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Abstract
Patients sometimes have to try several treatments before the one that best alleviates
their symptoms is found. Since each trial of an unsuccessful treatment can be both
costly and prolong patient suffering, making this search as efficient as possible is
of great importance. We have developed a solution in two parts. (i) A constraint
that balances the need to find a better treatment versus the desire to minimize the
number of treatments tried. (ii) A dynamic programming algorithm and a greedy
algorithm that uses the constraint for finding a policy that finds a good treatment in
as few trials as possible. We also develop different methods of estimating potential
outcomes and computing the constraint. The algorithms are trained on observational
data using causal inference to learn a policy based on true causal effects. The novel
algorithms are then evaluated and compared to baseline algorithms on synthetic and
real-world antibiotic resistance data.

Keywords: Machine learning, dynamic programming, causal inference, optimal decision-
making.
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Notation

The notation presented here will be used throughout the rest of the thesis.

A subscript t means the variable at trial t, e.g. P (At = ai) means the probability
that the treatment assigned at trial t is ai.

X Measured covariates of a subject
A Treatments
Z Unmeasured moderators
Y (a) Potential outcome of treatment a
Y a Actual outcome of treatment a
ht The ordered history, e.g. pairs of treat-

ments and outcomes, including the covariates
x, (at−1, yt−1)...(a0, y0), to trial t

T Number of trials
δ Threshold for better treatment
ε Cost of changing treatment
As Sequence of treatments (A1 . . . As)

Potential outcomes and unmeasured variables are explained in section 2.1.1 and
section 3.1, respectively.
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1
Introduction

When a patient presents with a medical condition, sometimes several different treat-
ments have to be tried before the treatment that best alleviates the patient’s symp-
toms is found [2]. These conditions could both be chronic, where different treatments
are tried over a long time, or acute, where a sufficient treatment has to be found
quickly. Trying different treatments can be seen as a search for the most effective
treatment for this patient. This search should find a treatment that is as good as
possible, while still being as short as possible, since each unsuccessful treatment
tried can be both costly and prolong patient suffering.

A balance has to be struck between the desire to find the best possible treatment and
the desire to try as few treatments as possible. To guarantee that the most effective
treatment is found, all available treatments can be tried, and then the most effective
one is selected. On the other hand, to have the shortest possible search time, only
one treatment should be tried. Deciding the balance between minimizing the number
of trials and the desire to find the most effective treatment is not trivial. Thus some
rule for when to continue searching and when to settle for the currently best found
treatment is needed.

1.1 Context

The search for an effective treatment can be seen as a sequence of actions, controlled
by a policy that recommends either which treatment to try next or to terminate
the search. The policy should try as few treatments as possible while still finding
an effective treatment. To achieve this, it has to account for differences between
patients, as well as how the patients have reacted to the already tried treatments.
The policy also has to weigh the value of information gained by trying a sub-optimal
treatment.

Policies that individualize treatments are often called Dynamic Treatment Regimes
(DTR) in statistical and medical literature [3]. The purpose of a DTR is to tai-
lor the treatment types and dosages to the patient’s changing state during some
time to ensure that some value is maximized or minimized once all treatments are
done. There has been previous work done in finding optimal treatment policies us-
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1. Introduction

ing Reinforcement Learning (RL) [4, 5, 6, 7, 8, 9]. For example, Huang et al. uses a
modified Q-learning algorithm to reduce accumulated bias to solve the problem of
accumulated outcome of treatments [4] and Tao et al. uses tree-based reinforcement
learning with a purity measure to estimate the optimal strategy [5]. While there
are several challenges in using RL in medical settings [10], the technique also has a
lot of promise. The methods mentioned above are focused on finding the optimal
outcome or reducing the regret over a fixed number of interventions. Other work in
this field focuses on minimizing asymptotic regret, which is irrelevant in our setting
where we evaluate a small number of actions. In contrast, our purpose is to find a
near-optimal final treatment while minimizing the number of interventions done to
reduce cost and patient suffering.

Learning optimal treatment policies requires access to data, representative of the
model that should be learned, to both train and evaluate the algorithms. While
it is possible to gather such data through randomized experiments, it can be both
unethical and expensive to do so in medical settings, especially for sequential treat-
ments. Instead, one can use already existing data from a non-interventional setting,
so-called observational data. However, using observational data means that the
patterns found might be associative rather than causative, and care must be taken
to find the causal effects of treatments. This can be done using causal inference
[11].

1.2 Problem
The main goal of the thesis is to develop algorithms that, given an observational
data set, finds a policy for quickly finding effective treatments for a population of
patients. The policy has two goals; to find an as effective treatment as possible
and to try as few treatments as possible. As stated earlier, these two goals are
at odds. An exhaustive search will always find the best possible treatment and a
one-step search will always have the minimum possible number of trials. Thus a
trade-off has to be made between the search time and the efficacy when developing
the algorithms.

1.3 Contributions
Instead of directly weighting the search time against the efficacy, a constraint for
when the algorithm is allowed to stop searching for a better treatment is developed.
This constraint causes the algorithm to keep searching until the probability of find-
ing a better treatment is low. The constraint is realized using different methods
to approximate the probability of finding a better treatment. Then, two policy
optimization algorithms are implemented, both with and without the constraint.
The algorithms include greedy variants as well as algorithms based on reinforce-
ment learning. Since there is no natural best trade-off between time and efficacy,
the variants are compared on their search time and mean efficacy under different
conditions to evaluate their performance.

2



1. Introduction

To perform the evaluation, both real-world data and generated synthetic data are
used. The real-world data is of antibiotic resistance, taken from the MIMIC-III data
set [12]. Several different data sets of synthetic data are generated, both to highlight
differences in the capabilities of the algorithms and to provide more varied data to
evaluate on.

The main contributions of the thesis are:

• A constraint balancing the need to find a better treatment versus the desire
to stop searching as quickly as possible.

• An algorithm using the constraint to find a policy that in turn finds a good
treatment in the minimum number of trials.

1.4 Limitations
In order to reach the goal of the thesis, some limitations were also set. The thesis
limits itself to a small number of treatments, outcomes, and measured covariates.
This ensures avoidance of a combinatorial explosion when trying to adjust for all
possible treatment and outcome combinations. In the same vein, only discrete values
are considered to avoid having to apply function approximation to all calculations.
Function approximation is used in the thesis, but as an option rather than as a
requirement. Another limitation is that only settings where the state of the patient
does not change was studied, except for the outcome of the tried treatments.

3
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2
Background

In this chapter, the background and context for the methods developed in this thesis
are presented, as well as the theory behind the concepts that will be used in the
Methods and Results chapters.

2.1 Causality
A concept that is often repeated is that correlation does not always equal causation.
This statement means that while two variables have very similar trends, there might
not be any cause-and-effect relation between the variables, as demonstrated in Figure
2.1 where margarine consumption is closely correlated to the divorce rate in Maine.
Because of this, it is possible to perform a study and come to a conclusion that
would not help in decision-making. For example, that a ban on sales of margarine
would strengthen marriages.

M
argarine	consum

edD
iv

or
ce

	r
at

e	
in

	M
ai

ne

Divorce	rate	in	Maine
	correlates	with	

Per	capita	consumption	of	margarine

Margarine	consumed Divorce	rate	in	Maine

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

2lbs

4lbs

6lbs

8lbs

3.96	per	1,000

4.29	per	1,000

4.62	per	1,000

4.95	per	1,000

tylervigen.com

Figure 2.1: Correlation does not always equal causation. Image retrieved from
https://www.tylervigen.com/spurious-correlations. Data sources: National Vital
Statistics Reports and U.S. Department of Agriculture.

The concept of causality is very important when you want to discover the effect of
some intervention done on a population of individuals [13, Chapter 3]. If the effect
of some intervention was to be examined, the gold standard would be to conduct an
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2. Background

A B
Small 93% (81/87) 87% (234/270)
Large 73% (192/263) 68% (55/80)

Success rate 78% (273/350) 83% (289/350)

Table 2.1: Confounding by size of kidney stone. The success rate of treatment A
is lower than B, even though A is better for both small and large stones.

experiment where the researcher can randomly assign individuals to either receive
the intervention or be in the control group. After the experiment, the difference
between the two groups can be measured, and the effect of the intervention can
be calculated. Since the only difference between the groups is the intervention, any
change in outcome has to be because of it [13, Chapter 2]. Thus, the causal effect of
the intervention can be established and used to inform decisions. Unfortunately, in
some instances, for example in medical settings, it is either very expensive or uneth-
ical to collect completely randomized data. As such, researchers often have to use
pre-existing data in their studies, so-called observational data [14]. In observational
data, there might be factors contributing to both which intervention the individual
is receiving as well as the outcome of that intervention. Factors that both affect the
assignment of an intervention as well as the outcome are called confounders and can
confuse the conclusions of a study if they are not accounted for. This makes conclu-
sions drawn from observational studies risky to use unless proper causal reasoning
has been applied when calculating and interpreting the results of the study.

Example. Consider the setting where there are two treatments, A and B, for
patients with kidney stones [15]. Treatment A is mostly assigned to people with
large kidney stones while B is mostly assigned to patients with small ones. As can
be seen in Table 2.1, A works better than B for both small and large kidney stones.
However, if the size of the kidney stone is not taken into consideration, B has a
higher success rate and appears to be better when comparing the whole population.
This happens because the treatments are assigned unevenly to patients with small
and large stones, causing the combined statistics to be dominated by A for large
stones and B for small stones, where patients with large kidney stones have an
overall lower success rate.

To help reason about a causal problem, a model graph of the covariates, treatments,
and outcomes is useful [16]. Such models can help visualize the causal assumptions
made and which variables have to be accounted for to avoid confounding [13, Chap-
ter 7]. Arrows between nodes indicate a causal relationship between the variables in
the nodes, with the direction of the arrow indicating the direction of the causality.
If there exists a path between the intervention and the outcome even after all outgo-
ing arrows from the intervention are removed, then there exists a so-called backdoor
path from the intervention to the outcome. The presence of a backdoor path means
that there exists confounding on the association between the intervention and the
outcome of interest. It is possible to account for this confounding by adjusting for
a variable on the backdoor path, thereby blocking it [17, Chapter 3].
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2. Background

Z

A Y

Figure 2.2: A simple causal graph representing the example in Table 2.1.

Using the previous example, the size of the kidney stones is the confounder Z, which
affects both the treatment A and the outcome Y , as seen in Figure 2.2. The backdoor
path through Z can confound the results of the study unless accounted for. When
you block the backdoor path by splitting the data, thereby accounting for the size
of the kidney stones, it can clearly be seen that treatment A is overall better.

There are several methods to account for confounding when all backdoor paths can
be blocked by measured variables, some examples include: regression, inverse prob-
ability of treatment weighting, and standardization. An introduction to regression
in a causal setting can be found in Section 2.1.3.

While this introduction to causality is mostly focused on the setting where a single
treatment either is given or not, and we then want to calculate the causal effect of
that treatment, causality can also be used to compare the effects of two treatments
as in the example with the kidney stones or compare the effect of different sequences
of treatments.

2.1.1 Potential outcomes

Data gathered from observational studies, so called observational data, is in general
incomplete. It is not possible to observe both what would have happened if an
individual received an intervention and what would have happened if it did not.
In the setting with sequential treatments, not all treatments will be tried for all
individuals, so outcomes of treatments that were not tried will not be known. Since
not all outcomes are observed, it is impossible to compare the causal effects of
different treatments at the individual level. Instead, the effect can be calculated on
average on a population using the potential outcomes framework [18].

If there exits two treatments, A = 1 and A = 0, in a study, then there is also two
potential outcomes for each individual. The potential outcome Y (A = 1) where
the individual received treatment A = 1, and Y (A = 0) where it received A = 0.
However, since both these treatments can not be observed at the same time for the
same individual, the effect of the treatment is calculated as the average effect over
several individuals, some of which receive A = 1 and some who receive A = 0. As
long as the individuals compared are similar enough, the average effect between the
two populations is a way to calculate the efficacy of the treatments.

7



2. Background

2.1.2 Assumptions
To distinguish between causal effects and spurious correlations in the observational
setting, additional assumptions are needed [13, Chapter 3]. There are three com-
monly used assumptions when attempting to infer causal effects:

• Consistency: Y a = Y (a)

• Ignorability: {Y (0), Y (1)} ⊥ A|X

• Positivity: ∀x, a P (A = a|X = x) > 0

where Y is outcome, a is action, and x is covariates.
Consistency means that we assume that the potential outcome of a treatment is
the same as the actual measured outcome. An example of violation: if the patient
does not take the given treatment as prescribed.
Ignorability means that the outcome of a treatment a does not depend on if the
subject was assigned to the treatment group or control group, conditional on the
covariates x. This means that we assume that we can ignore how patients ended
up in the treatment or control group when regarding Y . Ignorability is satisfied as
long as all backdoor paths are blocked [13, Chapter 7].
Positivity means that we assume that the probability of receiving any treatment,
conditional on x is greater than 0. Thus, all parts of the population can receive any
treatment. If this is not the case, it means that some potential outcomes do not
exist, and therefore no causal effect exists.

Without these assumptions, it would be harder to infer causal effects from observa-
tional data due to potential bias or confounding. For ignorability and consistency,
there is also no statistical method to test whether the assumptions hold or not, and
thus prior knowledge has to be used to reason about if they are plausible or not in
the setting.

2.1.3 Regression estimates of causal effects
Regression is a method of estimating the relationship between one variable, called the
outcome, and one or more other variables, called covariates. To infer causal effects
from regression analysis, care has to be taken to fit the regression model using the
correct covariates. If some covariates are left out it can lead to confounding where
the incorrect conclusions are drawn because there are factors affecting both the
treatment assignment and the outcome. On the other hand, if the wrong covariates
are included in the model, there might be correlations found that are not causative.
Thus, prior knowledge has to be used to choose which covariates are included in the
model and which are not.

Example. Consider an intervention done for unemployed people for them to get
a job. The intervention could for example be to let people attend a course. The
outcome is binary, either the person gets a job or they do not. To calculate the

8



2. Background

Figure 2.3: Overview of Reinforcement learning. The agent interacts with the en-
vironment by selecting an action depending on the state. The environment responds
with a new state and a reward. Image retrieved from Sutton and Barto [1].

efficacy of the intervention using regression, both the relevant data of the person as
well as if they attended the course or not has to be taken into account when fitting
the regression model. Otherwise there might be bias where e.g. highly motivated
people both attend the course in greater number and has a higher chance of getting
an employment, thus skewing the results.

2.2 Reinforcement learning
Reinforcement learning (RL) is a branch of machine learning that specializes in
finding the optimal action with respect to future events [19]. An RL algorithm
consists of an agent interacting with an environment to learn the optimal actions
to take for each state in the environment. Each state St and action At of the
environment has an associated reward Rt, and by exploring the environment, the
agent learns how to maximize the total reward received during an episode, see Figure
2.3. The reward is specified using a reward function that in turn determines which
policy the RL algorithm will find. The reward given can be determined by the
current state, previously taken actions, or some other criteria. For example, a
constant negative reward will incentivize the RL algorithm to find the fewest number
of actions required to reach a stopping state.

In the setting of the thesis, a state can be seen as a vector of the covariates and all
previously tried treatments and the outcomes of those treatments, while the possible
actions are the untried treatments. This allows RL to be used to find polices in the
space of treatments and outcomes.

2.2.1 Dynamic Programming
Dynamic programming can be used to solve reinforcement learning problems where
a model of the environment is known. This is achieved by breaking down the larger

9



2. Background

problem into smaller sub-problems, that combine to solve the larger problem it-
eratively. For a stochastic problem, this is done by solving the Bellman equation
(Equation 2.1) recursively from terminal states and backwards [19, Chapter 3]. The
Bellman equation looks like follows:

V (s) = maxa(R(s, a) + γ ·
∑
s′
P (s, a, s′)V (s′)) (2.1)

where V is the value function, s is a state, a is an action, R is the reward function,
P is the probability of going from state s to s′ by action a, and γ ∈ [0, 1] is a
discount factor. While the Bellman equation can be used to find an optimal policy,
it is symmetrical to the state-action Q-function [19, Chapter 6]. The Q-function
looks as follows:

Q(s, a) = R(s, a) + γ ·maxa′Q(s′, a′) (2.2)

The equation states that at each state, the algorithm should pick the action which
will return maximum accumulated future reward. Each step of the DP algorithm
uses information about the next state that will be reached to calculate the value of
the current state until it reaches a final state. The value of a final state is often
defined to simply be the reward for that state, since no future state exists. Because
of this, the value for all the final states is known and can be used to calculate the
value for all possible previous states. This is then recursively done until the value
for the initial state has been calculated. This means that every state will have an
associated value since every reachable state will have been evaluated. The optimal
policy is then extracted by starting at the initial state and choosing the action with
the highest Q-value.
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3
Methods

This chapter describes in detail the methodology used in the thesis. First, a model
for the type of problems the thesis is attempting to solve is presented. Then, the
building blocks for the algorithms are presented before the implementation is dis-
cussed.

3.1 Graphical causal model

Notation reminder. Recall that patients are represented by covariates X and
unmeasured moderators Z which both may affect the outcomes Y . Outcomes are
generated by treatments A.

Several assumptions have been made about how the observational data used in the
thesis was generated. The assumptions have been used to create a causal graph as
seen in Figure 3.1. The model assumes that all relevant confounders, X, have been
measured meaning that ignorability holds. There are unmeasured moderators, Z,
but they do not directly affect the treatments. Each treatment A affects its outcome
but does not affect further outcomes or the patient’s state. This can be reasonable
for treatments that only affect the symptoms and not the underlying disease. The
outcomes, Y , have an effect on which treatments are tried in the future. For example,
if a treatment has a bad outcome, then similar treatments might have a lower chance
to be tried.

From the model it can be seen that both the previous treatments and outcomes
have to be accounted for when calculating the causal effects of a new treatment. If
any treatment or outcome is left out, it opens up a backdoor path through Z and
introduces potential confounding. For example, if we are trying to estimate Y2, we
have a potential backdoor path through Z to Y1 and then to A2.

3.1.1 Outcome Stationarity

In addition to the three common assumptions from section 2.1.2, an additional
assumption is made for the model used in the thesis:
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X

A1 A2 AT

Y1 Y2 YT

Z

. . .

. . .

Figure 3.1: The assumed causal model for the problem presented in the thesis.
X are the baseline covariates, At are the actions, Yt are the outcomes, and Z are
hidden moderators. Note how Z does not directly affect the treatments At and is
therefore a moderator and not a confounder.

• Outcome stationarity: Yt(a) = Ys(a),∀a ∈ A, t, s ∈ {1, ..., T}

Outcome stationarity means that when estimating the outcome probability of a
treatment, the order of previously tried treatments does not matter as long as the
outcomes match. This means that a history with pairs of treatments and outcomes
([0, 1], [1, 2]) is equal to ([1, 2], [0, 1]) and can be used interchangeably when
estimating causal effects. Outcome stationarity is a consequence of the treatments
not affecting the covariates and future outcomes.

A result of the assumptions is Equation 3.1 which means that the observational
distribution p(Y |A = a) is indistinguishable from the interventional distribution
p(Y (a)) given any order of the history of treatments [17, Chapter 3].

p(Ys(a) | Hs−1) = p(Ys | As = a,Hs−1) . (3.1)

Outcome stationarity allows the algorithms to use more data when trying to predict
the outcomes of a treatment for a patient with a specific history. It also lowers
the number of unique histories that need to be considered since treatments tried in
different orders are equivalent.

Theorem 1 (Outcome Stationarity). Let τ be a permutation of the sequence (1, ..., s).
Then, under the assumptions of Consistency (Section 2.1.2), and Stationarity, Ys(a) =
Yr(a) =: Y (a), ∀a ∈ A, s, r ∈ N ,

p(Y (a) | X,A1, ..., As, Y1, ..., Ys) = p(Y (a) | X,Aτ(1), ..., Aτ(s), Yτ(1), ..., Y(s)) (3.2)

Proof. Let τ be a permutation of 1, ..., T and τ(s) the index assigned to s. We use
the short-hands p(a) = p(A = a) and p(A | b) = p(A | B = b). Equation 3.1 allows
us to exchange Y (a) for Yt in the proof.
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p(Yt | Ht = ht, At = at)

= p(Yt, ht, at)
p(ht, at)

=
∑
z p(Yt, ht, at, z)∑
z p(ht, at, z)

prob. laws

=
∑
z p(Yt | ht, at, z)p(at | ht, z)p(ht | z)p(z)∑

z p(at | ht, z)p(ht | z)p(z)
expand

=
∑
z p(Yt | ht, at, z)p(at | ht, z)

∏
s p(ys | hs, as, z)p(as | hs, z)p(z)∑

z

∏
s p(ys | hs, as, z)p(as | hs, z)p(z)

expand history

=
∑
z p(Yt | at, z)p(at | ht)

∏
s p(ys | as, z)p(as | hs)p(z)∑

z p(at | ht)
∏
s p(ys | as, z)p(as | hs)p(z)

At ⊥⊥ Z | Ht

=
∑
z p(Yt(at) | z)

∏
s p(ys(as) | z)p(z)∑

z

∏
s p(ys(as) | z)p(z)

cancel terms

=
∑
z p(Yτ(t)(at) | z)

∏
s p(yτ(s)(as) | z)p(z)∑

z

∏
s p(yτ(s)(as) | z)p(z)

stationarity

Notice how the final expression does not contain any references to the order of the
treatments, only the results of them. Thus proving that the order of the treatments
in the history does not matter as long as the outcomes match, and more information
can be extracted from the observational data.

Example. We have one patient (V ) in the data set with history of pairs of treat-
ments and outcomes ([0, 1], [1, 1], [2, 2]). We also have a patient (W ) that we want
to treat that has the treatment history ([1, 1], [0, 1]). Both patients have the same
covariates. If we would not assume historical equivalence, then we would not be able
to infer anything from patient V when treating W , even though it seems that they
are very similar considering that they reacted the same to two different treatments.
Using this, we are more likely to believe that giving treatment 2 to patient W will
generate an outcome of 2, the same outcome as for patient V .

3.2 When to stop searching
As has been mentioned, there are two goals in this thesis, finding an effective treat-
ment and minimizing the search time. In practice, this is done by searching for
better treatments until it is certain, within some limit, that no better treatment
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exists. This balances both the need to try treatments that give more information
about which treatments will work and finding the best possible treatment. For a
treatment a, this is expressed mathematically as

Pr
[
max
a′ /∈h

Y (a′) > max
a∈h

Y (a) + ε
∣∣∣H = h

]
≤ δ (3.3)

where a ∈ h means action a in history h, and conversely, a′ /∈ h is an untried action.
The parameter δ controls how likely a new better treatment has to be and ε controls
how much better the new treatment has to be than the previous best to be worth
pursuing. If δ = 0 we want to be absolutely sure that we cannot find another better
treatment, and if ε = 0, any better treatment will do, and since that is the case in
the rest of the thesis, it will be omitted where it is not relevant. The two parameters
will be set depending on the application of the algorithm. In settings where there
are a low number of discrete outcomes ε = 0 is reasonable, and δ might be set to the
minimum probability you want a future treatment to be better than your current
best treatment.

3.3 Optimization problem
We formulate the problem of finding a good treatment in few trials through an
optimization problem which yields a policy π. π then chooses the actions i.e. what
treatment to give to a patient or if to stop searching.

min
π∈Π

EX,Y ,h,T∼pπ [T ] (3.4)

s.t. ∀t ∈ N,∀h ∈ H : Pr
[
max
a6∈hT

Y (a) > max
a′∈hT

Y (a′) + ε
∣∣∣∣ Ht = h, T = t

]
≤ δ

The goal is to find a policy π that minimizes the expected number of trials while, in
each step of the algorithm, fulfilling the constraint where a new treatment is only
tried if the algorithm expects it to be better with a certain margin ε and probability
δ.

3.4 Estimating potential outcomes
A model of the potential outcomes for an individual is used in the constraint (Equa-
tion 3.3) to estimate the probability that a given treatment is better than the current
best treatment.

3.4.1 Frequentist and smoothing approach
The simplest way to estimate the potential outcome of a treatment is to directly
estimate the probability function of the outcomes for that treatment using the col-
lected data. If the outcomes are discrete or has been discretized, this can be done
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by a simple frequency analysis conditioned on history, covariates, and treatment as
seen in Equation 3.5.

P (Y = y | A = a,H = h) ≈ n

N
(3.5)

n is the number of patients where Y = y, A = a,H = h and N is number of patients
where A = a,H = h.

This approach works fine as long as there is sufficient data and all variables are
discrete. However, for some combinations of covariates, history, and treatments
there might not exist any data at all or only very limited data, leading to a high
uncertainty about the probability estimate. To still get an estimate even in cases
with high uncertainty, a technique called smoothing is used. Since the distribution
of the outcomes for a treatment can be seen as a categorical distribution, a Dirichlet
prior is used and the mean of the posterior is used as an estimate of the outcome
probabilities. If the Dirichlet prior probability estimate for outcome i is ωi, the
number of samples with outcome i is ni, and the total number of samples is N ,
then the expectation of the probability for outcome i can be calculated according
to Equation 3.6.

E[P (yi)] = ni + ωi
N +∑

j ωj
(3.6)

Two different priors are used in the thesis, presented below.

Historical smoothing

Historical smoothing assumes that estimates based on histories that are similar to
the current patients are more informative. Thus, the prior is a weighted sum of the
probabilities for the estimated treatment at all possible previous histories.

wi = e−(|h|−|hi|−1)2

|h| · 2(|h|−|hi|−1) (3.7)

The calculation for the weight can be seen in Equation 3.7, where the histories
indexed by i are those that are potential precursors to the history at this point
in time. The norm of a history is simply the number of recorded treatment and
outcome pairs in the history. The weight is constructed to ensure that the closest
histories contribute the most to the prior. Since there are multiple histories that
can construct the current one, the denominator acts as a normalizer for the number
of possible histories. We define two histories to be similar if they have the same
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treatments and outcomes, but one or more treatment and outcome pairs that are
tested in one history is untested in the other.

ωi =
∑
j

wi · pi,j (3.8)

Historical smoothing assumes that if two similar histories are close in the number
of treatments tried, then the distribution of outcomes for a treatment should be
similar. This allows the prior to make use of more data when estimating the po-
tential outcomes, especially for situations where data might be limited. While the
assumption that close histories have similar distributions of outcomes might seem
reasonable, it is not necessarily so for histories that are extremely predictive of fu-
ture outcomes. Thus the historical prior can be arbitrarily wrong when no data is
available, but since no inference can be made without data this is seen as acceptable.
It can also skew results slightly when there exists only a few data points.

Uninformed smoothing

Uninformed smoothing works by simply assuming a uniform prior on the outcomes,
and weighting the smoothing very lightly, thus only using the prior when no data is
available. This is described in Equation 3.9.

ωi = I(N = 0) · 1∑
i 1

(3.9)

The uninformed smoothing is an unbiased estimator as long as there is data, but
suffers from higher variance when the amount of data is low which can easily happen
when there are long sequences of treatments. When data is missing entirely, the un-
informed smoothing does not try to predict the outcome using other data, instead it
assumes that all outcomes are equally likely, which can lead to bad predictions.

3.4.2 Function approximation
Function approximation can also be used to estimate the probability distribution of
outcomes of a treatment. Here, a function is fit such that the coviariates, history,
and last action is the input and the probability distribution of outcomes of the
last action is the output, see Equation 3.10. An advantage of this is that the
estimate can find relationships between covariates and histories which the frequentist
approach can not. As long as all relevant covariates are measured, regression can
be used to estimate causal effects, which is taken advantage of by the function
approximation. A Random Forest regression algorithm was used to estimate the
outcomes for combinations of covariates, treatments and histories [20].

f(h, a) ≈ P (Y (a)|h) (3.10)
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3.5 Computing the stopping constraint
To calculate the bound ρ(h), any possible future combination of treatments and
outcomes have to be evaluated. If we define µ = maxa∈h Y (a), i.e. the best found
outcome so far, this can be done as follows

ρ(h) =C(h)
C(h) =0 if a /∈ h = ∅ else

max
a6∈h

∑
y

P (Y (a) = y) · I(y > µ)+∑
y

P (Y (a) = y) · I(y <= µ) · C(h ∪ (y, a))

It is the sum of the probability to find a better treatment in the current step and the
probability of finding a better treatment in any of the following steps. This estimate
is uncertain in general since each possible future treatment and outcome adds to the
uncertainty. Also, the further into the future, the more uncertain the estimate,
especially for combinations of treatments and outcomes that are uncommon in the
data.

Thus, it may be useful to instead approximate the constraint using a bound. A
trivial lower bound is the maximum probability of finding a better outcome in the
next tried treatment (Equation 3.11).

ρ(h) ≥ max
a6∈h

[p (Y (a) > µ | h)] (3.11)

The fact that this is a lower bound is trivial since any further treatment has to
have a 0 or greater probability of having an outcome greater than µ and thus the
probability is at least equal to Equation 3.11.

An upper bound can be found using Boole’s inequality. It states that the sum of
probabilities of n events is always greater than or equal to the probability of the
union of those events. Thus a simple upper bound for the probability of finding a
better treatment is

ρ(h) ≤
∑
a6∈h

[p (Y (a) > µ | h)] (3.12)

The upper bound guarantees that the probability of finding a better treatment is
never underestimated. On the other hand, the upper bound might return a value
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> 1 which does not have an immediate clear interpretation in the probability of
finding a better treatment in relation to δ.

3.5.1 Using the constraint
To calculate the constraint with the frequentist approach, data is collected on the
probability of outcomes conditioned on a given history, P (Y = y|H = h). That
information is then used to calculate where the constraint should allow further ex-
ploration and where it should allow the algorithms to stop.

Example. There are 6 patients with the same history except the last intervention,
i.e. they have tried treatment a2 and it had an outcome of 1 on a scale where 2 is
the highest. All patients have the same covariates x.

Treatment #1 Treatment #2
Patient 1 Y (a2) = 1 Y (a0) = 1
Patient 2 Y (a2) = 1 Y (a0) = 1
Patient 3 Y (a2) = 1 Y (a1) = 0
Patient 4 Y (a2) = 1 Y (a1) = 1
Patient 5 Y (a2) = 1 Y (a1) = 1
Patient 6 Y (a2) = 1 Y (a1) = 2

Assuming that this data set represents the population as a whole we can infer how
other patients will react to a given treatment. There is a 0% chance of getting
a strictly better outcome with treatment a0 since we already scored 1 with the
previous treatment, and there is a 100% chance of getting an outcome of 1. If we
pick treatment a1 there is 25% chance of getting 0, 50% chance of getting 1, and
25% chance of getting 2. This means that there is 25% chance of improving the
outcome Y if we choose a1.

If ε = 0 and δ < 0.25, we will choose to continue by trying treatment a1. If ε = 0
and δ ≥ 0.25 then we will not try a1 but instead stop the search since the probability
of finding a better treatment is below the δ limit.

3.6 Policy optimization
In this section, two different algorithms for optimizing the policy is presented. Both
algorithms are based on the constraint in Equation 3.3.

3.6.1 Constrained Dynamic Programming
While a model of the environment is not know, the previous sections has shown
how to approximate such a model. Thus dynamic programming becomes a pos-
sible method for solving our problem. Dynamic programming has the benefit of
predicting which treatment to select based on all future treatment and outcome
possibilities. Thus it is useful in our setting as it allows the algorithm to incorpo-
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rate the value gained from information gathered from selecting a treatment and not
just its outcome. While dynamic programming is very powerful, it is also susceptible
to misspecification of the model which can lead to faulty results. It also requires a
quickly growing state-space to calculate any policy.

Example. Below is a representation of a search tree where there are 3 treatments
and 3 potential outcomes i.e. {0, 1, 2}. The numbers on the arrows are transition
probabilities p(Y (A) = y|H).

X

a1 a2 a3

Y (a1) = 0 Y (a1) = 1 Y (a1) = 2

a2 a3

Y (a3) = 0 Y (a3) = 1 Y (a3) = 2

0.25 0.25 0.5

0 0 1

Here the algorithm first chose treatment a1 and the outcome turned out to be 1.
In this case, it turned out that p(Y (A) = 2|A = a3, Y (a1) = 1) = 1 i.e. that
the probability of finding a treatment with outcome greater than 1 was certain if
treatment a1 had the outcome 1.

The quality function (Equation 3.13) for the algorithm is the sum of the immediate
reward for the history-action pair plus the sum over all possible outcomes for that
action times the quality value of those outcomes.

Q(h, a) =
r(h, a) +∑

y∈Y p(Y (a) = y|h) maxa′∈A−h Q (h ∪ {(a, y)}, a′) (3.13)
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where h is history, a is action, y is outcome, and r(h, a) is the reward function.

rε,δ(h, a) =


−∞, if a = 0, γε,δ(h) = 0
0, if a = 0, γε,δ(h) = 1
−1, if a > 0

(3.14)

The idea of the reward function rε,δ(h, a) is, for the first condition, to force the al-
gorithm to not stop the search if there is a sufficient probability that it will find a
better treatment. The second condition states that if there is not sufficient proba-
bility, then there will be no negative reward for stopping. The third condition states
that we get a reward of -1 for each treatment that is tried.

γε,δ(h) := 1
[
Pr
[
max
a′ /∈h

Y (a′) > max
a∈h

Y (a) + ε|h
]
≤ δ

]
(3.15)

γε,δ(h) is the realization of the constraint. It states that, given history h, the proba-
bility of finding a treatment that is better than the best treatment found so far plus
ε among the ones not tested, should be smaller than δ in order to allow to stop the
search.

V (h) = max
a

Q(h, a) (3.16)

The value function V (h) chooses the treatment a that maximizes that Q-function
for each history h. Before the Q-function is calculated, all possible histories are
sorted in reverse order of size so that the longest histories are considered first.

Algorithm 1 Constrained Dynamic Programming
Input: Slack ε, confidence δ

H ′ ← sort(H)
for h ∈ H ′ do
for a ∈ A−h do
if a = astop then
Q(h, a)← rε,δ(h, a)

else
Q(h, a)← rε,δ(h, a) +∑

y∈Y p(Y (a) = y|a) maxa′∈A−h Q (h ∪ {(a, y)}, a′)
end if

end for
end for
Output: π : π(h) = arg maxa∈A−hQ(h, a)

3.6.2 Constrained Greedy Algorithm
While the dynamic programming algorithm presented above should in general find
better policies, there are also some drawbacks. Dynamic programming is slow and
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computationally expensive since it calculates all values for the entire state-space,
which grows exponentially in the number of treatments and outcomes. In contrast,
greedy algorithms can be quicker since each decision is made using only the infor-
mation in the current state.

The greedy algorithm tries to maximize the expected value of each tried treatment.
In each step of the algorithm, it selects the treatment with the highest estimated
treatment effect, given the previously tried treatments and the covariates x. In
contrast to the Dynamic Programming algorithm, it does not take into account that
a treatment with lower expected value might lead to a better outcome in the future.
I.e., following history h, it selects the treatment with

maxa
∑
y

I(y > maxa′∈hY (a′)) · P (Y (a) = y|h) · y (3.17)

If one does not want compare different values of y in this way, e.g. if the difference
between values in y is not linear. Equation 3.18 could be used instead.

maxa
∑
y

I(y > maxa′∈hY (a′)) · P (Y (a) = y|h) (3.18)

It prioritizes finding a better treatment while valuing slight improvements as much
as bigger improvements in outcomes. This would ensure that fewer treatments are
tried with bad results, but might require more treatments to be tried overall.

Example. The difference in decision-making between Equation 3.17 and 3.18 can
be shown in a small example. We have y ∈ {0, 1, 2}, two treatments, and a patient.
δ = 0 and ε = 0. The patient will be chosen a treatment and has a current maxi-
mum outcome of 0. Treatment 1 has probabilities [0.4, 0.6, 0] and treatment 2 has
probability [0.5, 0, 0.5] for outcomes y. For equation 3.17, treatment 2 is selected
while treatment 1 is selected by Equation 3.18.

Algorithm 2 Constrained Greedy
Input: Slack ε, confidence δ

while a 6= astop do
if γε,δ(h) = 0 then
a← a : maxa∈A−h

∑
y I(y > maxa′∈hY (a′) + ε) · P (Y (a) = y|h) · y

h← h ∪ {(a, y)}
else
a← astop

end if
end while
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3.6.3 The greedy policy is sub-optimal
While the greedy policy often works well, in certain circumstances it will be sub-
optimal. This is because learning a non-repeating policy amounts to learning a
minimal decision list or tree, which in general is NP-hard both optimally [21] and
approximately [22]. The greedy policy being sub-optimal happens when there is a
treatment that has a high probability of working but provides almost no information,
while there is another treatment that is close in probability of working and provides
much more information.

Example. We have 3 treatments (A), binary outcome (Y ), and 4 groups of the
hidden moderator (Z). C is a matrix representing which treatments A are effective
and not (i.e. a 1 and 0, respectively) for which moderator Z.

C =


a1 a2 a3

z1 0 1 1
z2 1 0 0
z3 0 1 0
z4 1 0 1



The cumulative probability that each treatment a is effective is given by: p(Y (·) =
1) =

[
0.60 0.40 0.65

]
.

The greedy policy would start with selecting treatment a3 since the probability for
it to work is the highest, 0.65. It would then select a2, then a1. The optimal policy
would instead start with selecting treatment a1 and then treatment a2 since it is
then guaranteed to finish and to have found a working treatment.

To extend this example we can calculate the expected number of trials until we find
a treatment that works. Given

p(Z) =


0.20
0.15
0.20
0.45



The expected number of trials for the greedy policy is:

E[T ] = p(Z ∈ {1, 4}) + 2p(Z = 3) + 3p(Z = 2)
= (0.20 + 0.45) + (2 ∗ 0.20) + (3 ∗ 0.15) = 1.5

And for the optimal policy:

E[T ] = p(Z ∈ {2, 4}) + 2p(Z ∈ {1, 3})
= (0.15 + 0.45) + (2 ∗ (0.20 + 0.20)) = 1.4
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The expected number of trials for finding an effective treatment is shorter for the
optimal policy than for the greedy policy, showing that the greedy policy is not
optimal in general.
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4
Results

In this chapter, the process of generating two synthetic data sets are presented, as
well as a real-world antibiotics resistance data set. Then the results from several
tests with the different data sets are presented.

4.1 Data sets
While using a real data set to train a model is straightforward, it is not as simple
to evaluate the performance of the resulting policy. To allow for an easier time
evaluating the performance of our trained policies in different settings, synthetic
data sets were created for testing purposes. In the synthetic data sets, we have full
access to the outcome distribution which helps when evaluating how well the policies
work.

The data sets are generated by data models which were produced to provide different
challenges for the algorithms to solve. Each data generating model consists of some
number of hidden moderators Z, covariates X, treatments A, and a range of possible
outcomes Y . The data is generated according to the assumed causal model that can
be seen in Figure 3.1.

4.1.1 A discrete toy data set
A simple data model was created to highlight a situation where the greedy policy is
not optimal. The model is a discrete model with deterministic outcomes where the
values of the hidden moderators Z completely decide the outcome of the treatments.
Only one covariate X was used with 3 treatments A and 3 possible outcomes Y .
The distribution of Z and the outcomes can be seen in Table 4.1.

The outcomes can be ranked from 0 to 2, with 2 being the best outcome. When
generating data, the treatments are selected according to a weighted policy, where
the weight of each treatment is proportional to the percentage of the population
having the best outcome for that treatment. Additionaly, the weight for any already
attempted treatments are set to 0, thus each treatment is only tried once. New
treatments are stopped with probability 0.9 when an outcome of 2 is reached, or
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z0 z1 z2 P (Z)
0 0 0 0.30
0 0 1 0.16
0 1 0 0.35
0 1 1 0.13
1 0 0 0.04
1 0 1 0.01
1 1 0 0.01
1 1 1 0.00

Y (a0) Y (a1) Y (a2)
2 2 1
2 1 0
1 0 2
1 2 0
1 1 1
1 1 2
0 2 0
0 0 0

Table 4.1: The distribution of Z and treatment outcomes for the discrete toy data
generator.

when all treatments have been tried.

The distribution is designed such that treatment a0 will have the highest success
rate for the majority of the population, but treatment a0 does not give any further
information about which treatment is optimal for the rest of the population. As
such, the optimal treatment regime is to first try treatment a1, and then, depending
on the outcome, try either a0 or a2. Another feature of the data is that there has
to be a decision whether to stop searching for a more effective treatment when both
a0 and a1 yield a result of 1. With a probability of 0.2, trying a2 as well will give a
better outcome, and with probability 0.8 it will not.

4.1.2 A random discrete data set
While the data set presented in Section 4.1.1 can highlight an interesting property
in the algorithms, it is perhaps not very realistic. Thus another data set was im-
plemented to enable testing of more complex environments while still retaining full
information about all potential outcomes and outcome distributions.

The generation process for a single patient in a model with I moderators, J covari-
ates, K treatments and M different outcomes, is described below.

1. The vectors α, β, γ, and ω are generated once for each model environment.
The moderators, Z, and the covariates, X, are binary variables.

2. Each moderator Zi is generated randomly, with probability of being 1 equal
to αi. Where α ∈ (0, 1)I .

3. Then, each covariate Xj is generated randomly, with probability of being 1
weighted by Z · βj. Where βj ∈ RI .

When Z and X has been generated, a sequence of treatments are drawn until either
a treatment with the best possible outcome is generated, all treatments have been
tried, or a stop action is taken (which happens with probability 0.1). The probability
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of a treatment being drawn is weighted by P (A = ak|H,X) = (1,H,X)·γk∑
k
(1,H,X)·γk

, or 0 if
the treatment has already been tried.

The outcome of each treatment is approximately normally distributed with a mean
calculated as E(Y (ak) = (1, Z,X) · ωk such that E(Y (ak) ∈ (0,M). The variance is
also randomly generated in the range (0, 1).

All of this follows the model laid out on Figure 3.1. When generating training data,
the above procedure is followed, while during testing, the assignment of treatments
is determined by the policy, rather than the data generating model.

4.1.3 An antibiotic resistance data set
To evaluate the algorithms in a realistic setting, we use data from observational
studies of antibiotic resistance in humans. The data is collected from the MIMIC-
III data set [12] which contains data points from over forty thousand ICU patients
at Beth Israel Deaconess Medical Center. Antibiotic resistance is measured by col-
lecting a sample from a patient and classifying the bacterial cultures as resistant,
intermediate, or susceptible to the antibiotic. The growing of cultures can take some
time and in urgent cases one may not have time to wait for the results before pre-
scribing medication. These antibiotic tests are how outcomes are measured in this
setting and means that we have measured all potential outcomes. Having access to
all potential outcomes is good when evaluating, since it allows us to simulate as if
we had real patients. The setting of antibiotic resistance makes it a good match for
the assumptions of the causal model since the state of the patient is not changed
when the efficacy of the treatment was measured unless the treatment was a success,
in which case there is no need to try further treatments.

The problem is simplified compared to the actual problem of prescribing antibiotics
in several ways. In reality, a patient is taking an antibiotic one or several times,
perhaps with different doses. A patient may also take multiple antibiotics simulta-
neously. In our data, an antibiotic for a patient is represented as only one event,
and the problem of choosing a dose is not addressed. Another tricky part is that the
MIMIC-III database does not state for which organism or organisms an antibiotic
was prescribed to eliminate. This is difficult both for when a patient has several
organisms and when multiple antibiotics are given at the same time, so-called an-
tibiotic cocktails. Patients in our data are only allowed to have a single organism
assigned, thus, one solution is to “copy” the patient such that for each organism
the patient had, a new patient is created with that organism and the same history
of treatments and the same covariates. In this experiment, we also assume that we
can observe the outcome of the previous treatment before selecting a new treatment.
This is probably not the case in reality since different antibiotics sometimes are given
to a patient within a very small time frame. Using the antibiotic tests as ground
truth for the outcome of the antibiotic might also be departing from reality.

A patient in the data is represented by a hospital stay from MIMIC-III, which means
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that a person could show up more than twice in the data by visiting the hospital
multiple times. For each hospital stay the first occurrence of a treatment is picked
as the time the treatment is used. The scale of outcomes for the antibiotics is:

Resistant 0
Intermediate 1
Susceptible 2

There are 3 different covariates consisting of 4 organisms, 4 age bins, and 2 co-
morbidities of which a patient can have none, one of them, or both. The used
organisms are Escherichia Coli (E. coli), Pseudomonas aeruginosa, Klebsiella pneu-
moniae, and Proteus mirabilis. The reason these were picked was because there were
a lot of available data compared to other bacteria, and these had many antibiotics
in common. The four age bins are [0, 15], (15, 31], (31, 60], and (60,∞), and the
comorbidities are Infectious And Parasitic Diseases, and Diseases Of The Skin And
Subcutaneous Tissue, as classified by International Statistical Classification of Dis-
eases and Related Health Problems (ICD) 9th edition [23]. These covariates were
chosen because Ghosh et al. showed in [24] that there is a significant association
between these age bins and comorbidities, and some of the organisms we use. The 6
selected antibiotics used to treat the organisms are Ceftazidime, Piperacillin/Tazo,
Cefepime, Tobramycin, Gentamicin, and Meropenem. There are 1362 patients split
70/30 in training and test data such data one patient with multiple organisms ends
up in the same group.

4.2 Algorithm performance
In this section, a series of experiments have been performed to evaluate different
parts of the algorithms. We evaluate different bounds, potential outcome estima-
tion methods, and sizes of data set. We also compare the constrained algorithms to
ones without the constraint as well as apply the algorithms to real data of antibiotic
resistance. The standard setting of experiments on the synthetic data set is to use
3 different binary Z (moderators), 1 binary X (covariates), 5 different A (treat-
ments), and 3 different Y (outcomes). When evaluating the algorithms for the test
population, we have two different ways of estimating outcome performance. Mean
treatment effect is the average best found treatment outcome in the population.
Efficacy is the proportion of the test population that receives their maximum pos-
sible treatment outcome.

4.2.1 Baseline algorithms
We also compare the constrained algorithms to some baseline algorithms. This
helps to contrast the constraint to other methods and evaluate the potential of our
method. How the two baseline algorithms works are described below.

Naive greedy algorithm. In each step, the naive greedy algorithm picks the
treatment with the highest probability of generating maximum outcome, given the
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covariates and history. The treatment probabilities are calculated the same way as
for the constrained algorithms, as described in Section 3.4. It also has a maximum
number of treatments it is allowed to test and stops when it finds a treatment with
the best possible outcome or the maximum number of steps have been reached.

Naive Dynamic Programming. The Naive Dynamic Programming algorithm is
implemented similarly to Constrained Dynamic Programming, described in Section
3.6.1. The difference is that the naive version does not use the constraint. Instead,
it has a fixed negative reward for each treatment it tries, and a positive reward
for stopping equal to the numeric value of the best treatment found. The negative
reward can be tweaked to get different results from the algorithm.

4.2.2 Comparison of Greedy and Dynamic Programming
Using the simple discrete data generating model from Section 4.1.1, a training set
of 30 000 samples and a test set of 3 000 samples were generated. We compared
the performance of the Constrained Dynamic Programming algorithm as described
in Section 3.6.1 and a Constrained Greedy algorithm as described in Section 3.6.2.
Both algorithms used δ = 0 and ε = 0. The results are presented in Figure 4.1.
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Figure 4.1: Results for the toy data set. The vertical lines in the graph represents
the mean search times for the two algorithms.

Notable is that the greedy approach has a better mean treatment effect after the
first attempted treatment as would be expected. After the second treatment, the
Constrained Dynamic Programming algorithm has a better mean treatment effect
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since it has gained an information advantage in the first step.

4.2.3 Effect of δ on search time and efficiency
To compare the two constrained algorithms to the two naive ones, a test was set
up using the data set discussed in Section 4.1.2. Using 15000 training samples and
3000 test samples the results are averaged over 10 runs.

In the test, δ was varied between 0 and 1 for the constrained algorithms. The naive
greedy algorithm had its maximum number of steps varied between 1 and 5 which
equals the number of available treatments, and the naive dynamic programming
algorithm had the negative reward set from 0 to −1. The results for this test are
presented in Figure 4.2, note that the results on the y-axis are the proportion of the
test population which receives their maximum possible treatment outcome, which
does not have to match the best possible treatment outcome in the population.

As can be seen, there is a trade-off between the treatment efficacy and the mean
number of trials with generally higher search times leading to better outcomes. To
evaluate which algorithm performs the best, the same results are presented in Figure
4.3 where the search time and efficacy are plotted against each other. What can
be seen is that all algorithms have roughly the same trade-off with the constrained
greedy algorithm perhaps being somewhat better overall.

4.2.4 Comparing bounds
Figure 4.4 shows the mean number of trials in relation to the efficacy of the three
bounds from Section 3.5. As can be seen, all bounds performs approximately the
same. The same plots but done over δ can be seen in Figure B.3 and B.4. While
the algorithms yield different results for the same δ, for a specific search time and
efficacy of one bound, the same values can be achieved by adjusting δ for the other
bounds.

4.2.5 Comparing potential outcome estimation
As discussed in section 3.4.1, to compensate for a low amount of data, smoothing
is used to help estimate the model of outcomes. However, this runs the risk of
introducing errors when trying to calculate the probabilities. In Figure 4.5, four
different smoothing techniques are plotted with search time versus efficacy for both
the DP and Greedy algorithms. The last letter tells which type of estimation is
done, T is using the true probabilities, U is using Uninformed smoothing, H is
using Historical smoothing and F is using function approximation.

Note how the true probabilities most often give the best result as would be ex-
pected. Of the others, the historical prior works best, and the uninformed prior
seems to work the worst. The greedy algorithm also has a smaller spread between
the estimators.
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Figure 4.2: The two main algorithms and the two naive algorithms plotted over a
range of δ, reward, and max-steps. As expected, both the search time and efficacy
decreases with higher δ.
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Figure 4.3: The same graph as in Figure 4.2, but plotted as efficacy vs time.
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(a) Constrained Dynamic Programming
algorithm.
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(b) Constrained Greedy algorithm.

Figure 4.4: Upper, exact, and lower bounds for the two algorithms. Note that all
bounds are very similar.
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(a) Four different approximators plotted
for the constrained dynamic programming
algorithm.
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(b) Four different approximators plotted
for the constrained greedy algorithm.

Figure 4.5: Plots of efficacy vs time for different approximators. Note that an
algorithm closer to the upper right has a better performance than an algorithm
closer to the bottom left.

4.2.6 Effect of data set size
The size of the data set used to train the algorithms can influence how accurate
they represent the whole population. A low amount of data can lead to variance
playing a larger part in the estimates of the model. Figure 4.6 illustrates how well
the different algorithms perform with different sized data sets.

While all algorithms are unreliable at extremely small data set sizes, all of them
seem to stabilize and get better performance at a data set size of around 2500 sam-
ples, with the constrained greedy and constrained dynamic programming perhaps a
bit earlier. A better performing algorithm will have a larger gap between the out-
come and the search time. Also noteworthy is that Uninformed smoothing is very
cautious when the data set size is low and gets both a high efficacy and a high mean
time.

4.2.7 Comparison of the constrained and naive algorithms
To get another comparison between the naive and constrained versions of the algo-
rithms, 100 test runs were done for each of the algorithms, and the mean effect and
mean search time was calculated. Each run was made on a data set of 15000 samples
with δ set to 0.3. The results are presented in Table 4.2. All algorithms performed
similarly, with a higher mean number of trials leading to lower regret.

4.3 Experiments on antibiotic resistance data set
Evaluation with antibiotic resistance data is performed in two different settings.
The first is captured in Figure 4.7 and is the mean treatment effect for each tried
antibiotic where we compare CDP and CG to NDP and an emulated doctor. The
second setting is the mean efficacy vs mean time for different values of δ captured
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Figure 4.6: How the algorithms respond to different data set sizes. Note that the
CDP_T does not depend of the amount of data since it has direct access to the
model of the outcomes. Also note that the x-axis is logarithmic.
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Algorithm Regret (1-efficacy) Regret var Mean trials Trials var
Naive Greedy (4 steps) 0.0291 0.0002 2.1729 0.1581
Constrained Greedy 0.0656 0.0012 1.8679 0.0755

Naive Dynamic P. (r=-0.25) 0.0880 0.0037 1.8023 0.1203
Constrained Dynamic P. 0.0829 0.0017 1.8009 0.0574

Constrained Dynamic P. T 0.0572 0.0009 1.8660 0.0683

Table 4.2: Performance comparison of different algorithms. The data was averaged
over 100 runs.
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Figure 4.7: Antibiotic resistance data evaluated with algorithms that used function
approximation. δ = 0. CG_F performs slightly better than CDP_F, NDP_F, and
the Emulated Doctor. Doctor is only evaluated at the first trials to avoid incorrect
inference. The vertical lines represent the mean number of trials for the different
algorithms.
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Figure 4.8: The mean time and efficacy evaluated over 10 different δ ∈ [0, 1].
Note that the upper right area is better and that function approximation works well
compared to frequentist approach with historical smoothing.

in Figure 4.8. CDP, CG, and NDP used function approximation as described in
Section 3.4.2 for the potential outcome estimation, both in the algorithm and in the
constraint.

Doctor in Figure 4.7 is what the actual doctor prescribed to the patient. Doctor is
only shown at the first trial because we can’t know why the doctor stopped treating
the patient. it could e.g. be that the patient passed away, which would lead us
to believe that the doctor stopped before finding an antibiotic that the organism
was susceptible to. The Doctor achieved a higher treatment effect in the first step
which suggests that the doctor considered more covariates than the algorithms when
antibiotics were prescribed to a patient. Emulated doctor is a greedy algorithm
such that it chooses the treatment that the doctor was most likely to give to a
patient given the covariates and the history of the patient.

Figure 4.8 shows how function approximation in both CDP and CG works well
compared to the frequentist approach with historical smoothing. The more a point
is to the upper right, the better the algorithm performs. Function approximation
performs well because it finds similarities between different covariates, which the
frequentist approach can not. This is particularly important in cases with small
amount of data. The plot also suggests that a larger δ is more advantageous for
CDP than CG, although differences are very small and might depend on variance.
The values in the plot were averaged over 5 different shuffles of the training and test
set.
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Related Work

5.1 Reinforcement learning in dynamic treatment
regimes

Reinforcement learning has previously been used to search for optimal dynamic
treatment regimes, however, previous work often focus on finding the optimal se-
quence of treatments for a predetermined number of steps. Tao et al. [5] used
tree-based reinforcement learning to find the optimal treatment for each step in
a simulated study, but lacked the notion of finding a "good enough" treatment [5].
Instead they were interested in finding a policy that when deciding between a combi-
nation of three treatments at two sequential decision points find the best treatment
outcome. Their method worked well, both when the estimated causal model was
correctly and incorrectly specified.

Huang et. al. [4] used a modified version of Q-learning to decide between two
treatments at two stages during a simulated treatment of cancer. Accounting for
causal factors in deciding the models for the Q-learning improved the accuracy
and improved the robustness when unmeasured confounding was present in the
data compared to the unmodified reinforcement learning. Although promising, their
method was also focused on finding the optimal treatment on two separate sequential
stages and did not have the notion of searching for an effective treatment.

5.2 Incorporating causal factors in reinforcement
learning

In a paper by Yu et al. [9], they incorporate causal factors into policy gradient
reinforcement learning. This is done by having a causal factor C(A|B) that controls
the direction of the update function. This paper suggests using sampling methods
such as those by Merck and Kleinberg to find C, which does not rely on a causal
graph [25].

In a paper by Nie et. al. [26] they present an advantage doubly robust estimator for
deciding if a doctor should treat a patient or postpone the treatment.
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5.3 Optimal stopping
Our work is also related to the theory of optimal stopping in mathematics, which is
concerned with the problem of, during some sequence of events, taking an action that
then censors all future events while still finding the stopping point with highest value
[27]. This has also been used in economics and mathematical finance to determine
the pricing of American options [28]. However, our problem differs in that the next
event is controlled by our decision-making agent, rather than something that just
happens.

5.4 Active learning
Active learning [29] has been used to learn policies that performs a minimum number
of tests before an underlying hypothesis is found [30]. The difference between our
case and the work by Golovin et al. [30] is that the distribution of hypotheses is
unknown and the outcomes of actions are only partially observed.
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Conclusion

This chapter discusses the results and possible further work on the topic.

6.1 Discussion

In this thesis we have presented a novel way of, given an observational data set,
minimizing the number of treatments tried when trying to find a near-optimal treat-
ment. This is done by imposing a constraint on the search process, where the search
continues unless the probability of finding a better treatment is lower than some
set limit δ. Using this constraint, two algorithms were implemented, one based on
dynamic programming and one based on a greedy rule. Several variants of the algo-
rithms were tested, with different strategies to handle missing data and calculating
the constraint. The policies produced by these algorithms were then compared and
evaluated to find which settings worked best.

Our problem does not allow us to have a single value assessing the algorithms, which
means that to claim that an algorithm is better than another, the search time has
to be shorter and the mean treatment effect has to be better, or one of them being
equal compared to another algorithm.

In general, the difference between algorithms seem to be small on the synthetic data
set, both for the constrained and the naive variants, which indicate that there are
several policies that are close but not identical and that those policies can easily
be found, regardless of method. While we proved that the greedy policy in general
is sub-optimal in Section 3.6.3, this requires a particular set of circumstances. It
requires that there is a treatment which has the highest success rate but contains
almost no information about which other treatments might work. At the same
time there has to be another treatment that works almost as well, but has a lot of
information about which other treatments can work. The conditions required for
this to be the case means that it is unlikely that the greedy policy is much worse
than the optimal policy in a random setting.

Using an upper or lower bound for the constraint yields different performance for the
same δ, but none of them are clearly better than the other since the same balance
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between time and efficacy can be achieved using any bound. Thus the choice of
bound falls to the interpretation you want to have of δ rather than any notion of
performance. Using the lower bound means that the next treatment tried will always
have at least a δ chance of working, while using the exact bound means that the
overall chance of finding a better treatment is at least δ. The upper bound can be
useful when there is not enough data to accurately calculate the exact bound since
it still guarantees that there will be at least a δ chance of some treatment having a
better outcome.

Choosing how to estimate the potential outcomes is quite important for the per-
formance. With access to the true probabilities, both CDP and CG performed the
best, but since the true probabilities are not generally available, the method based
on the historical prior seemed to work almost as well on the synthetic data. The
estimator based on function approximation also seemed to work well on synthetic
data, while yielding better performance on a greater covariate space, as shown with
the antibiotic resistance data set.

Most algorithms seem to find similarly performing policies at about a data set size
of 4000 samples. It is reasonable to assume that estimates of potential outcomes
become more reliable at that point. Presumably, more data yields better perfor-
mance, even though the trend in Figure 4.6 does not seem to converge towards the
true distribution even at 100 000 data samples. This is probably since most gains
in time and mean treatment value is gained during the first two steps of the policy.
The last few steps, e.g. when to try the fifth treatment vs. when to stop at the
fourth is harder to predict since there is less data for those decisions.

CDP and CG seem to work well on real data, although the modified problem was
very simplified compared to the real problem of prescribing antibiotics. For the first
tried treatment of the patient, the algorithms were quite close to the performance
of the real doctor. This suggests that the algorithms perform quite well, but could
probably also perform better if more relevant covariates were used. However, for
CDP, this would mean a great increase in runtime. While NDP also yields good
performance, being able to have certain guarantees about the estimated probabilities
of the outcomes of a selected treatment is favorable in medical applications.

6.2 Conclusion
The method of using a constraint to control when to search for a better treatment
and when not to works well. However, there are no major improvements in perfor-
mance in using that method rather than pure dynamic programming. Instead, the
main reason for using the constrained versions would be that that the usage of δ
lets the user have a more interpretable parameter to tune, rather than using a fixed
limit on a reward that has no direct interpretation.

Constrained Greedy worked very well for most tests we did, even though it performs
worse than Constrained Dynamic Programming in the worst case. However, this is
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probably due to the way that our test data is structured, rather than a general idea
that the greedy variant is always as good.

6.3 Future work
One of the major improvements that can be done to the method is to do all esti-
mations using function approximation, perhaps using a neural network. This might
help both the problem when our frequentist approach breaks down when we have
too few data points for rare combinations of treatments and outcomes as well as
allowing us to handle more treatments, outcomes, and covariates. Using function
approximation instead of a table of values would also allow for use of continuous
outcomes and covariates.

A possible improvement would be to try a data generating model that does not
match the assumed model to try and evaluate how robust the method is when
the causal assumptions do not match reality. This is very important, especially in
medical settings where mistakes are extremely costly.
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Appendix 1

A.1 Algorithms

A.1.1 Constrained Deep Q-learning
The q-table in the Constrained dynamic programming algorithm grows exponentially
when the size of A, X, or Y is increased, which means that it is inconvenient to
apply to bigger problems. A solution is to instead approximate the q-table with a
function.

An attempt was made to use double q-learning as an estimator for the q-table. A
feed-forward neural network is used as estimator of the q-function. The reward is
calculated as before i.e. by the constraint and by equation 3.14 and 3.15. The
algorithm itself is thus not constrained, but rather implied in the reward system.
This method did not yield a stationary loss function, which caused the algorithm
not to converge to a solution.
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B. Appendix 2: Graphs

Figure B.1: Four different statistical approximators plotted over a range of delta
values for the constrained dynamic programming algorithm.
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B. Appendix 2: Graphs

Figure B.2: Four different statistical approximators plotted over a range of delta
values for the constrained greedy algorithm.
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B. Appendix 2: Graphs

Figure B.3: Three different bounds, lower, upper and exact plotted for the CDP
algorithm.
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B. Appendix 2: Graphs

Figure B.4: Three different bounds, lower, upper and exact plotted for the CG
algorithm.
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