the need to
improve it further in order to achieve potentially better performance. Furthermore,
by using machine learning to select parameters, developers of MAPF algorithms do
not have to implement this selection somehow manually, as the possible number of
problem instances may be virtually unlimited.
In conclusion, the presented work gives new knowledge for the previously unstudied
approach of parameter selection, indicating a connection between the visual rep-
resentation of a MAPF problem and its solution with the potential to improve it
further via parameter selection. Future work in this area could extend the evalu-
ation to more realistic MAPF problems by extracting information from real-world
traffic data. Moreover, once a machine learning model is fully trained, it could be
implemented in an online manner, so it could provide parameter selection knowledge
to solve MAPF problem instances as they appear in real time. Also, implement-
ing more road scenarios would allow for the training of a possibly more general
model. Another possible future direction is considering MAPF problem instance
representations other than visual to use as input for machine learning.
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