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Abstract

It is common among on-line publishers to monetize their visitors by
displaying advertisements. To do so, they have the option to use sys-
tems called display-ad exchanges to help decide which advertisements
are shown to each visitor.

The key challenge is to allocate advertisements to viewers in a real
time setting. This thesis develops a model that optimizes how the display-
ad exchange spends the budget of advertisers in order to maximize the
revenue of the publisher. This problem is virtually unaddressed in liter-
ature.

The model is constructed by combining an off-line linear program-
ming model with a linear regression model for web traffic prediction.
This combination renders a solution from which it is possible to measure
return-on-investment values that can be used by the display-ad exchange
to increase the publisher revenue.

The thesis develops a greedy Baseline algorithm that simulates key
characteristics of a real display-ad exchange. Comparing the return-on-
investment heuristic with the Baseline for a set of real data, shows a 2%
increase in publisher revenue. This increase is achieved by spending ad-
vertiser budgets more efficiently. The off-line linear programming model
shows theoretical revenue improvements in the region of 6%, and that
this figure depends on how many advertisers completely consume their
budgets.
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1

Introduction

On-line publishers, such as Göteborgs Posten1 and Aftonbladet2 can monetize
their visitors by displaying advertisements. They have the option to use ad-
vanced systems called ad exchanges to help them decide which advertisements
are shown to their visitors.

There exist two main types of ad-exchanges:

Search-ad exchanges (Figure 1.1) like Google AdWords, pick which ad-
vertisements are shown to each visitor based on keywords provided by
the visitor. Most literature available focuses on search-ad exchanges.

Figure 1.1: Example of advertisements picked by a search-based ad exchange. The
user has provided two keywords “hotels” and “gothenburg”. The search-ad exchange
shows advertisements relating to the two keywords, in this case it is recommendations
for hotels in the Gothenburg area.

Display-ad exchanges (Figure 1.2) decide what advertisements are shown
to each visitor based on relevant available parameters such as: character-
istics of the advertisements and the advertisers; contextual information
of the website; and visitor behaviour and demographics if available.

This thesis is about maximizing the revenue of publishers that use display-
ad exchanges. In a display-ad exchange (hereafter referred to as ad exchange)

1http://gp.se
2http://www.aftonbladet.se
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1.1. Problem definition

Figure 1.2: Advertisements at the website of an on-line publisher. Advertisements
are selected subject to contextual information, characteristics of the advertisements
and other parameters available to the display-ad exchange.

the publisher has a set of placements on his website; advertisers bid money to
have their advertisements shown on the publishers placements; the ad exchange
picks the winning bidder and the winner gets their advertisement shown. The
bid is what renders revenue to the publisher.

For both types of ad exchanges there exists literature attempting to find
optimal bidding strategies for the advertisers. In this thesis we diverge from
the perspective of the advertiser and assume the perspective of the publisher,
something not commonly done.

1.1 Problem definition

The publisher wants to maximize his revenue. The revenue comes from the
advertisers who place bids to have their advertisements shown. The adver-
tiser pays the publisher either per thousand views of an advertisement, when
a visitor clicks the advertisement, or performs some other action on the ad-
vertiser’s site after viewing or clicking on the advertisement. The advertisers
often also have a limited budget to spend and as the ad exchange greedily picks
the advertisement that has the highest expected revenue, this does not take
into account the fact that it might be more profitable to save the advertiser’s
budget for a different visitor, placement or time when the expected revenue
of this advertisement might be higher. We look at the problem of advertiser
budget optimization from the perspective of the publisher. Optimizing how the
publisher utilizes the budgets of advertisers means that we want to consume
the budget of the advertisers using as few views as possible.

The idea is that some advertisers will completely consume their budgets dur-
ing some time period, and some advertisers will not. By reducing the amount
of web traffic used by advertisers consuming their budgets, the remaining ad-
vertisers will have more web traffic available to them. The effect is increased
revenue for the publisher.

2



1.2. A budget optimization model

Difficulties
The problem is difficult for a set of reasons: (i) publishers receive large amounts
of web traffic each day (tens or hundreds of millions of advertisements must
be displayed), and each visitor must be served in real-time; (ii) publishers
have a large set of placements and advertisers, making the problem of picking
advertisements for placements combinatorially difficult; (iii) visitors arrive to
the publisher in an on-line fashion. The pattern in which the visitors arrive is
difficult to predict. Consequently, this makes it difficult to decide if to show an
advertisement now, or save it for later; (iv) ad exchanges are dynamic systems:
advertisers, placements and bids can enter and leave the system at any time.

The problem is both relevant and important since even a slight increase in
publisher revenue subsequently renders an increase in revenue for the ad ex-
change provider. It also strengthens the competitive edge for the ad exchange,
making the system more marketable and appealing to on-line publishers.

1.2 A budget optimization model

In this thesis we will present a complete budget optimization model, some-
thing that has not been done before. We will show a theoretical increase in
revenue of 6% and an on-line heuristic that increases the revenue by 2% in a
real-time production-like system using real data. Furthermore, we show that
the advertisers that completely consume their budget do so in 8% fewer adver-
tisement views, indicating that we are also better at choosing the right target
audience to show the advertisements to. The budget optimization model is
plug-in by nature, meaning that it does not depend on the inner workings of
the ad exchange to be usable.

In Chapter 2 we give a full description of the problem and its domain. We
explain the input data that we have used in Chapter 3. All data used in this
thesis is provided by Admeta3. Admeta is a Gothenburg based company that
develops a display-ad exchange called Tango.

To get a measure of the potential for optimization, we define a greedy
baseline algorithm in Chapter 4. The Baseline algorithm closely resembles the
behavior of a real ad exchange.

In Chapter 5 we look at the problem from an off-line perspective, i.e., we
temporarily remove the on-line part of the problem and assume that we have
the observed web traffic for a given day. From this perspective the problem is
strictly combinatorially difficult. We develop a linear programming (LP) model
for solving the off-line optimization. The LP gives a revenue upper bound and
indicates that there is potential for increased revenue. The output of the LP
is an optimal, static placement× advertisement× time allocation for received
web traffic.

We will see that the increase in revenue rendered by the off-line optimization
compared to the greedy Baseline algorithm is largely dependent on how many
advertisers in the ad exchange completely consume their budget.

With the LP in place we define a linear regression model in Chapter 6 for
predicting website traffic. Using the predictions as input to the LP we can get
an estimation of what would be an optimal allocation for the next day. We

3http://www.admeta.com
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1.2. A budget optimization model

will see that the linear regression model can render fairly accurate predictions
for the most significant placements, but that the dynamics of the ad exchange
present problems when we do large-scale predictions.

Since the output of the LP is a static allocation of web traffic, even if it is
an optimal solution for the prediction, it is not something that is immediately
usable in the on-line scenario. Since placements, orders and bids can be added,
removed and changed at any time during the days, the heuristic must be flexible
enough to handle these changes.

Traffic

prediction

model

LP-Model ROI FinderIntermediate

optimal solution

On-line

algorithm

Predicted

traffic

Observed traffic Solution

ROI

matrix

Figure 1.3: The budget optimization model.

Chapter 7 will present the final on-line optimization heuristic. By taking
the static LP solution for the predicted web traffic, and measuring return on
investment (ROI) values, we can use the ROI values to adjust the bids of
advertisers for use in the on-line scenario. This approach is flexible enough
since it does not depend on some static allocation, making it useful in practice.

The complete model can be seen in Figure 1.3. The budget optimization
model reduces the amount of web traffic used by advertisers completely con-
suming their budgets by 8%, and increases the total revenue of the publisher
by 2%.

4



2

Background

In this chapter we will give a comprehensive description of the domain of ad
exchanges; a formal problem definition and a brief description of related work.

2.1 Domain description

At the highest level in the ad exchange, we have publishers. Publishers own
websites, and they define areas on these websites where they allow the ad
exchange to place advertisements. These areas are called placements.

Placements
Placements are rectangular areas on websites where advertisements can be
shown. If we hide the advertisements in Figure 1.2 we can observe the place-
ments in Figure 2.1.

Figure 2.1: Two placements at the website of a publisher.

It is the job of the ad exchange to decide to which visitor and on what
placement an advertisement is shown. Advertisements that can be shown on
placements are called materials.

Materials
Materials are advertisements that can be allocated to placements by the ad
exchange. We have two different types of materials:

5



2.1. Domain description

Figure 2.2: An example of a creative ma-
terial.

Figure 2.3: An example of a text mate-
rial.

Creative materials (Figure 2.2) are images or something more dynamic,
such as an Adobe Flash animation. Creative materials cover whole place-
ments, i.e., we can fit at most one Creative material per placement.

Text materials (Figure 2.3) are a short piece of text that may be coupled
with a small static image. Depending on the size of placements, it is
possible to fit many text materials on one placement. Each placement
has its own text material capacity defining how many text materials can
fit at the same time. As not all placements accept text materials, the
text material capacity can be zero.

Impressions
When a visitor downloads (views) the publishers website, this is called an
impression. In the context of this thesis we will count placement impressions.
That is, if a website has two placements, and a single visitor enters the site,
we will count two impressions, one for each of the placements. Placement
impressions are independent of how many materials that are actually appearing
on the placement. This allows us to abstract away from the concept of websites,
and only consider a set of placements. This is useful since publishers can have
multiple websites.

Orders
Advertisers supply the publisher with materials by placing orders. An order
is a set of materials coupled with bids (how much the advertiser is willing to
pay to have their materials shown) and a budget. The ad exchange guarantees
that the advertiser will never be charged more money than his budget or his
bid.

Expected Cost per Milli
When choosing which material(s) to display, the ad exchange operates in terms
of estimated Cost per Milli (eCPM). The eCPM is the expected revenue from

6



2.2. Motivational example

showing a material one thousand times. The eCPM for each material is cal-
culated for each impression by combining the bids of the advertisers with the
likelihood that a click (or some other action that the advertiser is paying for)
is performed following display of the material. For the remainder of this thesis,
we will use eCPM as a direct representation of publisher revenue.

The ad exchange picks which materials to put on each placement in a real-
time environment. This means that for each impression the system picks the
highest rated eCPM material in sequence until all placements have materials
assigned to them. Because orders have limited budgets, this is not an optimal
heuristic for picking materials. We illustrate this with an example of greedily
picking a material for a placement in the next section.

2.2 Motivational example

In this example, we have materials A and B with different budgets and eCPM
over time, and two impressions. Note that we only consider one placement in
this example.

For the first impression, material A will be selected, since A has higher
eCPM than B. For the second impression, A still has the highest eCPM , but
not enough budget remaining, so we are forced to choose material B, with an
eCPM of 1.

This renders a suboptimal revenue of 3, compared to the optimum of 6.

Table 2.1: Example why greedy selection is suboptimal. Winning materials are
highlighted in bold.

Material Budget amount Impression eCPM(A) eCPM(B)
A 5 1 2 1
B 10 2 5 1

2.3 Problem definition

We want to maximize publisher revenue by optimizing how the
budgets of advertisers are spent in an existing on-line algorithm.

More precisely: we want to maximize publisher revenue within the context
of an existing ad exchange. We want to find a heuristic that works for the
case where impressions arrive to the publisher in an on-line fashion, and we
must decide per impression what material is shown on what placement in or-
der to maximize the total revenue of the publisher subject to taking careful
consideration of how advertiser budgets are spent.

We have identified a set of sub-problems, or parts, that each needs to be
solved.

1. A formal Baseline for measuring optimization performance.

2. Off-line budget optimization. It is important to note that the output of
this part can not only be a revenue figure, but must be able to provide
an optimal placement×material × time allocation.

7



2.3. Problem definition

Display-ad exchange...

Web traffic

processing

Order and placement

inventory

Traffic

prediction

model

LP-Model ROI FinderIntermediate

optimal solution

On-line

algorithm

Predicted

traffic

ROI

matrix

Web traffic

Budget optimization model

Historic traffic

On-line

traffic

Material

selection

eCPM

predictions

Figure 2.4: The budget optimization model within the context of an ad exchange.
In this thesis we develop the parts in the outlined box labeled “Budget optimization
model”.

3. Prediction of placement impressions (traffic prediction).

4. Development of a heuristic for the on-line budget optimization.

To solve the problem, we will build a complete budget optimization model.
The parts of the model should be as interchangeable as possible. Further, the
runtime of the budget optimization model should preferably be in the region of
minutes - so that the publisher can run the system frequently to take advantage
of the latest eCPM and traffic predictions.

Figure 2.4 shows how our model will fit into the ad exchange.

Limitations
The scope of this thesis is quite broad. While the main objective is to max-
imize publisher revenue subject to advertiser budget constraints, we do have

8



2.4. Related work

some limitations. Primarily, we want our solution to be independent of the ad
exchange system. That is, we are not attempting to re-invent an ad exchange,
and we are not interested in how the eCPM predictions are done. Hence we
will assume that the eCPM predictions are perfect and always available.

The choice of methods used for implementing each of the parts of the budget
optimization model is subject to two main motivations: (1) they are fairly quick
and intuitive to develop and implement; and (2) if an initial approach gives
promising results, it provides a motivation for adding more sophistication later.

As stated in section 2.3, the runtime of the parts are of significance, but it
is not something that we have spent a great amount of effort trying to reduce.
As long as the runtime has (in our estimate) been reasonable, we have been
content.

2.4 Related work

When researching literature on the subject of on-line advertisement and ad
exchanges, one will find that there are a large amount of material available,
but that a lot of the literature takes the perspective of the advertiser ([FHK+10,
BCI+07, ZCL08]), trying to find an optimal strategy for bidding in a system
outside of his control.

Chen et al., in a recent paper [CBAD11] attempts to optimize display-ad
allocation by developing an LP model for observed (recorded) data. They
present an on-line algorithm that is based on solving the dual to the LP to get
values that help them adjust the eCPMs. Further, they explore methods of
Control Theory to adapt the eCPM adjustment parameters while the on-line
algorithm is running.

A more general method of budget optimization is presented in [MNS07] by
Mahdian et al. where they assume an "oracle" that they call Est, which gives
an unreliable estimate on which material to show. By adjusting parameters
on how much they trust Est they claim to achieve better results than either
being completely trusting or completely dismissive of Est.

2.5 Summary

We have presented the domain of display-ad exchanges. We have shown that
the current way of selecting materials for placements renders suboptimal pub-
lisher revenue due to the ad exchange not considering how it spends the budget
of advertisers.

While related work is sparse, there is some. This thesis contributes to
the existing work by presenting a complete budget optimization model that is
independent of the inner workings of the ad exchange.

In the next chapter we will define how we represent the data of the ad
exchange and publishers.

9



3

Data model

The previous chapter presented the budget optimization problem and its do-
main. In this chapter we describe the data model that will be used as input
for each of the parts of the budget optimization model.

We will use real data from two different publishers called Mid and Large.

3.1 Data model format

We have developed a unified data model, as seen in Figure 3.1, that can be
used as input by the methods presented later in this thesis. The data model
captures essential characteristics of a real ad exchange.

Publisher

Materials

Budget

Placements

Orders

Data aggregated by hour

eCPM

predictions

Observed

impressions

Bids

Figure 3.1: The ad exchange data model.

10



3.1. Data model format

In the data model, the publisher is the user of the ad exchange. The
publisher has a set of placements and a set of orders provided by advertisers.

Orders
Each order contains a set of materials, bids and a budget.

The materials are advertisements that the advertiser wants to show visitors
and can be a combination of both creative and text materials.

Depending on the nature of the advertisement campign the advertiser wants
to run, the size of the budgets can vary quite a lot. Further, some advertisers
choose to define daily budgets (i.e., a daily spending limit) in order to control
how the total of their budgets are being spent, e.g., to gain control of the length
of an advertisement campign. If an order has both a total and a daily budget,
the data-model will consider the minimum of the two as the actual budget.

In our data-model we do not have direct access to the bids, instead we make
decisions based on the eCPM predictions, which incorporate the bids.

eCPM predictions
The ad exchange combines materials, bids, placements, time of day and other
parameters to produce an eCPM lookup-table. At any time we can ask the
ad exchange what the eCPM for a given material and placement combination
is. The eCPMs are treated as a direct representation of publisher revenue for
showing a material on a placement, and are used to decide what materials are
shown for each impression.

Observed impressions
We have a set of observed impressions for each placement and time. In the on-
line scenario this is undefined, but from recorded traffic we can read how many
impressions each placement received during previous hours. These recorded
impressions are ordered, so it is possible to trace exactly when each placement
received impressions. This is useful in the Baseline algorithm, as it allows the
algorithm to perform a trace of observed placement impressions, but substitut-
ing the real ad exchange with our own method of material selection.

Data observations
Since the ad exchange operates in terms of eCPM, the behavior of eCPMs is of
interest. eCPMs vary over both time and placement. As we can see in Figure
3.2 there can be fairly large fluctuations in the eCPM for an order×placement
combination over time. As the ad exchange greedily picks the highest eCPM
material for each impression, it will not consider future time periods when the
eCPM might be higher, as seen in the figure.

Further, Figure 3.3 illustrates that eCPM vary over placements for an
order× time combination. Since the publisher receives placement impressions,
we need to decide for each impression if we should show a material, or save the
budget for a later impression that is possibly on another placement when the
eCPM might be higher.
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3.2. Output data format
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Figure 3.2: eCPM over time for an order × placement combination.
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Figure 3.3: eCPM over different placements for an order × time combination.

3.2 Output data format

The output of the budget optimization methods presented in this thesis uses the
same output data format. All methods render a placement×material× time
impression allocation as seen in Table 3.1.

Using this output format we can read the number of impressions allocated
to each placement×material× hour combination, and the revenue generated
from doing so.
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3.3. Case-study data

Table 3.1: An excerpt from a placement ×material × hour impression allocation.
The values in the placement and material columns are id-numbers.

Hour Placement Material Assigned Impressions eCPM
. . .
9 42994 69368 4 0.00666033
9 51294 68882 3 0.00667524
9 53822 68882 7 0.0055314
. . .

3.3 Case-study data

We have two publishers that we will use in the examples for the remainder of
the thesis. One mid-size publisher Mid and one large-size publisher Large.

We store the data on a daily basis (day-states), and aggregate impressions
by hour. The data in each day-state is static, but since publishers can enable
and disable placements, and orders enter and leave the system, the day-states
can vary between days by more than just the received traffic.

When looking at the data and doing experiments we will be using days
between the 12th of March 2012 to the 25th of March 2012. Due to some
issues with the data, we have 13 days of data for Mid and 11 days of data
for publisher Large. All the tables in the next sections are averages over the
respective day-states.

Publisher Mid
We present some descriptive statistics for the Mid publisher.

Table 3.2: Impressions statistics for Mid
over the 13 days.

Measure Impressions
Min 5,457,141
Max 10,525,559
Average 8,155,977

Table 3.3: Order count for Mid over the
13 days.

Measure Number of orders
Min 30
Max 45
Average 39

Table 3.4: Placement count for Mid over
the 13 days.

Measure Number of placements
Min 5873
Max 7269
Average 6706

Table 3.5: Material count for Mid over
the 13 days.

Measure Number of materials
Min 150
Max 247
Average 198

Publisher Large
The main difference between Mid and Large is the amount of impressions
received. Large has fewer placements and receives more traffic.

13



3.4. Summary

Table 3.6: Impressions statistics for
Large over the 11 days.

Measure Impressions
Min 21,687,735
Max 34,761,381
Average 29,005,436

Table 3.7: Order count for Large over
the 11 days.

Measure Number of orders
Min 82
Max 88
Average 86

Table 3.8: Placement count for Large
over the 11 days.

Measure Number of placements
Min 1,569
Max 1,717
Average 1,669

Table 3.9: Material count for Large over
the 11 days.

Measure Number of materials
Min 490
Max 611
Average 566

3.4 Summary

We have described the data format that will be used as input for the Baseline in
Chapter 4, the off-line optimization model in Chapter 5, the traffic prediction
in Chapter 6 and the on-line optimization heuristic in Chapter 7.

We have seen how eCPM changes over both time and placement. The
observations implies that there exists potential for optimizing how materials
are being selected, since the current ad exchange is unable to consider higher
eCPM impressions in the future.

We have shown real data for two publishers, Mid and Large. Mid and
Large will be used in the experiments for the rest of this thesis.
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4

A formal Baseline algorithm

In the previous chapter we defined the input data model. This chapter will
present a greedy Baseline algorithm that simulates a real ad exchange. We will
see that the Baseline algorithm is unable to consider high eCPM impressions
arriving late in the day due to over-spending of order budgets early in the day.
This motivates the development of a budget optimization model.

The revenue of the Baseline algorithm will be used as a revenue lower bound.

4.1 An ad exchange algorithm

We want our Baseline algorithm to parse impressions in a greedy on-line fash-
ion, and for each placement impression pick the highest eCPM material m, if
the order containing m has enough budget left.

We have developed a simple, greedy algorithm that illustrates the behaviour
of the ad exchange. It is defined in Algorithm 1.

Algorithm 1 Ad exchange algorithm
I := stream of placement impressions
eCPMm,i := revenue of showing material m for impression i
M := Set of materials.
order(m) := remaining budget for order containing material m
for all i ∈ I do
sort(M) w.r.t. eCPMm∈M,i

for all m ∈M do
if order(m)− eCPMm,i ≥ 0 then
show material m for this impression
reduce order(m) by eCPMm,i

break m ∈M loop
end if

end for
end for

Algorithm 1 sorts the materials by eCPM highest to lowest for each place-
ment, and picks the first material with enough budget left. While this serves
to give an easy to grasp representation of the problem, it does not consider
text materials, and it is not adapted to our data model format.
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4.2. The Baseline algorithm

4.2 The Baseline algorithm

Algorithm 1 picks the highest eCPM material m as long as the order of m has
budget left. It parses all impressions in sequence.

However, we need more domain constraints in our Baseline to be able to
parse the data we have available. Most importantly, we need to be able to
consider creative materials as well as text materials. Adding these considera-
tions will further enhance the relevance of the results of the Baseline as well.
Recall from Chapter 3 that our eCPM predictions and placement impressions
are aggregated by hour. The ordering of the impressions is preserved, but they
are divided into a separate set for each time-period in the system.

We adapt Algorithm 1 to consider these additions in Algorithm 2.

Algorithm 2 The Baseline algorithm.
T := ordered set of time-periods.
It := stream of ordered placement impressions divided into hours t ∈ T .
placement(i) := placement for impression i.
P := set of placements.
eCPMt,p,m := revenue of showing material m on placement p at time t.
order(m) := remaining budget for order containing material m.
C := set of creative materials.
T := set of text materials.
Cp := text material capacity for placement p.

for all t ∈ T do
for all p ∈ P do
Cp ← sort C w.r.t. eCPMt,p,m

Tp ← sort T w.r.t. eCPMt,p,m

end for
for all i ∈ It do
p← placement(i)
c← takeWithBudgetLeft(Cp, 1)
ts← takeWithBudgetLeft(Tp,Cp)
if eCPMt,p,c ≥

∑
m∈ts eCPMt,p,m then

assign c to i
order(c)← order(c)− eCPMt,p,c

else
for all m ∈ ts do
assign m to i
order(m)← order(m)− eCPMt,p,m

end for
end if

end for
end for

Algorithm 2 looks at each time period, and sorts the materials per placement
by their eCPMs, highest to lowest. The function takeWithBudgetLeft takes
an ordered set of materials M and an integer n as input; it returns the first
available set s ⊂ M where |s| = n and each element of s is unique; and each
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4.3. Comparison to production

order(m) for all m ∈ s have sufficient budget left to be charged the current
eCPM of m.

The algorithm parses the stream of impressions It, for each hour it picks the
best creative material c, and a set of the highest eCPM text materials ts. The
algorithm then picks either material c or the set of materials ts as the “winner”
for the impression i by which has the highest eCPM total. The winner(s) are
charged the eCPM to their budget, and the procedure is repeated until all
impressions are parsed.

4.3 Comparison to production

The Baseline (Algorithm 2) is not an exact match of what is used in a production-
level ad exchange. There are a significant amount of constraints that the pro-
duction algorithm considers that the Baseline does not. However, it does cap-
ture the most relevant aspects, and comparisons with the production system
show that the revenue figures produced by the Baseline are in the same “ball-
park” as the actual revenue that was realized.

4.4 Baseline budget distribution and performance

To illustrate how the Baseline performs, and further motivate the need for a
budget optimization model, we present a graph seen in Figure 4.1 that shows
how the Baseline distributes the budgets over time for two example orders
belonging to Mid.
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Figure 4.1: Budget utilization by the Baseline algorithm for two example orders.
The orders belong to Mid.
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4.5. Summary

It is clear that the Baseline algorithm has a strong tendency to aggressively
spend the budgets of the orders early in the day. By consuming the budgets
too early, the Baseline is unable to consider high eCPM impressions that arrive
late in the day. We know these kind of impressions exist, as seen in Figure 3.2.
By implementing a budget optimization model in the following chapters we can
allocate impressions more efficiently, rendering higher publisher revenue.

4.5 Summary

We have presented a formal greedy Baseline algorithm that simulates how
materials are selected in a real ad exchange. The output of the Baseline serves
to provide a measurement of the increase in revenue of both the off-line budget
optimization and the on-line budget optimization.

We further illustrated that the Baseline algorithm utilizes the budgets of
orders in an aggressive, and seemingly sub-optimal fashion, since the algorithm
is unable to consider high eCPM impressions arriving late in the day.

In the next chapter we will look at a linear programming model for solving
the budget optimization problem in an off-line setting.
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5

Off-line budget optimization

This chapter describes a linear programming (LP) model for doing off-line bud-
get optimization.

The LP will provide a formal definition of the problem we are trying to
solve. The solution of the LP will provide a revenue upper bound. We know
that the output of an LP is optimal in the context of the model, hence we have
no hope of achieving higher revenue than the LP model.

The use of linear programming for solving the off-line problem is not un-
heard of [CBAD11, FIMN08].

5.1 Linear programming

Linear programming [Chv83] is a general method of formulating mathematical
optimization problems. By defining an objective function that we either want
to maximize or minimize the value of; combined with a set of linear (in-)equality
constraints, an LP solver can traverse the space of feasible solutions and locate
an optimal solution, if one exists. The general definition of an LP is

maximize cTx
subject to Ax ≤ b
and x ≥ 0

In this case x is the decision variable we wish to find an optimal assignment
to; and c, b and A are parameters to the model.

Note that the LP does not require x to be integer. In our case, when x has
the value of impressions we cannot possibly assign a fraction of an impression
to a placement. However, the amount of impressions that we are working with
makes the error from the relaxation insignificant. For example, if we assign
5, 000 impressions or 5, 000.4 impressions to a placement is of little significance
when dealing with millions of impressions in total.

5.2 Model input

The model we develop aggregates impressions by hour. We also choose to work
with “days”, i.e., 24 hour periods. Both these choices are easily manipulated,
and the granularity of the impression aggregation and how long time-periods
you work with is bounded only by the ever increasing combinatorial difficulty
of the problem.

The parameters of the LP model the model are
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5.3. Objective

• The observed impressions per placement for a given publisher.

• Orders: orders are a set of materials, and a budget.

• Materials: a material can be either text or creative. A text material is a
simple piece of plain text, and a creative is either an image or an Adobe
Flash script.

• Placements: each placement can either only accept creative materials or
text materials, or both. If a placement accepts text materials, it has a text
material capacity defining how many text materials may fit on the same
placement. This makes text materials special, since many text materials
may share the same placement impression. We let placements that do
not accept text materials have a text capacity of zero.

• An eCPM prediction model; rendering eCPM values for every hour ×
placement ×material combination. We can use the eCPM values as a
direct representation of publisher revenue.

5.3 Objective

Our model has one decision variable x. x is a three-dimensional matrix, and
each element of x is a value for how many impressions are allocated to each
hour × placement×material combination.

Let T be the set of hours,M the set of materials, P the set of placements
and vt,p,m the eCPM for any combination of t ∈ T, p ∈ P,m ∈ M. The
objective function for maximizing revenue is then formulated as

maximize
∑
t∈T

∑
p∈P

∑
m∈M

xt,p,m · vt,p,m (5.1)

5.4 Constraints

• Let It,p be the amount of impressions that placement p ∈ P will receive
at hour t ∈ T .

• Let an order o ∈ O represent the materials belonging to that order.

• Let Bo be the budget for order o in the set of all orders O.

Constraints for creative materials
To better illustrate the core constraints of the model, we consider the case
when the only type of materials are creative materials. Having only creative
materials means we can fit exactly one material per placement. The constraints
are intuitively formulated as

∀o ∈ O.
∑
t∈T

∑
p∈P

∑
m∈o

xt,p,m · vt,p,m ≤ Bo (5.2)

(5.2) constrains budget consumption to be equal to or less than the budget
limit of each order.
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5.5. Baseline comparison

We also need to constrain the material assignment to the number of avail-
able impressions, we do this in (5.3).

∀t ∈ T.∀p ∈ P.
∑
m∈M

xt,p,m ≤ It,p (5.3)

Constraints for both creative and text materials
The constraints (5.2) and (5.3) do not consider text materials. Text materials
complicate the model in the following ways:

1. Many text materials can fit on the same placement. Since we count
placement impressions, text materials consume fractions of impressions.

2. Different placements can fit a different number of text materials.

3. We can only use a distinct text material once per placement impression.

To make the model consider these facts, we define two intermediate decision
variables with one constraint each. Let C be the set of all creative materials,
and T the set of all text materials.

∀p ∈ P. ∀t ∈ T.αp,t =
∑
m∈C

xt,p,m (5.4)

∀p ∈ P. ∀t ∈ T.βp,t =
∑
m∈T

xt,p,m (5.5)

αp,t is the number of impressions used by creative materials for placement p
at time t. Respectively, βp,t is the number of impressions used by text materials.
To make sure a text material m appear at most once for each impression, we
constrain each individual text material to the number of available impressions
not consumed by creative materials.

∀t ∈ T.∀p ∈ P.
∑
m∈T

xt,p,m ≤ It,p − αp,t (5.6)

We can now constrain the sum of α and β to be less than the number of
available impressions. Let Cp be the text material capacity for placement p.

∀t ∈ T.∀p ∈ P. αt,p + βt,p
Cp
≤ It,p (5.7)

5.5 Baseline comparison

We can run the LP using observed traffic, and compare to the revenue of
running the Baseline on the same data.

Table 5.1: LP improvement for Mid and Large compared to the Baseline algorithm.

Measure Mid improvement Large improvement
Max 7.77% 8.43%
Min 5.34% 2.98%
Average 6.67% 6.55%
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5.5. Baseline comparison

Budget distribution improvement
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Figure 5.1: Comparison of how the LP spends the budget of ex-
ample order #1 compared to the Baseline algorithm.
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Figure 5.2: Comparison of how the LP spends the budget of ex-
ample order #2 compared to the Baseline algorithm.

Figures 5.1 and 5.2 shows how the LP model allocates the budget of the
two example orders used in Chapter 4.

As can be seen, the LP consumes the budget of the orders evenly through
the day, taking maximum advantage of each impression. By maximizing the
utility of each impression the LP ensures that orders will consume their budgets
using as few impressions as possible. We will further analyze this behavior in
Chapter 7.
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5.6. Budget limit impacts

5.6 Budget limit impacts

The amount of orders consuming the total of their budget within the period
solved by the LP affects the potential for optimization. We illustrate this by
cutting the budgets of the orders. For Mid we cap the budgets of the orders
to 4000, 5000 and 7500 units of revenue respectively.

Table 5.2: Average improvement compared the Baseline paired with the amount of
orders consuming the total of their budget.

Budget cap Orders consuming budget Improvement
4000 39.24% 8.20%
5000 35.28% 7.51%
7500 33.21% 6.71%
Actual 34.86% 6.67%

Table 5.2 shows that the amout of orders completely consuming their bud-
gets have a direct impact on the optimization potential. It is important to note
that a high degree of optimization is not necessarily desirable in itself. In the
best of cases all orders have an unlimited budget, allowing us to freely pick the
highest eCPM materials for each placement without any constraints.

5.7 Additional model constraints

While our LP model does define the basic problem of material selection, there
are many domain-details that it does not consider. Primarily there is an issue
with homepage takeover. Consider a case where an advertiser has high eCPM
on many placements. This means that the advertiser may appear on many or
all of the placements available on a webpage - which from the perspective of
the publisher is not desirable, since it will appear as if the advertiser has “taken
over” the web page.

Another issue with the LP is that it may not scale well to added domain-
details. It works well within the context of this thesis, but adding more and
more constraints and details will most likely make the run-time an issue. And
it will also be harder to verify the correctness of the model since errors in the
model description are more likely. Hence, for use in production, an alternative
to the LP may be desirable.

5.8 Summary

We have shown an LP model that can render a 6% increase in publisher revenue
for off-line data, compared to the Baseline algorithm; and that this figure
depends on how many orders completely consume their budgets. This proves
that there is potential for optimization in the on-line scenario.

To be able to utilize the LP in an on-line setting, the next chapter will look
at a linear regression model for predicting future placement impressions.
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6

Traffic prediction

In this chapter we will discuss the development of a placement impression
prediction model that can be used by the LP-model from the previous chapter.
We will use linear regression to fit a model that captures both weekly and daily
trends.

Figure 6.1 illustrates the data we are trying to predict.
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Figure 6.1: Historic impressions for a placement belonging to Mid. We observe
clear trends where the placement consistently receives less impression during nights
and early mornings, and peaks during noon.

6.1 Problem definition

The traffic prediction has the following input available:

• A set of placements P = {p1, . . . , pn}

• Historic traffic ypi
(t) for each placement pi ∈ P and hour t.

It is the case that the number of impressions that a placement receives is
much greater during days than night, i.e., for each placement we have high
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6.2. Input data

traffic hours and low traffic hours. Since the high traffic hours constitute a
large majority of all impressions received, we state that it is more important
for our traffic prediction model to perform well at the high traffic hours than
at the low traffic hours. We formally define high traffic hours as: an hour t is
high traffic for a placement p if and only if

yp(t) ≥ mean(yp)

Defined as such, the high traffic hours represent roughly 80% of the total
amount of impressions.

Further, we are interested in predicting impression amounts per hour. A
higher granularity would not be beneficial in the context of this thesis as the
LP-model in Chapter 5 considers an hour to be the smallest unit of time.
Moreover, as the LP runs on 24 hour periods, we are also happy if we can
predict 24 consecutive hours.

Our goal is to find a function fp(t) that for future hours t will
give a prediction for the amount of impressions placement p will
receive at hour t.

For more information about linear regression see [MA02].

6.2 Input data

To develop the model, we have decided to look at the top impression receiving
placements.

As seen in Figure 6.2 it is the case that a few of the placements receive
a large portion of the total impressions (top banners etc.). Hence, we have
selected the top ten placements for Mid and the top eleven placements for
Large. For these placements we have six months worth of recorded data, or
4416 hours in total. Later in the chapter when we present evaluations of our
model, we will present averages over three predictions, using 16%, 50% and
83% of the data for training and the remainder of the data for evaluation.

The traffic periods used in the majority of the experiments in this chapter
range from August 2011 to January 2012. We then take the best model and
use it with our case-study data.

6.3 Performance measurements

How to get a good measure of the performance of our model is not obvious.
The value we are most interested in is the mean percentage error, or MPE. Let
et be the expected (predicted) amount of impressions for hour t, and ot be the
observed amount of impressions for hour t. For a set T of predicted hours,
MPE is defined as 1

|T | ·
∑
t∈T

|et−ot|
ot

. In the current context, there is an issue
with the MPE measure: Assume we have a prediction that always expects one
extra impression than what is observed. During high traffic hours the error will
be negligible, however, during low-traffic hours the percentile error of even one
impression can be very large (e.g. we observe one impression and we expect
two, this constitutes an error of 100%) even though the signifficance of that
error is irrelevant from an economic perspective.
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Figure 6.2: Total amount of impressions for the ten most popular placements for
Mid.

We have thus devised a weighted MPE that weights the percentile error of a
predicted hour with the economic significance of that hour. We define weighted
MPE in (6.1). ∑

t∈T

(
|et − ot|
ot

· ot∑
t′∈T ot′

)
(6.1)

For the remainder of this chapter, when we measure the performance of our
model, we will provide MPE and weighted MPE measures both for complete
24 hour periods, and when we measure high traffic hours.

6.4 Weekly trends

To get a better understanding of how the data behaves over longer periods of
time, we have done weekly trend analysis by looking at how many impressions a
given hour t and placement p receives over weekdays (e.g. Mondays). In Figure
6.3 we do a trend plot that looks at how the traffic varies over weekdays1.

1168 is the amount of hours in a week.
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6.4. Weekly trends

Figure 6.3: y(t)
y(t−168) plotted for a set of placements belonging to Mid.

Even if the trend looks a bit noisy, it is still mostly linear, so we decided
to do a linear fit to capture the weekly trends. We call this function fweek(t),
and it fits four parameters α1, α2, α3 and α4.

fweek(t) = α1 + α2 · y(t− 168) + α3 · y(t− 336) + α3 · y(t− 504) (6.2)

Week model performance

Table 6.1: MPE measurements for fweek predictions.

Data Average MPE Max MPE Min MPE
MPE 45.27% 117.64% 12.10%
Weighted errors 24.45% 46.59% 8.69%
high traffic 19.72% 38.69% 7.34%
Weighted high traffic 20.07% 38.25% 7.11%

The MPE measurements from using only fweek to predict traffic can be
seen in Table 6.1. To put them in perspective, we can use a naive prediction
method of simply copying hour t− 24 as the prediction for hour t (copying the
previous day).

What we can see in Table 6.2 is that while our model fweek performs worse
if measured over all hours, it is actually the case that we handle the important
hours quite a lot better.
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6.5. Hour model

Table 6.2: Performance of fweek compared to copying the previous days traffic as a
prediction.

Data Average MPE Max MPE Min MPE
MPE -36.31% -73.33% 20.76%
Weighted 8.70% 7.04% 26.42%
high traffic 15.83% 9.69% 29.36%
Weighted high traffic 14.34% 10.46% 32.99%

Figure 6.4: y(t)
y(t−1) plotted for a set of placements belonging to Mid.

6.5 Hour model

Even though we desire to be able to predict a complete day, to get a better
understanding of how the traffic changes during the day, we developed an hour
prediction model.

We started by doing the same type of trend analysis, as can be seen in
Figure 6.4.

From the analysis we can see that during mornings and afternoons there is
a clear exponential trend, while it stays fairly linear during the middle of the
day and during the night.

The model fweek will capture the linear trend, and we will add an expo-
nential model to fit the residue from fweek.

Let ŷ be the residue from the fweek model, ŷ(t) = y(t)− fweek(t). We want
to fit an exponential model to ŷ.

fhour(t) = β1 · eβ2·log ŷ(t−1) (6.3)
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6.5. Hour model

Figure 6.5: Weekly prediction residue.

Table 6.3: The measured MPEs for the hour prediction model.

Data Average MPE Max MPE Min MPE
All hours 30.88% 73.52% 9.26%
Weighted all hours 16.02% 29.44% 6.29%
high traffic 12.8% 23.27% 5.42%
Weighted high traffic 12.96% 24.22% 5.4%

Table 6.4: Hour model improvement compared to using hour t− 1 as prediction for
hour t.

Data Average MPE Max MPE Min MPE
All hours 4.46% -29.44% 60.12%
Weighted errors, all hours 13.78% -23.54% 56.92%
high traffic hours 4.83% -17.58% 40.11%
Weight errors, high traffic hours 0.99% -27.81% 39.33%

and we then have a complete model for predicting the next hour t+ 1 as

f(t) = fweek(t) + fhour(t) (6.4)

Hour model performance
As the benchmark for the hour prediction model, as it only predicts the next
hour, we copy the previous hour and use it as the prediction for the next hour.

By looking at the slight improvements we see that copying the previous
hour as a prediction is actually a viable solution if we only care about the high
traffic hours and we only want to predict the next immediate hour.
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6.6. Day prediction model

6.6 Day prediction model

As we saw in the previous section, using an exponential fit is something that
works fairly well. For high traffic hours the weighted MPE is only around
10-15% which is good enough for our cases. However, we need to be able to
predict a continuous 24 hour period.

Again, we turn to trend analysis as seen in Figure 6.6.

Figure 6.6: Trend analysis on y(t)
y(t−25) .

While the trend is not as clear as in Figure 6.4, we still see rapid changes
in traffic volumes during mornings and evenings. To not risk over-reacting to
these changes, we change from an exponential fit to a second order fit. Since
the trend is noisier we also opt to use more data-points from the previous day.
Experiments have shown that the following works well. The vectors β and γ
are fitted to the training data.

fday(t) = β1+β2 · ŷ(t− 24)2 + γ1 · ŷ(t− 24)+
β3 · ŷ(t− 25)2 + γ2 · ŷ(t− 25)+
β4 · ŷ(t− 26)2 + γ3 · ŷ(t− 26)+
β5 · ŷ(t− 27)2 + γ4 · ŷ(t− 27)

The complete day prediction model becomes

f(t) = fweek(t) + fday(t)
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6.7. Results

Day model performance
To evaluate the day prediction model, we return to the benchmark used to
evaluate fweek and copy the previous days traffic (t−24) as the prediction, the
results are seen in Table 6.5.

Table 6.5: Day prediction performance compared to using yesterdays traffic as a
prediction.

Data Average MPE Max MPE Min MPE
All hours -22.84% -59.89% 9.63%
Weighted all hours 11.47% 8.03% 17.14%
high traffic 16.37% 12.07% 24.33%
Weighted high traffic 15.1% 12.46% 28.23%

6.7 Results

All the measurements presented above were using the same six months of data,
21 placements and three predictions for each of the placements using different
amounts of the data for training. The final results were averaged over the three
predictions.

By doing some manual tweaking and experimenting, we found that using
two months of training data rendered the best results on our data set.

Table 6.6: Performance of the day prediction model using two months of data for
training compared to using yesterdays traffic as a prediction.

Data Average MPE Max MPE Min MPE
All hours -19.98% -44.98% 17.22%
Weighted errors, all hours 16.21% 13.85% 16.09%
High traffic 21.08% 21.28% 17.94%
Weighted errors, high traffic 19.41% 15.53% 18.63%

As we can see in Table 6.6, for the high traffic hours and with the significance
of the predicted hour considered we achieve an improvement of almost 20%
compared to the very naive method of just copying historic traffic. Figure 6.7
shows two example predictions.

6.8 Results on case-study data

There is an issue with doing the traffic prediction for a large set of placements:
The publisher may add or remove placements from the system at will. The
traffic pattern in Figure 6.1 is fairly regular, but we also have more irregular
patterns as seen in Figure 6.8.

To decide which placements we predict traffic for, we picked the top impres-
sion receiving placements for both Mid and Large, a set constituting about
90% of the total received impressions. By looking at the traffic these place-
ments received we removed the placements with incomplete traffic history from
the set. Another method to handle incomplete history would have been to copy
hour t − 24 as a prediction for hour t. Since this chapter is about evaluating
the traffic prediction model, we removed the placements instead.
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6.8. Results on case-study data

Figure 6.7: Two examples of predicted traffic. The solid line represents expected
impressions and circles are observed impressions.

Figure 6.8: Problematic traffic patterns.

After filtering placements that have incomplete training data, the amount
of placements we predict is presented in Table 6.7. To be able to fit as many
placements as possible only one month of training data were used.

Table 6.7: Number of placement that were predicted for each of the publishers.

Publisher Placements
Mid 114
Large 132

Table 6.8: Measured traffic prediction errors for the Case Study data.

Publisher & hours Avg Weighted MPE Max Weighted MPE Min Weighted MPE
Mid All hours 30.5% 75.8% 9.2%
Mid High traffic hours 25.7% 68.7% 7.5%
Large All hours 39.0% 513.1% 4.1%
Large high traffic hours 29.3% 221.1% 3.2%

Measuring the improvement for the errors compared to copying previous
day as prediction.

As can be seen in Table 6.9 when we increase the number of placements
that we want to predict combined with having less training data, it is hard to
out-perform copying the previous day as a prediction.
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6.9. Summary

Table 6.9: Comparing the Weighted MPE for the Case Study prediction with copy-
ing the previous day as prediction.

Publisher & hours Avg Weighted MPE Improvement
Mid All hours -1.279%
Mid High traffic hours 1.797%
Large All hours -4.206%
Large high traffic hours 11.049%

6.9 Summary

Even though we can gain a bit of accuracy with our model, as long as the
placements are well-behaved our model has the potential to render up to 20%
better accuracy compared to copying historic data as a prediction.

But when we look at all placements, we see that the potential of 20%
increase diminishes, due to erratic placement behaviour and plain differences in
traffic patterns between placements. While the results are good for high traffic
hours on the placements with most traffic, the prediction performs poorly in
other scenarios. The fact of the matter is, that the benchmark method used in
this section requires no training data except the previous day, and it has the
potential to render almost as good or better results when the traffic is low or
more erratic.

As we shall see in the next chapter, the quality of the traffic prediction is
of importance, and a more sophisticated and robust method may be desirable.
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7

On-line budget optimization

From Chapter 1, recall the figure of the budget optimization system, also shown
here. We now have the neccesary input available to define the on-line budget
optimazion heuristic. We define the “ROI-Finder” component in Figure 7.1
as measuring a return-on-investment (ROI) value for orders totaly consuming
their budgets in some placement ×material × time impression allocation S,
and how we can use a matrix of such ROI values to adjust the eCPM of orders,
to render higher revenue than the Baseline algorithm.

Traffic

prediction

model

LP-Model ROI FinderIntermediate

optimal solution

On-line

algorithm

Predicted

traffic

Observed traffic Solution

ROI

matrix

Figure 7.1: The budget optimization model.

The assumption of having an allocation S is well motivated, as from Chapter
5 we have access to an optimal allocation for observed traffic. Combined with
the results from Chapter 6 we can also get an optimal allocation for predicted
traffic.

The purpose of this chapter is to present the on-line budget optimization
heuristic, combining the results of Chapter 5 and 6 and comparing the results
of the budget optimization model with the Baseline algorithm presented in
Chapter 4.

7.1 Problem definition

We want to find an on-line heuristic that renders optimal, or
closer to optimal results compared to the Baseline algorithm pre-
sented in Chapter 4.
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7.2. Order classification

Even with an optimal allocation S in hand, the information available to us
is limited. S simply provides us with a static schedule of when, where and how
many times to show a material. Such a static schedule is not flexible enough
to be useful in practice.

As we have seen in Chapter 6 placements are added and removed, and
traffic predictions are far from perfect. Furthermore, in the production system,
orders can enter and leave the system and bids can be changed. In this context,
our heuristic must be flexible enough to accommodate unforeseen changes still
render higher revenue than the Baseline.

The static allocation provided by S gives us some insight in how to do
material selection, by looking at the difference in eCPM between the material
that won impressions and the materials that did not.

7.2 Order classification

In the case that orders have unlimited, or infinite, budgets, it is always the case
that for each impression we want to pick the highest eCPM materials since we
do not have any budget constraints.

On the other hand, if all orders were to consume their budgets, there is no
further revenue to realize, as the resources are depleted.

Hence, the interesting case is when the system is in such a state that some
of the orders will consume their budgets and some will not. This allows the
budget optimization model to reduce the number of impressions the orders
that consume their budgets use, to free up impressions for the orders that have
budget left.

We classify orders as either budgeted or non-budgeted depending on if the
order consumes its budget in S.

7.3 Return on investment

As stated in the previous section, we have budgeted and non-budgeted orders.
In this context, if a non-budgeted order P has the highest eCPM, it is always
the optimal choice to let P win the impression.

In the case that a budgeted order O has the highest eCPM, we know that
it may potentially be the case that O is better saved until a later impression,
so as to consume O’s budget in a more optimal fashion. In this sense, we
can consider non-budgeted orders free of charge, as they are always optimal
to show if they have the highest eCPM. Budgeted orders on the other hand
should “motivate” that they are some measure “better” to choose now, rather
than save their budget for a later, alternative impression. We call this measure
return on investment (ROI). Only budgeted orders have ROI values, and it is
possible to measure ROI values from any placement×material×time allocation
S.

For some budgeted order O, placement p and time t where O has won an
impression, let P be the non-budgeted order with the highest eCPM (among
non-budgeted orders)

ROIt,p(O) = eCPMt,p(O)− eCPMt,p(P)
eCPMt,p(O) (7.1)
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7.4. The return-on-investment heuristic

If for some order o, time t and placement p, ROIt,p(o) is undefined, meaning
that o has not won any impression for that time× placement combination, we
pick the maximum value of the observed ROIs for order o as ROIt,p(o). This is
motivated by the fact that o did not win impressions for time t and placement
p in some allocation S, hence by using the maximum of the observed ROIs for o
the heuristic will not “prefer” this t, p combination over any other combination.
This is what makes the ROI heuristic flexible and able to handle changes in the
ad exchange, as it allows the on-line algorithm to pick an unforeseen time ×
order × placement combination if it is good enough for us to disregard the
allocation in S.

7.4 The return-on-investment heuristic

The ROIs that we measure from an allocation S for the budgeted orders are
used as a minimum return on investment requirement for a budgeted order to
win impressions, i.e., if a budgeted order has the highest eCPM of all orders
the ROI in that instance must also be greater than the ROI measured from S.

This is equivalent to adjusting the eCPM of the budgeted orders by

eCPMt,p(O)← eCPMt,p(O) · (1−ROIt,p(O)) (7.2)

This means that our on-line optimization algorithm is identical to the Base-
line algorithm in Chapter 4, but with the eCPMs of orders classified as budgeted
adjusted according to (7.2).

To reduce our dependence on S, we can aggregate ROI values. Intuitively,
the finer granularity of the ROI measurements, the more dependent we become
on the accuracy of S. We will show that only storing ROIs for each placement×
order combination renders good results. In this case, aggregating over time,
we would pick the most “generous” ROI available.

ROIp(O) = min(ROIt,p(O))
As we can see in Table 7.1, ROIs vary very slightly over time.

Table 7.1: Measured ROIs per order and placement, over time for Large. The
average is over 91 order × placement combinations.

Measure ROI Sample Standard Deviation
Average 0.47091 0.00887

Maximum 0.98761 0.04908
Minimum 0.01012 1.1201 · 10−07

We can also attempt to aggregate ROIs into order × time combinations,
but this measure contains greater fluctuations of the ROIs, as seen in Table
7.2. This means having ROIs for each order × time combination is a bad idea
compared to order× placement, and also motivates the need to have ROIs for
each placement instead only having a ROI per order.

7.5 Results

We have a set of measurements for each day.
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7.5. Results
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Figure 7.2: Example of ROIs measured over time for a placement and order. Notice
the slight variations. If we were to use the order × placement ROIs in this case
(ROIp(O) = min(ROIt,p(O))) the ROI in this instance would be 0.345.

Table 7.2: Measured ROIs per order and time, over placements belonging to Large.
The average is over 157 data-points.

Measure ROI Sample Standard Deviation
Average 0.56368 0.09349

Maximum 0.98760 0.28419
Minimum 0.01011 0.00095

Baseline: The Baseline algorithm run with observed traffic as input.

2D ROI: Means we have a ROI value for each order×placement combination,
with the ROIs derived from the LP solved with predicted traffic.

3D ROI: Is the same as 2D ROI but with ROI values for each order ×
placement× time combination.

*2D ROI & *3D ROI: Same as above, but with the ROI values measured
from the LP solved with observed traffic.

LP: A revenue upper bound. The LP with observed traffic as input.

The motivation for having the *2D ROI and *3D ROI is that this gives
us an indication of how the algorithm would perform if we had perfect traffic
prediction.
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7.5. Results

Revenue
In the following Tables 7.3 through 7.6 we see how different methods of mea-
suring the ROIs perform.

Table 7.3: Improvement for the different methods compared to the baseline for Mid.

Measure 2D ROI *2D ROI 3D ROI *3D ROI LP
Min 0.570% 4.672% -0.840% 5.191% 5.341%
Max 4.153% 6.941% 4.066% 7.225% 7.771%
Average 2.503% 5.895% 2.094% 6.203% 6.667%

Table 7.4: Improvement for the different methods compared to the baseline for
Large.

Measure 2D ROI *2D ROI 3D ROI *3D ROI LP
Min -0.223% 2.829% -0.890% 2.904% 2.976%
Max 2.762% 6.735% 2.363% 7.954% 8.426%
Average 1.473% 5.331% 0.954% 6.081% 6.547%

Table 7.5: Revenue as fraction of optimum for Mid (LP solved with observed traffic).

Measure Baseline 2D ROI *2D ROI 3D ROI *3D ROI LP
Min 92.790% 94.381% 98.581% 93.390% 99.039% 100.000%
Max 94.930% 97.545% 99.615% 97.365% 99.858% 100.000%
Average 93.753% 96.097% 99.276% 95.712% 99.565% 100.000%

Table 7.6: Revenue as fraction of optimum for Large (LP solved with observed
traffic).

Measure Baseline 2D ROI *2D ROI 3D ROI *3D ROI LP
Min 92.229% 93.245% 98.096% 91.471% 98.860% 100.000%
Max 97.110% 98.055% 99.857% 98.071% 99.929% 100.000%
Average 93.870% 95.248% 98.863% 94.766% 99.564% 100.000%

Budget utilization improvement
Instead of only looking at the revenue, we can observe how we consume the
budgets of orders. We do this by measuring how many impressions we use in
order to consume the budget.

By measuring how many impressions are assigned to each order using the
different algorithms, we get an understanding of why the revenue increases.

Table 7.7: The number of impressions assigned to both budgeted and non-budgeted
orders for the different ROI methods. The values are relative the Baseline.
Orders 2D ROI *2D ROI 3D ROI *3D ROI LP
Mid: Budgeted orders 93.569% 88.157% 92.855% 88.967% 89.012%
Mid: Non-budgeted orders 104.543% 106.705% 104.946% 106.064% 105.817%
Large: Budgeted orders 91.209% 81.740% 90.129% 77.818% 76.366%
Large: Non-budgeted orders 105.347% 109.615% 106.078% 111.393% 112.167%
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7.5. Results

From the results presented in Table 7.7 we see that for the budgeted orders,
all of the ROI methods use a fraction < 1 of the amount of impressions used by
the Baseline. Consequently this increases the number of available impressions
for the non-budgeted orders, thus increasing the total revenue.

Budget distribution improvement
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Figure 7.3: How the different methods spend the budget of example
order #1.
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Figure 7.4: How the different methods spend the budget of example
order #2.

Another property of the ROI heuristic is that it further spreads how the
budgets of the orders are beeing spent. Our Baseline will spend the budgets
very quickly at the beginning of each day if allowed. The ROI heuristic slows
down the spending, which is a desirable property as advertisers most likely
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7.5. Results

want their materials shown evenly through the day. The ROI heuristic is not
as good as the LP-model, but it is clearly better than the Baseline.

Summary
As observed in the previous sections, we see that *2D ROI and *3D ROI are
very close to each other in revenue, with *3D ROI being slightly better. If
we compare 2D ROI and 3D ROI, 2D ROI performs better. This is not a
contradiction, but rather implies that, as pointed out earlier, the finer the
granularity of the ROI matrix, the more we depend on the allocation S, which
in our case depends on the accuracy of the traffic predictions.

We can also observe, that both *2D ROI and *3D ROI are very close to
optimal (both ≥ 98.5% of optimum). This means that the ROI method has
the potential to produce very good results, but that the quality of the ROI
solution is heavily dependent on S, again, which in our case depends on the
quality of the traffic prediction.
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8

Conclusion

We have developed and prototyped a budget optimization model
that has the potential to increase the revenue of publishers using
ad exchanges by several percent.

To achieve this, we have developed a complete budget optimization model.
We created an LP model that solves the problem given off-line data. The LP

model proves that there is potential for optimization, and also gives a revenue
upper bound for any method in the same context as the model. We can measure
theoretical revenue improvements in the region of 6% in our case-study data,
but we also show that this figure depends on how many orders consume the
total of their budget.

This measure of 6% is relevant since it is the LP model compared to a greedy
Baseline algorithm that closely resembles the production algorithm, adapted
to the simplified domain we consider in this thesis.

To make the LP useful for solving the on-line part of the problem we devel-
oped a linear regression model for predicting placement impressions. We have
shown that the traffic prediction model can render up to 20% better accuracy
compared to using observed traffic for the previous day as a prediction.

If a placement has insufficient training-data to be predicted, we can use
the rudimentry method of copying yesterdays traffic for that placement as a
prediction.

By combining the LP with the traffic prediction we can get a predicted
optimal placement×material× time allocation S. We classify orders as bud-
geted and non-budgeted depending on if an order consumes its budget in S
or not. From S we show that it is possible to measure differences in eCPM
between budgeted orders winning impressions and non-budgeted orders not
winning impressions. These measurements can be used as a minimum return
on investment requirement for budgeted orders in the on-line scenario, making
these orders consume their budgets using less impressions than in the Baseline.

The return on investment heuristic renders higher revenue compared to the
Baseline, and helps the orders spend their budgets more evenly throughout
the day and on the placements that produce the highest return on investment.
With perfect traffic prediction, an optimal allocation S when used with the ROI
heuristic can reproduce up to 99% of the LP revenue for S. With imperfect
traffic prediction, an allocation S′ used with the ROI heuristic renders about
95% of the revenue of the LP output solved for S.

The reason the revenue increases is because the budgeted orders consume
their budgets using less impressions, allowing more impressions for non-budgeted
orders, rendering an over-all increase in revenue for the publisher.
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8.1. Further work

8.1 Further work

In Chapter 7 we could see that if the traffic prediction is perfect, the return on
investment method has the potential to render almost optimal revenue. But
when we derive ROIs from our prediction model we are not able to achieve the
optimal revenue.

One step to improve the revenue is to develop a more sophisticated traffic
prediction model. If we can make closer to perfect traffic prediction, the revenue
realized by the ROI heuristic will go up.

Control theory for adjusting ROIs
Another potential change is to implement methods of Control Theory to adjust
the ROIs on-line. Chen et al. in [CBAD11] do exactly this and claims that they
are able to render a revenue improvement. A motivation of having adjustments
of the ROI on-line can be seen in Figure 7.2. The ROIs fluctuate ever so slightly
over time. In our case we pick the minimum of the measured ROI values for
use in the on-line algorithm. We saw in Tables 7.3 & 7.4 that if our traffic
prediction is perfect, having ROIs for each placement×order× time increased
revenue the most. If our traffic prediction was imperfect, having ROIs for
each placement × order increased revenue the most, since these ROIs were
less dependent on accurate predictions. It may be the case that by having on-
line adjustment of the ROIs it is possible to find some sort of middle-ground
between the two cases.

Running the budget optimization model several times a day
As an alternative to Control Theory for adjusting the ROIs we could potentially
modify the LP and traffic prediction model to be able to run several times a
day. For example: at the start of each day we could predict the traffic for all
placements for the whole day, solve the LP and measure the ROIs to adjust
the eCPMs.

After some time has passed (e.g. a couple of hours), we predict the traffic
for the remaining hours of the day, but this time with a more accurate traffic
prediction model, since we saw in Chapter 6 that it is possible to predict hours
more accurately than days. Solving the LP for the remaining hours with the
new prediction we would measure new ROIs and then re-adjust the eCPMs in
order to take the most recent available information into consideration. This
could potentially render a higher increase in revenue compared to only doing
it at the start of each day; and since the eCPMs are adjusted more frequently
the method is more flexible regarding unforeseen changes in both web traffic
and the ad exchange.
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Glossary

Ad exchange A system facilitating buying of selling on-line media advertising
inventory from multiple networks (orders).1

Admeta The company where this master’s thesis was written.

Advertiser A company that places orders to publishers.

Budget Budgets are assigned to orders for the duration of the advertising
campaign (total budget). Optionally, orders can have a daily budget.

CPC Cost-Per-Click. Specifies the amount the advertiser pays if a visitor
clicks the advertisement.

CPM Cost-Per-Milli. Specifies the amount the advertiser pays for every thou-
sand views.

eCPM estimated Cost-Per-Milli. The combination of a click-through-rate and
advertiser bids. Estimated revenue for showing a material one thousand
times.

CTR Click-through-rate. The amount of clicks a placement receives per thou-
sand views.

Impression An impression is when a visitor views a placement on a site.

Material A material is the actual advertisement. Materials are shown on
placements. There are three types of materials.

Creative Images or Adobe Flash advertisements.
Text Advertisements containing plain-text. Placements that accept text

materials have a number n associated with them, expressing how
many text ads fit within the placement.

Order Orders are placed by advertisers, and sent to publishers. Orders have
budgets, one or more materials, an optional end-date and a specification
which of CPM and CPC the advertiser is willing to pay for.

Placement A placement is a “physical” area with on the publishers site where
materials can be placed.

1http://en.wikipedia.org/wiki/Ad_exchange
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Publisher A publisher is the user of the Tango system. Publishers have one
or more sites where they own placements, and they want to fill this place-
ments with materials subject to maximizing their revenue.

ROI Return on investment. eCPM differences that can be measured from a
placement× order × time impression allocation.

Revenue The revenue of publishers is in direct proportion to CPM and CPC.

Visitor A person visiting a website.
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