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I 

Abstract 
 

Visual object tracking for surveillance applications is an important task in 
computer vision. Many algorithms and technologies have been developed to 
automatically monitor pedestrians, traffic or other moving objects. One main difficulty 
in object tracking, among many others, is to choose suitable features and models for 
recognizing and tracking the target. Some common choices of features to characterize 
visual objects are: color, intensity, shape and feature points. In this thesis three methods 
are studied: mean shift tracking based on the color pdf, optical flow tracking based on 
the intensity and motion, SIFT and RANSAC tracking based on scale invariant local 
feature points. Mean shift is then combined with local feature points. Preliminary results 
from experiments have shown that the adopted method is able to track target with 
translation, rotation, partial occlusion and deformation. 
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Chapter 1. Introduction 
1.1 Concept of visual object tracking 

Visual object tracking is an important task within the field of computer vision. It 
aims at locating a moving object or several ones in time using a camera. An algorithm 
analyses the video frames and outputs the location of moving targets within the video 
frame. So it can be defined as the process of segmenting an object of interest from a 
video scene and keeping track of its motion, orientation, occlusion etc. in order to 
extract useful information by means of some algorithms. Its main task is to find and 
follow a moving object or several targets in image sequences. 

The proliferation of high-powered computers and the increasing need for 
automated video analysis have generated a great deal of interest in visual object tracking 
algorithms. The use of visual object tracking is pertinent in the tasks of automated 
surveillance, traffic monitoring, vehicle navigation, human-computer interaction etc. 
Automated video surveillance deals with real time observation of people or vehicles in 
busy or restricted environments leading to tracking and activity analysis of the subjects 
in the field of view. There are three key steps in video surveillance: detection of 
interesting moving objects, tracking of such objects from frame to frame, and analysis 
of object tracks to recognize their behavior. 

Visual object tracking follows the segmentation step and is more or less equivalent 
to the "recognition" step in the image processing. Detection of moving objects in video 
streams is the first relevant step of information extraction in many computer vision 
applications. There are basically three approaches in visual object tracking. Feature-
based methods aim at extracting characteristics such as points, line segments from 
image sequences, tracking stage is then ensured by a matching procedure at every time 
instant. Differential methods are based on the optical flow computation, i.e. on the 
apparent motion in image sequences, under some regularization assumptions. The third 
class uses the correlation to measure interimage displacements. Selection of a particular 
approach largely depends on the domain of the problem.  

The development and increased availability of video technology have in recent 
years inspired a large amount of work on object tracking in video sequences [1]. Many 
researchers have tried various approaches for object tracking. Nature of the technique 
used largely depends on the application domain. Some of the research work done in the 
field of visual object tracking includes, for example: 

The block matching technique for object tracking in traffic scenes in [2 ]: A 
motionless airborne camera is used for video capturing. They have discussed the block 
matching technique for different resolutions and complexities. 

Object tracking algorithm using a moving camera in [3]: The algorithm is based on 
domain knowledge and motion modeling. Displacement of each point is assigned a 
discreet probability distribution matrix. Based on the model, image registration step is 
carried out. The registered image is then compared with the background to track the 
moving object. 

Video surveillance using multiple cameras and camera models in [4]: It uses object 
features gathered from two or more cameras situated at different locations. These 
features are then combined for location estimation in video surveillance systems. 

Another simple feature based object tracking method is explained in [5]: The 
method first segments the image into foreground and background to find objects of 
interest. Then four types of features are gathered for each object of interest. Then for 
each consecutive frames the changes in features are calculated for various possible 
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directions of movement. The one that satisfies certain threshold conditions is selected as 
the position of the object in the next frame.  

A feedback-based method for object tracking in presence of occlusions in [6]: In 
this method several performance evaluation measures for tracking are placed in a 
feedback loop to track non-rigid contours in a video sequence. 
  
1.2 Applications of visual object tracking 
 
Visual object tracking has many applications. Some important applications are: 

(1) Automated video surveillance: In these applications computer vision system is 
designed to monitor the movements in an area (shopping malls, car parks, etc.), identify 
the moving objects and report any doubtful situation. The system needs to discriminate 
between natural entities and humans, which require a good visual object tracking 
system. 

(2) Robot vision: In robot navigation, the steering system needs to identify 
different obstacles in the path to avoid collision. If the obstacles themselves are other 
moving objects then it calls for a real-time visual object tracking system. 

(3) Traffic monitoring: In some countries highway traffic is continuously 
monitored using cameras. Any vehicle that breaks the traffic rules or is involved in 
other illegal act can be tracked down easily if the surveillance system is supported by an 
object tracking system. 

(4) Animation: Visual object tracking algorithm can also be extended for 
animation. 

(5) Government or military establishments. 
 
To sum up, visual object tracking is applied to a wide range of fields nowadays, such as 
multimedia, video data compression, industry production, military affairs and so on. 
Accordingly, it is of great real significance and application value to investigate in visual 
object tracking. 

The detection and tracking of motion object in real time image sequences is the 
important task in image processing, computer vision, mode identification etc. It flexibly 
combines the technologies of image processing, autocontrol and information science, 
forms a new technology of real time detection of motion object, extraction location 
information of the object and tracking of it. Furthermore, rapid progress in technologies 
of signal processing, sensor and new material provides reliable software and hardware 
for the capturing and processing of image in real time. 

 
1.3 Difficulties and algorithms 
 

In general, trackers can be subdivided into two categories [7]. First, there are 
generic trackers which use only a minimum amount of a priori information, e.g., the 
mean-shift approach by Comaniciu et al. [ 8 ] and the color-based particle filter 
developed by Perez et al. [9]. Secondly, there are trackers that use a very specific model 
of the object, like e.g. the spline representation of the contour by Isard et al. [10, 11]. 

The objects found in video trackers are often being tracked in "difficult" 
environments characterised by the variable visibility (e.g. shadows, occlusions) and the 
presence of spurious (e.g. similarly-coloured) objects and backgrounds. As a result, 
visual object tracking still suffers from a lack of robustness due to temporary 
occlusions, objects crossing, changing lighting conditions, specularities and out-of-
plane rotations. The main difficulty in video tracking is to associate target locations in 
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consecutive video frames, especially when the objects are moving fast relative to the 
frame rate. Here, video tracking systems usually employ a motion model which 
describes how the image of the target might change for different possible motions of the 
object to track. 

Many algorithms have been developed and implemented to solve the difficulties 
that arised from the video tracking process, such as SIFT ( Scale Invariant Feature 
Transform), KPSIFT (keypoint-preserving-SIFT), PDSIFT (partial-descriptor-SIFT), 
RANSAC(Random Sample Consensus), mean shift, optical flow, GDOH (gradient 
distance and orientation histogram) etc. The role of the tracking algorithm is to analyze 
the video frames in order to estimate the motion parameters. These parameters 
characterize the location of the target. 

 
1.4 The structure of this thesis 

 
The thesis consists of four chapters, the details are as follows: 

In Chapter 1, we explain the concept of visual object tracking and introduce some 
of the research work done in the field, five aspects of its important applications, the 
difficulties in visual object tracking, and some algorithms dealing with these issues. The 
structure of this thesis is also described. 

In Chapter 2, we review the current feature generation methods in the field of 
visual object tracking, including SIFT, RANSAC, mean shift and optical flow. An 
extensive survey of the concept, characteristics, detection stages, algorithms, 
experimental results of SIFT as well as advantages of SIFT features are presented. The 
concept, algorithm of RANSAC, experimental result of using RANSAC and basic 
affine transforms are dissertated. The basic theory and algorithm of mean shift, density 
gradient estimation and some experimental results of mean shift tracking are described. 
The basic theory of optical flow, two kinds of optical flow and experimental results of 
optical flow are given in the last part. 

In Chapter 3, we present an enhanced SIFT and mean shift for object tracking.. The 
flowchart of algorithmic is included and some experimental results of the integration of 
mean shift and SIFT feature tracking are presented. Experiment results verified that the 
proposed method could produce better solutions in object tracking of different scenarios 
and is an effective visual object tracking algorithm. 

In Chapter 4, we discuss the work done in this thesis. Several directions for further 
research are presented, including: Develop algorithms for tracking objects in 
unconstrained videos; Efficient algorithms for online estimation of discriminative 
feature sets; Further study on the online boosting methods for feature selection. Using 
semi-supervised learning techniques for modeling objects; Modeling the problem using 
Kalman filter more accurately; Improving the speed of the fitting algorithm in the active 
appearance model by using multi-resolution; Investigating the convergence property of 
the proposed framework. 
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Chapter 2. Feature Extraction Methods 
Visual object tracking is an important topic in multimedia technologies, 

particularly in applications such as teleconferencing, surveillance and human–
computer interface. The difficulty in visual object tracking process is to find and filter 
some features that are less sensitive to image translation, scaling, rotation, 
illumination changes, distortion and partially occlusion. The goal of object tracking is 
to determine the position of the object in images continuously and reliably against 
dynamic scenes. To achieve this target, a number of elegant methods have been 
established. 

This thesis has studied several image feature generation methods, including 
SIFT, RANSAC, mean shift, optical flow. The feature points of SIFT is based on 
keypoints. RANSAC method is based on parameters of a mathematical model from a 
set of observed data, mean shift method is based on the kernel and density gradient 
function, optical flow is based on color or intensity changes. 
 

2.1 SIFT method 

2.1.1 Concept and features of SIFT 
Scale Invariant Feature Transform (SIFT) is an approach for detecting and 

extracting local feature descriptors that are reasonably invariant to changes in 
illumination, scaling, rotation, image noise and small changes in viewpoint. This 
algorithm is first proposed by David Lowe in 1999, and then further developed and 
improved [12]. 

 
SIFT features have many advantages such as follows: 
(1) SIFT features are all natual features of images. They are favorably invariant 

to image translation, scaling, rotation, illumination, viewpoint, noise etc. 
(2) Good speciality, rich in information, suitable for fast and exact matching in a 

mass of feature database. 
(3) Fertility. Lots of SIFT features will be explored even if there are only a few 

objects. 
(4) Relatively fast speed. the speed of SIFT even can satisfy real time process 

after the SIFT algorithm is optimized. 
(5) Better expansibility. SIFT is vey convenient to combine with other 

eigenvector, and generate much useful information. 
 
Detection stages for SIFT features are as follows: 

(1) Scale-space extrema detection: The first stage of computation searches over 
all scales and image locations. It is implemented efficiently by means of a difference-
of-Gaussian function to identify potential interest points that are invariant to 
orientation and scale. 
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(2) Keypoint localization: At each candidate location, a detailed model is fit to 
determine scale and location. Keypoints are selected on basis of measures of their 
stability. 

(3) Orientation assignment: One or more orientations are assigned to each 
keypoint location on basis of local image gradient directions. All future operations are 
performed on image data that has been transformed relative to the assigned scale, 
orientation, and location for each feature, thereby providing invariance to these 
transformations. 

(4) Generation of keypoint descriptors: The local image gradients are measured 
at the selected scale in the region around each keypoint. These gradients are 
transformed into a representation which admits significant levels of local change in 
illumination and shape distortion. 
 

2.1.2 Scale-space extrema detection 
 
Interest points for SIFT features correspond to local extrema of difference-of-
Gaussian filters at different scales. 

Given a Gaussian-blurred image described as the formula 

( , , ) ( , , ) ( , )L x y G x y I x yσ σ= ∗                          (2-1) 

Where 
2 2

2

2

1( , , )
2

x y

G x y e σσ
σ

+
−

=
Π

                                    (2-2) 

(2-2) is a variable scale Gaussian, whose result of convolving an image with a 
difference-of-Gaussian filter is given by 

( , , ) ( , , ) ( , , )D x y L x y k L x yσ σ σ= −                              (2-3) 

Which is just be different from the Gaussian-blurred images at scales and kσ σ . 



 

6 

Scale
(first octave)

Scale
(next octave)

Gaussian

difference-of-
Gaussian
(DOG)  

Fig. 2.1 Diagram showing the blurred images at different scales, and 
the computation of the difference-of-Gaussian images 

 
The first step toward the detection of interest points is the convolution of the 

image with Gaussian filters at different scales, and the generation of difference-of-
Gaussian images from the difference of adjacent blurred images. 

The rotated images are grouped by octave (an octave corresponds to doubling the 
value of σ), and the value of k is selected so that we can obtain a fixed number of 
blurred images per octave. This also ensures that we obtain the same figure of 
difference-of-Gaussian images per octave. 

                           

Scale

 
Fig. 2.2 Local extrema detection, the pixel marked × is 

compared against its 26 neighbors in a 3 × 3 ×3 neighborhood 
that spans adjacent DoG images 

 
Interest points (called keypoints in the SIFT framework) are identified as local 

maxima or minima of the DoG images across scales. Each pixel in the DoG images is 
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compared to its 8 neighbors at the same scale, plus the 9 corresponding neighbors at 
neighboring scales. If the pixel is a local maximum or minimum, it is selected as a 
candidate keypoint. 
For each candidate keypoint: 

(1) Interpolation of nearby data is used to accurately determine its position; 
(2) Keypoints with low contrast are removed; 
(3) Responses along edges are eliminated; 
(4) The keypoint is assigned an orientation. 

To determine the keypoint orientation, a gradient orientation histogram is computed in 
the neighborhood of the keypoint (using the Gaussian image at the closest scale to the 
keypoint's scale). The contribution of each neighboring pixel is weighted by the 
gradient magnitude and a Gaussian window with a σ that is 1.5 times the scale of the 
keypoint. 

Peaks in the histogram correspond to dominant orientations. A separate keypoint 
is reated for the direction corresponding to the histogram maximum, and any other 
direction within 80% of the maximum value. 

All the properties of the keypoint are measured relative to the keypoint 
orientation, this provides invariance to rotation. 

 

2.1.3 Locating keypoints 
The key step, also is the first step in object recognition using SIFT method is to 

generate the stable feature points. The figure below gives a whole process on how to 
find and describe the SIFT feature points. 

Input an image

Create scale space

Compute difference of 
gussian function

Detect scale space 
extrema

Remove low 
contrast points

Eliminate edge 
responses

Assign keypoint
 orientations

Form keypoint 
descriptors

 
Fig. 2.3 The diagram of keypoints location process 

 
In Fig. 2.3, we can find that, if we want to find and describe the SIFT feature points, 
we should follow these steps: 

(1) Input an image ranges from [0, 1]. 
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(2) Use a variable-scale Gaussian kernel ),,( σyxG to create scale space 

),,( σyxL . 

(3) Calculate difference-of-Gaussian function as an appoximation to the 
normalized Laplacian.Because studies have shown that the normalized Laplacian is 
invariant to the scale change. 

(4) Find the maxima or minima of difference-of-Gaussian function value by 
comparing one of the pixels to its above, current and below scales in 3 3×  regions. 

(5) Accurate the keypoint’s locations by discarding points below a predetermined 
value. 

1( )
2 x

ˆ ˆx x
TDD D ∂

= +
∂

                                        (2-4) 

In (2-4), x̂ is calculated by setting the derivative ),,( σyxD  to zero. 

(6) The extremas of different-of-Gaussian have large principal curvatures along 
edges, it can be reduced by checking 

r
r

Det
Tr 22 )1(

)H(
)H( +

<                                       (2-5) 

Evidently, H  in (2-5) is a 2 2×  Hessian matrix, r is the ratio between the largest 
magitude and the smallest one. 

(7) To achieve invariance to rotation, the gradient magnitude ),( yxm  and 

orientation ),( yxθ  are precomputed as the following equations. 

22 ))1,()1,(()),1(),1((),( −−++−−+= yxLyxLyxLyxLyxm            (2-6) 

)
),1(),1(
)1,()1,((tan),( 1

yxLyxL
yxLyxLyx
−−+
−−+

= −θ                          (2-7) 

(8) Take a feature point and its 16×16 neighbours round it.Then divide them into 
4 4×  subregions, histogram every subregion with 8 bins. 
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Fig. 2.4 This picture shows that the keypoint descriptor is generated and weighted by 

a Gussian window(yellow circle). 
 

2.1.4 SIFT feature representation 
 

Once a keypoint orientation has been selected, the feature descriptor is computed 
as a set of orientation histograms on 4 4×  pixel neighborhoods. The orientation 
histograms are relative to the keypoint orientation, the orientation data comes from 
the Gaussian image closest in scale to the keypoint's scale. 

Just like before, the contribution of each pixel is weighted by the gradient 
magnitude, and by a Gaussian with σ 1:5 times the scale of the keypoint. 

Image 
gradients

keypoint 
descriptor

 
Fig. 2.5 SIFT feature descriptor (from Lowe, 2004) 

 
Histograms contain 8 bins each, and each descriptor contains an array of 4 

histograms around the keypoint. This leads to a SIFT feature vector with 
4 4 8 128× × =  elements. This vector is normalized to enhance invariance to changes 
in illumination. 

2.1.5 Orientation assignment 

Direction parameters to the keypoints are determined to quantize the description. 
Lowe[13] formulated the determination with the norm and the angle in Euclidian 
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space, with the direction of key points used as normalized the gradient direction of the 
key point operator in the following step. After an image revolvement, the identical 
directions demanded can be worked out. 

2.1.6 Keypoint matching 

The next step is to apply these SIFT methods to video frame sequences for object 
tracking. SIFT features are extracted through the input video frame sequences and 
stored by their keypoints descriptors. Each key point assigns 4 parameters, which are 
2D location (x coordinate and y coordinate ), orientation and scale. Each object is 
tracked in a new video frame sequences by separatelly comparing each feature point 
found from the new video frame sequences to those on the target object. The 
Euclidean distance is introduced as a similarity measurement of feature characters. 
The candidates can be preserved when the two feature’s Euclidean distance is larger 
than the threshold specified previous. So the best matches can be picked out by the the 
parameters value, in the other way, consistency of of their location, orientation and 
scale. 

Each cluster of three or more features that agree on an object and its pose is then 
subject to further detailed model verification and subsequently outliers are throwed 
away. Finally the probability that a particular set of features indicates the presence of 
an object is computed, considering the accuracy of fit and number of probable false 
matches. Object matches that pass all of the above tests can be recognized as correct 
with high confidence. 

At first it generates stable feature points of a hand image (see Fig.2.6) for every 
frame of the video (see Fig.2.7), and then matches them with the points found waving 
hand image (Fig.2.8). When only using SIFT method to generates stable feature 
points, the tracking does not perform good results: ,many unrelated points outside the 
hand also recognized as parts of hand motion, which reduces the reliability. It is 
shown on Fig. 2.8. 

It would be essential to find a way to discard feature points that do not have any 
good match to the database. 

 

 
Fig 2.6 Feature points on the hand 
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Fig 2.7 Feature points of the whole image 

 

 
Fig. 2.8 After matched using sift method 

 
In the next chapter, our work is to find a way to discard features that do not have any 
good match to the database. 
 

2.2 RANSAC method 

2.2.1 Basics of RANSAC 

RANSAC (RANdom SAmple Consensus) is an iterative method to estimate 
parameters of a mathematical model from a set of observed data which contains 
outliers. It is a non-deterministic algorithm in the sense that it produces a reasonable 
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result only with a certain probability, with this probability increasing as more 
iterations are allowed. The algorithm was first published by Fischler and Bolles in 
1981. 

A basic assumption is that the data consists of "inliers", i.e., data whose 
distribution can be explained by some set of model parameters, and "outliers" which 
are data that do not fit the model. In addition to this, the data can be subject to noise. 
The outliers can come, e.g., from extreme values of the noise or from erroneous 
measurements or incorrect hypotheses about the interpretation of data. RANSAC also 
assumes that, given a (usually small) set of inliers, there exists a procedure which can 
estimate the parameters of a model that optimally explains or fits this data. 

Because there are incorrect matches due to ambiguous features or confusing 
background information as object features, individual feature matches have a lower 
probability of correctness than a cluster of features. It has been found that at least 
three features of a cluster is possible to reach a reliable recognition.  

RANSAC can be applied to check whether a cluster of points fits to a geometric 
model. From the matched points obtained by SIFT method, three pairs of points are 
randomly chosen to create a transform matrix that fits to a 2D plane. Then set a 
threshold, distance the true point position from the previous point position is 
calculated by the transform matrix. RANSAC achieves its goal by iteratively selecting 
a random subset of the original data. These data are hypothetical inliers. This 
hypothesis is then tested as follows: 

(1) A model is fitted to the hypothetical inliers, i.e. all free parameters of the 
model are reconstructed from the data set. 

(2) All other data are then tested against the fitted model. If a point fits well to 
the estimated model, it is also considered as a hypothetical inlier. 

(3) The estimated model is reasonably good if sufficiently large number of points 
have been classified as hypothetical inliers.  

(4) The model is re-estimated from all hypothetical inliers because the model has 
only been estimated from the initial set of hypothetical inliers. 

(5) Finally, the model is evaluated by estimating the error of inliers relative to 
the model. 

This procedure is repeated a fixed number of times, each time producing either a 
model which is rejected because too few points are classified as inliers, or a refined 
model together with a corresponding error measure. In the latter case, we keep the 
refined model if its error is lower than the last saved model. 

A simple example is fitting of a 2D line to set of observations. Assuming that 
this set contains both inliers, i.e., points which approximately can be fitted to a line, 
and outliers, points which cannot be fitted to this line ( Fig. 2.9(a) ), a simple least 
squares method for line fitting will in general produce a line with a bad fit to the 
inliers. The reason is that it is optimally fitted to all points, including the outliers. 
RANSAC, on the other hand, can produce a model which is only computed from the 
inliers, provided that the probability of choosing only inliers in the selection of data is 
sufficiently high (Fig. 2.9(b) ). There is no guarantee for this situation, however, and 
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there are a number of algorithm parameters which must be carefully chosen to keep 
the level of probability reasonably high. 

 

 
Fig. 2.9(a) A dataset contains many outliers and inliers for which a line has to be 

fitted 
 

 
Fig. 2.9(b) Fitted line with RANSAC, outliers have no influence on the result 
 

An advantage of RANSAC is its ability to do robust estimation of the model 
parameters, i.e., it can estimate the parameters with a high degree of accuracy even 
when significant amount of outliers are present in the data set. A disadvantage of 
RANSAC is that there is no upper bound on the time it takes to compute these 
parameters. When an upper time bound is used (a maximum number of iterations) the 
solution obtained may not be the optimal one, it may not even be one that fits the data 
in a good way. A reasonable model can be produced by RANSAC only with a certain 
probability, a probability that becomes larger the more iterations that are used. 
Another disadvantage of RANSAC is that it requires the setting of problem-specific 
thresholds.RANSAC can only estimate one model for a particular data set. As for any 
one-model approach when two (or more) models exist, RANSAC may fail to find 
either one. 
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2.2.2 The RANSAC algorithm 
An affine transformation preserves collinearity (i.e., all points lying on a line 

initially still lie on a line after transformation) and ratios of distances (e.g., the 
midpoint of a line segment remains the midpoint after transformation). In this sense, 
affine indicates a special class of projective transformations that do not move any 
objects from the affine space R3 to the plane at infinity or conversely. An affine 
transformation is also called an affinity. Geometric contraction, expansion, dilation, 
reflection, rotation, shear, similarity transformations, spiral similarities, and 
translation are all affine transformations, as are their combinations. 

In general, an affine transformation is a composition of translations, rotations, 
dilations, and shears. While an affine transformation preserves proportions on lines, it 
does not necessarily preserve angles or lengths. Any triangle can be transformed into 
any other by an affine transformation, so all triangles are affine and, in this sense, 
affine is a generalization of congruent and similar. The basic affine transformations 
are those showed in Fig. 2.11, and their transform relations are showed in Tab. 2.1. 

 
 

 

 
Fig. 2.11. Basic affine transformations 
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Tab. 2.1 Basic affine transform relations 
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The RANSAC algorithm is often used in computer vision, e.g., to simultaneously 

solve the correspondence problem and estimate the fundamental matrix related to a 
pair of stereo cameras. 

First, suppose we have n data points X to which we hope to fit a model 
determined by (at least) m points ( m n≤ ). Second, set an iteration counter 1k = . 
Third, choose at random m items from X and compute a model. Fourth, for some 
tolerance threshold, determine how many elements of X are within this threshold of 
the derived model. If this number exceeds a threshold t, recompute the model over 
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this consensus set and halt. Finally, set 1k k= + , If k K< , for some predetermined 
K, go to the third step. Otherwise accept the model with the biggest consensus set so 
far, or fail. 

In general, the RANSAC algorithm, in pseudocode, works as follows: 
 

input: 
data - a set of observations 
model - a model that can be fitted to data  
n - the minimum number of data required to fit the model 
k - the maximum number of iterations allowed in the algorithm 
t - a threshold value for determining when a datum fits a model 
d - the number of close data values required to assert that a model fits well to 
     the data 

output: 
    best_model - model parameters which best fit the data (or nil if no good model is 

found) 
    best_consensus_set - data point from which this model has been estimated 
    best_error - the error of this model relative to the data  

iterations = 0 
best_model = nil 
best_consensus_set = nil 
best_error = infinity 
while iterations < k  

    maybe_inliers = n randomly selected values from data 
    maybe_model = model parameters fitted to maybe_inliers 
    consensus_set = maybe_inliers 
    for every point in data not in maybe_inliers  
        if point fits maybe_model with an error smaller than t 
            add point to consensus_set     
    if the number of elements in consensus_set is > d  
        (this implies that we may have found a good model, now test how good it is) 
        better_model = model parameters fitted to all points in consensus_set 
        this_error = a measure of how well better_model fits these points 
        if this_error < best_error 
        (we have found a model which is better than any of the previous ones, 

keep it until a better one is found) 
            best_model = better_model 
            best_consensus_set = consensus_set 
            best_error = this_error 
    increment iterations 
    return: best_model, best_consensus_set, best_error 
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Possible variants of the RANSAC algorithm include: 
(1) Break the main loop if a sufficiently good model has been found, that is, one 

with sufficiently small error. May save some computation time at the expense of an 
additional parameter. 

(2) Compute this_error directly from maybe_model without re-estimating a 
model from the consensus set. May save some time at the expense of comparing 
errors related to models which are estimated from a small number of points and 
therefore more sensitive to noise. 
 
The values of parameters t and d have to be determined from specific requirements 
related to the application and the data set, possibly based on experimental evaluation. 
The parameter k (the number of iterations), however, can be determined from a 
theoretical result. Let p be the probability that the RANSAC algorithm in some 
iteration selects only inliers from the input data set when it chooses the n points from 
which the model parameters are estimated. When this happens, the resulting model is 
likely to be useful so p gives the probability that the algorithm produces a useful 
result. Let w be the probability of choosing an inlier each time a single point is 
selected, that is,  

w = number of inliers in data / number of points in data 
 

A common case is that w is not well known beforehand, but some rough value can be 
given. Assuming that the n points needed for estimating a model are selected 

independently, nw  is the probability that all n points are inliers, and 1 nw−  is the 

probability that at least one of the n points is an outlier, a case which implies that a 
bad model will be estimated from this point set. That probability to the power of k is 
the probability that the algorithm never selects a set of n points which all are inliers 
and this must be the same as 1-p. Consequently, 

                                1 (1 )np w k− = −                                                              (2-8) 

which, after taking the logarithm of both sides, leads to 

                                     log(1 )
log(1 )n

pk
w
−

=
−

                                           (2-9) 

It should be noted that this result assumes that the n data points are selected 
independently, that is, a point which has been selected once is replaced and can be 
selected again in the same iteration. This is often not a reasonable approach and the 
derived value for k should be taken as an upper limit in the case that the points are 
selected without replacement. For example, in the case of finding a line which fits the 
data set illustrated in the above Fig. 2.9, the RANSAC algorithm typically chooses 2 
points in each iteration, and computes the model as the line between the points. It then 
decides the final inliers. . 

To gain additional confidence, the standard deviation or multiples thereof can be 
added to k. The standard deviation of k is defined as 



 

18 

                     1( )
n

n

wSD k
w
−

=                                                                 (2-10) 

2.2.3 Results from RANSAC 
Robust tracking of feature points in image sequences is of great importance for 

tasks such as video sequence alignment[14], structure from motion [15], and motion 
segmentation[16]. In order to obtain good results in visual object tracking tasks, 
feature outliers have to be detected and removed. Here we show the result of 
removing outliers of Fig. 2.8 by using the RANSAC (see Fig.2.10). 

 

 

Fig.2.10. RANSAC is applied after SIFT 
 

2.3 Mean Shift 

2.3.1 Basics of Mean Shift 
Accurate visual object tracking under the constraint of low computational 

complexity presents a challenge. Real-time applications such as surveillance and 
monitoring [17], perceptual user interfaces [18], smart rooms [19, 20], and video 
compression [21] all require the ability to track moving objects. Generally speaking, 
tracking of visual objects can be done either by forward-tracking or by back-tracking. 
The forward-tracking approach estimates the positions of the regions in the current 
frame using the segmentation result obtained for the previous image. The back-
tracking based approach segments foreground regions in the current image and then 
establishes the correspondence of regions between the previous image.For 
establishing correspondence, several object templates are utilized. A possible 
forward-tracking technique is mean-shift analysis. Mean shift procedure was 
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originally introduced in 1975, but only after 20 years later in 1995, this method has 
been re-introduced by D. Fuiorea [22]. In his article, a kernel function is defined to 
calculate the distance between sample points and its mean shift, also a weight 
coefficient is inverse with the distance. The closer the distance is, the larger the 
weight coefficient is. 

The mean shift algorithm is a non-parametric method[23]. It provides accurate 
localization and efficient matching without expensive exhaustive search. It is an 
iterative process, that is to say, first compute the mean shift value for the current point 
position, then move the point to its mean shift value as the new position, then 
compute the mean shift until it fulfill certain condition. The principle of mean shift 
procedure can be gained from Fig. 2.11. 

 

 
Fig. 2.11 The principle of mean shift procedure 

 
The mean shift is applied in real-time object tracking is published in [7] named 

kernel based tracking or mean shift tracking. The size and shape of the interest area is 

usually described by two kinds of kernel function: One is Epanechnikov ( )EK x  

kernel, and its kernel profile is 

11( ) ( 2)(1 ) 1
2

0 otherwise

T T
E dK x C d X X if X X−⎧ = + − <⎪

⎨
⎪⎩

                (2-11) 

where cd is the volume of the unit d-dimensional sphere, {xi}, (i=1,…,n) be an 
arbitrary set of n points in the d-dimensional Euclidean space Rd. Under the shape of 
this kernel, the pixels near the centre would weight greater value than the pixels in the 
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edges which helps tracking the center position of the object. The other one is the 

normal )(xKN  kernel, and its kernel profile is  

                      0)
2
1exp()( ≥−= xforxxkN                                      (2-12) 

They are shown in Fig. 2.12. 
 

 
(a)                                       (b) 

Fig. 2.12 (a) Epanechnikov )(xKE  kernel;  (b) normal )(xKN  kernel (from [7]). 

 
In mean shift tracking, the kernel bandwidth is of importance, because it not only 

determines the number of participating samples, but also reflects the scale of the 
tracking window. The traditional mean shift process was limited by the fixed kernel 
bandwidth. When the object scale changes obviously, especially too big to be covered 
by the kernel window, the fixed bandwidth leads to the losing of the target. In [24], 
the modified algorithm is called Continually Adaptive Mean Shift algorithm 
(CAMSHIFT). It adjusts the size of searching window by invariant moments. The 
computation of the moments destroys the real-time property in tracking. In [24], the 
bandwidth is modified by positive and negative ten percents of increment. It requires 
three times of the iteration and selects the bandwidth with the biggest Bhattacharyya 
coefficient. When the object size is reducing, it makes a good result. However, the 
bandwidth hardly grows while the object size is increasing. It is because the similarity 
of Bhattacharyya coefficients tends to reach the local maximum in small tracking 
window [25]. Collins combines the scale space and mean shift algorithm to update the 
kernel bandwidth dynamically. Since the derivative of adopted kernel, Epanechnikov, 
is the constant, the iteration of mean shift equals averaging the scale space on the 
basis of space localization. Consequently this method is like the result in [26] and has 
complex computation. 
 

2.3.2 Mean shift algorithm 
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The kernel-based object tracking algorithm (mean shift algorithm) is as follows: 

(1) The target model { uq̂ }(u =1 2…m, m bins of histograms) is derived from an 

elliptic region centered at 0y , to remove the influence of the target scale it is 

normalized to a unit circle, its pixel coordinates{ *
ix }. 
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where n is the number of pixels, δ  is the Kronecker delta function: 
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         (2) Use 0y  from previous frame location as an initial position to estimate 
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In the equation above 
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(3) Derive weights for i=1,2,…,n according: 

                         ))((
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i −= δ                                           (2-17) 

(4) Determine the new location of the target candidate according to: 

            [ ),0)()( ∞∈′−= xforxkxg                                  (2-18) 
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(5) Compute the new likelihood value )}ˆ(ˆ{ 1ypu for u=1,2,…,m, and determine 

            [ ] ∑ =
=

m

u uu qypqyp
1 11 ˆ)ˆ(ˆˆ)ˆ(ˆρ                                    (2-20) 

(6) If the similarity between the new target region and the target region and the 
target mode is less than that between the old target region and the model 
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         [ ] [ ]qypqyp ˆ)ˆ(ˆˆ)ˆ(ˆ 01 ρρ <                                         (2-21) 

Perform the remaining operations of this step – move the target region half way 
between the new and old locations, 

       )ˆˆ(
2
1ˆ 101 yyy +=                                                              (2-22) 

and evaluate the similarity function in this new location 

                        [ ]qyp ˆ)ˆ(ˆ 1ρ                                                                (2-23) 

Return to the beginning of this step 6. 

(7) If ε<− 01 ˆˆ yy , stop. Otherwise, use the current target location as a start for 

the new location 10 ˆˆ yy = , and continue with step 3. 

 
The whole procedure of mean shift algorithm is showed in the flowchart of 

Figure 2.13. 
 

While 
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location is 

Yes

1ŷ  
 

Fig. 2.13  The procedure of mean shift algorithm 
 

2.3.3 Results of mean shift tracking 

Mean shift is a nonparametric density gradient estimator. It is employed to derive 
the object candidate that is the most similar to a given model while predicting the next 
object location. In other words, it starts from the position of the model in the current 
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frame and then searches in the model’s neighborhood in next frame, followed by 
finding best candidate by maximizing a similarity function. Finally, repeats the same 
process in the next pair of frames.  

The above process and two example results of mean shift tracking are showed in 
Fig. 2.15 and Fig. 2.16. 

 

Start from the position 
of the model in the 

current frame

Search in the model’s
neighborhood in next 

frame

Find best candidate by 
maximizing a similarty 

function

Report the same 
process in the 
next pair of 

frames

 
Fig. 2.15. Process and one example of mean shift tracking [26]  
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Fig. 2.16. One example of mean shift tracking [27] 
 

2.4 Optical flow method 

2.4.1 Basics of optical flow 

A fundamental problem in the processing of image sequences is the 
measurement of optical flow (or image velocity).The goal is to compute an 
approximation to the 2D motion field - a projection of the 3D velocities of surface 
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points onto the imaging surfacc -from spatiotemporal patterns of image intensity [27, 
28]. Once computed, the measurements of image velocity can be used for a wide 
variety of tasks ranging from passive scene interpretation to autonomous, active 
exploration. 

Optical flow is the pattern of apparent motion of objects, surfaces, and edges in a 
visual scene caused by the relative motion between an observer (an eye or a camera) 
and the scene. Optical flow techniques such as motion detection, object segmentation, 
time-to-collision and focus of expansion calculations, motion compensated encoding, 
and stereo disparity measurement utilize this motion of the objects surfaces, and 
edges. 

The initial hypothesis in optical flow is that the intensity of time-varing image 
regions are approximately constant for at least a short duration [29] .Formally, if 

( , )I X t  is the image intensity function, then 

( , ) ( , )I X t I X X t tδ δ= + +                                  (2-24) 

where Xδ  is the displacement of the local image region at (x, t) after time δ t. 
Expanding the left-hand side of this equation in a Taylor series yields 

2( , ) ( , ) tI X t I X t I X tI Oδ δ= +∇ ⋅ + +                               (2-25) 

where x yI I I∇ =（ , ） and tI  are the first order partial derivatives of ( , )I X t and O2, the 

second and higher order terms, which are assumed negligible. Subtracting I(x, t) on 
both sides, ignoring O2 and dividing by δt yields 

0tI V I∇ ⋅ + =                                                           (2-26) 

where x yI I I∇ =（ , ） is the spatial intensity gradient and ( , )V u v=  is the image 

velocity. Equation (2.4.13) is known as the optical flow constraint that defines a 
single local constraint on image motion (see Fig. 2.17). In the figure the normal 
velocity v┴ is defined as the vector perpendicular to the constraint line, that is, the 
velocity with the smallest magnitude on the optical flow constraint line. This 
constraint is not sufficient to compute both components of V as the optical flow 
constraint equation is ill-posed.That is to say, only v┴ , the motion component in the 
direction of the local gradient of the image intensity function, may be estimated. This 
phenomenon is known as the aperture problem [30] and only at image locations where 
there is sufficient intensity structure (or Gaussian curvature) can the motion be fully 
estimated with the use of the optical flow constraint equation (see Fig. 2.18). For 
example, the velocity of a surface that is homogeneous or containing texture with a 
single orientation cannot be recovered optically. Because the normal velocity is in the 
direction of the spatial gradient I∇ , Equation (2.4.13) allows one to write 

2
2| |

tI I
I°

− ∇
∇ =

∇
                                         (2-27) 
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Thus, the measurement of spatiotemporal derivatives allows the recovery of normal 
image velocity. 
 

LV

Constaint line

u

v

 
Fig. 2.17: The optical flow constraint equation defines a line in velocity space. 
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Fig. 2.18. Motions of the edges forming estimated. 

 
Through the apertures 1 and 3, only normal motions of the edges forming the square 
can be estimated, due to a lack of local structure. Inside the aperture 2, at the corner 
point, the motion can be fully measured as there are M sufficient local structures; both 
normal motions are visible. 

From this point, it becomes clear that for optical flow being an exactly 
description of the image motion, a number of conditions have to be satisfied. These 
are: a) Lambertian surface reflectance; b) uniform illumination, and c) pure translation 
parallel to the image plane. Actually, these conditions are never entirely satisfied in 
scenery. Instead, it is assumed that these conditions hold locally in the scene and, 
therefore, locally on the image plane. The degree to which these conditions are 
satisfied partly determines the accuracy with which optical flow approximates image 
motion. Alternatively, one can measure the displacement of small image patches, for 
example by correlation, in short image sequences (usually two or three frames). Such 
image displacements constitute a valuable approximation to image velocity when 
certain conditions are met. In particular, the ratio of sensor translational speed to 
absolute environmental depth, the 3D vertical and horizontal sensor rotations, and the 
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time interval between frames must be small quantities [31]. Optical flow may also be 
computed as the disparity field where, given two stereo images or two adjacent 
images in some sequence, features of interest in the images are extracted and matched 
via a correspondence process. 

Essentially, performing 2D motion detection involves the processing of scenes 
where the sensor is moving within an environment containing both stationary and 
nonstationary objects. Furthermore, visual events such as occlusion, transparent 
motions, and nonrigid objects increase the inherent complexity of the measurement of 
optical flow. 
 

2.4.2 Variants of optical flow 
In computer vision, optical flow is a velocity field associated with image 

changes. This effect generally appears due to the relative movement between object 
and camera or by moving the light sources that illuminates the scene [32]. Most 
approaches to estimate optical flow are based on brighteness changes between two 
scenes. A color image corresponds to a multi-channel image where each pixel is 
associated to more than one value that represents color information and brightness 
intensity. Color information can be used in optical flow estimation. 

2.4.2.1 Optical flow for grayscale images 

Among the existing methods for optical flow estimation, gradient based 
techniques are often used. Such techniques are based on image brightness that 
changes in each pixel with an (x, y) coordinates. Considering that small displacements 
do not modify brightness intensity of a image point, a constrained optical flow 
equation can be defined as  

0x y tI u I v I+ + =                                          (2-28) 

where u and v are the optical flow components in x and y directions for a 

displacement ( , )x yd d d= , ,x yI I  and tI are the partial derivatives of the image 

brightness, ( , )I x y , with regard to the horizontal ( )x  and vertical ( )y  coordinates, 

and time (t). The optical flow vector is defined by ( , )V u v= . Optical flow cannot be 

estimated only from Equation (2-28) (Aperture Problem). Thus, some additional 

constraint needs to be used to find a solution for the flow components, ,u v . 

(1) Lucas and Kanade’s Method 
B. Lucas, T. Kanade [33] used a local constraint to solve the aperture problem. 

This method considers that small regions in the image corresponds to the same object 
and have similar movement. The image is divided in windows of size N N× , each 
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one with 2p N=  pixels. A local constraint of movement is used to form an 

overconstrained system with p equations and 2 variables, as in (2-29) 
1 1 1

2 2 2

0

0

0

x y t

x y t

xp yp tp

I u I v I

I u I v I

I u I v I

+ + =

+ + =

+ + =

                                  (2-29) 

(2) Bouguet’s Method 
Bouguet’s method [ 34 ] uses hierarchical processing applied to Lucas and 

Kanade’s method. A justification for using of hierarchical processing is the necessity 
of better precision in measures of the obtained optical flow vectors. This method uses 
pyramidal representation of gray image frames. Bouguet algorithm consists of using 
down level estimations as initial guess of pyramidal top level. The estimation of 
pyramidal highest level is the estimated optical flow. 
 
(3) Eliete’s Method 

Eliete’s method [35] is a variation of Lucas and Kanade’s method (Section 1). 
Eliete uses a bigger window for the brightness conservation model than the one 
considered by Lucas and Kanade. Only some pixels of each window are randomly 
chosen for the flow vector estimation. The overconstrained equation system is solved 
by the LMS method. 

2.4.2.2 Optical flow for color images 

Optical flow cannot be completely determined from a simple gray image 
sequence without introducing assumptions about movements in the image. Color 
image is an additional natural resource of information that can facilitate the problem 
resolution. Ohta [36] was the first one to consider a optical flow estimation method 
that does not use additional constraints about movements in the image. His method is 
based on multi-channel images (as color images) to obtain multiple constraints from a 
simple image pixel. 

A multi-channel image consists of some associated images, making easy to 
obtain more information from a point of the scene [37]. The optical flow equation 1 
can be applied to each image channel n. For color images with three channels (RGB, 
HSV, HSI, YUV) the system would result in (2.4.23) 

1 1 1

2 2 2

3 3 3

0

0

0

x y t

x y t

x y t

I u I v I

I u I v I

I u I v I

+ + =

+ + =

+ + =

                                       (2-30) 

Another idea proposed by Golland [38] is the color conservation. Since that 
geometric component does not depend on light model, the color intensities can be 
represented by (2.4.24) 
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( , , )
( , , )
( , , )

r

r

b

R c C
G c C
B c C

ψ θ γ
ψ θ γ
ψ θ γ

=
=
=

                                             (2-30) 

where ( , , )c ψ θ γ is the geometric component related to the angles of incidence (φ), 

observation (θ) and phase (γ), and the spectral component Ci is defined by:  
{ }( ) ( ) ( ) , ,i iC I D d i r g bρ λ λ λ λ

Ω

= ∈∫          (2-31) 

where ( )ρ λ  represents the reflectivity function, ( )I λ  is the incident light and 

( )iD λ represents the light sensor detection function. The reflection geometry can 

significantly change with the object movement (rotation, movement in camera 
direction, etc.). This way, the brightness intensity function will no more satisfy the 

conservation assumption. The new iC functions given by Equation (2-31) remain 

constant under any type of movement. Therefore it is not influenced by the reflection 

geometry. Although it is impossible extracting the iC information from the (R,G,B) 

values provided by a color image, the ratio of two components (R,G,B) corresponds to 

the ratio of two iC  components. Thus, some color models based on relations of R, G 

and B functions can be used: normalized RGB, HSV, HSI and YUV. 
 
In recent years, improvement made on optical flow estimation by using color 

information is used most in this way: 
Optical flow was estimated by using the methods of Lucas and Kanade, Bouguet 

and Eliete. Invalid and null flow vectors are represented by dots in the estimated 
optical flow field, also called flow map. These above methods have been applied to 
two consecutive frames of an image sequence. 

Lucas and Kanade’s method could be used with brightness conservation window 
of value which can be N=10. The obtained results, using only brightness information 
of two consecutive pictures are always valid. Eliete’s method could be also used with 
a window of size N =10. Only 1/8 randomly chosen pixels of the window have been 
used in flow estimation. 

 
 

3. Combined Method 
3.1 Description of the combined method 
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In this thesis the proposed tracking algorithm is an effective integration using of SIFT, 
RANSAC and mean shift feature tracking. The proposed approach will apply a 
similarity measurement between two neighboring frames in terms of color and SIFT 
correspondence. Technically, a track will be made if mean shift and SIFT feature 
tracking lead to approximate probability distributions (e.g., intensity and color) within 
the corresponding region in the next image frame (ideally the two probability 
distributions should be identical if the scenario does not change to much). An 
expectation–maximization algorithm is employed in order to pursue a maximum 
likelihood estimate using the measurements from SIFT, RANSAC and mean shift 
correspondence. 

The main contributions of the combined method consist of: 
(1) A combinatorial theory of SIFT, RANSAC and mean shift feature matching is 
proposed for vidio object tracking. The combined method congregates the advantages 
of SIFT, RANSAC and mean shift method, and discards the advantages of the 
methods covered. 
(2) the process of combinatorial method is given in the paper in detail. It elicits a new 
way for vidio object tracking, which can be improved and developed by the later 
researchers. 
(3) The combinatorial method for object tracking can be assembled to a application 
package or application software to apply in the practice.the corresponding key codes 
and parameters is given in this thesis. 
(4) The tracking performance of the proposed strategy can be experimentally justified 
against that of only use one classical algorithms, i.e., just using mean shift tracking or 
just using SIFT tracking. 

 

3.2 Algorithm of the combined method 
The intention of combined method is to concentrate the advantages of the classic 
methods used in vidio object tracking and apply it into practice. The process of 
combined method is to analyse the features of objects and chose one or several 
methods according to characters of tracking methods and the demands. 

All of the combined method can be described in algorithmic and models, all of 
which will be recounted in this chapter. 

 
The flowchart of the algorithm is summarized as follows: 

(1) First, select a region of interest on the first frame as a reference object model. 
This reference model is described by its PDF (probability distributions function, PDF) 

estimation which is a m-bin color histogram uq  in a rectangular (or ellipse) region 

centered at 0y and window size h . 

1
1

=∑ =

m

u uq                                                  (2-32) 

In which uq is the probability distribution of color u . 
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(2) Implement SIFT and RANSAC methods to the next frame. If there are many 
corresponding points between the reference object region and a candidate region, an 
affine matrix is estimated by applying the RANSAC. Picking up the four corners of 
the rectangle model in the first frame, the affine matrix is used to transform the 
location of the old four corners to new ones, averaging its new positions. This results 

in a new center point SIFTy _1 . If there are not sufficient pairs of matched points 

found in the second frame, just average these positions and obtain its SIFTy _1 . The 

candidate region centered at SIFTy _1  is described by the color histogram 

)_1( SIFTypu . 

(3) Apply mean shift to the new frame in parallel. Calculate a new center 

position of mean shift, MeanShifty _1 , and the corresponding color histogram 

)_1( MeanShiftypu . 

(4) Compare these two Bhattacharyya coefficients from the regions whose 
centers are estimated from the mean shift and SIFT respectively as follows: 

∑
=

=
m

u
uu qSIFTypSIFT

1

)_1(_ρ                          (2-33) 

∑
=

=
m

u
uu qMeanShiftypMeanShift

1

)_1(_ρ                     (2-34) 

(5) The bounding box center that is associated with a large Bhattacharyya 

coefficient is selected as the new box center 1y  for the current frame. 

1_ _ _
1

1_
y SIFT if SIFT MeanShift

y
y MeanShift otherwise

ρ ρ≥⎧
= ⎨
⎩

                   (2-35) 

(6) If the coefficient is larger than a threshold specified previous by application 

requires ( that is T>ρ ), it is assumed that the target in the current frame is not 

occluded. The region of interest is updated for SIFT matching process for the 
following frames. 

The flow chart of combined method progress advanced in this paper can be 
described as follows: 
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select a region of interest on the first frame,get its PDF

 Implement SIFT and RANSAC 
methods to the next frame

 Implement mean shift
methods to the next frame

Compute the affine matrix and

region  is updated for 
SIFT method for the 

following frames

_ SIFTρ
compute  both SIFT and mean shift 

to the next frame

Compute the affine matrix and
( 1_ )up y SIFT

Compute the affine matrix and
( 1_ )up y MeanShift

1_y SIFT

Yes

_ _ ?SIFT MeanShifρ ρ≥

_ thresholdMeanShifρ ≥_ ?SIFT thresholdρ ≥

region  is updated for 
meanshift method for the 

following frames

Compute the affine matrix and
1_y MeanShif

Yes

Yes

No

No No

  
 

Fig. 2.19 The flow chart of combined method  
 

Generally speaking, there are two parallel models used in this tracking scheme, 
one is mean shift and the other is SIFT. The mean shift model is based on color 
information from the reference frame (currently, from the first frame), and remains 
unchanged during the whole tracking process. For SIFT model, the reference model 
will be replaced if the Bhattacharyya coefficient surrounded the SIFT matched points 
is larger than a predefined threshold. 

In the implementation, the probability distribution of the object to be tracked is 
continuously evaluated. Computational instability may be raised due to lost color 
histograms or SIFT features (e.g., occlusions). In this case, the estimated probability 
distribution in the previous frame can be assigned more weights and be used to 
dominate locating the object till the object appears again. 
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The new method can be used for tracking people in the room or on the street who 

were occluded by different objects. The camera being fixed, additional geometric 
constraints and also background subtraction can be exploited to improve the tracking 

process. The value of 1_y MeanShif and 1_y SIFT  are worked out by refferd 

algorithm (see Chaper 2). Two center points are compared. The center of the method 
of the lagest Bhattacharyya coefficient is accepted, and if the Bhattacharyya 
coefficient is larger than a threshold, it is deemed that the comared object can be 
updated. 
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Chapter 4. Experimental Results 
 
Several experiments had been done to evaluate the proposed tracking algorithms. 
These sequences used in experiments consist of indoors and outdoors testing 
environments so that the proposed scheme can be fully evaluated. For comparison 
purposes, conventional mean shift tracking [ 39 ], RANSAC, optical flow, and 
combined method are utilized. It must be pointed out that in this evaluation there is no 
intension to track multiple objects. On the contrary, a single object is detected in the 
first frame of each sequence, followed by continuous tracking to the remaining part of 
the sequence. In some sequences, there are more than one object in the scene. These 
scenarios are set up for evaluating the performance of a tracking system against 
interference in this "multiple candidate" circumstance. 

First, the sequence "jam.avi" is tested. The video contains a moving face with 2D 
planer rotations. This sequence was utilized to evaluate the performance of the SIFT 
and RANSAC tracker in a poor lighting environment. 

Secondly, to test the Mean Shift algorithm in complicated scenarios, we here 
employ a "pedestrian" sequence, where a walking person is intersected by another 
person during the course of walking. These two sequences mentioned since they are 
related to indoor and outdoor human activities. As another example, the performance 
of the optical flow tracking scheme is also evaluated in indoor environments. 

The third sequence namely "duck" is investigated. 
Finally, the proposed SIFT-mean shift tracker is applied to test the two videos 

"occlusion" and "woman", where the target of interest (a person) contains frequent 
change of his/her  postures. 

In this test, it is interesting to explore the characteristics of the proposed 
approach to the change of illumination and moving objects. 

 

4.1 Results from SIFT and RANSAC 
First, SIFT features are obtained from the first frame using the algorithm 

described in Section 2.1. The features are stored by their keypoints descriptors. Each 
keypoint specifies 4 parameters. The face is tracked in the second frame by 
individually comparing each feature point found from the second frame to those on 
the first frame. The Euclidean distance is worked out.The candidate can be preserved 
when the two features Euclidean distance is larger than a threshold. So the good 
matches are picked out by the consistency of their location, orientation and scale. 

Tracking results on the example sequence "jam" are illustrated in Fig. 3.1. They 
represent the outcomes of the conventional SIFT and RANSAC tracker. Clearly, this 
tracker led to drifts in such a poor lighting situation. This is due to the fact that the 
background’s color is approximate to that of the human face, which deviates the track. 
The green points in Fig. 3.1 are the corresponding points located by contrast with the 
update object. The red points in Fig. 3.1 are the corresponding points located by 
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contrast with the first frame. It can be descried from the four images that the detected 
SIFT and RANSAC features correctlytracked on the face after the rotation of the 
image.  

 

 
Fig. 3.1 Result on the ’jam.avi’ sequence. Frames 11,22,39,54 

 

4.2 Results from Mean Shift 
Experiment was performed to assess the tracking performance of Mean Shift 

approach. The mean shift based tracker proved to be robust to partial occlusion, 
clutter, distractors and camera motion. Since no motion model has been assumed, the 
tracker adapted well to the nonstationary character of the pedestrian's movements. it 
starts from the position of the model in the first frame and then searches in the 
model’s neighborhood in next frame, followed by finding best candidate by 
maximizing a similarity function. And then repeats the same process in the next pair 
of frames. 

Fig. 3.2 shows four image examples of performance of Mean Shift in sequence 
"pedestrian". The challenge of this sequence is that a tracking system needs to 
effectively handle the situation where a female adult was occluded by the others when 
they crossed over. In this particular example, the aim is to locate the woman wearing 
a satchel, who was walk on the road. In addition, this person slowly changed her 



 

35 

position during the tracking. Even though, the tracking results of mean shift show that 
this method is successfully tracked the woman wearing a satchel.  
 

 
Fig. 3.2 Results on ‘pedestrian.avi’. Frames 16,27,31,36 

 

4.3 Results from optical flow 
Some experiments were done to demonstrate the improvement on optical flow 

estimation. Valid flow vectors are represented by dots in the estimated optical flow 
field, also called flow map. Fig. 3.3 shows the experiment results of Optical Flow 
algorithm with the set of images from "duck.avi". It is showed that optical flow 
algorithm is successfully tracked the duck occluded by the box. 
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Fig. 3.3. Results on " duck.avi ". Frames 80,117,135,195. 

 

4.4 Results from the combined method 
Two different experiments were done to verify the validity of the combined 

method. The new method has been applied to track people in the room and outdoor on 
the street who were occluded by different objects. The camera being fixed, additional 
geometric constraints and also background subtraction can be exploited to improve 
the tracking process. The following sequences, however, have been processed with 
the combined method unchanged. 

(1) A region of interest on the first frame is select as a reference object model. 
(2) Implement SIFT and RANSAC methods to the next frame. Four corners of 

the first video frame are got by using SIFT algorithm. 
(3) Circumgyrate the image of the frame.  
(4) Figure out the new positions of the four corners by means of RANSAC. Only 

if the corresponding points between two frames are lager than 3 can the new positions 
be accepted.  

(5) After the new positions were determined, the center point 1_y SIFT  is 

worked out.If the corresponding points between two frames are no more than 3, the 
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mean of corresponding points is considered as the center point 1_y SIFT  directly. at 

the same time the value of 1_y MeanShift  is worked out by meanshift algorithm, 

which according to the meanshift algorithm, two center points are compared. 
(6) Work out the Bhattacharyya coefficients and the lagest one is singled out. 

The center of the method of the lagest Bhattacharyya coefficient is accepted. And if 
the Bhattacharyya coefficient id larger than a threshold, it is deemed that the comared 
object can be updated. 

In the examples shown in Fig. 3.4, the combined method successfully coped with 
partical occlusions of different colors, target scale variations and rotation. In the 
examples shown in Fig. 3.5, the combined method successfully coped with the 
woman’s shelter from different color objects. 
 

 
Fig. 3.4. Results on "occlusion.avi ".Frames 54,222,244,362. 
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Fig. 3.5 Results on "woman.avi".Frames: 100,159,198,272. 

 

4.5 Discussion, Conclusion and Future Work 

4.5.1. Discussion 
In this thesis, we have explained the basics of visual object tracking and 

introduced some of the research work done in the field and five aspects of its 
important applications as well as the difficulties in visual object tracking and the 
dealing algorithms. 

We then reviewed the current feature generation methods in the field of visual 
object tracking, including SIFT, RANSAC, mean shift and optical flow. We present 
an extensive survey of the concept , characteristics, detection stages, algorithms, 
experimental results of SIFT as well as advantages of SIFT features. Afterwards, 
some material aspects of RANSAC were dissertated, including the concept, algorithm 
of RANSAC, basic affine transforms and the experimental result of using RANSAC. 
In succession, we introduced the mean shift concept and algorithm, density gradient 
estimation and some experimental results of mean shift tracking. The concept of 
optical flow, two kinds of optical flow and experimental results of optical flow were 
dwelled on in the last part of Chapter 2. 



 

39 

SIFT features are reasonably invariant to rotation, scaling, and illumination 
changes. We can use them for matching and object recognition among other things. It 
is robust to occlusion, as long as we can see at least 3 features from the object we can 
compute the location and pose. Efficient on-line matching, recognition can be 
performed in close-to-real time (at least for small object databases). RANSAC can 
estimate the parameters with a high degree of accuracy even when significant amount 
of outliers are present in the data set. The mean shift algorithm is an alternative 
techniques which has recently received the attention of the image processing 
community. It tries to recursively compute the modes of the probability density 
function using an update equation similar to. The mean shift algorithm provides 
accurate localization and efficient matching without expensive exhaustive search. 
Optical flow is a fundamental problem in the processing of image sequences. 

A solution to enhance the performance of classical SIFT and mean shift object 
tracking has been presented in this paper. This work integrated the outcomes of SIFT 
feature correspondence and mean shift tracking. The approach applied a similarity 
measurement between two neighboring frames in terms of color and SIFT 
correspondence. Finally, some experimental results of the integration of mean shift 
and SIFT feature tracking were presented. Experiment results verified that the 
proposed method could produce better solutions in object tracking of different 
scenarios and is an effective visual object tracking algorithm. 

In conclusion, the process of visual object tracking is summarized in the block 
diagram below: 

 

 
 

Fig. 4.1 The process of visual object tracking 
 

4.5.2. Conclusion and future work 
Significant progress has been made in object tracking during the last few years. 

Several robust trackers have been developed which can track objects in real time in 
simple scenarios. However, it is clear from the papers reviewed in this survey that the 
assumptions used to make the tracking problem tractable, for example, smoothness of 
motion, minimal amount of occlusion, illumination constancy, high contrast with 
respect to background, etc., are violated in many realistic scenarios and therefore limit 
a tracker’s usefulness in applications like automated surveillance, human computer 
interaction, video retrieval, traffic monitoring, and vehicle navigation. Thus, tracking 
and associated problems of feature selection, object representation, dynamic shape, 
and motion estimation are very active areas of research and new solutions are 
continuously being proposed. 
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One challenge in tracking is to develop algorithms for tracking objects in 
unconstrained videos, for example, videos obtained from broadcast news networks or 
home videos. These videos are noisy, compressed, unstructured, and typically contain 
edited clips acquired by moving cameras from multiple views. Another related video 
domain is of formal and informal meetings. These videos usually contain multiple 
people in a small field of view. Thus, there is severe occlusion, and people are only 
partially visible. One interesting solution is to employ audio in addition to video for 
object tracking. There are some methods being developed for estimating the point of 
location of audio source, for example, a person’s mouth, based on four or six 
microphones. This audio-based localization of the speaker provides additional 
information which then can be used in conjunction with a video-based tracker to solve 
problems like severe occlusion. 

In general, an important issue that has been neglected in the development of 
tracking algorithms is integration of contextual information. For example, in a vehicle 
tracking application, the location of vehicles should be constrained to paths on the 
ground as opposed to vertical walls or the sky. Recent work in the area of object 
recognition[ 40 ] has shown that exploiting contextual information is helpful in 
recognition. In addition, advances in classifiers [41] have made accurate detection of 
scene context possible, for example, man made structures, paths of movement, class 
of objects, etc. A tracker that takes advantage of contextual information to incorporate 
general constraints on the shape and motion of objects will usually perform better 
than one that does not exploit this information. This is because a tracker designed to 
give the best average performance in a variety of scenarios can be less accurate for a 
particular scene than a tracker that is attuned (by exploiting context) to the 
characteristics of that scene. 

The use of a particular feature set for tracking can also greatly affect the 
performance. Generally, the features that best discriminate between multiple objects 
and, between the object and background are also best for tracking the object. Many 
tracking algorithms use a weighted combination of multiple features assuming that a 
combination of preselected features will be discriminative. A wide range of feature 
selection algorithms have been investigated in the machine learning and pattern 
recognition communities. However, these algorithms require offline training 
information about the target and/or the background. Such information is not always 
available. Moreover, as the object appearance or background varies, the 
discriminative features also vary. Thus, there is a need for online selection of 
discriminative features. Some work has been done in this area for online selection of 
individual features [42]. However, the problem of efficient online estimation of 
discriminative feature sets remains unresolved. One promising direction to achieve 
this goal is the use of the online boosting methods [43] for feature selection. 

In a similar way, most tracking algorithms use prespecified models for object 
representation. The capability to learn object models online will greatly increase the 
applicability of a tracker. Motion-based segmentation [ 44 ] and multibody 
factorization [45] methods have been used to learn models for multiple objects 
moving in a scene. However, these approaches assume rigid body motion. 
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Unsupervised learning of object models for multiple nonrigid moving objects from a 
single camera remains an unsolved problem. One interesting direction that has largely 
been unexplored is the use of semisupervised learning techniques for modeling 
objects. These techniques do not require prohibitive amounts of training data. 
Moreover, they can not only learn nonrigid shapes and/or appearance, but they can 
also encode the knowledge of the background in the form of negative training data. 

Probabilistic state-space methods including Kalman Filters, JPDAFs, HMMs and 
Dynamic Bayesian Networks (DBNs) have been extensively used to estimate object 
motion parameters[46,47,48]. Among these methods, DBNs are probably the most 
general method for representation of conditional dependencies between multiple 
variables and/or image observations. They also provide a principled framework for 
fusing information from different sources. However, there is a need for more efficient 
solutions for inference before DBNs are more commonly used in tracking 
applications. 

Overall, we believe that additional sources of information, in particular prior and 
contextual information, should be exploited whenever possible to attune the tracker to 
the particular scenario in which it is used. A principled approach to integrate these 
disparate sources of information will result in a general tracker that can be employed 
with success in a variety of applications. 

In a word, there are many directions for further research in deriving invariant and 
distinctive image features. Those may include the work of the follows[49,50,51]: 

• Develop algorithms for tracking objects in unconstrained videos; 
• Integration of contextual information tracking algorithms; 
• Efficient algorithm for online estimation of discriminative feature sets; 
• Further study on the online boosting methods for feature selection; 
•Using semisupervised learning techniques for modeling objects; 
• Model the problem for Kalman filter more accurately; 
• Improve the speed of the fitting algorithm in the active appearance model by 

using multi-resolution; 
• Investigate the convergence property of the proposed framework. This 

investigation may help enhance the proposed algorithm for efficiency purposes; 
• Further study of the proposed object tracking scheme to demonstrate the 

improvement made; 
• Include the occlusion detection to improve the accuracy of the system. 
In addition, the proposed algorithm needs to be comprehensively evaluated in a 

wider database. Currently, this paper suggests that, although the tracking results are 
promising in certain situations, further development and more evaluation is 
anticipated in severe image clutters and occlusions. 
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