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Abstract
Hospital acquired infections is a large issue in modern healthcare and they are

becoming more difficult to treat due to increasing antibiotic resistance. To limit the
spread of serious bacterial infections there is a need for fast diagnosis and treatment.
The advent of next-generation sequencing has drastically reduced sequencing costs
making it feasible to analyze metagenomic samples taken directly from the patients.
This thesis has evaluated three metagenomic analysis tools with regards to species

identification and abundance estimation for simulated metagenomic short reads orig-
inating from 15 different species. All tools showed different strengths and weak-
nesses, however an outstanding weakness found was classification of reads belonging
to the Streptococcus mitis group and the Mycobacterium tuberculosis complex.

To improve the classification of reads from Streptococcus and Mycobacterium we
implemented a feed-forward neural network. For Streptococcus species we obtained
an accuracy of 95% while our models failed to reach higher than 31% accuracy for
Mycobacterium species. One of the causes for these different results is that the
pairwise BLAST identity within the species groups are around 95% similarity for
Streptococcus and 99% for Mycobacterium.

Keywords: Metagenomics, Machine Learning, Neural Network, Taxonomic Classifi-
cation
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1
Introduction

Every year millions of people fall ill in infectious diseases [3]. Out of these, a sub-
stantial number are so called hospital acquired infections, meaning the patient was
infected while admitted at the hospital. At the same time, many bacterial species
are evolving and develop resistance towards many of our most powerful antibiotics
[4]. As one can understand, this pose a huge problem in today’s healthcare and there
is a great need to limit the spreading these infections. An essential part to reducing
the spread of diseases is to identify the source of the infection and treating those
who already have severe bacterial infections. To be able to give optimal treatment
to these patients it is important to quickly identify and characterize the causing
pathogen, increasing the chance of recovery.

Current methods for diagnosing often requires cultivation of bacteria which can
be a very time consuming procedure [5]. In addition to this, it is only possible
to cultivate about 1% of known microorganisms which leads to a large amount of
information that can be used for establishing a diagnosis is being overlooked [6].
With the affordable sequencing techniques that are available it is possible to bypass
the cultivation step and instead analyze the entire raw sample, called a metagenomic
sample, directly [7].

Metagenomic analysis has great potential in clinical healthcare as it can provide new
information that was previously missed, however the first step is to understand the
composition of the communities that can be found in the samples. In order to do
so, it is needed to determine what species are present in the sample by performing
taxonomic classification as well identifying the relative amount of DNA belonging
to each of the identified species, referred to as abundance estimation [6].

Sequencing of metagenomic samples generates millions short reads which comes with
some challenges in how to handle and analyze the data [8]. Over the years many
metagenomic analysis software have emerged with the goal of classifying metage-
nomic data to be able to understand the behaviour of microbial communities. As
the underlying algorithm differs between the software the performance of them may
also differ, depending on the sample being analyzed. Therefore it is necessary to
evaluate the performance of specific methods on the type of data it is intended to
be used on [9].
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2
Project Aim

The aim of this thesis is to investigate different methods for species identification
and abundance estimation of bacterial metagenomic samples. This thesis will also
investigate how neural networks can be applied to improve the taxonomic classifi-
cation. The aim can therefore be divided into two parts:

I. Through experiments evaluate strengths and weaknesses of established metage-
nomic analysis software.

II. Investigate if neural network models can improve performance in the areas
where established methods are lacking in performance.
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3
Theory

3.1 Biological Background
In this section we aim to give an introduction to the biological background needed to
understand the concepts species identification and metagenomic sample. To get an
understanding for species identification we start by briefly describe what taxonomy
is and the hierarchical structure that species are classified according to. Following
that we introduce DNA and how it can be analyzed in order to learn about a
species characteristics. Finally we give an introduction to metagenomics and how it
is currently analyzed from a species identification perspective.

3.1.1 Taxonomy
Researcher are continuously discovering new species and current estimates suggests
that there may be as much as 100 million different species on earth [10]. In order to
keep track of the relationship between species a biological filing system is used and
as of today approximately 2 million species have been described and catalogued [11].
The science of classification of species is called taxonomy and the taxonomic tree
is divided into several levels. There are many ways to define the taxonomic tree,
however commonly it is divided into the seven levels shown in figure 3.1. These
levels are organized as ”boxes in a box”, meaning the broader categories are succes-
sively divided into the more narrow categories creating a taxonomic hierarchy. Here
kingdom is the broadest category and each of the kingdoms are split into multiple
groups in the phylum level. Further, each phylum is split into several classes, and
so on until we reach the more specific levels genus and finally species [1, p.3-8]. Tra-
ditionally, organisms are classified and ordered in the taxonomic tree according to
their characteristics. However, for prokaryotes (Bacteria and Archaea) it is difficult
to accurately distinguish different species only based on their characteristics and
therefore it is necessary to consider other features such as genetic structure [12].

5



3. Theory

Figure 3.1: Illustration of the taxonomic hierarchy based on the taxonomic levels
according to Julian Sutton’s book Biology [1]. To the right an example of the
taxonomic classification of the bacteria Escherichia coli is shown.

Sometimes there are groups of species within a genus that are more similar than
usual. In these cases an additional, informal level between genus and species can be
introduced to highlight their relation. An example of such a group is the Strepto-
coccus mitis group. A number Streptococcus bacteria belong to this group that are
genetically similar but have different characteristics as some are highly pathogenic
while others are commensal and occurs without hurting the host [13].

3.1.2 DNA
All living organisms contain a large amount information on how to build and main-
tain that specific organism. The entire genetic material in an organism is called
the genome and is stored in complex molecules called Deoxyribonucleic acid, more
known as DNA. The DNA molecule takes the form of a double helix, figure 3.2, where
the backbone structure is made of sugar and phosphate molecules. The two helix
shaped structures are bonded together by two nucleotides referred to as a base pair
(bp). The four nucleotides that create these base pairs in DNA are: adenine (A),
cytosine (C), guanine (G), and thymine (T) and can be seen as the the biological
alphabet [14, p. 8-9].

The functions and characteristics of an organism is governed by proteins that are
expressed within the cells. The instructions for assembling the proteins is encoded
in the DNA and the entire DNA contains instructions for creating a wide range of
different proteins. The part of the DNA that contains the information for creating
a specific protein is called a gene [14, p. 8-9].
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3. Theory

In 1859 Darwin introduced the concept of evolution, the process of how organisms
change over many generations. Sometimes when cells in an organism divide events
happen that change the genetic composition of the cell, such events can be mutations
or genetic recombination. These changes can result in new characteristics of the
organism and as changes are passed on to later generations over long time, new
species can evolve [15, p. 42].

Figure 3.2: Double helix structure of the DNA molecule showing the sugar-
phosphate backbone, nucleotides, and the base pair. Image from Let’s Talk Science
under license CC BY-SA 3.0 [2].

3.1.3 Analyzing DNA
Knowing that characteristics of a species is encoded in the DNA opens up a wide
range of possibilities for understanding what causes diseases and how they should
be treated. With a fast paced development of technology the techniques for DNA
sequencing have improved greatly improved in the last years. The advent of Next
Generation Sequencing (NGS) has made it possible to sequence and analyze DNA
in a fast and affordable way, giving us new insights in the field of genomics. NGS
consists of a range of sequencing techniques for creating a digital representation of
the sequenced genome. However, the common factor for all NGS techniques is that
they can sequence DNA fragments in parallel, generating a lot of data in a short
time [16]. The sequenced DNA fragments are called reads and can be of varying
lengths and quality depending on the technique used, though short read techniques
commonly give sequence lengths of 50-400 bp [17].

In bioinformatics k-mers are often considered for analyzing DNA sequences where
a k-mer is a subsequence of length k. Given k as well as the four nucleotides (A, C,
G and T) there exists 4k unique k-mers. While a larger k gives makes it easier to
identify differences between sequences it also has a higher computational cost. By
considering overlapping k-mers it is possible to create a distribution of k-mers over
a longer sequence giving a ”fingerprint” that can be used for analysis. Figure 3.3
demonstrates how to extract 3-mers out of a sequence.

7



3. Theory

Figure 3.3: Demonstration of how overlapping 3-mers are created.

3.1.4 Metagenomics
With the entrance of NGS and improving sequencing techniques it has allowed
the field of metagenomics to grow stronger. In ”regular” genomics one is limited to
studying samples containing only one species, while metagenomics aim to study sam-
ples that contain a mix of many species. Through metagenomic shotgun sequencing
(MGS), where the DNA is fragmented into shorter segments before sequencing, is it
possible to analyze raw environmental samples and study the composition of com-
munities containing both previously known and unknown organisms [18]. Metage-
nomics has shown that a small sample can contain thousands of organisms, many
of which was missed when culture based methods was used for analysis. Following
that, one of the key questions within metagenomics is Who is there? and this ques-
tion can be answered by identifying present organisms and their relative abundance
in a sample [6].

However, a limitation with metagenomic sequencing is that it does not only capture
bacterial DNA, but also all redundant DNA from the human genome. The issue
here is that the large amount of human DNA may overshadow the lower levels of
pathogenic DNA that is of interest. Therefore, current diagnosis methods often relies
on isolation and cultivation of colonies of a single bacterial species. This task is both
very time consuming and requires a priori knowledge in regards to what bacteria
one is looking for, but ensure there is enough bacterial DNA in order to perform
accurate analysis [5]. If the identification of organisms can be done accurately using
metagenomics, there is much to be gained from a clinical perspective. For example,
it could be possible to directly sequence blood samples from sepsis patients and
hence shorten the time to identify what pathogen that is causing the infection and
start the correct treatment.

As metagenomics are gaining in popularity, the number of analysis software are
increasing. Many of the current tools for taxonomic classification are based on a
lowest common ancestor (LCA) approach. With this approach the reads, or some
representation of them, are compared towards a database and mapped to all possible
species where this representation occurs. Some reads may be matched to more than
one species and if that is the case, the read will instead be assigned to a lower level
in the taxonomic tree which would give an unambiguous result for that specific read.
Due to that the reads can be classified at different taxonomic levels, i.e. some reads
are classified at species level, other at genus level etc. [19].
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3.2 Machine Learning
Machine learning is a field within artificial intelligence (AI) where a program aims to
perform a task without being explicitly told how to perform it. Instead a data-driven
approach is used where the models are designed such that they can learn complex
patterns from a set of data, gaining general knowledge about the task it is set to
perform [20]. In machine learning two typical tasks are regression and classification.
In regression we aim to model the relation between input and output variables and
this type of models are often used in forecasting problems. For classification tasks
are we, instead of predicting a specific value, assigning the data point to one of
multiple predefined categories [21, p. 97-101].

For both regression and classification it is common to train the models on example
data where the correct output value or class is known. If we allow the model to use
the correct answers, labels, during the learning process we refer to this as supervised
learning. In this project we will implement a classification algorithm and supervised
learning for classification can be described as follows.

Consider an input space X and its corresponding output space Y. The relation
between the input space and the output space is given by a function

g : X→ Y, (3.1)

which we want to identify. However, finding g without knowing anything about the
space g lies in is an almost impossible task. Therefore machine learning tries to
find a function f in some function space F which approximates g such that a loss
function L is minimized.

Assuming we have a training set x ⊂ X with labels y ⊂ Y the optimization problem
becomes

min
f∈F
L(f(x),y). (3.2)

The choice of loss function depends on the task being solved. Cross-entropy loss
given by equation (3.3) is commonly used for multi-class classification tasks [22, p.
395]

CE(f(x),y) = −
∑

(x,y)∈N

yT log(f(x)). (3.3)

9
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3.2.1 Artificial Neural Network
Artificial neural networks (ANN) is a method inspired by the biological neural net-
work found in human’s and other animal’s brains. The brain consists of a complex
structure of connected neurons which together can carry out advanced tasks such as
image recognition or movement of body parts [23]. Going forward the term neural
network will refer to the artificial neural network.

In machine learning, a neural network is defined as a graph G = (V,E) where V is
the nodes, here referred to as neurons, and E the edges connecting the nodes. Each
edge has its individual weight and the edges in the neural network of therefore often
referred to as weights, connecting the nodes. The state of a neuron j, hj, is given
by the the weighted sum of input signals, xi, with weights, wi, and a bias term, bj,
according to

hi =
∑

j

wj,ixi + bi. (3.4)

The output signal, yj, is further given by applying an activation function, σ, to the
state of the neuron,

yi = σ(hi). (3.5)

The output for the entire network can be written on matrix form as

ŷ = σ(Wx + b). (3.6)

3.2.1.1 Feed Forward Neural Network

The most basic structure of a neural network is the feed forward network referring
to a directed neural network that does not feed any of the intermediate values back
to network. In order to approximate the function we are looking for the feed forward
neural network connects multiple functions in a chain structure. In practice each of
these functions are represented by a layer of neurons. All networks consists of an
input and an output layer but can have an arbitrary number of layers in between
these, so-called hidden layers [21, p. 164-167]. Figure 3.4 shows the structure of a
feed forward neural network with one hidden layer.

In a more general case we can have a network with L layers. Then, for the hidden
layer l, the input is given by the output from the previous layer, z(l−1). The function
which this single layer represents is

f (l) = σ(W(l−1,l)z(l−1) + b(l)). (3.7)

Connecting all L layers in the network then gives us the resulting output

ŷ = f (L)(f (L−1)(...f (1)(x)). (3.8)

10
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Figure 3.4: Structure for a feed forward neural network with one hidden layer.
Below are the calculations performed on the input vector x to obtain the output of
the network.

3.2.1.2 Training of Neural Networks

As mentioned above, training a neural network is an optimization problem where
we want to minimize the loss function. In order to do so, the back-propagation algo-
rithm is widely used to compute the gradients for each layer which are then updated
using the gradient descent optimization technique. Back-propagation calculates the
gradients of the loss function with respect to each individual parameter one layer at
the time starting at the output layer. By recursively applying the chain-rule the gra-
dient for earlier layers can be calculated efficiently without unnecessary calculations
of re-occurring expressions in the intermediate steps [21, p. 200-209].

The derivatives of the loss with respect to the weights and biases in the step from
layer l − 1 to l are

∂f
(l)
W = ∂L

∂W(l−1,l) , (3.9)

∂f
(l)
b = ∂L

∂b(l) . (3.10)

These derivatives are further used in the gradient based update step to update
weights and biases according to

W(l−1,l)
t+1 = W(l−1,l)

t − η
(l−1,l)
t � δ

(l)
t (z(l−1)

t )T , (3.11)

b(l)
t+1 = b(l)

t − η
(l)
t � δ

(l)
t . (3.12)

Here η(l) is the learning rate for the parameters in layer l < L and � is the element-
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wise product. Further δ
(l)
t is defined as

δ
(L)
t = ∂L

∂f
(L)
W,b(x)

� σ′(h(L)
t ) (3.13)

δ
(l)
t = (W(l,l+1)

t )T δ
(l+1)
t � σ′(h(l)

t ) (3.14)

In traditional gradient descent we forward propagate the entire dataset before cal-
culating the gradient and update our parameters. This method has the advantage
of always converging, either to the global minimum if the loss function is convex, or
a local minimum for non-convex loss functions. The disadvantage on the other hand
is that a lot of memory will be needed to store the gradients making it unsuitable
for large datasets. On the other end of the spectrum we have stochastic gradi-
ent descent. Here the parameters are updated after each sample has been passed
through the network. This is much faster than traditional gradient descent but due
to the constant updates it will be difficult for the method to converge to the exact
minimum. The midway between the above approaches is the so-called mini-batch
gradient descent. Here, the update is performed after each mini-batch of m samples
allowing us to chose a value on m such that the training is fast while also converging
towards the minimum. This is normally the go-to method when training neural
networks [24].

3.2.1.3 Overfitting and Regularization

When implementing neural networks it is easy to think the the larger the network,
the better the performance. This is far from true as it has show that models large
models are more prone to overfitting. Overfitting happens when our models stops
learning the general features of our data and instead starts learning specific traits for
the training data. The result of this is the model performs well on the training set,
giving the impression of of being very good, while the performance on the validation
set is much worse [25]. A simple way to detect overfitting is by comparing the loss
values for the training and validation data. For a model that learns general feature
the loss will decrease for both datasets, as seen up until epoch E in figure 3.5. From
epoch E and forward we can then see the loss for the validation data is increasing
at the same time as the loss for the training data is still decreasing, this is a clear
sign of overfitting.

Fortunately there are ways to reduce overfitting in our models. The first thing to
do, if possible, is to increase the number of samples in the training set. If there is
enough data to train on it will be more difficult for the model to learn the specific
features of the training data and therefore learns to generalize better. However, one
does not always have access to more data and that is when regularization techniques
as weight regularization and dropout comes in handy [25].
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Figure 3.5: Loss curves for training and validation set showing that the model
starts to overfit after epoch E.

With weight regularization we introduce a way to reduce the size of the weights in
the network. This is done by adding an extra term to the loss function that penalize
the weights each time they are updated, forcing their value towards zero. By doing
this, some hidden neurons will become neglectable and the complexity of the model
will be reduced. L1- or L2- regularization are the most common methods for weight
regularization and work in the same way, the difference is the penalization term that
is added to the loss function. The updated loss functions for L1 and L2 is given by
equation (3.15) and (3.16) respectively and λ is the regularization rate [26]

LL1(W,b) = L(W,b) + λ
∑
i,j

|wi,j|, (3.15)

LL2(W,b) = L(W,b) + λ

2
∑
i,j

w2
i,j. (3.16)

The second popular regularization technique to use is dropout. The basic idea with
dropout is to turn off some the neurons during training and by that temporarily
making the network simpler. Once it is time for evaluation of the test data all
neurons are turned back on again. What neurons that are being turned off is chosen
at random with a probability P at each training step and therefore we will effectively
have a different network architecture each time [27].

A demonstration of how dropout works is shown in figure 3.6. On the left we have
a network with two hidden layers where no dropout as been applied and all neurons
are active. On the right we have applied dropout with probability P = 0.5 to the
hidden layers, resulting in approximately half of the neurons being turned off during
training, i.e. there will not be any update to the weights and biases associated with
those neurons.
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Figure 3.6: Illustration of the complexity to a neural network when dropout is not
applied (left) compared to when dropout is applied (right) with probability P=0.5.

3.3 Data Processing

Using sentences and words as input to machine learning models have opened up a lot
of new applications for machine learning. However, due to the fact that computers
only can process numerical data it is necessary to transform the sequences from text
to numbers before we can use them in our models. This section presents the theory
for the methods that have been used to perform the transformation from text to
numbers. In addition to this, we describe principal component analysis which was
used to explore the data.

3.3.1 Bag-of-Words

Bag-of-words is a feature extraction method commonly used in natural language
processing for representing text data. Given a set of documents a vocabulary of
all known words is created and each word receives an index. For each document,
the number of occurrences for each word is counted and stored in an array at the
index corresponding to the word’s index in the vocabulary. If a word is not present
in the document, the count will naturally be set to zero. In this project the DNA
sequences will represent the documents and the overlapping k-mers, as described in
3.1.3, are our ”words” [28].

The bag-of-words model is simple to implement, however it comes with limitations.
Representing text as a bag of words does not take the order of them into considera-
tion, and therefore a lot of information stored in the context may be lost. Another
negative aspect is that the scoring system will give more emphasis to words that are
occurring often causing rare words, which may contain more relevant information,
to be seen as less important. Term Frequency - Inverse Document Frequency is a
strategy for giving rare words more importance in the representation [28].
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3.3.2 Term Frequency - Inverse Document Frequency
Term Frequency - Inverse Document Frequency (TF-IDF) is a method for re-scoring
the bag-of-word model to give the relative importance of each word. As the name
suggests, there are two parts to this method; the Term Frequency and the Inverse
Document Frequency [29].

The term frequency tf(t, d) is given by how often a word t occurs in document
d ∈ D. Since some documents may be longer than other, it is common to normalize
this measure by dividing with the total number of words in the document. The term
frequency then becomes

tf(t, d) = number of times t occurs in d
total number of words in d . (3.17)

Further, the inverse document frequency idf(t,D) is a measure of how rare a word
is across all documents D. If a word occurs in many documents we want to scale
down the importance and it is present in few documents we want to scale up the
importance. The inverse document frequency is given by

idf(t,D) = log

(
total number of documents

number of documents with word t in it

)
. (3.18)

The TF-IDF score for a word is then given by simply multiplying the two parts

TF -IDF (t, d,D) = tf(t, d) · idf(t,D). (3.19)

3.3.3 Principal Component Analysis
Encoding text into numbers often transforms the data into a very high dimensional
space. By using principal component analysis (PCA) it is possible to reduce the
feature space while conserving as much relevant information as possible. Assume
the data is represented in p dimensions which you want to reduce to m dimensions.
As PCA aims to contain as much information as possible it will identify the m direc-
tions capturing as much variance in the data as possible. By finding the m largest
eigenvalues and the corresponding eigenvectors, a new m-dimensional space can be
created where the eigenvectors are the bases. Finally, the original, p-dimensional,
data can be projected onto the new space transforming the data from p to m di-
mensions [30, p. 374-379].
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4
Methods

In this section we will describe the work process of this thesis. The first part of the
project aimed at investigating already available software for metagenomic analysis,
however there was no predefined process for evaluating these. Therefore, the eval-
uation step is performed with inspiration from previously published studies [8, 31].
The generation of datasets, as well as metagenomic analysis software was run on
Linux OS Ubuntu 18.04.

The second part aimed to improve some part of the metagenomic analysis using
artificial neural networks. Implementation of these neural networks was done using
Python 3.6 and the PyTorch framework. Training and evaluation was conducted on
a 16-core Google Cloud instance. An overview of all software and packages used in
the project is available in Appendix A.

4.1 Dataset
A key part to a successful project is the accessibility to a proper dataset. To be able
to evaluate the performance of the tested methods we need a dataset where we know
the composition of species. In addition to this, the training of the neural network
models require us to know the label of each individual read. Such datasets have not
been available for this project leading us to use simulated reads. The reads used
for training and evaluation of methods have all been simulated using InSilicoSeq
[32] which simulates reads corresponding to Illumina short reads [33]. There are
several positive sides to using simulated data; besides getting the label for each read
we also have the possibility to select what reference genomes to generate the reads
from, what error model to be applied, and the exact abundance for each included
species.

In this project a few different datasets, with different species combinations have been
used. An outline of the species included in each dataset is presented in table 4.1. For
the evaluation of metagenomic software the datasets listed as 1928miseq, 1928hiseq,
Streptococcus, and Mycobacterium was used. Moreover, for training and evaluation
of the neural network models the datasets denoted as Streptococcus, Mycobacterium,
and Group was used. All datasets were created to have uniform abundance among
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the species and the MiSeq error model was used for all datasets except the 1928hiseq
dataset which had the HiSeq error model applied. In this project one reference
genome per species has been used and all reference genomes were downloaded from
NCBI RefSeq [34]. A list of the accession numbers for the used reference genomes
is available in Appendix B.

1928miseq/1928hiseq Group
Salmonella enterica Salmonella enterica
Klebsiella pneumoniae Klebsiella pneumoniae
Escherichia coli Escherichia coli
Mycobacterium tuberculosis Mycobacterium tuberculosis
Staphylococcus aureus Mycobacterium africanum
Neisseria gonorrhoeae Mycobacterium bovis
Enterococcus faecium Mycobacterium canettii
Clostridioides difficile Streptococcus pneumonia

Streptococcus pseudopneumoniae
Streptococcus mitis
Streptococcus oralis

Streptococcus Mycobacterium
Streptococcus pneumoniae Mycobacterium tuberculosis
Streptococcus pseudopneumoniae Mycobacterium africanum
Streptococcus mitis Mycobacterium bovis
Streptococcus oralis Mycobacterium canettii

Table 4.1: Species included in each type of dataset. Reads were simulated from
one reference genome for each species and all datasets were created to have uniform
abundance.

4.2 Evaluation of Existing Metagenomic Software
As mentioned in section 3.1.4 there are many metagenomic analysis software avail-
able. The selection of software to evaluate was based upon the what underlying
method they are using, how often they occurred in other papers, and on recom-
mendation from supervisors. Common for all software is that they use the LCA
approach. Kraken2 is a k-mer based method which for each k-mer in the sequence
maps it to the lowest common ancestor for all genomes containing an exact match
of the k-mer [35]. Bracken (Bayesian Reestimation of Abundance with KrakEN) is
an extension for Kraken2 utilizing bayesian statistics to re-distribute reads assigned
to a higher taxonomic level to species level in order to improve abundance estima-
tion [36]. The third tool is MetaPhlan2, a marker based method identifying marker
genes in the reads and using a reference database identifying species and estimating
relative abundance in the dataset [37, 38].
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To evaluate metagenomic analysis software there is unfortunately no well defined
process on how it should be done as it usually depends on what one is interested
in. Here, it was decided to focus on investigating how well Kraken2, Bracken and
MetaPhlan2 succeeds in identifying the correct species, if there are additional species
identified, and how well they can estimate the abundance of the included species.
In order to do so, we have evaluated the software with respect to

I. Sequencing technique: We want to investigate if the error models corre-
sponding to Illumina’s MiSeq and HiSeq sequencing had any impact on the
software’s performance.

II. Closely related species: How well does the software manage to perform on
a dataset containing many species that are genetically very similar? For this a
simulated dataset with Streptococcus species all belonging to the Streptococcus
mitis group was used.

III. Prediction stability: How consistent the predictions given by the software
are. Will they predict the same results for multiple datasets containing the
same species composition? To investigate this each type of dataset has been
simulated and evaluated five times.

4.2.1 Quantifying Classification Performance
For species identification we are only interested in the presence of a species in the
sample, hence we have a binary classification problem with the confusion matrix
given by figure 4.1. To measure how well the software are at identifying the relevant
species in our datasets we will use precision, recall and F1-score given by equations
(4.1) - (4.3) with notations from the confusion matrix in figure 4.1.

Figure 4.1: Confusion matrix for calculating precision, recall and F1-score to
measure performance in identifying relevant species.
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precision = TP

TP + FP
(4.1)

recall = TP

TP + FN
(4.2)

F1-score = 2 · precision · recall
precision + recall

(4.3)

The precision gives us how many of the identified species that are relevant while
recall gives a measure of how good the method is at identifying the correct species.
The F1-score is the harmonic mean of the precision and recall and gives us a way
to measure the overall accuracy of the method with its best value being 1.

4.2.2 Evaluation of Relative Abundance Estimation
Evaluating how good the methods are at predicting the abundance we consider the
predictions to be in a space of S dimensions, where S is the number of species
available in our taxonomic definition. To measure the distance from the prediction,
p, to the true abundance, t, we use the L2 - distance in equation (4.4). This measure
was chosen as it has previously been used in the benchmarking study Benchmarking
Metagenomics Tools for Taxonomic Classification by Simon H. Ye et. al [8]. Note
that the L2 - distance gives a measure of the overall abundance estimation for the
dataset and does not consider the abundance estimation for each individual species.

L2 =

√√√√ S∑
i=1

(pi − ti)2. (4.4)

4.2.3 Baseline - Upper Bound Accuracy
To be able to compare the performance of Kraken2 and our neural network models
an estimate of the proportion of reads classified correctly on species level is needed.
Although it is possible to identify the exact classification of each read using Kraken-
Tools[39] it is sufficient to calculate an upper boundary of the classification accuracy
which can then be compared to the classification accuracy obtained by the neural
network models. Our upper bound accuracy is defined as:
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Given a dataset of N reads from C species with equal number of reads originating
from each species, the maximal number of reads that can belong to species ci is
rmax = N/C. We can then define the upper bound of the accuracy as

upper bound accuracy = 1
N

C∑
i=1

ri, (4.5)

where ri is the largest possible number of reads correctly classified as species ci. We
have defined ri as

ri =

ai if ai < rmax

rmax if ai > rmax,
(4.6)

where ai is the number of reads assigned to species ci by Kraken2.

Since there is a possibility that the abundance for a species is overestimated, i.e.
ai > rmax, we can know that some of the reads must be classified incorrectly and ri

has therefore been limited to be at most rmax. On the other hand, when ai < rmax

it is possible that all read are classified correctly although it is not necessarily the
case. However, to get an accuracy as high as possible we have assumed that all
reads in this case are classified correctly. For clarification, in this metric all reads
classified at a higher taxonomic level than species is considered incorrectly classified
although it is not completely true as they merely are classified at a higher level.

4.3 Pre-processing

As some of the reference genomes used for simulating the dataset are not complete
they have been padded with the character N, indicating an unknown base in the
genome. Reads containing one or more of the ”N-base” are neither realistic from
sequencing perspective nor are they containing any real information related to a
specific species. To avoid learning that bacterial DNA contains the base N all reads
containing one or more N’s are removed.

For each of the filtered reads, a k-mer profile was created using the bag-of-words rep-
resentation presented in section 3.3.1. The size of the k-mer was 7 for Streptococcus
and Mycobacterium datasets, and 6 for the group dataset. As the space complexity
for the bag-of-words model is O(4k) the k-mer size was chosen in order to balance
the need for sufficient many reads per species while capturing unique identifiers in
the reads without exceeding the storage capacity of the computer. Further, to give
more influence to rare k-mers a TF-IDF transform was applied. To avoid a large
difference on the input values to the models the data was scaled to be in the range
[0, 1] using min-max scaling.
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4.4 Implementation of Neural Networks
For our own classification models we decided to implement three separate neural
networks; one each for Streptococcus and Mycobacterium species, and a combined
one for a few Streptococcucs, Mycobacterium, and Enterobacteriaceae species. Worth
noting here is that the classification problem for the neural network models is much
simpler compared to the one Kraken2, Bracken, and MetaPhlan2 were faced with.
Even though we evaluated datasets containing the same species and generated from
the same genomes, the established software had many more possible classes to clas-
sify the read as compared to the neural network models. For the neural network
models it is assumed that we already have some knowledge about what kind of
species the reads belong to, i.e. some rough classification have already been made.
With this assumption we can narrow the number of possible species down to a spe-
cific species group or genus and therefore hopefully improve the proportion of reads
that are correctly classified at the species level.

4.4.1 Training Setup
All three models were implemented as feed forward networks with one hidden layer
and the additional hyperparameters for each of the networks are presented in the
results, section 5.3. For the hidden layers the Rectified Linear Unit (ReLU) was
used as activation function. The ReLU function is defined as

σ(x) =

x if x ≥ 0
0 if x < 0

(4.7)

Since we are implementing a multi-class classifier the activation function for the
output layer was the softmax function,

hi =
∑

j

wj,izi + bi. (4.8)

ŷ(h)i = ehi∑dim(Y)
j=1 ehj

. (4.9)

By using softmax the values for the output neurons will be in range y(h)i ∈ [0, 1]
and can be interpreted as a probability, with the highest value corresponding to the
most likely class. As stated in section 3.2, the cross-entropy loss function is the
standard choice for multi-class classifier and was therefore the natural choice in our
case.

22



4. Methods

To avoid overfitting when training the networks dropout and L2 weight regulariza-
tion was added to the hidden layer as described in section 3.2.1.3. Additionally,
variable learning rate was implemented where the learning rate was decreased to
half its previous value if it had not been any reduction of the loss during the last
10 epochs and early stopping was applied if no improvement had been seen for the
last 20 epochs.

4.4.2 Evaluating Classification Accuracy
To measure the performance of the neural network models we first need to decide
what species each read belong to. This is done by simple classifying the read as the
species corresponding to the output neuron with the highest value. After doing this
we can compare with the correct labels for the reads and measure the proportion of
reads that have been correctly classified, giving us a classification accuracy defined
as

Accuracy = 1
N

N∑
i=1

I(yi = argmax(ŷi)). (4.10)

4.5 Data Exploration
Exploring the data we use to train our neural network models can help us under-
stand why they perform the way they do. A first step to understanding the data
is to visualizing it, however due to the high dimensionality of the bag-of-words rep-
resentation we cannot simply plot our data points. To get around this issue PCA
was used to reduce the high dimensional TF-IDF representation into three principal
components.

Secondly, we wanted to understand how similar the species within our groups were.
In order to do so we used Basic Local Alignment Search Tool (BLAST) to pairwise
align our sequences. BLAST identifies similar regions in the aligned reads and then
compare the nucleotides on each position resulting in a percentage of how identical
the sequences are [40].

23



4. Methods

24



5
Results

In this section the results of this project will be presented. First we will summa-
rize and analyze the evaluation of Kraken2, Bracken, and MetaPhlan2. We will
then present the performance of the neural network models on classifying individual
reads. Finally, we will visualize and analyze the datasets used for training our neural
network models to understand observed difficulties.

5.1 Evaluation Established Methods

The evaluation of how well Kraken2, Bracken and MetaPhlan2 performs on the
datasets described in section 3.1.4 have been summarized in table 5.1 and 5.2. As
shown in the table 5.1, at no abundance threshold Kraken2 and Bracken identifies
a very large number of species however, when introducing an abundance threshold
quickly reduces the number of identified species. From the result reports it can be
seen that Kraken2 and Bracken succeeds to find all present species while MetaPhlan2
does not manage to separate those belonging to the Mycobacterium tuberculosis
complex for the 1928 datasets and the Streptococcus mitis group from the strep
dataset.

Further, table 5.2 shows that Bracken outperforms both Kraken2 and MetaPhlan2
in regards to abundance estimation of species in the 1928 datasets. On the strep
dataset, on the other hand, the average L2 distance for Bracken increases slightly
compared to Kraken2. Although the L2-distance is one way to measure the cor-
rectness of the total abundance estimation, it does not take into consideration
how well the estimation is for each species. Figure 5.1 shows a boxplot of the
abundance estimation per species evaluated on the 1928miseq datasets. From the
boxplot we can see that Kraken2 overall is quite close in its estimations but the
L2-distance is increased due to poor estimations of the E. coli and M. tuberculo-
sis abundances. Through the size of the boxes in figure 5.1, there is an indication
that both Kraken2 and Bracken is more consistent in their abundance estimations
compared to MetaPhlan2 across multiple datasets.
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Dataset Software Number of Species
Expected Median Range Median ( 0.1%)

Kraken2 8 120 5 9
1928miseq Bracken 8 120 5 9

MetaPhlan2 8 7 0 7
Kraken2 8 68 3 8

1928hiseq Bracken 8 68 3 8
MetaPhlan2 8 7 0 7
Kraken2 4 102 11 12

Streptococcus Bracken 4 102 11 12
MetaPhlan2 4 2 0 2

Table 5.1: Number of species identified by the different metagenomics softwares
tested in this project. In sub-columns we have, from left to right; the number of
expected species in the corresponding dataset, the mean number of species identified
across five datasets when no abundance threshold was set, the difference between
highest and lowest number of identified species, and the mean number of species
identified across five datasets when the abundance threshold was set to 0.1%.

Dataset Software Number of Species Abundance Est.
Precision Recall F1-score L2 std

Kraken2 0.889 1 0.94 12.08 0.07
1928miseq Bracken 0.889 1 0.94 2.10 0.35

MetaPhlan2 1 0.88 0.93 18.87 0.67
Kraken2 1 1 1 14.54 0.03

1928hiseq Bracken 1 1 1 3.05 0.74
MetaPhlan2 1 0.88 0.93 21.79 1.31
Kraken2 0.333 1 0.50 21.62 0.03

Streptococcus Bracken 0.333 1 0.50 24.87 0.20
MetaPhlan2 0.5 0.25 0.33 32.62 1.30

Table 5.2: Precision, recall and F1-score calculated for the binary classification
problem related to species identification. The metrics are calculated after an abun-
dance threshold of 0.1% first was applied. To the right we have the mean L2-distance
and corresponding standard deviation for abundance estimation calculated across
five datasets.
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Figure 5.1: Boxplot showing abundance estimation per species for the 1928miseq
dataset. The boxes show the quartiles of the predicted abundance and the whiskers
are further showing the minimum and maximum values of the predictions from
the five separate datasets. That means a larger box indicates larger variance in the
abundance prediction for the corresponding species. The expected 12.5% abundance
for each species is represented by the dashed, black line.

From the findings presented above, MetaPhlan2 is the tool with the largest lim-
itations; the abundance estimation has the highest variation and is also furthest
from the expected value. In addition, MetaPhlan2 does not succeed in separating
species belonging to species groups resulting in lower analysis resolution. Although
Kraken2 and Bracken succeed in identifying all expected species we can see signs of
underperformance on species that has close relatives, in terms of genetic structure.
The abundance estimation of Streptococcus species is quite high and comparing the
values for Kraken2 and Bracken we also notice the overall abundance estimation is
not improved by Bracken. The next section presents the results of a more in depth
analysis of Kraken2’s performance on reads from the Streptococcus mitis group and
Mycobacterium tuberculosis complex.

27



5. Results

5.2 Kraken2 on Streptococcus mitis group & My-
cobacterium tuberculosis complex

Testing Kraken2 on datasets with increasing abundance for the Streptococcus species
figure 5.2 shows that Kraken2 constantly overestimates the abundance of S. pneu-
moniae and underestimates the abundance of S. mitis and S. oralis. This suggests
Kraken2 is slightly biased towards classifying reads as S. pneumoniae rather than
the commensal S. mitis and S. oralis. Further, given an expected abundance of
25% per species it was found that the upper boundary of the classification accuracy
on species level (proportion of reads classified as the correct species defined as in
section 4.2) was 82.29%.

Figure 5.2: Estimated abundance by Kraken2 for species belonging to the Strep-
tococcus mitis group. The dashed black line shows the expected abundance for all
species.

For species belonging to theMycobacterium tuberculosis complex the Kraken2 report
shows that 70.6% of the reads are being classified at genus level instead of the
expected species level. This gives an upper bound on the species level accuracy
of 28.66%. In addition to this, the report shows Kraken2 considers M. bovis and
M. africanum as subspecies to M. tuberculosis rather than species on their own.
This seem to be due to NCBI’s taxonomy convention and therefore these species
have been evaluated on NCBI’s subspecies level instead of the otherwise considered
species level.
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5.3 Evaluation of Neural Networks
As neural networks has the limitation of only predicting the classes it has been
trained on, and there are more than a thousand of bacterial species in NCBI’s
reference database, it would require a massive training dataset to have a proper
representation of each species. Therefore, the suggested application for the neural
network model is to be used in a secondary step after an initial classification has
been done to, for example, improve the abundance estimation of species groups
which the initial method struggle with.

As the data differs for different species groups three separate models were trained;
StrepModel for Streptococcus species, TubMmodel for Mycobacterium species, and
GroupModel which is a combined model for Streptococcus species, Mycobacterium
species as well as Salmonella enterica, Escherichia coli and Klebsiella pneumoniae
which are all part of the family Enterobacteriaceae. Since the evaluation of Kraken2
was limited to only four species each from the Streptococcus mitis group and My-
cobacterium tuberculosis complex we continued to limit ourselves to the same species
as was listed in the section about the simulated datasets, see table 4.1. Moreover, the
hyperparameters that was used for training the neural network models are presented
in table 5.3.

Hyperparameter StrepModel TubModel GroupModel
Hidden Layers 1 1 1
Neurons Hidden Layer 1200 500 500
Dropout Hidden Layer 0.9 0.0 0.5
Regularization Rate 0.0 0.0 0.0001
Batch Size 1024 1024 1024
Initial Learning Rate 0.001 0.001 0.001
K-mer Size 7 7 6

Table 5.3: Hyperparameters used for training neural network classifiers for pre-
dicting species identity for each individual read.

Implementation of separate classifiers for the S. mitis group and the M. tuberculosis
complex resulted in test accuracies presented in table 5.4. The combined classifier,
GroupModel, resulted in a classification accuracy of 66.33%. From the accuracies we
can see that our network manages to improve the classification of individual reads
on species level compared to what was found using Kraken2 for the investigated
Streptococcus species. However, the for the Mycobacterium species we did not suc-
ceed in reaching any significant improvement in classification accuracy compared to
Kraken2. Although the performance of the TubModel was quite bad, the results
for the StrepModel suggests that neural networks can be a suitable method for im-
proving the classification of reads if we have a limited number of species that we are
interested in.
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Model/Dataset NN Classification Accuracy Kraken2 Accuracy
StrepModel/Streptococcus 94.86% 82.29%
TubModel/Mycobacterium 30.66% 28.66%
GroupModel 66.33% -

Table 5.4: Classification accuracy of individual reads obtained for the trained neu-
ral network models as well as the estimated accuracy for species level classification
of reads obtained by Kraken2. Accuracy refers in both cases to the proportion of
reads that was correctly classified at species level.

Figure 5.3a and 5.3b shows the confusion matrix for the StrepModel and GroupModel
respectively. The confusion matrix for the GroupModel clearly tells us that there is
no problem for the network to identify what group of species the reads belong to, the
misclassifications are instead happening within each species group. In figure 5.3a
the confusion matrix for S. mitis group shows our network has its largest difficulties
in distinguishing S. pneumonia from S. pseudopneumoniae. As we know from the
results in section 5.2, Kraken2 managed to accurately predict the abundance for
S. pseudopneumoniae and hence a combined method may be possible to utilize the
strengths from both methods for an overall improvement.

(a) Confusion matrix given by Strep-
Model evaluated on a separately gener-
ated test set.

(b) Confusion matrix given by Group-
Model evaluated on a separately gener-
ated test set.
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5.4 Exploring the Data
As seen in the results presented in section 5.3 above, our approach of using a feed-
forward neural network with a TF-IDF bag-of-words representation of the data
showed, in terms of classification accuracy on individual reads, very different results
for the Streptococcus species and Mycobacterium species.

Figure 5.4 shows the first and second principal components for the datasets used
to train the GroupModel with he data colored according to species. We can see a
clear separation of the species groups however, there is no clear separation of the
individual species within the groups. This realization helps us understand why there
were very few misclassifications in between the groups. The variance explained by
the three first principal components for the datasets used for the separate models
is presented in table 5.5. The low values for the captured variance for the first
principal components verifies that we cannot easily reduce the dimensions without
loosing a lot of the variance in the data.

Figure 5.4: First and second principal component for dataset containing Strepto-
coccus, Mycobacterium and Enterobacteriaceae species. Here a subset of the entire
dataset has been used in order to illustrate the overlap of the data for belonging to
each species.

Species Group PC 1 PC 2 PC 3
Streptococcus 0.14 0.13 0.07
Mycobacerium 0.10 0.08 0.07

Table 5.5: Explained variance captured by the three largest principal components
identified by PCA for datasets containing Streptococcus and Mycobacterium species.
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Lastly, comparing the pairwise BLAST identity, presented in table 5.6 and table
5.7, between the species belonging to the studied groups we can see that the genome
percent identity between the Mycobacterium species is above 99%. Comparing that
to the maximum identity of 95.69% for S. pneumonia and S. pseudopneumonia we
can realize that separating Mycobacterium is a more complex task.

S. pneumoniae S. pseudopneumoniae S. mitis S. oralis
S. pneumoniae 1.00 0.9569 0.9392 0.9204
S. pseudopneumoniae 0.9569 1.00 0.9462 0.8304
S. mitis 0.9392 0.9462 1.00 0.9484
S. oralis 0.9204 0.8304 0.9484 1.00

Table 5.6: Pairwise BLAST identity for the studied Streptococcus species

M. tuberculosis M. africanum M. bovis M. canettii
M. tuberculosis 1.00 0.9990 0.9988 0.9944
M. africanum 0.9990 1.00 0.9988 0.9953
M. bovis 0.9988 0.9988 1.00 0.9919
M. canettii 0.9944 0.9953 0.9919 1.00

Table 5.7: Pairwise BLAST identity for the studied Mycobacterium species
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In this section we will discuss some of the results obtained during this project and
also highlight limitations with the chosen methods that needs to be taken into
account. We will then round off this thesis with some suggestions on topics for
future work on metagenomics.

6.1 Evaluation of Metagenomic Analysis Software
This thesis started out by evaluating three metagenomic analysis software, Kraken2,
Bracken and MetaPhlan2, however there are a number of limitations to consider in
regards to this evaluation. First, we have only used simulated datasets throughout
this project which gives us the the freedom to include the species we are interested
in as well as controlling parameters such as abundance distribution. Here, we have
restricted ourselves to keep the abundance uniform among the species, this does not
give a true representation of metagenomic samples but makes it easier to compare
the classification performance between species. The negative side to using only
simulated reads is that it is not possible to know if the behaviour of the methods
would be the same for ”real” metagenomic samples. For example, the simulated
reads are generated from reference genomes that has already been sequenced once.
There is always some level of sequencing error which may have transferred over from
the reference genomes, resulting in a ”double” error on our reads.

Further, only three tools were evaluated where Bracken also built upon the results of
Kraken, and can because of that not be considered as a stand alone tool. Since there
are many more tools available there is still plenty left to explore in terms of other
software. Also, the evaluation was only conducted on a few specific variables and
species where the choice of these most likely affects the outcome of the evaluation.
Therefore the results presented here does not give the full picture of the performance
of the tools, but can hopefully serve as a first indication that can be further explored
once there is a more specific application for it in mind. This is in line with what
has been suggested in previous benchmarking studies [9].
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6. Discussion

In our evaluation we first focused on analyzing the general performance in terms
of species identification, abundance estimation, and predictions stability. We found
that no single tool outperformed the others on their own as the abundance estimation
achieved by Bracken was based on the initial classification by Kraken2. In terms of
species identification we found that Kraken2 did a good job identifying all species
but also identified a lot of false species. A reason for all these false species comes
from errors in the database used to map reads against. In addition to this, some
bacteria has genes that have been transferred horizontally and therefore the same
gene can be present in multiple bacterial species that not necessarily are close to
each other in the taxonomic tree. Since such genes are included in the database,
there is a large chance that they will cause misclassifications that will greatly reduce
the classification performance.

MetaPhlan2 on the other hand were pretty accurate in its species identification,
except that species belonging to a species group were identified as that group, but
were significantly worse at abundance estimation. The most interesting find was
that all tools struggled more or less with classification of reads from closely related
species groups. When estimating the classification accuracy for Kraken2 on the
Streptococcus and Mycobacterium datasets we have made multiple simplifications
and assumptions. For example we have only considered reads classified at species
level as correct and reads at genus level or higher as incorrect. Since Kraken2 is
a LCA based method, many of the reads belonging to species with similar genetic
composition will be classified at a higher level and therefore labeled as incorrect
giving a skewed result. Here, maybe another approach which considers the different
classification levels would have been better suited to evaluate the quality of the
classifications.

Nevertheless, the biggest limitation for the established methods was found to be the
species level classification and as the species groups are limited to a smaller num-
ber of species, it seemed as this would be the best area to improve using machine
learning. We remind here that the classification task for the neural networks is
different compared to the one performed by the established metagenomic software.
Kraken2, Bracken and MetaPhlan2 have a lot more species that they compare the
reads against while the the neural network models only have four species to choose
from in the Streptococcus and Mycobacterium cases and eleven in the GroupModel
case. This classification task is evidently easier, but the main goal is also to investi-
gate if we can improve the classification and therefore it makes sense to try simplify
the task.
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6. Discussion

6.2 Implementation and Performance of Neural
Network Models

The neural network models we implemented in an attempt to improve the classi-
fication of reads from closely related species gave very varying results with a high
classification accuracy of almost 95% for the Streptococcus model while the My-
cobacterium model struggled in separating the species and reached only about 30%
classification accuracy. When choosing these two groups of species we knew that the
Mycobacterium species are more similar than the Streptococcus species, but we did
not expect the difference in the performance to be this big. After realizing that the
BLAST identity for the Mycobacterium species is above 99% the obtained accuracy
is not as surprising. With such a high similarity of the genomes, the short read
length, and a sequencing error added on top of that, there is a chance the resolution
simply is too low to distinguish the unique features of each species. With that in
mind we can understand the difficulty of classifying the species from short reads.
One way to possibly be able to improve the performance for this model is to change
the representation of the data.

The first thing that should be considered is the use of a larger k-mer size, perhaps
we are missing k-mers that are unique between the Tuberculosis species because of
our smaller k-mer size. Further the classification would maybe be improved if we
could take the context of the k-mers into account. Instead of using a bag-of-words
representation of the data one can implement word embeddings similar to Word2Vec.
Word2Vec creates vector representations that are close to each other in the feature
space for words that have a similar meaning. An additional approach to capturing
the context of the k-mers is to use a recurrent neural network architecture instead
of the feed forward structure that has been used in this project. The context can
be captured with this structure because of the internal feedback loop allowing the
model to consider both the input to the model as well as the state of the model in
previous time steps.

6.3 Future Work
The field of metagenomics has great potential to revolutionize healthcare and there
are many interesting aspects to study. In order for metagenomics to give value in a
clinical setting there is a need for a pipeline that accurately detects species for ”real”
sequences. As future project it would be interesting to investigate the feasibility for
such a pipeline, combining multiple software and possibly even machine learning
based models. This thesis has showed that using Bracken on top of Kraken2 to
improve abundance estimation had a positive outcome and therefore it would be of
great interest to see if other combinations of two or more software can improve the
overall taxonomic classification.
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6. Discussion

When considering the 1928miseq and 1928hiseq datasets we have not taken into
consideration if the species naturally occur together. These species were instead
chosen because 1928 Diagnostics have analysis pipelines for these species and they
are known for causing hospital acquired infections or being resistant to many types
of antibiotics. Although the analyzed Streptococcus species all inhabits the naso-
oral-pharyngeal tract of humans it would in a future study be interesting to focus
more on analyzing datasets that are more true to real metagenomic samples. This
could for example be to evaluate both simulated and real metagenomic samples
corresponding to a blood test from a sepsis patient.

Finally, sequencing techniques that gives long reads of (10,000 - 100,000 bp) have
become more accessible and may help improve the classification of species with very
similar genomes. If the sequences are longer there is a better chance of capturing
unique features of the genome in each individual read. Unfortunately the sequencing
quality of long reads are much lower comparing to short reads which may cancel out
the positive effects of having longer sequences to analyze.
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7
Conclusion

To conclude this thesis we have found that all methods, both established and neural
network based, comes with strengths and weaknesses. There is no single approach
that on its own is superior to the others and in order for efficient analysis of metage-
nomic data one should consider a combination of multiple methods. This project
also showed that neural networks have the ability to improve certain parts of the
classification of metagenomic data, however there may be other more suitable meth-
ods that has not been investigated here.
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A
Software

In this project a number of software as well as python packages was used for clas-
sifying reads and implementing the neural network models. Table A.1 lists the all
used software and packages along with where they was used.

Software/Python Package Reference
Software
InSilicoSeq [32] Generation of datasets
Kraken2 [35] Species identification and

abundance estimation
Bracken [36] Species identification and

abundance estimation
MetaPhlan2 [37, 38] Species identification

abundance estimation
BLAST [40] Alignment of reference genomes

Python Packages
PyTorch [41] Implementation of neural networks
Numpy [42] Pre-processing and exploration of data
Pandas [43] Pre-processing of data
Scikit - learn [44] Pre-processing and exploration of data
Matplotlib [45] Visualizations
Seaborn [46] Visualizations

Table A.1: Stand alone software and python packages used in during this project.
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B
Reference Genomes

Table B.1 lists the accession number for the reference genome for each species that
was used to generate datasets. All reference genomes were downloaded for NCBI’s
RefSeq [34].

Species NCBI Accession Number
Salmonella enterica NZ_CCNU01000001.1
Klebsiella pneumoniae NZ_NGTB01000001.1
Escherichia coli NZ_AKBV01000001.1
Staphylococcus aureus NZ_CYKD01000001.1
Neisseria gonorrhoeae NZ_UGRF01000001.1
Enterococcus faecium NZ_CP012430.1
Clostridioides difficile NZ_CCRO01000001.1
Mycobacterium tuberculosis NC_000962.3
Mycobacterium africanum NZ_CP014617.1
Mycobacterium bovis NZ_CP012095.1
Mycobacterium canettii NC_015848.1
Streptococcus pneumonia NZ_CP018137.1
Streptococcus pseudopneumonia NC_015875.1
Streptococcus mitis NZ_CABEHV010000004.1
Streptococcus oralis NZ_CABEIU010000002.1

Table B.1: List of species used in the datasets and their corresponding NCBI
accession numbers.
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