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An Analysis of the Immersed Boundary Surface Method in foam-extend
JAN ERIK DÖHLER
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract
The Immersed Boundary Surface method is an implementation of the Immersed
Boundary method in the latest versions of foam-extend, a fork of the free, open-
source computational fluid dynamics (CFD) software OpenFOAM. Instead of using
body-fitted meshing methods, the Immersed Boundary method merges objects and
boundaries into a uniform background mesh. While the Immersed Boundary method
contains many different merging approaches, the Immersed Boundary Surface method
merges objects represented by triangulated surface meshes into the background mesh
in a manner similar to the cut-cell approach.
In this thesis, the implementation and limitations of the Immersed Boundary Surface
method in foam-extend 4.1 nextRelease branch are investigated and analysed.
In foam-extend, the Immersed Boundary method was already implemented in previ-
ous versions using polynomial fitting and based on the discrete ghost-cell approach,
but was heavily modified in version 4.1. A detailed description of the newly im-
plemented Immersed Boundary Surface method in foam-extend 4.1 nextRelease
branch as well as a comparison to the implementation in previous foam-extend
versions is given. The impact of using the cut-cell approach on the choice of the
background mesh is shown in guidelines for mesh refinement. The limitations of the
Immersed Boundary Surface method are investigated using simple test cases, focus-
ing on the mass conservation. Furthermore, the implemented Immersed Boundary
wall functions are compared to established body-fitted wall functions on different
test cases.

Keywords: CFD, Immersed Boundary Method, Immersed Boundary Surface Method,
OpenFOAM, foam-extend, Motion fluxes, Wall functions.
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IBS Immersed Boundary Surface method (foam-extend 4.1)

PDE Partial Differential Equations

PIMPLE combination of PISO and SIMPLE

PISO Pressure-Implicit with Splitting of Operators
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SCL Space Conservation Law
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face geometry of 3D objects
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ix





Nomenclature

Below is the nomenclature of indices, sets, parameters, and variables that have been
used throughout this thesis.

Indices

i,j Indices for vector notation
f Index for cell face

Dimensionless Quantities

Cµ Coefficient for eddy viscosity
Cf Friction coefficient
Ci Coefficients for the polynomial fitting in IBM with i stand-

ing for numbers 0-4
Re Reynolds number
y+ Non-dimensional distance in y-direction

Greek letters

αu / αp Relaxation factor for velocity/pressure equation
δ Dirac delta function
ε Viscous dissipation
γ Correction coefficient
µ Kinematic viscosity
ν Dynamic viscosity
ω Specific dissipation
Φ Face flux
φ Flow variable
ϑ Velocity scale

Roman letters

Au Momentum matrix
au
ij Discretized momentum matrix coefficients

F(x) External force
F1 First blending function in SST k-ω model
F2 Second blending function in SST k-ω model
f Area force acting on IB
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H(u) Non-dimensional contribution of momentum matrix Au
I Identity matrix
k Turbulent kinetic energy
l Length scale
n Normal vector
P Steady-mean pressure component
P̃k Production limiter for SST k-ω model
p Pressure
p′ Turbulent pressure component
rb Explicitly treated contributions of momentum equation

discretization procedure
S Invariant measure of strain rate
Sf Face area
Sf Face area vector
t Time
U Steady mean velocity component
u Velocity
u Velocity component in x-direction
u′ Fluctuation velocity component
V Volume
v Velocity component in y-direction
w Velocity component in z-direction
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1
Introduction

1.1 Background

In Computational Fluid Dynamics (CFD), the computational domain is usually
decomposed by a body-fitted (BF) method into smaller cells in which the differential
equations can be further approximated numerically. However, in more complex
geometric domains or domains with moving/rotating solids, the decomposition can
lead to high computational costs. In the case of moving or rotating bodies, the
mesh of the surrounding flow field must be recalculated every few time steps, since
only small deformations of cells can be compensated. In the Immersed Boundary
(IB) method, the decomposition is not body fitted, but boundaries are immersed
in a uniform background mesh. This has the great advantage that the background
mesh is not only uniform but also constant over all time steps and only needs to be
modified at the IB.

In foam-extend, a branch of the free, open-source CFD software OpenFOAM, the IB
method was initially implemented based on a discrete ghost-cell forcing approach
using polynomial fitting to manipulate field properties. Due to disadvantages of
polynomial fitting, the implementation of the IB method was heavily modified and
is now based on the cut-cell approach. Instead of using polynomials, the background
mesh is cut and the discretization matrix is manipulated to satisfy the boundary
condition at the immersed boundary. This new IB implementation, which is im-
plemented in foam-extend 4.1, is called the Immersed Boundary Surface (IBS)
method and is explained in more detail in chapter 2.6.

1.2 Aim

The aim of this work is to document and investigate the IBS implementation in the
foam-extend 4.1 nextRelease branch. This work aims to build a basic under-
standing of the cutting process into the background mesh of the IB as well as the
limitations for moving or volume changing, solid objects. For the analysis of the
IBS, test cases need to be created that highlight the features under investigation.
In addition, this work aims to contribute to the development of the IBS implemen-
tation and the preparation of the application of the IB method on rotating stators
in the Francis-99 turbine.

1



1. Introduction

1.3 Limitations
• Since the IBS method is still new with very little literature, the documentation

of the IBS implementation is focused on the main cutting process and the two
IB classes ImmersedBoundaryFvPatch and ImmersedBoundaryPolyPatch

• This work is focused on solid IBs because the future goal is the application on
rotating stators in the Francis-99 turbine

• The work is based on the foam-extend 4.1 nextRelease branch (version
11th May 2022 14:47, commit: a6e7082d658f469434beb0f2cd4678557efb29c9

• The analysis on fluxes and wall functions is limited on a few simple test cases

1.4 Specification of Issue Under Investigation
• Differences between the IBM and the IBS

• Integration of IB implementation in foam-extend

• Limitations in mesh coarseness using the IBS method

• Transformation of mesh fluxes into mass fluxes

• Translating and rotating objects in the IBS method

• Boundary conditions and wall functions for the IBS method

2



2
Theory

2.1 Governing Equations
The system of equation for transient, incompressible viscous flow consists of the
Continuity equation and the momentum equations. The Continuity equation reads

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

and can be simplified to

∇ · u = 0 (2.2)

due to constant density. The momentum equations, which are also known as the
Navier-Stokes equations can be written as follows:

∂u
∂t

+∇ · (uu) = −1
ρ
∇p+∇ · (ν∇u) + S. (2.3)

In the transport equations, u is the velocity vector, p the pressure, ν the kinematic
viscosity and S a source term.

2.2 Finite Volume Method
The Finite Volume Method (FVM) is a numerical method for approximating the
solution of partial differential equations (PDE). For this purpose, the computational
domain is divided into finite volumes, the PDEs are linearized with discretization
schemes and volume integrals of the PDE are evaluated over the finite volumes. The
FVM is one of the fundamental discretization methods in OpenFOAM and is used for
all results presented in this thesis.

2.3 Discretization of Momentum Equation
The momentum equation 2.3, simplified and semi-discretized, can be written as
follows [6]:

Auu = −∇p. (2.4)

3



2. Theory

The momentum matrix Au in equation 2.4 can be divided into a diagonal and a
non-diagonal part. For the non-diagonal contribution in Au, the linear operator H
was introduced by Jasak [6].

au
iiui = H(u)−∇p (2.5)

H(u) = rb −
N∑
j 6=i

au
ijuj (2.6)

Equation 2.5 can be rewritten for the velocity ui at the centre of cell i:

ui = (au
ii)−1 [H(u)−∇p] . (2.7)

The discretized momentum equation expressed for ui, substituted into the continuity
equation, gives the semi-discrete pressure equation:

∇ ·
[
(au
ii)−1∇p

]
= ∇ ·

[
(au
ii)−1H(u)

]
. (2.8)

Equation 2.8 is called the pressure equation because the continuity equation, which
was a velocity equation, now only has the pressure as an unknown in the case where
the operator H(u) is known. This completes the pressure-velocity coupling and the
system of equation can be solved.
Using equation 2.7, the discretized equation for the face flux Φ, which is the face
normal vector sf , with ‖sf‖ = face area, times the velocity, can be written as follows:

Φ = sTf uf = sf
[
(au
ii)−1 (H(u)−∇p)

]
f
. (2.9)

2.4 Pressure-Velocity Coupling

2.4.1 The PISO Algorithm
The PISO algorithm, Pressure-Implicit with Splitting of Operators, was originally
conceived by Issa in 1986 for the pressure-velocity treatment of transient flows [4].

1. The discretized momentum equation 2.5 is solved with the pressure field of
the previous time step (or guessed initial condition) to obtain a new velocity
field. The velocity field is called an intermediate velocity field because only the
momentum equation has been solved and not the entire system of equation.
H(u) depends on the flux, which is why the flux is also taken from the previous
time step to solve the momentum equation.

2. With the new intermediate velocity field, the new off-diagonal part of the
momentum matrix, H(u), can be calculated and the equation 2.8 can be solved
to obtain the new pressure field.

3. With the new velocity and pressure field, the face flux can be updated with
equation 2.9 as well.

4. Finally, the velocity field is corrected with the new pressure and flux field,
equation 2.7, before the loop starts again with step 2 until the convergence
criteria is satisfied.

4



2. Theory

Although the coefficients in the linear operator H(u) depend on the flux, the matrix
is only updated with the new velocity field, but the coefficients are kept constant
throughout the entire correction. Therefore, the PISO algorithm is mainly used for
transient flows, as the focus is on treating the pressure-velocity coupling instead of
the non-linear coupling.

2.4.2 The SIMPLE Algorithm
The Semi-Implicit Method for Pressure Linked Equations, short SIMPLE, was de-
veloped by Patankar in 1972 and is mainly used for the pressure-velocity coupling
in steady-state problems [16].

1. As in the PISO algorithm, the pressure field and face fluxes are taken by the
previous steps, but the discretized momentum equation is manipulated with
an implicit under-relaxation factor αu:

1
αu
au
iiui +

N∑
j 6=i

au
ijuj = rb −∇p(k−1) + 1− αu

αu
au
iiu

(k−1)
i (2.10)

2. After solving equation 2.10, H(u) can be updated. With the new velocity field
a pressure correction field can be calculated from equation 2.8, which will be
used to compute an under-relaxed pressure field of the new time step:

p(k) = (1− αp)p(k−1) + αpp
∗ (2.11)

with p∗ as the pressure correction from the pressure equation 2.8.
3. In a next step, the face flux for the new time step is computed with equation

2.9.
4. With the corrected pressure and the newly calculated flux, the velocity field

can be corrected to satisfy the continuity equation. Again the under-relaxed
factor is used.

u(k) = αu

(
1
au
ii

H(u∗)− 1
au
ii

∇p
)

+ (1− αu)u∗ (2.12)

with u∗ from the first step and equation 2.10.
A loop is performed over all steps, as long as the tolerance of the convergence criteria
is not reached.

2.4.3 The PIMPLE Algorithm in OpenFOAM
The PIMPLE algorithm is a combination of the PISO and SIMPLE method, where
a loop over the momentum equation (as in SIMPLE) and over the pressure equation
(as in PISO) is done. With two coefficients, nCorrector and nOuterCorrector, the
number of correction loops can be chosen explicitly. The coefficient nOuterCorrector
determines how often the entire system of equation is solved and the fields cor-
rected (number of outer corrections), as in the SIMPLE algorithm. The coefficient

5



2. Theory

nCorrector chooses the number of corrections of the pressure equation inside the
outer loop. This means, for example, if the coefficient nOuterCorrector is set to one
and nCorrector to four, the PIMPLE algorithm matches the PISO algorithm with
four corrections. In the same way, but with nOuterCorrector greater than one and
nCorrector equal to one, the PIMPLE algorithm becomes a SIMPLE algorithm.

2.5 Turbulence Models

Some test cases and simulations are carried out in laminar flow without considering
turbulent behaviour. Turbulence models are therefore not needed in these cases.
However, in order to be able to investigate the physics near walls with immersed
boundaries, some turbulence models need to be introduced and explained before-
hand. Hence, this section focuses on introducing the necessary models and theories
to further investigate wall functions.

2.5.1 Reynolds-Average Navier-Stokes Equations

To compare the turbulent behaviour near walls between body-fitted cases and im-
mersed boundary cases, it is sufficient to look at time-averaged properties and do
not resolve turbulent fluctuations. Instead of the previously presented Navier-Stokes
equations, the Reynolds-averaged Navier-Stokes equations are used together with
turbulence models.
After the Reynolds decomposition, the velocity can be divided into a steady, mean
part U and its fluctuating component u′.

u(x, t) = U(x, t) + u′(x, t) (2.13)

The decomposed velocity is inserted into the governing equations, which are time-
averaged afterwards. The continuity equations can be simplified to:

∇ · (U + u′) = ∇ ·U +∇ · u′ = ∇ ·U. (2.14)

To simplify the time-averaged Navier-Stokes equation with decomposed velocity
and decomposed pressure, the system of equation is separated into the x-, y- and
z-momentum equation. The simplification is only shown for the x-momentum equa-
tion, as it can be done in the same way for the y- and z-momentum equation. The
non-simplified, incompressible, time-averaged x-momentum equation is written in
equation 2.15. For simplicity, the additional source term is omitted in the following
equations.

∂u

∂t
+∇ · (uu) = −1

ρ

∂p

∂x
+∇ · (ν∇u). (2.15)
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Each term in equation 2.15 can further be simplified [12]:

∂u

∂t
= ∂U

∂t
(2.16)

∇ · (uu) = ∇ · (UU) +∇ · (u′u′) (2.17)

−1
ρ

∂p

∂x
= −1

ρ

∂P

∂x
(2.18)

∇ · (ν∇u) = ∇ · (ν∇U) (2.19)

with U = u − u′ and P = p − p′. All simplifications put together, the Reynolds-
averaged x-momentum equation reads:

∂U

∂t
+∇ · (UU) = −1

ρ

∂P

∂x
+∇ · (ν∇U)−∇ · (u′u′). (2.20)

When simplifying the time-averaged convection term, a new term with fluctuating
velocities, equation 2.17, appears. This term is moved to the right hand side, because
it is associated with convective momentum transfer through turbulent eddies [12].
Together with the terms from the y- and z-momentum equation, these additional
momentum transfer terms are called Reynolds stresses. Equation 2.20 together with
the Reynolds-averaged y- and z-momentum equation gives the Reynolds-averaged
Navier-Stokes (RANS) equation system:

∂U

∂t
+∇ · (VU) = −1

ρ

∂P

∂x
+∇ · (ν∇V )−∇ · (u′u′) (2.21)

∂V

∂t
+∇ · (VU) = −1

ρ

∂P

∂y
+∇ · (ν∇V )−∇ · (v′u′) (2.22)

∂W

∂t
+∇ · (WU) = −1

ρ

∂P

∂z
+∇ · (ν∇W )−∇ · (w′u′) (2.23)

Due to new unknown terms in the RANS (the Reynolds stresses), turbulence models
are needed to close the system of equation. One of the most common turbulence
models is the k− ε model and the k−ω model, which add two additional transport
equations to the three RANS equations 2.21-2.23. In the k − ε and k − ω model,
the Boussinesq hypothesis proposed in 1877 is used, which states that the Reynolds
stresses are proportional to the mean deformation rates and can be described for
incompressible flows as follows:

−ρu′ ⊗ u′ = µt
[
∇U +∇(U)T

]
− 2

3ρkI (2.24)

with the turbulent kinetic energy per unit mass k = 1
2

(
(u′)2 + (v′)2 + (w′)2

)
and

the eddy viscosity µt. In the k − ε and k − ω model transport equations, the
turbulent kinetic energy k and the rate of viscous dissipation ε and the rate of
specific dissipation ω, respectively, are used to predict the kinetic energy k and the
turbulent viscosity µt and finally the Reynolds stresses.
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2.5.2 k − ε Model
The kinetic energy k and the rate of viscous dissipation ε are used to define velocity
scale ϑ and length scale l of the large-scale turbulence [12].

ϑ = k1/2, l = k3/2

ε
(2.25)

With the velocity and length scale, the eddy viscosity µ can be described with k
and ε.

µt = Cρϑl = ρCµ
k2

ε
, (2.26)

with Cµ as a dimensionless constant.
It is possible to derive exact transport equations for k and ε, but both have too
many unknown terms and are therefore not feasible for the numerical application
of the k − ε model. Therefore, the standard k − ε model by Launder and Spalding,
1974, uses simplified transport equations [11]:

∂ρk

∂t
+∇ · (ρkU) = ∇ ·

[
µt
σk
∇k

]
+ µt

[
∇U +∇(U)T

]
∇U− ρε (2.27)

∂ρε

∂t
+∇ · (ρεU) = ∇ ·

[
µt
σε
∇ε
]

+ C1ε
ε

k
µt
[
∇U +∇(U)T

]
∇U− C2ερ

ε2

k
. (2.28)

2.5.3 SST k − ω Model
The SST k− ω model by Menter 1993 belongs to the k− ω models using the Shear
Stress Transport formulation and is as the k−ε model a two-equation eddy-viscosity
model. The k−ω SST model implementation is based on the formulation by Menter
et al. from 2003, which reads [13]:

∂ρk

∂t
+∇ · (ρkU) = P̃k − β∗ρkω +∇ · [(µ+ σkµt)∇k] (2.29)

∂ρω

∂t
+∇ · (ρωU) = αρS2 − βρω2 +∇ · [(µ+ σωµt)∇ω] + 2(1− F1)ρσω2

1
ω
∇k∇ω,

(2.30)

with a production limiter P̃k:

P̃k = min
{
µt∇U

[
∇U +∇(U)T

]
, 10β ∗ ρkω

}
. (2.31)

The blending function F1 is given by

F1 = tanh


{
min

[
max

( √
k

β∗ωy
,
500ν
y2ω

)
,

4ρσω2k

CDkωy2

]}4 (2.32)

with y as the distance to the nearest wall and

CDkω = max
(

2ρσω2
1
ω
∇k∇ω, 10−10

)
. (2.33)
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Inside the free-stream, the blending function F1 gets equal to zero, which results in
using the k− ε model, while inside the boundary layer it becomes one, which results
in using the k − ω model approach by Wilcox.
The kinematic eddy viscosity given by:

νt = a1k

max(a1ω, SF2) (2.34)

with S as the invariant measure of the strain rate and the second blending function
F2, which is similar to F1 and defined as:

F2 = tanh


[
max

(
2
√
k

β∗ωy
,
500ν
y2ω

)]2 . (2.35)

According to Menter et al. 2003 [13] the coefficients in equation 2.29 - 2.35 are a
combination of the k − ε and k − ω model and given as follows:

β∗ = 0.09, α1 = 5
9 , β = 3

40 , σk = 0.85, σω = 0.5,

α2 = 0.44, β2 = 0.0828, σω2 = 0.856. (2.36)

2.5.4 Wall Functions
Wall functions are empirical equations used to model the near-wall region. Instead
of using a highly refined mesh near walls to resolve the viscous-affected regions (y+
< 5), wall functions can be used to model the physics near the wall. This allows the
use of a coarser mesh with cell heights in the range of the log-law region (30 < y+
< 200).
The dimensionless distance parameter y+, which is used to divide the near-wall
region into the viscous sublayer, buffer layer and logarithmic area, is defined by:

y+ = uτy

ν
(2.37)

with the friction velocity uτ =
√
τw/ρ and the wall shear stress τw.

2.6 Immersed Boundary Method
The Immersed Boundary (IB) Method is a numerical approach in which solid bound-
aries are not accounted for by the discretized domain but by manipulating the
governing equations. The solid boundaries defined in Lagrangian coordinates are
immersed in the mesh defined in Eulerian coodinates. Therefore, the governing
equations, which do not take into account the immersed boundaries, must be ma-
nipulated with an additional momentum forcing.
Since the manipulation of the governing equations can be done both before and
after the discretization, the IBM can generally be divided into two main categories,
namely the continuous and the discrete forcing approaches. Many different IB meth-
ods have been developed over the last 50 years, but in this work the focus is on the
general introduction of the IB method and the theoretical background for its imple-
mentation in foam-extend.
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2.6.1 The Continuous Forcing Approach
In the continuous forcing approach, the source term with the additional momentum
forcing is added to the continuous governing equations before discretization. This
is the main difference to the discrete forcing approach (explained later), where the
manipulation is done after the discretization [10]. The continuous IBM approach
was first introduced in 1972 by Peskin, who used the IB method to simulate the
blood flow around a flexible leaflet of a human heart valve. The interaction of the
blood flow with the flexible leaflet could not be adequately solved with body-fitted
meshes, which was the main reason behind developing an IB method [17]. The
moving boundary is replaced by a force field acting on the Cartesian background
mesh to simulate the impact of the leaflet on the blood stream.
For elastic boundaries, such as the leaflet, the external forces acting on the sur-
rounding fluid at the location of the immersed boundary can be modelled with the
following equation:

F(x) =
∫
B

f(s)δ(x− x(s))da. (2.38)

The force f(s) acts on the immersed boundary B and is multiplied with the Dirac
delta function δ, which is zero over the entire domain except at the location of the
boundary where the value of δ is one. Since the location of the immersed boundary,
defined in Lagrangian approach, generally does not align with the nodal points of the
Cartesian background mesh, the sharp two-dimensional impulse function becomes a
smoother distribution function that affects not only the location of the boundary but
also neighbouring cells in the discretized mesh. While the modelling of the moving
boundary by equation 2.38 is suitable for elastic boundaries, rigid boundaries could
not be treated sufficiently. Hence, the continuous forcing approach is suitable for
elastic boundaries and has the advantage of being independent of the discretization
method, which simplifies the numerical implementation, but leads to stiff differential
equations and numerical instabilities for rigid bodies [9]. Several extensions of the
continuous forcing approach, e.g. Goldstein et al. [3] or Saiki and Biringen [18],
improved the modelling of rigid boundaries, but are still limited to low Reynolds
number flows.

2.6.2 The Discrete Forcing Approach
In contrast to the continuous forcing approach, the momentum equation are dis-
cretized without the immersed boundaries for the discrete forcing approach and the
additional momentum forcing added after the discretization. While the continu-
ous approach was suitable for elastic boundaries, the discrete approach finds its
advantages in rigid boundaries because numerical accuracy, stability and discrete
conservation properties of the solver can be influenced by modifying boundary con-
ditions in the discretized equation system [9]. In general, discrete forcing approaches
can be differed into two main groups in terms of how the boundary condition is de-
termined: the indirect forcing approach and the direct forcing approach. Since
this work focuses on the implementation of the IB methods in foam-extend, only
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Figure 2.1: Ghost cell (red cell with center point P) together with extended stencil;
inspired by [20]

two direct discrete forcing approaches are introduced on which the IB methods in
foam-extend is based.

2.6.2.1 Ghost-Cell Method

The Ghost-cell method belongs to the discrete forcing methods because the solution
is locally reconstructed at the boundary to satisfy the immersed boundary condition.
As with continuous forcing approaches, the immersed boundary generally does not
coincide with the nodal points and requires additional manipulations. While in the
continuous approach the distribution function was smoothed over the vicinity of
the immersed boundary, the discretized solution is modified for intersected cells to
satisfy the boundary condition in the discrete forcing methods. Therefore, a new
type of cell, called "ghost-cell", is introduced. While all cells in the physical region
of the domain have their cell centre within the flow region, the ghost-cells are the
first cells having their cell centre inside the solid boundary. In figure 2.1 ghost-cells
are marked with an "x" as their centre, while cells in the physical region have an
empty circle as their centre point.[20]
The flow variables φ in the centres of the ghost-cells are then manipulated and
calculated with polynomials so that the field matches the boundary condition. In
a two-dimensional case, the simplest approach would consist of a triangle stencil
between the ghost-cell P and the two nearest fluid cells X1 and X2, figure 2.2 (a).
For a linear polynomial, a Dirichlet boundary condition could be introduced through
equation 2.39.

φ = a0 + a1x+ a2y (2.39)

The flow variables are therefore weighted with the neighbouring nodes X1 and X2,
where x and y are the distances between P and X2 and P and X1, respectively. For
the special case that the distance between the immersed boundary and a fluid cell
node is comparatively small, the extrapolation can lead to large negative weighting
coefficients and thus to numerical instabilities. For such cases, the polynomial fitting
has to be adjusted [20]. Two possible approaches are shown in figure 2.2. The first
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Figure 2.2: Prevention of large weighting coefficients in the ghost-cell method
through image point (a) and moved immersed boundary (b); inspired by [20]

approach uses an image of the ghost-cell node through the boundary to extrapolate
the flow variable. The value φ at P is then calculated with

φP = 2φO − φI . (2.40)

A second alternative would be to move the piecewise linear boundary to the physical
node that is close to the boundary to avoid polynomial extrapolation and large nega-
tive coefficients.With this approach, if the distance between the immersed boundary
and the fluid node is less than 10% of the cell size, the accuracy errors are negligible
[20].

2.6.2.2 Cut-Cell Method

The cut-cell method, first published in 1986 by Clarke et al. [1] under the name
Cartesian grid method, cuts intersected cells at the location of the immersed bound-
ary to conserve mass and momentum near the IB. Cells that are intersected by the
IB and whose centre lies inside the fluid domain are cut and reshaped by discarding
all "dead" parts that lie inside the solid boundary. Cut parts that lie within the fluid
and belonged to an intersected cell whose centre lies inside the solid, are merged
with an adjacent fluid cell, as shown in figure 2.3 [21]. For the discretization of
the momentum equation, mass, convective and diffusive fluxes as well as pressure
gradients have to be evaluated on the cell faces. Due to the reshape of intersected
cells into trapezoidal cells, this prediction is not as straight forward any longer and
has to be treated specially [21]. The evaluation of fluxes on the cell faces is not
of importance for the IBM in foam-extend and will therefore not be investigated
further. Interested readers are referred to [21].
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Figure 2.3: Cut-cell method - cut cells with centre inside the solid immersed
boundary get merged to neighbouring cells, inspired by [21]
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3
Methodology

3.1 The Immersed Boundary Method in foam-
extend

In the following, the methodology and implementation of the Immersed Boundary
method in the extension foam-extend of the open-source CFD toolbox Open Source
Field Operation and Manipulation (OpenFOAM) is presented, which was first intro-
duced in 2014 by Jasak et al. [5]. Since the methodology and implementation of
the IB method has changed with newer releases, two different methodologies are
presented, but the implementation only of the latest version.

3.1.1 IBM in foam-extend 4.0
The IB methods’s first implementations in foam extend 3.2 and foam extend 4.0
were based on the discrete ghost-cell forcing approach with a weighted least square
interpolation and called IBM [19]. In OpenFOAM, the Immersed Boundary surface
mesh is added as an STL file (Standard Triangle Language) and immersed in a uni-
form Cartesian background mesh. As with the original ghost-cell method, the cells
in the IBM in foam-extend 4.0 are separated into three categories after the inter-
section: fluid, solid and IB cells, see figure 3.1 (a). The IB cells are the counterpart
to the ghost-cells, with the only difference being that IB cells are intersected cells
with their cell centre inside the fluid domain. While IB and fluid cells contribute to
the solution, the discretized system of equation is not solved for the flow inside the
solid cells. For the Dirichlet boundary condition of a fluid variable φ at the IB, a
quadratic polynomial is used.

φP = φIB + C0(xP − xIB) + C1(yP − yIB) + C2(xP − xIB)(yP − yIB)
+C3(xP − xIB)2 + C4(yP − yIB)2 (3.1)

The polynomial in equation 3.1 uses the global coordinates of the IB cell centre P
and the corresponding point on the immersed boundary IB, as shown in figure 3.1
(a). The coefficients Ci are calculated from the weighted least square interpolation
fit of the neighbouring fluid and IB cells, shown as marked cells in figure 3.1 (a). In a
local coordinate system, but in a similar manner, the Neumann boundary condition
is calculated with a quadratic polynomial in the following equation.

φP = C0 + [nIB · (∇φ)IB]x′P + C1y
′
P + C2x

′
Py
′
P + C3(x′P )2 + C4(y′P )2 (3.2)
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Figure 3.1: IBM method with polynomial fitting by surrounding cells in (a) and
the local coordinate system for Neumann boundary condition in (b); inspired by [8]

For the solution of the momentum equation, the pressure values at the IB faces and
in the IB cells are needed. After the calculation of the pressure equation, which does
not require the pressure boundary condition, the Neumann boundary condition in
equation 3.2 is used to calculate the pressure at the IB faces and in the IB cells. To
apply for the immersed boundary, the pressure equation 2.8 must be modified and
reads in discretized form:

∑
f

( 1
aP

)
f

nf · (∇p)fSf =
∑
f

nf
(HP

aP

)
f

Sf +
∑
f

nfib
· vfib

Sfib
. (3.3)

The letter f represents all the faces, where fib stands in particular for the faces
between fluid and IB cells. nf is the normal vector of the faces, Sf is the area. The
velocity vfib

is calculated with equation 3.4 and scaled so that the net mass flux
through the IB faces is set to zero.

vfib
= 1

2(vP + vNib
) (3.4)

vP is here the velocity at the cell centre which lies directly outside the IB and vNib

of the first cell centre inside the IB.

3.1.2 The Immersed Boundary Surface Method (IBS) in
foam-extend 4.1

In foam-extend 4.1, the IB approach and its implementation have been changed
entirely. The new so-called Immersed Boundary Surface method (IBS) no longer
resembles the ghost-cell method, but rather the cut-cell approach. Due to drawbacks
with the idea of polynomial fitting in foam-extend 3.2 and foam-extend 4.0, a
different approach was chosen in the newer version foam-extend 4.1. This method
is called Immersed Boundary Surface method (IBS) and is essentially based on the
idea of the discrete cut-cell IB approach.
In the new IBS method, there are still three different types of cells: solid (dead)
cells, intersected cells and fluid (live) cells. The difference is that not only intersected
cells whose centre is in the fluid region are IB cells, but all intersected cells. This
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Figure 3.2: Cell types for the IBM in foam-extend 4.0 on the left (a) and for
IBS in foam-extend 4.1 on the right (b), inspired by [7]

Figure 3.3: The cut cells with new corrected cell and face centres, inspired by [7]

can be clearly seen in figure 3.2. Unlike the IBM, which used polynomial fitting,
the intersected cells are now cut by the IB. The cutting itself is done by a simple
linear cut between the intersection points for each intersected cell. This divides the
intersected cells into living and dead volumes, as well as the surfaces of theses cells
into living and dead faces. The living part of the intersected cells is not added to the
neighbouring fluid cell, as in the cut-cell approach in 2.6.2.2, but becomes a fluid
cell on its own. Therefore, a new cell centre and cell volume must be calculated
for the living part of the cells, as well as a new face area, face centre and face area
vector for the cut faces and the new IB face, see figure 3.3. All dead cells and faces
are excluded from the discretization matrix [7]. While all dead cells are excluded,
the newly calculated geometry data of the live part of the cut-cells replaces the old
data of the cut-cells. This has the advantage that the influence by the IB can be
added as a usual BF boundary condition on the living part and the conventional
finite volume method discretization can be used without modification [7].

In case of inaccurate intersection between the STL surface mesh and the background
mesh, e.g. when the surface mesh coincides with background points or faces, geo-
metrically open cells may exist, leading to robustness issues. To ensure closed cells
after cutting, the Marooney Manoeuvre is used in foam-extend 4.1. For normal
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cells, the summation over all faces should be zero:∑
C

Sf = 0. (3.5)

In the special case of degenerated intersections equation 3.5 has to be manipulated
by the Marooney Manoeuvre: ∑

C

γfSf + SfIB = 0 (3.6)

The old surfaces Sf are corrected with the face correction γf and the corrected
immersed boundary face area SfIB is added to the summation. SfIB can therefore
be calculated with the following equation:

SfIB = −
∑
C

γfSf . (3.7)

Moving immersed boundary

For arbitrary moving boundaries with the velocity ub, the integral form of the trans-
port equations for the moving mesh FVM can be written as in the following equation
[7]. ∫

V

∂φ

∂t
dV +

∮
S
φ[n · (u− ub)]dS −

∮
S
γ(n · ∇φ)dS =

∫
V
qvdV (3.8)

For incompressible flows, the only difference is that the relative velocity has to be
used for moving grids, which means that the solution of the transport equations
for moving immersed boundaries is generally not more complicated than for static
ones. However, if the conservation fluxes are calculated with the relative velocities,
mass conservation, for example, cannot be automatically guaranteed. To obtain
mass conservation, the space conservation law (SCL) is relied on instead, since mass
conservation can be obtained by fulfilling the SCL for incompressible flows [2]. The
space conservation equation can be written as:∫

V

∂V

∂t
−
∮
S
(n · ub)dS = 0 (3.9)

Looking at the mass conservation in equation 3.10, it can be seen that the mass is
also conserved if the space conservation applies.∫

V

∂V

∂t
+
∮
S
[n · (u− ub)]dS =

∫
V

∂V

∂t
−
∮
S
(n · ub)dS +

∮
S
(n · u)dS = 0 (3.10)

The SCL in equation 3.10 can be found in the first two terms of the mass conservation
equation. If the SCL is fulfilled, equation 3.10 reduces to∮

S
(n · u)dS = 0. (3.11)

Therefore, the space conservation law has to be fulfilled for the special case of moving
immersed boundaries (or static IB with moving mesh) to conserve mass and prevent
introduced artificial mass sources.
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The space conservation equation 3.9 discretized with first-order accuracy reads:

V n − V 0

∆t −
∑
f

Fb = 0. (3.12)

The first term is the linear approximation of the volume change, while the second
one is the summation of the mesh motion fluxes, Fb = Sf · ub, over all faces. If the
SCL in equation 3.12 for a cell is not satisfied after moving the IB, the old volume
of this cell is corrected with the Motion Flux manoeuvre [7]:

V 0 = V n −∆t
∑
f

Fb > 0. (3.13)

If the old volume cannot be corrected, since the corrected volume would be zero or
negative, the new volume is corrected instead.

V n = V 0 + ∆t
∑
f

Fb. (3.14)

The reason why the old volume is manipulated and the space conservation law is not
fulfilled in many cases without manipulation is that the IB usually moves further
than to the next cell node in a time step. In other words, the IB movement not
only changes the volume of the intersected cells, but also that of the previously
intersected cells that are dead in the new time step. The volume change of the dead
cells must be taken into account, which is why the newly intersected cell is enlarged
in the old time step. Through this manipulation, the IB moves within a larger,
fictive cell. As already stated, this manipulation is not performed on old intersected
cells that are completely dry in the new time step, since V n is zero.

3.2 The Implementation of the IBS in the foam-
extend 4.1 nextRelease branch (fe41NR)

In this section, the implementation of the Immersed Boundary Surface method is
analyzed. The focus is mainly on two IB classes which handle the cutting and manip-
ulation of the discretization matrix. The entire analysis is done in the foam-extend
4.1 nextRelease branch, version of the 11th May 2022 14:47
(git commit: a6e7082d658f469434beb0f2cd4678557efb29c9), which will be named
fe41NR.

3.2.1 Immersed Boundary Classes
In spring 2022, the foam-extend 4.1 nextRelease branch has the IBS method im-
plemented such that simple static mesh solvers such as laplacianFoam, simpleFoam
or icoFoam can include and handle immersed Boundaries. However, for dynamic
meshes an additional IB solver is needed. Therefore, a solver for dynamic meshes
and immersed Boundaries using the PIMPLE method, called pimpleDyMIbFoam, is
implemented.
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Regardless of which solver is used, the manipulation of the discretization matrix is
done mainly in two IB classes:

• immersedBoundaryPolyPatch

• immersedBoundaryFvPatch

The implementation of immersed boundaries follows the structure of OpenFOAM with
the structure of the "fvPatch", "polyPatch", and "primitivePatch" for the boundary
discretization containing the geometric information of all boundaries [14]. In gen-
eral, for the immersed boundaries, this means that the cutting and manipulation
of the geometrical information is done at the level of the polyPatch data with the
immersedBoundaryPolyPatch class, while the immersedBoundaryFvPatch class is
the connection between the immersed boundary condition and the finite volume
discretization.
Since the implementation of boundary conditions, such as the IB, is very complex,
the implementation and interaction of the immersed boundary classes is only ex-
plained and analyzed with a few examples. The idea is to visualize the interactions
and integration as well as possible, but the interested reader is referred to the source
code of fe41NR for more information.
As already described in the theory section, the internal field and the background
mesh initially know nothing about the immersed boundary. This means that the
internal field is first discretized with the immersed boundary and is only manipulated
when the solver loops over all boundary patches. Functions like makeC or makeSf
in the class fvMesh are used to calculate and memorize the cell centres and face
surface areas. In order to be able to use different makeC and makeSf functions
explicitly for the immersed boundary, the functions in fvMesh have been changed
to virtual functions. This change allows protected member functions of the class
immersedBoundaryFvPatch to be called with an object of this specific class. The
object of this class is the IB patch, which is one of the boundary patches that the
solver iterates during the discretization process.
In the immersedBoundaryFvPatch class, the protected member functions makeCf,
makeSf, makeC and makeV are implemented. While makeC and makeV do nothing
because the cell centre and cell volume are not needed for the discretization process,
the functions for the face centre, makeCf, and the face area, makeSf, manipulate the
discretization matrix entries of this specific boundary patch by calling a function
of a private data reference to the immersedBoundaryPolyPatch class. The public
member function ibPolyPatch() returns the private data ibPolyPatch_, which is
a reference to the immersed boundary patch implemented in the
immersedBoundaryPolyPatch class. Further details of the manipulation and cutting
process in the immersedBoundaryPolyPatch class are explained in detail below.
As already explained, functions are implemented in the immersedBoundaryFvPatch
class that return a polyPatch data from the immersedBoundaryPolyPatch class.
One of these is, for example, the function ibPolyPatch(), which returns the data
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ibPolyPatch_. On this immersedBoundaryPolyPatch object, a public member
function called ibPatch() of the class immersedBoundaryPolyPatch is executed
before calling another function faceCentres() which returns the face centres of the
calculated immersed boundary patch, see source code below.

Listing 3.1: immersedBoundaryFvPatch.C (Appendix B)
54 // * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //
55
56 void Foam :: immersedBoundaryFvPatch :: makeCf ( slicedSurfaceVectorField & Cf) const
57 {
58 // Insert the patch data for the immersed boundary
59 // Note: use the face centres from the stand - alone patch within the IB
60 // HJ , 30/ Nov /2017
61 // Inserting only local data
62 Cf. boundaryField ()[ index ()]. UList :: operator =
63 (
64 ibPolyPatch (). ibPatch (). faceCentres ()
65 );
66 }

The function ibPatch() triggers the function calcImmersedBoundary(), one of two
main implemented functions for the cutting process inside the
immersedBoundaryPolyPatch class. The function ibPatch() is just one of many
functions that can trigger the cutting process, but only does so when the cutting
process is not yet done and pointers not yet active. Since it is crucial for optimizing
a code to save unnecessary computational processes, it is important to perform the
cutting operations as infrequently as possible. In addition, the returned pointers
point to the location of the data that is being asked for.
In the following, the two main functions calcImmersedBoundary() and
calcCorrectedGeometry() of the class immersedBoundaryPolyPatch are explained
below. The calcImmersedBoundary() function generally executes the cutting pro-
cess, while the calcCorrectedGeometry() function modifies the vector and scalar
fields of the IB cells and faces and corrects cutting errors with the Marooney Ma-
noeuvre.

3.2.1.1 calcImmersedBoundary() - The Cutting Process

After defining references for the mesh and it’s geometry data within the function
calcImmersedBoundary(), a small comment in the code summarizes very well what
the most important steps are within this function.

Listing 3.2: immersedBoundaryPolyPatch.C (Appendix A)
178 // Algorithm
179 // Initialise the search by marking the inside points using calcInside
180 // Based on inside points addressing , check intersected faces and cells
181 // For all intersected cells , calculate the actual intersection and
182 // - calculate the (cell) intersection face , its centre , and area vector
183 // - adjust the cell volume and centre
184 // - adjust the face area and face centre

First, the intersected cells and faces are detected and the actual intersection is
calculated. Then a new centre point and cell volume are calculated for all inter-
sected cells and a new centre point and area for all intersected faces. The newly
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calculated vector and scalar fields are then stored to be retrieved by the function
calcCorrectedGeometry().
To identify which cells and faces are intersected by the immersed boundary, all points
that lie inside the triangular STL surface are marked, appendix A line 186-239. The
idea behind this is first to separate all points into inner and outer points, second
to divide all cells into wet, dry and cut cells by checking the property of all points
inside a cell, and finally to divide all faces into wet, dry and cut faces as well. After
all points have been separated into inner and outer points, a loop is executed over
all cells of the background mesh. Within this loop, each cell is assigned to wet-cells,
dry-cells or cut-cells, depending on the classification of the points - inner only, outer
only or both. For the cut-cells, it is also checked whether the nearest triangle of the
STL patch is within the bounding box of this cell, to exclude unexpected cases due
to bad STL files or other reasons, appendix A line 241-271. In the latter case, the
neighbouring cells are checked, appendix A line 277-347.
After classifying all cells, the actual cutting is performed by creating an object
cutCell from the class ImmersedCell.

Listing 3.3: immersedBoundaryPolyPatch.C (Appendix A)
411 // Calculate the intersection
412 ImmersedCell < triSurfaceDistance > cutCell
413 (
414 cellI ,
415 mesh ,
416 dist
417 );

How the linear cutting in cut-cells is implemented in the file ImmersedCell.H and
ImmersedCell.C is not shown here. It should only be mentioned that the cut-cell is
divided into two sub-cells and the wet-cell data is returned, as explained in section
3.1.2. Also, the intersection is limited to a maximum of two faces protruding the
surface of the immersed boundary. This is a limitation that is investigated in section
3.2.3.
The cutting data returned by the ImmersedCell class to the cutCell object is
then stored in various lists, scalar and vector fields. In order to store the data
correctly, the procedure is implemented differently depending on the type of the
cut. Besides the regular cut, which means that faces of the intersected cell have
been cut, appendix A line 430-473, the intersection between the immersed boundary
and the background mesh can lie exactly on a face of the background mesh. This
results in no cell cut at this specific location and the intersection is called direct
face cut. Nevertheless, at least one face and two points are saved, and either the
neighbour or the owner of that face is marked as wet or dry respectively, appendix
A line 478-575. For the direct face cut, the special case of coupled boundaries, as for
processor boundaries, has to be taken into account, appendix A line 577-717. After
all points and faces are stored, duplicate points and faces are removed to optimise
memory usage, and a stand-alone patch, or in other words a primitivePatch, of
the cell intersected immersed boundary faces is created.
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Table 3.1: Classification rules for internal and coupled boundary faces

Owner Neighbour
WET DRY CUT

WET WET DRY WET
DRY DRY DRY DRY
CUT WET DRY CUT

Listing 3.4: immersedBoundaryPolyPatch.C (Appendix A)
737 // Build stand - alone patch
738 // Memory management
739 {
740 unmergedPoints . shrink ();
741
742 pointField ibPatchPoints ;
743 labelList pointMap ;
744
745 mergePoints
746 (
747 unmergedPoints ,
748 1e-6, // mergeTol . Review . Do not like the algorithm
749 false , // verbose
750 pointMap ,
751 ibPatchPoints
752 );
753
754 // Renumber faces after point merge
755 faceList ibPatchFaces ( unmergedFaces .size ());
756
757 forAll ( unmergedFaces , faceI )
758 {
759 // Get old and new face
760 const face& uFace = unmergedFaces [ faceI ];
761 face& rFace = ibPatchFaces [ faceI ];
762 rFace . setSize ( uFace .size ());
763 forAll (uFace , pointI )
764 {
765 rFace [ pointI ] = pointMap [ uFace [ pointI ]];
766 }
767 }
768
769 // Create IB patch from renumbered points and faces
770 ibPatchPtr_ = new standAlonePatch ( ibPatchFaces , ibPatchPoints );

The stand-alone patch data is written to VTK files at each output-time. A list of all
dry-cells (dead-cells) and a variable with the amount of dry-cells are then created,
appendix A line 797-829.
In the first part of the function calcImmersedBoundary(), the actual cutting and
classifying of all cells is done. In addition, a primitivePatch is created and a new
IB face added during the cutting. In the second part, the function takes care of
all faces and their classification. All faces are assigned to wet, dry or cut faces, as
with cells. To classify the faces, the classes of the owner and neighbour cells of their
faces must be checked. The rules in table 3.1 are implemented for all internal and
coupled boundary faces.
Example: If a face has a wet-cell as owner and a cut-cell as neighbour, the face
is a wet-face. Since it does not matter for the classification whether it is owner
or neighbour, the table is symmetrical. The implemented rules from table 3.1 are
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checked inside the function for internal and boundary faces, but only internal and
coupled boundary faces have an owner and a neighbour cell. Ordinary boundary
faces do not have a neighbour cell, which means that the face is assigned to the
same class as the owner cell. First, all wet- and dry-faces are detected, appendix
A line 847-1047, and afterwards all the faces that are still unknown are checked for
intersection with inner and outer points, appendix A line 1050-1151.
If a face falls under both cases, points that are on the inside and points that are on the
outside, the face is cut with the class ImmersedFace, and a so-called cutFace object
with two sub-faces is created, appendix A line 1112-1118. This object cutFace is
then used to report the modified properties to vector and scalar fields for immersed
boundary faces.

Listing 3.5: immersedBoundaryPolyPatch.C (Appendix A)
1130 // Real intesection . Check cut. Rejection on thin cut is
1131 // performed by ImmersedFace . HJ , 13/ Mar /2019
1132 const scalar faceFactor =
1133 cutFace . wetAreaMag ()/ mag(S[ faceI ]);
1134
1135 // True intersection . Collect data
1136 intersectedFace [ faceI ] = immersedPoly :: CUT;
1137
1138 // Get intersected face index
1139 ibFaces [ nIbFaces ] = faceI ;
1140
1141 // Get wet centre
1142 ibFaceCentres [ nIbFaces ] = cutFace . wetAreaCentre ();
1143
1144 // Get wet area , preserving original normal direction
1145 ibFaceAreas [ nIbFaces ] = faceFactor *S[ faceI ];

The last step of the function calcImmersedBoundary() is to store the amount of
dead faces and cell number corresponding to the dead faces, appendix A line 1160-
1191. At the end of this function, the cutting process has been carried out and
all cells and faces have been assigned as wet, dry or cut. The properties of IB
cells and faces have been changed, but the cutting has not yet been corrected nor
have the geometry fields. These two steps are performed in the following function
calcCorrectedGeometry().

3.2.1.2 calcCorrectedGeometry() - Manipulation and Correction

As explained before, the main idea of this function is to correct unwanted cuttings
and manipulate the polyMesh geometry fields.
At the beginning of the function calcCorrectedGeometry() new reference variables
for the mesh geometry of the polyMesh are defined. The important detail is that it
is not just a reference to the constant polyMesh scalar and vector fields, but that
these fields are also made mutable.

Listing 3.6: immersedBoundaryPolyPatch.C (Appendix A)
1231 // Get mesh reference
1232 const polyMesh & mesh = boundaryMesh (). mesh ();
1233
1234 // Get mesh geometry from polyMesh . It will be modified
1235 vectorField & C =
1236 const_cast < vectorField &>( boundaryMesh (). mesh (). cellCentres ());
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1237
1238 vectorField & Cf =
1239 const_cast < vectorField &>( boundaryMesh (). mesh (). faceCentres ());
1240
1241 scalarField & V =
1242 const_cast < scalarField &>( boundaryMesh (). mesh (). cellVolumes ());
1243
1244 vectorField & Sf =
1245 const_cast < vectorField &>( boundaryMesh (). mesh (). faceAreas ());

This allows the mesh geometry to be modified with the recalculated cell and face
data from function calcImmersedBoundary(), appendix A line 1248-1299. For all
dead cells, the volume is multiplied by a very small number, as is the face area for
all dead faces.

Listing 3.7: immersedBoundaryPolyPatch.C (Appendix A)
1271 forAll (dc , dcI)
1272 {
1273 // Scale dead volume to small
1274 V[dc[dcI ]] *= SMALL ;
1275 }

Listing 3.8: immersedBoundaryPolyPatch.C (Appendix A)
1271 forAll (df , dfI)
1272 {
1273 // Scale dead area to small
1274 Sf[df[dfI ]] *= SMALL ;
1275 }

By this manipulation, the non-diagonal components of all dead cells in the dis-
cretization matrix approach zero and thus have no effect on live cells. To avoid very
small diagonal values and to achieve zero velocity inside the IB, for the special case
of zero flow inside, the diagonal of all dead cells is multiplied by a very large value
(in OpenFOAM implemented through GREAT). This second manipulation is done
in the function setDeadValues in the class immersedBoundaryFieldBase, which is
called from every IB condition, as mixedIB.
In the last part of this function, the Marooney Manoeuvre for open cells is imple-
mented, which is explained in section 3.1.2. For the Marooney Manoeuvre, a default
threshold of the name closedThreshold_ is used, which is set to 1e-6 in the file
primitiveMeshCheck.C.

3.2.2 Motion Fluxes
Besides the manipulation of the discretization matrix, the computation of the mo-
tion fluxes, the correction of the delta coefficient and the non-orthogonal correction
vectors are implemented in immersedBoundaryFvPatch.C, appendix B. The Motion
flux manoeuvre is implemented in B line 235-269.
Due to a limited time budget for this work, it is not possible to go into more
detail about the implementation of the computation of motion fluxes with immersed
boundaries and the interested reader is referred to the source code of in appendix
B. On the other hand, a brief analysis of motion fluxes is given later in section 4.2.
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3.2.3 Cutting Corrections
In the previous section it is said that the linear cutting process in ImmersedCell.C
and ImmersedFace.C is not explained in detail. However, in order to better under-
stand why some cells or faces are not cut even though they intersect with the IB,
cutting limitations are further investigated.
In order to have a diagonal dominant discretization matrix and thus a stable solver,
the mesh quality is important for most of CFD solvers. When the uniform back-
ground mesh is cut by the IB, uniformity and aspect-ratio close to unity are no longer
guaranteed and high non-diagonal values may appear in the discretization matrix
Au. Therefore, the cutting process must be limited and very small faces and cells
corrected. The limitations are checked in ImmersedCell.C and in ImmersedFace.C.
In ImmersedCell.C and in ImmersedFace.C it is first checked whether the cell or
face cut is significant, appendix C line 493-525 and appendix D line 321-369. For
this check, the distance between each point of the respective cell or face and the IB
is evaluated. If one of the following if-statements is true, all points are classified as
wet or dry respectively.

if: max(h) < TOL ⇒ All points are wet (3.15)
if: min(h) > −TOL ⇒ All points are dry (3.16)

h is the depth of each point to the STL surface and is negative if the point lies
outside the STL (inside the flow field). The absolute tolerance TOL is computed
by multiplying the shortest edge of the cell or face by a tolerance factor
immersedPoly::tolerance() of the class immersedPoly defined as 1e-4.

TOL = min(edgeLength) · 10−4 (3.17)

If 3.15 and 3.16 are not fulfilled, the cut is significant and valid.
After the cut is initiated, the distance to the STL is checked again in a different
way in both ImmersedCell.C and ImmersedFace.C. The intersection point between
STL and background mesh on each edge should not be too close to the start or end
point of the corresponding edge. Therefore, four if-statements are implemented.

Listing 3.9: ImmersedCell.C (Appendix C)
104 if
105 (
106 depth_ [ start ]* depth_ [end] < 0
107 && edgeLength > SMALL
108 && mag( depth_ [ start ]) > edgeLength * immersedPoly :: tolerance_ ()
109 && mag( depth_ [end ]) > edgeLength * immersedPoly :: tolerance_ ()
110 )

This check is implemented in appendix C line 104-110 and appendix D line 78-84
and uses the tolerance factor immersedPoly::tolerance()=1e-4.
If all three statements are fulfilled, in other words the intersection point is not too
close to the corners, the cutting continues with the newly calculated intersection
point. If one of these statements is not fulfilled, the corner point is used as intersec-
tion point instead of the newly calculated point. Then the cutting process is carried
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out in ImmersedCell.C and the sub-faces for the wet- and dry-parts are created
in ImmersedFace.C. At the end of the cutting process in ImmersedCell.C, output
messages are implemented to inform whether the newly calculated sub-volumes and
sub-areas either have a negative volume/area or are larger than the uncut volume/-
face. If such a bad cut, with negative volume/area or unreasonable values occurs,
the info "Bad cell cut" is written to the log file for cells, appendix D line 795-830,
and "Bad cell face cut" for faces, appendix D line 685-727.

3.2.4 Pressure and Velocity Boundary Conditions
According to the standard BF boundary conditions for walls, three basic boundary
conditions are implemented for IB:

• fixedValueIb

• zeroGradientIb

• mixedIb

These three boundary conditions allow either a Dirichlet, a Neumann or a mixed
boundary condition to be used. As can be seen in the code, the fixedValueIb
boundary condition is the Dirichlet condition for immersed boundaries and uses the
fixedValue condition used in BF methods.

Listing 3.10: fixedValueIbFvPatchField.C
104 template < class Type >
105 Foam :: fixedValueIbFvPatchField <Type >:: fixedValueIbFvPatchField
106 (
107 const fvPatch & p,
108 const DimensionedField <Type , volMesh >& iF ,
109 const dictionary & dict
110 )
111 :
112 fixedValueFvPatchField <Type >(p, iF), // Do not read mixed data
113 immersedBoundaryFieldBase <Type >
114 (
115 p,
116 Switch (dict. lookup (" setDeadValue ")),
117 pTraits <Type >( dict. lookup (" deadValue "))
118 ),
119 triValue_ (" triValue ", dict , this -> ibPatch (). ibMesh (). size ())
120 {
121 // Since patch does not read a dictionary , the patch type needs to be read
122 // manually . HJ , 6/ Sep /2018
123 this -> readPatchType (dict );
124
125 if (! isType < immersedBoundaryFvPatch >(p))
126 {
127 FatalIOErrorInFunction (dict)
128 << "\n patch type ’" << p.type ()
129 << "’ not constraint type ’" << typeName << "’"
130 << "\n for patch " << p.name ()
131 << " of field " << this -> dimensionedInternalField (). name ()
132 << " in file " << this -> dimensionedInternalField (). objectPath ()
133 << exit( FatalIOError );
134 }
135
136 // Re - interpolate the data related to immersed boundary
137 this -> updateIbValues ();
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138
139 fixedValueFvPatchField <Type >:: evaluate ();
140 }

Listing 3.11: fixedValueIbFvPatchField.C
218 template < class Type >
219 void Foam :: fixedValueIbFvPatchField <Type >:: evaluate
220 (
221 const Pstream :: commsTypes
222 )
223 {
224 this -> updateIbValues ();
225
226 // Set dead value
227 this -> setDeadValues (* this );
228
229 // Evaluate fixed value condition
230 fixedValueFvPatchField <Type >:: evaluate ();
231 }

In the main constructor of the fixedValueIb boundary condition, two main func-
tions are called, the private member function updteIbValue() and public member
function evaluate(). The function evaluate() is found in most of the boundary
conditions. Therefore, this function is shown for all three boundary conditions to
roughly illustrate their implementation.
The function evaluate() in line 218-230 of the file fixedValueIbFvPatchField.C
is basically an extension of the boundary condition fixedValue, since the function
evaluate() of the fixedValue boundary condition is called at the end in line 230.
In addition to the evaluate() function of the class fixedValueFvPatchField, the
IB boundary condition must take care of the values at the IB surface and the internal
field. The private member function updateIbValues() interpolates the values from
the triangular surface and can trigger the IB cutting, which is explained in section
3.2.1.1. The internal field values are set in setDeadValues(intField).

Listing 3.12: fixedValueIbFvPatchField.C
31 template < class Type >
32 void Foam :: fixedValueIbFvPatchField <Type >:: updateIbValues ()
33 {
34 // Interpolate the values from tri surface using nearest triangle
35 const labelList & nt = this -> ibPatch (). ibPolyPatch (). nearestTri ();
36
37 Field <Type >:: operator =( Field <Type >( triValue_ , nt ));
38 }

The same procedure can be seen for the zeroGradientIb and the mixedIb boundary
conditions. Again, the functions updateIbValues() and evaluate() are called in
the constructor, and the latter is an extension of the function evaluate() of the
zeroGradientFvPatchField and mixedFvPatchField class respectively.
The use of all three boundary conditions for a typical no-slip Dirichlet boundary
condition or a zero-gradient boundary condition with zero flow inside the IB is
shown in table 3.2.
While the keywords type and patchType specify which boundary condition is used,
triValue and triGradient specify the values of the Dirichlet and Neumann bound-
ary condition. Both are used with the boundary condition mixedIb and therefore a

28



3. Methodology

Table 3.2: Settings for basic IB conditions with zero velocity inside IB (no-slip
Dirichlet and zero gradient)

keywords Boundary conditions
type fixedValueIb zeroGradientIb mixedIb
patchType immersedBoundary immersedBoundary immersedBoundary
triValue uniform (0, 0, 0) - uniform (0, 0, 0)
triGradient - - uniform (0, 0, 0)
triValueFraction - - uniform 1
setDeadValue yes yes yes
deadValue (0, 0, 0) (0, 0, 0) (0, 0, 0)
value uniform (0, 0, 0) uniform (0, 0, 0) uniform (0, 0, 0)

third parameter, triValueFraction, is required to specify whether the Dirichlet or
Neumann condition is used. For the zeroGradientIb boundary condition, none of
these parameters are required because it is a zero gradient condition. For all three
boundary conditions, it must be specified whether a constant and uniform value is
given inside the IB and if so, what value.
For the special case of a moving IB, none of the above boundary conditions can
be used. The transfer from mesh motion fluxes into mass fluxes is not covered by
the basic boundary condition and requires special treatment. Therefore, a fourth
boundary condition is implemented for immersed boundaries.

• movingImmersedBoundaryVelocity

The movingImmersedBoundaryVelocity boundary condition is a fixed value con-
dition for moving immersed boundaries. In the function evaluate() of the class
movingImmersedBoundaryVelocityFvPatchVectorField, the function evaluate()
of the class fixedValueFvPatchVectorField is called to set a no-slip Dirichlet
boundary condition. As with the basic IB boundary conditions, the values inside
the IB are set in the function evaluate().

Listing 3.13: movingImmersedBoundaryVelocityFvPatchVectorField.C
207 void Foam :: movingImmersedBoundaryVelocityFvPatchVectorField :: evaluate
208 (
209 const Pstream :: commsTypes
210 )
211 {
212 // Set dead value
213 this -> setDeadValues (* this );
214
215 // Evaluate mixed condition
216 fixedValueFvPatchVectorField :: evaluate ();
217 }

Unlike the other basic boundary conditions, the boundary velocity of the IB must be
taken into account in the function updateIbValues() and an additional function
is needed to take into account the mesh motion fluxes. This function is called
updateCoeffs() and is an extension of the function updateCoeffs() of the class
fixedValueFvPatchVectorField.

29



3. Methodology

Table 3.3: Settings for the movingImmersedBoundaryVelocity condition with zero
velocity inside IB

keywords Boundary condition
type movingImmersedBoundaryVelocity
patchType immersedBoundary
setDeadValue yes
deadValue (0, 0, 0)
value uniform (0, 0, 0)

Listing 3.14: movingImmersedBoundaryVelocityFvPatchVectorField.C
166 void Foam :: movingImmersedBoundaryVelocityFvPatchVectorField :: updateCoeffs ()
167 {
168 if ( updated ())
169 {
170 return ;
171 }
172
173 const fvMesh & mesh = dimensionedInternalField (). mesh ();
174
175 if (mesh. changing ())
176 {
177 const fvPatch & p = patch ();
178
179 // Get wall - parallel mesh motion velocity from immersed boundary
180 vectorField Up = this -> ibPatch (). ibPolyPatch (). motionDistance ()/
181 mesh.time (). deltaT (). value ();
182
183 const volVectorField & U =
184 mesh. lookupObject < volVectorField >
185 (
186 dimensionedInternalField (). name ()
187 );
188
189 scalarField phip =
190 p. patchField < surfaceScalarField , scalar >( fvc :: meshPhi (U));
191
192 // Warning : cannot use patch normal but the real face normal
193 // THEY MAY NOT BE THE SAME! HJ , 28/ Mar /2019
194 vectorField n = p.Sf ()/(p. magSf ());
195
196 const scalarField & magSf = p. magSf ();
197 scalarField Un = phip /( magSf + VSMALL );
198
199 // Adjust for surface - normal mesh motion flux
200 vectorField :: operator =( Up + n*( Un - (n & Up )));
201 }
202
203 fixedValueFvPatchVectorField :: updateCoeffs ();
204 }

For the use of the movingImmersedBoundaryVelocity boundary condition only the
dead values keywords have to be specified, table 3.3.
The implementation of turbulence boundary conditions and wall functions is not
explained here, but a comparison between IB and BF wall function is presented in
section 4.3.
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IBS Analysis

4.1 Mesh Coarseness

For the Immersed Boundary Surface method, the mesh quality is a very important
component. Assuming an STL file with sufficient quality, the mesh quality defines
how well the IB is cut into the background mesh. Cells that are too large compared
to the size of the IB can lead to large differences in geometry or even wrong cuts.
In the function calcImmersedBoundary() of the class immersedBoundaryPolyPatch,
where the cutting process is implemented, all points which lie inside the triangu-
lar surface are marked, appendix A [185-233], as prescribed earlier. If no point is
marked, the entire cutting process is skipped and no IB is merged into the back-
ground mesh. Hence, the cells of the background mesh must not be so large that
no mesh point lies within the IB. If this special case occurs, as in figure 4.1, the
velocity field is calculated as for the case that there is no object at all inside the
channel flow. In figure 4.1 the STL file of the IB is marked white to illustrate the
size compared to the cells. The velocity field in x-direction is constant because the
background mesh is not aware of the IB.
Other problems occur when the points of the background mesh lie within the surface
mesh of the IB, but the cells are still too large, so that more than one cut per cell
have to be made. The IBS in foam-extend 4.1 is implemented with the limitation
of one cut per cell and boundary patch. In other words, only two intersection points
between the STL and the background mesh per cell are allowed to define a clear
cut. If there are more than two intersection points per cell, it is not clear between
which points the linear cutting must be performed. This leads to wrong immersed
boundaries and should be avoided. Such a case can be seen in figure 4.2. On the left
side in figure 4.2a it can be seen that not only the top and bottom of the block are not
cut at all, but also that the cutting in the middle cell is done incorrectly. The velocity
in x-direction is even negative because the cut object is open on the right side and
does not represent a rectangular with closed walls. A much better representation of
the latter case can be seen in figure 4.3. The mesh is fine enough that neither a cell
has more than one cut per cell, nor does the volume of the immersed object differs
much from the STL. In figure 4.3b, the grey highlighted intersection surfaces are
not as high as the black surrounding box of the STL, because this is a quasi-2D case
and the immersed block is higher than the domain. In addition, small gaps can be
seen in the walls of the cut faces in figure 4.3b, which are due to cutting correction
(direct face cut), as explained in section 3.2.3. When looking at the IB tutorial
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Figure 4.1: Velocity field in x-direction with STL file of IB block in channel with
coarse mesh

(a) Ux field with STL file in white and
actual cutting in magenta

(b) Surface plot of cut faces inside the
block of the STL file

Figure 4.2: Cutting of a rectangular block into a coarse mesh

(a) Ux field with STL file in white and
actual cutting in magenta

(b) Surface plot of cut faces inside the
block of the STL file

Figure 4.3: Cutting of a rectangular block into a fine mesh
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case twoIbPatches, where two cylinders move in one channel, another important
behaviour of IB with implications for mesh refinement becomes clear. In the tutorial
case, one cylinder oscillates in x-direction while the other oscillates in y-direction.
After only 0.18 seconds, the cylinders touch and slide over each other. Since the
IBs are not solid walls but only triangular surfaces, they cannot collide in the usual
sense but merge into one large solid object. For the computational domain, it does
not matter whether a points lies in one or two solid IB. Collisions are therefore not
yet possible in foam-extend.

But before the two cylinders touch or "collide", the special case of two IB cuttings
in one cell occurs, which was already explained above. The difference this time
is that one cell is cut by two different patches and the cut, made for each patch
separately, is unaware of the other cut. Therefore, the cell is cut twice, the cell
parameters manipulated and changed twice and the second cut overwrites the first.
Figure 4.4a shows the magnitude of the velocity field between the two cylinders at
time t = 0.18s. Theoretically, the two cylinders should have already collided and
the velocity between them should be zero. However, since the IBS method cannot
handle two intersections in one cell at the same time, the cells between the cylinders
are not completely dry. In order for two cylinders to touch, the STLs must overlap
by one cell so that the cells are for at least one patch within an STL, as can be seen
in figure 4.4b. This in turn results in the requirement for a sufficient fine mesh so
that neither the overlap nor the distance between the two IB patches is too large.

(a) Time = 0.18s (b) Time = 0.20s

Figure 4.4: Velocity field together with STL file of the two cylinders in the tutorial
case twoIbPatches at two time steps

33



4. IBS Analysis

Figure 4.5: Test case stationary IB: domain with stationary IB cylinder. : wall

4.2 Motion and Mass Fluxes
In this section, the IBS method is checked for mass conservation. To find out whether
the IBS method is mass conserving, three different cases were used to analyze fluxes
on stationary, moving and volume-changing IBs. To minimize the preparation time
and simplify the cases, the IB tutorial case movingCylinderInChannelTurbulent
was used for all three situations with only minor modifications. The fluid, used for
these test cases, is water with a density of ρ = 1kg/m3.
In this section, a second version of foam-extend 4.1 is introduced for the analysis
of the motion and mass fluxes. The second version is the master branch and latest
updated on 5th July 2021 15:48
(git commit: 70b064d0f32604f4ce76c9c72cbdf643015a3250). This version will be
named fe41.

4.2.1 Stationary IB
In the first mass conservation test case, the IB tutorial case
movingCylinderInChannelTurbulent is taken without changes, except that the
cylinder does not move. At the inlet, water enters the channel with an inlet velocity
of 1m/s. The IB cylinder has a solid wall and the water leaves the domain on
the right side at the outlet, see figure 4.5. To account for a stationary IB, the
oscillatory motion of the cylinder inside the dynamicMeshDict was removed and
the velocity boundary condition changed from movingImmersedBoundaryVelocity
to mixedIb with the Dirichlet condition of zero velocity at the boundary. The
domain is discretized with 75x25 cells and has a width of 0.08m.
Due to incompressible flow and the stationary IB with constant volume, the absolute
value of the inflow and outflow of the domain should be exactly the same over time.
As figure 4.6 shows, the mass flow at the inlet is constant and 0.08m3/s, as it should
be, but the mass flow at the outlet does not match the inflow. Since the mass flux
through the IB is zero, the mass is not conserved using fe41NR.
The same test case was calculated using fe41 and the results are shown in figure 4.7.
Here the expected results of constant and equal inflow and outflow are achieved.
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Figure 4.6: Mass flow at inlet and outlet for the stationary IB test case using
fe41NR

Figure 4.7: Mass flow at inlet and outlet for the stationary IB test case using fe41

Differences between the two foam-extend versions can also be seen in figure 4.8 and
4.9. While the vector field for fe41 looks realistic in figure 4.9, the flow seems to
go into the cylinder when calculated with fe41NR, which would explain the lower
outflow after 5 seconds in figure 4.6. However, this is contradicted by the fact that
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the summarized mass flow rate phi around the cylinder is zero.

Figure 4.8: Velocity vector field for the stationary IB test case using fe41NR at
t = 5s

Figure 4.9: Velocity vector field for the stationary IB test case using fe41 at t = 5s

4.2.2 Moving IB
In the second mass conservation test case, the IB cylinder oscillates horizontally
inside the channel with an amplitude of 0.5m. The boundary conditions for the
inlet and outlet are changed so that the velocity inside the channel is almost zero.
The in- and outlet are defined with the pressureInletOutletVelocity condition so
that the fluid can flow into and out of the domain respectively, see table 4.1. This
means that the flow in and out of the domain is only due to the movements of the
IB. Therefore, the domain was slightly reduced to increase the impact of the IB on
the fluid inside the channel. Again, the test case was calculated using fe41NR and
fe41.
Despite the differences between the two foam-extend version, there are a number
of similarities. First, both versions are not mass conserving. Since positive mass
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Figure 4.10: Test case moving IB: domain with horizontal oscillating IB cylinder,
amplitude = 0.5m. : wall

Table 4.1: Boundary conditions for the second and third mass conservation test
case

patch U p

Inlet type pressureInletOutletVelocity
value uniform (0 0 0)

type totalPressure
p0 uniform 0
gamma 0

value uniform 0

Outlet type pressureInletOutletVelocity
value uniform (0 0 0)

type fixedValue
value uniform 1e-5

Figure 4.11: Mass flow at inlet and outlet for the moving IB test case using fe41NR
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Figure 4.12: Mass flow at inlet and outlet for the moving IB test case using fe41

flow rate means that fluid is going out of the domain and both inflow and outflow
are positive most of the time, the total volume inside the domain should decrease,
as the volume of the IB does not change noticeably. The IB obviously pushes the
fluid out of the domain but behind the IB the fluid is not sucked back in. This can
also be seen in figure 4.13, where the fluid velocity behind the IB is almost zero. In
figure 4.14, the fluid behind the IB shows a little more of the expected behaviour,
but even in this case there is almost no inflow into the domain, see figure 4.12.
In addition to the similarities mentioned, the results of the two different versions
differ greatly in the magnitude of the fluid velocity and mass flow rate, which can
be seen in the magnitude of the mass flow rate in the figures 4.11 and 4.12, and in
the different colours in the figures 4.13 and 4.14. Nevertheless, both versions are
not mass conserving.

4.2.3 Volume-Changing IB
Although it is to be expected that the mass is not conserved even with volume-
changing IBs, this case is presented to highlight the previous findings. The results
are shown using only the foam-extend version fe41NR.
This thirds test case is similar to the second test case with the difference that the IB
cylinder oscillates vertically with an amplitude of 1m. As the channel is 0.8m high,
the cylinder will exit and enter the domain during the movement. This changes the
total volume of the IB, simulating a volume-changing IB.
In the figure 4.16, the mass flow rate at the inlet and outlet is presented together
with the mass change per time of the entire domain. The mass change per time is
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Figure 4.13: Ux velocity field for the moving IB test case using fe41NR at t = 8.2s

Figure 4.14: Ux velocity field for the moving IB test case using fe41 at t = 8.2s

Figure 4.15: Test case volume-changing IB: domain with vertical oscillating IB
cylinder, amplitude = 1.0m. : wall
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Figure 4.16: Mass flow at inlet and outlet together with the total mass change per
time inside the domain for the volume-changing IB test case using fe41NR

calculated as follows:

ṁ = ρ[Vib(tn)− Vib(tn−1)]
∆t − (ṁinlet + ṁoutlet). (4.1)

As in the second test case, the mass flow rate through the inlet and outlet is pre-
dominantly positive. Again, the fluid is pushed out of the domain but not back in.
When the mass change inside the entire domain is positive, the cylinder enters the
domain and the fluid is not pushed out of the domain to the same extent as the IB
volume increases. During the short period when the cylinder is completely inside the
domain and the IB volume does not change, the green line in figure 4.16 is almost
horizontal but negative because the mass flow rate at the inlet and outlet is posi-
tive. The peaks in the negative values appear when the cylinder leaves the domain
and the IB volume becomes smaller. Since the mass change of the domain, green
curve, is not entirely zero, the total mass inside the volume is not conserved, which
underlines the findings from the previous two test cases. It should be mentioned
again that the flux through the IB is zero.

4.3 Wall Functions
For laminar cases, the boundary conditions for the velocity and pressure field de-
scribed in section 3.2.4 are sufficient. For turbulent cases, on the other hand, addi-
tional boundary conditions with wall functions are required. Since IB methods have
the advantage of being able to use uniform background meshes, refinements at the
IB to solve the near-wall region and having the first cells inside the viscous sublayer
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would negate this advantage. Therefore, instead of mesh refinement, wall functions
can be used to model the near-wall region at immersed boundaries.
So far, one immersed boundary wall function class has been implemented for each
turbulence parameter.

• immersedBoundaryEpsilonWallFunction

• immersedBoundaryKqRWallFunction

• immersedBoundaryNutWallFunction

• immersedBoundaryOmegaWallFunctions

These wall functions are based on the corresponding BF wall functions and are com-
pared with the BF boundary conditions in test cases below. Due to time constraints,
a detailed description of the IB wall functions is not given here and the interested
reader is referred to the source code of fe41NR.
In the following, the IB wall functions are compared with the BF wall functions
for three different two-dimensional test cases. The first two test cases, a backward
facing step and a forward facing step in a channel, are simple and well known cases
that make it easy to use the same grid and geometry for IB and BF methods. A
final test case examines the flow around a cylinder in a channel, which is a much
more complex case for the implemented wall functions. In all three test cases, no
experimental or validation data is used. Furthermore, for all cases the steady-state
solver simpleFoam was used, which uses the SIMPLE algorithm and is suitable for
incompressible turbulent flows. The numerical schemes ware taken from the IB
tutorial case pitzDailyTurbulent and are listed in the table 4.2.

4.3.1 Test Case 1: Backward Facing Step
The first test case is a slightly modified backward facing step case. The flow entering
through the velocity-driven inlet follows a channel for 30 meters before reaching the
backward step. After 30 meters, corresponding to 40D = 40 ·0.75m = 30m, the flow
should be fully developed [15]. Behind the backward facing step, the channel has
a symmetry plane at the bottom instead of another wall, see figure 4.17. The flow
inside the channel has a constant mass inflow and the kinematic viscosity ν = 10−6.
The boundary conditions of the test cases are given in table 4.3. For k, nut,
epsilon and omega the previously mentioned special IB wall functions are used,
while for the BF cases the corresponding wall functions epsilonWallFunction,
kqRWallFunction, nutWallFunction and omegaWallFunction are used.
Ideally, the STL would lie directly on the background mesh and no cutting would
be required. This would result in exactly the same geometry as in the BF backward
facing step case. Since the aim of this analysis is to compare the wall functions
between IB and BF as good as possible, this ideal case of the exact same geometry
is used in the following test cases. However, it is usually very unlikely that the IBS
method can model the exact geometry, and to account for these cutting inaccuracies,
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Table 4.2: Numerical schemes used for all wall function test cases

ddtSchemes
default steadyState
gradSchemes
default cellLimited leastSquares 1
divSchemes
default none
div(phi, U) Gauss vanLeerDC
div(phi, k) Gauss upwind
div(phi, Epsilon) Gauss upwind
div(phi, Omega) Gauss upwind
div(nuEff*dev(T(grad(U)))) Gauss linear
laplacianSchemes
default Gauss linear limited 0.5
interpolationSchemes
default linear
snGradSchemes
default limited 0.5

Figure 4.17: Test case 1: backward facing step with H = 0.25m. : wall; :
symmetry plane

Table 4.3: Velocity and pressure boundary conditions for BF and IB case

patch U p
inlet fixedValue, uniform 0.1 zeroGradient
outlet inletOutlet fixedValue, uniform 0
top fixedValue, uniform 0 zeroGradient
bottom symmetryPlane symmetryPlane
front and back empty empty

obstacle IB: mixedIb (Dirichlet u=0)
BF: wall (no-slip)

IB: mixedIb (zeroGradient)
BF: zeroGradient
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(a) 19 cells in y-direction (b) 20 cells in y-direction

(c) 21 cells in y-direction

Figure 4.18: IB cutting for three different meshes in the backward facing step case

additional cases with a slightly changed mesh are computed as well. Three different
IB cases are shown in figure 4.18. In all three cases the STL has a height of 0.25
meters, but the number of cells in y-direction is different. In figure 4.18b the STL lies
on the background grid and therefore results in an exact replication of the backward
facing step. In figure 4.18a and 4.18c, on the other hand, the STL lies inside a row
of cells, which is why the cells have to be cut and the corner cell is not rectangular.
A rectangular STL object will always have small cutting inaccuracies at the corners
as long as the STL is not exactly on the background grid. The reason for this is
that a face is only cut when the STL intersects the face. This also prevents cases
where a face could get two neighbours, if the corner of the STL object lies on a face
of the background mesh.

The difference between the cases in figure 4.18 is not only that the geometry is
different, but also that the cells above the IB have different heights. While in figure
4.18b and 4.18c the cells above the IB have the same or almost the same heights as
all the others cells, the y+ values in the case with 19 cells in y-direction in figure
4.18a are much smaller.

Figure 4.19 shows the residual plot for the IB case with the k-Omega-SST model as
an exemplary for all cases. A steady state solution with small fluctuations is reached
after about 300 steps. The same behaviour can also be seen for the BF mesh cases,
even though the fluctuations are significantly smaller. For this reason, the following
results are taken after 600 steps.
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Figure 4.19: Residual plot for IB case with k-Omega-SST model in backward
facing step case

The velocity profiles, normalized with a reference velocity at the centre of the fully
developed channel flow and multiplied by a factor 1.25, are shown for six different
cases at five different locations in figure 4.20. The first position is located on the
block while the other four are behind the backward facing step. The six different
cases are two BF cases using the k-Epsilon and k-Omega-SST models (BF_kEpsilon
and BF_kOmega) and four IB cases, also using the k-Epsilon and k-Omega-SST
models. For the three IB cases with the k-Omega-SST model, three different meshes
were used as previously described, see figure 4.18.
In general, it can be said that the newly implemented IB wall functions are quite
similar to the BF wall function in the backward facing step case. In front of the
step, the velocities in the channel are almost exactly the same and also behind the
backward facing step only small differences in the range 0.8H - 1.5H can be seen. For
the IB_kOmega_19 case the differences almost disappear, which can be explained
by the cutting inaccuracies and the different corner. It is probably a coincidence
that the cutting inaccuracies correct the velocity profile in the right direction.
Looking closely at the first location (5H) in figure 4.20, it appears that the velocity
in the x-direction at the IB is not zero, as it should be. This, however, is not an error
in the IBS method in fe41NR, but an incorrect interpolation of the velocity field.
Inside the domain, the velocity field is written out and stored in the cell centres
and manipulated at the boundaries. Since the results do not store the inserted IB
faces and the values set at the IB, the results do not show that the velocity at the
IB is zero. Instead, the velocity at the IB is an interpolated value between the
first dead cell inside the IB and the first cell inside the fluid domain. The velocity
at the IB is stored in an additional VTK file at each output time step, which in
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Figure 4.20: Relative velocity profiles at five different locations for 6 different cases

this case only provides zero values. The velocity profiles in figure 4.20 were created
with the post-processing utility sample, which interpolates the velocity to the faces.
For the cases IB_kOmega_19 and IB_kOmega_21 this means that lines of the
velocity profile have different lengths because the faces of the background mesh lie
at different heights.
For the mesh with 20 cells in y-direction, where the IB lies on the background grid,
the velocity values at the IB could be set to zero to correct the incorrect values.
With the other two meshes, however, it is more difficult. For the cells that are
cut by the IB, the centre point is moved during the cutting and the centre point
with the velocity vector lies closer to the neighbouring face, see figure 3.3 in section
3.1.2. During post-processing, the cell-centres are not moved, resulting in a different
location of the velocity vector of the cut-cells. Hence, post-processing also results
in incorrectly interpolated velocity values at the first face inside the stream.
For the contour plots of the velocity field, as figure 4.18a, a similar behaviour is
observed. For the cut-cells with their manipulated cell centre, the velocity value
is applied to the entire background cell, giving the impression that the velocity
inside the IB is not zero. In summary, post-processing utilities and Paraview cannot
visualize cut-cells and the fact that the velocity is interpolated incorrectly at the IB
should be taken into account when analyzing the velocity.
For the analysis of the wall function, wall shear stress and wall friction are important
quantities. Therefore, a comparison of the friction coefficient between the the BF
and IB methods is shown in figure 4.21. Again, the black solid and the red dotted
line are the BF grids, while the other four lines are IB cases. Despite the fact that
all IB cases are quite close to the BF methods, the IB case with 21 cells in the y-
direction shows a bigger difference than the other IB cases. Since the IB case with 19
cells in the y-direction is again closer to the BF cases, there seems to be a correlation
between the y+ values and the quality of the wall functions. The y+ values for the
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Figure 4.21: Friction coefficient on the last meter before the backward facing step

Table 4.4: y+ values for k-Omega-SST cases in backward facing step case at
x/H = −2

case y+ value at x/H = −2
BF_kOmega 112.8
IB_kOmega_19 31.4
IB_kOmega_20 120.6
IB_kOmega_21 94.5

different cases are shown in the table 4.4. The largest differences occur at the corner
of the rectangle, where the cases with a sharp corner have higher values than in the
channel. Since the two IB cases with cutting inaccuracies don’t have such a sharp
corner, the increase in cf is not visible. For the backward facing step case, it can be
said that the IB wall functions work as they should. The differences between the BF
wall functions and the IB wall functions are relatively small and do not depend much
on the choice of the background mesh and type of cutting. Despite the differences
in the friction coefficient due to cutting inaccuracies, the velocity profiles are very
similar to the BF mesh cases.

4.3.2 Test Case 2: Forward Facing Step
The second test case is the forward facing step case. Again, flow separation occurs
behind a corner, but this time the flow is disturbed by a narrowing of the channel
instead of a widening. As a result, the recirculation region is above the IB and
challenges the wall functions in a different way than in the backward facing step.
The solver settings and boundary conditions are no different from the backward

46



4. IBS Analysis

Figure 4.22: Test case 2: forward facing step with H = 0.25m. : wall; :
symmetry plane

Table 4.5: Highest y+ values for k-Epsilon cases in forward facing step case

case max. y+ value
BF_coarse_kEpsilon 86.4
BF_fine_kEpsilon 26.8
IB_coarse_kEpsilon 194.9
IB_fine_kEpsilon 76.3

facing step, only the domain is changed to a forward facing step, as can be seen
in figure 4.22. Since a symmetryPlane boundary condition is used at the bottom,
a long inlet is not required for a fully developed channel flow. The flow inside the
channel has a constant mass inflow and a kinematic viscosity ν = 10−6. The residual
plot in figure 4.23 shows again that a running time of 600 steps is sufficient to obtain
a converged solution. Small fluctuations as in the backward facing step case can be
seen as well. After testing different IB cuttings due to different number of cells in
the y-direction in the backward facing step, the IB surface of the STL always lies
on the background grid in this test case, which results in exactly the same geometry
for the IB cases as for the BF cases. The shape of the corner of the forward facing
step has too much influence on the analysis to test different IB cuttings. Instead, a
coarse and a fine background mesh are analyzed. Table 4.5 shows the highest y+
values for the coarse and fine mesh. The large differences between the BF cases
and the IB cases can be explained by the differences in the velocity field, which are
discussed later. In the coarse mesh cases, the same cell height was used as in the
backward facing step case. In the fine mesh, on the other hand, the number of cells
in the y-direction is three times as high, and much smaller y+ values are achieved.
The figure 4.24 shows four different velocity profiles at six different x-positions. The
velocities are normalized and multiplied by a factor as in the backward facing step
case.
In the BF mesh cases, a clear recirculation zone with negative velocities can be
seen immediately after the forward facing step. After about 1.25 meters (≡ 5H),
all x-velocities become greater than zero for the k-Epsilon model and after around
1.75m (≡ 7H) for the k-Omega-SST model. This behaviour cannot be observed for
the IB cases.
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Figure 4.23: Residual plot for IB case with k-Omega-SST model in forward facing
step case

For both the k-Epsilon model and the k-Omega-SST model, the results of the IB
cases show reduced velocities in the separation region and a transition to the channel
flow with a boundary layer, but no recirculation. Therefore, the differences between
the BF and the IB wall functions are high in the recirculation region, but become
smaller once the flow transitions back to channel flow. Furthermore, for the IB cases,
the differences between the k-Omega-SST and the k-Epsilon model are negligible.
While the recirculation in the coarse mesh could not be modeled with IB wall func-
tions, negative x-velocities are clearly seen for the fine mesh cases in figure 4.25. In
contrast to the coarse mesh, the k-Epsilon IB wall functions show similar results
to the BF cases up to 5H after the forward facing step when using a fine mesh.
Slightly higher differences are observed for the k-Omega wall functions. However,
after the recirculation region, the cases with a fine mesh show an excessive increase
in velocity in the near-wall area. This suggests that the implemented wall functions
better model recirculation behind the forward facing step in fine meshes, but become
worse in normal channel flow with boundary layers. It should be noted that the y+
values for the BF case with a fine mesh even reach values below 30, where good
results with near-wall modelling cannot be assumed.
As with the velocity profiles, large differences can be observed in the friction coeffi-
cient for coarse meshes. While in the BF methods with coarse meshes a large part of
the first 2 meters consists of positive friction coefficient values, which means negative
x-velocities, the friction coefficient in the IB cases is predominantly negative. This
confirms the results obtained from the velocity profiles. The further away from the
forward facing step, the more the IB wall functions approach the BF wall functions.
For the fine mesh IB cases, the friction coefficient also confirms the results from the
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Figure 4.24: Relative velocity profiles at five different locations for 4 different cases
with a coarse mesh

Figure 4.25: Relative velocity profiles at five different locations for 2 IB cases with
a fine mesh and 3 BF cases
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Figure 4.26: Friction coefficient on the obstacle behind the forward facing step for
the coarse mesh cases

Figure 4.27: Friction coefficient on the obstacle behind the forward facing step for
fine and coarse mesh cases

velocity profiles. The recirculation is modelled by the IB wall function, albeit some-
what exaggerated. Besides the fact that the friction coefficients between x = 2H
and x = 4H are all quite close, it can be seen that the cases with a fine background
mesh do not converge after 600 steps. The friction coefficient and the velocity field
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Figure 4.28: Test case 3: cylinder in channel. : wall; : symmetry plane

vary behind the forward facing step, especially when using the k-Omega-SST model.
Nevertheless, it can be summarized that the IB wall functions adequately model
near-wall regions in undisturbed channel flow and in the backward facing step. Be-
hind a forward facing step, on the other hand, a fine mesh is required to achieve
results similar to the BF wall functions. However, this also leads to poor results
inside the channel, further away from the forward facing step. As this analysis was
performed on a perfect replica of the IB object with rectangular corners, cutting
inaccuracies were not taken into account. The use of fine meshes also has the ad-
vantage of reducing the inaccuracies which would greatly affect the results in cases
such as the forward facing step.

4.3.3 Test Case 3: Cylinder in Channel Flow
In the third test case, a cylinder is placed inside a channel. This not only changes
the IB cutting completely, but also shifts the separation point from a sharp corner
to a smooth, curved face. The main solver settings are kept as in the previous two
cases, only the domain and boundary conditions are slightly changed.
As in the second test case, the upper boundary is a wall, while the lower boundary is
a symmetry plane. For the separation analysis of the flow around the cylinder, a fully
developed channel flow is not required and the channel can be comparatively short.
The cylinder has a diameter of 0.5 meters and is firmly anchored in the domain. The
inlet velocity varies between some of the cases to manipulate the Reynolds number
and hence the y+ values for different meshes. The kinematic viscosity is ν = 10−6

for the turbulent cases and ν = 10−1 for the laminar cases, respectively.
The test case was calculated a total of six times with the SST k−ω model and two
times with laminar flow. For the turbulent cases, different mesh sizes were used to
analyze the effects on the velocity field.
Figure 4.29 shows the velocity contour plots of 5 turbulent cases. The first two, 4.29a
and 4.29b, have the inlet velocity Uinlet = 0.1m/s, while all others have Uinlet =
1.0m/s. The y+ values of each case can be seen in table 4.6 with an additional case,
IB fine (Uinlet = 0.1m/s), presented later.
In figure 4.29 it is clear that the IB wall functions obviously do not work as well as for
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Table 4.6: y+ values for cylinder in channel test cases

cases min. max. average
IB coarse (Uinlet = 0.1) 1.3 188.9 41.6
IB medium (Uinlet = 1.0) 1.0 646.8 126.0
IB fine (Uinlet = 1.0) 0.5 416.1 72.5
IB fine (Uinlet = 3.0) 1.2 1059.4 218.1
BF coarse (Uinlet = 0.1) 31.4 222.5 128.6
BF fine (Uinlet = 1.0) 24.4 486.9 219.1

the backward or even the forward facing step case. The separation and recirculation
region is much smaller for the IB cases than for the cases with body-fitted meshes.
When using a coarse mesh, the difference is not tremendous, but when the cell
heights are reduced, the differences become much larger. While the recirculation
region in the BF cases becomes larger when the number of cells is increased, the
recirculation region in the IB cases becomes smaller. The flow around the cylinder
is attached longer and the influence of the cylinder on the stream is smaller. This
behaviour does not correlate with the average y+ value as can be seen in table 4.6.
Due to the higher inlet velocity in the IB medium and IB fine case, the y+ values
do not deviate as much from the IB coarse case. However, it can be seen that the
variance between the highest and lowest y+ values is much larger for the IB cases
than for the BF cases. This is due to the IB cutting, which is different for each
cell when using a curved STL surface. Unlike the first two test cases, which used
a rectangle, the cell height varies greatly when cutting a cylinder into a uniform
Cartesian background mesh. This can be seen in figure 4.30. The fact that the
y+ values can vary greatly on the same boundary for the IBS method should be
taken into account when using IB wall functions. It also makes it more difficult to
implement resilient and stable IB wall functions.
The real reason why the results get worse with finer meshes is probably the shape
of the cylinder. Since the cells are cut linearly, the cylinder surface in IBS is not
as smooth as when using body-fitted meshes. In figure 4.30a, it can be seen that
the surface is much more angular with results in a stronger separation. For a nearly
smooth circular surface, as in figure 4.30c, the flow attaches much longer than in the
other cases. The implemented IB wall functions have problems modelling detached
flow due to strongly curved surfaces.
That the size of the recirculation area does not depend on the y+ values can be seen
again in figure 4.31. In both cases the same mesh was used, but the inlet velocity
changed to obtain higher y+ values for the case in figure 4.31b. The y+ values for
this case can also be found in the table 4.6 above.
As a final comparison, test case 3 was calculated in laminar flow, as the kinematic
viscosity was changed from ν = 10−6 to ν = 10−1. A fine mesh with 56 cells in y-
direction was used in both the BF and IB case. This led to almost identical results
for the BF and IB cases. Visually, no differences between figure 4.32a and figure
4.32b can be seen.
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(a) BF with 14 cells in y-direction and Uinlet = 0.1

(b) IB with 14 cells in y-direction and Uinlet = 0.1

(c) BF with 56 cells in y-direction and Uinlet = 1.0

(d) IB with 28 cells in y-direction and Uinlet = 1.0

(e) IB with 56 cells in y-direction and Uinlet = 1.0

Figure 4.29: Test case 3: x-velocity contour plots after 3000 steps for 3 different
IB cases and 2 BF cases
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(a) Coarse mesh with 14 cells in y-
direction

(b) Medium mesh with 28 cells in y-
direction

(c) Fine mesh with 56 cells in y-direction

Figure 4.30: Test case 3: IB cutting for the three different meshes

(a) IB with 56 cells in y-direction and Uinlet = 1.0

(b) IB with 56 cells in y-direction and Uinlet = 3.0

Figure 4.31: Test case 3: x-velocity contour plots after 3000 steps for two IB cases
with fine mesh but different inlet velocities

54



4. IBS Analysis

(a) Laminar BF with 56 cells in y-direction and Uinlet = 1.0

(b) Laminar IB with 56 cells in y-direction and Uinlet = 1.0

Figure 4.32: Test case 3: x-velocity contour plots after 3000 steps for a laminar
IB case and a laminar BF case
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5
Conclusion

This master thesis gives an overview of the Immersed Boundary Surface (IBS)
method in foam-extend. In this overview, the implementation of the cutting process
as well as the cutting limitations and boundary conditions are addressed. Further-
more, an analysis on the functionality and reliability of the IBS method is given
with the topics mesh refinement, mass fluxes and wall functions. For the analysis,
simple test cases have been created to highlight individual components.
Between the foam-extend version 4.0 and 4.1, a lot has changed in the implementa-
tion of the IB method. The newly implemented IB method in foam-extend version
4.1, called IBS method, no longer uses polynomials but cuts the background mesh
and manipulates the cell data. For all intersected cells, the volume and face data are
recalculated only for the part inside the fluid, which further changes the discretiza-
tion matrix. Although the change from a ghost-cell approach to a cut-cell approach
has enabled sharp interfaces and improved several aspects, the IBS is still a work in
progress with many of improvements to come over time.
When merging complex objects or multiple IBs into the background mesh, or even
when choosing the coarseness of the background mesh, the IBS method is limited by
the fact that each cell can only be cut once. Therefore, the cells of the background
mesh should not be thicker than the immersed object, and also the correct mapping
of sharp corners cannot be guaranteed. In the case of multiple IBs, an overlap of at
least one cell is required for a contact between two IB patches, as two IB boundaries
per cell are not possible.
When it comes to fluid mechanics, the conservation of mass is probably one of the
most important principles. But when using the IBS method with moving IBs, this
simple conservation law is not so easy to fulfil. As described in section 3.1.2, the
IBS method uses the idea of manipulating the old cell volume to account for mesh
fluxes. In most cases, the movement of the IB changes not only the volume of the
newly intersected cells but also the volume of old intersected cells and other cells,
resulting in volume changes which would be neglected. However, this method, which
is consistent in theory, does not yet lead to mass conservation. As shown by several
test cases in section 4.2, the IBS method is not mass conserving for moving IBs. Al-
though the mass fluxes on the IB surface are zero, the fluid volume appears to vanish
and emerge. The translation of mesh fluxes to mass fluxes seems to work better in
high-pressure regions than in low-pressure regions, but still both are wrong. Fur-
thermore, the implemented version in the foam-extend 4.1 nextRelease branch
is also not mass conserving for stationary IBs. However, this seems to be a result of

57



5. Conclusion

earlier bug fixes, as it already worked in previous versions as in the master branch.
To validate and analyze the implemented IB wall functions, three different test cases
are used to compare the results with established body-fitted wall functions. While
the IB wall functions show very good results for normal channel flow and in the
backward facing step case, differences can be found in the forward facing step case
with strong separation by a sharp corner. For strongly curved surfaces such as a
cylinder in a channel, the IB wall function do no provide reliable results. In addition
to the fact that the implemented IB wall functions are not yet as evolved as BF wall
function, cutting limitations and a large range of y+ values complicate the modelling
of turbulence in near wall regions. Due to cell cutting, the height of the IB cells
varies greatly and thus also the y+ values.
All in all, it can be said that the IBS method in foam-extend can be a good alter-
native to BF meshing methods. Due to major problems with mass conservation, it
is not yet possible in the nextRelease branch to produce reliable results for either
stationary IBs or moving IBs. However, the IBS method is a work in progress that
will become more applicable with further updates and has the potential to be a
good alternative to BF meshing methods. At this stage, it is very important to
understand the limitations of the IBS method, to know its purpose and that the
method is constantly evolving.
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A
immersedBoundaryPolyPatch.C

Listing A.1: immersedBoundaryPolyPatch.C
1 /* ---------------------------------------------------------------------------*\
2 ========= |
3 \\ / F ield | foam - extend : Open Source CFD
4 \\ / O peration | Version : 4.1
5 \\ / A nd | Web: http :// www.foam - extend .org
6 \\/ M anipulation | For copyright notice see file Copyright
7 -------------------------------------------------------------------------------
8 License
9 This file is part of foam - extend .

10
11 foam - extend is free software : you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by the
13 Free Software Foundation , either version 3 of the License , or (at your
14 option ) any later version .
15
16 foam - extend is distributed in the hope that it will be useful , but
17 WITHOUT ANY WARRANTY ; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the GNU
19 General Public License for more details .
20
21 You should have received a copy of the GNU General Public License
22 along with foam - extend . If not , see <http :// www.gnu.org/ licenses />.
23
24 \*---------------------------------------------------------------------------*/
25
26 # include " immersedBoundaryPolyPatch .H"
27 # include " foamTime .H"
28 # include " polyBoundaryMesh .H"
29 # include " polyMesh .H"
30 # include " emptyPolyPatch .H"
31 # include " ImmersedFace .H"
32 # include " ImmersedCell .H"
33 # include " triSurfaceDistance .H"
34 # include " mergePoints .H"
35 # include " processorPolyPatch .H"
36 # include " addToRunTimeSelectionTable .H"
37
38 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
39
40 namespace Foam
41 {
42 defineTypeNameAndDebug ( immersedBoundaryPolyPatch , 0);
43
44 addToRunTimeSelectionTable (polyPatch , immersedBoundaryPolyPatch , word );
45 addToRunTimeSelectionTable
46 (
47 polyPatch ,
48 immersedBoundaryPolyPatch ,
49 dictionary
50 );
51 }
52
53

I
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54 // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
55
56 const Foam :: debug :: tolerancesSwitch
57 Foam :: immersedBoundaryPolyPatch :: spanFactor_
58 (
59 " immersedBoundarySpanFactor ",
60 20
61 );
62
63
64 // * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
65
66 Foam :: vector Foam :: immersedBoundaryPolyPatch :: cellSpan
67 (
68 const label cellID
69 ) const
70 {
71 const polyMesh & mesh = boundaryMesh (). mesh ();
72
73 // Calculate span from the bounding box size ( prefactor is arbitrary , IG
74 // 10/ Nov /2018)
75 const scalar delta = spanFactor_ ()* cmptMax
76 (
77 boundBox
78 (
79 mesh. cells ()[ cellID ]. points
80 (
81 mesh. faces (),
82 mesh. points ()
83 ),
84 false // Do not reduce
85 ). span ()
86 );
87
88 return vector (delta , delta , delta );
89 }
90
91
92 void Foam :: immersedBoundaryPolyPatch :: calcTriSurfSearch () const
93 {
94 if ( debug )
95 {
96 InfoInFunction
97 << " creating triSurface search algorithm "
98 << endl;
99 }

100
101 // It is an error to attempt to recalculate
102 // if the pointer is already
103 if ( triSurfSearchPtr_ )
104 {
105 FatalErrorInFunction
106 << " triSurface search algorithm already exist "
107 << abort ( FatalError );
108 }
109
110 triSurfSearchPtr_ = new triSurfaceSearch ( ibMesh_ );
111 }
112
113
114 void Foam :: immersedBoundaryPolyPatch :: calcImmersedBoundary () const
115 {
116 if ( debug )
117 {
118 InfoInFunction
119 << " Calling calcImmersedBoundary for patch "
120 << name () << " for mesh "
121 << boundaryMesh (). mesh (). time (). path ()
122 << endl;
123 }
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124
125 // It is an error to attempt to recalculate
126 // if the pointer is already
127 if
128 (
129 ibPatchPtr_
130 || ibCellsPtr_
131 || ibCellCentresPtr_
132 || ibCellVolumesPtr_
133 || ibFacesPtr_
134 || ibFaceCentresPtr_
135 || ibFaceAreasPtr_
136 || nearestTriPtr_
137 || deadCellsPtr_
138 || deadFacesPtr_
139 )
140 {
141 FatalErrorInFunction
142 << " Geometry already calculated "
143 << abort ( FatalError );
144 }
145
146 // Get reference to the mesh
147 const polyBoundaryMesh & bMesh = boundaryMesh ();
148 const polyMesh & mesh = bMesh .mesh ();
149
150 // Get triSurface search
151 const triSurfaceSearch & tss = triSurfSearch ();
152
153 // Get mesh points
154 const pointField & p = mesh. points ();
155
156 // Get mesh faces
157 const faceList & f = mesh. faces ();
158
159 // Get mesh face centres
160 const vectorField & Cf = mesh. faceCentres ();
161
162 // Get mesh face areas
163 const vectorField & S = mesh. faceAreas ();
164
165 // Get mesh cell centres
166 const vectorField & C = mesh. cellCentres ();
167
168 // Get mesh cell volumes
169 const scalarField & V = mesh. cellVolumes ();
170
171 // Get face addressing
172 const labelList & owner = mesh. faceOwner ();
173 const labelList & neighbour = mesh. faceNeighbour ();
174
175 // Get cell - point addressing
176 const labelListList & cellPoints = mesh. cellPoints ();
177
178 // Algorithm
179 // Initialise the search by marking the inside points using calcInside
180 // Based on inside points addressing , check intersected faces and cells
181 // For all intersected cells , calculate the actual intersection and
182 // - calculate the (cell) intersection face , its centre , and area vector
183 // - adjust the cell volume and centre
184 // - adjust the face area and face centre
185
186 // Mark points that are inside or outside of the triangular surface
187 boolList pointsInside = tss. calcInside (p);
188
189 // Adjust selection of points : inside or outside of immersed boundary
190 if ( internalFlow ())
191 {
192 Info << " Internal flow for patch "
193 << name () << " for mesh "
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194 << boundaryMesh (). mesh (). time (). path () << endl;
195 }
196 else
197 {
198 Info << " External flow for patch "
199 << name () << " for mesh "
200 << boundaryMesh (). mesh (). time (). path () << endl;
201
202 // Flip all points inside identifier
203 forAll ( pointsInside , i)
204 {
205 pointsInside [i] = ! pointsInside [i];
206 }
207 }
208
209 // Check cell intersections
210 labelList intersectedCell (mesh. nCells (), immersedPoly :: UNKNOWN );
211
212 // Estimate the number of intersected cells .
213 // Used for sizing of dynamic list only
214 // HJ , 11/ Dec /2017
215 label nIntersectedCells = 0;
216
217 // Go through the faces at the interface between a live and dead cell
218 // and mark the band of possible intersections
219 forAll ( intersectedCell , cellI )
220 {
221 // Get current cell points
222 const labelList & curCp = cellPoints [ cellI ];
223
224 bool foundInside = false ;
225 bool foundOutside = false ;
226
227 forAll (curCp , cpI)
228 {
229 if ( pointsInside [ curCp [cpI ]])
230 {
231 // Found a point inside
232 foundInside = true;
233 }
234 else
235 {
236 // Found a points outside
237 foundOutside = true;
238 }
239 }
240
241 // Check cell classification
242 if ( foundInside && ! foundOutside )
243 {
244 // All points inside : cell is wet
245 intersectedCell [ cellI ] = immersedPoly :: WET;
246 }
247 else if (! foundInside && foundOutside )
248 {
249 // All points outside : cell is dry
250 intersectedCell [ cellI ] = immersedPoly :: DRY;
251 }
252 else if ( foundInside && foundOutside )
253 {
254 // Get span
255 const vector span = cellSpan ( cellI );
256
257 // If the nearest triangle cannot be found within span than this is
258 // most probably a tri surface search error . Mark unknown and check
259 // later . (IG 22/ Nov /2018)
260 if (tss. nearest (C[ cellI ], span/ spanFactor_ ()). index () == -1)
261 {
262 intersectedCell [ cellI ] = immersedPoly :: UNKNOWN ;
263 }
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264 else
265 {
266 // Intersected cell
267 intersectedCell [ cellI ] = immersedPoly :: CUT;
268 nIntersectedCells ++;
269 }
270 }
271 }
272
273 // Do a check of the cells selected for cutting but not within the span of
274 // the tri surface . The cause of this can either be a stl that is not
275 // perfect or ther was an error in the inside / outside tri - search for other
276 // reasons . Look at the neigbours that are not CUT and assign their status .
277 const cellList & cells = mesh. cells ();
278
279 forAll ( intersectedCell , cellI )
280 {
281 if ( intersectedCell [ cellI ] == immersedPoly :: UNKNOWN )
282 {
283 // Check the neigbours
284 const cell& curCell = cells [ cellI ];
285 Switch foundWetNei = false ;
286 Switch foundDryNei = false ;
287
288 forAll (curCell , faceI )
289 {
290 // Only do the check for internal faces . If the face is boundary
291 // face then there is nothing to do.
292 // NOTE: parallelisation needed ?
293 if (mesh. isInternalFace ( curCell [ faceI ]))
294 {
295 label own = intersectedCell [ owner [ curCell [ faceI ]]];
296 label nei = intersectedCell [ neighbour [ curCell [ faceI ]]];
297
298 if
299 (
300 (nei == immersedPoly :: DRY)
301 || (own == immersedPoly :: DRY)
302 )
303 {
304 foundDryNei = true;
305 }
306 if
307 (
308 (nei == immersedPoly :: WET)
309 || (own == immersedPoly :: WET)
310 )
311 {
312 foundWetNei = true;
313 }
314 }
315 }
316
317 if ( foundWetNei && ! foundDryNei )
318 {
319 intersectedCell [ cellI ] = immersedPoly :: WET;
320 }
321 else if (! foundWetNei && foundDryNei )
322 {
323 intersectedCell [ cellI ] = immersedPoly :: DRY;
324 }
325 else
326 {
327 // There are either no wet or dry negbours or there are both.
328 // This should not be possible . NOTE: the check is not
329 // parallelised and this can theoretically lead to failures in
330 // strange arrangaments .
331 // Issue a warning , mark CUT and hope for the best.
332 // (IG 22/ Nov /2018)
333 if ( debug )
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334 {
335 WarningInFunction
336 << " Cannot find wet or dry neigbours ! Cell C:"
337 << C[ cellI ]
338 << " Neighbours : WET:" << foundWetNei
339 << ", DRY:" << foundDryNei
340 << endl;
341 }
342
343 intersectedCell [ cellI ] = immersedPoly :: CUT;
344 nIntersectedCells ++;
345 }
346 }
347 }
348
349 // Count all IB cells and faces for debug
350 labelList totalIbCount (4);
351
352 // Collect intersection points and faces . Primitive patch will be created
353 // after renumbering
354
355 // IB points
356 // Note: it is difficult to estimate the correct size , so use a guessed
357 // number of intersected cells and a dynamic list for automatic resizing
358 // HJ , 11/ Dec /2017
359 DynamicList <point > unmergedPoints
360 (
361 nIntersectedCells * primitiveMesh :: pointsPerFace_
362 );
363 label nIbPoints = 0;
364
365 // IB patch faces : Cell intersections with the IB patch
366 faceList unmergedFaces (mesh. nCells ());
367
368 // IB cells : cells intersected by the IB patch
369 // This also corresponds to faceCells next to the IB patch
370 ibCellsPtr_ = new labelList (mesh. nCells ());
371 labelList & ibCells = * ibCellsPtr_ ;
372
373 // IB cellCentres : centre of live part of the intersected cell
374 // next to the IB patch
375 ibCellCentresPtr_ = new vectorField (mesh. nCells ());
376 vectorField & ibCellCentres = * ibCellCentresPtr_ ;
377
378 // IB cellCentres : centre of live part of the intersected cell
379 // next to the IB patch
380 ibCellVolumesPtr_ = new scalarField (mesh. nCells ());
381 scalarField & ibCellVolumes = * ibCellVolumesPtr_ ;
382
383 // Nearest triangle
384 nearestTriPtr_ = new labelList (mesh. nCells ());
385 labelList & nearestTri = * nearestTriPtr_ ;
386
387 // Count interected cells
388 label nIbCells = 0;
389
390 // At this point , all live cells are marked with 1
391 // Intesect all cells that are marked for intersection
392
393 forAll ( intersectedCell , cellI )
394 {
395 if ( intersectedCell [ cellI ] == immersedPoly :: CUT)
396 {
397 // Found intersected cell
398
399 // Get span
400 const vector span = cellSpan ( cellI );
401
402 // Create a cutting object with a local tolerance
403 triSurfaceDistance dist
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404 (
405 tss ,
406 2* span ,
407 internalFlow (),
408 true // iterate intersection
409 );
410
411 // Calculate the intersection
412 ImmersedCell < triSurfaceDistance > cutCell
413 (
414 cellI ,
415 mesh ,
416 dist
417 );
418
419 // Check for irregular intersections
420 if ( cutCell . isAllWet ())
421 {
422 intersectedCell [ cellI ] = immersedPoly :: WET;
423 }
424 else if ( cutCell . isAllDry ())
425 {
426 intersectedCell [ cellI ] = immersedPoly :: DRY;
427 }
428 else
429 {
430 // True intersection . Cut the cell and store all
431 // derived data
432
433 // Note: volumetric check is not allowed because true
434 // intersection guarantees that the faces of the cell
435 // have been cut. Therefore , the cell MUST be an IB cell.
436 // If the cut is invalid , Marooney Maneouvre shall correct
437 // the error in sum(Sf ). HJ , 12/ Mar /2019
438
439 // Store ibFace with local points . Points merge will
440 // take place later
441 const face& cutFace = cutCell . faces ()[0];
442
443 const pointField & cutPoints = cutCell . points ();
444
445 // Collect the renumbered face , using the point labels
446 // from the unmergedPoints list
447 face renumberedFace ( cutFace .size ());
448
449 // Insert points and renumber the face
450 forAll (cutFace , cpI)
451 {
452 unmergedPoints . append ( cutPoints [ cutFace [cpI ]]);
453 renumberedFace [cpI] = nIbPoints ;
454 nIbPoints ++;
455 }
456
457 // Record the face
458 unmergedFaces [ nIbCells ] = renumberedFace ;
459
460 // Collect cut cell index
461 ibCells [ nIbCells ] = cellI ;
462
463 // Record the live centre
464 ibCellCentres [ nIbCells ] = cutCell . wetVolumeCentre ();
465
466 // Record the live volume
467 ibCellVolumes [ nIbCells ] = cutCell . wetVolume ();
468
469 // Record the nearest triangle to the face centre
470 nearestTri [ nIbCells ] =
471 tss. nearest ( cutFace . centre ( cutPoints ), span ). index ();
472
473 nIbCells ++;
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474 }
475 }
476 }
477
478 // Pick up direct face cuts after regular cell cuts are collected
479 forAll (neighbour , faceI )
480 {
481 if
482 (
483 intersectedCell [ owner [ faceI ]] == immersedPoly :: WET
484 && intersectedCell [ neighbour [ faceI ]] == immersedPoly :: DRY
485 )
486 {
487 // Direct face cut , owner
488
489 // Grab a point and wet cell and make an IB face
490 pointField facePoints = f[ faceI ]. points (p);
491 face renumberedFace ( facePoints .size ());
492
493 // Insert points
494 forAll ( facePoints , fpI)
495 {
496 unmergedPoints . append ( facePoints [fpI ]);
497 renumberedFace [fpI] = nIbPoints ;
498 nIbPoints ++;
499 }
500
501 // Record the face
502 unmergedFaces [ nIbCells ] = renumberedFace ;
503
504 // Collect cut cell index
505 ibCells [ nIbCells ] = owner [ faceI ];
506
507 // Record the live centre
508 ibCellCentres [ nIbCells ] = C[ owner [ faceI ]];
509
510 // Record the live volume : equal to owner volume
511 ibCellVolumes [ nIbCells ] = V[ owner [ faceI ]];
512
513 // Get span of owner and neighbour
514 vector span = cellSpan ( owner [ faceI ]);
515
516 span = Foam :: max
517 (
518 span ,
519 cellSpan ( neighbour [ faceI ])
520 );
521
522 // Record the nearest triangle to the face centre
523 nearestTri [ nIbCells ] = tss. nearest (Cf[ faceI ], span ). index ();
524
525 nIbCells ++;
526 }
527 else if
528 (
529 intersectedCell [ owner [ faceI ]] == immersedPoly :: DRY
530 && intersectedCell [ neighbour [ faceI ]] == immersedPoly :: WET
531 )
532 {
533 // Direct face cut , neighbour
534
535 // Grab a point and wet cell and make an IB face
536 // Note: reverse face in cut
537 pointField facePoints = f[ faceI ]. reverseFace (). points (p);
538
539 face renumberedFace ( facePoints .size ());
540
541 // Insert points
542 forAll ( facePoints , fpI)
543 {
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544 unmergedPoints . append ( facePoints [fpI ]);
545 renumberedFace [fpI] = nIbPoints ;
546 nIbPoints ++;
547 }
548
549 // Record the face
550 unmergedFaces [ nIbCells ] = renumberedFace ;
551
552 // Collect cut cell index
553 ibCells [ nIbCells ] = neighbour [ faceI ];
554
555 // Record the live centre
556 ibCellCentres [ nIbCells ] = C[ neighbour [ faceI ]];
557
558 // Record the live volume : equal to neighbour volume
559 ibCellVolumes [ nIbCells ] = V[ neighbour [ faceI ]];
560
561 // Get span of neighbour and neighbour
562 vector span = cellSpan ( neighbour [ faceI ]);
563
564 span = Foam :: max
565 (
566 span ,
567 cellSpan ( owner [ faceI ])
568 );
569
570 // Record the nearest triangle to the face centre
571 nearestTri [ nIbCells ] = tss. nearest (Cf[ faceI ], span ). index ();
572
573 nIbCells ++;
574 }
575 }
576
577 // Check coupled boundaries for direct face cuts
578
579 // Assemble local and neighbour cuts for coupled patches only
580 labelListList coupledPatchOwnCut ( bMesh .size ());
581 labelListList coupledPatchNbrCut ( bMesh .size ());
582
583 // Note: this part requires a rewrite using virtual functions
584 // to communicate the cut data from the shadow cell
585 // ( across the coupled interface ) in order to determine
586 // the coupled face status .
587 // Currently , this is enabled only for processor boundaries .
588 // HJ , 28/ Dec /2017
589
590 // Send loop
591 forAll (bMesh , patchI )
592 {
593 if ( bMesh [ patchI ]. coupled ())
594 {
595 if (isA < processorPolyPatch >( bMesh [ patchI ]))
596 {
597 if ( Pstream :: parRun ())
598 {
599 const processorPolyPatch & curProcPatch =
600 refCast < const processorPolyPatch >( bMesh [ patchI ]);
601
602 // Send internal cut
603 coupledPatchOwnCut [ patchI ] = labelList
604 (
605 intersectedCell ,
606 bMesh [ patchI ]. faceCells ()
607 );
608
609 OPstream toNeighbProc
610 (
611 Pstream :: blocking ,
612 curProcPatch . neighbProcNo (),
613 sizeof ( label )* curProcPatch .size ()
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614 );
615
616 toNeighbProc << coupledPatchOwnCut [ patchI ];
617 }
618 }
619 else
620 {
621 // Possible code missing : reconsider Immersed boundary
622 // cutting non - matching coupled patches .
623 // HJ and HN , 20/ Mar /2020
624 // WarningInFunction
625 // << "Non - processor coupled patch detected for "
626 // << " immersed boundary . "
627 // << " Direct face cut may not be detected "
628 // << endl;
629 }
630 }
631 }
632
633 // Receive loop
634 forAll (bMesh , patchI )
635 {
636 if ( bMesh [ patchI ]. coupled ())
637 {
638 if (isA < processorPolyPatch >( bMesh [ patchI ]))
639 {
640 if ( Pstream :: parRun ())
641 {
642 const processorPolyPatch & curProcPatch =
643 refCast < const processorPolyPatch >( bMesh [ patchI ]);
644
645 IPstream fromNeighbProc
646 (
647 Pstream :: blocking ,
648 curProcPatch . neighbProcNo (),
649 sizeof ( label )* curProcPatch .size ()
650 );
651
652 coupledPatchNbrCut [ patchI ] = labelList ( fromNeighbProc );
653 }
654 }
655 }
656 }
657
658 // Analyse the cut
659 forAll (bMesh , patchI )
660 {
661 if (! coupledPatchOwnCut [ patchI ]. empty ())
662 {
663 const labelList & curOwnCut = coupledPatchOwnCut [ patchI ];
664 const labelList & curNbrCut = coupledPatchNbrCut [ patchI ];
665
666 const labelList & fc = bMesh [ patchI ]. faceCells ();
667
668 forAll (curOwnCut , patchFaceI )
669 {
670 if
671 (
672 curOwnCut [ patchFaceI ] == immersedPoly :: WET
673 && curNbrCut [ patchFaceI ] == immersedPoly :: DRY
674 )
675 {
676 // Direct face cut , coupled on live side
677
678 // Get face index . Note the difference between faceI
679 // and patchFaceI
680 const label faceI = bMesh [ patchI ]. start () + patchFaceI ;
681
682 // Grab a point and wet cell and make an IB face
683 pointField facePoints = f[ faceI ]. points (p);

X



A. immersedBoundaryPolyPatch.C

684 face renumberedFace ( facePoints .size ());
685
686 // Insert points
687 forAll ( facePoints , fpI)
688 {
689 unmergedPoints . append ( facePoints [fpI ]);
690 renumberedFace [fpI] = nIbPoints ;
691 nIbPoints ++;
692 }
693
694 // Record the face
695 unmergedFaces [ nIbCells ] = renumberedFace ;
696
697 // Collect cut cell index
698 ibCells [ nIbCells ] = fc[ patchFaceI ];
699
700 // Record the live centre
701 ibCellCentres [ nIbCells ] = C[fc[ patchFaceI ]];
702
703 // Record the live volume : equal to owner volume
704 ibCellVolumes [ nIbCells ] = V[fc[ patchFaceI ]];
705
706 // Get span of owner . Cannot reach neighbour
707 vector span = cellSpan (fc[ patchFaceI ]);
708
709 // Record the nearest triangle to the face centre
710 nearestTri [ nIbCells ] =
711 tss. nearest (Cf[ faceI ], span ). index ();
712
713 nIbCells ++;
714 }
715 }
716 }
717 }
718
719 // Record the number of IB cells for debug
720 totalIbCount [0] = nIbCells ;
721
722 // Reset the cell lists
723 unmergedFaces . setSize ( nIbCells );
724 ibCells . setSize ( nIbCells );
725 ibCellCentres . setSize ( nIbCells );
726 ibCellVolumes . setSize ( nIbCells );
727 nearestTri . setSize ( nIbCells );
728
729 // Check tri addressing
730 if (min( nearestTri ) == -1)
731 {
732 FatalErrorInFunction
733 << " Cannot find nearestTri for all points "
734 << abort ( FatalError );
735 }
736
737 // Build stand - alone patch
738 // Memory management
739 {
740 unmergedPoints . shrink ();
741
742 pointField ibPatchPoints ;
743 labelList pointMap ;
744
745 mergePoints
746 (
747 unmergedPoints ,
748 1e-6, // mergeTol . Review . Do not like the algorithm
749 false , // verbose
750 pointMap ,
751 ibPatchPoints
752 );
753
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754 // Renumber faces after point merge
755 faceList ibPatchFaces ( unmergedFaces .size ());
756
757 forAll ( unmergedFaces , faceI )
758 {
759 // Get old and new face
760 const face& uFace = unmergedFaces [ faceI ];
761 face& rFace = ibPatchFaces [ faceI ];
762 rFace . setSize ( uFace .size ());
763 forAll (uFace , pointI )
764 {
765 rFace [ pointI ] = pointMap [ uFace [ pointI ]];
766 }
767 }
768
769 // Create IB patch from renumbered points and faces
770 ibPatchPtr_ = new standAlonePatch ( ibPatchFaces , ibPatchPoints );
771
772 if (mesh.time (). outputTime ())
773 {
774 Info << " Writing immersed patch as VTK" << endl;
775
776 fileName fvPath (mesh.time (). path ()/"VTK");
777 mkDir ( fvPath );
778
779 fileName surfaceFileName
780 (
781 " immersed " + name () + " _live_ "
782 + Foam :: name( boundaryMesh (). mesh (). time (). timeIndex ())
783 );
784
785 ibPatchPtr_ -> writeVTK ( fvPath / surfaceFileName );
786
787 fileName normalsFileName
788 (
789 " normals " + name () + " _live_ "
790 + Foam :: name( boundaryMesh (). mesh (). time (). timeIndex ())
791 );
792
793 ibPatchPtr_ -> writeVTKNormals ( fvPath / normalsFileName );
794 }
795 }
796
797 // Count and collect dead cells
798
799 // Memory management
800 {
801 label nDeadCells = 0;
802
803 forAll ( intersectedCell , cellI )
804 {
805 if ( intersectedCell [ cellI ] == immersedPoly :: DRY)
806 {
807 nDeadCells ++;
808 }
809 }
810
811 // Allocate storage and collect dead cells
812 deadCellsPtr_ = new labelList ( nDeadCells );
813 labelList & dc = * deadCellsPtr_ ;
814
815 // Reset the counter
816 nDeadCells = 0;
817
818 forAll ( intersectedCell , cellI )
819 {
820 if ( intersectedCell [ cellI ] == immersedPoly :: DRY)
821 {
822 dc[ nDeadCells ] = cellI ;
823 nDeadCells ++;
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824 }
825 }
826
827 // Record the number of dead cells for debug
828 totalIbCount [1] = nDeadCells ;
829 }
830
831 // IB faces : faces intersected by the IB patch
832 // This also corresponds to faceCells next to the IB patch
833 ibFacesPtr_ = new labelList (mesh. nFaces ());
834 labelList & ibFaces = * ibFacesPtr_ ;
835
836 // IB face centres : centre of live part of the intersected face
837 // next to the IB patch
838 ibFaceCentresPtr_ = new vectorField (mesh. nFaces ());
839 vectorField & ibFaceCentres = * ibFaceCentresPtr_ ;
840
841 // IB face areas : surface - normal area of live part of the intersected face
842 // next to the IB patch
843 ibFaceAreasPtr_ = new vectorField (mesh. nFaces ());
844 vectorField & ibFaceAreas = * ibFaceAreasPtr_ ;
845 label nIbFaces = 0;
846
847 // Classify faces
848 labelList intersectedFace (mesh. nFaces (), immersedPoly :: UNKNOWN );
849
850 // Resolve simple face intersections based on the cell intersection data
851 // First , kill all faces touching dead cells , including internal
852 // and boundary faces .
853 // If a face touches a live cell , it is live
854 // The intersection belt will be handled separately by detailed intersection
855
856 // Quick intersection scan: if owner and neighbour are in the same state
857 // the face is in the same state
858
859 // Internal faces
860 forAll (neighbour , faceI )
861 {
862 // Wet on wet
863 if
864 (
865 intersectedCell [ owner [ faceI ]] == immersedPoly :: WET
866 && intersectedCell [ neighbour [ faceI ]] == immersedPoly :: WET
867 )
868 {
869 intersectedFace [ faceI ] = immersedPoly :: WET;
870 }
871
872 // Dry on dry
873 if
874 (
875 intersectedCell [ owner [ faceI ]] == immersedPoly :: DRY
876 && intersectedCell [ neighbour [ faceI ]] == immersedPoly :: DRY
877 )
878 {
879 intersectedFace [ faceI ] = immersedPoly :: DRY;
880 }
881
882 // Wet on cut face must remain wet. Error in cut cell is fixed
883 // by the Marooney Maneouvre . HJ , 5/ Apr /2019
884 if
885 (
886 (
887 intersectedCell [ owner [ faceI ]] == immersedPoly :: WET
888 && intersectedCell [ neighbour [ faceI ]] == immersedPoly :: CUT
889 )
890 || (
891 intersectedCell [ owner [ faceI ]] == immersedPoly :: CUT
892 && intersectedCell [ neighbour [ faceI ]] == immersedPoly :: WET
893 )
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894 )
895 {
896 intersectedFace [ faceI ] = immersedPoly :: WET;
897 }
898
899 // Special check for directly cut faces
900 // Wet -to -dry and dry -to -wet is a direct face cut
901 // Dry -to -cut or cut -to -dry are cutting errors . They will be
902 // corrected later in corrected face areas , based on closed cell
903 // tolerance . HJ , 11/ Dec /2017
904 if
905 (
906 (
907 intersectedCell [ owner [ faceI ]] == immersedPoly :: WET
908 && intersectedCell [ neighbour [ faceI ]] == immersedPoly :: DRY
909 )
910 || (
911 intersectedCell [ owner [ faceI ]] == immersedPoly :: DRY
912 && intersectedCell [ neighbour [ faceI ]] == immersedPoly :: WET
913 )
914 || (
915 intersectedCell [ owner [ faceI ]] == immersedPoly :: DRY
916 && intersectedCell [ neighbour [ faceI ]] == immersedPoly :: CUT
917 )
918 || (
919 intersectedCell [ owner [ faceI ]] == immersedPoly :: CUT
920 && intersectedCell [ neighbour [ faceI ]] == immersedPoly :: DRY
921 )
922 )
923 {
924 // Note:
925 // Wet -to -dry: this face has been declared to be a
926 // cut face and needs to be taken out as live face
927 // Cut -to -dry: this is either an outside edge of cut faces or
928 // a cutting error
929 intersectedFace [ faceI ] = immersedPoly :: DRY;
930 }
931 }
932
933 // Boundary faces
934 forAll (bMesh , patchI )
935 {
936 const label patchStart = bMesh [ patchI ]. start ();
937
938 if ( bMesh [ patchI ]. coupled ())
939 {
940 // Coupled patch : two - sided check
941 const labelList & curOwnCut = coupledPatchOwnCut [ patchI ];
942 const labelList & curNbrCut = coupledPatchNbrCut [ patchI ];
943
944 forAll (curOwnCut , patchFaceI )
945 {
946 // Wet on wet
947 if
948 (
949 curOwnCut [ patchFaceI ] == immersedPoly :: WET
950 && curNbrCut [ patchFaceI ] == immersedPoly :: WET
951 )
952 {
953 intersectedFace [ patchStart + patchFaceI ] =
954 immersedPoly :: WET;
955 }
956
957 // Dry on dry
958 if
959 (
960 curOwnCut [ patchFaceI ] == immersedPoly :: DRY
961 && curNbrCut [ patchFaceI ] == immersedPoly :: DRY
962 )
963 {
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964 intersectedFace [ patchStart + patchFaceI ] =
965 immersedPoly :: DRY;
966 }
967
968 // Wet on cut face must remain wet. Error in cut cell is fixed
969 // by the Marooney Maneouvre . HJ , 5/ Apr /2019
970 if
971 (
972 (
973 curOwnCut [ patchFaceI ] == immersedPoly :: WET
974 && curNbrCut [ patchFaceI ] == immersedPoly :: CUT
975 )
976 || (
977 curOwnCut [ patchFaceI ] == immersedPoly :: CUT
978 && curNbrCut [ patchFaceI ] == immersedPoly :: WET
979 )
980 )
981 {
982 intersectedFace [ patchStart + patchFaceI ] =
983 immersedPoly :: WET;
984 }
985
986 // Special check for directly cut faces
987 // Wet -to -dry and dry -to -wet is a direct face cut
988 // Dry -to -cut or cut -to -dry are cutting errors . They will be
989 // corrected later in corrected face areas , based on closed cell
990 // tolerance . HJ , 11/ Dec /2017
991 if
992 (
993 (
994 curOwnCut [ patchFaceI ] == immersedPoly :: WET
995 && curNbrCut [ patchFaceI ] == immersedPoly :: DRY
996 )
997 || (
998 curOwnCut [ patchFaceI ] == immersedPoly :: DRY
999 && curNbrCut [ patchFaceI ] == immersedPoly :: WET

1000 )
1001 || (
1002 curOwnCut [ patchFaceI ] == immersedPoly :: DRY
1003 && curNbrCut [ patchFaceI ] == immersedPoly :: CUT
1004 )
1005 || (
1006 curOwnCut [ patchFaceI ] == immersedPoly :: CUT
1007 && curNbrCut [ patchFaceI ] == immersedPoly :: DRY
1008 )
1009 )
1010 {
1011 // Note:
1012 // Wet -to -dry: this face has been declared to be a
1013 // cut face and needs to be taken out as live face
1014 // Cut -to -dry: this is either an outside edge of cut faces
1015 // or a cutting error
1016 intersectedFace [ patchStart + patchFaceI ] =
1017 immersedPoly :: DRY;
1018 }
1019 }
1020 }
1021 else
1022 {
1023 // Regular patch : one - sided check
1024 const labelList & fc = bMesh [ patchI ]. faceCells ();
1025
1026 forAll (fc , patchFaceI )
1027 {
1028 if
1029 (
1030 intersectedCell [fc[ patchFaceI ]] == immersedPoly :: WET
1031 )
1032 {
1033 intersectedFace [ patchStart + patchFaceI ] =
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1034 immersedPoly :: WET;
1035 }
1036
1037 if
1038 (
1039 intersectedCell [fc[ patchFaceI ]] == immersedPoly :: DRY
1040 )
1041 {
1042 intersectedFace [ patchStart + patchFaceI ] =
1043 immersedPoly :: DRY;
1044 }
1045 }
1046 }
1047 }
1048
1049 // Detailed face check after initial rejection scan
1050 forAll ( intersectedFace , faceI )
1051 {
1052 if ( intersectedFace [ faceI ] == immersedPoly :: UNKNOWN )
1053 {
1054 // Possibly intersected face. Check existance of intersection
1055 // via points
1056 const labelList & curF = f[ faceI ];
1057
1058 bool foundInside = false ;
1059 bool foundOutside = false ;
1060
1061 forAll (curF , fI)
1062 {
1063 if ( pointsInside [curF[fI ]])
1064 {
1065 // Found a point inside
1066 foundInside = true;
1067 }
1068 else
1069 {
1070 // Found a points outside
1071 foundOutside = true;
1072 }
1073 }
1074
1075 // Check face classification
1076 if ( foundInside && ! foundOutside )
1077 {
1078 // All points inside : cell is wet
1079 intersectedFace [ faceI ] = immersedPoly :: WET;
1080 }
1081 else if (! foundInside && foundOutside )
1082 {
1083 // All points outside : cell is dry
1084 intersectedFace [ faceI ] = immersedPoly :: DRY;
1085 }
1086 else if ( foundInside && foundOutside )
1087 {
1088 // Real intersection . Try to cut the face
1089
1090 // Get search span
1091 vector span = cellSpan ( owner [ faceI ]);
1092
1093 // For internal face , check the neighbour span as well
1094 if (mesh. isInternalFace ( faceI ))
1095 {
1096 span = Foam :: max
1097 (
1098 span ,
1099 cellSpan ( neighbour [ faceI ])
1100 );
1101 }
1102
1103 // Create a cutting object with a local tolerance
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1104 triSurfaceDistance dist
1105 (
1106 tss ,
1107 span ,
1108 internalFlow (),
1109 true // iterate intersection
1110 );
1111
1112 // Calculate the intersection
1113 ImmersedFace < triSurfaceDistance > cutFace
1114 (
1115 faceI ,
1116 mesh ,
1117 dist
1118 );
1119
1120 if ( cutFace . isAllWet ())
1121 {
1122 intersectedFace [ faceI ] = immersedPoly :: WET;
1123 }
1124 else if ( cutFace . isAllDry ())
1125 {
1126 intersectedFace [ faceI ] = immersedPoly :: DRY;
1127 }
1128 else
1129 {
1130 // Real intesection . Check cut. Rejection on thin cut is
1131 // performed by ImmersedFace . HJ , 13/ Mar /2019
1132 const scalar faceFactor =
1133 cutFace . wetAreaMag ()/ mag(S[ faceI ]);
1134
1135 // True intersection . Collect data
1136 intersectedFace [ faceI ] = immersedPoly :: CUT;
1137
1138 // Get intersected face index
1139 ibFaces [ nIbFaces ] = faceI ;
1140
1141 // Get wet centre
1142 ibFaceCentres [ nIbFaces ] = cutFace . wetAreaCentre ();
1143
1144 // Get wet area , preserving original normal direction
1145 ibFaceAreas [ nIbFaces ] = faceFactor *S[ faceI ];
1146
1147 nIbFaces ++;
1148 }
1149 }
1150 }
1151 }
1152
1153 // Record the number of IB faces for debug
1154 totalIbCount [2] = nIbFaces ;
1155
1156 // Reset the sizes of the list
1157 ibFaces . setSize ( nIbFaces );
1158 ibFaceCentres . setSize ( nIbFaces );
1159
1160 // Count and collect dead faces
1161 // Memory management
1162 {
1163 label nDeadFaces = 0;
1164
1165 forAll ( intersectedFace , faceI )
1166 {
1167 if ( intersectedFace [ faceI ] == immersedPoly :: DRY)
1168 {
1169 nDeadFaces ++;
1170 }
1171 }
1172
1173 // Allocate storage and collect dead faces
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1174 deadFacesPtr_ = new labelList ( nDeadFaces );
1175 labelList & df = * deadFacesPtr_ ;
1176
1177 // Reset the counter
1178 nDeadFaces = 0;
1179
1180 forAll ( intersectedFace , faceI )
1181 {
1182 if ( intersectedFace [ faceI ] == immersedPoly :: DRY)
1183 {
1184 df[ nDeadFaces ] = faceI ;
1185 nDeadFaces ++;
1186 }
1187 }
1188
1189 // Record the number of dead faces for debug
1190 totalIbCount [3] = nDeadFaces ;
1191 }
1192
1193 // Reduce is not allowed in parallel load balancing
1194 // HJ , 24/ Oct /2018
1195 if ( debug )
1196 {
1197 // reduce ( totalIbCount , sumOp <List <label > >());
1198
1199 InfoInFunction
1200 << " Finished calcImmersedBoundary "
1201 << endl;
1202
1203 Pout << " Immersed boundary " << name () << " info: "
1204 << " nIbCells : " << totalIbCount [0]
1205 << " nDeadCells : " << totalIbCount [1]
1206 << " nIbFaces : " << totalIbCount [2]
1207 << " nDeadFaces : " << totalIbCount [3]
1208 << endl;
1209 }
1210 }
1211
1212
1213 void Foam :: immersedBoundaryPolyPatch :: calcCorrectedGeometry () const
1214 {
1215 if ( debug )
1216 {
1217 InfoInFunction
1218 << " Calculating corrected geometry "
1219 << endl;
1220 }
1221
1222 // Corrected patch face areas are in a separate storage per patch
1223 // Use it to signal if the function has been called
1224 if ( correctedIbPatchFaceAreasPtr_ )
1225 {
1226 FatalErrorInFunction
1227 << " Corrected geometry already calculated "
1228 << abort ( FatalError );
1229 }
1230
1231 // Get mesh reference
1232 const polyMesh & mesh = boundaryMesh (). mesh ();
1233
1234 // Get mesh geometry from polyMesh . It will be modified
1235 vectorField & C =
1236 const_cast < vectorField &>( boundaryMesh (). mesh (). cellCentres ());
1237
1238 vectorField & Cf =
1239 const_cast < vectorField &>( boundaryMesh (). mesh (). faceCentres ());
1240
1241 scalarField & V =
1242 const_cast < scalarField &>( boundaryMesh (). mesh (). cellVolumes ());
1243
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1244 vectorField & Sf =
1245 const_cast < vectorField &>( boundaryMesh (). mesh (). faceAreas ());
1246
1247
1248 // Initialise IB patch face areas with the areas of the stand - alone patch
1249 // They will be corrected using the Marooney Maneouvre
1250 correctedIbPatchFaceAreasPtr_ = new vectorField ( ibPatch (). areas ());
1251 vectorField & ibSf = * correctedIbPatchFaceAreasPtr_ ;
1252
1253 // Correct for all cut cells
1254
1255 // Get cut cells
1256 const labelList & cutCells = ibCells ();
1257 const vectorField & cutCellCentres = ibCellCentres ();
1258 const scalarField & cutCellVolumes = ibCellVolumes ();
1259
1260 forAll (cutCells , ccI)
1261 {
1262 // Correct the volume and area
1263 C[ cutCells [ccI ]] = cutCellCentres [ccI ];
1264
1265 V[ cutCells [ccI ]] = cutCellVolumes [ccI ];
1266 }
1267
1268 // Deactivate dead cells
1269 const labelList & dc = deadCells ();
1270
1271 forAll (dc , dcI)
1272 {
1273 // Scale dead volume to small
1274 V[dc[dcI ]] *= SMALL ;
1275 }
1276
1277 // Correct for all cut faces
1278
1279 // Get cut faces
1280 const labelList & cutFaces = ibFaces ();
1281 const vectorField & cutFaceCentres = ibFaceCentres ();
1282 const vectorField & cutFaceAreas = ibFaceAreas ();
1283
1284 forAll (cutFaces , cfI)
1285 {
1286 Cf[ cutFaces [cfI ]] = cutFaceCentres [cfI ];
1287
1288 // Preserve the original face normal
1289 Sf[ cutFaces [cfI ]] = cutFaceAreas [cfI ];
1290 }
1291
1292 // Deactivate dead faces
1293 const labelList & df = deadFaces ();
1294
1295 forAll (df , dfI)
1296 {
1297 // Scale dead area to small
1298 Sf[df[dfI ]] *= SMALL ;
1299 }
1300
1301 // In case of cutting errors due to finite tolerance , some cut cells may
1302 // remain opened and have to be closed by force . This will be achieved
1303 // by the Marooney Maneouvre , where the face sum imbalance is compensated
1304 // in the cut face. HJ , 11/ Dec /2017
1305
1306 const labelList & owner = mesh. faceOwner ();
1307
1308 label nMarooneyCells = 0;
1309
1310 // Get valid directions to avoid round -off errors in 2-D cases
1311 const Vector <label > dirs = mesh. geometricD ();
1312 vector validDirs = vector :: zero;
1313
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1314 for ( direction cmpt = 0; cmpt < Vector <label >:: nComponents ; cmpt ++)
1315 {
1316 if (dirs[cmpt] > 0)
1317 {
1318 validDirs [cmpt] = 1;
1319 }
1320 }
1321
1322 forAll (cutCells , cutCellI )
1323 {
1324 const label ccc = cutCells [ cutCellI ];
1325
1326 // Calculate sum Sf and sumMagSf for the cell
1327 const cell& curCell = mesh. cells ()[ ccc ];
1328
1329 vector curSumSf = vector :: zero;
1330 scalar curSumMagSf = 0;
1331
1332 // Collect from regular faces
1333 forAll (curCell , cfI)
1334 {
1335 const vector & curSf = Sf[ curCell [cfI ]];
1336
1337 // Check owner / neighbour
1338 if ( owner [ curCell [cfI ]] == ccc)
1339 {
1340 curSumSf += curSf ;
1341 }
1342 else
1343 {
1344 curSumSf -= curSf ;
1345 }
1346
1347 curSumMagSf += mag( curSf );
1348 }
1349
1350 // Add cut face only into mag. The second part is handled in the
1351 // if - statement
1352 curSumMagSf += mag(ibSf[ cutCellI ]);
1353
1354 // Adjustment is peformed when the openness is greater than a certain
1355 // fraction of surface area. Criterion by IG , 13/ Mar /2019
1356 // Switched to using absolute check from primitiveMeshCheck .
1357 // HJ , 13/ Mar /2019
1358 // if (mag( curSumSf + ibSf[ cutCellI ]) > 1e -6* curSumMagSf )
1359 if (mag( curSumSf + ibSf[ cutCellI ]) > primitiveMesh :: closedThreshold_ )
1360 {
1361 if ( debug )
1362 {
1363 Pout << " Marooney Maneouvre for cell " << ccc
1364 << " error : " << curSumSf + ibSf[ cutCellI ] << " "
1365 << " V: " << cutCellVolumes [ cutCellI ]
1366 << " Sf: " << ibSf[ cutCellI ]
1367 << " corr S: " << curSumSf << endl;
1368 }
1369
1370 nMarooneyCells ++;
1371
1372 // Create IB face to ideally close the cell
1373 ibSf[ cutCellI ] = cmptMultiply (validDirs , -curSumSf );
1374 }
1375 }
1376
1377 if ( debug )
1378 {
1379 if ( nMarooneyCells > 0)
1380 {
1381 InfoInFunction
1382 << " Marooney Maneouvre used for " << nMarooneyCells
1383 << " out of " << cutCells .size ()
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1384 << endl;
1385 }
1386 }
1387
1388 if (min(mag(ibSf )) < SMALL )
1389 {
1390 WarningInFunction
1391 << " Minimum IB face area for patch " << name ()
1392 << ": " << min(mag(ibSf )) << ". Possible cutting error . "
1393 << " Review immersed boundary tolerances ."
1394 << endl;
1395 }
1396
1397 if ( debug )
1398 {
1399 InfoInFunction
1400 << " Finished calculating corrected geometry "
1401 << endl;
1402 }
1403 }
1404
1405
1406 // * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //
1407
1408 void Foam :: immersedBoundaryPolyPatch :: initAddressing ()
1409 {
1410 // Force calculation of mesh directions before comms
1411 // This is needed in immersed boundary calculation and should not
1412 // interfere with other comms
1413 // HJ , 17/ Sep /2021
1414 boundaryMesh (). mesh (). geometricD ();
1415
1416 calcImmersedBoundary ();
1417 }
1418
1419
1420 void Foam :: immersedBoundaryPolyPatch :: initGeometry ()
1421 {
1422 calcCorrectedGeometry ();
1423 }
1424
1425
1426 void Foam :: immersedBoundaryPolyPatch :: movePoints ( const pointField & p)
1427 {
1428 if ( debug )
1429 {
1430 InfoInFunction
1431 << " Moving mesh: immersedBoundary update "
1432 << endl;
1433 }
1434
1435 // Handle motion of the mesh for new immersed boundary position
1436 if ( ibUpdateTimeIndex_ < boundaryMesh (). mesh (). time (). timeIndex ())
1437 {
1438 // New motion in the current time step. Clear
1439 ibUpdateTimeIndex_ = boundaryMesh (). mesh (). time (). timeIndex ();
1440
1441 clearOut ();
1442 }
1443
1444 polyPatch :: movePoints (p);
1445 }
1446
1447
1448 // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
1449
1450 Foam :: immersedBoundaryPolyPatch :: immersedBoundaryPolyPatch
1451 (
1452 const word& name ,
1453 const label size ,
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1454 const label start ,
1455 const label index ,
1456 const polyBoundaryMesh & bm
1457 )
1458 :
1459 polyPatch (name , size , start , index , bm),
1460 ibMesh_
1461 (
1462 IOobject
1463 (
1464 name + ".ftr",
1465 bm.mesh (). time (). constant (), // instance
1466 " triSurface ", // local
1467 bm.mesh (). parent (), // registry
1468 IOobject :: READ_IF_PRESENT ,
1469 IOobject :: NO_WRITE
1470 )
1471 ),
1472 internalFlow_ ( false ),
1473 isWall_ (true),
1474 movingIb_ ( false ),
1475 ibUpdateTimeIndex_ (-1),
1476 triSurfSearchPtr_ ( nullptr ),
1477 ibPatchPtr_ ( nullptr ),
1478 ibCellsPtr_ ( nullptr ),
1479 ibCellCentresPtr_ ( nullptr ),
1480 ibCellVolumesPtr_ ( nullptr ),
1481 ibFacesPtr_ ( nullptr ),
1482 ibFaceCentresPtr_ ( nullptr ),
1483 ibFaceAreasPtr_ ( nullptr ),
1484 nearestTriPtr_ ( nullptr ),
1485 deadCellsPtr_ ( nullptr ),
1486 deadFacesPtr_ ( nullptr ),
1487 correctedIbPatchFaceAreasPtr_ ( nullptr ),
1488 oldIbPointsPtr_ ( nullptr )
1489 {}
1490
1491
1492 Foam :: immersedBoundaryPolyPatch :: immersedBoundaryPolyPatch
1493 (
1494 const word& name ,
1495 const dictionary & dict ,
1496 const label index ,
1497 const polyBoundaryMesh & bm
1498 )
1499 :
1500 polyPatch (name , dict , index , bm),
1501 ibMesh_
1502 (
1503 IOobject
1504 (
1505 name + ".ftr",
1506 bm.mesh (). time (). constant (), // instance
1507 " triSurface ", // local
1508 bm.mesh (). parent (), // read from parent registry
1509 IOobject :: MUST_READ ,
1510 IOobject :: NO_WRITE
1511 )
1512 ),
1513 internalFlow_ (dict. lookup (" internalFlow ")),
1514 isWall_ (dict. lookup (" isWall ")),
1515 movingIb_ ( false ),
1516 ibUpdateTimeIndex_ (-1),
1517 triSurfSearchPtr_ ( nullptr ),
1518 ibPatchPtr_ ( nullptr ),
1519 ibCellsPtr_ ( nullptr ),
1520 ibCellCentresPtr_ ( nullptr ),
1521 ibCellVolumesPtr_ ( nullptr ),
1522 ibFacesPtr_ ( nullptr ),
1523 ibFaceCentresPtr_ ( nullptr ),
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1524 ibFaceAreasPtr_ ( nullptr ),
1525 nearestTriPtr_ ( nullptr ),
1526 deadCellsPtr_ ( nullptr ),
1527 deadFacesPtr_ ( nullptr ),
1528 correctedIbPatchFaceAreasPtr_ ( nullptr ),
1529 oldIbPointsPtr_ ( nullptr )
1530 {
1531 if (size () > 0)
1532 {
1533 FatalIOErrorInFunction (dict)
1534 << " Faces detected in the immersedBoundaryPolyPatch . "
1535 << "This is not allowed : please make sure that the patch size "
1536 << " equals zero."
1537 << abort ( FatalIOError );
1538 }
1539 }
1540
1541
1542 Foam :: immersedBoundaryPolyPatch :: immersedBoundaryPolyPatch
1543 (
1544 const immersedBoundaryPolyPatch & pp ,
1545 const polyBoundaryMesh & bm ,
1546 const label index ,
1547 const label newSize ,
1548 const label newStart
1549 )
1550 :
1551 polyPatch (pp , bm , index , newSize , newStart ),
1552 ibMesh_
1553 (
1554 IOobject
1555 (
1556 pp.name () + ".ftr",
1557 bm.mesh (). time (). constant (), // instance
1558 " triSurface ", // local
1559 bm.mesh (). parent (), // parent registry
1560 IOobject :: NO_READ ,
1561 IOobject :: NO_WRITE
1562 ),
1563 pp. ibMesh () // Take ibMesh from pp
1564 ),
1565 internalFlow_ (pp. internalFlow_ ),
1566 isWall_ (pp. isWall_ ),
1567 movingIb_ ( false ),
1568 ibUpdateTimeIndex_ (-1),
1569 triSurfSearchPtr_ ( nullptr ),
1570 ibPatchPtr_ ( nullptr ),
1571 ibCellsPtr_ ( nullptr ),
1572 ibCellCentresPtr_ ( nullptr ),
1573 ibCellVolumesPtr_ ( nullptr ),
1574 ibFacesPtr_ ( nullptr ),
1575 ibFaceCentresPtr_ ( nullptr ),
1576 ibFaceAreasPtr_ ( nullptr ),
1577 nearestTriPtr_ ( nullptr ),
1578 deadCellsPtr_ ( nullptr ),
1579 deadFacesPtr_ ( nullptr ),
1580 correctedIbPatchFaceAreasPtr_ ( nullptr ),
1581 oldIbPointsPtr_ ( nullptr )
1582 {}
1583
1584
1585 Foam :: immersedBoundaryPolyPatch :: immersedBoundaryPolyPatch
1586 (
1587 const immersedBoundaryPolyPatch & pp
1588 )
1589 :
1590 polyPatch (pp),
1591 ibMesh_
1592 (
1593 IOobject
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1594 (
1595 pp.name () + ".ftr",
1596 pp. boundaryMesh (). mesh (). time (). constant (), // instance
1597 " triSurface ", // local
1598 pp. boundaryMesh (). mesh (). parent (), // parent registry
1599 IOobject :: NO_READ ,
1600 IOobject :: NO_WRITE
1601 ),
1602 pp. ibMesh () // Take ibMesh from pp
1603 ),
1604 internalFlow_ (pp. internalFlow_ ),
1605 isWall_ (pp. isWall_ ),
1606 movingIb_ ( false ),
1607 ibUpdateTimeIndex_ (-1),
1608 triSurfSearchPtr_ ( nullptr ),
1609 ibPatchPtr_ ( nullptr ),
1610 ibCellsPtr_ ( nullptr ),
1611 ibCellCentresPtr_ ( nullptr ),
1612 ibCellVolumesPtr_ ( nullptr ),
1613 ibFacesPtr_ ( nullptr ),
1614 ibFaceCentresPtr_ ( nullptr ),
1615 ibFaceAreasPtr_ ( nullptr ),
1616 nearestTriPtr_ ( nullptr ),
1617 deadCellsPtr_ ( nullptr ),
1618 deadFacesPtr_ ( nullptr ),
1619 correctedIbPatchFaceAreasPtr_ ( nullptr ),
1620 oldIbPointsPtr_ ( nullptr )
1621 {}
1622
1623
1624 Foam :: immersedBoundaryPolyPatch :: immersedBoundaryPolyPatch
1625 (
1626 const immersedBoundaryPolyPatch & pp ,
1627 const polyBoundaryMesh & bm
1628 )
1629 :
1630 polyPatch (pp , bm),
1631 ibMesh_
1632 (
1633 IOobject
1634 (
1635 pp.name () + ".ftr",
1636 bm.mesh (). time (). constant (), // instance
1637 " triSurface ", // local
1638 bm.mesh (). parent (), // parent registry
1639 IOobject :: NO_READ ,
1640 IOobject :: NO_WRITE
1641 ),
1642 pp. ibMesh () // Take ibMesh from pp
1643 ),
1644 internalFlow_ (pp. internalFlow_ ),
1645 isWall_ (pp. isWall_ ),
1646 movingIb_ ( false ),
1647 ibUpdateTimeIndex_ (-1),
1648 triSurfSearchPtr_ ( nullptr ),
1649 ibPatchPtr_ ( nullptr ),
1650 ibCellsPtr_ ( nullptr ),
1651 ibCellCentresPtr_ ( nullptr ),
1652 ibCellVolumesPtr_ ( nullptr ),
1653 ibFacesPtr_ ( nullptr ),
1654 ibFaceCentresPtr_ ( nullptr ),
1655 ibFaceAreasPtr_ ( nullptr ),
1656 nearestTriPtr_ ( nullptr ),
1657 deadCellsPtr_ ( nullptr ),
1658 deadFacesPtr_ ( nullptr ),
1659 correctedIbPatchFaceAreasPtr_ ( nullptr ),
1660 oldIbPointsPtr_ ( nullptr )
1661 {}
1662
1663
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1664 // * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * * //
1665
1666 Foam :: immersedBoundaryPolyPatch ::~ immersedBoundaryPolyPatch ()
1667 {
1668 clearOut ();
1669
1670 deleteDemandDrivenData ( oldIbPointsPtr_ );
1671 }
1672
1673
1674 // * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
1675
1676 const Foam :: triSurfaceSearch &
1677 Foam :: immersedBoundaryPolyPatch :: triSurfSearch () const
1678 {
1679 if (! triSurfSearchPtr_ )
1680 {
1681 calcTriSurfSearch ();
1682 }
1683
1684 return * triSurfSearchPtr_ ;
1685 }
1686
1687 const Foam :: standAlonePatch &
1688 Foam :: immersedBoundaryPolyPatch :: ibPatch () const
1689 {
1690 if (! ibPatchPtr_ )
1691 {
1692 calcImmersedBoundary ();
1693 }
1694
1695 return * ibPatchPtr_ ;
1696 }
1697
1698
1699 const Foam :: labelList &
1700 Foam :: immersedBoundaryPolyPatch :: ibCells () const
1701 {
1702 if (! ibCellsPtr_ )
1703 {
1704 calcImmersedBoundary ();
1705 }
1706
1707 return * ibCellsPtr_ ;
1708 }
1709
1710
1711 const Foam :: vectorField &
1712 Foam :: immersedBoundaryPolyPatch :: ibCellCentres () const
1713 {
1714 if (! ibCellCentresPtr_ )
1715 {
1716 calcImmersedBoundary ();
1717 }
1718
1719 return * ibCellCentresPtr_ ;
1720 }
1721
1722
1723 const Foam :: scalarField &
1724 Foam :: immersedBoundaryPolyPatch :: ibCellVolumes () const
1725 {
1726 if (! ibCellVolumesPtr_ )
1727 {
1728 calcImmersedBoundary ();
1729 }
1730
1731 return * ibCellVolumesPtr_ ;
1732 }
1733
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1734
1735 const Foam :: labelList &
1736 Foam :: immersedBoundaryPolyPatch :: ibFaces () const
1737 {
1738 if (! ibFacesPtr_ )
1739 {
1740 calcImmersedBoundary ();
1741 }
1742
1743 return * ibFacesPtr_ ;
1744 }
1745
1746
1747 const Foam :: vectorField &
1748 Foam :: immersedBoundaryPolyPatch :: ibFaceCentres () const
1749 {
1750 if (! ibFaceCentresPtr_ )
1751 {
1752 calcImmersedBoundary ();
1753 }
1754
1755 return * ibFaceCentresPtr_ ;
1756 }
1757
1758
1759 const Foam :: vectorField &
1760 Foam :: immersedBoundaryPolyPatch :: ibFaceAreas () const
1761 {
1762 if (! ibFaceAreasPtr_ )
1763 {
1764 calcImmersedBoundary ();
1765 }
1766
1767 return * ibFaceAreasPtr_ ;
1768 }
1769
1770
1771 const Foam :: labelList &
1772 Foam :: immersedBoundaryPolyPatch :: nearestTri () const
1773 {
1774 if (! nearestTriPtr_ )
1775 {
1776 calcImmersedBoundary ();
1777 }
1778
1779 return * nearestTriPtr_ ;
1780 }
1781
1782
1783 const Foam :: labelList &
1784 Foam :: immersedBoundaryPolyPatch :: deadCells () const
1785 {
1786 if (! deadCellsPtr_ )
1787 {
1788 calcImmersedBoundary ();
1789 }
1790
1791 return * deadCellsPtr_ ;
1792 }
1793
1794
1795 const Foam :: labelList &
1796 Foam :: immersedBoundaryPolyPatch :: deadFaces () const
1797 {
1798 if (! deadFacesPtr_ )
1799 {
1800 calcImmersedBoundary ();
1801 }
1802
1803 return * deadFacesPtr_ ;
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1804 }
1805
1806
1807 const Foam :: vectorField &
1808 Foam :: immersedBoundaryPolyPatch :: correctedIbPatchFaceAreas () const
1809 {
1810 if (! correctedIbPatchFaceAreasPtr_ )
1811 {
1812 calcCorrectedGeometry ();
1813 }
1814
1815 return * correctedIbPatchFaceAreasPtr_ ;
1816 }
1817
1818
1819 const Foam :: pointField &
1820 Foam :: immersedBoundaryPolyPatch :: oldIbPoints () const
1821 {
1822 if (! oldIbPointsPtr_ )
1823 {
1824 // The mesh has never moved : old points are equal to current points
1825 ibUpdateTimeIndex_ = boundaryMesh (). mesh (). time (). timeIndex ();
1826
1827 oldIbPointsPtr_ = new pointField ( ibMesh_ . points ());
1828 }
1829
1830 return * oldIbPointsPtr_ ;
1831 }
1832
1833 Foam ::tmp <Foam :: vectorField >
1834 Foam :: immersedBoundaryPolyPatch :: triMotionDistance () const
1835 {
1836 // Calculate the distance between new and old coordinates on
1837 // the ibPatch face centres
1838
1839 // Calculate the motion on the triangular mesh face centres
1840 return ibMesh_ . coordinates ()
1841 - PrimitivePatch < labelledTri , List , const pointField &>
1842 (
1843 ibMesh_ ,
1844 oldIbPoints ()
1845 ). faceCentres ();
1846 }
1847
1848
1849 Foam ::tmp <Foam :: vectorField >
1850 Foam :: immersedBoundaryPolyPatch :: motionDistance () const
1851 {
1852 // Interpolate the values from tri surface using nearest triangle
1853 return tmp < vectorField >
1854 (
1855 new vectorField ( triMotionDistance (), nearestTri ())
1856 );
1857 }
1858
1859
1860 void Foam :: immersedBoundaryPolyPatch :: moveTriSurfacePoints
1861 (
1862 const pointField & p
1863 )
1864 {
1865 // Record the motion of the patch
1866 movingIb_ = true;
1867
1868 // Move points of the triSurface
1869 const pointField & oldPoints = ibMesh_ . points ();
1870
1871 if ( oldPoints .size () != p.size ())
1872 {
1873 FatalErrorInFunction
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1874 << " Incorrect size of motion points for patch " << name ()
1875 << ". oldPoints = "
1876 << oldPoints .size () << " p = " << p.size ()
1877 << abort ( FatalError );
1878 }
1879
1880 if ( ibUpdateTimeIndex_ < boundaryMesh (). mesh (). time (). timeIndex ())
1881 {
1882 // New motion in the current time step. Store old points
1883 ibUpdateTimeIndex_ = boundaryMesh (). mesh (). time (). timeIndex ();
1884
1885 deleteDemandDrivenData ( oldIbPointsPtr_ );
1886
1887 Info << " Storing old points for time index " << ibUpdateTimeIndex_
1888 << endl;
1889 oldIbPointsPtr_ = new pointField ( oldPoints );
1890 }
1891
1892 Info << " Moving immersed boundary points for patch " << name ()
1893 << endl;
1894
1895 ibMesh_ . movePoints (p);
1896
1897 if ( boundaryMesh (). mesh (). time (). outputTime ())
1898 {
1899 fileName path( boundaryMesh (). mesh (). time (). path ()/"VTK");
1900
1901 mkDir (path );
1902 ibMesh_ . triSurface :: write
1903 (
1904 path/
1905 word
1906 (
1907 name () + " _tri_ "
1908 + Foam :: name( boundaryMesh (). mesh (). time (). timeIndex ())
1909 + ".stl"
1910 )
1911 );
1912 }
1913
1914 // Note: the IB patch is now in the new position , but the mesh has not
1915 // been updated yet. movePoints () needs to be executed to update the
1916 // fv mesh data
1917 }
1918
1919
1920 void Foam :: immersedBoundaryPolyPatch :: clearGeom ()
1921 {
1922 clearOut ();
1923 }
1924
1925
1926 void Foam :: immersedBoundaryPolyPatch :: clearAddressing ()
1927 {
1928 clearOut ();
1929 }
1930
1931
1932 void Foam :: immersedBoundaryPolyPatch :: clearOut () const
1933 {
1934 if ( debug )
1935 {
1936 InfoInFunction
1937 << " Clear immersed boundary for patch "
1938 << name () << " for mesh "
1939 << boundaryMesh (). mesh (). time (). path ()
1940 << endl;
1941 }
1942
1943 deleteDemandDrivenData ( triSurfSearchPtr_ );
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1944
1945 deleteDemandDrivenData ( ibPatchPtr_ );
1946 deleteDemandDrivenData ( ibCellsPtr_ );
1947 deleteDemandDrivenData ( ibCellCentresPtr_ );
1948 deleteDemandDrivenData ( ibCellVolumesPtr_ );
1949 deleteDemandDrivenData ( ibFacesPtr_ );
1950 deleteDemandDrivenData ( ibFaceCentresPtr_ );
1951 deleteDemandDrivenData ( ibFaceAreasPtr_ );
1952 deleteDemandDrivenData ( nearestTriPtr_ );
1953 deleteDemandDrivenData ( deadCellsPtr_ );
1954 deleteDemandDrivenData ( deadFacesPtr_ );
1955
1956 deleteDemandDrivenData ( correctedIbPatchFaceAreasPtr_ );
1957
1958 // Warning . This function should also clear the geometry in polyMesh
1959 // to avoid double cutting of polyMesh geometry data.
1960 // This is protected by the presence of correctedIbPatchFaceAreasPtr_
1961 // pointer , but may possibly go wrong .
1962 // HJ , 11/ May /2022
1963 // boundaryMesh (). mesh (). clearOut ();
1964
1965 // Cannot delete old motion points . HJ , 10/ Dec /2017
1966 }
1967
1968
1969 void Foam :: immersedBoundaryPolyPatch :: write ( Ostream & os) const
1970 {
1971 polyPatch :: write (os );
1972 os. writeKeyword (" internalFlow ") << internalFlow_
1973 << token :: END_STATEMENT << nl;
1974 os. writeKeyword (" isWall ") << isWall_
1975 << token :: END_STATEMENT << nl;
1976 }
1977
1978
1979 // ************************************************************************* //
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B
immersedBoundaryFvPatch.C

Listing B.1: immersedBoundaryFvPatch.C
1 /* ---------------------------------------------------------------------------*\
2 ========= |
3 \\ / F ield | foam - extend : Open Source CFD
4 \\ / O peration | Version : 4.1
5 \\ / A nd | Web: http :// www.foam - extend .org
6 \\/ M anipulation | For copyright notice see file Copyright
7 -------------------------------------------------------------------------------
8 License
9 This file is part of foam - extend .

10
11 foam - extend is free software : you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by the
13 Free Software Foundation , either version 3 of the License , or (at your
14 option ) any later version .
15
16 foam - extend is distributed in the hope that it will be useful , but
17 WITHOUT ANY WARRANTY ; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the GNU
19 General Public License for more details .
20
21 You should have received a copy of the GNU General Public License
22 along with foam - extend . If not , see <http :// www.gnu.org/ licenses />.
23
24 \*---------------------------------------------------------------------------*/
25
26 # include " fvMesh .H"
27 # include " volFields .H"
28 # include " surfaceFields .H"
29 # include " slicedVolFields .H"
30 # include " slicedSurfaceFields .H"
31 # include " immersedBoundaryFvPatch .H"
32 # include " emptyFvPatch .H"
33 # include " addToRunTimeSelectionTable .H"
34
35 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
36
37 namespace Foam
38 {
39 defineTypeNameAndDebug ( immersedBoundaryFvPatch , 1);
40
41 addToRunTimeSelectionTable (fvPatch , immersedBoundaryFvPatch , polyPatch );
42 }
43
44 // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
45
46 const Foam :: debug :: tolerancesSwitch
47 Foam :: immersedBoundaryFvPatch :: nonOrthogonalFactor_
48 (
49 " immersedBoundaryNonOrthogonalFactor ",
50 0.1
51 );
52
53

XXXI



B. immersedBoundaryFvPatch.C

54 // * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //
55
56 void Foam :: immersedBoundaryFvPatch :: makeCf ( slicedSurfaceVectorField & Cf) const
57 {
58 // Insert the patch data for the immersed boundary
59 // Note: use the face centres from the stand - alone patch within the IB
60 // HJ , 30/ Nov /2017
61 // Inserting only local data
62 Cf. boundaryField ()[ index ()]. UList :: operator =
63 (
64 ibPolyPatch (). ibPatch (). faceCentres ()
65 );
66 }
67
68
69 void Foam :: immersedBoundaryFvPatch :: makeSf ( slicedSurfaceVectorField & Sf) const
70 {
71 // Insert the patch data for the immersed boundary
72 // Note: use the corrected face areas from immersed boundary instead of
73 // the stand - alone patch areas within the IB
74 // HJ , 30/ Nov /2017
75 // Inserting only local data
76 Sf. boundaryField ()[ index ()]. UList :: operator =
77 (
78 ibPolyPatch (). correctedIbPatchFaceAreas ()
79 );
80 }
81
82
83 void Foam :: immersedBoundaryFvPatch :: makeC ( slicedVolVectorField & C) const
84 {
85 // Insert the patch data for the immersed boundary
86 // Note: use the face centres from the stand - alone patch within the IB
87 // HJ , 30/ Nov /2017
88 // Inserting only local data
89 C. boundaryField ()[ index ()]. UList :: operator =
90 (
91 ibPolyPatch (). ibPatch (). faceCentres ()
92 );
93 }
94
95
96 void Foam :: immersedBoundaryFvPatch :: makeV ( scalarField & V) const
97 {}
98
99

100 void Foam :: immersedBoundaryFvPatch :: updatePhi
101 (
102 DimensionedField <scalar , volMesh >& V,
103 DimensionedField <scalar , volMesh >& V0 ,
104 surfaceScalarField & phi
105 ) const
106 {
107 // Correct face fluxes for cut area and insert the immersed patch fluxes
108
109 const fvMesh & mesh = boundaryMesh (). mesh ();
110
111 const polyBoundaryMesh & bm = boundaryMesh (). mesh (). boundaryMesh ();
112
113 scalar deltaT = mesh.time (). deltaT (). value ();
114 scalar rDeltaT = 1.0/ deltaT ;
115
116
117 // Scaling of internal mesh flux field should be done only for the current
118 // ib patch to avoid scaling multiple times in case of multiple Ib patches
119 // present . (IG 3/ Dec /2018)
120
121 // Scale internalField
122 scalarField & phiIn = phi. internalField ();
123
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124 const labelList & deadFaces = ibPolyPatch_ . deadFaces ();
125 forAll (deadFaces , dfI)
126 {
127 const label faceI = deadFaces [dfI ];
128 if (mesh. isInternalFace ( faceI ))
129 {
130 phiIn [ faceI ] = scalar (0);
131 }
132 else
133 {
134 // Boundary face
135 const label patchID = bm. whichPatch ( faceI );
136
137 if (!isA < emptyFvPatch >( boundaryMesh ()[ patchID ]))
138 {
139 const label faceID = bm[ patchID ]. whichFace ( faceI );
140
141 phi. boundaryField ()[ patchID ][ faceID ] = scalar (0);
142 }
143 }
144 }
145
146 // Multiply the raw mesh motion flux with the masking function
147
148 const pointField & points = mesh. points ();
149 const faceList & faces = mesh. faces ();
150
151 const vectorField & faceAreas = mesh. faceAreas ();
152
153 const labelList & cutFaces = ibPolyPatch_ . ibFaces ();
154 forAll (cutFaces , cfI)
155 {
156 const label faceI = cutFaces [cfI ];
157
158 const scalar ibAreaRatio =
159 mag( faceAreas [ faceI ])/ faces [ faceI ]. mag( points );
160
161 if (mesh. isInternalFace ( faceI ))
162 {
163 // Multiply by masking function
164 phiIn [ faceI ] *= ibAreaRatio ;
165 }
166 else
167 {
168 // Boundary face
169 const label patchID = bm. whichPatch ( faceI );
170
171 if (!isA < emptyFvPatch >( boundaryMesh ()[ patchID ]))
172 {
173 const label faceID = bm[ patchID ]. whichFace ( faceI );
174
175 phi. boundaryField ()[ patchID ][ faceID ] *= ibAreaRatio ;
176 }
177 }
178 }
179
180 // Immersed boundary patch
181 // Calculate the mesh motion flux from the old and new coordinate of
182 // triangular face centres and the time step dotted with the new face area
183 phi. boundaryField ()[ index ()] =
184 (
185 ibPolyPatch_ . motionDistance ()
186 & ibPolyPatch_ . correctedIbPatchFaceAreas ()
187 )* rDeltaT ;
188
189 // Check and adjust the immersed boundary space conservation law
190 // The mesh motion fluxes come from the actual mesh motion or the motion
191 // of the immersed boundary
192 // The new cell volumes come from the current mesh configuration
193 // The space conservation law will be satisfied by adjusting either
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194 // the old or the new cell volume . HJ , 15/ Dec /2017
195
196 // First sum up all the fluxes
197 scalarField divPhi (mesh. nCells (), 0);
198
199 const unallocLabelList & owner = mesh. owner ();
200 const unallocLabelList & neighbour = mesh. neighbour ();
201
202 forAll (owner , faceI )
203 {
204 divPhi [ owner [ faceI ]] += phiIn [ faceI ];
205 divPhi [ neighbour [ faceI ]] -= phiIn [ faceI ];
206 }
207
208 // Add the mesh motion fluxes from all patches including immersed boundary
209 forAll (mesh. boundary (), patchI )
210 {
211 const unallocLabelList & pFaceCells =
212 mesh. boundary ()[ patchI ]. faceCells ();
213
214 const scalarField & pssf = phi. boundaryField ()[ patchI ];
215
216 // Check for size since uninitialised ib patches can have zero size at
217 // this point (IG 7/ Nov /2018)
218 if (pssf.size () > 0)
219 {
220 forAll ( pFaceCells , faceI )
221 {
222 divPhi [ pFaceCells [ faceI ]] += pssf[ faceI ];
223 }
224 }
225 }
226
227 // Use corrected cell volume
228 scalarField & newVols = V. field ();
229 scalarField & oldVols = V0. field ();
230
231 // Multiply by the time -step size and add new volume
232 scalarField magDivPhi = mag (( newVols - oldVols )* rDeltaT - divPhi );
233
234 // Note:
235 // The immersed boundary is now in the new position . Therefore , some
236 // cells that were cut are no longer in the contact with the IB , meaning
237 // that ALL cells need to be checked and corrected
238 // HJ , 22/ Dec /2017
239 forAll (magDivPhi , cellI )
240 {
241 // if ( magDivPhi [ cellI ] > SMALL )
242 if ( magDivPhi [ cellI ] > 1e -40)
243 {
244 // Attempt to correct via old volume
245 scalar corrOldVol = newVols [ cellI ] - divPhi [ cellI ]* deltaT ;
246
247 // Pout << "Flux maneouvre for cell " << cellI << ": "
248 // << " error : " << magDivPhi [ cellI ]
249 // << " V: " << newVols [ cellI ]
250 // << " V0: " << oldVols [ cellI ]
251 // << " divPhi : " << divPhi [ cellI ];
252
253 if ( corrOldVol < SMALL )
254 {
255 // Update new volume because old volume cannot carry
256 // the correction
257 newVols [ cellI ] = oldVols [ cellI ] + divPhi [ cellI ]* deltaT ;
258 }
259 else
260 {
261 oldVols [ cellI ] = corrOldVol ;
262 }
263
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264 // scalar corrDivMeshPhi =
265 // mag (( newVols [ cellI ] - oldVols [ cellI ]) - divPhi [ cellI ]* deltaT );
266 // Pout << " Corrected : " << corrDivMeshPhi << endl;
267 }
268 }
269 }
270
271
272 void Foam :: immersedBoundaryFvPatch :: makeDeltaCoeffs
273 (
274 fvsPatchScalarField & dc
275 ) const
276 {
277 const vectorField d = delta ();
278
279 dc = 1.0/ max (( nf () & d), 0.05* mag(d));
280 }
281
282
283 void Foam :: immersedBoundaryFvPatch :: makeCorrVecs ( fvsPatchVectorField & cv) const
284 {
285 // Set patch non - orthogonality correction to zero on the patch
286 cv = vector :: zero;
287
288 // Kill correction vectors in dead cells
289 // Potential problem : cannot kill correction vectors on coupled boundaries
290 // because the are set later . For the moment , only the internal
291 // correction vectors are killed .
292 // HJ , 3/ May /2022
293
294 vectorField & cvIn = const_cast < vectorField &>(cv. internalField ());
295
296 // Get dead faces
297 const labelList & deadFaces = ibPolyPatch_ . deadFaces ();
298
299 const fvMesh & mesh = boundaryMesh (). mesh ();
300
301 forAll (deadFaces , dfI)
302 {
303 if (mesh. isInternalFace ( deadFaces [dfI ]))
304 {
305 cvIn[ deadFaces [dfI ]] = vector :: zero;
306 }
307 }
308 }
309
310
311 // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
312
313 Foam :: immersedBoundaryFvPatch :: immersedBoundaryFvPatch
314 (
315 const polyPatch & patch ,
316 const fvBoundaryMesh & bm
317 )
318 :
319 fvPatch (patch , bm),
320 ibPolyPatch_ (refCast < const immersedBoundaryPolyPatch >( patch )),
321 mesh_ (bm.mesh ())
322 {}
323
324
325 // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
326
327 Foam :: label Foam :: immersedBoundaryFvPatch :: size () const
328 {
329 // Immersed boundary patch size equals to the number of intersected cells
330 // HJ , 28/ Nov /2017
331
332 // Note: asking for patch size triggers the cutting which involves
333 // parallel communication . This should be avoided under read/write , ie
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334 // when the ibPolyPatch_ is not initialised .
335 // Initialisation happens when the fvMesh is initialised , which should be
336 // sufficient
337 // HJ , 12/ Dec /2018
338 // if (! ibPolyPatch_ . active ())
339 // {
340 // return 0;
341 // }
342
343 return ibPolyPatch_ . ibCells (). size ();
344 }
345
346
347 const Foam :: unallocLabelList &
348 Foam :: immersedBoundaryFvPatch :: faceCells () const
349 {
350 return ibPolyPatch_ . ibCells ();
351 }
352
353
354 Foam ::tmp <Foam :: vectorField > Foam :: immersedBoundaryFvPatch :: nf () const
355 {
356 // The algorithm has been changed because basic IB patch information
357 // (nf and delta ) is used in assembly of derived information
358 // (eg. deltaCoeffs ) and circular dependency needs to be avoided .
359 // nf and delta vectors shall be calculated directly from the intersected
360 // patch . HJ , 21/ Mar /2019
361
362 return ibPolyPatch_ . ibPatch (). faceNormals ();
363 }
364
365
366 Foam ::tmp <Foam :: vectorField > Foam :: immersedBoundaryFvPatch :: delta () const
367 {
368 // Not strictly needed : this is for debug only. HJ , 5/ Apr /2019
369 return ibPolyPatch_ . ibPatch (). faceCentres () - Cn ();
370 }
371
372
373 // ************************************************************************* //
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Listing C.1: ImmersedCell.C
1 /* ---------------------------------------------------------------------------*\
2 ========= |
3 \\ / F ield | foam - extend : Open Source CFD
4 \\ / O peration | Version : 4.1
5 \\ / A nd | Web: http :// www.foam - extend .org
6 \\/ M anipulation | For copyright notice see file Copyright
7 -------------------------------------------------------------------------------
8 License
9 This file is part of foam - extend .

10
11 foam - extend is free software : you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by the
13 Free Software Foundation , either version 3 of the License , or (at your
14 option ) any later version .
15
16 foam - extend is distributed in the hope that it will be useful , but
17 WITHOUT ANY WARRANTY ; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the GNU
19 General Public License for more details .
20
21 You should have received a copy of the GNU General Public License
22 along with foam - extend . If not , see <http :// www.gnu.org/ licenses />.
23
24 \*---------------------------------------------------------------------------*/
25
26 # include " ImmersedCell .H"
27 # include " plane .H"
28 # include " transform .H"
29 # include " SortableList .H"
30 # include " tetPointRef .H"
31
32 // * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
33
34 template < class Distance >
35 void Foam :: ImmersedCell <Distance >:: getBase
36 (
37 const vector & n,
38 vector & e0 ,
39 vector & e1
40 ) const
41 {
42 // Copy from class : geomCellLooper
43
44 // Guess for vector normal to n.
45 vector base (1, 0, 0);
46
47 scalar nComp = n & base;
48
49 if (mag( nComp ) > 0.8)
50 {
51 // Was bad guess . Try with different vector .
52
53 base.x() = 0;
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54 base.y() = 1;
55
56 nComp = n & base;
57
58 if (mag( nComp ) > 0.8)
59 {
60 base.y() = 0;
61 base.z() = 1;
62
63 nComp = n & base;
64 }
65 }
66
67 // Use component normal to n as base vector .
68 e0 = base - nComp *n;
69
70 e0 /= mag(e0) + VSMALL ;
71
72 e1 = n ^ e0;
73 }
74
75
76 template < class Distance >
77 void Foam :: ImmersedCell <Distance >:: insertIntersectionPoints ()
78 {
79 // Get list of edges
80 const edgeList & edges = this -> edges ();
81
82 // Get edge -face addressing
83 const labelListList & edgeFaces = this -> edgeFaces ();
84
85 // There may be an extra point on every edge. Resize the list of points
86 const label oldSize = points_ .size ();
87 points_ . setSize ( oldSize + edges .size ());
88 label nPoints = oldSize ;
89
90 // Loop through all edges
91 forAll (edges , edgeI )
92 {
93 // Get reference to currentEdge
94 const edge& curEdge = edges [ edgeI ];
95
96 const label start = curEdge . start ();
97 const label end = curEdge .end ();
98
99 const scalar edgeLength = mag( points_ [end] - points_ [ start ]);

100
101 // Check if there is a legitimate cut to be found
102 // Note: synced tolerances in ImmersedCell and ImmersedFace
103 // HJ , 13/ Mar /2019
104 if
105 (
106 depth_ [ start ]* depth_ [end] < 0
107 && edgeLength > SMALL
108 && mag( depth_ [ start ]) > edgeLength * immersedPoly :: tolerance_ ()
109 && mag( depth_ [end ]) > edgeLength * immersedPoly :: tolerance_ ()
110 )
111 {
112 // Prepare a new point to insert
113 point cutPoint ;
114 scalar depthAtCut = 0;
115
116 // Intersection is along the edge length (pf[end] - pf[ start ])
117 // times the ratio of the depth at start and the difference
118 // between depth at start and end; add to this the start point
119 // and you have the location
120 cutPoint =
121 points_ [ start ]
122 + depth_ [ start ]/( depth_ [ start ] - depth_ [end ])*
123 ( points_ [end] - points_ [ start ]);
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124
125 // Execute iterative cut if necessary
126 if ( dist_ . iterateDistance ())
127 {
128 // Initialize bisection starting points
129 point p0 = points_ [ start ];
130 point p1 = points_ [end ];
131
132 // Depth at starting points
133 scalar d0 = depth_ [ start ];
134 scalar d1 = depth_ [end ];
135
136 // Convergence criterion is the depth at newP
137 depthAtCut = dist_ . distance ( cutPoint );
138
139 // initialize loop counter
140 label iters = 0;
141
142 while
143 (
144 (mag( depthAtCut ) > immersedPoly :: tolerance_ ())
145 && ( iters < immersedPoly :: nIter_ ())
146 )
147 {
148 // is the guessed point on the same side of the surface
149 // as p0? If yes , move p0 to the guessed point and thus
150 // shorten the interval
151 if (sign( depthAtCut ) == sign(d0 ))
152 {
153 d0 = depthAtCut ;
154 p0 = cutPoint ;
155 }
156 // Otherwise , shorten the other side
157 else
158 {
159 d1 = depthAtCut ;
160 p1 = cutPoint ;
161 }
162
163 // Determine new intersection point and its depth
164 cutPoint = p0 + mag(d0 )/( mag(d0) + mag(d1 ))*( p1 - p0 );
165
166 depthAtCut = dist_ . distance ( cutPoint );
167
168 iters ++;
169 }
170 }
171
172 // Store the newly found cut point
173 points_ [ nPoints ] = cutPoint ;
174
175 // Find faces connected to edge
176 const labelList & edgeFaceIDs = edgeFaces [ edgeI ];
177
178 // Add the new point to each connected face at the right position !
179 forAll ( edgeFaceIDs , edgeFaceI )
180 {
181 // Get old face
182 const face& oldFace = faces_ [ edgeFaceIDs [ edgeFaceI ]];
183
184 // Make new face with one extra label
185 face newFace ( oldFace .size () + 1);
186
187 // Count points added to new face
188 label nfp = 0;
189
190 // Loop through old face. If this edge is found , add the
191 // cut point label into the edge
192 forAll (oldFace , fpI)
193 {
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194 // Add the point
195 newFace [nfp] = oldFace [fpI ];
196 nfp ++;
197
198 const label curPoint = oldFace [fpI ];
199 const label nextPoint = oldFace . nextLabel (fpI );
200
201 if
202 (
203 ( curPoint == start && nextPoint == end)
204 || ( curPoint == end && nextPoint == start )
205 )
206 {
207 // Found the edge. Inser the point
208 newFace [nfp] = nPoints ;
209 nfp ++;
210 }
211 }
212
213 // Debug : check if point insertion was successful
214 if (nfp < newFace .size ())
215 {
216 FatalErrorInFunction
217 << " badInsertion "
218 << abort ( FatalError );
219 }
220
221 faces_ [ edgeFaceIDs [ edgeFaceI ]] = newFace ;
222 }
223
224 // Finished point insertion
225 nPoints ++;
226 }
227 }
228
229 // Resize the points list
230 points_ . setSize ( nPoints );
231
232 // Extra depths are all zero
233 depth_ . setSize ( nPoints );
234
235 // For all cut points set depth to exactly zero
236 for ( label i = oldSize ; i < depth_ .size (); i++)
237 {
238 depth_ [i] = 0;
239 }
240 }
241
242
243 template < class Distance >
244 Foam :: face Foam :: ImmersedCell <Distance >:: createInternalFace () const
245 {
246 // Declare internal face with mixed -up point ordering
247 face unorderedInternalFace ( points_ .size ());
248
249 // Collect all points with zero distance to surface
250 label nPif = 0;
251
252 forAll (depth_ , pointI )
253 {
254 if (mag( depth_ [ pointI ]) < absTol_ )
255 {
256 // Found point on zero plane
257 unorderedInternalFace [nPif] = pointI ;
258 nPif ++;
259 }
260 }
261
262 unorderedInternalFace . setSize (nPif );
263
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264 // Sanity check : Do we have at least 3 points at zero distance ?
265 if (nPif < 3)
266 {
267 FatalErrorInFunction
268 << "Less than 3 intersection points in cell on free surface ." << nl
269 << " depth : " << depth_
270 << abort ( FatalError );
271 }
272
273 // Order points , so that they form a polygon
274 // Algorithm in analogy to geomCellLooper .C
275
276 // Calculate centre
277 point centre = average ( unorderedInternalFace . points ( points_ ));
278
279 // Get base vectors of coordinate system normal
280 // define plane that approximates the surface from 3 points
281
282 // Line segment between points 0 and 1
283 // Note: face orientation is unknown and needs to be adjusted
284 // after the face has been created
285 // HJ , 28/ Nov /2017
286 vector S0 =
287 points_ [ unorderedInternalFace [1]]
288 - points_ [ unorderedInternalFace [0]];
289
290 S0 /= mag(S0) + SMALL ;
291
292 label pointID = -1;
293 scalar minDotProd = 1 - SMALL ;
294
295 // Take best non - colinear value
296 for ( label pI = 2; pI < unorderedInternalFace .size (); pI ++)
297 {
298 // Create second line segment
299 vector S1 =
300 points_ [ unorderedInternalFace [pI ]]
301 - points_ [ unorderedInternalFace [0]];
302
303 S1 /= mag(S1) + SMALL ;
304 scalar curDotProd = mag(S0 & S1 );
305
306 if ( curDotProd < minDotProd )
307 {
308 pointID = pI;
309 minDotProd = curDotProd ;
310 }
311 }
312
313 if ( pointID == -1)
314 {
315 // All intersection points are colinear
316 FatalErrorInFunction
317 << " Colinear points in cut"
318 << abort ( FatalError );
319 }
320
321 // Now create surface
322 plane surface
323 (
324 points_ [ unorderedInternalFace [0]] ,
325 points_ [ unorderedInternalFace [1]] ,
326 points_ [ unorderedInternalFace [ pointID ]]
327 );
328
329 vector e0 , e1;
330 getBase ( surface . normal (), e0 , e1 );
331
332 // Get sorted angles from point on loop to centre of loop.
333 SortableList <scalar > sortedAngles ( unorderedInternalFace .size ());
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334
335 forAll ( sortedAngles , angleI )
336 {
337 vector toCentre ( points_ [ unorderedInternalFace [ angleI ]] - centre );
338 toCentre /= mag( toCentre );
339
340 sortedAngles [ angleI ] = pseudoAngle (e0 , e1 , toCentre );
341 }
342 sortedAngles .sort ();
343
344 // Re - order points
345 const labelList & indices = sortedAngles . indices ();
346
347 face orderedInternalFace ( unorderedInternalFace .size ());
348
349 forAll (indices , i)
350 {
351 orderedInternalFace [i] = unorderedInternalFace [ indices [i]];
352 }
353
354 // Check direction of the new face using average wet and dry point
355 // HJ , 5/ Dec /2017
356 point wetPoint = vector :: zero;
357 label nWet = 0;
358
359 point dryPoint = vector :: zero;
360 label nDry = 0;
361
362 label nUndecided = 0;
363
364 forAll (depth_ , i)
365 {
366 if ( depth_ [i] > absTol_ )
367 {
368 dryPoint += points_ [i];
369 nDry ++;
370 }
371 else if ( depth_ [i] < -absTol_ )
372 {
373 wetPoint += points_ [i];
374 nWet ++;
375 }
376 else
377 {
378 nUndecided ++;
379 }
380 }
381
382 if ( nUndecided == depth_ .size ())
383 {
384 FatalErrorInFunction
385 << "All points lay on the tri surface , zero volume cell?"
386 << nl << " Points : " << points_
387 << abort ( FatalError );
388 }
389
390 wetPoint /= nWet;
391 dryPoint /= nDry;
392
393 // Good direction points out of the wet cell
394 vector dir = dryPoint - wetPoint ;
395 dir /= mag(dir) + SMALL ;
396
397 vector n = orderedInternalFace . normal ( points_ );
398 n /= mag(n);
399
400 if (( dir & n) < 0)
401 {
402 orderedInternalFace = orderedInternalFace . reverseFace ();
403 }
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404
405 // Note: the face may have wrong orientation here. It is corrected later
406 // HJ , 5/ Dec /2017
407 return orderedInternalFace ;
408 }
409
410
411 // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
412
413 template < class Distance >
414 Foam :: ImmersedCell <Distance >:: ImmersedCell
415 (
416 const label cellID ,
417 const polyMesh & mesh ,
418 const Distance & dist
419 )
420 :
421 primitiveMesh
422 (
423 mesh. cells ()[ cellID ]. labels (mesh. faces ()). size (), // nPoints
424 0, // nInternalFaces (init to zero)
425 mesh. cells ()[ cellID ]. size (), // nFaces
426 1 // nCells
427 ),
428 cellID_ ( cellID ),
429 mesh_ (mesh),
430 dist_ (dist),
431 absTol_ (0) ,
432 isAllWet_ ( false ),
433 isAllDry_ ( false ),
434 isBadCut_ ( false ),
435 // Initialize points_ with points from cell
436 points_ ( mesh_ . cells ()[ cellID_ ]. points ( mesh_ . faces (), mesh_ . points ())) ,
437 faces_ (),
438 // We start with single cell with ID = 0, so it owns all faces
439 faceOwner_ ( faces_ .size (), 0),
440 faceNeighbour_ (),
441 depth_ (dist. distance ( points_ ))
442 {
443 const cell& origCell = mesh_ . cells ()[ cellID ];
444
445 // Build a valid 1-cell mesh in local addressing
446
447 // Create hash table that maps points on global mesh to local point list
448 HashTable <label , label , Hash <label > > pointMapTable ( points_ .size ());
449
450 labelList origCellPointLabels = origCell . labels ( mesh_ . faces ());
451
452 forAll (points_ , pointI )
453 {
454 // Insert globalID and localID
455 pointMapTable . insert ( origCellPointLabels [ pointI ], pointI );
456 }
457
458 // Make local face list by remapping the faces of the cell
459 // Maximum number of new faces is twice the number of original faces
460 // plus one internal face
461 faces_ = faceList ( origCell .size ());
462
463 forAll (origCell , faceI )
464 {
465 // Get old point list of faceI
466 face origFace ( mesh_ . faces ()[ origCell [ faceI ]]);
467
468 // Make sure that all faces point outward ,
469 // since they are going to be outside cells
470 if (!( mesh_ . faceOwner ()[ origCell [ faceI ]] == cellID ))
471 {
472 // Cell is not owner of face , revert face orientation
473 // for the use in a 1-cell mesh
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474 origFace = origFace . reverseFace ();
475 }
476
477 // Make list to store new points
478 labelList newLabels ( origFace .size ());
479
480 // Map labels
481 forAll (origFace , facePointI )
482 {
483 newLabels [ facePointI ] =
484 pointMapTable .find( origFace [ facePointI ])();
485 }
486
487 // Create face from new point labels
488 faces_ [ faceI ] = face( newLabels );
489 }
490
491 // At this point , a 1-cell mesh is valid
492
493 // Calculating absolute tolerances based on minimum edge length
494 {
495 // Use local edges
496 const edgeList & cellEdges = edges ();
497
498 // Calculate min edge length for a quick check
499 scalar minEdgeLength = GREAT ;
500
501 // Note: expensive calculation of min length . HJ , 28/ May /2015
502 forAll (cellEdges , edgeI )
503 {
504 minEdgeLength =
505 Foam :: min( minEdgeLength , cellEdges [ edgeI ]. mag( points_ ));
506 }
507
508 absTol_ = minEdgeLength * immersedPoly :: tolerance_ ();
509 }
510
511 // Check if we have to perform cut at all
512 if (max( depth_ ) < absTol_ )
513 {
514 // All points of cell are below water surface
515 isAllWet_ = true;
516
517 return ;
518 }
519 else if (min( depth_ ) > -absTol_ )
520 {
521 // All points are above water surface
522 isAllDry_ = true;
523
524 return ;
525 }
526
527 # ifdef WET_DEBUG
528 Info << "Cell ID: " << cellID << " BEFORE " << nl
529 << " points : " << points_ << nl
530 << " faces : " << faces_ << nl
531 << " depth : " << depth_ << endl;
532 # endif
533
534 /* ******************************************************************* */
535 // Starting to modify the 1-cell primitiveMesh .
536 // Beyond this point be sure to know what points_ , faces_ , etc. contain ,
537 // before calling inherited primitiveMesh functions of this class .
538 // Here be dragons !
539 /* ******************************************************************* */
540
541 // Created expanded point and face lists
542
543 // Insert intersection points and adjust depth for intersections
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544 // This will add further points into the intersected face if needed
545 // Depth at intersection will be zero. HJ , 5/ Dec /2017
546 // Note that it is possible to have the cut face even if no new points
547 // have been introduced . HJ , 13/ Mar /2019
548 insertIntersectionPoints ();
549
550 // Update primitiveMesh parameters
551 this -> reset
552 (
553 points_ .size (), // nPoints
554 0, // nInternalFaces
555 faces_ .size (), // nFaces
556 1 // nCells
557 );
558
559 # ifdef WET_DEBUG
560 Info << "Cell ID: " << cellID << " ENRICHED " << nl
561 << " points : " << points_ << nl
562 << " faces : " << faces_ << nl
563 << " depth : " << depth_ << endl;
564 # endif
565 // At this point , a 1-cell mesh with faces enriched for intersections
566 // is valid . HJ , 5/ Dec /2017
567
568 // Check if there has been a successful cut at all
569 // For a good cut there should be at least 3 points at zero level
570 label nIntersections = 0;
571
572 // Added collinearity check . HJ , 8/ Apr /2022
573
574 // Collect first intersection point as reference for colinearity check
575 point refPoint ;
576 vector refVec ;
577 scalar minDot = GREAT ;
578
579 forAll (depth_ , pointI )
580 {
581 if (mag( depth_ [ pointI ]) < absTol_ )
582 {
583 if ( nIntersections == 0)
584 {
585 // First intersection : collect reference point
586 refPoint = points_ [ pointI ];
587 }
588 else if ( nIntersections == 1)
589 {
590 // Second intersection : collect reference vector
591 refVec = points_ [ pointI ] - refPoint ;
592
593 // Normalise
594 refVec /= mag( refVec ) + SMALL ;
595 }
596 else
597 {
598 // Third and further intersection : collinearity check
599 vector otherVec = points_ [ pointI ] - refPoint ;
600
601 // Normalise
602 otherVec /= mag( otherVec ) + SMALL ;
603
604 // Collect minimum dot - product
605 minDot = Foam :: min(minDot , ( refVec & otherVec ));
606 }
607
608 nIntersections ++;
609 }
610
611 // Can the check be terminated early ?
612 if ( nIntersections >= 3 && minDot < immersedPoly :: collinearity_ ())
613 {
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614 // Condition satisfied . No need to keep checking
615 break ;
616 }
617 }
618
619 // Check if the intersection is sufficient to make a proper face
620 if
621 (
622 // Insufficient number of intersections
623 nIntersections < 3
624 // More than 3 intersections , but collinear
625 || ( nIntersections >= 3 && minDot > immersedPoly :: collinearity_ ())
626 )
627 {
628 // Check if cell centre is wet or dry , depending on greatest distance
629 // away from the cutting surface
630 // Note: cannot measure distance geometrically because of
631 // the unknown resolution of the immersed surface
632 // HJ , 5/ Dec /2017
633 if (mag(min( depth_ )) > mag(max( depth_ )))
634 {
635 // All points of cell are below water surface
636 isAllWet_ = true;
637
638 return ;
639 }
640 else
641 {
642 // All points are above water surface
643 isAllDry_ = true;
644
645 return ;
646 }
647 }
648 // From here on , there exists a valid intersection
649
650 // Resize the face list. Each face can be split into two , with one
651 // extra internal face. HJ , 5/ Dec /2017
652
653 // Make a copy of enriched faces , on which the cutting is performed
654 faceList enrichedFaces = faces_ ;
655
656 // Reset face lists , preserving existing faces
657 faces_ . setSize (2* faces_ .size () + 1);
658 faceOwner_ . setSize (2* faces_ .size () + 1);
659 faceNeighbour_ . setSize (1);
660
661 // If we are not merely touching the water surface
662 // with one point or edge , insert internal face that
663 // connects all intersection points
664 // create internal face , which gets inserted at front of faces_ list
665 faces_ [0] = createInternalFace ();
666
667 // Internal face points out of the wet cell. Make the wet cell its owner
668 faceOwner_ [0] = WET;
669 faceNeighbour_ [0] = DRY;
670
671 // Count new faces
672 label nFaces = 1;
673
674 // For all faces with inserted points , do face splitting
675 forAll ( enrichedFaces , oldFaceI )
676 {
677 const face& oldFace = mesh_ . faces ()[ origCell [ oldFaceI ]];
678 const face& newFace = enrichedFaces [ oldFaceI ];
679
680 // Calculate old face area locally to avoid triggering polyMesh
681 const scalar oldFaceArea =
682 mesh_ . faces ()[ origCell [ oldFaceI ]]. mag( mesh_ . points ());
683
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684 // If a face has been modified , it will have extra points
685 if ( newFace .size () != oldFace .size ())
686 {
687 // Make two faces : wet and dry
688 // Wet face: wet points and intersection points
689 face wetFace ( newFace .size ());
690 label nWet = 0;
691
692 // Dry face: dry points and intersection points
693 face dryFace ( newFace .size ());
694 label nDry = 0;
695
696 forAll (newFace , pointI )
697 {
698 if (mag( depth_ [ newFace [ pointI ]]) < absTol_ )
699 {
700 // Intersection point . Add to both faces
701 wetFace [nWet] = newFace [ pointI ];
702 nWet ++;
703
704 dryFace [nDry] = newFace [ pointI ];
705 nDry ++;
706 }
707 else if ( depth_ [ newFace [ pointI ]] < -absTol_ )
708 {
709 // Point is submerged , add to wetFace
710 wetFace [nWet] = newFace [ pointI ];
711 nWet ++;
712 }
713 else // depth_ [ newFace [ pointI ]] > absTol_
714 {
715 // Otherwise point must be dry , add to dryFace
716 dryFace [nDry] = newFace [ pointI ];
717 nDry ++;
718 }
719 }
720
721 // Check for a successful cut
722 if (nWet >= 3)
723 {
724 // Insert wet face
725 wetFace . setSize (nWet );
726 faces_ [ nFaces ] = wetFace ;
727 faceOwner_ [ nFaces ] = WET;
728
729 nFaces ++;
730
731 // Check for bad wet face cut
732 if
733 (
734 wetFace .mag( points_ )
735 > (1 + immersedPoly :: badCutFactor_ ())* oldFaceArea
736 )
737 {
738 // Wet face area is greater than original face area
739 // This is a bad cut
740 # ifdef WET_DEBUG
741 Pout << "Bad cell face cut: wet = ("
742 << wetFace .mag( points_ ) << " "
743 << oldFaceArea
744 << ")" << endl;
745 # endif
746
747 isBadCut_ = true;
748 }
749 }
750
751 if (nDry >= 3)
752 {
753 // Insert dry face
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754 dryFace . setSize (nDry );
755 faces_ [ nFaces ] = dryFace ;
756 faceOwner_ [ nFaces ] = DRY;
757
758 nFaces ++;
759
760 // Check for bad dry face cut
761 if
762 (
763 dryFace .mag( points_ )
764 > (1 + immersedPoly :: badCutFactor_ ())* oldFaceArea
765 )
766 {
767 // Dry face area is greater than original face area
768 // This is a bad cut
769 # ifdef WET_DEBUG
770 Pout << "Bad cell face cut: dry = ("
771 << dryFace .mag( points_ ) << " "
772 << oldFaceArea
773 << ")" << endl;
774 # endif
775
776 isBadCut_ = true;
777 }
778 }
779 }
780 else
781 {
782 // Face cut has failed . Insert original face and owner
783 faces_ [ nFaces ] = newFace ;
784
785 // Determine wet/dry based on distance to face centre
786 // Note: cannot measure distance geometrically because of
787 // the unknown resolution of the immersed surface
788 // HJ , 5/ Dec /2017
789
790 // Create face depth distance as a subset
791 scalarField faceDepth (depth_ , newFace );
792
793 // Since the face has not been cut , all faceDepth should have the
794 // same sign. Otherwise , the face should straddle the immersed
795 // surface . Check on minimum .
796 // Note: this is a very precise check on purpose : there is no cut
797 // and the face belongs either to a wet cell or a dry cell
798 // HJ , 12/ Mar /2019
799 if (min( faceDepth ) < scalar (0))
800 {
801 // Negative distance : wet face
802 faceOwner_ [ nFaces ] = WET;
803 }
804 else
805 {
806 // Positive distance : dry face
807 faceOwner_ [ nFaces ] = DRY;
808 }
809
810 nFaces ++;
811 }
812 }
813
814 faces_ . setSize ( nFaces );
815 faceOwner_ . setSize ( nFaces );
816
817 // Update primitiveMesh parameters
818 this -> reset
819 (
820 points_ .size (), // nPoints
821 faceNeighbour_ .size (), // nInternalFaces
822 faces_ .size (), // nFaces
823 faceNeighbour_ .size () + 1 // nCells
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824 );
825
826
827 # ifdef WET_DEBUG
828 this -> checkMesh ();
829 Info << "Cell ID: " << cellID << " AFTER " << nl
830 << " points : " << points_ << nl
831 << " faces : " << faces_ << nl
832 << " depth : " << depth_ << endl;
833 # endif
834
835 const scalar oldCellVolume =
836 mesh_ . cells ()[ cellID_ ]. mag( mesh_ . points (), mesh_ . faces ());
837
838 // Note: is it legal to cut a zero volume cell? HJ , 11/ Mar /2019
839
840 scalar wetCut = cellVolumes ()[ WET ]/ oldCellVolume ;
841
842 scalar dryCut = cellVolumes ()[ DRY ]/ oldCellVolume ;
843
844 // Check for bad cell cut based on volume
845 if
846 (
847 wetCut < -immersedPoly :: badCutFactor_ ()
848 || wetCut > (1 + immersedPoly :: badCutFactor_ ())
849 || dryCut < -immersedPoly :: badCutFactor_ ()
850 || dryCut > (1 + immersedPoly :: badCutFactor_ ())
851 )
852 {
853 isBadCut_ = true;
854 }
855
856 // If the cut is not bad , adjust the cell for thin cell cut
857 if (! isBadCut_ )
858 {
859 if (mag( wetCut ) < immersedPoly :: liveFactor_ ())
860 {
861 // Cell is dry; reset
862 isAllDry_ = true;
863 }
864
865 if (mag( dryCut ) < immersedPoly :: liveFactor_ ())
866 {
867 // Cell is wet; reset
868 isAllWet_ = true;
869 }
870 }
871 else
872 {
873 # ifdef WET_DEBUG
874 Pout << "Bad cell cut: volume = (" << wetCut << " " << dryCut
875 << ") = " << wetCut + dryCut << nl
876 // << " Points : " << nl << this -> points () << nl
877 // << " Faces : " << nl << this -> faces () << nl
878 // << " Owner : " << nl << this -> faceOwner () << nl
879 // << " Neighbour : " << nl << this -> faceNeighbour () << nl
880 // << "Cut (wet dry) = (" << isAllWet_ << " " << isAllDry_ << ")"
881 << endl;
882 # endif
883 }
884
885 // Correction on cutting is not allowed , as it results in an open cell
886 // if faces are cut and the cell is not.
887 // Previous check confirmed more than 3 valid cut points in the cell ,
888 // which means that some of the faces were cut.
889 // Cutting tolerances for the cell and face have been adjusted to make sure
890 // identical cut has been produced .
891 // HJ , 11/ Mar /2019
892 }
893
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894
895 // ************************************************************************* //
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D
ImmersedFace.C

Listing D.1: ImmersedFace.C
1 /* ---------------------------------------------------------------------------*\
2 ========= |
3 \\ / F ield | foam - extend : Open Source CFD
4 \\ / O peration | Version : 4.1
5 \\ / A nd | Web: http :// www.foam - extend .org
6 \\/ M anipulation | For copyright notice see file Copyright
7 -------------------------------------------------------------------------------
8 License
9 This file is part of foam - extend .

10
11 foam - extend is free software : you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by the
13 Free Software Foundation , either version 3 of the License , or (at your
14 option ) any later version .
15
16 foam - extend is distributed in the hope that it will be useful , but
17 WITHOUT ANY WARRANTY ; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the GNU
19 General Public License for more details .
20
21 You should have received a copy of the GNU General Public License
22 along with foam - extend . If not , see <http :// www.gnu.org/ licenses />.
23
24 \*---------------------------------------------------------------------------*/
25
26 # include " ImmersedFace .H"
27
28 // * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
29
30 template < class Distance >
31 void Foam :: ImmersedFace <Distance >:: createSubfaces
32 (
33 const face& localFace ,
34 const scalarField & depth
35 )
36 {
37 // Cut edges that cross the surface at the surface and add to
38 // points and intersections
39
40 // Make a copy of starting face points
41 pointField localPoints ( facePointsAndIntersections_ );
42
43 // Note: depth corresponds to local points
44
45 // Expand the list for additional points . This leaves sufficient
46 // space for intersection at every edge
47 facePointsAndIntersections_ . setSize (2* localPoints .size ());
48 scalarField newDepth (2* localPoints .size ());
49
50 // Get list of edges
51 const edgeList edges = localFace . edges ();
52
53 // Count the number of newly created points , including original points
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54 label nNewPoints = 0;
55
56 // For each point , determine if it is submerged ( = -1), dry( = 1) or
57 // on the surface ( = 0)
58 // This is done during cutting to avoid using another tolerance check later
59 // to dermine which points are on the surface , below or above it. By
60 // definition , points that are a result of cutting are on the surface . (IG
61 // 14/ May /2019)
62 labelList isSubmerged ( facePointsAndIntersections_ .size ());
63
64 // Loop through all edges
65 forAll (edges , edgeI )
66 {
67 // Take reference to currentEdge
68 const edge& curEdge = edges [ edgeI ];
69
70 const label start = curEdge . start ();
71 const label end = curEdge .end ();
72
73 // Length of current edge
74 const scalar edgeLength = curEdge .mag( localPoints );
75
76 // Check if there is a legitimate cut to be found
77 // Note: synced tolerances in ImmersedCell and ImmersedFace
78 // HJ , 13/ Mar /2019
79 if
80 (
81 depth [ start ]* depth [end] < 0
82 && edgeLength > SMALL
83 && mag( depth [ start ]) > edgeLength * immersedPoly :: tolerance_ ()
84 && mag( depth [end ]) > edgeLength * immersedPoly :: tolerance_ ()
85 )
86 {
87 // Prepare a new point to insert and determine its location
88 point cutPoint ;
89 scalar depthAtCut = 0;
90
91 if (! dist_ . iterateDistance ())
92 {
93 // Intersection is along the edge length (pf[end] - pf[ start ])
94 // times the ratio of the depth at start and the difference
95 // between depth at start and end; add to this the start point
96 // and you have the location
97 cutPoint =
98 localPoints [ start ]
99 + depth [ start ]/( depth [ start ] - depth [end ])*

100 ( localPoints [end] - localPoints [ start ]);
101 }
102 else
103 {
104 // Initialize bisection starting points
105 point p0 = localPoints [ start ];
106 point p1 = localPoints [end ];
107
108 // Depth at starting points
109 scalar d0 = depth [ start ];
110 scalar d1 = depth [end ];
111
112 // Initial guess of starting point same
113 // as in non - iterative approach
114 cutPoint = p0 + mag(d0 )/( mag(d0) + mag(d1 ))*( p1 - p0 );
115
116 // Convergence criterion is the depth at newP
117 depthAtCut = dist_ . distance ( cutPoint );
118
119 // Initialize loop counter
120 label iters = 0;
121
122 while
123 (
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124 (mag( depthAtCut ) > immersedPoly :: tolerance_ ())
125 && ( iters < immersedPoly :: nIter_ ())
126 )
127 {
128 // Is the guessed point on the same side of the surface
129 // as p0? If yes , move p0 to the guessed point and thus
130 // shorten the interval
131 if (sign( depthAtCut ) == sign(d0 ))
132 {
133 d0 = depthAtCut ;
134 p0 = cutPoint ;
135 }
136 // otherwise , shorten the other side
137 else
138 {
139 d1 = depthAtCut ;
140 p1 = cutPoint ;
141 }
142
143 // determine new intersection point
144 cutPoint = p0 + mag(d0 )/( mag(d0) + mag(d1 ))*( p1 - p0 );
145
146 // and calculate its depth
147 depthAtCut = dist_ . distance ( cutPoint );
148
149 iters ++;
150 }
151 }
152
153 // Store first point of edge
154 facePointsAndIntersections_ [ nNewPoints ] =
155 localPoints [ curEdge . start ()];
156
157 // Store first point depth
158 newDepth [ nNewPoints ] = depth [ curEdge . start ()];
159
160 // Determine whether it is above or below the surface .
161 // NOTE: it must be one or the other since this is an original point
162 // of the edge , and it passed the if statement above (IG
163 // 14/ May /2019)
164 isSubmerged [ nNewPoints ] = sign( depth [ curEdge . start ()]);
165
166 nNewPoints ++;
167
168 // Store the newly found cut point
169 facePointsAndIntersections_ [ nNewPoints ] = cutPoint ;
170
171 // Store newly found cut depth
172 newDepth [ nNewPoints ] = depthAtCut ;
173
174 // The cut point is by definition on the surface and therefore
175 // shared by the dry and wet face (IG 14/ May /2019)
176 isSubmerged [ nNewPoints ] = 0;
177
178 nNewPoints ++;
179 }
180 else
181 {
182 // No intersection : just copy first point of edge
183 facePointsAndIntersections_ [ nNewPoints ] =
184 localPoints [ curEdge . start ()];
185
186 // Store first point depth
187 newDepth [ nNewPoints ] = depth [ curEdge . start ()];
188
189 // Determine whether it is above , below or on the surface .
190 // NOTE: now it can be any of the options since end or start is
191 // sitting on the surface , othervise the if statement above would
192 // have been true .( IG 14/ May /2019)
193 // NOTE:
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194 // Old check depended on the length of the current edge , meaning
195 // that the tolerance depends on the order the face is visited
196 // ( consider pair of faces on the processor boundary .
197 // This is incorrect : use absolute tolerance instead , consistent
198 // with the wet/dry test in the constructor
199 // HJ , 10/ May /2022
200 if (mag( depth [ curEdge . start ()]) < absTol_ )
201 {
202 isSubmerged [ nNewPoints ] = 0;
203 }
204 else
205 {
206 isSubmerged [ nNewPoints ] = sign( depth [ curEdge . start ()]);
207 }
208
209 nNewPoints ++;
210 }
211 }
212
213 // Point list should now be complete because last point of last edge should
214 // be the starting point of the first edge
215 facePointsAndIntersections_ . setSize ( nNewPoints );
216 newDepth . setSize ( nNewPoints );
217 isSubmerged . setSize ( nNewPoints );
218
219 // Count the number of points on wet and dry parts of the face and create
220 // the faces
221 {
222 // Face is intersected by surface
223
224 // Initialise both faces to full size of intesection points
225 // to be truncated after completion
226
227 drySubface_ . setSize ( facePointsAndIntersections_ .size ());
228 label nDry = 0;
229
230 wetSubface_ . setSize ( facePointsAndIntersections_ .size ());
231 label nWet = 0;
232
233 forAll ( facePointsAndIntersections_ , pointI )
234 {
235 if ( isSubmerged [ pointI ] == 1)
236 {
237 // Point is dry , add to dry sub -face
238 drySubface_ [nDry] = pointI ;
239 nDry ++;
240 }
241 else if ( isSubmerged [ pointI ] == -1)
242 {
243 // Point is submerged , add to wet sub -face
244 wetSubface_ [nWet] = pointI ;
245 nWet ++;
246 }
247 else
248 {
249 // Point is on surface , add to both dry and wet sub -face
250 drySubface_ [nDry] = pointI ;
251 nDry ++;
252
253 wetSubface_ [nWet] = pointI ;
254 nWet ++;
255 }
256 }
257
258 // Check if surface is merely touching the face
259 // in that case , either dry or wet sub -face have less
260 // than 3 points
261 if (nDry < 3)
262 {
263 // The face is wet
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264 isAllWet_ = true;
265 isAllDry_ = false ;
266
267 drySubface_ . clear ();
268 }
269 else
270 {
271 drySubface_ . setSize (nDry );
272
273 // Since cell cut is adjusted , face cut cannot be.
274 // HJ , 5/ Apr /2019
275 }
276
277 if (nWet < 3)
278 {
279 // The face is dry
280 isAllWet_ = false ;
281 isAllDry_ = true;
282
283 wetSubface_ . clear ();
284 }
285 else
286 {
287 wetSubface_ . setSize (nWet );
288
289 // Since cell cut is adjusted , face cut cannot be.
290 // HJ , 5/ Apr /2019
291 }
292 }
293 }
294
295
296 template < class Distance >
297 void Foam :: ImmersedFace <Distance >:: init ()
298 {
299 face localFace ( facePointsAndIntersections_ .size ());
300
301 // Local face addresses into local points
302 forAll (localFace , pointI )
303 {
304 localFace [ pointI ] = pointI ;
305 }
306
307 // Distance from the surface for every point of face
308 scalarField depth = dist_ . distance ( facePointsAndIntersections_ );
309
310 // Calculating absolute tolerances based on minimum edge length
311 absTol_ = 0;
312
313 {
314 // Use local edges
315 const edgeList edges = localFace . edges ();
316
317 // Calculate min edge length for a quick check
318 scalar minEdgeLength = GREAT ;
319
320 // Note: expensive calculation of min length . HJ , 28/ May /2015
321 forAll (edges , edgeI )
322 {
323 minEdgeLength =
324 Foam :: min
325 (
326 minEdgeLength ,
327 edges [ edgeI ]. mag( facePointsAndIntersections_ )
328 );
329 }
330
331 absTol_ = minEdgeLength * immersedPoly :: tolerance_ ();
332 }
333
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334 // Check if all points are wet or dry , using absolute tolerance
335 if (max( depth ) < absTol_ )
336 {
337 // All points are wet within a tolerance : face is wet
338 isAllWet_ = true;
339 isAllDry_ = false ;
340
341 wetSubface_ = localFace ;
342 }
343 else if (min( depth ) > -absTol_ )
344 {
345 // All points are dry within a tolerance : face is dry
346 isAllWet_ = false ;
347 isAllDry_ = true;
348
349 drySubface_ = localFace ;
350 }
351 else
352 {
353 // Face appears to be cut by the free surface .
354 // Perform detailed analysis to create dry and wet sub -face
355 createSubfaces (localFace , depth );
356 }
357 }
358
359
360 // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
361
362 template < class Distance >
363 Foam :: ImmersedFace <Distance >:: ImmersedFace
364 (
365 const pointField & p,
366 const Distance & dist
367 )
368 :
369 dist_ (dist),
370 facePointsAndIntersections_ (p),
371 wetSubface_ (),
372 drySubface_ (),
373 isAllWet_ ( false ),
374 isAllDry_ ( false )
375 {
376 init ();
377 }
378
379
380 template < class Distance >
381 Foam :: ImmersedFace <Distance >:: ImmersedFace
382 (
383 const label faceID ,
384 const polyMesh & mesh ,
385 const Distance & dist
386 )
387 :
388 dist_ (dist),
389 facePointsAndIntersections_ (mesh. faces ()[ faceID ]. points (mesh. points ())) ,
390 wetSubface_ (),
391 drySubface_ (),
392 isAllWet_ ( false ),
393 isAllDry_ ( false )
394 {
395 // Initialised immersed face
396 init ();
397 }
398
399
400 // ************************************************************************* //
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