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Abstract
The motorcycle is a popular vehicle that can be used for multiple purposes, such as
sport and commuting. It is estimated that only in Europe there are already 23 mil-
lion motorcycles. However, statistics show that its risk of severe or deadly crashes
is over-represented in traffic fatalities, of which one important reason is the lack of
support when the motorcyclists are driving alone so that the timely medical treat-
ment is missed to improve the wounded outcome. To tackle this problem, Detecht
Technologies AB has developed a smartphone application which can automatically
send rescue information to public-safety answering point when the app detects a
crash event by measuring the embedded sensors of the smartphones. The aim of
this thesis is to improve the motorcycle crash detection algorithm with machine
learning, based on the driving data provided by Detecht.

The dataset is composed of 500 normal driving logfiles without crash events and
17 logfiles each containing one crash event. In total there are recordings of about
630 driving hours. A literature review is conducted to study the existing methods
of motorcycle crash detection. In addition, several deep learning based temporal
anomaly detection methods are researched and candidates methods are compared.
Furthermore, an exploratory data analysis is conducted to understand the compo-
sition and limitation of the dataset. Then a crash detection algorithm pipeline is
proposed based on the findings. The method is the autoencoder based to learn the
generic normality features and then to define the anomalous patterns as possible
crash events. Several autoencoders are tested and their performance are evaluated
on the same dataset, and an optimal model, which is a MobileNetV3-style autoen-
coder, is standing out by comparing their ability of detecting true crashes while
maintaining low false alarm rate. Finally, the motorcycle crash detection results
are compared with the given true crashes and normal driving, from the sense of
sensitivity and specificity.

It shows that the optimal model can detect all the provided true crash events while
raising a false alarm per 1.8 driving hours on average. The thesis analyzes these
results and discusses the relationship between crash detection and false alarms
arousing. In addition, several suggestions are proposed and analyzed as a future
development direction.

Keywords: machine learning, anomaly detection, autoencoders, convolutional neural
networks, motorcycle crash detection.
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1
Introduction

1.1 Background

Motorcycles can be used in a range of versatile purposes, such as sport and com-
muting. The Federation of European Motorcyclists’ Associations (FEMA) estimated
that there are 23 million motorcycles in Europe [4]. However, statistics show that
the risk of death or injury for motorcycle drivers due to traffic accidents is overrep-
resented in traffic fatalities [5, 6, 7]. In Europe, there is more than 3644 deaths in
road accidents involving riders of motorcycles in 2016, and in Sweden, the statistic
is around 40 fatalities yearly [8, 9]. Besides, 34% of powered-two-wheelers casual-
ties were admitted to the hospitals, and they stayed for about 10 days on average
[8]. The statistical data of the road traffic accidents reported by the Swedish police
is presented in Table 1.1. Compared with car crashes, though the number of car
crashes is over ten times than of motorcycle crash (MCC), their severity tells the
difference: the percentage of severe and deadly accidents in MCC accounts for near
three times than that in car crashes.

Severity Car Motorcycle Moped Cyclist Pedestrian Other Total
Light 8875 620 883 1998 1017 316 13709
Severe 804 230 110 239 198 64 1645
Deadly 122 28 4 18 25 7 204
Total 9801 878 997 2255 1240 387 15558

Light 90.55 70.62 88.57 88.60 82.02 81.65 88.12
Severe 8.20 26.20 11.03 10.60 15.97 16.54 10.57
Deadly 1.24 3.19 0.40 0.80 2.02 1.81 1.31

Percent of accident per severity level and road user group [%]

Table 1.1: Statistics accident severity level comparison by different road users in
2020 by the official statistics of Sweden. Calculated from [1].

Analyzing the cause of MCC may help find the distinction. MCC can be divided
into two categories, single accidents (involving only one motorcycle) and collisions
with another vehicle (such as a car), and as shown in Table 1.2 different accident
conditions lead to different physical injury risks, according to FEMA [4]. The injury
risk percentages is calculated from an FEMA survey of Dutch motorcyclists, and
can be an indicative of the European situation. In total, each category takes up half
of the all accidents, and the most likely top 13 accident risks are listed in Table 1.2
that are responsible for more than half of all the MCC.

1



1. Introduction

Accident condition
Physical

injury risk

Single accidents
Emergency stop to avoid accident (mostly with cars) H
Oil or fuel on road M
Steering error especially in curves M
Braking error and blocking brakes M

Collision
Car coming sideways not yielding right of way on intersection H
Car coming onto road from parking area, outlet, gas station etc. H
Car oncoming from opposite direction and turning left in front of motorcycle H
Car oncoming from opposite direction driving in wrong lane H
Car moving in same direction changing lanes (overtaking, making left/right turn, parking) M
Car moving in same direction hitting motorcycle from behind stopped for traffic light, yielding etc. M
Car moving in same direction changing lanes in traffic jam M
Car moving in same direction hitting riding motorcycle from behind M
Motorcycle not keeping enough distance to car in front moving in same direction L

Table 1.2: Top 13 accident risks with its physical injury indicator in alphanumerical
order. High(H): Over half chance of physical injury. Medium (M): more than one-
quarter chance of physical injury. Low(L): less than one-quarter chance of physical
injury. Adapted from [4].

The graph of the number of fatalities in road accidents of car crashes and MCC
in Sweden is presented in Fig 1.1, and the graph is drawn based on [1]. It shows
that the fatality rate of car crashes is generally decreasing, particularly in recent
decades, but that of MCC is not decreasing. The reason might be due to that, the
shell of the car can act as a protective structure, combining with more paramount
safety measures are introduced to car year by year, while the design of motorcycle
makes its driver more vulnerable [7, 10] hence effective protections for motorcycle
are in demand. In addition, for Table 1.1, it is worth mentioning that while the
death of car crashes contains both drivers and passengers, the death in MCC con-
tains only the drivers in 2020, which suggests that protective safety measures for
motorcyclists are particularly needed for the case when they are driving alone [5, 11].

To tackle this problem and protect the motorcyclists in crashes, several approaches
are proposed and deployed. They can be classified into passive and active safety
strategies. For example, wearing a helmet in the proper manner can effectively re-
duce the risk of death and severe injury, though it is found that less than half of
all countries have legislated specific standards for helmets [12]. Besides, there are
both chest airbags on the motorcycle and protective clothing embedded with airbags
to reduce the serious impact-related injuries [13]. In addition to passive equipment,
similar to the eCall systems which are mandatorily deployed in automotive, eCall for
motorcycles are initiated. eCall means that a call is made to an emergency service
in order to rescue the people. Imagine when a severe MCC happens, the automatic
crash detection system can detect the crash, locate the driver, and notifying relevant
information to the emergency service. In this case, the drivers are more likely to
receive medical treatment, without counting on the possible passersby. In short,
all these above-mentioned efforts require a reliable and effective MCC detection
method. Therefore, real-time motorcycle crash detection, from one side is needed

2
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Figure 1.1: The number of deaths of car and motorcycle in Sweden from 1960 to
2020. Drawn based on the statistical data from [1].

in passive protective equipment to trigger such as airbags, and from another side is
indeed needed to trigger rescuing alarm for timely medical treatment to improve pa-
tient outcomes, especially in the sparsely populated places where the injured driver
may not be recognized and given proper first aid, in response to the fact of the high
rate of MCC single accidents when driving alone.

There are several products similar to eCall, but some require additional equipment
and constant charging which may be inconvenient, see section 2.1 for a detailed
literature review. On the contrary, almost every motorist carries a smartphone.
Detecht Technologies AB proposed and deployed a smartphone application to detect
a motorcycle crash and activate the emergency service to save the life. The Detecht
App measures the driving characteristics and sends an alert if a crash is detected.
The driving parameters, such as acceleration and rotation, can be used to distinguish
severe crash from normal driving, and the data is collected from smartphone’s built-
in accelerometer and gyroscope. It provides the potential to make motorcycle driving
safer and more engaging by adopting an intelligent alerting system. Therefore, it is
necessary to improve the performance of the MCC detection solutions.

1.2 Purpose
This thesis is the expansion of two previous theses [7, 10] and other work done by
Detecht. They show that machine learning is feasible in motorcycle crash detection
using sensors from smartphones. By building on their previous efforts, this thesis
project attempts to uncover an automatic method that can detect the crash events as
they occur nearly in real-time, and is more accurate than the previous deep learning
method.

3



1. Introduction

1.3 Aim
The aim of the thesis is to:

1. develop a machine-learning-based algorithm predicting whether a motorcycle
crash has happened in an early phase (before the driver hits the ground).

2. optimize the algorithm to reduce the false positive alarm rate on normal driving
and the false negative detection on MCC.

1.4 Scope and Limitations
Evaluation of the algorithm is conducted in all records that have been confirmed
as crash events, but only in a small fraction of the normal driving data because
training and evaluation on the large number of available driving data require a long
computation time. It is tested whether a single simple detector can achieve the de-
sired results. All the confirmed crash records are analyzed, including the true crash
events and the false alarms.

Due to the limited time and resources, not all the interesting algorithms are imple-
mented and verified. Similarly, the hyperparameters are manually tuned but the
grid search across every combination of possibilities is not involved. Analysis on
more simulation or more real crash data would be beneficial for the evaluation of
the algorithm.

1.5 Outline
The thesis is organized as follows. Chapter 1 introduces the background and aim of
this thesis. In chapter 2 literature review on different anomaly detection methods
is summarised and the essential theory to understand this work is provided. Next,
the details of implementation and experiments are presented in Chapter 3 as well
as the dataset. Then Chapter 4 shows the results and evaluation of the experiments
whereas Chapter 5 focuses on the discussion about the domain knowledge, the ex-
periments and results of the algorithms. Finally, the conclusion of this thesis and
insights for further work are outlined in Chapter 6.

4



2
Theory

2.1 Motorcycle Crash Detection

Related researches and patents mainly focus on event-based MCC detection meth-
ods, including threshold-based and statistical-based [14]. It means these methods
are based on the analysis of MCC dynamics. Threshold-based methods are intu-
itive. They define a range of sensor values as normal driving, and a large deviation
from normal driving ranges is regarded as a crash event. For example, [15] proposed
an on-board event analysis that can recognize two scenarios: the motorcycle end-
ing falling (including sliding on the road surface for seconds), and the motorcycle
getting stuck vertical standing. This approach can estimate the mounting pose and
detect the most likely crash start and end by a mounted e-Boxes with 400 Hz inertial
measurement unit (IMU) which detects acceleration and roll angle, and 10 Hz global
navigation satellite system (GNSS) which detects speed. Based on the above work,
[16] further detects crashes from low to harsh combining off-board severity analysis.
The precise event-based MCC detection algorithms heavily rely on sensor calibration
because the mounting orientation of the device will influence the inertial measure-
ments [15], and it is difficult to define a generic description clarifying all the cases
of MCC. Besides, they usually ignore the temporal dependency between neighbor-
ing sampling points, thus detecting only point anomaly introduced in section 2.2.1.
Statistical-based methods assume the normal driving follows a multivariate distri-
bution and depicts the anomalies with a significance level (how likely it is that the
current output from the sensors is from a normal driving behavior). One example
can be [14] which claimed a one-class detection algorithm (a binary classifier) that is
insensitive to the driving style. It transforms the temporal signals of IMU into power
cepstrum, a type of frequency domain, and detects anomalous when the incoming
cepstrum differentiates greatly from a pre-defined reference distribution. Another
example is that [17] combines spectrogram and other characteristics extracted from
two accelerometers mounted on the bilateral motorcycle body, and claims to dis-
tinguish running over potholes and a steered collision through the main and safing
judgments. In conclusion, these works show promising results for MCC detection,
but also have some limitations. First, they both require dedicated devices. Besides,
they are based on handcrafted features that are carefully designed by experts under
certain domain assumptions. Finally, they focus on detecting falls or crashes where
the vehicles remain vertical standing.

Fewer researches are based on machine-learning methods. [7] trains the one-class

5



2. Theory

support vector machine (OCSVM) with additional rules on the normal data and tests
the algorithm on 5 types of simulated crashes. The results are satisfactory except
that it cost a long time to confirm a crash. [18] collects simulated data in three roads:
smooth road without road irregularities and crash hazards, irregular road simulating
the real city roads, and the road with irregularities and hazards where hitting the
hazards is considered to cause a falling crash. Then a two-phased self-organizing map
(a kind of neural networks) is trained on the collected data and achieves high Area
under the ROC Curve (AUC) under receiver operating characteristic (ROC). This
work highlights the importance of distinguishing crashes from crash-like anomalies.
There are also some works attempting to detect the crash from the perspective of the
classification task. For example, [19] used a supervised Bayesian maximum a poste-
riori (MAP) classifier to classify the simulated crash dummy tests. Another example
is a bicycle crash detection [20]. It has similar signals as that of MCC detection. It
manually designs 24 time-domain features and then reduces the feature dimension
to 6. The input to the classical SVM is the pre-calibrated and pre-processed data
of a time window of 2 seconds. The results achieve 95.2% accuracy but it is only
based on the cycling and falling statuses. [21] combines several machine-learning
algorithms to classify the normal bicycle drivings and crashes (both simulated and
real crashes) with 96.8% sensitivity and 99.6% specificity. The problems on these
work lie in the collection of supervised training data that contain mainly simulated
dummy tests. It is questionable how the trained classifiers perform on the real-world
dataset where noise and other untested cases are often encountered.

Therefore, an MCC detection method minimizing the misclassifications with the
high true positive rate (TPR) and low false positive rate (FPR) is crucial, as well as
being applicable to the real-world dataset, in order to provide a valuable emergency
service.

2.2 Anomaly Detection
Anomaly detection, also known as outlier detection or novelty detection, is defined
by Hawkins to find the instances out of the data that "deviates so significantly from
other observations as to arouse suspicion that it was generated by a different mech-
anism" [22]. In this thesis, only the term anomaly is used, since novelties are often
identified as unobserved patterns in the normal data, and outliers can be a joint
set of the other two. What distinguishes the problem of anomaly detection and
classification is the class imbalance of positive and negative samples: it is easy to
collect the normal data but anomalies are often rare. The lack of labeled training
samples usually leads the anomaly detection to semi-supervised fashion: the model
is trained on data without anomalies, and finds out the unusual events dissimilar
to the training samples. Anomaly detection can be applied in broad fields [2], such
as financial surveillance, industrial fault detection, medical risk in healthcare, and
in our case, MCC detection. Normal driving behaviors are common but the rare
anomalous behaviors can indicate a motorcycle crash where the driver may need
instant rescue.
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Deep learning in recent years has outperformed conventional methods significantly
in a wide range of applications [2, 22, 23]. The main advantage of deep anomaly
detection is the automatic learning of representation features or anomaly scores
from the raw data without manual feature extraction by human experts with do-
main knowledge. This thesis focuses on deep anomaly detection via neural networks.

Due to its rare nature, anomaly detection presents intrinsic complexity compared
with classification tasks. Some challenges of anomaly detection have been well
solved, while other problems have to be addressed and tackled to achieve the bet-
ter performance of anomaly detection [2, 22]. Challenge (CH) 1 is the low recall
rate for anomaly detection. It is difficult to identify all the rare and heteroge-
neous anomalies and avoid high false positives on real data. In addition, the dis-
tinguishment between normality and anomaly may be blurred in certain contexts,
and thus a precise boundary may be hard to define. CH2 is the anomaly detection
in high-dimensional and/or not-independent data. In the MCC detection case, the
anomalies need to be identified from the instances, on one side, that are temporal
dependent within each sensor (accelerometer and gyroscope), on the other side, that
are interdependent between sensors. CH3 is the data-efficient learning of normali-
ty/abnormality. Since accessible labeled anomalous data is often expensive and hard
to collect, semi-supervised and unsupervised methods are more often in practice to
learn the expressive representations. Besides, there may also be situations where
the labels may be incorrect or inexact. CH4 is the noise-resilient anomaly detec-
tion because the real-world data is often contaminated with noise, and vulnerable
models may regard these unexpected noise as anomalies. CH5 is the detection of
complex anomalies. Most existing methods focus on classifying a single observation
whether it is normal or anomalous. However, in our case, it is hard to determine
an MCC from a single motion sensor or a single point from the sensor values but
requires the joint confirmation from multiple heterogeneous data motion sensors and
the consecutive description of the crash dynamics. CH6 is the explainability of the
model. It is yet challenging to balance the interpretability and effectiveness of the
deep learning models. The current deep anomaly approaches aiming to solve these
challenges are summarized as Fig 2.1, and what they are learning are mainly feature
representations or anomaly scores.

Among all the approaches for anomaly detection [2, 3, 22], the outputs of these detec-
tion techniques are either anomaly scores or binary labels. Binary labels sometimes
can be calculated from anomaly scores by setting a threshold. If the output is the
representational features through a neural-network-enabled mapping function, then
the anomaly scores or binary labels will be computed from the new representation
space.

2.2.1 Anomaly Detection for Time Series
Anomalies in time series can be classified into four broad types [3, 22]:

• Point Anomalies: a point anomaly is a specific point that is considered different
from the entire time series (global outlier) or the neighboring points (local
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Deep anomaly 
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End-to-end anomaly score learning
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Autoencoders
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Generative adversarial networks
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CH1,2,5
Self-supervised classification
CH1,2,4

Figure 2.1: Summary of current deep anomaly detection approaches and their
aimed challenges. Adapted from [2].

outlier). It can be univariate if it is different in only one variable or multivariate
if more time-dependent variables are affected. Point anomalies often happen
randomly and particular interpretation may not be possible to make.

• Collective anomalies: also called group anomalies. A collection of individual
data points which may not be point anomalies in isolation but exhibit unusual
behaviors when joined together is referred as the collective anomalies. In time
series it is also known as subsequence anomalies and can be univariate or
multivariate.

• Contextual Anomalies: if a data instance behaves anomalously in a particular
context but normally otherwise, it is defined as a contextual anomaly, also
known as a conditional anomaly. Both behavioral and contextual attributes
need to be considered in this anomaly type. For example, if speed provides the
context, then large values from accelerometers and gyroscope in a smartphone
may indicate a crash if the speed shows that it is under driving, and it may
also be the case when a man is shaking the smartphone or mounting it to the
handlebar with speed being near zero.

• Time Series Anomalies: if the input data is multivariate time series and a
time-dependent variable shows significantly different behavior compared with
other component variables, then the whole particular time series is regarded
as anomalies. For example, when a sensor is not functioning at one particular
axis and this measurement does not reflect the truth but only randomly gen-
erated noise.

Anomaly detection for temporal data preserves its unique characteristics, summa-
rized in Fig 2.2. The meaningful type in temporal anomalies is often contextual
anomalies, with additional attributes contributing the contexts. Depending on the
domain and usage, time is often an anomalous condition, in addition to the above-
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Figure 2.2: Summary of anomaly detection characteristics in time series data.
Adapted from [3].

mentioned speed attribute in MCC detection. Another important consideration of
temporal contextual anomalies is owing to their dimension and dependency. Tem-
poral dependency is widely addressed in time series, both within a univariate (cor-
relation within one variable) and across multivariate (correlation among variables)
time series, to address CH2 and CH4 in section 2.2.

2.3 Neural Networks

A neural network (NN), short for artificial neural network, is a specific machine
learning vaguely inspired by the neural networks in animal brains. A more mod-
ern term "deep learning" concentrates more on the principles of the combination of
multi-scale features, and contains more machine learning frameworks not inspired
by neuroscience [24]. The feedforward NN is a classical deep learning model which
aims to approximate a certain mapping function y = f ∗(x; θ) where x, y are the
input/output to the NN, and θ is a set of parameters that will be learned during
the training of the NN. The feedforward NN is trained by backpropagation, which
updates the parameters according to the difference between the expected output and
the NN output. The word feedforward means there is no cycle connection among
its nodes.
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Real-world problems are often non-linear functions. It is demonstrated by universal
approximation theorem that, a feedforward NN with at least one kind of "squeeze"
activation function can represent every mapping function if there are enough number
of hidden units within just one hidden layer [24]. However, it is found that this kind
of single hidden layer NN may need an unrealistically large number of hidden units.
For example, in most cases, the "enough" number of hidden units is the exponential
order of n, where n means the n-dimensional input space. Besides, it is found that
wide, shallow NNs are often good at memorization, but bad at generalization. To
reduce the complexity of NN and make NN practical, different units are designed,
together with the ways they connect each other. The units are often called layers in
modern NN, and the number of layers constitutes the concept "depth" which refers
to deep learning. It is found that deep NNs are better at generalization because it
can learn various levels of abstracted features through each hidden layer. In conclu-
sion, deep NNs are demonstrated to have better performance in many application
fields. However, the exact depth for each model structure needs to be fine-tuned.

2.3.1 Autoencoder
The autoencoder (AE) is a kind of NN that attempts to get the output as similar
as the input. The classical AE is composed of an encoder h = f(x) and a decoder
y = g(h), where h is called hidden space, code, latent space, compressed space,
representational space, etc. In this thesis, these terms are used to express slightly
different meanings. In practice often undercomplete AE is considered, which means
the dimension of latent space h is restricted to be smaller than that of input x.
In this case, hidden space h is an effective representation of the input and the
compressed space is the learned principle component subspace of the training dataset
[24, 25]. The learning process of AE can be described as minimizing a loss function
L(x, g(f(x))), where L is to penalize the gap between x and g(f(x)).

x h yf g

Figure 2.3: An illustration of the autoencoder.

2.3.1.1 Related Work

From a practical perspective, the AE is a popular method with its relatively low cost
of training and implementation and straightforward intuitions. The assumption of
AE-based methods is that, if the latent dimension is lower than that of input, then
the latent space is the low-dimensional feature representations of the training data
(normal instances), and normal instances can be well reconstructed while anomalous
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instances cannot [3, 22, 25].

Since temporal anomaly detection focuses more on contextual anomalies, the net-
work architecture is correspondingly adapting to the input type and specific domain,
such as convolutional autoencoder (CNN-AE), RNN autoencoder (RNN-AE), and
combination or variant of them, etc [2, 25]. Based on the assumption of AE, one
straightforward way to get the anomaly detection results is to regard the reconstruc-
tion error (sometimes called prediction error in RNN domain) as anomaly score, and
then use the deviated value from a fixed threshold as the confidence score or to clas-
sify the instance as normality or anomaly. The fixed threshold is a pre-defined value
after training. However, there is no such method that dedicates to dynamic and
adaptive thresholds in univariate/multivariate in collective outliers [3]. The other
way is to make use of the learned representations of AE. For example, after training
a CNN-AE, one can extract the outputs of only the encoder and let the one-class
classifier tell if the hidden representations are normal or anomalous. The one-class
classifier can be the one-class support vector machine (OCSVM), support vector
data description (SVDD), or more advanced methods such as the end-to-end one-
class classifier generative adversarial network (GAN) [3]. Another example would
be that one may also use RNNs to build a prediction model and the prediction
error would be the difference between learned hidden representations and predicted
representations [26].

One significant advantage of AE-based anomaly detection is that there are a variety
of powerful neural network variants available (CH2), and then it may learn more ex-
pressive features than those handcrafted by human experts to help reduce the false
positive rate (CH1) [2]. On the contrary, CH5 is a big issue in AE-based techniques
because on one hand, the expected infrequent regularities may not be learned and
the unexpected presence of outliers in the training data may be learned [2]. On the
other hand, the loss function aims at learning the underlying regularities, rather
than directly learning the anomalies [2].

The window-based AE is a widely used variant of AE in accelerometer data analysis
[2]. The input samples are overlapping sliding windows of multivariate time series,
illustrated in Fig 2.4. Through AE, the temporal dependencies are modeled within
the input time window, so this method is only suited for relatively simple time series,
but not for data that have long-range temporal relationships [27].

CNN is a popular structure to construct the representational space, and there are
also several other domain-specific structures other than CNN, such as recurrent neu-
ral network (RNN), long short-term memory (LSTM), gated recurrent unit (GRU),
etc., that are popular in complex time series. For example, [27] found CNN-AE
performed comparable with long short-term memory autoencoder (LSTM-AE) on
machine temperature and ECG datasets, and [28] found similar results on NAB and
S5 datasets, but in certain dataset, the latter one outperforms the former. It also
applied to [29] where there is no distinction between CNN-AE and LSTM-AE in
certain datasets. [30] summarized that CNN-VAE may be suitable for deployment
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Figure 2.4: Creating sliding window samples for anomaly detection. The x label
is the temporal sampling points, the time window is created in an overlapping style,
where s is the stride, N is the length of the sliding window.

in edge devices. [31] used DNN-LSTM as predictability modeling and the deviation
values as anomaly scores on a run-to-failure bearing dataset. [32] changed multi-
channel CNN to multi-head CNN and then concatenated RNN to obtain deviation
scores. Besides, in addition to AE, there are GANs, and other learning methods
available and rapidly emerging, as summarized in Fig 2.1. It is unknown which
model architecture is optimal for the current case before trying every model, but it
is suggested to test the simpler models first unless they do not yield desired per-
formance [27, 33]. Previous work by Detecht [7, 10] show that detecting collective
anomalies based on raw data space can be troubled by the high false positive rate
but neural networks can be promising, so it is reasonable to investigate more on
contextual anomalies via neural networks based on previous work.

2.3.2 Convolutional Neural Network
CNN is the first kind of NNs that solves important business applications [24]. The
word "convolutional" means the operation "convolution" is applied to at least one
layer of this NN, instead of conventional matrix multiplication. The convolution
operation in CNN is actually cross-correlation, which is not commutative compared
with conventional convolution operation in the function of real variables. Convolu-
tion is calculated as equation 2.1, where S is the output, I is the input, and K is the
kernel. In practice, K is much smaller than the input I to achieve sparse interaction
[24] and produce the compressed feature map.

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (2.1)

A basic convolutional architecture is usually composed of three building blocks,
as shown in Fig 2.5, a convolutional layer to apply affine transformation, a non-
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linear activation function to introduce non-linearity, and a pooling layer producing
the unit results by the overall statistical features of neighboring output at certain
locations. The pooling layer is like a prior assumption, that the learned function
can be invariant to slight shifts.

Input of the 
unit

Convolutional 
layer

Activation 
function

Pooling layer Next unit

Convolutional unit

Figure 2.5: A basic convolutional unit

The above unit is applied to the encoder. The decoder has a similar structure as
the encoder, but the building blocks are slightly different. The deconvolutional unit
consists of a transposed convolutional layer (also called deconvolution or upsampled
convolution), a non-linear activation function, and an up-sampling layer, illustrated
in Fig 2.6. On the contrary of convolution that compresses the input values, the
transposed convolution outputs a larger shape through the kernel by broadcasting.

Input of the 
unit

Transposed 
convolution

Activation 
function

Up-sampling 
layer

Next unit

Deconvolutional unit

Figure 2.6: A basic deconvolutional unit
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Method

3.1 Anomaly Detection Method

In this thesis, training the anomaly detection algorithm consists of two steps. In the
first step, a CNN-AE is trained on normal dataset to learn the compressed features of
normal driving and to reconstruct the normal driving behaviors. Then, the second
step reconstructs all the data samples, including normal and crash datasets, to
produce the anomaly scores derived from the gap between the reconstruction error
and a tuned threshold, details in section 3.1.3.

3.1.1 Assumptions

The principle assumption inside the AE method is that it can learn the normal
driving behaviors if trained on the normal driving data so that the reconstruction
error of normal samples is small. On the contrary, the reconstruction error of the
crash samples will be large since the model did not learn the crash dynamics. Hence
a properly tuned threshold of reconstruction error can differentiate the anomaly
from normality as well as possible. The tuning of the threshold is introduced in
section 3.1.3.

3.1.2 Algorithm Scheme

The proposed crash detection scheme has two phases. Only passing both phases, will
a crash alarm be triggered. Phase one is a simple event-based method. The aim of
phase one is to reduce the false positive rate (FPR), by filtering out the cases when
the smartphone is moving very slowly or has small accelerations or rotations. It is
expected that the FPR can be reduced by making full use of available information.
It works by comparing the measured sensor values with pre-defined thresholds. If
the sensor values exceed the thresholds for a while, then it indicates that the driver
is in a considerable movement. If the sensor values are below the thresholds, then
phase two will not be triggered, and the whole scheme will not raise a crash alarm. If
phase two is triggered, then the crash detector (a CNN-AE) will check if it is a crash
event by comparing the reconstruction error with a pre-defined threshold (THA) and
the number of consecutive anomalous samples with a pre-defined threshold (THB).
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Figure 3.1: Block diagram of the state machine of proposed MCC detector. a and
φ is the measured acceleration and angular velocity, respectively. PSAP, the Public
Safety Answering Point, is the emergency service provider in Sweden.

3.1.3 Model Tuning

After the reconstruction model is trained, the algorithm of anomaly detection re-
quires another five additional parameters: the thresholds set for driving speed, ac-
celeration, rotation speed in phase one, and the threshold of reconstruction error
THA to define a point anomaly and the number of consecutive anomalies THB to
define a collective anomaly in phase two. These five thresholds are obtained by
balancing between the performance of anomaly detection and the frequency of false
positive alarms, which will be explained in the following paragraph. For the param-
eters in phase one, first, the false positive events are statistically analyzed when the
phase one parameters are set to zero. Then, these three parameters are set to the
Euclidean norm of the smallest sensor values among these false positive events.

As for the parameters in phase two, if THA is simply set as the maximal error in
the normal training set, then it would be sensitive to the noise and the most ex-
treme and suspicious driving behaviors in the training set but still did not detect a
potential crash. In practice, it is common to use the 99% percentile (the location
in a distribution) or the 75% percentile + 1.5 ∗ interquartile range (the difference
between 75% and 25% percentiles) of the reconstruction error in the training set to
eliminate the influence of outliers [34]. The algorithm will become a point anomaly
detector if THB is set as 1. Therefore, a grid search method combining the tuning
of THA and THB is adopted in this thesis. First, a range of 91 − 100% percentile of
reconstruction error is compared together with the THB ranging from 50 − 200 to
find out a coarse performance. Then, a finer classifier is tuned with THA ranging
within 98−99% and THB ranging within 1−250 to get their comprehensive profiles
by AUC. Finally, a pair value of THA and THB is decided for each model according
to the results. As for the triggering thresholds for the three contextual attributes,
they are tuned and searched from the parameter candidates lists by analyzing the
difference of the sensor values in the anomalous event and true labeled crashes. The
potential issue of this grid search method lies in that during the training phase,
the test set (crash data) are usually separated from the training and tuning phase,
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which aims at reducing the effects of overfitting [24]. However, it is not a practical
approach in this thesis because the number of the crash set is so few that dividing
the crash set is not ideal. From another point of view, it is a common practice to
utilize all the available data into the model training once the approach is known to
be valid. Therefore, it should not be a serious problem. Besides, the sensitivity and
specificity of the model should both be as higher as possible when tuning the model.
This thesis strives to let the sensitivity as 1 because detecting all the crash events
can save lives as much as possible.

To visualize the joint effects by the THA and THB, the ROC curve is adopted, where
the definition of the false positive rate in Fig 4.2 is slightly different from equation
3.7. If the FPR is conventionally calculated based on the number of misclassified
samples, the whole curve would squeeze at a small corner in the lower right because
the sample FPR is below 1% in the normal logfiles. For a better effect of visual
illustration, the FPR here is calculated by equation 3.1.

FPRROC = the number of logfiles raised false alarms by the thesis algorithm

total logfiles examined
(3.1)

3.2 Data

3.2.1 Dataset
The dataset is provided by Detecht Technologies AB. The data is collected by the
smartphones from Detecht App users as logfiles. There are users pretty much all
over the world, such as the US, Europe, and Australia, etc. The majority of data is
during normal driving, and a rare number of logfiles is confirmed to contain only one
crash event, but the exact crash time when an MCC happens is unavailable. The
smartphone is recommended to be mounted as Fig 3.2. It is also acceptable to have
it in a tight pocket as long as it is stable and does not bounce around (like in a loose
bag). However, the data is not guaranteed to be collected in these configurations.

3.2.2 Features
Detecht App, available on both iOS and Android, uses the built-in sensors in smart-
phones to collect data. The features used in this thesis include sensor values from
accelerometer, gyroscope, and estimated speed derived from GPS signals. There are
each 3 variables, X, Y, and Z directions in the accelerometer and gyroscope sensors.

Accelerometer and gyroscope sensors are expected to be robust and disturbance-free
measurements regardless of the smartphone models [7]. The information from these
six variables is used to predict whether an MCC happens. In addition, speed is
another criterion to confirm an MCC because on the one side, it is meaningless to
trigger a crash alarm when the user is under low-speed state, such as standing still
shaking the smartphone, walking, or mounting/dismounting the smartphone. On
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Figure 3.2: Recommended configuration of the smartphone mounting. Source:
Detecht.

the other side, acceleration after slow-down within seconds may indicate the driver
hit a bump or a pothole but without crash happening [15].

3.2.3 Sampling Rate
The sampling rates are varying among different features and different smartphone
models. Irregular sampling rate might be a problem for the crash detection algo-
rithm. Exploratory data analysis shows that for measured values from accelerometer
and gyroscope, the majority of the sampling rates is 100 Hz as expected [35], and
the time interval distribution is plotted in Fig 3.3(a). The sampling intervals within
5-15 ms account for 97.27%. Few sampling intervals are extremely large and unre-
alistic (e.g., 1592447824476 ms) but their occurrence is rare (5 intervals in the total
crash set) so these irregular sampling intervals are manually changed to 10 ms. It is
guessed that these large sampling intervals are due to the missing timestamps when
sampling. Besides, there are rare negative sampling intervals, and they are also
manually set to 10 ms. For the estimated speed from GPS, the majority of sampling
rate is 1 Hz, where Fig 3.3(b) plots its distribution. The sampling intervals within
500-1500 ms account for 90.59%. The irregularities may come from 4 aspects. On
one hand, the capacity of processing unit in different smartphones can vary thus not
all phones can keep the sampling frequency as designed. On the other hand, the
resource allocator of a smartphone may not respond to the Detecht’s App on time
since there might be several mobile applications running simultaneously. In addi-
tion, GPS signals may not always be accessible, which may contribute to the greater
irregularities on the speed sampling intervals. Finally, it is found that smartphones
are more likely to sample a longer time interval on lower speeds.

However, there is no need to especially tackle this issue for several reasons. Firstly,
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Figure 3.3: Distribution of sampling intervals of different sensors.

97.27% of the sampling rate from the inertial sensors is focused around 100 Hz.
According to the literature [36, 37, 38, 39], irregularly sampled intervals only raise
attention when the drop rate (the total frequency of irregular intervals) is between
10% to 90%, while the drop rate of Detecht’s dataset is 2.73%. In addition, since
irregular sampling intervals can be observed in practice, taking these irregularities
into consideration may help increase the robustness of the MCC detection algo-
rithms.

There are some duplicated lines where the sampling interval is 0 ms, which may be
due to writing buffering to the CSV logfile on smartphones, according to Detecht’s
analysis. Its effects can be ignored in the model training for the two following
reasons: it only accounts for about 1% of the total sampling intervals, and in correct
recordings it is common to see two neighboring lines are identical, even with valid
timestamps.
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3.2.4 Data Exclusion
According to the instructions of Detecht App [40], the smartphone should be mounted
on the handlebar or worn tightly on the body of the driver while riding. However,
it is unknown whether the driver followed the instructions thus the measured data
may not always be reliable. There are five crash logfiles excluded from the testset
where one logfile lacks the recording header and the rest four logfile are duplicated
logfiles because these four have the complete same contents as other four logfiles. In
summary, there are a total of 500 normal logfiles and 17 crash logfiles.

3.2.5 Algorithm Performance
The estimated timestamps of the crash events in the crash set are provided by De-
techt’s confidential algorithm. The crash events detected by the thesis algorithm
were checked with the crash timestamps provided by Detecht. For both normal
driving logfiles and crash logfiles, the FPR (equation 3.2, is another form of speci-
ficity where specificity = 1 − FPR) is emphasized for the convenience of drivers.
To evaluate the algorithm’s capacity for detecting true crashes, only the number of
estimated true crashes are concerned because the total number of true crashes is
fixed once the crash dataset is defined. The evaluation metrics are summarized in
section 3.5.

FPR = FP

TN + FP
(3.2)

3.2.6 Data Standardization
There are several ways to normalize or standardize the data. To encourage different
variables to share the same weight when training the neural network, Z-score stan-
dardization is adopted in this thesis to give these variable a same mean of 0 and
variance 1, as equation 3.3. The mean and variance are computed from the train-
ing set as the sample mean and sample variance, and applied to the entire dataset,
including training set, validation set, and test set, as a common practice.

z = x− µ

σ
(3.3)

3.2.7 Fixed Size Time Window
The MCC detection algorithm should be able to detect the contextual anomalies
in time series while neglecting the point anomalies. In other words, the algorithm
should be able to capture the temporal dependencies of normal driving and not
being sensitive to sudden changes within a very short time (e.g. 10 ms as a sample)
which may be caused by road anomalies, or fluctuations of sensor measurements.
In addition, an MCC often lasts for milliseconds, so the window-based method is
suitable for this kind of tasks where only several recent inputs contain relevant
information. Besides, in order to reduce the false alarms for MCC, it is necessary to
confirm the event of a real crash by analyzing a longer period of sensor information.
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Therefore, the time-window-based method is adopted. A sliding time window of
certain samples after each record is created as a new sliding window sample and
fed into the MCC detection algorithm as the input data. The number of certain
overlapping samples is a hyperparameter and determines the length of temporal
dependencies the MCC detection algorithm can learn [27]. The length of the time
window is firstly set as 30 sampling points [10] to constitute a sliding window sample
of mainly 300 ms. Another length 128, corresponding to roughly 1280 ms, are
tested to find the optimal setting. Then the joint-optimization with the number of
consecutive collective anomalies is conducted. It would be beneficial to search for
the optimal length of the time window, but due to the restriction of the length of
this thesis, this search is not performed. It is hypothesized that the crash dynamics
might be better captured within a longer comprehensive time window. Besides, it is
a common practice to set the batch size of a power of 2 for the reason of accelerating
NN computation [41], so 1280 ms might be better.

3.3 Implementation Framework
This thesis is implemented with Python programming language and Keras. Keras is
an open-source platform, which is integrated as a high-level module in TensorFlow
2.4.1. Keras was chosen for its fast prototyping and relative simplicity to implement
different model structures. To accelerate the training process, multi-processing on
GPU was adopted. The training GPU is NVIDIA Quadro P5000.

3.4 Convolutional Autoencoder Architecture De-
tails

3.4.1 Autoencoder
There is no gold standard CNN-AE capable of general applications. In this thesis,
the design of encoder and decoder borrowed some classical ideas from CNN archi-
tectures and modified them to tailor our data. Encoder is the backbone of AE
to compress the input data to a latent space with lower dimensions. In this the-
sis, two types of backbones are explored: VGG style autoencoder (VGG-AE) and
mobileNetV3-small style autoencoder (mobile-AE). mobile-AE produced the main
results, and VGG-AE provided the supplementary analysis. The decoder is the re-
construction head of AE. In this thesis, all decoders are vanilla fully convolutional
neural networks.

VGG, short for Visual Geometry Group in Oxford University, is one of the simplest
but yet powerful CNN structure. It is featured with cascaded convolutional and
max-pooling layers to extract a hierarchical feature map. Its unique improvement
compared with its ancestor is the 3×3 kernel-sized filters with deeper layers replacing
larger and shallow ones to introduce more non-linearity. Since the original VGGNet
is designed for image data, the customized VGG-style AE in this thesis in shown in
Fig 3.4. MobileNetV3-small is a small version in the mobileNetV3 family with fewer
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Figure 3.4: VGG style AE customized to MCC crash detection.

MobileBlocks and filters. The MobileBlocks, also named bottleneck layers or bneck
for short, are composed of three steps: 1×1 input convolutional channel, 3×3 or 5×5
convolutional channel, and another 1 × 1 input convolutional channel. The detail
of the tailored encoder is listed in Table 3.1 The exp size is the number of channels
after inverted residual with linear bottleneck unit, and the out is the number of
channels to the bneck layer. SE is short for squeeze-and-excitation networks, which
squeeze the features with less importance and excites those more important features.
NL is short for nonlinearity, the type of non-linear activation function used in this
operator. HS is short for hard-swish (equation 3.4) and ReLU6 is similar to ReLU
but limits the maximal output to 6 (equation 3.5). The s is the stride for the current
block. The hyphen ’-’ means not applicable.

h-swish (x) = x× ReLU 6(x+ 3)/6 (3.4)

ReLU6(x) = min(max(0, x), 6) (3.5)

Input Operator exp size #out SE NL s
30×3×2 conv2d, 3x3 - 16 - HS 2
15×2×16 bneck, 3x3 16 16 √ RE 2
8×1×16 bneck, 3x3 72 24 - RE 2
4×1×24 bneck, 3x3 88 24 - RE 1
4×1×24 bneck, 5x5 96 40 √ HS 2
2×1×40 bneck, 5x5 240 40 √ HS 1
2×1×40 bneck, 5x5 120 48 √ HS 1
2×1×48 conv2d, 1x1 - 96 √ HS 1
2×1×96 pool, 2x1 - - - - 1
1×1×96 conv2d 1x1, NBN - 96 - HS 1

Table 3.1: MobileNetV3-small style encoder customized to MCC crash detection.
The decoder structure is the same with VGG-style AE but a different number of
hidden features (VGG:60, MobileNetV3-small:96).

3.4.1.1 Loss Function

Loss function is the function that penalizes the decoder output x̂ = g(f(x)) for
being dissimilar from the input x. The dissimilarity is represented by the residual
features. There are several types of residual features proposed but in this thesis only
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the most widely used mean squared error (MSE) is adopted as the loss function and
for accuracy evaluation of AE reconstruction [42].

MSE = 1
N

N∑
i=1

(xi − x̂i)2 (3.6)

3.5 Evaluation Metrics
There are different evaluation metrics corresponding to each process of training the
whole MCC detection algorithm. When predicting the output of the input data,
the output of AE is sent to compare with the input to see how well the AE recon-
structed the input. MSE is adopted here, the same as loss function, to measure the
dissimilarity between raw data and prediction.

To evaluate the performance of the models, the FPR in the normal and crash logfiles
is calculated by equation 3.7. The "samples" is created by the sliding window method
described in section 3.2.7. The specificity is simply 1−FPR. The other metric is the
TPR calculated by equation 3.8, also known as sensitivity. TPR is only applicable
in the crash logfiles since only they contain crash events (corresponding to the true
positive alarms). FPR is calculated for the normal and crash logfiles, respectively.

FPR = the number of samples that raised false alarms by the thesis algorithm

total samples examined
(3.7)

TPR = TP

TP + FN
(3.8)
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4
Results

The presented main results are based on mobile-AE with the time window 300
ms trained on a larger subset of normal logfiles. The supplementary experiments
include1 one mobile-AE model and 3 VGG-AE models. The supplementary mobile-
AE model is trained on the larger subset of normal logfiles, but with a different time
window of 1280 ms. The 3 VGG-AE models are all with a time window of 300 ms,
where one VGG-AE model is trained on a larger subset of the normal logfiles, and
the other two models are trained on a smaller subset of the normal logfiles, in which
one is with different crash detection parameters.

4.1 Main Results: Mobile-AE

4.1.1 Model Tuning
The distribution of reconstruction error among training, validation, and test sets
is visualized in Fig 4.1. In this chapter, because most of the reconstruction errors
are small, the reconstruction errors higher than 20 are cut out for a better visual
illustration effect in graphs. It is clear that all the three subsets follow a positively
skewed distribution where the right tail of the distribution is fat. The distribu-
tions of three subsets focusing on small reconstruction errors suggest that the model
mobile-AE learned the training set and generalized well to the validation set and
the test set. Compared with normal driving logfiles, the crash logfiles occupying
a heavier portion in the large reconstruction error means that it is hard for the
model to reconstruct the unlearned crash patterns, thus making it possible to define
a threshold distinguishing the normal driving parts and crash events.

The ROC curves are plotted in Fig 4.2 where the tuning threshold is the THB, so
the number of consecutive anomaly samples, known as collective anomalies, counts
here. From the ROC curves, it looks like that the 99% percentile has the better
generalization capacity to have a higher true positive rate and lower false positive
rate. However, the 99% percentile condition missed one crash event by analyzing
the numerical results, which indicates that the 99% percentile as the threshold for
the reconstruction error is too high. In order to detect all the crash events (true
positive rate = 1), the 98% percentile was selected as the threshold. Since the false
positive rate is relatively high, additional methods have to be utilized to further re-
duce the false alarms beyond the collective anomalies. It is worth spending time on
finer tuning the percentile condition when applying this algorithm into practice, e.g.
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Figure 4.1: Distribution of reconstruction error of mobile-AE trained on the larger
subset of normal logfiles.
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Figure 4.2: The ROC curve of mobile-AE. The percentile of reconstruction error is
based on the training set. The false positive rate and true positive rate are calculated
from the training set and test set, respectively.
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from 98.01% to 98.99%, but it is not performed in this thesis due to the lack of time.

As introduced in section 2.2.1, speed is the contextual attribute to define a crash
event, contributed as contextual anomalies. As defined in section 3.1.3, raw sensor
values from the accelerometer and gyroscope are used to trigger an anomaly event
detection, so there are two additional contextual attributes in the MCC detection.
In addition, the speed attribute is also used to cancel a false alarm if the driver is still
driving in the next few seconds after an alarm is triggered. These two parameters
(definition of "still driving within a few seconds") are only coarsely tuned.

4.1.2 Model Performance In Detecting Crash
The main results are based on a set of tuned parameters. Under this set of param-
eters, all the crash events are correctly identified by the proposed algorithm, so the
TPR (sensitivity, or recall) is 100% in this setting. One example is Fig 4.3, where
there is a starting gap between the algorithm proposed in this thesis and Detecht’s
current algorithm. It is because of that, on the one hand, the thesis algorithm needs
the previous 300 ms windowed samples to start an anomaly monitoring event while
the Detecht’s algorithm runs continuously. On the other hand, the proposed algo-
rithm only detects the crash undergoing time while the plotting of the Detecht’s
algorithm contains a longer confirmation time for a better illustration. The un-
dergoing time of the proposed algorithm is close enough to the start time defined
by Detecht’s current algorithm (within 200 ms), as visualized in the zoom-in Fig 4.4.
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Figure 4.3: Example of crash detection.

In short, in 7 simulated crash logfiles, the proposed algorithm performs quite well,
with all crashes detected correctly and no false alarms (sensitivity = 100% and
specificity = 100%). In the rest 10 real crash logfiles, the algorithm performs as well
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Figure 4.4: Zoom-in example of crash detection.

as in the simulated crash events in 1 file (Fig 4.3) with unit sensitivity but raises a
few false alarms in other 9 crashes which will be examined below.

4.1.3 Model Performance In False Alarms
The specificity in normal drivings is based on the training set because a larger
subset of normal drivings is more representative for general case, and the results are
presented in table 4.1.

Evaluation Metrics Crash Logfiles Normal Logfiles
Specificity 98.7715% 99.9896%

False Positive Rate 1.2285% 0.0104%

Table 4.1: Specificity and false positive rate in crash logfiles and normal drivings
in the main results of mobile-AE trained on the larger subset of normal logfiles. It
corresponds to one false alarm per 1.8 driving hours on average.

In the normal logfiles, there are in total 186,661,622 samples examined, and 19,362
samples are misclassified as a crash event (0.0104%), causing 287 false alarms in 51
driving logfiles. A more intuitive description is that: the proposed algorithm will
raise one false alarm per 1.8 driving hours in average. Inspecting the detail of false
alarms reveals that some users are significantly more likely to trigger false alarms
than others. The vast majority of all users never trigger an alarm, but a small subset
often triggers several false alarms with relatively little driving. In detail, 35% (18) of
these 51 false alarms logfiles contribute 80% (229) of the all false alarms, who raise
more than 3 false alarms. They exhibit quite noisy records, where one example is
drawn in Fig 4.8. It might be due to the driving, but it is also possible to be caused
by the sensor measurement errors. For example, in the Fig 4.8 when the three false
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alarms are raised, their gyro X are comparably much larger than their neighbors.
Further examination reveals that 12%(6) logfiles contribute 55%(157) false alarms
who raised more than 10 false alarms per logfile. Barring these 6 logfiles will result
in one false alarm per 4.0 recording hours while barring these 18 logfiles will result in
one false alarm per 8.9 recording hours. However, it is most reasonable to keep these
records in this analysis for two reasons. From one side, noisy records can sometimes
be in the real-world scenario, and the algorithm performance should count in all the
available datasets. From the other side, these noisy records should only be excluded
once other methods are taken to reduce the effect of abnormal patterns, such as
noise repairing discussed in section 5.2, or a message telling the users that their
abnormal recordings will cause many false alarms.

Another interesting result from table 4.1 is that the false positive rate in crash log-
files are much higher than that in normal logfiles. A possible cause of the difference
is the size of the samples: the number of normal logfiles calculated here is over 24
times more than that of crash logfiles (412 v.s. 17). Visual inspecting of crash
logfiles reveals 8 noisy logfiles, accounting for 47% of all the crash logfiles. There-
fore, from the view of statistical power, the specificity of normal logfiles should be
emphasized.

One example crash logfile containing false alarms is in Fig 4.5. It can be seen that
there are several false alarms in around 40 minutes of recording. Its crash section
is zoomed in in Fig 4.6. Another example is a normal logfile, as shown in Fig
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Figure 4.5: Example of false alarms in the crash set.

4.7. It shows a classical pattern of false alarms which can be easily eliminated by
monitoring the speed for a longer time period. For example, if so the alarm can
be automatically cancelled after waiting for 10 seconds by finding the driver is still
driving with low but non-stop speed.
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Figure 4.6: Zoom-in example of false alarms in the crash set.
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Figure 4.7: Example of false alarms in the normal set.
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4.1.4 Inspecting Abnormal Logfiles

To better understand the false alarms, logfiles that produce false alarms are exam-
ined individually to see why the MCC detection algorithm performs much worse on
them than others. Besides the above-mentioned two false alarms logfiles, a classical
pattern that is likely to raise one false alarm is when the sensor values of accelerom-
eter and gyroscope are abnormal. It suggests that the accelerometer and gyroscope
sensors are not as robust as we would hope for. For example, in Fig 4.8, there are
several samples where the gyroscope values exceed ±10 m/s2. These false alarms
are not canceled by the proposed algorithm because the current canceling criteria is
relatively strict and simple: the definition of "still driving" is the speed higher than
a tuned threshold for the following 1.5 seconds. Improving such definitions such
as adapting the thresholds for the individual users might help eliminate such false
alarms. Another example is in Fig 4.9, where the acceleration and angular velocity
can exceed ±5 m/s2 and ±20 rad/s for several minutes, respectively. The detail of
true crash of this record is visualized in Fig 4.10.
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Figure 4.8: Example of the false alarms in the normal set.
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Figure 4.9: Example of a lot of false alarms in the crash set.
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Figure 4.10: Zoom-in example of a lot of false alarms in the crash set.

4.1.5 Comparison of Detection Phases
Adding contextual attributes greatly helps reduce the number of false alarms, but
can also decrease the capacity of detecting true crash events if the thresholds are
improper. It is found by experiments that all these defined parameters affect the
performance of the proposed algorithm, and increasing their thresholds can decrease
both the FPR and TPR, which will be discussed in section 5.1.1. Note that due to
different triggering logic of anomaly, the thresholds found in this thesis is different
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from that of Detecht’s current algorithm.

4.2 Supplementary Experiments

4.2.1 Mobile-AE with Different Length of Time Window
It is interesting to explore if CNN with a longer time window (more than 1000 ms)
can better capture the crash dynamics in the temporal dependency. An additional
MobileNetV3-small style encoder plus vanilla FCN decoder with a time window of
1280 ms are successfully trained though it was extremely slow to train the large
model and predict the hundreds millions of samples. Fig 4.11 shows the distribution
of reconstruction error of mobile-AE model with a longer time window (1280 ms)
(mobile-AE-1280) trained on a larger subset of normal logfiles. It shows a similar
observation with Fig 4.1. As for the threshold of reconstruction error to define
an anomaly event, similar to the case in section 4.1.1, THA = 95% percentile is
adopted in mobile-AE-1280. Due to the longer time window, it needs 2490 ms to
raise a crash alarm, which is longer than that in the main results, but with a much
higher FPR (shown in table 4.2) than that of optimal mobile-AE-300. Besides, all
the sub-results are without speed cancellations.
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Figure 4.11: Distribution of reconstruction error of mobile-AE trained on the
larger subset of normal logfiles.

4.2.2 VGG-AE Trained on the Larger Subset of Normal
Logfiles

Though MobileNet-V3-small style CNN is specially designed for mobile applications,
its computation cost still accounts for hundred thousands of parameters. To find
if a simpler model can achieve the same performance in the MCC detection appli-
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Evaluation Metrics Crash Logfiles Normal Logfiles
Specificity 96.74% 99.611%

False Positive Rate 3.26% 0.389%

Table 4.2: Specificity and false positive rate in crash logfiles and normal driv-
ings in sub-results of mobile-AE trained on the larger subset of normal logfiles. It
corresponds to one false alarm per 0.48 driving hours on average.

cations, a VGGNet style CNN architecture with much few trainable parameters is
trained on the same subset of the normal logfiles in section 4.1.1. Several VGG
style encoders plus vanilla FCN decoders with window length 1280 ms are tested
but they all failed in training, so from now on all the VGG-AE models are with a
time window of 300 ms. Besides, if not stated, the left results will aim at presenting
the optimal parameters that can detect all the true crash events while maintaining
the lowest FPR. T_SPEED will start from a certain threshold and then decrease
by step, and T_ACC, T_GYRO are chosen from a list of candidate pairs.

Fig 4.12 shows the distribution of reconstruction error of this VGG-AE model trained
on the larger subset of normal logfiles. It shows a similar observation with Fig 4.1
that the distributions in the three datasets follow the positively skewed distribution
with the majority of reconstruction error focusing on small values, as well as that
the crash set (test set) shows a high portion in larger reconstruction errors. Both
the FPR and the statistics on one false alarm per driving hours are worse than that
of the main results.
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Figure 4.12: Distribution of reconstruction error of VGG-AE trained on the larger
subset of normal logfiles.

34



4. Results

In this model, setting THA as the 99% percentile of reconstruction error is not ideal
because 2 real crashes cannot be detected even the THB is set 1, which represents
point anomaly. Therefore, TH_A is set 98% percentile to achieve the sensitivity
as 100% as detecting all the true crashes. Here the specificity corresponding to the
tuned parameters is in table 4.3.

Evaluation Metrics Crash Logfiles Normal Logfiles
Specificity 98.66% 99.974%

False Positive Rate 1.34% 0.026%

Table 4.3: Specificity and false positive rate in crash logfiles and normal drivings
in sub-results of VGG-AE trained on larger subset of normal logfiles. It corresponds
to one false alarm per 0.67 driving hours on average.

4.2.3 VGG-AE Trained on the Smaller Subset of Normal
Logfiles

There are hundred millions of samples provided by Detecht, thus training on the
whole dataset would be very slow and impractical. Comparing with the famous Im-
ageNet dataset (ILSVRC2012), it takes several days to train on the full ImageNet
data with more than one million samples on a single GPU, or a couple of hours on
hundreds of GPUs, let alone hundred millions of samples. Therefore, to investigate
if training on the small subset of normal logfiles can achieve the same performance,
these sub-results are based on the same VGG-AE model structure with previous
section but trained on the smaller subset of the normal logfiles, with randomly cho-
sen samples in each logfile. In short, the validation set in this part is the training
set in the previous section and vice versa. The statistics of normal drivings are still
based on the larger subset of normal logfiles.

The histogram distribution of the reconstruction errors is drawn in Fig 4.13. The
difference is that in Fig 4.12 when trained on the larger subset of normal logfiles, the
distributions of residual errors in the training and validation sets are more similar,
meaning the model in Fig 4.12 does better generalize its learned normal patterns
on the smaller subset of normal logfiles, compared with the model trained on the
smaller subset as in Fig 4.13.

Evaluation Metrics Crash Logfiles Normal Logfiles
Specificity 98.89% 99.984%

False Positive Rate 1.11% 0.016%

Table 4.4: Specificity and false positive rate in crash logfiles and normal drivings
in sub-results of VGG-AE trained on the smaller subset of normal logfiles.

35



4. Results

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
reconstruction error

10−7

10−6

10−5

10−4

10−3

10−2

10−1
hi

st
og

ra
m

 p
er

ce
nt

ag
e

Normal - training
Normal - validation
Crash - test

Figure 4.13: Distribution of reconstruction error of VGG-AE trained on the smaller
subset of normal logfiles.

4.2.4 VGG-AE with Different Crash Detection Thresholds
The purpose of this part is to test if the false alarms can be reduced by adjusting
the thresholds of the proposed algorithm. The VGG-AE model is the same as
in the sub-results section 4.2.3. Table 4.5 is the corresponding specificity. This
result shows that by increasing the threshold THB, the consecutive number of point
anomalies that raises a collective anomaly, the false positive rate can be greatly
suppressed, with the cost of decreasing sensitivity. With the mentioned parameters
which only consider the length of collective anomaly and the speed constraint, only
8 true crash events are correctly detected. Moreover, by introducing the constraints
of acceleration and gyroscope, the number of true positives will further decrease, but
the number of average driving hours within one false alarm can be greatly increased.

Evaluation Metrics Crash Logfiles Normal Logfiles
Specificity 99.56% 99.994%

False Positive Rate 0.44% 0.006%

Table 4.5: Specificity and false positive rate in crash logfiles and normal drivings
in the sub-results of VGG-AE.

Comparing these above-mentioned tables together, it is easy to find out that the
grid search of THA and THB is reasonable: the set THA can capture all the true
crash events correctly with corresponding other parameters and resulting in lower
false positive rate, and the VGG-AE model with higher THA will resulting in a
shorter length of crash samples (smaller THB) to raise a crash alarm. If both THA

and THB are set too high, the model will fail in finding true crashes and pretend
to predict all the input samples as normal, which is not expected working way. A
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future tuning direction can be a comprehensive tuning combining all these hyper-
parameters together, with the cost of lengthy simulations. In conclusion, focusing on
false positive rate or specificity alone is meaningless, because the model is expected
to detect real crash event to save the lives of motorcyclists while reducing false
alarms.
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5
Discussion

5.1 The Performance of MCC Detectors

The main results produced by mobile-AE-300 are the best one in concern of speci-
ficity with unit sensitivity compared with all the other sub-results. It is widely
regarded that the model trained on a larger dataset is generally better than that
on a smaller dataset because the larger dataset can cover more samples to let the
sample distribution more approximate the population distribution [24]. However,
the sub-results presented in this thesis may raise the concern of the training set:
the larger training set may contain noises that deviate significantly from the normal
driving patterns. This hypothesis can be supported by this phenomenon: all the
models have higher specificity on the smaller subset of normal logfiles, no matter if
they are trained on a larger subset or a smaller subset. In short, data cleaning shall
be paid attention in order to train a better model, and some other methods can be
done to handle the ill-behaved logfiles. When implementing the proposed algorithm
in real-life scenarios, all the datasets of normal logfiles excluding the abnormal ones
can be used to train the model for a better generalization purpose.

In addition, the distribution histogram of the reconstruction error among these mod-
els may further suggest an improvement for the model training. For the VGG-AE, it
is found that the 98% percentile of reconstruction error in the sub-results trained on
the larger normal subset is already higher than the 99% percentile of the VGG-AE
model trained on a smaller normal subset, let alone 99% percentile, meaning this
model trained on a smaller subset does better capture the normal driving behaviors
compared with the previous model training on the larger normal subset which shows
the larger variability in the larger training set. In short, a better method for splitting
datasets will be stratified splitting, that the different driving recordings of the same
motorcyclists are stratified sampled into the training set and validation set if such
data is available, compared with the current simple sampling method. Compared
with the presented results, all these models have the same capacity to identify all
the true crashes, supporting the hypothesis of the AE methods that AE cannot well
reconstruct the crash samples, but both VGG-AE models perform worse from the
aspect of the specificity.

As for the simulated and real-world crashes, all the models can identify the crash
events, but the model produced much fewer false alarms on simulated crash logfiles
with while for the real-world crash data, more false alarms are raised. It might also
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be due to the data cleanliness: the simulated crashes are carried out by Detecht
with one iPhone, which owns better signal resolution and stability regarding sensor
quality, while the real-world crashes are collected from various users with versatile
smartphone models, thus the data quality cannot be guaranteed. It also raises the
attention for data cleaning: if the incoming data quality is not guaranteed, the ma-
chine learning algorithm may not work as expected, and additional measures have
to notify the users and ask them to keep the phone mounted/carried in a recom-
mended way. For example, personalized feedback can be given to users before they
risk raising false alarms. For example, the smartphone may not be in a tight place-
ment when the speed is near 0 but the acceleration or gyroscope indicates that the
user is moving. It might also help if an "inappropriate mounting detector" can be
trained by learning the patterns when the speed is near 0.

Both with a same window length (300 ms) and trained on the same larger subset
of normal logfiles, VGG-AE-300 and mobile-AE-300 have comparable performance,
indicating the model architecture does not greatly influence the learning of hid-
den normal patterns when the models are relatively simple. It may indicate that
trying other CNN architectures may be of no help in this case. Besides, the hid-
den dimension of mobile-AE is slightly higher than that of VGG-AE, so increas-
ing the dimension of latent space may also help the MCC detection, which should
be thoughtfully tuned. However, when the model structure becomes complex, the
VGG-AE-1280 failed in learning a representative model but mobile-AE-1280 did. It
may suggest that when designing the model architecture for more complex cases,
the model structure should be carefully considered. Currently, the model structures
are manually designed, while searching for an optimal model structure may be in a
future direction. Besides, the decoders used in this thesis are all vanilla fully con-
volutional neural networks, whose performance may be suppressed by other more
advanced CNN structures, or even an LSTM decoder.

5.1.1 Trade-off Between Crash Detection and False Alarms
When tuning the model hyper-parameters, there is always a trade-off between crash
detection capacity and false alarm rate (sensitivity and specificity). When increas-
ing the values of each threshold, the false alarms did decrease but so did the true
alarms. An intuitive hypothesis for such a phenomenon is the separability of nor-
mal patterns and crash patterns. Using only the information from the accelerator
and gyroscope, it might be hard to distinguish the crash and non-crash by a simple
thresholding reconstruction method. In this case, more information may be needed
to classify them more correctly, such as multi-head CNN model [32]. It might also
be the case that, it might be hard for the autoencoder methods to solve this contra-
diction by learning the generic normality features from the abnormal training data
[24]. Besides, a common usage of autoencoder is to make use of the latent space,
so another direction may be to design some statistical or frequency features, and
combining these features into a one-class classifier, rather than by the reconstruction
error thresholding method [3].
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In addition to the perspectives of the model algorithm, dataset can also be enhanced
to solve this problem. There are two sides in the dataset view. One view is the
possible separability of the slight and severe crashes. The assumption is that all the
crashes, no matter of the severity, share the common patterns separate from normal
patterns, while the distinction between severity may come from a threshold of crash
dynamics: when one more second or a little bit heavier the motorcycle rotates, the
severe crash happens. In this view, the model can eliminate the slight crashes if there
are labeled slight crash data. The other view is to acquire more labeled crash data,
to make the semi-supervised or unsupervised anomaly detection problem to the fully
supervised classification problem, as investigated in [19, 20], because classification
problem is much easier than anomaly detection problem. However, the collection
of crash patterns can be tremendously expensive and costly, and collecting as many
as different crash patterns may be unrealistic comparing with collecting different
normal driving patterns.

5.1.2 Two Phases of Crash Detection
In the proposed algorithm there are two phases of crash detection. Phase one is
the trigger of acceleration, angular velocity, and estimated speed derived from the
GPS signal, while phase two is sending these information into neural networks for
classifying whether a crash happens. The purpose of the two phases comes from
two considerations. On one side, computation through neural networks (tons of
matrix multiplication) can be power costly if the smartphone does not have a neural
processing unit (NPU) dedicated for deep learning while computing if the sensor
values exceeding a threshold is much easier. Secondly, when the sensor values are
rather small but their patterns show abnormal, a simple thresholding methods can
erase these false alarms detected by crash pattern recognition. In short, proper
thresholds can greatly lessen the false positive rates.

5.1.3 The Length of Time Window
The crash may last for only milliseconds or longer, depending on the types of crashes.
For example, hitting and being stuck on a tree may immediately stop the vehicle
from moving within 1 second, while roll over or sliding crash may last longer. This
thesis initialized the model structure with a time window 300 ms, based on the
previous work by [10]. The inherent limitation of CNN-based temporal anomaly
detection is the fixed time window: the CNN model can only learn the temporal
dependency within the fixed time window. That’s the reason why mobile-AE-1280
is proposed to learn the longer driving dynamics, though failed in achieving bet-
ter performance. Exploring various CNN structures with different lengths of time
window may be impractical because of the following reasons. Firstly, each length
of time window needs a new model, and it takes time to train, optimize, and eval-
uate each model. Secondly, the designed model may be hard to train. Thirdly,
the more complex the model structure is, the longer training and inference time it
will take. Therefore, when the workload of CNN models is too large, other model
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architecture specifically designed for temporal data, such as RNN, can be explored
in future works. It should be noted that it is more troublesome and error-prone to
train and tune temporal architectures, such as LSTM. Besides, it is also reported in
[27] that LSTM only outperforms CNN in the case where long-range temporal de-
pendencies exist. It is also found that GRU can produce similar results and simplify
the LSTM architecture. [33] recommended adopting complex models when simple
time-window-based methods are not performing as well as expected, similar to the
principle of Occam’s razor in machine learning.

5.2 Time Series Data Cleaning
This thesis shows the possibility that it is feasible to detect the crash events by
thresholding the reconstruction error from autoencoders which learned the generic
normality features. The result shows that the proposed algorithm well learns the
normal driving patterns but it still raises false positives, which are a disturbing is-
sue, no matter in the normal driving training set or the crash events test set. This
phenomenon suggests that the alarms produced by the thesis algorithm is not simply
a crash detector, but rather an outlier detector. By visually inspecting these false
alarms in section 4.1.3 and 4.1.4, it shows that these false alarms often come with
abnormal driving patterns, which may come from abnormal sensor measurement,
smartphone loosely placing in the backpacks, and so on. Their high reconstruc-
tion errors suggest that the algorithm has not well learned the abnormal patterns.
Together with the different performance of the main result and sub-results where
the same models are trained on the different subset of normal driving logfiles, data
cleaning is raised as a necessary step for further algorithm development, to only
raise crash anomaly.

5.3 Limitations
There are certain limitations of the proposed algorithm. Firstly, the false positives
are not eliminated in this thesis. Secondly, the tuned parameters are only a demon-
stration of this method, rather than optimal results. Thirdly, the interpretability of
the model output is still in a black box. Fourthly, the real crashes detected by the
proposed model last for only several milliseconds, where the crash dynamics cannot
be recovered from the model output due to the lack of information in the available
dataset. These limitations will be addressed in Chapter 7.

42



6
Conclusion

In this thesis, a subset of data from users of Detecht on motorcycle driving records
was explored, which contains normal driving and crash logfiles. Literature review
on MCC detection and anomaly detection was extensively studied. A convolutional
autoencoder based anomaly detection method was developed, and different model
architectures with different hyperparameters were studied for the performance of
motorcycle crash detection. The results were compared and discussed from various
perspectives. The undergoing crash events detected by the developed algorithm are
partially overlapping with the crash start time defined by Detecht’s current algo-
rithm. Based on the main results and sub-results, CNN-AE is concluded to be an
effective anomaly detector, but with some inherent limitations.

Regarding the aim of the thesis stated in section 1.3, the first and second aims have
been conducted with promising results. In short, the major objectives have been
accomplished, and more work can be further conducted based on the current thesis.

43



6. Conclusion

44



7
Future work

Due to the limitation of time and resources, not all interesting ideas have been
implemented. Here are some suggestions for the future development of a better
MCC detection algorithm based on the results of this thesis.

7.1 Data Collection
Precise labels are precious information. This idea is to convert an anomaly detection
problem to a classification problem as the latter one is much easier. Currently, the
Detecht’s dataset only contains labels of normality and crash, while no more infor-
mation is included in the normal driving data. It would benefit the data cleaning
and model construction if it is known in data labels "nothing happened", "an MCC
was close to happen", "a slight crash happened but I’m fine", "severe crash took
place" similar to the concussion test proposed in [7].

Another idea is the mounting configuration of the smartphone. If the smartphone
is mounted on the handlebar or the body of the motorcycle as expected, the crash
detection can be much easier by focusing more on the driving patterns recognition
and road profile (e.g., steer collision and rough road running), regardless of the
smartphone motion dynamics coming from the human body movement or swinging
in the loose backpacks. It is acceptable that the motorcycles cruise at the speed of
144 km/h, but unbelievable to see a motorcycle rotates at 10 rad/s.

7.2 Data Preprocessing
In this thesis, the input data to the machine learning model was only standardized
to have zero mean and unit variance. It is found during the thesis experiments that
proper standardization contributes to the convergence of autoencoder training. It is
guessed that some other tricks may also enhance the model performance. Here the
idea is that signal calibration techniques may improve the performance of the MCC
detector. For example, [15] claims that real-time calibration of the IMU sensor in-
formation can be used to detect an MCC event. It is from the perspective of adding
extra information during the driving. A similar idea is to add handcrafted features
to the detector.

Transforming the time domain into the frequency domain may be of use to better
capture the crash dynamics [14]. Besides, currently the sliding window is a rectan-
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gular window, so will it help if other windows in classical digital signal processing,
e.g., Chebyshev window [43], may be adopted?

Excluding the abnormal logfiles in the training set may also do a favor of reducing
the false alarms. As discussed in section 5.1, models training on the larger dataset
where more abnormal logfiles are presented have a higher FPR. From the point of
this thesis, excluding the training logfiles which are predicted to have too many
false positives and abnormal patterns may help improve the model performance by
inspecting the complete logfiles, but it is not considerable or available in real-time
MCC detection: we cannot know the future information before it does happen. One
possible solution is to develop an anomaly detector for time series, which notifies
the user the current IMU recording is not working properly and recommends some
suggestions for an appropriate placement of the measuring device. For example, this
anomaly detector can measure if any variable of the accelerometer and gyroscope
often exceed a certain threshold within a fixed time window. If so, the crash de-
tection algorithm can focus on contextual anomalies, without being extracted from
confusing sensor recordings.

In addition, the stratified sampling can be applied to training set splitting, so that
the model can learn the most useful features based on the most representative driving
behaviors.

7.3 Outlier Detection

Section 5.2 raises the issue of data cleaning. From the academic view, the nor-
mal driving logfiles with abnormal recordings can be excluded from the training set
to train a well-learned normality detector. In this sense, the trained detector can
better recognize the normal drivings. However, the issue that the detector cannot
distinguish crash patterns and abnormal patterns still exist. One possible direction
is to extract and compare the crash and abnormal patterns from logfiles. Then some
hints to tell the difference between them may be obtained from the corresponding
analysis. Or to train another detector based on the extracted abnormal driving
patterns, then it works as an outlier detector or false alarm reducer to cancel the
false alarms raised by the thesis algorithm. Or to train a detector that can well
learn both the normal and abnormal driving patterns based on the normal logfiles.
For example, if an overcomplete autoencoder can do this? The advantage of this
direction is that the outlier detection may learn the road anomalies, errors in sensor
readings, or just meaningless random pose change in a loose backpack, which can
be differentiated from real crash events.

Another direction of this issue is outlier repairing [44, 45]. Since errors are prevalent
in sensor readings or the above-mentioned scenarios, one can recognize the dirty
snippet first and then repair them. It is demonstrated to improve the time series
classification performance in literature [45].
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7.4 Dedicated Model Development
The concept of the contextual anomaly is adopted to the convolutional autoen-
coder in this thesis, but rather an adapted version of collective anomalies formed
by sliding-window-based point anomalies. In the future, more exploration can be
done in the hidden space of the autoencoder. For example, rather than feeding
the raw sensor values into an RNN, the compressed features produced by the au-
toencoder may perform better acting as the input to RNN, a type of prediction
model [2]. Multi-head neural networks may also be beneficial because it can sepa-
rate heterogeneous sensor information without sharing the same feature extractor
[32]. Ensemble learning by combining multiple models may also contribute [29]. Be-
yond the traditional deep anomaly detection methods, segmentation-based temporal
anomaly detection is reported to work well [46]. Recently, neural architecture search
(NAS) is quickly developing, which may help find the optimal model structure by
automating designing deep learning architecture.

7.5 Optimal Implementation
In the current implementation, if two collective anomalies are separated by one point
normality, the algorithm will produce two false alarms. Future implementation can
concatenate the neighboring anomalies to reduce the number of false positive sam-
ples.

The model may be better trained with more advanced training options, such as one
cycle learning rate policy. Besides, with selected training samples with considerable
size, a more random and representative optimizer may help the learning go to a
more flat local minimum, with better performance.

Hyperparameter tuning in this thesis is a grid search plus three short candidate lists.
Quadrillion search considering five parameters at once may be the optimal tuning
method if time and resources allows.
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