
Machine learning applied to traffic fore-
casting
Degree project report in Computer Science and Engineering

Linus Aronsson & Aron Bengtsson

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019

DEGREE PROJECT REPORT

Machine learning applied to traffic forecasting

Linus Aronsson

Aron Bengtsson

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019

Machine learning applied to traffic forecasting
Linus Aronsson, Aron Bengtsson

© Linus Aronsson, Aron Bengtsson, 2019

Supervisor: Ulf Norell, Department of Computer Science and Engineering
Advisor: Lef Eleftherios Filippakis, Cybercom Sweden AB
Examiner: Per Lundin, Department of Computer Science and Engineering

Department of Computer Science and Engineering
Chalmers University of Technology / University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 (0)31-772 1000

The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish theWork electronically and in a non-commercial
purpose make it accessible on the Internet. The Author warrants that he/she is the
author to the Work, and warrants that the Work does not contain text, pictures or
other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agree-
ment. If the Author has signed a copyright agreement with a third party regarding
the Work, the Author warrants hereby that he/she has obtained any necessary
permission from this third party to let Chalmers University of Technology and Uni-
versity of Gothenburg store the Work electronically and make it accessible on the
Internet.

Cover: Map of road segments in Gothenburg

Department of Computer Science and Engineering
Gothenburg, Sweden 2019

iv

Machine learning applied to traffic forecasting

Linus Aronsson
Aron Bengtsson
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
Forecasting future traffic situations is of great importance for improving existing In-
telligent Transportation Systems (ITS). The forecasts allow the various ITS technolo-
gies to function proactively. This provides safer roads with less accidents and lower
congestion levels. Forecasting urban road traffic is challenging as it often follows
complex nonlinear temporal patterns. Traditional statistical forecasting techniques
therefore struggle to achieve accurate predictions. In recent years the computing
power and available historic traffic data has increased drastically. These are two of
the main ingredients required for the field of Machine Learning (ML) to work. Many
ML techniques have been shown to be capable of capturing nonlinear patterns in
data, which makes it a good candidate for traffic forecasting. This thesis therefore
explores various ML technologies and applies them to time series forecasting. Ad-
ditionally, some traditional approaches to time series forecasting are evaluated as
baselines for comparison. The experiments conducted used traffic data from central
Gothenburg, which was manually gathered throughout the project. The conclusion
was that the best ML techniques provided a higher forecasting accuracy for both
short-term and long-term predictions. More advanced hyperparameter optimization
and feature engineering would further improve the ML models.

Keywords: machine learning, artificial neural networks, LSTM, forecasting, traffic
flow, time series.

v

Acknowledgements
We would like to express our deepest gratitude to everyone who has helped us
during this project. We would like to thank everyone at Cybercom for establishing
this project and for letting us work at their office. We would like to thank our
advisor Lef Filippakis at Cybercom for his guidance and assistance. His expertise in
data science and machine learning was very valuable to us throughout the project.
Finally, we would like to thank our supervisor Ulf Norell at Chalmers for his guidance
and very helpful feedback on our thesis.

Linus Aronsson, Aron Bengtsson, Gothenburg, June 2019

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Objectives and Scope . 2
1.3 Delimitations . 3
1.4 Syntax Convention . 3

2 Theory 4
2.1 Traffic Flow . 4

2.1.1 Temporal Correlations . 4
2.1.2 Spatial Correlations . 4

2.2 Forecasting . 5
2.2.1 Time Series . 6
2.2.2 Time Series Forecasting . 6
2.2.3 Time Series Split . 7
2.2.4 Evaluating a Forecasting Model 8
2.2.5 Multi-step Forecasting . 10

2.3 Machine Learning . 11
2.3.1 Introduction . 12
2.3.2 Types of Learning Algorithms 12
2.3.3 Overfitting and Underfitting 14
2.3.4 Feature Engineering . 14
2.3.5 Data Preparation . 15
2.3.6 Hyperparameters . 17

2.4 Forecasting Models . 17
2.4.1 Baseline Methods . 18
2.4.2 ARIMA . 18
2.4.3 Feedforward Neural Network 19
2.4.4 Recurrent Neural Network . 22
2.4.5 Convolutional Neural Network 23
2.4.6 Support Vector Regression . 24

2.5 Database Management . 24
2.5.1 NoSQL . 24

ix

Contents

2.5.2 MongoDB . 24
2.6 Previous Work . 25

3 Method 27
3.1 Software . 27
3.2 Data Collection . 29

3.2.1 Traffic Data . 29
3.2.2 Weather Data . 31

3.3 Data Format . 32
3.4 Data Analysis . 33
3.5 Experiments . 38

3.5.1 Forecasting Horizon . 38
3.5.2 Experiment (1): Univariate input forecast 38
3.5.3 Experiment (2): Univariate input forecast (without holidays) . 38
3.5.4 Experiment (3): Multivariate input forecast (without holidays) 38
3.5.5 Expectations . 38

3.6 Data Preparation . 39
3.6.1 Feature Engineering . 39
3.6.2 Data Split . 41
3.6.3 Time Series Forecasting as a Supervised Problem 41
3.6.4 Data Scaling . 43

3.7 Model Evaluation . 43

4 Results 45

5 Discussion and Conclusion 49
5.1 Experiments . 49
5.2 Data Collection . 51
5.3 Feature Engineering . 51
5.4 Future work . 52
5.5 Conclusion . 52

Bibliography 55

A Appendix 1 II
A.1 Model Implementations . II

A.1.1 Naive Approach . II
A.1.2 Seasonal Naive Approach . III
A.1.3 Seasonal Historical Average III
A.1.4 ARIMA . III
A.1.5 FFNN . IV
A.1.6 LSTM . V
A.1.7 CNN . V
A.1.8 Support Vector Regression . VI

x

List of Figures

1.1 Traffic congestion. 2

2.1 Expected traffic flow pattern for one weekday. 5
2.2 Time series components. 7
2.3 Visualization of how the time series was split into a training and test

set. 8
2.4 Visualization of producing forecasts using the expanding window

method. 9
2.5 Visualization of forecast production using themoving windowmethod

with window size = 3. 10
2.6 Visualization of multi-step forecast production with forecasting hori-

zon h = 2, using the moving window method with window size =
3. 12

2.7 A correlation matrix of 10 features. The subscript illustrates the
different features, not time step. 15

2.8 The structure of a (fully connected) Feedforward Neural Network with
two hidden layers. xj represents the input signals, h(1)

i and h(2)
k repre-

sent the states of the neurons in the first and second hidden layers. ŷ`
represents the output signals. w(1)

ij represents the weights of the con-
nections between xj and h(1)

i . θ(1)
k are the thresholds of the neurons

in the first layer. The other weights and thresholds in the network
are represented equivalently between the two other layers. 20

2.9 RNN architecture. Each square in the figure represents one or more
neurons, and each arrow corresponds to a fully connected layer be-
tween the neurons on either side of the arrow. Left: RNN with cyclic
weights. Right: The same network unrolled over time (which corre-
sponds to a FFNN). 23

2.10 Example of JSON format of a road. 25

3.1 Visualization of the workflow throughout the thesis project. 28
3.2 Proximity of the collected traffic data. 30
3.3 One document in the collection Roads. 30
3.4 Map of all the road segments and the information of one segment. . . 31
3.5 One document in the collection Traffic. 31
3.6 One document in the collection Weather. 32

xi

List of Figures

3.7 One week of traffic flow for segment 58 between 2019-03-11 and 2019-
03-17. Top: Raw data. Bottom: Same data with some noise removed. 34

3.8 One week of traffic flow for segments 6, 31, 355 between 2019-03-11
and 2019-03-17. 35

3.9 One week of average traffic flow (top) and average speed (bottom)
from all 811 road segments between 2019-03-11 and 2019-03-17. . . . 36

3.10 Top: The traffic flow of segment 58 for the last 20% of the time series
(test set). Bottom: Equivalent plot but with holidays removed from
entire time series (including 2019-05-1 in test set as can be seen). . . 37

3.11 Map of segments. The blue dot corresponds to segment 58. The red
dots correspond to segments 6, 189, 355 and 761. The traffic flow at
the red dots are highly correlated with the traffic flow at the blue dot. 39

3.12 Correlation matrix between some of the features used in experiment
(3). The weather parameters were not used, but are shown in the
graph to illustrate their low correlation. 40

4.1 SVR 10 minute traffic flow forecasts plotted against the actual mea-
sured traffic flow. 47

4.2 SVR 1 hour minute traffic flow forecasts plotted against the actual
measured traffic flow. 47

4.3 FFNN 6 hour traffic flow forecasts plotted against the actual mea-
sured traffic flow. 47

4.4 FFNN 12 hour traffic flow forecasts plotted against the actual mea-
sured traffic flow. 48

4.5 CNN 24 hour traffic flow forecasts plotted against the actual mea-
sured traffic flow. Top: Original time series used. Bottom: Holidays
removed from time series. 48

xii

List of Tables

1.1 Report variable convention. 3

2.1 Forecasting variable convention. 7
2.2 Mappings between input and output for time series forecasting as a

supervised problem. p = T − n− h+ 1. 16

4.1 Forecasting results from experiment (1). 46
4.2 Forecasting results from experiment (2). Holidays were removed

from the time series. 46
4.3 Forecasting results from experiment (3). Spatial correlations were

taken into account. Models with a (*) were not evaluated for mul-
tivariate inputs, and the best results from previous experiments are
instead used for comparison. 46

A.1 Chosen window sizes for each forecasting horizon used in all experi-
ments. II

A.2 FFNN hyperparameters. IV
A.3 LSTM hyperparameters. V
A.4 CNN hyperparameters. VI

xiii

List of Tables

xiv

1
Introduction

This section gives some background on traffic forecasting and motivates the im-
portance of Intelligent Transportation Systems. Additionally, the objectives and
limitations of the report are described.

1.1 Background and Motivation
The transportation industry was responsible for 28% of global carbon dioxide emis-
sions in 2014 [1]. The number of traffic-related deaths in 2013 was 1.25 million [2].
Additionally, traffic congestion at peak hours reaches unacceptable levels in many
parts of the world. These are all serious issues caused by current transportation
systems, and optimization through the usage of modern technologies is necessary
for the required improvements. A lot of the innovation that is part of the solution
already exists and is what makes up Intelligent Transportation Systems (ITS). Di-
rective 2010/40/EU of the European Parliament and of the Council of 7 july 2010
defined ITS in the following way [3]:

ITS integrate telecommunications, electronics and information technologies
with transport engineering in order to plan, design, operate, maintain and
manage transport systems.

This definition indicates that any information technology that aids transportation in
one way or another can be included as one of the many innovations under the term
ITS. Applications that provide travel times or the most efficient route to a given
destination are examples of such technologies. Traditionally, these technologies func-
tioned based on simplistic evaluations, and could only be reactively updated based
on occuring events. However, proactive adaptation to the ever changing dynamics
of urban traffic can be achieved. This is done through approximative forecasting
of future traffic patterns. Naturally, this would greatly improve the performance of
existing ITS technologies. Achieving this, however, requires historic measurements
of the parameters to be forecasted. Such parameters could include the traffic flow
and speed at some location. Measurements of these parameters can be done in many
ways, such as video detection, inductive loops and magnetic sensors [4]. Addition-
ally, possession of historic data of traffic incidents and various weather parameters
may also be useful, as these often impact the traffic quite heavily. Subsequently,
this data can be analyzed and may reveal various traffic patterns. In turn, these
patterns could make it possible to forecast future traffic situations.

1

1. Introduction

Figure 1.1: Traffic congestion.

Forecasting the future based on historic data dates back to 1805 with techniques
like linear regression [5] and is a well studied area [6]. These studies have given rise
to many statistical models for predicting some future parameter based on historical
data. However, traffic flow as a function of time is not entirely deterministic due
to various random events that affect the traffic. There exists a countless number
of these events but examples of the most impactful ones are the current weather,
traffic incidents and holidays. In many cases it is therefore difficult for the tradi-
tional forecasting models to produce good results as they are unable to capture the
nonlinearity in the data [7].

Due to the recent advancements in the field of Artificial Intelligence (AI) and an
exponential growth in historic data, forecasting has experienced great improvements.
More specifically, the AI sub field called Machine Learning (ML) has a specific set
of algorithms that have proven to be capable of capturing nonlinear relationships
between input and output data [8]. These algorithms typically go under the name
Deep Learning [9] and involve Artificial Neural Networks (ANN), which are loosely
inspired by the functionality of the biological neurons in the brain.

1.2 Objectives and Scope
This report primarily aims to research different machine learning algorithms capable
of producing accurate traffic flow forecasts. A few traditional statistical forecast-
ing techniques will also be researched in order to establish a baseline for prediction
accuracy. This baseline can then be compared with the results given by the ML
algorithms to decide their potential success.

The goal is to answer the following questions.
1. Which datasets are needed to generate traffic forecasts?

2

1. Introduction

2. How to make traffic forecasts with machine learning?
3. Which method for producing traffic forecasts works the best?
4. Which data features are the most important in making traffic flow forecasts?

1.3 Delimitations
The project will not involve the development of any product. Instead, the primary
focus will be put towards research about traffic forecasting. The forecasts will be
produced for a limited number of road segments in central Gothenburg. Conse-
quently, the project will be limited to dealing with traffic data from a static road
network which is described in Section 3.2. As a result, the performance of the various
forecasting techniques presented in the report may not necessarily apply to other
urban road networks in other cities. Additionally, applying the same techniques on
entirely different types of road networks such as freeways, could potentially fail as
well. The reason for this is that the traffic patterns in different parts of the world
may vary.

Also, this project will mainly focus on forecasting the traffic flow at a single road
segment. Forecasting multiple segments simultaneously is however quite straight-
forward for the ML models. This was in fact done in a previous project that this
thesis is a continuation of, and is described in Section 2.6. The previous project as
well as this thesis was done in collaboration with Cybercom Sweden AB.

1.4 Syntax Convention
The report will follow a certain syntax convention when it comes to describing
various mathematical data structures. These are summarized in Table 1.1.

Variable Description
lower case letter (e.g. x) scalar

bold lower case letter (e.g. x) vector
bold upper case letter (e.g. X) matrix

Table 1.1: Report variable convention.

3

2
Theory

The main objective of the thesis is to forecast the traffic of various road segments.
Section 2.1 therefore briefly introduces the meaning of traffic flow. Subsequently,
Section 2.2 introduces forecasting as a general concept. This includes the format
of the data used as a basis for making forecasts with mathematical models. Now,
because the forecasting capabilities of machine learning is to be explored, Section 2.3
introduces some relevant concepts within machine learning. Section 2.4 introduces
the theory behind the used forecasting models. Section 2.5 talks about the type of
database used as this may help understand some of the decisions regarding the data
management. Finally, Section 2.6 mentions a few past projects that touched on a
similar topic.

2.1 Traffic Flow
In much of the traffic forecasting literature, the traffic follows a very particular pat-
tern for week days, and is shown in Figure 2.1. In the morning you can see the
traffic increasing and eventually reaches a peak (rush hour). After this, the traffic
slowly decreases throughout the day, and then eventually increases back up again
in the afternoon when people are driving home (rush hour).

When dealing with traffic forecasting there are two types of correlations that must be
considered. Namely, temporal and spatial correlations. Both of these are explained
below.

2.1.1 Temporal Correlations
Temporal correlations correspond to relations between past measurements of the
traffic flow with the current or future measurements. In other words, the time
dependent correlations. The plot in Figure 2.1 displays a temporal pattern.

2.1.2 Spatial Correlations
When forecasting the traffic flow at a single road segment, it would be possible to
simply consider historic traffic flow from the same segment. However, it may be the
case that traffic parameters (flow or speed) from other nearby road segments are
good predictors as well. These are spatial correlations. For example, a lot of traffic
at segment X may be an indicator of incoming traffic at some other segment Y .
This may especially help forecasting far into the future.

4

2. Theory

Figure 2.1: Expected traffic flow pattern for one weekday.

2.2 Forecasting

Predicting a future circumstance has been a big part of human nature since the be-
ginning of our species. Humans ability to foresee future events and act proactively
has put us ahead of other species. For example, being able to predict the position
of predators or locations of food and water used to be key for survival. Making
predictions is something that humans, to this day, do on a daily basis. For instance,
when reading a sentence it is normal to be capable of predicting the ending of the
sentence because it follows a familiar structure. This is possible because of the pos-
session of past knowledge that allows one to make educated guesses about the future.

In the modern professional world, forecasting has many areas of application. Some
examples include stock market forecasting, weather forecasting, earthquake predic-
tion, and of course traffic forecasting. When no historic data features exist, fore-
casting is usually done subjectively through intuition, logic and experience. This
is performed by experts in a given field and is referred to as qualitative forecasting
[10]. Conversely, quantitative forecasting models are used to forecast future data
based on existing historic data. This data made it possible for mathematicians to
develop various mathematical models that could potentially produce more accurate
predictions. However, these forecasting techniques are usually made for short- to
medium-term predictions. The reason being that long-term predictions are harder
to model. It is especially hard if the variable being predicted depends on many ran-
dom events, and if the historic data is limited in quantity [10]. Instead, one usually
uses qualitative forecasting if this is the case.

The historic data corresponds to a number of features that arrive in a time se-
quence. This type of data is referred to as a time series, and analysis of this data
format is a well studied area [10]. This concept is further described in the upcoming
sections.

5

2. Theory

2.2.1 Time Series
A time series is a sequence x of measurements of some observable variable xt at suc-
cessive points in time with an equal time interval between every point [10]. Equation
(2.1) mathematically describes a time series with T time steps. The subscript of
each element represents the time step at which the variable was measured.

x = {x1, x2, ..., xT} (2.1)

This time series is a vector with dimensions T × 1. The order of the elements is of
importance because it defines the temporal structure of the data points. Further-
more, when only one feature is measured in each time step, it is called a univariate
time series. Now, as already mentioned, forecasts are more commonly generated
based on multiple historic features. For example, in this project the traffic flow is to
be forecasted based on several features such as traffic speed and traffic flow (spatial
correlations). In that case a multivariate time series is necessary. This is essentially
just multiple univariate time series concatenated. This would give a matrix, which
is described in equation (2.2).

X =

x11 x12 x13 . . . x1T
x21 x22 x23 . . . x2T
...

xN1 xN2 xN3 . . . xNT

 (2.2)

Each column of this matrix contains all the features of each time step in the time
series. Therefore, the column vectors of the matrix corresponds to feature vectors.
There are N features and T timesteps which means that the dimensions of X is
T ×N . The matrix X can alternatively be described as follows,

X = {x1, x2, ... , xT}, xt ε RN

where each element is a feature vector of size N .

A time series that can be predicted must consist of repeating temporal patterns that
can be modeled. There are three important components of a time series that often
needs to be taken into account. Namely, the seasonality, trend and noise [10]. The
trend describes the overall increase and decrease of the measured variable xt. In
Figure 2.2 (a), the blue line plots the time steps of a time series, and the orange line
visualizes its trend. The seasonality describes the repeating short-term periodicity,
which can also be seen in the plotted time series. Figure 2.2 (b) has captured the
seasonality of the time series and visualizes it independently of trend and various
noise. The noise correspond to random variation in the time series.

2.2.2 Time Series Forecasting
In most forecasting literature the involved variables are denoted as described in
Table 2.1. This report will follow the same convention. Now, given a time series of
historic data features {x1, x2, ... , xT}, the idea is to produce a prediction of some

6

2. Theory

(a) Real time series (blue) and its trend (or-
ange).

(b) Seasonality of the time series in (a).

Figure 2.2: Time series components.

feature(s) h time steps into the future. h is called the forecasting horizon. The
prediction is denoted ŷT+h, and the generation of this can be described as shown in
(2.3).

Variable Description
x historic data feature (input)
ŷ predicted value (output)
y actual value
h forecasting horizon
T total time steps in time series
t arbitrary time step in time series
N number of features

Table 2.1: Forecasting variable convention.

ŷT+h = f(x1, x2, ... , xT), f : RT×N → R1 (2.3)
The function f is unknown and is only used as a way to represent the various
forecasting models described in Section 2.4. Now, because certain models are capable
of producing a multivariate output, it could also be expressed as follows,

ŷT+h = f(x1, x2, ... , xT), f : RT×N → RM

where the output of f this time is a vector. This was used in the previous project
(see Section 2.6), because multiple road segments were forecasted simultaneously.

2.2.3 Time Series Split
It is common for various forecasting models (and ML models in general) to split
the data set into multiple parts [11]. In this project, the time series was split into
a training set and a test set. The training set is used for the forecasting model to
learn the temporal patterns throughout the time series. The test set is then used

7

2. Theory

time (xt)

Training set (80%) Test set (20%)

Figure 2.3: Visualization of how the time series was split into a training and test set.

to measure how well the trained model can produce forecasts on previously unseen
data. The forecasting performance achieved on the test set is then what can be
expected when actual forecasts are to be made for future time steps. It is common
to have 80% of the original time series for the training set, and the remaining 20%
for the test set. This is illustrated in Figure 2.3, where each dot corresponds to a
time step in a time series.

It is important that the time series is not shuffled, as this will remove its temporal
structure. Also, the test set must arrive after the training set to avoid forecasting
the past. The upcoming section will talk more about how the accuracy of a model
is evaluated on the test set.

2.2.4 Evaluating a Forecasting Model
Before a forecasting model can be employed for real-world usage, its accuracy must
be evaluated. This is done by comparing the forecasted value ŷ with its actual
observed value y. The problem with this is that the actual value does not exist yet
as it will take place h time steps into the future. The solution is to make forecasts
for existing values that are already in the time series. For example, in a time series
with T time steps, one could make a prediction for the last value in the time series
based on all the previous ones as shown in (2.4).

ŷT = f(x1, x2, ... , xT−h) (2.4)

In this case the predicted value is ŷT , which is at a time step within the limits of
the time series. The actual value at this time step is accessible from the time series
as xT , and is denoted yT . However, in order to get a good estimation of how well a
model is performing, many forecasts are necessary. This is done by moving through
the entire time series and iteratively produce forecasts. There are two methods that
accomplish this. The first method consists of an expanding window of time steps
that each forecast is based on [12]. This is illustrated in Figure 2.4 on a time series
with T = 12 time steps. The black dots correspond to the features that are used as
the basis for a forecast. The pink dots correspond to the time step being forecasted.
The white dots are unused features. Notice that the first forecast is made for x3.
This is because some minimum number of time steps is needed to base the forecast
on. In this particular case, the first three time steps are considered the minimum
requirement for producing a good forecast. The number of forecasts therefore be-
comes T −3 = 9. The second method is a moving window of constant size that each

8

2. Theory

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

ŷ12

ŷ11

ŷ10

ŷ9

ŷ8

ŷ7

ŷ6

ŷ5

ŷ4

pr
ed

ic
tio

ns

time

Figure 2.4: Visualization of producing forecasts using the expanding window method.

forecast is based on [12]. This is similarly illustrated in Figure 2.5.

Out of the two methods, neither is superior in general. Both of them come with
a number of pros and cons, which was discussed by Clark et al. [12]. In short,
selecting the optimal window size is not easy. It depends on the overall structure of
the available data. If the entire time series follows a similar pattern, then the bigger
the window size the better. Conversely, if old time steps are of very little relevance
in predicting more recent time steps, then a shorter window size may be preferable.
Also, if the time series used is very large, using an expanding window will lead to
an unfeasible computational complexity. As a consequence, fitting the forecasting
model as well as generating forecasts will be very time consuming.

Accuracy Metrics

When a large number of forecasts has been generated, by using either of the two
methods above, the next step is to evaluate the accuracy. In this report, the accuracy
metric used is called Mean Absolute Error (MAE) and is defined as shown in (2.5).

MAE = 1
T

T∑
i=1
|yi − ŷi| (2.5)

MAE measures the average magnitude of the errors across all predictions made. ŷi
corresponds to the i:th forecast, and yi is its actual value. An error of 0 means that
all forecasts were equal to the actual value, which is the best case scenario.

9

2. Theory

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

ŷ12

ŷ11

ŷ10

ŷ9

ŷ8

ŷ7

ŷ6

ŷ5

ŷ4

pr
ed

ic
tio

ns

time

Figure 2.5: Visualization of forecast production using the moving window method
with window size = 3.

2.2.5 Multi-step Forecasting
Single-step forecasting corresponds to h = 1, and is generally quite simple to per-
form. Most forecasting models produce very accurate results for single-step fore-
casting, since the value to be predicted is usually similar to the current time step.
However, multi-step forecasting is of course much more interesting since this in-
volves predicting further into the future. As expected, forecasting models have a
much harder time doing this accurately. Different methodologies for forecasting
multiple time steps into the future was explored by Bontempi et al. [13], two of
which are presented below.

• Direct Strategy

Out of the suggested methods, the one that was the most appropriate for this
project, is called the Direct Strategy. This is the most intuitive one since it
simply consists of training one forecasting model for each prediction horizon
h that is of interest. This is expressed in (2.6) .

ŷT+1 = f1(x1, x2, ... , xT)
ŷT+2 = f2(x1, x2, ... , xT)

...
ŷT+h = fh(x1, x2, ... , xT)

(2.6)

Adapting a given forecasting model to a certain value of h is done by for-

10

2. Theory

matting the data accordingly. This is further explained in Section 2.3.5. The
downside of the direct strategy is that separate models must be trained for
each value of h, which takes a lot of time. As this project is mainly about
comparing the results of different forecasting models, this was sufficient.

• Multiple Output Strategy

If one is interested in producing forecasts for multiple time steps simultane-
ously from one model, the Multiple Output strategy could be used. Not all
models are capable of this, but this is done by producing a vector output of
the model as shown in (2.7).

ŷT+1
ŷT+2
...

ŷT+h

 = f(x1, x2, ... , xT) (2.7)

Here a prediction for all time steps up until the horizon is given. This is similar
to producing a multivariate output of a model as discussed in Section 2.2.2,
except there the output was a vector of multiple features at the same time
step. However, the same principle is applied.

In the previous section, Figure 2.4 and 2.5 displayed how a single-step forecasting
model is evaluated. The evaluation of a multi-step forecasting model using the direct
strategy is done in an equivalent manner, and is shown in Figure 2.6 for the moving
window method. The forecasting horizon used in the example is h = 2. Notice how
the last (ŷ12) lands outside of the time series. Consequently, this forecast is unusable
since there is no expected value for the given time step. The number of forecasts
therefore becomes T − (h − 1) − 3 = 8. In general, for a time series with T time
steps, a window size of n and a forecasting horizon of h, the number of forecasts
becomes T − h− n+ 1.

2.3 Machine Learning

Many researchers in the field of Artificial Intelligence (AI) are trying to figure out
how AI systems can reach, at a minimum, the same level of general intelligence as
humans. This is often referred to as Artificial General Intelligence (AGI) [14]. Now,
as previously mentioned, making predictions is a very important part of human cog-
nition. This means that having AI systems capable of producing accurate forecasts
is of great importance to the goal of reaching AGI. Thus far the AI sub-fieldMachine
Learning (ML) has had some interesting successes in doing just that. This section
introduces ML and describes how it can be applied to making time series forecasts.

11

2. Theory

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

ŷ13

ŷ12

ŷ11

ŷ10

ŷ9

ŷ8

ŷ7

ŷ6

ŷ5

pr
ed

ic
tio

ns

time

Figure 2.6: Visualization of multi-step forecast production with forecasting horizon
h = 2, using the moving window method with window size = 3.

2.3.1 Introduction
Machine learning is the study of algorithms and data which a computer system uses
to improve its knowledge of a given task. In order to understand machine learning
better, the following quote by Thomas M. Mitchell gives a good definition of the
subject [15]:

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E.

The performance measure P is a measurement of how well the computer system has
learned the given task T. An example of evaluating the performance of a machine
learning algorithm was introduced in Section 2.2.4, namely using the accuracy metric
MAE. Examples of the experience E and the task T will be discussed in the next
section.

2.3.2 Types of Learning Algorithms
The experience E refers to the type of data available to the machine learning al-
gorithm during the learning phase. Expectedly, the training data must be large in
quantity if the system is expected to generalize its learned knowledge to previously
unseen data [11]. Generally, the type of available data comes in two categories. The
first type applies supervised learning and the second unsupervised learning.

12

2. Theory

• Supervised learning

In order to apply supervised learning, the data must consist of predetermined
mappings between input signals (x) and their corresponding output (y) [16].
The structure of the data given to the ML model must be a set of p pairs like
shown in (2.8).

{(x(1), y(1)), (x(2), y(2)), . . . , (x(p),y(p))}, x ε X,y ε Y (2.8)

These pairs correspond to the mappings between input and output that the
model is meant to learn. By studying all of these pairs, the goal of the ML
model is to find a function f : X → Y that correctly maps each input to the
corresponding output as shown in (2.9).

y(µ) = f(x(µ)), ∀µ ε {1, ..., p} (2.9)

Interestingly, some models are powerful enough to produce the correct output
y(µ) even if the input is only roughly equal to x(µ). This means that the model
is resistant to noise that might occur when deploying the model for real-world
usage [17].

The task T refers to what the used learning algorithm is supposed to achieve.
For supervised learning the two most common tasks are classification and re-
gression [11]. For classification the target outputs (Y) correspond to a number
of discrete classes. Each input x(µ) must be mapped to one of these classes.
Multiple inputs may be mapped to the same class. A typical use case of classi-
fication is object detection [18]. In this case the model is given a large number
of images and learns to classify some specified object in each image. For ex-
ample, with the output classes Y = {”cat”, ”dog”, ”piano”}, an example of
input/output pairs is given in (2.10).

{(x(1), ”piano”), (x(2), ”cat”), (x(3), ”dog”), (x(4), ”cat”), ...} (2.10)

For regression on the other hand, the output signals are continuous numbers
such that Y ⊂ R. Another way of thinking about regression is approximating
a real valued function [15]. In this project, the output of the model will be
the predicted traffic flow for some time step. The traffic flow is a real number
between 0 and 10, thus regression will be used.

• Unsupervised learning

For unsupervised learning only the input data is given, and the machine learn-
ing algorithm is expected to find eventual patterns in the data on its own [15].
For unsupervised learning the tasks include clustering and association. This
technique of learning was not utilized in this project and will therefore not be
explained in more detail.

13

2. Theory

2.3.3 Overfitting and Underfitting
When a machine learning model learns unique features to the training set, and
consequently can’t generalize well to new data (i.e. the test set), the model is said
to overfit the training data [11]. Various ML models use different regularization
techniques to avoid overfitting. Conversely, when the model can’t learn from the
training set at all, it is instead underfitting [11]. In this case the model will perform
poorly on both the training set as well as the test set. In the case of avoiding
underfitting, the quality of the training data must be considered. For example, the
data must contain relevant features for the learning objective, and various noise and
outliers must be removed. Note that removing noise also helps against overfitting.
The reason being that the model risks learning the noise of the training data, which
of course does not exist in the test set. Additionally, adding random noise in each
iteration during the learning phase can also help against overfitting. This is possible
because it prevents the model from learning some existing noise in the training
set really well. These problems are considered in more detail in the following two
sections.

2.3.4 Feature Engineering
Providing relevant features for a given task is of course crucial for a successful ML
model. For example, trying to predict the traffic flow based on the current price
of gold is likely not going to be very successful. Intuitively, these two variables are
entirely unrelated, which makes it impossible for the model to achieve anything in-
teresting. The process of uncovering the most relevant and useful features is called
feature engineering [11].

A common way to decide which feature to utilize is by using a correlation matrix
[11]. For a feature vector with 10 features xt = [x1, x2, ... , x10], a correlation matrix
is usually plotted using a heatmap as shown in Figure 2.7. This heatmap visual-
izes the correlation between all features. The correlation ranges from -1 to 1. A
correlation of 1 represents maximum correlation, whereas -1 represents maximum
inverse correlation. In both of these cases, the correlation is considered high and
such features may be useful for the training phase. In contrast, a correlation of 0
represents no correlation at all. Note that all values across the diagonal are equal
to one because each feature is fully correlated with itself. Now, lets say that the
feature x1 is to be predicted. According to the first column of the heatmap, only the
features x10, x5, x4, and x3 are strongly correlated with x1. Using these four features
for training the model may be a good place to start. However, deciding which of the
features to use as predictors is however not as simple as picking the most correlated
ones. The reason being that some nonlinear and more complex models may be able
to find temporal patterns among these features that the correlation matrix will not.

There are different types of correlations that could be measured. The type used
in this project is called the spearman correlation. A high spearman correlation
(+1) is achieved when two variables consistently decrease and increase at the same
time steps. A high inverse spearman correlation (-1) is achieved when one variable

14

2. Theory

decreases when the other increases. [19]

Figure 2.7: A correlation matrix of 10 features. The subscript illustrates the different
features, not time step.

2.3.5 Data Preparation
Next up is preparing the data appropriately for a given model. The first part to
consider is the quality of the data. Secondly, for a time series forecasting context,
the data must be organized in a particular way. These two steps of data preparation
are discussed below.

Data Preprocessing

If a feature consists of a few abnormal measurements (e.g. due to problems with
a measuring sensor), these may have to be removed. If they are kept in the data,
the model might be tricked into learning patterns that it should not, and therefore
overfit the training data. Because of this, it is important to visualize the data in
various ways such that these abnormalities can be discovered and fixed.

Additionally, many ML models have certain expectations of the data. For example,
all features of the dataset may need to be scaled to a given range (e.g. all values
between 0 and 1). This is done as shown in (2.11), where (xmin, xmax) is the specified
range.

15

2. Theory

xstd = x− xmin
xmax − xmin

xscaled = xstd ∗ (xmax − xmin) + xmin

(2.11)

Time Series Forecasting as a Supervised Problem

Existing attempts at applying machine learning techniques to time series forecasting
have been done through supervised learning. As a result, the data must be format-
ted in a particular way before feeding it as input to some machine learning model.
Achieving this was described in 2002 by Dietterich [20], where he refers to it as a
sequential supervised learning problem. Furthermore, Bontempi et al. [21] gave a
more detailed explanation in a paper from 2012. A brief description of how this
works is given below.

In order for supervised learning to be applied, the data must be structured such
that it follows the structure explained in Section 2.3.2. In other words, multiple
mappings between inputs and outputs must be explicitly given to the model. As
described in Section 2.2, predicting a value in a time series is done based on many
previous values in the same time series, e.g. ŷT = f(x1, x2 , ... ,xT−h). Therefore,
in order to give the model some temporal context, the inputs must be sequences of
feature vectors and not just a single feature vector as explained in Section 2.3.2.

Since the machine learning model expects many pairs of inputs and outputs, the
moving window approach is applied during the learning phase as well. The number
of pairs p corresponds to how many windows the time series is split up into, which
was already evaluated in Section 2.2.5 to be T − n − h + 1. Because of this, the
window size n and forecasting horizon h are two parameters that must be chosen
before the data is formatted accordingly. Training different models for each value of
h is how the direct strategy for multi-step forecasting is applied. Table 2.2 visualizes
these mappings for a given time series X = {x1, x2, ... , xT} with T time steps, a
window size of n and a forecasting horizon of h. Note that yt is synonymous with
xt ∀ t ε {1, ..., T}.

input output
{x1, x2, ... , xn}(1) y

(1)
n+h

{x2, x3, ... , xn+1}(2) y
(2)
(n+1)+h

{x3, x4, ... , xn+2}(3) y
(3)
(n+2)+h

... ...
{xT−n−h+1, xT−n−h+2, ... , xT−h}(p) y

(p)
T

Table 2.2: Mappings between input and output for time series forecasting as a supervised
problem. p = T − n− h+ 1.

16

2. Theory

The model will now iterate through these mappings window by window and learn the
temporal patterns throughout the time series. By the end of the learning phase, the
model will be an approximation of the function f shown in (2.12) (i.e. regression).
f requires new inputs to also be sequences of size n.

yt+h = f(xt−n+1, xt−n+2, ... , xt), ∀t ε {n, n+ 1, ... , T − h} (2.12)

When a new sequence of n inputs is fed into the model, it will produce an output that
roughly resembles the output that it was trained to produce for a similar sequence
during the learning phase. If the input sequence does not look like anything given
during the learning phase, the results will of course be inaccurate. This is a sign
that the training data was not informative enough for generalizing to the data in
the test set.

2.3.6 Hyperparameters
Machine learning models often depend on many parameters. Some parameters used
do not directly belong to the model itself, and remain constant throughout the
learning phase. These are called hyperparameters and instead belong to the ML al-
gorithm (which is what trains the ML model) [11]. Tuning the hyperparameters is a
crucial step in avoiding a poorly performing model. Some examples of hyperparam-
eters are given in Section 2.4 when the used models are presented. Optimizing the
hyperparameters is usually a difficult task, as it requires a trial and error approach.
A technique called grid search is often used to automate the process of empirically
finding the best combination of hyperparameters [11].

2.4 Forecasting Models

This section introduces the underlying techniques behind all of the used forecasting
models in this project. How the techniques were adapted to a forecasting context will
be explained in Chapter 3. In existing forecasting literature, the types of forecasting
models are often split into two categories; parametric and non-parametric. The
former consists of models that depend on a finite number of parameters. The latter
consists of models where the number of parameters is unspecified [22], and may grow
as the amount of data grows [23]. The parametric models include the traditional time
series models originally introduced by Box and Jenkins [6]. This type of forecasting
has been named the Box-Jenkins method, and is an important part of time series
analysis. One of these models include Autoregressive Integrated Moving Average
(ARIMA) and is introduced briefly in Section 2.4.2. Nonparametric models include
Support Vector Machines (SVM) (with RBF kernel) and Artificial Neural Networks.
Both SVM and ANN are machine learning algorithms, meaning that their basic
functionality follows that explained in Section 2.3. One SVM model and different
types of ANNs are introduced in Sections 2.3.3-5. The nonparametric models are
known to perform better on nonlinear data [24]. This would in theory make them
good candidates for traffic forecasting due to the stochastic nature of urban traffic.

17

2. Theory

2.4.1 Baseline Methods
In order to establish a benchmark for the more complex models, four baseline meth-
ods will be used. They are described below.

• Naive Method

Sets prediction equal to the most recent time step.

ŷT+h = xT

• Seasonal Naive Method

Sets prediction equal to the corresponding time step one seasonality cycle back
in time. The period of the seasonality is denoted as m and k is the smallest
integer greater than h−1

m
. T must be greater than m.

ŷT+h = xT+h−km

• Seasonal Historical Average

Sets prediction equal to the average of corresponding time steps of all previous
seasons. T must be greater than m.

ŷT+h = xT+h−km + xT+h−(2∗km) + ...+ xT+h−(T∗k)⌊
T
m

⌋

2.4.2 ARIMA
Two traditional forecasting techniques are Autoregression (AR) and Moving Aver-
age (MA). Combining these two methods into one model was introduced in a 1951
thesis by Peter Whittle, and is called Autoregressive Moving Average (ARMA). In
short, this technique uses past values of a time series and linearly maps it to an
output that could be used as a forecast. Because it is a linear model, certain ex-
pectations must be put on the time series if the coefficients of the model are to be
trusted. In other words, properties of the time series, such as mean and variance,
can not depend on the time at which the series is observed. A time series that
follows these properties is called stationary. Ensuring a constant mean and variance
of a time series is done by removing the trend and seasonality, respectively. There
are various data transformation techniques that achieve this. One method is called
differencing, and involves subtracting the previous observation xt−1 with the current
xt. Sometimes the time series may need to be differenced several times before reach-
ing a stationary point. The number of times it is differenced is called the degree
of differencing. For ARMA the time series must be made stationary before usage. [6]

ARIMA is a generalization of ARMA that does not require the time series to be
stationary upon input. Instead, the model accepts a parameter that denotes the
required degree of differencing, and performs the appropriate transformation auto-
matically. [6]

18

2. Theory

2.4.3 Feedforward Neural Network

An Artificial Neural Network (ANN) is a type of machine learning technique, and
was the primary use in this project. ANNs are inspired by the biological neural
networks that make up our brains. The biological neural networks consist of a large
number of neurons interconnected by synapses. These neurons receive and output
information in the form of electrical signals [17]. In an artificial neural network,
a neuron is represented by a real number. Each connection in the network has a
weight associated with it, and in a sense decides the importance of a given input.
The output of each neuron is evaluated as a weighted sum of all the inputs passed
into some nonlinear activation function [8].

Different types of ANNs were historically the first type of ML models used for the
purpose of time series forecasting [23]. A Feedforward Neural Network (FFNN) is
one of these, and also the simplest kind. In an FFNN all the connections between
the neurons do not form any cycles (see Figure 2.8), meaning that the flow of infor-
mation is straightforward through the network [16]. How a neural network is used in
the context of supervised learning will be explained below, using the simple network
in Figure 2.8 as an example.

An FFNN accepts input data in one dimension x(µ) ε Rn and generates an output
in a potentially different dimension ŷ(µ) ε Rm based on a set of parameters. The
superscript µ shows that the network is fed multiple input/output mappings that it
is meant to learn (supervised learning). For each pattern µ the output is compared
to the expected value y(µ) ε Rm, and updates the network parameters in case of
eventual errors. The hope is that the next time the same pattern is given as input,
the network will produce an output that is slightly closer to the expected value.
Repetition of this process is what corresponds to the network learning over time
[16]. The learning process is described below based on the network given in Figure
2.8.

Forward Propagation

The first step is to evaluate the output values ŷ(µ) based on the given input x(µ).
This is done by propagating forward through the network [16]. In the given network
shown in Figure 2.8, there are two hidden layers. The first step is to evaluate the
states of the neurons in the first hidden layer. This is done by taking the weighted
sum of all input signals x(µ)

j based on the connection weights w(1)
ij and the thresholds

θ
(1)
i as shown in (2.13).

h
(1)
i = φ1(

n∑
j=1

w
(1)
ij x

(µ)
j − θ

(1)
i) (2.13)

With the states of the neurons in the first hidden layer, the states of the neurons
in the second hidden layer can be evaluated in a similar fashion. This is shown in
(2.14).

19

2. Theory

...
...

...
...

x1

x2

xn

h
(1)
1

h
(1)
2

h
(1)
N

h
(2)
1

h
(2)
2

h
(2)
M

ŷ1

ŷ2

ŷm

Input layer Hidden layers Output layer

w
(1)
ij

θ
(1)
i

w
(2)
ki

θ
(2)
k

w
(3)
`k

θ
(3)
`

Figure 2.8: The structure of a (fully connected) Feedforward Neural Network with
two hidden layers. xj represents the input signals, h(1)

i and h
(2)
k represent the states of

the neurons in the first and second hidden layers. ŷ` represents the output signals. w(1)
ij

represents the weights of the connections between xj and h
(1)
i . θ

(1)
k are the thresholds

of the neurons in the first layer. The other weights and thresholds in the network are
represented equivalently between the two other layers.

h
(2)
k = φ2(

N∑
i=1

w
(2)
ki h

(1)
i − θ

(2)
k) (2.14)

Finally, the outputs are evaluated based on the neurons in the second hidden layer,
as shown in (2.15).

ŷ
(µ)
` = φ3(

M∑
k=1

w
(3)
`k h

(2)
k − θ

(3)
`) (2.15)

φ1,2,3 are the activation functions. The most common activation function is called
ReLU and is defined as φ(x) = max(0, x) [25]. Using nonlinear activation functions
is what give neural networks their nonlinear characteristics [16]. The three activation
functions used in each layer may not necessarily be the same [25]. Note that forward
propagation is used both during training and also when the network is to make
predictions after the learning phase.

Cost Function

With the outputs ŷ(µ) evaluated, the next step is to compare them with the expected
values y(µ). This is done using a cost function. An example of a simple one is the
quadratic cost function [25], and is defined as shown in (2.16) for the given network.

H = 1
2

m∑
`=1

(y(µ)
` − ŷ

(µ)
`)2 (2.16)

20

2. Theory

It is clear from (2.16) that the cost function H is minimized (equal to zero) precisely
when ŷ(µ) = y(µ), which is exactly the learning objective of the network. The goal
is then to employ various mathematical optimization techniques for minimizing the
function H.

Backpropagation

Efficiently minimizing the cost function of an ANN was originally described by
Rumelhart et al. [8], using an algorithm called backpropagation. This is done by
propagating backwards through the network after the error is evaluated, and updat-
ing the various parameters that define the network (weights and thresholds). When
deciding how the parameters are to be updated, a mathematical technique called
gradient descent [26] is utilized. In short, the partial derivative of H is taken with
respect to the weights and thresholds, separately. This derivative then reveals in
which direction the parameters are to be updated in order to move one step closer to
minimizing H. After each update, forward propagation is done again, which results
in a new value of ŷ(µ). The hope is that this new value gives a slightly smaller value
of H. This process is then repeated until the cost function is minimized. If the
input data was quantitatively large enough and accurately representative of future
inputs, the network will be able to generalize its learned knowledge to entirely new
data.

Hyperparameters

Thus far several parameters used by the model have been mentioned, e.g. the weights
and thresholds. These parameters change over time as the model is trained. There
are, however, a few additional parameters that must be chosen. These conversely
remain constant throughout the learning phase, and are called hyperparameters.
There are no general values to assign the hyperparameters, as it is highly situa-
tional. Instead, one must use a trial and error approach in deciding the optimal
values. Examples of important hyperparameters associated with ANNs are listed
below.

• Number of hidden layers

Adding more hidden layers to the model may allow the network to recognize
more complex mappings between the input and output layers. A network with
two or more hidden layers is often considered deep learning [9], and is currently
the most successful technique in machine learning. Adding many layers could
improve the accuracy of the model, to a certain degree. Adding too many lay-
ers might make the network too complex, and consequently overfit the training
data. Too many layers may also make the training time too long. [17]

• Number of neurons in each hidden layer

The number of neurons in each layer is in a similar fashion dependent on

21

2. Theory

how complex the given problem is. Too few neurons make the network un-
able to capture all the information. Logically, the more training data and in-
put/output mappings the network must learn, the more neurons are required.
However, too many neurons make the network more prone to learning unique
features of the training set, and may thus start overfitting. [17]

• Number of epochs

One epoch correspond to one iteration through all pairs of input/output map-
pings. This is rarely enough for minimizing the cost function. The network
may therefore need many epochs of training before all knowledge has been
learned. Too many epochs, however, may lead to overfitting. [17]

• Learning rate

During the learning phase the weights and thresholds are iteratively updated
in order to minimize the cost function. The learning rate decides how quickly
these parameters are to be updated, by limiting the amount of change by a
certain factor. A learning rate that is too low makes the training very slow. A
learning rate that is too high makes the algorithm overshoot, which increases
the risk of missing the global minima of the cost function. [17]

2.4.4 Recurrent Neural Network
While the simple type of FFNN introduced in the previous section has some re-
ally interesting use cases, it does have a few limitations. An FFNN is really good
at learning mappings between different inputs and outputs. However, each of the
mappings µ are entirely independent of each other since information flows in one di-
rection. Consequently, when an FFNN moves through a time series trying to learn
its dependencies, it lacks temporal context. A different type of ANN was intro-
duced as a solution to this and goes by the name Recurrent Neural Network (RNN).
RNNs allow cyclic weights (see left in Figure (2.9)), which allows information to
flow backwards. This gives the network a type of memory, such that it can remem-
ber past input features when considering newer ones. Achieving this is done by
unrolling the recurrent network over time. This yields a new structure that follows
that of an FFNN, which can then be trained with the backpropagation algorithm as
described in the previous section. More specifically, an algorithm called Backprop-
agation Through Time (BPTT) [27] is used. All of this means that RNNs are very
good at dealing with data that arrives in a time sequence, because it can remember
past time steps. A typical use case of RNNs is therefore time series prediction, as it
can, compared to FFNNs, much better find the temporal patterns of a time series.
Other applications of RNNs include machine translation, which involves translating
text or speech from one language to another. Sentences can be seen as a sequence
of words. When trying to understand the meaning of the sentence, it is crucial to
remember the past words when trying to understand the context of new ones. This
is something that, for instance, Google uses in their service Google Translate [28].

22

2. Theory

A problem with ANNs in general is something called the vanishing gradient problem
[29]. In short, this means that the network stops learning when you introduce many
layers in the network. An RNN especially suffers from this since the number of
layers depends on how many time steps are used when unrolling the network. For
large amounts of time steps, the network stops learning. A particular type of RNN
was therefore introduced by Hochreiter as a solution, and is called Long Short-Term
Memory (LSTM) [29]. LSTM networks are the primary forecasting model used in
the project.

x

h

ŷ

W

unroll

x1

h1

ŷ1

x2

h2

ŷ2

x3

h3

ŷ3

xt

ht

ŷt

W W ...

Figure 2.9: RNN architecture. Each square in the figure represents one or more neurons,
and each arrow corresponds to a fully connected layer between the neurons on either side
of the arrow. Left: RNN with cyclic weights. Right: The same network unrolled over time
(which corresponds to a FFNN).

2.4.5 Convolutional Neural Network
A Convolutional Neural Network (CNN) is essentially an improved version of regu-
lar FFNNs. This means that CNNs also excel at mapping inputs to outputs, with
use cases such as object recognition. In 2014 Krizhevsky et al. [30] won the Ima-
geNet challenge [18] with a CNN. ImageNet is a competition where people try to get
the highest classification accuracy of objects in a large database of images. After
this breakthrough, CNNs have become very popular. Note that CNNs are similarly
trained using the backpropagation algorithm as described in Section 2.4.3.

What allows CNNs to achieve higher accuracies is their abillity to reduce overfitting
through different regularization techniques [31]. A big cause of overfitting in ANNs
is having too many neurons. The more neurons you have, the more information can
be learned. Consequently, when the network encounters features that are unique
to the training set (considered noise), the network will be more affected by this.
The reason for the improvement using a CNN lies primarily in the usage of feature
maps and max pooling layers. Feature maps allow the network to share weights and
thresholds between neurons connected to different parts of the input. This means
that less neurons are considered, and thus generalizing each feature in the network

23

2. Theory

better, which reduces overfitting. A max pooling layer will down-sample the feature
maps so that they are just an approximation of the feature. This will decrease the
local noise that may appear in the training set, which also helps against overfitting.
[31]

2.4.6 Support Vector Regression
Support Vector Machines were originally introduced by Vapnik et al. [32] as a su-
pervised learning algorithm in the context of classification. Drucker et al. created a
version of SVM that could also handle regression problems, named Support Vector
Regression (SVR). This technique is utilized in this project.

In short, SVR functions as many other regression techniques; fitting a line to some
data by minimizing a cost function. However, as historic traffic flow data is nonlin-
ear, a simple line will not work. SVR offers a solution to this called the kernel trick
which allows the algorithm to solve nonlinear regression problems. SVR has been
used in the past specifically for traffic flow forecasting [23], [24].

2.5 Database Management
To manage data, a database is required to store the data. There are a number of
different database models, such as relational databases that most often use SQL as
the query language to operate. This project uses a non-relational database which,
in contrast to relational databases, doesn’t use SQL as the query language and is
therefore referred to as NoSQL [33].

2.5.1 NoSQL
Instead of using tabular relations of columns and rows used in relational databases,
NoSQL databases use other means to model the storage and retrieval of data.
NoSQL is mainly divided into four types of models: key-value stores, document-
oriented databases, wide-column stores and graph stores [33]. Document-oriented
databases store data as document objects, normally in JSON (JavaScript Object
Notation) format (see Figure 2.10). Each document is paired with a key and each
document may consist of multiple key-value-pairs or key-array-pairs [33]. Documents
can be queried and retrieved using their key, but also by their other properties [34].
This enables the ability to retrieve and update parts of a document. Some common
characteristics shared among NoSQL databases is that they have high performance,
are highly scalable and have low complexity [34].

2.5.2 MongoDB
This project uses the document-oriented model of MongoDB which is a document-
oriented database program. The database uses collections [35], which is a grouping of
documents and is essentially equivalent to tables in relational databases. MongoDB

24

2. Theory

1 {
2 " road " : "E6" ,
3 " l o c a t i o n " : {
4 " c i t y " : " Gothenburg " ,
5 " country " : " Sweden "
6 } ,
7 " segments " : [
8 { " segment " : " 1 " , " f low " : " 4 . 5 " } ,
9 { " segment " : " 2 " , " f low " : " 2 . 5 " } ,

10 { " segment " : " 3 " , " f low " : " 7 . 5 " }
11] ,
12 " d i r e c t i o n " : "+" ,
13 } �

Figure 2.10: Example of JSON format of a road.

uses a binary representation of JSON called BSON (Binary JSON) to store JSON
documents. JSON consists of the following data types: string, number (signed
decimal number), boolean, null, object (unordered set of name-value-pairs) and
array [36]. BSON expands the representation of JSON to include other data types,
such as int, long, date and float [37]. MongoDB provides drivers for Python (which
is used in this project) among other programming languages. It also offers the
possibility to store database collections in the public cloud with MongoDB Atlas
[38].

2.6 Previous Work

There exists a lot of literature on time series forecasting, including in the context of
road traffic predictions using machine learning. The projects mentioned below are
just a small portion of the existing work on the subject.

To begin, the project that this thesis is a continuation of will be described briefly.
The previous project mainly consisted of learning about general ML concepts as well
as traffic forecasting. The only ML technique used was LSTM networks. These were
utilized for forecasting the traffic flow of an entire road network in Gothenburg. In
other words, all road segments were forecasted simultaneously. The reason for doing
this was because the forecasted traffic of the entire road network was to be visualized
on a map in a web application. This project, however, does not include a web appli-
cation and instead focuses on forecasting the flow levels at individual road segments.

Ahmed et al. (2010) [39] conducted an experiment in which they compared the
time series forecasting capabilities of various different ML techniques. The models
used in the experiment were multilayered FFNNs, Bayesian neural networks, radial
basis functions, generalized regression neural networks, K-nearest neighbor regres-
sion, CART regression trees, support vector regression and Gaussian processes. The
models that gave the best results were multilayered FFNN, Gaussian processes and

25

2. Theory

support vector regression.

Gers et al. (2002) [40] investigated the suitability of applying LSTM networks to
time series forecasting. The conclusion was that LSTM networks do have capabil-
ities of solving certain time series tasks that FFNNs can’t solve. However, when
it comes to time series forecasting, it may not necessarily be the case that LSTM
networks beat simpler techniques. This includes the statistical approaches such as
ARIMA. They suggest that LSTM networks should only be applied when simpler
traditional methods fail. Makridakis et al. (2018) [41] came to similar conclusions
regarding other ML models such as FFNN and SVR.

Schimbinschi et al. (2015) [7] investigated traffic forecasting in complex urban net-
works using big data and machine learning. As perhaps expected, they concluded
that more data results in better predictions for the ML models. They also concluded
that spatial dependencies between road segments are a better predictor compared
to temporal patterns. They mention that the accuracy could be further improved if
the biggest source of invariance in the data is removed; weekends. Finally, they say
that ARIMA based models have trouble forecasting based on spatiotemporal data
and are unable to capture complex dynamics. This would make it a bad candidate
for traffic forecasting, and a motivator for instead utilizing machine learning.

Lv et al. (2015) [24] investigated traffic flow prediction with big data using deep
learning. They mention that statistical methods such as linear regression, HA,
ARIMA and SARIMA perform well during normal traffic conditions. However,
when abnormal traffic patterns appear they do not respond well (i.e. they can’t
capture the nonlinear nature of urban traffic patterns). They utilized a deep learn-
ing technique called stacked autoencoders, and concluded that this method was able
to capture the nonlinear spatial and temporal correlations of the traffic data.

Yang et al. (2010) [42] investigated short-term traffic flow predictions using a FFNN
while considering weather parameters as features. They concluded that predictions
based on weather parameters are more accurate than those without.

Guo et al. (2010) [43] expectedly confirmed that historical data is less useful in
forecasting traffic during abnormal conditions.

26

3
Method

This chapter describes how the project was executed, and Section 3.1 begins by
listing the software technologies used. Now, since machine learning was utilized in
this project, a large amount of relevant data was crucial. The first part therefore
consisted of gathering data, and is described in Section 3.2. The next step was
to analyze the data in order to find patterns or potential complications. This is
presented in Section 3.4. Once a good understanding of the data had been estab-
lished, an iterative process of evaluating different forecasting models could begin.
This process consisted of picking a forecasting model, preparing the available data
accordingly for the chosen model (Section 3.6), deciding various hyperparameters,
fit the model and finally evaluate it (Section 3.7). If the results could be improved,
a step back was necessary in order to update the hyperparameters and re-evaluate
the model. Three different forecasting experiments were conducted and evaluated
separately. These are described in Section 3.5. Implementation details of all the
models and various optimizations that were performed are discussed in Appendix
A.1. When all models had been evaluated, the final step was to compare the results
and draw conclusions. This is done in Chapter 4 and 5, respectively. Figure 3.1
gives an overview of the work flow described above.

3.1 Software

The data analysis and implementation of various forecasting models were done with
the programming language Python 3.7 [44]. The primary development environment
used was Jupyter Notebook [45]. This provided a convenient and structured way of
implementing the various steps in the working procedure described in the previous
section. Several python libraries were utilized in different ways, and are summarized
below.

• PyMongo [46]. Enables drivers for Python to use MongoDB. Contains tools
for working with database management.

• NumPy [47]. Enables convenient handling of large multi-dimensional lists
and matrices. Consists of several mathematical functions for easy manipula-
tion of these data structures.

• Pandas [48]. Used for data analysis and statistics. It was built with the
intention of implementing and improving on existing data manipulation tools

27

3. Method

Gather data

Analyze data

Prepare data
for models

Pick forecasting model

Prepare model

Fit model Improve model

Evaluate
model

Compare results

All model results established

Next model

Possible improvements?

Figure 3.1: Visualization of the workflow throughout the thesis project.

28

3. Method

found in statistical programming languages such as R. Additionally, it offers
good support for manipulation of time series data which is the data format
used in this project.

• Scikit-learn [49]. A library for manipulation of data sets and implementation
of different machine learning algorithms.

• Matplotlib [50]. A 2D plotting library which has been used to create graphs
that visualize the data in different ways.

• TensorFlow [51]. A library consisting of low level implementations of various
machine learning algorithms, such as neural networks.

• Keras [52]. A library used for conveniently implementing various deep neural
network architectures. It consists of an API that lies one abstraction layer
above another library with low level implementations of neural networks (e.g.
TensorFlow or Theano). In this project, TensorFlow was utilized as the back-
end for Keras. The implementation of all neural networks in this project
(FFNN, LSTM, CNN) used Keras.

3.2 Data Collection
The data needed for the project was collected using two of HERE Technologies APIs
[53]. The traffic data was collected using the Traffic API [54] and the weather data
was collected using the Destination Weather API [55].

All the data was stored using the cloud database MongoDB Atlas. There are different
tiers to choose from when setting up a project in the cloud with different price ranges,
including a free tier which this project used. The tier properties differs in network
performance and storage capacity.

3.2.1 Traffic Data
The Traffic API from HERE was used to collect data of vehicle traffic in Gothen-
burg. This was performed with an HTTP request of traffic data within the area
shown in Figure 3.2. The request returns the data in BSON format, where the rel-
evant parameters can be saved. The parameters were separated into two different
collections in the database, Roads and Traffic. The PyMongo library was used in
Python to access and make insertions to the collections in the database.

The collection named Roads saves the static parameters of every road and its seg-
ments within the proximity. There are 245 roads and a total of 811 road segments
creating 245 documents in the collection. Every road has a fixed number of segments
containing information (see Figure 3.3) such as the name and an array of coordinates
creating a shape of the road segment. Since these parameters are static, they only

29

3. Method

need to be saved once. This collection was used to visualize a map of all the road
segments, including a function to click on the segments to see their information (see
Figure 3.4).

Figure 3.2: Proximity of the collected traffic data.

Figure 3.3: One document in the collection Roads.

30

3. Method

Figure 3.4: Map of all the road segments and the information of one segment.

The collection named Traffic saves the dynamic parameters of every road segment,
where each of the 811 segments consists of two arrays (see Figure 3.5) creating 811
documents in the collection. The first array saves the jam factor (level of traffic
congestion) for the segment which is a value between 0.0 and 10.0, where 0.0 in-
dicates no traffic congestion and 10.0 indicates full traffic congestion. The second
array saves the average vehicle speed in kilometers per hour. These two parameters
were collected and appended to the arrays of each segment every 10 minutes.

To create a time series of the data from the Traffic collection, a third collection
named Timestamps was created that saves the date and time every time data is
collected (one time step every 10 minutes).

Figure 3.5: One document in the collection Traffic.

3.2.2 Weather Data
The Destination Weather API was used to collect weather data in Gothenburg. As
with the traffic data, this was performed with an HTTP request. However, instead
of using a proximity, the request was done by specifying a latitude and longitude
of central Gothenburg. The assumption made was that the weather condition of

31

3. Method

central Gothenburg is the same as in the proximity of the traffic data.

The parameters selected were: sky description, wind speed, temperature and pre-
cipitation (see Figure 3.6). The parameter for the sky description called skyInfo is
an integer in the range of 1 to 34 representing a description of the sky. For instance,
1 indicates that the sky is sunny and 17 indicates that the sky is cloudy. Wind
speed is saved as a value in kilometers per hour. Temperature is saved in degrees
Celsius. Precipitation is an integer in the range of 0 to 77 representing a description
of the precipitation. For instance, 0 indicates that there is no precipitation and
9 indicates that it is raining. Both the sky description and the precipitation are
discrete enumerations. A higher value does not necessarily mean more clouds/rain.

The weather data is collected every time there is a new weather observation from the
HTTP request, indicated by the date and time. Weather observations most often
occur once every 30 or 60 minutes. To match the time series of the traffic data,
the weather data was extended. This means that if there were 30 minutes between
two weather observations, the first weather observation is duplicated twice to match
the time series of one time step every 10 minutes. The assumption here is that the
weather stays the same between two given weather observations.

Figure 3.6: One document in the collection Weather.

3.3 Data Format
The time series of data that was gathered had 9202 time steps when it was used by
the models to forecast. The time interval between each time step is 10 minutes, and
thus correspond to roughly 9 weeks of data. As explained in the previous section,
each time step contains four weather parameters, and one measurement of the traffic
flow and average speed of 811 road segments. In total, each time step contains a
feature vector of 4 + 811 + 811 = 1626 features. The time series therefore has the
dimensions 9202× 1626, and can be described as shown in (3.1).

X = {x1, x2, ... , x9202}, xt ε R1626 (3.1)

The data can be retrieved from the database and formatted into a Pandas DataFrame
object with the code shown below.

1 >> X = getDataFrame () # Custom function

32

3. Method

2 >> pr in t (X. shape ())
3 (9202 , 1626) �
3.4 Data Analysis
This section aims to visualize the various data features in different ways to identify
various patterns. Figure 3.7 shows the traffic flow of segment 58 (Falutorget) for
a one week period (2019-03-11 to 2019-03-17). Each day corresponds to 144 time
steps, i.e. 24 hours. The top plot shows the raw data, which is evidently quite noisy.
The bottom plot is the exact same data, except some of the noise has been removed
by using a rolling window of size 10. This makes it easier to see the temporal pat-
terns throughout the time series. It also allows the forecasting models to find the
patterns much more effectively. The first five days (Monday through Friday) seem
to be following the expected traffic pattern as explained in Section 2.1. Saturday
and Sunday, however, expectedly do not follow the same traffic pattern. This mo-
mentarily breaks the seasonality made up of the first five days, which immediately
makes forecasting harder.

Figure 3.8 displays the traffic flow of the same period for segment 6 (Eriksbergsmotet),
31 (Surbrunnsgatan) and 355 (Ånäsmotet). It seems that segment 6 and 355 follow
a similar pattern (except segment 6 has low weekend traffic). On the other hand,
the traffic of segment 31 seems to be relatively random, and is therefore significantly
harder to forecast. Now, while there are some segments like this with no clear sea-
sonality, the average traffic flow for all 811 road segments does show the expected
pattern (see the top plot of Figure 3.7). Therefore, it is likely that most of the
811 segments can be forecasted with good accuracy. Additionally, if weekends are
removed from the time series, the forecasting accuracy would likely rise dramatically.

Figure 3.9 (bottom) shows the average traffic speed of all 811 segments. It seems
that the traffic speed changes in the opposite direction of the jam factor. This makes
sense since a lower jam factor (i.e. less traffic congestion), the faster the cars will be
able to go. The traffic speed is therefore inversely correlated with the jam factor.
Using the traffic speed as basis for predicting the traffic flow may therefore be a
good idea.

Finally, Figure 3.10 plots the traffic flow of segment 58 for the last 20% of the time
series. This part of the data will be used as the test set for evaluating the trained
models. The top plot shows the original data. The fifth day, which is a Wednesday,
seems to almost be following the traffic pattern that is seen during the weekends.
The reason for this is because this Wednesday corresponds to the first of May, which
happens to be a holiday in Sweden. Since the model does not encounter this pattern
in the training set, it will be difficult to accurately predict the test set. The training
set is therefore not informative enough to forecast the test set. Also, the training set
includes a few Easter holidays which the test set does not. This may additionally
lead to overfitting. The bottom plot of Figure 3.8 displays the test set with holidays

33

3. Method

removed. Note that the first week now instead consists of only four weekdays, which
may also lead to various issues. During the experiments, the forecasting models will
be tried both with the holidays included and when they are removed, for comparison.

Figure 3.7: One week of traffic flow for segment 58 between 2019-03-11 and 2019-03-17.
Top: Raw data. Bottom: Same data with some noise removed.

34

3. Method

Figure 3.8: One week of traffic flow for segments 6, 31, 355 between 2019-03-11 and
2019-03-17.

35

3. Method

Figure 3.9: One week of average traffic flow (top) and average speed (bottom) from
all 811 road segments between 2019-03-11 and 2019-03-17.

36

3. Method

Figure 3.10: Top: The traffic flow of segment 58 for the last 20% of the time series
(test set). Bottom: Equivalent plot but with holidays removed from entire time series
(including 2019-05-1 in test set as can be seen).

37

3. Method

3.5 Experiments
Three different experiments were conducted in this thesis and are explained below.
For each forecasting experiment the same horizons were used. Section 3.5.1 begins
by presenting the chosen forecasting horizons.

3.5.1 Forecasting Horizon
The forecasting horizons chosen are 10 minutes, 1 hour, 6 hours, 12 hours and 24
hours. This gives a good idea of how well the models can produce short-term,
medium-term as well as long-term forecasts. The 10 minutes and 1 hour are con-
sidered short-term, 6 hours medium-term, and 12 and 24 hours long-term. All of
which may be of interest when used in applications that utilize traffic forecasting.

3.5.2 Experiment (1): Univariate input forecast
The first experiment consists of forecasting the traffic flow of one segment. The
forecast will be based only on historic traffic flow data from the same segment
that is being predicted. The segment to be forecasted was arbitrarily chosen to be
segment 58. The experiment will be tried on both the original dataset, and with the
holidays removed.

3.5.3 Experiment (2): Univariate input forecast (without
holidays)

The second experiment will be equivalent to experiment (1) except that all holidays
will be removed from the data set.

3.5.4 Experiment (3): Multivariate input forecast (without
holidays)

The third experiment also consists of forecasting the traffic flow of segment 58.
However, the forecast will this time be based not just on the historic traffic flow of
segment 58, but also other correlated features. This may include the traffic speed of
segment 58, and/or traffic parameters of other nearby road segments. This means
that spatial correlations are considered. Section 3.6.1 presents which features will
be used. Note that holidays were removed for this experiment as well.

3.5.5 Expectations
The main expectation for all experiments is that the machine learning models will
outperform the statistical approaches. In particular, the LSTM network is expected
to provide the superior results as it is well suited for time sequence problems. In
experiment (3) it is expected that the forecasting accuracy improves quite drastically
when holidays are removed from the data set. Furthermore, it is highly plausible that
experiment (2) will further improve the results when considering spatial correlations.

38

3. Method

Figure 3.11: Map of segments. The blue dot corresponds to segment 58. The red dots
correspond to segments 6, 189, 355 and 761. The traffic flow at the red dots are highly
correlated with the traffic flow at the blue dot.

3.6 Data Preparation

This section walks through the various steps of preparing the data. This included
feature engineering, training and test set split of the data, adapting the time series
to a supervised learning context, and finally scaling the data.

3.6.1 Feature Engineering
Feature engineering was only necessary for the second experiment. This was achieved
by evaluating the correlation with segment 58 and all other features, and filtering
out the features that had a correlation over some threshold. This is visualized
in the code below. The print statement shows some of the features that have a
correlation of abs(± 0.85) or higher. This resulted in 9 features out of the total
1626 that be will used as basis for forecasting the traffic flow at segment 58. As
can be seen, the traffic speed of segment 58 is expectedly very (inversely) correlated
with the flow. The segments with correlated traffic parameters to segment 58 was 6,
189 (Parkgatan), 355 and 761 (Gullbergsmotet). These are the segments shown in
Figure 3.11 (red dots). Segment 58 is the blue dot in the same figure. Also, Figure
3.12 shows the correlations in a correlation matrix. Only a subset of the 9 features
are shown in the matrix.

1 >> thre sho ld = 0.85
2 >> X = X. i l o c [: , 1 :] # Remove timestamp
3 >> segment_58 = X[" flow_58 "]

39

3. Method

4 >> cor r = X. cor rwi th (segment_58 , method=" spearman ") . abs ()
5 >> co r r e l a t ed_ f e a tu r e s = cor r [c o r r > thre sho ld] . index
6 >> X = X[co r r e l a t ed_ f e a tu r e s]
7 >> pr in t (co r r [co r r > thre sho ld])
8 flow_58 1.000000
9 flow_761 0.998387

10 speed_761 −0.993167
11 speed_58 −0.990854
12 flow_355 0.874526
13 speed_6 −0.855887
14 flow_6 0.855590
15 speed_355 −0.854793
16 flow_189 0.852866
17

18 >> pr in t (X. shape)
19 (9202 , 9) �

Figure 3.12: Correlation matrix between some of the features used in experiment (3).
The weather parameters were not used, but are shown in the graph to illustrate their low
correlation.

Note that the correlation with the various weather parameters was extremely low,
as seen below. This is also illustrated in the correlation matrix in Figure 3.12.

40

3. Method

1 skyIn fo 0 .026189
2 windSpeed 0.045012
3 p r e c i p i t a t i o n 0.031231
4 temperature 0 .028119 �
This may be due to the fact that the weather has remained relatively unchanged
during the period that all the data was gathered. These features are therefore not
used for forecasting.

3.6.2 Data Split
The time series was split into a training set (80%) and a test set (20%) as shown
below.

1 >> sp l i t_ r a t i o = 0 .2
2 >> X = X. va lues # Convert to NumPy array
3 >> s p l i t = in t (l en (X) ∗ (1− s p l i t_ r a t i o))
4 >> tra in ing_se t = X[: s p l i t]
5 >> tes t_se t = X[s p l i t :]
6 >> pr in t (t r a in ing_se t . shape () , t e s t_se t . shape ())
7 (7350 , 9)
8 (1838 , 9) �
3.6.3 Time Series Forecasting as a Supervised Problem
The next step is to format the data such that supervised learning can be applied for
the machine learning models. This is done in accordance with what was explained
in Section 2.3.5. Note that both the training set and test set will undergo the same
transformation. The time series X in (3.2) visualizes what the training set and test
set currently look like.

X = {x1, x2, ... , xT} (3.2)
Now, they will both be transformed into X ′ as shown in (3.3).

X ′ =

x1 x2 . . . xn

x2 x3 . . . xn+1
x3 x4 . . . xn+2
...

xT−n−h+1 xT−n−h+2 . . . xT−h

 (3.3)

Additionally, the target outputs Y will be created as shown in (3.3).

Y = {yn+h, y(n+1)+h, y(n+2)+h, ... , yT} (3.4)
Note that each row of X ′ corresponds to the inputs, and are mapped to each ele-
ment in Y . The number of rows in X ′ therefore matches exactly with the number
of elements in Y . The motivation for organizing the data this way is because the

41

3. Method

machine learning models expect the dimensions to be (#samples, #timesteps, #fea-
tures). X ′ follows that rule with dimensions (T-n-h+1, n, q1). The dimensions of Y
are (T-n-h+1, q2). q1 decides how many features are used as a basis for forecasting.
q2 decides how many features are being forecasted.

In experiments (1) and (2), q1 = 1 and q2 = 1 since the traffic flow of one segment
is forecasted based on the traffic flow from the same segment. In experiment (3)
q1 = 9 and q2 = 1 since the traffic flow of one segment is being forecasted based on
9 features.

The function timeseriesToSupervised achieves the desired transformation and is
shown below.

1 de f t imese r i e sToSuperv i s ed (data , n , h) :
2 x , y = l i s t () , l i s t ()
3 f o r i in range (l en (data)−n−h+1) :
4 x . append (data [i : (i+n)])
5 y . append (data [i+h+n−1])
6 re turn np . array (x) , np . array (y) �
The parameters h and n are first chosen, then the transformation is done to both
the training set and test set as shown below.

1 >> h = 1
2 >> n = 12
3 >> trainX , trainY = t imese r i e sToSuperv i s ed (t ra in ing_set , n , h)
4 >> testX , testY = t imese r i e sToSuperv i s ed (tes t_set , n , h)
5 >> pr in t (" trainX : " , trainX . shape)
6 >> pr in t (" trainY : " , trainY . shape)
7 >> pr in t (" testX : " , testX . shape)
8 >> pr in t (" testY : " , testY . shape)
9 trainX : (7338 , 12 , 9)

10 trainY : (7338 , 9)
11 testX : (1826 , 12 , 9)
12 testY : (1826 , 9) �

Note that trainY and testY must be modified such that the correct feature is being
predicted, as it by default contains all 9 features. For all experiments, one segment
is being predicted. The desired transformation is therefore done as shown below,
where only one feature is selected as output. In this case the feature of interest
(traffic flow of segment 58) is assumed to be at index 0.

1 >> import numpy as np
2 >> testY = np . reshape (testY [: , 0] , (testY [: , 0] . shape [0] , 1))
3 >> trainY = np . reshape (trainY [: , 0] , (trainY [: , 0] . shape [0] , 1))
4 >> pr in t (" trainY : " , trainY . shape)
5 >> pr in t (" testY : " , testY . shape)
6 trainY : (7338 , 1)
7 testY : (1826 , 1) �
trainX and trainY will now be used during the learning phase. testX and testY

42

3. Method

will be used to make forecasts on new data, such that the model performance can
be evaluated.

3.6.4 Data Scaling

The ML models require the data to lie within the range (0, 1). The code below
achieved this by scaling it accordingly.

1 from sk l ea rn . p r ep ro c e s s i ng import MinMaxScaler
2

3 # Scaling 3D data requires some extra work:
4 s c a l e r s = {}
5 f o r i in range (trainX . shape [2]) :
6 s c a l e r s [i] = MinMaxScaler ()
7 trainX [: , : , i] = s c a l e r s [i] . f i t_t rans fo rm (trainX [: , : , i])
8

9 f o r i in range (testX . shape [2]) :
10 testX [: , : , i] = s c a l e r s [i] . t rans form (testX [: , : , i])
11

12

13 # The target values are 2D arrays , which is easy to scale:
14 sca l e rY = MinMaxScaler ()
15

16 trainY = sca le rY . f i t_t rans fo rm (trainY)
17 testY = sca l e rY . transform (testY) �

3.7 Model Evaluation

As already mentioned, the data was scaled to the range (0, 1) for all ML models.
For these models, the data must now be descaled using the same scaler that was
originally used to scale the data (named scalerY below).

1 # Descale
2 p r ed i c t i o n s = sca l e rY . inverse_trans form (p r ed i c t i o n s)
3 testY = sca l e rY . inverse_trans form (testY) �
Next, the predictions can be plotted against the real values to visualize the accuracy
with graphs.

1 import matp lo t l i b . pyplot as p l t
2 s t a r t = 0
3 end = 2000
4 p l t . p l o t (p r e d i c t i o n s [s t a r t : end] , l a b e l=" Test s e t p r e d i c t i o n s ")
5 p l t . p l o t (testY [s t a r t : end] , l a b e l=" Real data ")
6 p l t . l egend ()
7 p l t . y l ab e l (' t r a f f i c f low ')
8 p l t . x l ab e l (' t imestep ')
9 p l t . show () �

43

3. Method

And finally, the results can be presented using the accuracy metric MAE. The code
for this is shown below.

1 from sk l ea rn . met r i c s import mean_absolute_error
2 mae = mean_absolute_error (p r ed i c t i on s , testY)
3 pr in t (" Test MAE: %.6 f " % mae) �

44

4
Results

This chapter presents the results of the various experiments conducted. The fore-
casting accuracy of each model for each experiment is presented in tables, with MAE
as the accuracy metric. For the ML models, the average MAE over 10 test runs are
shown. Table 4.1 shows the results of experiment (1), which used the entire time
series, including holidays. Table 4.2 shows the results of experiment (2), where hol-
idays were removed from the time series. Table 4.3 shows the results of experiment
(3), where spatial correlations were taken into account.

Out of the three experiments, the best results for each horizon are plotted in the
figures below. In each figure, the forecasted traffic flow is plotted against the actual
measurerd traffic flow for comparison. Figure 4.1 and 4.2 plots the results for the
10 minute and 1 hour horizons, where SVR was the superior model. Figure 4.3 and
4.4 plots the results for the 6 and 12 hour horizons, where FFNN was the superior
model. Figure 4.5 plots the results for the 24 hour horizon, where CNN was the su-
perior model. Figure 4.5 also includes the results using a CNN network with holidays
included in the time series. This visualizes the problem of not removing the holidays.

MAE values in bold correspond to the model that gave the best result for a given
horizon in each experiment. Underlined MAE values correspond to the model that
gave the best result for a given horizon across all experiments.

45

4. Results

10 min
(h = 1)

1 hour
(h = 6)

6 hours
(h = 36)

12 hours
(h = 72)

24 hours
(h = 144)

NM 0.1248 0.6540 1.9888 2.5473 1.0968
SNM 0.9456 0.9456 0.9456 0.9456 0.9456
SHA 0.8463 0.8463 0.8463 0.8463 0.8463
LSTM 0.0542 0.3019 0.9446 0.9229 0.9872
FFNN 0.0564 0.3424 0.7752 0.8494 0.9155
CNN 0.0640 0.3279 0.7867 0.9293 0.9791
SVR 0.0462 0.2884 0.8540 0.9666 1.0171

ARIMA 0.1620 0.5527 1.4659 2.6428 1.5584

Table 4.1: Forecasting results from experiment (1).

10 min
(h = 1)

1 hour
(h = 6)

6 hours
(h = 36)

12 hours
(h = 72)

24 hours
(h = 144)

NM 0.1284 0.6809 2.0759 2.6492 0.9245
SNM 0.8953 0.8953 0.8953 0.8953 0.8953
SHA 0.7923 0.7923 0.7923 0.7923 0.7923
LSTM 0.0521 0.2971 0.9419 0.7337 0.7743
FFNN 0.0559 0.3478 0.6959 0.6850 0.6925
CNN 0.0598 0.3219 0.6754 0.8272 0.7500
SVR 0.0472 0.2893 0.7500 0.8611 0.9749

ARIMA 0.1651 0.5548 1.5634 2.8718 1.3869

Table 4.2: Forecasting results from experiment (2). Holidays were removed from the
time series.

10 min
(h = 1)

1 hour
(h = 6)

6 hours
(h = 36)

12 hours
(h = 72)

24 hours
(h = 144)

NM* 0.1284 0.6809 2.0759 2.6492 0.9245
SNM* 0.8953 0.8953 0.8953 0.8953 0.8953
SHA* 0.7923 0.7923 0.7923 0.7923 0.7923
LSTM 0.0563 0.3475 0.7584 0.9259 0.8784
FFNN 0.0591 0.3219 0.6021 0.6249 0.6503
CNN 0.0622 0.3022 0.6192 0.6313 0.5913
SVR 0.0587 0.3747 0.9334 1.0523 1.0135

ARIMA* 0.1651 0.5548 1.5634 2.8718 1.3869

Table 4.3: Forecasting results from experiment (3). Spatial correlations were taken
into account. Models with a (*) were not evaluated for multivariate inputs, and the best
results from previous experiments are instead used for comparison.

46

4. Results

Figure 4.1: SVR 10 minute traffic flow forecasts plotted against the actual measured
traffic flow.

Figure 4.2: SVR 1 hour minute traffic flow forecasts plotted against the actual measured
traffic flow.

Figure 4.3: FFNN 6 hour traffic flow forecasts plotted against the actual measured
traffic flow.

47

4. Results

Figure 4.4: FFNN 12 hour traffic flow forecasts plotted against the actual measured
traffic flow.

Figure 4.5: CNN 24 hour traffic flow forecasts plotted against the actual measured
traffic flow. Top: Original time series used. Bottom: Holidays removed from time series.

48

5
Discussion and Conclusion

This chapter discusses the conducted experiments and brings up how well it met the
expectations. Various improvements to further increase the forecasting accuracy
will subsequently be discussed. Finally, Section 5.5 will conclude the thesis.

5.1 Experiments

Out of all the baseline methods, the Naive Method (NM) expectedly gets the best
accuracy for the short-term forecasts. The traffic flow in the short-term future is
most of the time quite similar to the current traffic flow. Since NM simply sets
the forecast equal to the current time step, it consequently yields decent results.
It also performs relatively well for 24 hour forecasts. The reason being that the
traffic exactly 24 hours from now is likely to be similar to the current traffic. How-
ever, for medium-term forecasts NM gets the worst results out of all models. For
medium and long-term forecasts, NM is outperformed by both SNM and SHA. This
will likely always be the case for a time series with some seasonality. Out of the
baseline methods, SHA performs the best. The ARIMA model does beat some of
the baseline methods for short-term forecasts, but is significantly worse for medium
and long-term forecasts. This shows that the ARIMA model is unable to learn the
long-term horizons as they follow a more nonlinear relationship.

The chosen hyperparameters and input features used in the first experiment did not
allow the ML models to beat SHA (and even SNM in some cases) for long-term
forecasts. The ML models do however beat the baseline methods for short-term
forecasts quite convincingly. For the second experiment with the holidays removed,
the ML models gave better results than the baselines for the most part. In the third
experiment, similar conclusions can be drawn with slightly improved results for the
ML models. This indicates that a lot of experimentation is required in order to
get the ML models to perform well and beat the baselines. In other words, more
advanced feature engineering and hyperparameter optimization would likely make
the ML models convincingly superior for all horizons.

Overall, SVR was the superior model for short-term forecasting and was achieved
in the first experiment. Figure 4.1 and 4.2 plot these predictions, and they are evi-
dently very accurate. The 10 minute forecast is almost identical to the actual traffic
flow. This was of course expected since the traffic flow 10 minutes into the future

49

5. Discussion and Conclusion

is very similar to the current traffic flow. All models consequently perform the best
for this horizon, with the 1 hour horizon in second place. The FFNN model was
superior for the 6 and 12 hour forecasting horizons, and was achieved in the third
experiment. These are plotted in Figure 4.3 and 4.4. Finally, the CNN model gave
the best results for the 24 hour forecasting horizon, and was achieved in the third
experiment. This is plotted in Figure 4.5. Something interesting to note from these
plots is how the models are able to predict the traffic flow for Saturdays. Remember
that the look-back window was 1-2 days for medium and long-term forecasts. This
means that the model looks at the flow from Thursday and Friday, and is able to
realize that the traffic flow pattern of the next day follows that of a weekend. Even
though it is not clearly visible by just looking at the graph, the models are able to
recognize that the traffic flow on Fridays somehow differ from the other weekdays.
From this information it is able to realize that a Saturday is coming up.

Something to note regarding SVR for experiment (3) is that it produces worse results
than it did for the other two experiments. This means that the SVR model used
in this project did not benefit from the extra information provided by correlated
road segments. A similar conclusion could be drawn for the LSTM network. The
other two ML models (FFNN and CNN), however, do display improved results in
the third experiment. This would indicate that the spatial correlations in fact are
of interest, but that the LSTM and SVR models used simply could not deal with
the larger amounts of data.

The most unexpected outcome of the experiments was the disappointing results of
the LSTM network. It seems that the other ML models were superior for all hori-
zons. Upon inspection, it was realized that LSTM networks may not necessarily
be the best option for time series forecasting. This was, as mentioned in Chapter
2, concluded by Gers et al. (2002) [40]. This does not mean that LSTM networks
should be excluded entirely as an option. Other sources have mentioned that they
have great potential if used right. For example, one could attempt to train the
LSTM network with stationary data as mentioned by Brownlee [56]. He also sug-
gests that more complex LSTM networks are required to properly learn the temporal
and spatial dependencies. E.g. one could try many more stacked layers, more neu-
rons, and subsequently train the model for thousands of epochs. This will however
make the training phase extremely slow. As the hardware used in this project was
very limited (Intel Core i7 3770k 3.5GHz CPU), this was not an option.

Figure 4.5 visualizes the 24 hour forecasts of the CNN model with holidays removed
(top) and holidays included (bottom). This clearly illustrates the problem with
keeping the holidays in the time series. It can be seen that the fifth day (i.e. first
of May, which is a holiday in Sweden), follows an abnormal pattern. The model
assumes that it follows the regular pattern for Wednesdays and predicts according
to that (see orange line). The top plot shows the forecasts with the same model, but
with holidays removed. As can be seen, this did indeed solve the problem. Another
way of solving this may be to utilize a lot more data, such that the training set can
learn all holidays throughout the year. The better solution, however, is probably to

50

5. Discussion and Conclusion

keep separate models for holidays and normal week days. The reason being that the
time series being forecasted should preferably contain a consistent daily seasonality.
Additionally, a further improvement would have been to remove the weekends as
well. The weekends are however not as big of a problem because they at least
appear at regular intervals.

5.2 Data Collection
Despite collecting weather data consisting of four parameters, none of the parame-
ters were used for the traffic forecasting. The parameters for the temperature and
the wind speed proved to have very low correlation with the traffic data and was
therefore not relevant for use. Due to the parameters for the sky description and
the precipitation being discrete enumerations and not continuous values, the mea-
surement of the correlation for these parameters turns out incorrect. With the data
collected, it does not seem possible to accurately distinguish each respective descrip-
tion from the other in order to determine useful values. A potential solution would
be to look into methods of measuring correlations between discrete and continuous
variables, but this needs to be further investigated.

When working with large amounts of data and an expanding database, the network
performance when using the free tier of MongoDB Atlas turns out to be too slow
for making queries and insertions. The solution would be to pay for an upgraded
tier with higher network performance.

5.3 Feature Engineering
The feature engineering did provide some extra features that improved the forecast-
ing accuracy, but some limitations must be mentioned. The spearman correlations
evaluated only captured relationships between features at the same time step. It
would not find more complex temporal relationships between two features at differ-
ent time steps. For example, high traffic flow at road segment X at time step xt may
be correlated with the traffic flow at road segment Y at some future time step xt+h.
Using the flow from road segment X to forecast the flow at road segment Y with
horizon h would therefore be useful. The features used as predictors in experiment
(3) likely included such correlations with segment 58, which the FFNN and CNN
models captured. It is however possible that some segments with a lower spearman
correlation could have been at least equally as useful. Finding these more complex
correlations is more difficult and require shifting the time steps of the features being
compared. Another option would be to arbitrarily feed a very large number of road
segments as input, and see if the model can find useful correlations by itself. This
would of course risk feeding it completely useless data which could increase overfit-
ting and unnecessarily increase computation times.

In addition to this, other features could have been explored such as explicitly telling
the model what day of the week is being forecasted. This would likely make it easier

51

5. Discussion and Conclusion

for the model to distinguish between weekdays and weekends.

5.4 Future work
For future work it would be interesting to attempt the same experiments but exam-
ine more complex versions of the models used. For example by using more neurons
and hidden layers in the neural network architectures. Doing this would however re-
quire better hardware, such that the training phase execution time does not become
unfeasible. The hardware in mind would be some high end Graphics Processing Unit
as they are well optimized for matrix operations, which is a large part of training
neural networks. Even better would be to perhaps utilize a new technology released
by Google in 2017 called Tensor Processing Units (TPU) [57]. TPUs were built
specifically for training neural networks, and are available for usage in the Google
Cloud [58].

Also, considering entirely new models would also be an option. One example is to
utilize both CNN and LSTM networks in the same model. This has been tried in
several previous projects with success [59], [60]. This works by using a CNN network
to capture the spatial correlations, and letting the LSTM deal with the temporal
dependencies. Another interesting idea was proposed by Ma et al. (2017) [61], where
they forecast future traffic patterns based on images. In other words, they interpret
the traffic speed at various locations of some road network as an image. A CNN
network is then used to learn the patterns of the images.

Finally, for a future project, much more data would be needed as this would allow the
model to learn all the traffic patterns over an entire year. This would likely improve
the results because no matter where the test set is put in time, the training set will at
some point have included similar patterns for the previous year. Additionally, finding
more interesting predictors through more advanced feature engineering techniques
as described in Section 5.3 would be interesting.

5.5 Conclusion
It is clear that machine learning has great potential when it comes to time series
forecasting. This has been shown in this thesis as well as in other referenced liter-
ature. Existing statistical approaches should however not be underestimated. The
baseline methods did in fact achieve decent results and are faster to evaluate com-
pared to the ML techniques. When faced with a forecasting problem, whether its
traffic forecasting or something else, the traditional approaches should always be
tried first. If they do not perform as well as expected, one could try experimenting
with machine learning. If this option is considered, a few things are important to
keep in mind. Powerful hardware is crucial as this allows one to train very large and
complex ML models at fast speeds. Increased performance due to hardware will in
turn open up many doors for further improvement of the ML models. For one, it
will speed up grid search optimizations which helps finding better hyperparameters.

52

5. Discussion and Conclusion

Additionally, it will allow for more advanced feature engineering as more data can
be fed as input to the model, without making the computation time unfeasible.

53

5. Discussion and Conclusion

54

References

[1] The World Bank Group. Co2 emissions from transport (% of total fuel com-
bustion). https://data.worldbank.org/indicator/en.co2.tran.zs, 2014.
[Online; accessed 07-May-2019].

[2] World Health Organization. Number of road traffic deaths. https://data.
worldbank.org/indicator/en.co2.tran.zs, 2013. [Online; accessed 07-May-
2019].

[3] European Union. Directive 2010/40/eu of the european parliament and of
the council of 7 july 2010 on the framework for the deployment of intelligent
transport systems in the field of road transport and for interfaces with other
modes of transport text with eea relevance. https://eur-lex.europa.eu/
legal-content/EN/ALL/?uri=CELEX%3A32010L0040, 2010. [Online; accessed
07-May-2019].

[4] Peter J Bickel, Chao Chen, Jaimyoung Kwon, John Rice, Erik Van Zwet, and
Pravin Varaiya. Measuring traffic. Statistical Science, pages 581–597, 2007.

[5] Adrien Marie Legendre. Nouvelles méthodes pour la détermination des orbites
des comètes. F. Didot, 1805.

[6] GEORGE EP Box, Gwilym M Jenkins, and G Reinsel. Time series analysis:
forecasting and control holden-day san francisco. BoxTime Series Analysis:
Forecasting and Control Holden Day1970, 1970.

[7] Florin Schimbinschi, Xuan Vinh Nguyen, James Bailey, Chris Leckie, Hai Vu,
and Rao Kotagiri. Traffic forecasting in complex urban networks: Leveraging
big data and machine learning. In 2015 IEEE International Conference on Big
Data (Big Data), pages 1019–1024. IEEE, 2015.

[8] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
internal representations by error propagation. Technical report, California Univ
San Diego La Jolla Inst for Cognitive Science, 1985.

[9] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436, 2015.

[10] & Athanasopoulos G. Hyndman, R.J. Forecasting: principles and practice, 2nd
edition. https://otexts.com/fpp2/, 2018. [Online; accessed 07-May-2019].

[11] Aurélien Géron. Hands-on machine learning with Scikit-Learn and TensorFlow:
concepts, tools, and techniques to build intelligent systems. " O’Reilly Media,
Inc.", 2017.

[12] Todd E Clark and Michael W McCracken. Improving forecast accuracy by
combining recursive and rolling forecasts. International Economic Review,
50(2):363–395, 2009.

55

https://data.worldbank.org/indicator/en.co2.tran.zs
https://data.worldbank.org/indicator/en.co2.tran.zs
https://data.worldbank.org/indicator/en.co2.tran.zs
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32010L0040
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32010L0040
https://otexts.com/fpp2/

References

[13] Souhaib Ben Taieb, Gianluca Bontempi, Amir F Atiya, and Antti Sorjamaa. A
review and comparison of strategies for multi-step ahead time series forecasting
based on the nn5 forecasting competition. Expert systems with applications,
39(8):7067–7083, 2012.

[14] Ben Goertzel and Cassio Pennachin. Artificial general intelligence, volume 2.
Springer, 2007.

[15] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY,
USA, 1 edition, 1997.

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[17] B Mehlig. Artificial neural networks. arXiv preprint arXiv:1901.05639, 2019.
[18] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,

Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252,
2015.

[19] Lund Research Ltd. Spearman’s rank-order correla-
tion. https://statistics.laerd.com/statistical-guides/
spearmans-rank-order-correlation-statistical-guide.php, 2018.
[Online; accessed 17-May-2019].

[20] Thomas G Dietterich. Machine learning for sequential data: A review. In Joint
IAPR international workshops on statistical techniques in pattern recognition
(SPR) and structural and syntactic pattern recognition (SSPR), pages 15–30.
Springer, 2002.

[21] Gianluca Bontempi, Souhaib Ben Taieb, and Yann-Aël Le Borgne. Machine
learning strategies for time series forecasting. In European business intelligence
summer school, pages 62–77. Springer, 2012.

[22] William Jay Conover and William Jay Conover. Practical nonparametric statis-
tics. 1980.

[23] Marco Lippi, Matteo Bertini, and Paolo Frasconi. Short-term traffic flow fore-
casting: An experimental comparison of time-series analysis and supervised
learning. IEEE Transactions on Intelligent Transportation Systems, 14(2):871–
882, 2013.

[24] Yisheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li, and Fei-YueWang. Traffic
flow prediction with big data: a deep learning approach. IEEE Transactions
on Intelligent Transportation Systems, 16(2):865–873, 2015.

[25] Michael Nielsen. Neural networks and deep learning. [Online; accessed 13-
March-2019].

[26] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning
representations by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[27] Paul J Werbos. Generalization of backpropagation with application to a recur-
rent gas market model. Neural networks, 1(4):339–356, 1988.

[28] Yonghui Wu and Mike Schuster et al. Google’s neural machine translation
system: Bridging the gap between human and machine translation. CoRR,
abs/1609.08144, 2016.

56

http://www.deeplearningbook.org
https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide.php
https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide.php

References

[29] Sepp Hochreiter. The vanishing gradient problem during learning recurrent neu-
ral nets and problem solutions. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 6(02):107–116, 1998.

[30] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[31] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[32] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learn-
ing, 20(3):273–297, 1995.

[33] MongoDB Inc. What is nosql? https://www.mongodb.com/nosql-inline/,
2019. [Online; accessed 05-May-2019].

[34] Albertas Krisciunas. Benefits of nosql. https://www.devbridge.com/
articles/benefits-of-nosql/, 2014. [Online; accessed 06-May-2019].

[35] MongoDB Inc. Mongodb manual - glossary. https://docs.mongodb.com/
manual/reference/glossary/#term-collection, 2019. [Online; accessed 07-
May-2019].

[36] Rest API Tutorial. Json data types. https://restfulapi.net/
json-data-types/, 2019. [Online; accessed 07-May-2019].

[37] MongoDB Inc. Mongodb architecture guide. https://resources.mongodb.
com/mongodb-architects/mongodb-architecture-guide/, 2017. [Online;
accessed 07-May-2019].

[38] MongoDB Inc. Mongodb atlas. https://www.mongodb.com/cloud/atlas/,
2019. [Online; accessed 07-May-2019].

[39] Nesreen K Ahmed, Amir F Atiya, Neamat El Gayar, and Hisham El-Shishiny.
An empirical comparison of machine learning models for time series forecasting.
Econometric Reviews, 29(5-6):594–621, 2010.

[40] Felix A Gers, Douglas Eck, and Jürgen Schmidhuber. Applying lstm to time
series predictable through time-window approaches. In Neural Nets WIRN
Vietri-01, pages 193–200. Springer, 2002.

[41] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. Statis-
tical and machine learning forecasting methods: Concerns and ways forward.
PloS one, 13(3):e0194889, 2018.

[42] Jyun-Yan Yang, Li-Der Chou, Yu-Chen Li, Yu-Hong Lin, Shu-Min Huang,
Gwojyh Tseng, Tong-Wen Wang, and Shu-Ping Lu. Prediction of short-term
average vehicular velocity considering weather factors in urban vanet environ-
ments. In 2010 International Conference on Machine Learning and Cybernetics,
volume 6, pages 3039–3043. IEEE, 2010.

[43] Fangce Guo, John W Polak, and Rajesh Krishnan. Comparison of modelling
approaches for short term traffic prediction under normal and abnormal con-
ditions. In 13th International IEEE Conference on Intelligent Transportation
Systems, pages 1209–1214. IEEE, 2010.

[44] Python Software Foundation python language reference, version 3.6.7. http:
//www.python.org. Accessed: 2019-04-18.

57

https://www.mongodb.com/nosql-inline/
https://www.devbridge.com/articles/benefits-of-nosql/
https://www.devbridge.com/articles/benefits-of-nosql/
https://docs.mongodb.com/manual/reference/glossary/#term-collection
https://docs.mongodb.com/manual/reference/glossary/#term-collection
https://restfulapi.net/json-data-types/
https://restfulapi.net/json-data-types/
https://resources.mongodb.com/mongodb-architects/mongodb-architecture-guide/
https://resources.mongodb.com/mongodb-architects/mongodb-architecture-guide/
https://www.mongodb.com/cloud/atlas/
http://www.python.org
http://www.python.org

References

[45] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason
Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, and Carol
Willing. Jupyter notebooks – a publishing format for reproducible compu-
tational workflows. In F. Loizides and B. Schmidt, editors, Positioning and
Power in Academic Publishing: Players, Agents and Agendas, pages 87 – 90.
IOS Press, 2016.

[46] MongoDB Inc. Pymongo 3.8.0 documentation. https://api.mongodb.com/
python/current/, 2019. [Online; accessed 05-May-2019].

[47] Travis Oliphant. NumPy: A guide to NumPy. USA: Trelgol Publishing, 2006–.
[Online; accessed 05-May-2019].

[48] Wes McKinney. Data structures for statistical computing in python. In Stéfan
van der Walt and Jarrod Millman, editors, Proceedings of the 9th Python in
Science Conference, pages 51 – 56, 2010.

[49] F. Pedregosa and G. et al. Varoquaux. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[50] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science
& Engineering, 9(3):90–95, 2007.

[51] Martín Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[52] François Chollet. keras. https://github.com/fchollet/keras, 2015.
[53] HERE Technologies. Here developer documentation. https://developer.

here.com/documentation, 2019. [Online; accessed 08-May-2019].
[54] HERE Technologies. Traffic api. https://developer.here.com/

documentation/traffic/topics/what-is.html, 2019. [Online; accessed 08-
May-2019].

[55] HERE Technologies. Destination weather api. https://developer.here.com/
documentation/weather/topics/overview.html, 2019. [Online; accessed 08-
May-2019].

[56] Jason Brownlee. On the suitability of long short-term memory net-
works for time series forecasting. https://machinelearningmastery.com/
suitability-long-short-term-memory-networks-time-series-forecasting/,
2017. [Online; accessed 16-May-2019].

[57] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. In-datacenter performance analysis of a tensor processing
unit. In 2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), pages 1–12. IEEE, 2017.

[58] Inc. Google. Cloud tpu. https://cloud.google.com/tpu/, 2019. [Online;
accessed 05-May-2019].

[59] Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng Tang, Yitian Jia, Siyu Lu, Pinghua
Gong, Jieping Ye, and Zhenhui Li. Deep multi-view spatial-temporal network
for taxi demand prediction. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[60] Jingqing Zhang. Short-term traffic prediction: Modelling temporal-spatial fea-
tures in local highway networks with deep neural networks. 2018.

58

https://api.mongodb.com/python/current/
https://api.mongodb.com/python/current/
https://github.com/fchollet/keras
https://developer.here.com/documentation
https://developer.here.com/documentation
https://developer.here.com/documentation/traffic/topics/what-is.html
https://developer.here.com/documentation/traffic/topics/what-is.html
https://developer.here.com/documentation/weather/topics/overview.html
https://developer.here.com/documentation/weather/topics/overview.html
https://machinelearningmastery.com/suitability-long-short-term-memory-networks-time-series-forecasting/
https://machinelearningmastery.com/suitability-long-short-term-memory-networks-time-series-forecasting/
https://cloud.google.com/tpu/

References

[61] Xiaolei Ma, Zhuang Dai, Zhengbing He, Jihui Ma, Yong Wang, and Yunpeng
Wang. Learning traffic as images: a deep convolutional neural network for
large-scale transportation network speed prediction. Sensors, 17(4):818, 2017.

I

A
Appendix 1

A.1 Model Implementations
This section walks through the implementation of the various forecasting models.
This was done in accordance with the explanations given in Section 2.4. For the
machine learning models, the choice of hyperparameters will also be described. In
deciding which hyperparameters to use, a grid search was performed. This was done
using a finished tool in the library scikit-learn, called GridSearchCV. Additionally,
the window size n must be chosen. A larger window size means more temporal
context, and therefore possibly more accurate forecasts, but also a longer compu-
tational complexity. After some testing, it was realized that the window size must
be chosen based on the horizon. A shorter horizon did not require nearly as long
of a time window compared to longer horizons. The window sizes chosen for each
horizon are therefore summarized in Table A.1.

Horizon 10 min
(h = 1)

1 hour
(h = 6)

6 hours
(h = 36)

12 hours
(h = 72)

24 hours
(h = 144)

Window size 2 hours
(n = 12)

6 hours
(n = 144)

1 day
(n = 144)

2 days
(n = 288)

2 days
(n = 288)

Table A.1: Chosen window sizes for each forecasting horizon used in all experiments.

The training phase of the various machine learning models does include various
random events that may cause the accuracy to differ slightly from time to time.
Solving this was done by evaluating each ML model ten times and presenting the
average of these.

A.1.1 Naive Approach
This model sets the forecasted traffic flow equal to the current time step.

1 p r ed i c t i o n s = l i s t ()
2 # Walk-forward validation
3 f o r i in range (l en (testY)) :
4 y_hat = te s t_se t [i]
5 p r ed i c t i o n s . append (y_hat) �
II

A. Appendix 1

A.1.2 Seasonal Naive Approach
This model sets the forecasted traffic flow equal to corresponding flow at the same
time step the week before. With the weekends included in the dataset, the period
of the seasonality is 1 week (1008 time steps). Thus, m is set to 1008.

1 data = t ra in ing_se t
2 p r ed i c t i o n s = l i s t ()
3 m = 1008 # Seasonality
4 # Walk-forward validation
5 f o r i in range (l en (testY)) :
6 y_hat = data [l en (data) − m + hor izon]
7 data = np . append (data , t e s t_se t [i])
8 p r ed i c t i o n s . append (y_hat) �
A.1.3 Seasonal Historical Average
This is similar to the Seasonal Naive approach, except it averages over all previous
days for the same time step being forecasted.

1 data = t ra in ing_se t
2 p r ed i c t i o n s = l i s t ()
3 m = 1008 # Seasonality
4 # Walk-forward validation
5 f o r i in range (l en (testY)) :
6 seasonal_sum = 0
7 l = l en (data)
8 num_seasons = in t (l / m)
9 f o r j in range (1 , num_seasons+1) :

10 seasonal_sum += data [l + hor i zon − 1 − j ∗ m]
11 y_hat = seasonal_sum / num_seasons
12 data = np . append (data , t e s t_se t [i])
13 p r ed i c t i o n s . append (y_hat) �
A.1.4 ARIMA
The ARIMA order used was empirically set to (1,1,0). The middle parameter decides
the degree of differencing and is set to one. This means that the time series was
differenced one time in order to achieve stationarity.

1 from stat smode l s . t sa . arima_model import ARIMA
2 data = t ra in ing_se t
3 p r ed i c t i o n s = l i s t ()
4 f o r i in range (l en (testY)) :
5 model = ARIMA(data [i :] , o rder =(1 ,1 ,0))
6 model_fit = model . f i t (d i sp=0)
7 output = model_fit . f o r e c a s t (s t ep s=h)
8 yhat = output [0] [h − 1]
9 data . append (t e s t_se t [i])

10 p r ed i c t i o n s . append (yhat) �
III

A. Appendix 1

A.1.5 FFNN

Table A.2 shows the chosen hyperparameters for the FFNN model. It can be seen
that the number of neurons in experiment (3) increases. This is logical since the
first two experiments produce forecasts based on one feature. Only 100 neurons in
each layer was necessary to deal with that much data. For experiment (3), however,
more features were considered and therefore more data had to be analyzed by the
network. This consequently required the network to consist of more neurons. Also,
a regularization technique called dropout was used to reduce overfitting (see code
implementation).

Exp. (1) Exp. (2) Exp. (3)
Number of hidden layers 3 3 3
Neurons in each layer 200 200 500

learning rate 0.01 0.01 0.01
Epochs 60 60 60

Batch size 30 30 60

Table A.2: FFNN hyperparameters.

Note that the class Dense represents a fully connected layer in the code below.

1 import t en so r f l ow as t f
2 from keras import Sequent i a l
3 from keras . l a y e r s import Dense , Dropout , Act ivat ion
4

5 # Flatten input (to support multivariate input)
6 n_input = trainX . shape [1] ∗ trainX . shape [2]
7 trainX = trainX . reshape ((trainX . shape [0] , n_input))
8

9 n_input = testX . shape [1] ∗ testX . shape [2]
10 testX = testX . reshape ((testX . shape [0] , n_input))
11

12 # Create multilayered FFNN model
13 model = Sequent i a l ()
14 model . add (Dense (100 , a c t i v a t i o n= ' r e l u ' , input_dim=trainX . shape [1]))
15 model . add (Dropout (0 . 2))
16 model . add (Dense (100 , a c t i v a t i o n= ' r e l u '))
17 model . add (Dropout (0 . 2))
18 model . add (Dense (100 , a c t i v a t i o n= ' r e l u '))
19 model . add (Dense (trainY . shape [1]))
20 model . compi le (l o s s="mae" , opt imize r= 'adam ')
21 model . summary ()
22

23 # Fit model
24 h i s t o r y = model . f i t (trainX , trainY , epochs=60, verbose=1)
25

26 # Predict the test set
27 p r ed i c t i o n s = model . p r ed i c t (testX) �

IV

A. Appendix 1

A.1.6 LSTM
The LSTM network similarly required more neurons for experiment (3), and is shown
in Table A.3. The number of epochs used was only 30 because the training time for
LSTM networks is significantly longer.

Exp. (1) Exp. (2) Exp. (3)
Number of hidden layers 2 2 2
Neurons in each layer 32 32 100

learning rate 0.01 0.01 0.01
Epochs 30 30 30

Batch size 60 60 100

Table A.3: LSTM hyperparameters.

1 import t en so r f l ow as t f
2 from keras import Sequent i a l
3 from keras . l a y e r s import Dense , Dropout , LSTM, Act ivat ion
4

5 # Create LSTM model
6 model = Sequent i a l ()
7 model . add (LSTM(32 , input_shape=(trainX . shape [1] ,
8 trainX . shape [2]) , return_sequences=True))
9 model . add (LSTM(32))

10 model . add (Dense (trainY . shape [1]))
11 model . summary ()
12 model . compi le (l o s s="mae" , opt imize r= 'adam ')
13

14 # Fit model
15 h i s t o r y = model . f i t (trainX , trainY , epochs=30, verbose=1)
16

17 # Predict the test set
18 p r ed i c t i o n s = model . p r ed i c t (testX) �
A.1.7 CNN
Table A.4 shows the chosen hyperparameters for the CNN model. All CNN models
used consisted of 3 hidden layers. One convolutional layer, one max pooling layer,
and finally one fully connected layer. Various parameters chosen for the first two
layers (such as filters and kernel size) are shown in the code below. The number of
neurons in the fully connected layer is presented in Table 4.2.

1 import t en so r f l ow as t f
2 from keras import Sequent i a l
3 from keras . l a y e r s import Dense , Dropout , Conv1D , MaxPooling1D , Flatten ,

Act ivat ion
4

5 # Create CNN model
6 model = Sequent i a l ()

V

A. Appendix 1

Exp. (1) Exp. (2) Exp. (3)
Number of hidden layers 3 3 3

Neurons in fully connected layer 50 50 200
learning rate 0.01 0.01 0.01

Epochs 60 60 60
Batch size 30 30 60

Table A.4: CNN hyperparameters.

7 model . add (Conv1D(f i l t e r s =16, k e rne l_s i z e =3, a c t i v a t i o n= ' r e l u ' ,
input_shape=(trainX . shape [1] , trainX . shape [2])))

8 model . add (MaxPooling1D (poo l_s i ze=2))
9 model . add (Flat ten ())

10 model . add (Dense (10 , a c t i v a t i o n= ' r e l u '))
11 model . add (Dense (trainY . shape [1]))
12 model . compi le (l o s s= 'mse ' , opt imize r= 'adam ')
13 model . summary ()
14

15 # Fit model
16 h i s t o r y = model . f i t (trainX , trainY , epochs=60, verbose=1)
17

18 # Predict the test set
19 p r ed i c t i o n s = model . p r ed i c t (testX) �
A.1.8 Support Vector Regression
No grid search optimization was performed for the SVR model. The parameters
used are the ones shown in the code below.

1 from sk l ea rn import svm
2 from sk l ea rn . svm import SVR
3

4 # Flatten input data (to support multivariate input)
5 n_input = trainX . shape [1] ∗ trainX . shape [2]
6 trainX = trainX . reshape ((trainX . shape [0] , n_input))
7

8 n_input = testX . shape [1] ∗ testX . shape [2]
9 testX = testX . reshape ((testX . shape [0] , n_input))

10

11 # Create SVR model
12 c l f = SVR(ke rne l=" rb f " , degree=2, C=100 , e p s i l o n =.01)
13

14 # Fit model
15 c l f . f i t (trainX , trainY)
16

17 # Predict the test set
18 p r ed i c t i o n s = c l f . p r ed i c t (testX) �

VI

	List of Figures
	List of Tables
	Introduction
	Background and Motivation
	Objectives and Scope
	Delimitations
	Syntax Convention

	Theory
	Traffic Flow
	Temporal Correlations
	Spatial Correlations

	Forecasting
	Time Series
	Time Series Forecasting
	Time Series Split
	Evaluating a Forecasting Model
	Multi-step Forecasting

	Machine Learning
	Introduction
	Types of Learning Algorithms
	Overfitting and Underfitting
	Feature Engineering
	Data Preparation
	Hyperparameters

	Forecasting Models
	Baseline Methods
	ARIMA
	Feedforward Neural Network
	Recurrent Neural Network
	Convolutional Neural Network
	Support Vector Regression

	Database Management
	NoSQL
	MongoDB

	Previous Work

	Method
	Software
	Data Collection
	Traffic Data
	Weather Data

	Data Format
	Data Analysis
	Experiments
	Forecasting Horizon
	Experiment (1): Univariate input forecast
	Experiment (2): Univariate input forecast (without holidays)
	Experiment (3): Multivariate input forecast (without holidays)
	Expectations

	Data Preparation
	Feature Engineering
	Data Split
	Time Series Forecasting as a Supervised Problem
	Data Scaling

	Model Evaluation

	Results
	Discussion and Conclusion
	Experiments
	Data Collection
	Feature Engineering
	Future work
	Conclusion

	Bibliography
	Appendix 1
	Model Implementations
	Naive Approach
	Seasonal Naive Approach
	Seasonal Historical Average
	ARIMA
	FFNN
	LSTM
	CNN
	Support Vector Regression

