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Abstract

This project attempts to create a mechanism for automatic configuration of net-

work parameters depending on the current network load in order to avoid packet-

loss. The system should be accommodated for transmission of real-time video

streams through switched Ethernet networks.

Investigation of the problem incorporated a real-time video test with a netANAL-

YSER card to capture in/out going network traffic, determining the packet loss

point for each of the network configurations. The same test was replicated by

using traffic generating cards and the software tool TCN TimeAnalyzer. The

tests showed the possibility of predicting network behaviour without involving real

streams but rather managing the network before the real transmission has begun.

A packet capture software tool and a switch simulator was developed and inte-

grated into the packet loss prediction mechanism. The packet capturing software

produced the statistics of the network traffic for later offline simulations. The

switch simulator mimicked the real network switching behaviour. It estimated the

time and amount of traffic when the buffer memory was full.

A solution is proposed for independent offline control of the network behaviour. It

can later be applied to an online version and incorporated into numerous real-time

systems for in-vehicle or video communications.
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1

Introduction

The vehicle industry develops rapidly using new technologies and setting new chal-

lenges for the existing ones. In-vehicle communication is facing big changes nowa-

days. It is caused by the increased demands for data transmission inside the

vehicle. Ethernet as a mean of in-vehicle communication system may solve the

problems that have appeared with the new demands.

The amount of in-vehicle traffic has increased dramatically. Nowadays along with

new electronics in cars video cameras were accommodated to increase the safety

of the vehicle movement. Video surveillance of the traffic or the environment

around the vehicle has compound the heavy in-vehicle traffic load. Existing CAN

(Controller Area Network) system is unable to provide large bandwidth for video

streams [1]. It has 1 Mbit/s bandwidth capacity on the distances of 40m. With

new technologies added to the vehicles, this bandwidth may not be adequate for

in-vehicle networks [2]. MOST 150 (Media Oriented Systems Transport) has been

developed to carry multimedia stream with a maximum bandwidth 150 Mbit/s [3].

In addition, with the expected increase in bandwidth usage, these systems may

cause problems in packet delivery.

Moreover mechanical functions are now controlled and/or replaced by the elec-

tronics. For each application there exists specifically developed technology [4].

They function inside one vehicle but due to different protocol formats correspon-
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dence between them is impossible. In addition every automobile has kilometers of

wires to enable communication between sensors, engine and controlling systems.

They add extra weight to the vehicle and introduce complexity of mounting and

organizing the communication system.

Therefore new approach was needed to fight these issues. Ethernet can support

the bandwidth up to 1 Gbit/s thus enabling transmission of data for various ap-

plications simultaneously without the risk of information loss. Ethernet is a very

flexible system that allows the access and the exchange of the information on

the different protocol levels. Since Ethernet can substitute existed isolated com-

munication systems, the weight of the cables, space and the complexity will be

decreased, providing lighter cars with fuel economy.

Having listed advantages of Ethernet it worth mentioning why this technology

was not used earlier in time-dependent applications before. Time-dependent ap-

plications cannot tolerate time delays in network traffic delivery. Ethernet is an

unreliable service, and can introduce jitter and delays to the system [5, 6].

Due to the increasing demand for solutions to the problems of bandwidth and

data delivery requirements, companies as Time Critical Networks AB (TCN) have

evolved. TCN is currently developing tools for simulating and evaluating Ethernet

networks. The tools are developed in order to predict the worst case forwarding

delays of data traffic [6, 7].

Most research in networks focuses on minimizing the packet drops by diagnosing

the system when packet drops occur. Then the network load is lower in order to

decrease the possibility of dropping occurring again. This is due to the fact that

most applications can handle packet drop in data streams [8, 9].

The first objective of the thesis is to investigate a simple network topology pop-

ulated with video and audio streams and adjust them using the tools developed

by TCN for network investigation. The second objective is to verify if the anal-

ysis engine can predict packet drop occurrence. The outcome of the observation

should be used to find a near-optimal set of configurable network and/or applica-
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tion parameters that avoid packet drops completely while optimizing application

performance. A ”human-in-the-loop” approach will be used to simulate the tasks

that would ultimately be performed by the automated system.

The project report is organized in the following manner. Chapter 2 provides an

overview of the network communications. The description is oriented to provide

knowledge about network switches, their functions, levels of the protocol suit,

protocols and, most importantly, Ethernet technology. This chapter also explains

jitter and delays in computer networks and their influence on Quality of Service

(QoS). Since this project deals with multimedia communication, key video and

audio codecs are presented.

In chapter 3, section 3.1 a summary of software that are used in the thesis is

given. Section 3.2 presents testing of the network, environment and the mea-

sured results. Here three tests were carried out: real-time video transmission,

TimeAnalyzer/StreamAnalyzer and tests with traffic generating cards produced

by Ingenjörsfirman Anders Rundgren(IAR) company. Based on the test results

it was possible to predict or give a feedback about the network throughput abil-

ity. Finally, section 3.3 presents the developed software for packet capturing and

switch simulations. Both components are included in the loop of traffic monitoring

process.

All elements from the previous section were tested in a real environment where

a video conference was transmitted through an Ethernet switch network. Results

are illustrated in chapter 4. The tests included all developed software and were

based on the conclusion derived from the previous section.

Chapter 5, section 5.1 discuses the outcome and the result from the testing. Section

5.2 suggests improvements of the created system and its possible modifications.
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2

Background

2.1 Computer communication

For an absolute understanding of this project basic knowledge of computer commu-

nication is needed. In this section, the most important concepts used throughout

the project are presented.

2.1.1 Network and switches

A computer network is comprised of a number of hardware devices connected with

each other by wired or wireless channels to enable information exchange. De-

vices, sometimes called computers, hosts or end systems, can receive and transmit

information from and to the network.

There are many different network organizations and topologies. The lowest level

of the network organization is the local network. It simply connects a number of

computers with each other e.g, in the office or at home. They usually have a small

geographical extent, high speed connection and in some cases limited access rights

to network services. End devices are connected with each other by communication

links and packet switches [5].

There are two possible network communication configurations, circuit switched
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and packet switched networks. The difference between them lies in the resource

allocation. In circuit switched networks resources are assigned in the beginning

of the communication between end users until the end of the session. Thus, it

provides a stable line and set bandwidth. On the contrary, in packet switched

networks the information is sent out without any pre-reservation. This creates a

possibility of delays and losses if the link has to be used by several users at the

same time.

In packet switched networks the information that travels through the network can

be very different, e.g. audio files, pictures, or documents sent by mail. In order

to be transmitted through the network, the information is divided into smaller

packets. These packets are sent through the communication links then. Packet

switches take arriving packets and forward them to the end system. It usually

depends on the switch itself which of the forwarding methods it uses. In the case

of store-and-forward transmission, the packet that arrives is completely copied into

the buffer of the switch until the last bit of the packet has arrived. Then it forwards

the packets in a first-in-first-out fashion to the communication link. This type of

switch transmission is used in this thesis.

Since switches just connect, redirect or forward arrived packets, they are invisible

for the end users in the network. The speed in different links connected to the

switch may also differ from each other. Therefore switches have output queue

buffers to store packets before the link is ready to accept and transmit information.

Switches also provide filtering and forwarding functions. Switches can filter out

packets that were damaged or incompletely received and switches can also direct

packets to the needed end user interfaces.

Switches work at the link layer using the Media Access Control (MAC) addresses

of the connected devices. The MAC address is a 6-byte address assigned to the

computer network adapter when manufactured. Based on MAC addresses, the

forwarding table of the switch is automatically constructed with indexes corre-

sponding to each MAC address.

Network participants can connected not only to the switch but to the hub and
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router as well. Data that is sent through the hub is broadcasted to the network to

all the participants. Hubs do not filter or direct packets. Routers usually connect

two different networks: world and local area network,for example. Routers forward

packets along to the best route and communicate with each other to obtain the

information about routes.

The Transmission Control Protocol (TCP) and Internet Protocol (IP) are used in

the Internet network to have the control over the system of circling information.

2.1.2 Switching models

As explained in section 2.1.1 the data that is to be sent through the network

is divided into packets with additional information attached to them in order to

route them to the required node. There are two ways for the network to treat data

packets: datagram and virtual circuit.

The datagram packet switched network treats each packet, called datagram, as

a separate independent piece of information without any relation to the prior

sent data. Therefore, each packet is sent through the path that is the best for it,

according to the information received from the node’s neighbours. Packets carrying

different parts of one message may traverse different routes in the network. It may

cause arrival to the end user in reordered sequence. Then it is a task of the

receiving side to recover the data [10].

With the virtual circuit method, the path for all packets is established before

sending them. It is similar to the circuit switched network. The decision about

the travelling route is already made for all the packets. But it is possible to

utilise pre-established line by other users if those packets are in the node’s buffer

at this moment. Virtual circuit method increases the speed of packets when the

communication for a long period of time with constant data exchange is required.

This method also enables error correction and packet retransmission.

Datagram switched network is flexible and fast in case of a single-time data trans-

mission. It better copes with network congestion since the information is chopped
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into packets following different routes from node to node [10]. Precisely that type

of data handling is used in the project.

2.1.3 Protocols and layers

Data exchange between established links can involve a complex acquiring process

whether or not the receiver is ready to accept and process the data. The whole

interaction process is thus divided into smaller tasks (layers). The layers are verti-

cally arranged in a stack (IP stack), where they perform independently from each

other. Each upper layer operate on the data accepted from the lower layer and

passes data further to the top layers for processing. All computers that commu-

nicate within the network must have the same functions of the IP stack. This is

checked in the layer that sends out blocks of data to the peer layer of the other

computer. The control over such process is carried out by protocols.

The communication architecture has been standardized, as a result TCP/IP pro-

tocol stack appeared. The protocol stack contains 5 layers of data processing in

the vertical stack: application, transport, internet, link, and physical layers. At

each level, data can be cut into parts, depending on the requirements, and put

back together at the peer level before transmission. Every layer can use one or

more protocol standards[5].

2.1.4 Ethernet

Initially computers were connected through a transceiver sharing the same medium

or channel. Information transmitted from one machine was broadcasted to all the

participants in the channel. The network card did not discard information even

if the destination address was not corresponding to receiving computer’s address.

Bandwidth was shared. Ethernet was simpler than Token Ring or Token Bus

(technologies competing with the Local Area Network (LAN) standard at the same

time) but was unstable for large networks introducing data loss and poor QoS.

Ethernet is the most used technology in LAN nowadays. Ethernet is normally

used in a star topology with a switch connecting the nodes, see Figure 2.1. Older
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Ethernet systems used to have hubs instead of switches in this setup. Hubs had the

disadvantage of creating collisions in the network, if more than one node where

sending data at the same time. Changing the hubs to switches has eliminated

most of the collision problems in the network. Nowadays modern switches are full

duplex thereby eliminating collisions [5].

There are several types of standards for Ethernet such as IEEE 802.3, IEEE 802.2

Logical Link Control, but in this project only Ethernet Version 2 standard will be

used. The frame structure of this type is divided in six fields see Figure 2.2 [11].

Figure 2.1: Schematic picture of a star shape topology network

Figure 2.2: The element of an Ethernet frame
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Preamble is sent in the beginning of each Ethernet frame. It is an 8 byte field,

with the first seven bytes filled with 10101010. It is required to synchronize

the transmission. The last byte is 10101011, where last two bites 11 in the

end are required for the receiver to signal the upcoming data.

Destination address contains the MAC address of the receiver.

Source address contains the MAC address of the sender.

Type field describes what kind of protocol is used in the transmission. Ethernet

can handle several different protocols.

Data field contains IP payload information. The minimum size of this field is

46 bytes, and the maximum size or Maximum Transmission Unit (MTU) is

1500 bytes. If the data exceeds 1500 byte, the frame needs to be fragmented.

Cyclic Redundancy Check (CRC) is used to detect bit errors at the receiver

side.

Interframe gap is a 12 byte gap between each Ethernet frame.

2.1.5 IPv4

Internet Protocol version 4 (IPv4) is the protocol used for forwarding and address-

ing over the internet. Today there exist two different versions of this protocol, i.e.

IPv4 and the newer one IPv6. IPv6 is not used in this project, so it will not be

handled in this thesis.

IPv4 operates in the internet layer. In internet layers a packet, called a datagram,

is divided into several fields. The different fields fulfil different functions. The

layout can be seen in Figure 2.3 [12]. In this project the Options field is never

used, thus the total header length is 20 bytes.

Version number specifies what version of IPv4 is used.

Internet header length specifies the length of the datagrams header. The

length may vary depending on the type of IPv4.
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Type of Service (ToS) specifies QoS desired by the sender for the datagram

when it travels through the network.

Datagrams length is used to specify the length of the whole datagram.

16-bit identifier contains flags and a 13 bit fragmentation offset. These fields

represent information about datagram fragmentation.

Time to live (TTL) is used by the routers and switches to identify if a data-

gram has arrived later than its decoding time.

Protocol contains the protocol type of the next level.

Header checksum flags if the header has been corrupted. Error check is done

by using 1 complement.

Source IP address stands for IP address of the transmitter.

Destination IP address stands for IP address of the receiver.

Options this field is seldom used, the datagrams that are used in this project do

not have this field.

Data is the field where payload is located.

2.1.6 UDP

The User Datagram Protocol (UDP) is a protocol mainly used for sending media

over networks. UDP has an uninterrupted service to its application but no data

flow control, no congestion control and no retransmission. The absence of control

mechanisms has, of course, side effects on the data stream. The packets can arrive

out of order, i.e they can be dropped or duplicated. In media streaming, which

is the focus of this report, very little is done to tackle these problems. UDP has

capabilities to check if error occurred during the transmission by looking at the

checksum. If an error is detected, it will only drop the segment and no further

action will be taken. The checksum field in UDP is optional and the user can

decide whether to use it or not. In this project checksum is not used. The UDP
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header consists of 8 bytes, see Figure 2.4. It consists of four different fields all 16

bits long; Source port, Destination port, Length and Checksum [5, 10] .

Source port identifies the port of a sender. This field is optional.

Destination port is a port of a receiver. A destination port must be specified.

Length specifies the length of a datagram in bytes. The length can vary between

0- 65527 bytes (if the length is zero then only the header is sent). The

practical maximum is 65 507 bytes, leaving 20 bytes for the IP header.

Checksum is used for error checking in the header and the data. This field is

optional.

The UDP protocol does not closely co-operate with a layer below the IP protocol

layer. Therefore, a pseudo - IP header is added to a UDP packet. This header is 12

bytes large and contains information about: version, length of the header, length of

the data, identification, flags protocols, header checksum, destination and source

addresses. This information is added for extra protection for incorrectly routed

datagrams [13].

Figure 2.3: The fields in the IP header
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Figure 2.4: The elements of a UDP frame

In this project UDP datagrams are packetized in Ethernet frames. The Ethernet

frame size allows an MTU of 1500 bytes information with headers. Though a UDP

datagram can contain up to 65535 bytes with headers, it is truncated into smaller

frames when carried through the network. UDP datagrams can include up to 42

Ethernet frames. In this case each Ethernet frame that has been sent contains

only a part of the video frame. The last Ethernet packet of the video frame has

a smaller size, carrying only the rest of the information and signalling that the

frame has ended. The Ethernet frame that is used in this project is never larger

than 1066 bytes. With 4 bytes interframe gap the maximum size of the frame is

1070 bytes.

2.1.7 RTP/RTCP

The Real Time Protocol (RTP) is widely used in multimedia applications such as

video conferencing programs that need streaming of live data. It was developed

for sending real-time audio and video. One of the big advantages of RTP is the

ability to provide a multicast transmission, not only unicast [5]. Multicast enables

to send one-to-many or many-to-many end users.

RTP packets are compiled in the level above the UDP level. The media stream

is packetized in RTP. When the receiver obtains a UDP segment, it extracts the

RTP packets. The receiver decodes the packets in the application layer. The RTP
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protocol is only seen by the end program/application. All other services will only

detect UDP.

The RTP header has a minimum size of 12 bytes, contains four main fields and six

smaller fields listed below and is visualized in Figure 2.5.

Version is 2 bits long and specifies the type of payload.

Padding (P) is 1 bit long and marks if a packet is padded. When the buffer

overflows it discards the smallest packets, otherwise the buffer discards pack-

ets randomly.

Extension (X) is 1 bit long and indicates if there is an extension in the header.

CRSC Count (CC) is 4 bits long and contains the number of CRSC identifiers.

Marker (M) is 1 bit long. In Confero it indicates the last packet in a video

frame.

Payload type is 7 bits long and specifies the type of encoding. If the sender

changes codec in midstream, it updates this field.

Sequence number is 16 bits long. All frames sent from the transmitter have a

sequence number. Receivers identify missed packets by tracking the sequence

number.

Time-stamp is 32 bits long and is used for the receiver to know when to play

the samples. It is not used by synchronization between media streams such

as video and sound.

Synchronization source identifier (SSRC) is a 32 bits long field that iden-

tifies the source of the RTP stream.

Contributing source IDs enumerate contributing (CSRC) is a 30 bit long

field and this is used to identify the contributing sources such as audio and

video [5, 14, 15].
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The RTP standard is used in pair with the Real time control protocol (RTCP).

RTCP is not used to send any media information. It sends periodically statistics

about the jitter, packet drops and number of packets. It acquires this information

by monitoring the sequence number, the size and the time stamp of the packet

sent. The RTP statistical information can be used by any other application at

both sides[15].

2.1.8 Multicast

Multicast is most commonly used when the sender wants to send information simul-

taneously to many participants in a one-to-many type distribution. The sender’s

data is automatically copied in either the router or the switch. There exists other

types of routing schemes that could be used, but multicast is the most commonly

used for media streaming and internet TV. The advantage of using multicast in-

stead of broadcast is that it saves bandwidth. The data is transferred to those

participants that are connected to the multicast address unlike broadcast that

transferees data to all the computers in the network. Reduction of the number of

participants that receive transmitted data decreases utilized bandwidth. It works

as follows: the sender sends out the data to a single address that is unique for

each multicast session. Every participant in this group will receive the data sent

to this address. The address span that is dedicated for multicast is 224.0.0.0 -

239.255.255.255. In order for multicast to work over larger networks, several pro-

tocols are needed. One example is Internet Group Management Protocol (IGMP).

IGMP is used to avoid the flooding with an unrequired traffic. In local network

with one switch, as used in this project, IGMP is not necessary. In LAN the

multicast acts as a broadcast and send to all ports [5, 16].

Figure 2.5: The RTP header
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2.1.9 QoS

Modern networks need to be able to handle traffic that is delay sensitive, for exam-

ple video or audio data streams. This traffic is sensitive to packet loss (packet loss

introduces image distortions and audio disturbance after decoding) and require

high bandwidth usage. In order to guarantee the possibility to use these applica-

tions, a certain level of quality in the network is required. This term is known as

QoS. QoS addresses the delay in the network, throughput, jitter and packet loss.

In the following subsections, a short summary of the different parameters will be

given.

2.1.9.1 Delay

Delay is a description of how much time a single bit spends in the network, usually

represented in seconds. Delays in a network can cause packet drop, but unfortu-

nately it is impossible to completely avoid them. Every node of a systems adds

delay. Processing delay, Queuing delay, Transmission delay and Propagation delay

are among the delays that can significantly effect the system.

• Processing delay is introduced when switches and routers examine the header

of packets in order to determine their destinations.

• Queuing delay is equal to the time that packets spend in the switch’s buffer

and before they are transmitted. The delay can vary from packet to packet.

If a burst of packets arrive to an empty buffer, the first packet will not

experience any delay but the last one can suffer from large delays. In addition

the packets may arrive at random time intervals [5, 17].

• Transmission delay or store and forward delay, is the amout of time needed

for a packet to be transmitted through a given link. It could be estimated

with the equation

dt = L/R (2.1)

where dt is the transmission delay, L is length of the packets in bits and R

is the rate of the transmission in bits/sec.
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• Propagation delay is the time between sending and receiving the last bit of

a packet. The propagation delay depends on the speed of the medium. The

propagation delay is calculated as the distance between the sender and the

receiver divided by the speed of the transmission.

2.1.9.2 Throughput

Throughput is the measure of the network capacity and is specified in bits per

second (bps). Throughput represents the actual amount of traffic that can pass

through the system. Throughput computations can be done to estimate the per-

formance of the different network elements. Throughput is defined as a number

of bits divided by the time that takes to transport them. This calculation an be

adapted relatively to the application [5, 18, 19, 20].

In theory delay and throughput are independent of each other, but practice can

show different result. If the traffic in the network is transmitted close to its maxi-

mum throughput, it will increase the delays in the network. When the delay and

throughput of the network are known, it is possible to calculate the volume of the

data that is in the network. This is called the delay-throughput product. This

product is a constant and is defined as:

T ∗D = C (2.2)

where T is the throughput, D is the delay and C is a constant. With this equation

it is easy to see that in order to increase the throughput the delay has to be

decreased [18, 20].

2.1.9.3 Jitter

Jitter is a term that describes the fluctuation of the delays in the network. In

datagram switching networks jitter can also be referred to a problem of nonse-

quential packet order at the receiving end. In audio and live media streams it is

important that packets arrive in the successive order. If audio packets arrive with

a large delay or are dropped it will create disruption in the decoded sound. In

video streams jitter can cause image distortion. Audio stream is more sensitive to
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jitter than video stream because video codecs provide algorithms to compensate

possible losses of the data. Whereas is much harder to do with audio [18, 21].

2.2 Video codecs

This section gives a summary of different video codecs used in this project.

2.2.0.4 MPEG-2

Moving Picture Experts Group (MPEG-2) is a codec built around the discrete

cosine transform (DCT), motion compensation and entropy coding. DCT is a

mathematical model for transforming the information in each video frame from

time domain to the frequency domain. Using this model the high frequency in-

formation is discarded in favour of higher compression since the human eye is less

sensitive in perceiving the high frequencies. After quantization step the interframe

coding with motion compensation is done. Each frame is divided into 16 by 16

pixel macroblocks. These macroblocks are then matched with a region in a previ-

ous frame by help of motion vectors. This way of video coding is normally called

temporal prediction with motion compression. It gives good compression rate com-

pared to only using intraframe coding. In intraframe coding each frame is com-

pressed, but temporal prediction is more sensitive to errors. To solve this MPEG-2

uses some intra coded frames (known as I frames) in intervals, enabling the resyn-

chronization if errors would occur. The temporally coded frames are known as

P frames. MPEG-2 normally uses bidirectionally predicted frames, known as B

frames. These frames are predictions from the previous and subsequent frames in

the video stream.

2.2.0.5 H.264/MPEG-4/AVC

H.264 Advanced Video Codec (AVC) was created as a joint project between ITU-T

Video Coding Experts Group (VCEG) and International Standardisation for Or-

ganisation (ISO)/International Electrotechnical Commission (IEC) Motion Picture

Experts Group (MPEG). H264 uses both spatial and temporal compression.
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As MPEG-2 H.264 uses I,P and B frames. Each of these frames are then divided

into at least one block. Doing this increases the resilience against errors. Compared

to MPEG-2, H264 gives normally double the compression at the cost of complexity.

H264 is approximately four times as complex for the encoder and twice for decoder

compared to MPEG-2.

2.2.0.6 M-JPEG

Motion Joint Photographic Experts Group (M-JPEG) is one of the codecs used

in this project. It works by encoding each video frame independently of the other

frames as still images. It is similar to how MPEG and H.264 uses I frames but

with the difference that M-JPEG does not utilize any P or B frames. The codec

is based on the same compression algorithm as used in JPEG for still images. It

uses a lossy version of intra-frame compression based on DCT.

In Confero M-JPEG quantization parameters can be chosen from the range of

0-100. Zero, in this case, corresponds to the maximum compression. In this

project the setting for the quantization will only range from 50-100, meaning that

compression of the images will change between 30:1 to 4:1.

M-JPEG uses only the spatial redundancy and not temporal redundancy like

MPEG or H.264, it is less complex than the others, at the cost of a much higher

bandwidth usage.

2.3 Network simulation and estimation software

This section gives a short introduction to the programs used to test the network and

create the programs Capture Packet - Extract Parameters (CP-EP) and Switch-

Simulator.

2.3.1 TCN TimeAnalyzer

TCN TimeAnalyzer (TA) is a product currently under development by TCN. TA

is a tool for analyzing and modelling the worst case scenarios in switched Ether-
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net networks by calculating forwarding delays of Ethernet frames. Packet drop

estimations also include the possibilities of predicting switch memory overflow.

A network is evaluated by virtual simulation of data flows transmitted from end

users that are connected via switch. It is possible for the user to create Ethernet

frames depending on the main protocol used (UDP or TCP). The user also needs

to set parameters such as size, interval and maximum time of delivery. These

parameters will later be used in the latency calculations.

When creating flows for the network, the user compiles them from the frames, im-

itating the real observed flow, e.g. an MPEG-2 flow consisting of I,P and B frames

organized according to the following order IPBBPBB. Each I, P or B frame carries

different information to the receiver and thus have different size, not necessarily

the same as its’ neighbour. Therefore the real flows will be simulated by repeat-

ing the same frame order and size accordingly. Traffic is simulated right after all

the flow and network parameters have been specified. The result is saved in an

Hypertext Markup Language (HTML) document. The saved outcome specifies

the worst case of buffer utilization. It thus informs the user about the possibility

of a buffer overflow. The worst case forwarding field delay provides information

about comparison between the maximum pre-defined and estimated delays. If it

exceeds the maximum allowed delay then the field is red, otherwise it is green.

The two other fields correspond to the best case forwarding time and the worst

case jitter. The later is calculated by a simple subtraction between the worst and

best forwarding delays, as shown in Figure 2.6 and 2.7.

2.3.2 TCN StreamAnalyzer

TCN StreamAnalyzer (SA) is also under development by TCN. SA provides con-

venient visualization and verification of network traffic. By testing Ethernet traffic

in switched networks it is possible to see the latency, packet drops, serialisation

time and jitter for each network packet. SA is currently able to operate only with

.hea files. These files are recorded by netANALYZER software that is provided

along with the Hilscher network card. NetANALYZER records and saves all the
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Figure 2.6: A picture of the test system in TA

Figure 2.7: The result from TA

Ethernet frames passing trough the ports of Hilscher network card. Then, these

frames can be analysed by SA offline.

NetANALYZER card has two TAPs (Traffic Access Points) and each TAP has two
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ports, in total there are four ports. Port 0 and port 1 belong to TAP A. In the same

manner, port 2 and port 3 belong to a TAP B. Both TAPs receive and send packets.

Ports 0 and 3 are typically connected to the end users, ports 1 and 2 are connected

to a switch, enabling to increase the number of participants in the network, see

Figure 2.8. With this setup traffic from two computers can be monitored, measured

and time stamped with an accuracy upto 10ns. Measurements were isolated from

any outside influence to produce as exact results as possible. The traffic from each

TAP is then recorded by the program and saved to a .hea file. SA uses the .hea

file as an input to generate plots of network traffic for every port. Figure 2.9 shows

captured traffic by TAP 3. Four bursts of packets are clearly seen in the figure

(beige ”triangles”). In addition packet bursts experienced delay in the network,

that explains why forwarding time of every successive packet is increasing.

The SA Graphical User Interface (GUI) is divided into two parts. The bottom

window gives the static information of the measured traffic: source and destina-

tion addresses, protocol type and ports. The last field if the traffic is parallel or

sequential. If the field is set to parallel, it means that the traffic has only been mea-

sured over one tap and Sequential means that the traffic has been measured over

two taps. This is because only this traffic flow has a valid starting and stopping

time.

SA provides RTP statistics over the saved traffic. Based on tracking packet se-

quence number in each flow the program is able to display the number of dropped

packets, if any, and intervals of loss, see Figure 2.10.

The plot makes it possible to see the maximum delay on individual packets. It is

also possible to zoom in to see the serialisation time off the packets.

2.3.3 Confero

Confero is a real-time multimedia communication program developed by the com-

pany Alkit Communications AB. The main application of this program is online

video conferences.

21



Figure 2.8: Network test system

Figure 2.9: SA plot of packet bursts with increasing packets’ queuing delays
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Figure 2.10: Measured packet drops in RTP statistic from SA

In this project, the program fulfils different functions along the process of work.

In the beginning of the project, it is used to create traffic in the network through

sending video and audio streams between computers. The quality of the video

stream is increased until the moment when the switch cannot handle the traffic

without a packet loss. After this critical point, Confero will then be used to see if

this point can be avoided by knowing the traffic load.

Confero gives the user a lot of freedom to choose among different settings. The

main settings that will be changed in this project is the audio and video codec,

quality settings and sizes of the video frames. The video codecs that Confero

provides and that are used in the project are: M-JPEG, MPEG-2 and H.264. These

codecs have different compression rates, complexity and corresponding quality.

The user is able to alter bandwidth use for transmission by changing the video

parameters. The default audio codec is G.722.1. Both the video and audio is sent

over the network as RTP.

2.3.4 Wireshark

The open source software Wireshark has been built over the WinPcap tool includ-

ing functions for network traffic analysis. Wireshark is a convenient user interface

program that allows direct and easy access to the network packets and makes the

information acquisition simpler [22]. As shown in Figure 2.11, Wireshark displays

packets with source and destination IP addresses, protocol, frame size and addi-

tional information about each packet. Headers are decoded and can be read by

the user.

A small set of basic Wireshark functions have been used in the beginning of the

project to provide a user with information about the inner structure of the packets
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Figure 2.11: Wireshark monitoring Confero traffic

sent in and out by a running Confero program. Ethernet traffic captured by

Wireshark can be saved as a .pcap file.

2.3.5 WinPcap

One of the softwares used in this project, is an open source packet capturing tool

called WinPcap. WinPcap was created for Windows machines. It allows a real-

time access to the raw Internet packets at the kernel level. WinPcap includes li-

braries that provide the ability of packet processing right after the network adapter

has captured them and more complex processing at the higher application levels.

The access to the network adapter is provided by a network interface driver called

Netgroup Packet Filter (NPF), that is a part of the WinPcap installation pack.

The libraries provided are packet.dll and wpcap.dll. The first one, as mentioned,

Figure 2.12: Schematic picture of how Winpcap work
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allows working independently with the Internet traffic captured by the card while

the second is used at the high application level of the stack, providing different

functions, depending on the application purposes, see Figure 2.12 [23].

The project uses the WinPcap libraries to capture internet traffic and utilizes the

filter function to obtain only UDP packets from the network, then it processes them

further for the header analysis retrieving necessary information for the network

analysis.
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3

Network load testing

The greater part of the project is devoted to investigating the switch behaviour

when traffic has different origin and load. Three major tests were carried out: real-

time observation of RTCP statistics, stream reproduction in artificial environment

and network simulation with TA.

3.1 First test: Network setup

Below, we describe how the network setup was tested for diagnostic purposes. At

this point of the project it was needed to learn.

• Is it possible to create enough traffic to fill the switch’s buffer? If possible

then which traffic parameter leads to this result?

• How does the network traffic look like? What protocols were used? How

many frames were required to send the video frames?

• How does the network behave under heavy traffic load?

3.1.1 Hardware setup

Measurements of the switch buffer capabilities is an important part of this project.

It is required for further tests and project development to acquire the switch buffer
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limits. To keep the setup as simple as possible it was decided that three computers

would be used in an initial testing setup. These computers would be connected by

a single switch in a star shape topology, see Figure 2.1.

In this test two switches were used: D-Link DES 1005d and D-Link 1008d. DES

1005d is a five port, unmanaged, store and forward, layer 2 switch with a total

Random Access Memory (RAM) buffer of 512 Kbits. The difference between the

switches is that the DES 1008d has 8 ports and 1 Mb in RAM. The reason for

choosing these switches is that they are simple to manage and widely used. The

Ethernet cables connecting the system are standard 100BASE-TX Ethernet cables.

Three computers have Confero running during the test. Two of the computers

are equipped with basic web cameras. These two computers are transmitters and

generate the traffic in the network. The third computer acts as a receiver, Figure

3.1. It was estimated that one computer alone could not create enough amount of

traffic to overflow the switch. With this setup the traffic from the two transmitters

will be concentrated at the receiver port. Caused by the difference in speed between

incoming and outgoing traffic, a queue is created in the switch.

3.1.2 Software setup

In the first test, two programs were mainly used, Confero and Wireshark. Con-

fero generates video traffic in the network while Wireshark surveys and records

propagated packets inside the network. Transmission is saved by Wireshark for a

detailed examination of the traffic produced by Confero.

Tests of real-time systems have many factors and variable that are difficult to

control and they may influence the final result. Sources of flaws and errors are also

problematic to find. Parameters that can be controlled by Confero are:

• Transmission type. Confero has the ability to use either Session Initiation

Protocol (SIP), unicast or broadcast transmission. In order to keep things

as simple as possible multicast was used.
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• Video size settings were changed between small (160*120 pixels), medium

(320*240 pixels) and large (640*480 pixels). The size S of the video frame in

bytes is directly proportional to the number of pixels N and can be calculated

as 3.1

N ∗ 24/8/1024 = S[Kbytes] (3.1)

without any compression.

• The frame rate can be changed between the default value of 25 frames per

seconds (fps) to the maximum 50 fps. Altering the frame rate causes changes

in the sampling time of each video frame. This was mainly used to increase

the likelihood of data stream contention in the switch port. With more

frequent bursts of packets, the probability of collision is increased.

• The quantization (Q) setting is the compression rate of the codec. The Q

Figure 3.1: Test network configuration
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scale in Confero is between 1-100 and the default setting is 50. When using Q

= 50 on e.g a M-JPEG codec, the compression rate is about 30:1 (for stable

outcome a test picture was used). When using Q = 100 the compression is

only about 4:1.

• Codecs used during the test were M-JPEG, MPEG-2 and H.264. They were

chosen because of their complexity and compression rate.

All computers used Windows 7 as operating system.

3.1.3 Test results

A built in Confero function monitored RTCP packets in the network and displayed

the collected information. RTCP packets convey statistics of the transmitted mul-

timedia flows of every participant, see section 2.1.7. Packet drops were achieved

with high Q settings on the M-JPEG video codecs. Drops occurred when Q took

values from 97 to 100 while using the test picture with a size of 640*480.

Wireshark was running on one of the machines recording the transmitted data

streams. In the end of each transmission (one for each Q value), received packets

were saved in a .pcap file for analysis. The saved traffic contained expected RTP

video, audio and RTCP packets. A correlation between increasing numbers of RTP

frames and higher Q values can be seen in Figure 3.2. The packets’ size did not

correspond to the maximum Ethernet packet size. Ethernet packets, as mentioned

in section 2.1.4, are able to have the maximum size of 1500 bytes/packet. Video

packets sent by Confero had the largest packet size corresponding to 1066 bytes 1.

The packet header occupies 42 bytes leaving 1024 bytes for the payload.

Audio packet size remained constant over time as expected. G722.1, that was the

default audio codec for Confero and continuously used throughout the project, had

a packet size of 134 bytes.

1Alkit did not have any particular reason for this frame size. It was something they started

to use and then did not change as the work progressed.
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All test equipment was disconnected from the Internet. Nevertheless, a number of

default applications tried to connect or synchronize with the Internet. Therefore,

multimedia flows had a small level of ”pollution” caused by default Windows 7

system applications. Even though extra traffic represented a very small part of

the transmitted data it could still influence the results and needed to be avoided

as much as possible.

Apart from packet loss and extra traffic discovered by observation, it was found

that heavy network load causes decline in a frame rate. Further tests that involved

other machines lead to a conclusion that it was the graphic card that could not

process a high quality video flow.

Audio showed to be more sensitive to jitter. Certain sound disturbances appeared

in high quality flows. These were not caused by packet loss but by jitter in the

network. According to RTCP statistics, audio packets arrived to the receiver, but

too late to be decoded within the given multimedia conference session. Audio

packets were dropped by the receiver causing clicking disrupting sound.

Figure 3.2: The effect of the Q value on M-JPEG compression
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3.2 Second test: Testing programs

The Second test involves extra elements as a Hilscher network card (netANA-

LYZER) and an industrial switch. These additional components provide exact

time resolution for each packet and provide tools for traffic analysis.

3.2.1 Hardware setup

Due to the graphic card problems, changes in the hardware setup was needed.

Substituting the laptop at the transmitter side minimized the risk of losing data

at the receiver side. Limited company resources did not provide possibility for

substantial changes of all the elements in the tests, but the likelihood of dropping

in frame rate was minimized.

Some initial testing using SA showed that there was some extra transmission pre-

viously unknown from the earlier testing. DES 1005d and DES1008d switches have

a built in flow control function. This function sends a pause frame to all senders

when the buffer is about to overfill [24]. This flow control became a problem. It

became much harder to define exactly when the switch will drop packets.

In order to continue measurements, it was decided to the change switch to a

Westermo RedFox. RedFox is a 8 port managed layer 3 switch created for industrial

applications. This switch has a buffer size of approximately 700000 bits [25].

RedFox also has the flow control function. However as RedFox enables manual

switch managing through an access interface, the flow control function can be

turned off then.

3.2.2 Software setup

The second test was meant to provide more accurate measurements of the net-

work traffic and switch behaviour. Instead of relying only on the built-in Confero

functions and Wireshark surveillance, this test also used netANALYZER and SA.

Prior to the test execution, the network was simulated in TA with settings from

the previous test. The TA simulation has to create a clear understanding of the
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network and all included elements. TA is mostly used to predict and emphasise

what flow settings measurements have to be focused on. The model was only cre-

ated to simulate the M-JPEG video flow, due to the fact that M-JPEG was the

only codec that can achieve the targeted packet drop. H.264 and MPEG-2 was

also inconsistent in the numbers and the size of frames used for a predetermined

video frame.

3.2.3 Test results

Finding the lowest setting where packet drop occurred using only Confero is prob-

lematic, since the program settings do not provide a high precision control of the

traffic size parameters. In order to handle this problem, a test model was created

in TA. This model would then serve as a reference point for initial settings for the

measurements.

Problems with TA became apparent during testing of the model system. TA is a

prototype product and was never tested for large flows. Running test with a large

flow took more than 8 hours. It was originally planned to incorporate TA with

the CP-EP program, but due to the long computation time of the program this

was not efficient. Results also gave incorrect time delay estimation of individual

packets, though it was not a target goal of the test. The only outcome that was

of interest was the prediction of the worst case buffer utilization. The prediction

gave expected result. According to the simulations, the RedFox switch buffer is

full when a burst of UDP datagram has a size correspondent to 85 packets. That

amount of packet can be converted to a Q value corresponding to 95-96 when using

the test picture.

The test result from TA was then applied to the real test station. Firstly the

Q value was set to 96 (Q=96 corresponds to 97 frames). Running a test with

these settings showed packet drop in the system. Lowering the setting to Q =

95 indicated no packet loss. Because the drop is not measured straight away, it

cannot be defined that no drops will occur in the future. So it was decided to leave

the test running for a long period. It did not yield any definitive result. Drops

were measured but a very low count. After running the test for two hours, only
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Figure 3.3: Traffic captured from Confero, representing forwarding time of each

packet burst in µs

40 drops was detected. These drops were only measured from one test, and were

recorded when one computer started from the screen saver mode. In a later test,

in which the screen saver mode was turned off, no drops were recorded.

When looking at the Confero traffic in SA, packets’ forwarding time was randomly

distributed, see Figure 3.3. The packet time delay over 7500+ µs will cause packet

drop in the switch. From these measurement of the switch it was not possible to

give a more accurate value of the maximum delay.

3.3 Third test: Simulating traffic

This test was created by the information learnt from earlier tests. In this test all

the traffic was created by traffic simulations, in order to control the parameters as

much as possible.
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3.3.1 Hardware Setup

The new test station consists of three IAR cards. These cards have the ability

of creating a burst packets as traffic in the network in accordance with specific

required parameters. With these cards it is then possible to find a time when flow

bursts collide. The test quickly gives the worst case scenario, avoiding spending

time with Confero real-time transmission.

IAR cards have the IP addresses: 192.168.0.10, 192.168.0.20, 192.168.0.30. These

card can operate both as a transmitter and a receiver. The network configuration

setup remains the same. Three end users are connected through a netANALYZER

card in a star shaped topology. Unfortunately only three cards were available

when this test was carried out. Two cards act as transmitter and each generates

the simulated video traffic. The third card acts as the receiver of the simulated

video stream.

3.3.2 Software Setup

The only new program introduced for this test is the control program for the

cards. In this program it is possible to set necessary parameters. Parameters

changed under this test were:

• Packet size of each Ethernet packet.

• Delay between packets within one packet burst.

• The number of packets in one burst.

• The number of bursts in the stream.

• Delays between the bursts.

Figure 3.4 shows the structure of the simulated video traffic. One packet burst, in

this simulation, represents one video frame, where packets, consequently organized

and encoded, carry chunks of the video frame data. The time distance between

packet bursts is the time difference between sending each video frame.
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Figure 3.4: Ethernet data stream frame burst in time

3.3.3 Test results

When measuring the traffic the two transmitting cards would start sending at the

same time. The traffic consisted of ten bursts of frames. One burst represents one

video frame. The IAR cards introduce time drift in the frame bursts when the

number of bursts exceeds ten. After each burst they got little more out of sync,

restraining the possibility of achieving and controlling packet collision.

There was also a mismatch of interframe gap between simulated and real trans-

missions. According to the analysis by SA, interframe gap was 20 bytes or 1,6 µs:

interframe gap (12 byte) and the preamble (8 byte), see section 2.1.4. Nevertheless

the interframe gap of the simulated flow corresponded to 24 bytes. The additional

4 bytes appeared to be appended for Ethernet specification, resulting in a total

frame size of 1070 bytes. Ethernet uses CRC in order to detect errors in the trans-

mission. When looking at the traffic generated by Confero it had the same extra

four bytes. CRC is added and removed by the hardware. Wireshark connects to

the lowest levels of the IP stack after CRC was removed, and is therefore unable

to display it.

After fine tuning the measurements, it was possible to predict the amount of frames

needed to achieve packet drops. According to the test, the limit for the switch is

87 frames. This result is somewhat higher than the prediction made from TA. TA

predicted that packet drop would occur at 85 frames. But both predictions are in

the order of a Q value between 95-96. The most likely reason for the difference in

value is that in TA the switch buffer has a size of 700kb [25]. This test however,
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does not use any estimation of the buffer size. Switch buffer estimation was done

according to the following calculations

L

Pt

= Pn (3.2)

Pn · 8 · Pl = B[bits ], (3.3)

where L is the lowest latency before the packet drop, Pt is a time to send one

packet, Pn is the maximum number of packets that buffer can contain, Pl is the

size of every packet in bytes, B is the total size of the buffer.

The lowest latency measured with packet drop was around L = 7650 µs and the

time to send one packet Pt = 87.2 µs (1070 byte + 8 byte preamble + 12 byte

interframe). With these numbers, the maximum number of packets that the buffer

can hold is Pn ≈ 88. Using the Pn from 3.2 in 3.3, multiplying with 8 to convert

to bits and multiplying with the length of one packet gives Pl = 1090. This gives

the total buffer size to be B ≈ 770000bits. These numbers are in accordance with

the measured results. There was no conclusive evidence to why the buffer size has

increased with 10% as compared to the previous test done by TCN[25].

The drawback of creating the traffic in a test situation is that it is hard to create

a transmission that would exactly mimic the real traffic from Confero. In the

constructed test, it was not possible to have audio sent from the same card as the

video. This implied that an extra card was needed to send the audio. At the time

of testing there was only three cards that were fully functional. As a result, the

RTCP was not represented in the test model. The effect of this is fortunately not

a big issue. When Confero sends the M-JPEG stream the last packet is smaller

than the other if RTP padding is not turned on.

3.4 The developed programs

The program CP-EP, that was developed for packet capturing, is based on the

WinPcap library. The WinPcap library is an open source library and has been
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described in detail in section 2.3.5. For a more detailed description of the devel-

opment environment setup see Appendix A .1

3.4.1 Obtaining network traffic parameters

WinPcap provides access to the raw packets that are received by the network card.

Packets are still unprocessed by any application of the higher levels of the IP-stack.

Raw network packet are picked by the CP-EP with the help of the WinPcap driver

and functions provided with it. Offline packet handling showed to be more reliable,

therefore a specified number of captured packets from a transmission is saved on

a hard drive as a .pcap file. Saving data into a .pcap file enabled parallel control

of program execution by Wireshark.

The raw network packets have been received in an unordered manner from different

sources. Therefore the first procedure was aimed to reading and decoding packets’

IP headers and organizing them according to the data stream parameters. This is

required to handle each data stream separately later on. One data stream is made

up of network packets that have the same source and destination IP addresses and

port. According to this classification one source can send out data from different

applications. It is important to be able to separate these data from each other.

Moreover, this specification enables to conclude how many participants there are

in the conference and what data streams are exchanged between them.

Organized by the IP addresses and ports data streams have to be analyzed from

the point of frame bursts, since the project deals with video streams. Each video

stream would have a certain structure, that can be described as periodical frame

bursts. The stream structure is visualized in the Figure 3.4.

One condition is that the network topology and data stream parameters do not

change over the observed time period. The duration of the frame bursts is constant,

or within a small deviation in the order of nanoseconds. Taking that into account,

CP-EP extracts the minimum time period for each data stream.

As was mentioned earlier, tests were carried out with different video and audio

conference settings. All codecs, that were at the user’s disposal, were tested to
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study the data stream outcome for different codecs, their structure as well as switch

and network behaviour. CP-EP is able to distinguish the video and audio codecs,

used by Confero.

Finally, to have a clear picture of the data structure in the stream, CP-EP provided

the size of a whole frame burst.

All the above obtained parameters were needed for simulating the exact data flow

in TA and SwitchSimulator in order to predict the worst case scenario.

TA requires the size of the frame burst and the time interval between them. The

payload type was needed for the user to understand the structure and size distri-

bution within one UDP datagram.

For the readers convenience, a more detailed algorithm and the settings are ex-

plained separately in Appendix A .1 and section 3.4.2.

3.4.2 CP-EP algorithm

Prior to packet processing or even capturing the system has to have access to them.

A protocol stack is an integral part of every network-handling machine and in this

case it needs to be avoided. WinPcap provides a driver that interacts directly with

the network card. Thereby getting around packet processing by the protocol stack.

The later packet processing utilizes the packet.dll and wpcap.dll function libraries.

Steps :

1. Find devices for packet capturing. Function used : pcap findalldevs ex.

This function searches for devices located on a machine (can also access a

remote machine) and lists them[26].

2. Open a device to begin capturing. Function used: pcap open. This func-

tion opens a device among the ones listed in the previous step. It captures

packets but keeps only the first specified number of bits[26].
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3. Since the list of the devices is no longer needed, the list can be removed from

the memory. Function used: pcap freealldevs. This function erases the

list of the devices obtained in step 1[26].

4. Having packets streaming in, it is time to filter out only those of interest.

One constraints of this project is that only Ethernet/UDP protocol packets

are under surveillance. Firstly it is necessary to select only Ethernet packets

by finding out the link layer parameters. Function used: pcap datalink.

This function returns the link layer parameter, according to pcap.lib the pa-

rameter DLT EN10MB corresponds to Ethernet (10Mb, 100Mb, 1000Mb,

and up)[26].

5. The filtering proceeds with keeping only UDP packets. Function used: pcap

compile. This function builds a filter based on a set of filter parameters

(protocol type, ports etc.)[26].

6. Apply filter to the current capture. Function used: pcap setfilter. This

function utilizes the output from the previous step and relates it to the

current capture[26].

7. The filtered Ethernet packets are then ready to be saved into a file. Function

used: pcap dump open. This function opens a file on the hard drive to

write processed data to it[26].

8. At this point everything is ready for saving the data into a dump file. Func-

tion used: pcap loop and pcap dump. The first function captures a

specified number (e.g. 10000) of filtered packets, and saves them as .pcap

file with help of the pcap dump function[26].

9. Prior to the next step it is required to change the format of the data coming

from the source. Function used: pcap createsrcstr. This function trans-

forms the format, so the other application can read it. This is not always

necessary [26].

10. Saved packets can undergo a header decoding procedure to obtain the re-

quired information for the analysis. Function used: pcap loop, dispatcher handler.
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Pcap loop reads every packet separately in the captured file and extracts

headers using the dispatcher handler function. The latter decodes IP,

UDP headers and saves them into a global variable that contains only headers[26].

11. It is now possible to differentiate streams according to the source and des-

tination addresses as well as port numbers. Function used: CompareIn-

Struct. The function creates a two-dimensional array. Each row is related

to a separate stream and its’ columns contain stream parameters, with the

IP addresses it also contains the time of packet arrival and size. The infor-

mation is presented in a suitable format for further processing in the next

step.

12. To have a better overview of the data captured, the video and audio codecs

are decoded. Function used: payloadType. This function finds a pay-

load type in the packet header. Certified payload types are documented in

[27]. Depending on the type of the payload this function passes stream pa-

rameters to the packet size jpeg, packet size h264, audio parameters

functions.

(a) In the case of the M-JPEG payload type. Function used: packet size

jpeg. This function looks for the marker that is signaling the end of

the datagram. If the marker is equal to 1, the current packet is the last

in the captured datagram.

(b) In the case of the H.264 payload type. Function used: packet size

h264. This functions searches for the packet that is know as the se-

quence parameter set. It is transmitted before any UDP datagram frame

and sets video parameters for applications decoding video streams.

(c) In the case of audio payload type (G.722 codec). Function used: audio

parameters. This function obtains not only the packet size but the

time interval as well. This is due to the fact that those parameters are

constant if the codec is not changed during the recorded time. Therefore

it is much easier to handle them simultaneously in one function.
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13. Time intervals between video frames. Function used: timePeriod. This

function reads time headers for every packet in the stream. If the time dif-

ference between two packets is much larger compared to the other inter packet

time differences, then it is considered as inter video frame time interval.

14. After the parameter in steps 12 and 13 have been received, they are saved

to a .txt file. Users can then open the file. This file is rewritten every time

when the program runs.

3.4.3 Switch behaviour simulation

One of the reasons for packet loss is switch memory overload. Under the conditions

when the sending speed of data streams is higher than the receiving speed. The

buffer is then forced to store and queue packets before their departure. That leads

to the buffer fills up with data quicker then it is able to stream it out. Finally

this leads to complete overfill and the switch is unable to accept more data packet

loss sets in. Ethernet flow control functions can lower the bit rate automatically

by sending a pause signal, though it may not be enough to prevent loss in the

transmission. Yet this project is based on calculating the worst case scenario, in

the simplest possible case and for that reason Ethernet flow control was disabled.

This is true for all the later simulations.

The CP-EP program provides the set of parameters for being able to understand

the type of the network topology and data streaming within it. In the development

stage, the simplest network configuration was used: two computers, connected with

a switch, broadcasting video. Given the stream parameters, the next objective is

to find out whether the switch will overflow and will start dropping packets or if

it can handle the given streams without discarding any packets.

TA provides such an analysis however as has been mentioned earlier in section 3.2

tests may take several hours to run and in the conditions of real time applications

such time delays simply are unacceptable. Therefore it has been decided to simu-

late switch behaviour separately from other parts of the project. That would give

a clear picture of the switch behaviour in the given environment.
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3.4.4 SwitchSimulator

All the tests in this project were carried out with a store-and-forward switch. This

mean that the switch could send a packet only after it had been completely received

and stored in the buffer. Therefore, the switch simulator operates in the manner

described and showed below.

A small set of streams were simulated with the following input parameters: packet

size, interframe gap, see section 2.1.4, time delay and number of packets. Time

delay relates to the time difference between arrival time of the first packet of the

some stream and the first packets of other streams that arrived later. In Figure

3.5 it can be clearly seen that packet 1 in stream 3 will arrive to the port prior

to the other streams’ first packets. The moment when the first bits were received

by the switch is considered as the starting time. All the delays are related to

that moment. The current switch simulation may provide calculations for various

switch buffer sizes. Thus, buffer size is one of the input parameters.

Figure 3.5: Packet storage in switch memory

In the simulations the speed of the input/output channels is 100 Mbit/s. The total

number of bits received on the entry side is the speed of the channel multiplied

by the total number of receiving ports. The output speed remains constant -

100 Mbit/s. Data streams are considered to be similar to M-JPEG video streams.

Other video codecs as MPEG-4 and H.264, as mentioned in section 2.2, show better

compression and adaptation for the real-time video streaming. Nevertheless, the

UDP datagram structure is heavily dependent on the transmitted data i.e., the
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number of P-, B - frames vary. The I,P and B frames are followed by small size

frames that change in size and number unpredictably. Therefore it is decided to

simplify the simulation phase and consider only M-JPEG video streams.

As soon as a few streams are received, the switch stores bits of different packets

separately. Having obtained the whole packet, the switch checks if it can send it

at the same moment. If the check gives negative result, the packet is queued.

The simulation is based on creating a clock or sampling time. Every 1µs the

switch ports check the number of bits passed to them from each of the stream.

At the same time the buffer checks if packets are completely received and if the

first packet in the queue is sent out. Thus every sampling time the buffer saves

1µs · 100Mbit/s ·N bits and drains 1µs · 100Mb/s bits, where N is the number of

streams.

Subtracting the queue size from the buffer size decreases the remaining buffer

space. When the difference is zero, the buffer stops accepting any incoming data.

When this happens, parameters of the last packet saved into the memory are then

displayed for the user, as shown in Figure 3.6. If the buffer is able to manage more

data after the whole transmission is completed, the user obtains information that

load does not cause any packet loss due to buffer overflow.

This simple simulation proved to work for different network and stream configu-

rations, automatically adjusting switch actions without the user’s interference.

The simulation does not consider complicated queuing theory and probability of

losing packet before the switch. The focus was on how the switch behaves under

the given simulation parameters, without processing packets for a checksum error

or introducing jitter between streaming packets.
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Figure 3.6: Result of the SwitchSimulator
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4

Tests of the developed system

The last phase of the project aims to link all obtained test knowledge and developed

systems to a real application. Due to lack of time all the manipulations are offline

and manual.

4.1 Measurements

Three computers participate in a video conference. They are in a local network

connected through a Westermo switch. The size of the switch memory was cal-

culated in the earlier test with IAR cards and was already predefined as 770000

bit for these measurements, see section 3.3.3. Two computers broadcasted video

with set video size and quality. The third participant received two video streams

simultaneously, as shown in Figure 3.1. After the transmission began the CP-EP

program captured the specified number of packets, required for analysis. When

the program has completed the analysis, it saves the extracted parameters into a

DataStreams.txt file in the same folder where the program is located. In accor-

dance with received parameters local network and data streams can be created in

simulations to test the network robustness in terms of packet loss. This was tested

in the following four tests.
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1. Confero statistics observations includes a monitoring statistics window that

a program provides as one of the additional functions.

2. TA replicates the network topology from the information in DataStreams.txt

file. This tool gives a prediction on packet delay and possible drop.

3. Two IAR cards create similar data flows as in the real time video conference.

The flows is captured by the netANALYZER card that saves data into a .hea

file. SA reads the saved .hea file and visualizes the flow as well as gives out

information about packet loss and delay.

4. The switch simulation may be similar to test two: reproducing artificial flows

and feeding the user with time and packet sequence numbers of the switch

buffer overflow moment.

Every test uses its own method and algorithm of analysis. IAR cards are based on

the real-time stream creation while SwitchSimulator and TA simulate and estimate

virtual streams. In addition, TA requires considerable amount of time for process-

ing data. While the switch simulator is only focused on one part of the whole

network - the switch buffer. Therefore, some deviation in results are expected.

All four test supplied the user with information on: 1 - were there any packet drops

with the given video size and quality, if yes - then when was the drop (time and

packet sequence number); 2 - if no - then the network is robust enough to continue

the transmission.

In the case of data loss, the user must lower the video parameters. The switch

simulator provides a sequence number of the last packet that was received before

packet loss. This sequence number corresponds to the number of frames in one

UDP burst that leads to packet drops. A table of quality size and frame number

can help to set the right Q parameter. The last procedure is repeated until no loss

of packets is observed. Figure 4.1 gives a graphical overview of the testing system.
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Figure 4.1: Scheme of testing the developed system

4.2 Video transmission and traffic capture

The network topology corresponds to the earlier described setup: two computers

transmit video data. They are linked together with a Westermo switch to a third

computer that operates as a receiver. Data flow directions and topology can be

observed in Figure 3.1.

All three computers have Confero software installed but only one computer uses

the CP-EP program.

Figure 4.2 shows the receiver side when the video conference is running between

three computers. The video size and the quality of the video are set to the maxi-

mum level and test pictures were sent to reach stability in the network load.

When the transmission begins, the CP-EP program starts to run on one of the

computers. It is done through the command window. As shown in Figure 4.3, the

command line prints out the name of the network adapter that can be chosen for

a capturing procedure. The chosen network adapter captures a predefined number

of packets (10000 in this case).
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Figure 4.2: Confero video conference with maximum video size (receiver screen)

The program saves stream parameters into a .txt file that is found in the same

directory as where the program is executed. In Figure 4.4, the information in the

text file corresponds to two IP addresses and ports of the video senders (stream 0

and stream 1), two other streams are RTCP packets. The designation of each port

can be found in the official table [27]. There, port 5566 is preassigned for UDP

transmission and port 5567 is preassigned for Multicast Object Access Protocol

(m-oap) transmission. Confero utilizes port 5567 to send RTCP statistics over

the network. In the list of addresses and ports below, the user can also see what

payload type (M-JPEG in this case), total size of the UDP datagram and time

between UDP datagram bursts. The parameters above are sufficient to proceed

with the next step - TA simulations.

The features and functionality of TA were described in section 2.3.1. After feeding

in the stream parameters the following result can be observed in Figure 4.5. In the
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Figure 4.3: Packet capturing with CP-EP

Figure 4.4: Obtained data streams’ parameters

left most window, flows, all streams are visible; their priority, number of Ethernet

frames in every UDP burst and the type of the transmission (broadcast). The
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outcome of the simulation is saved to a.html file, the content of which is shown in

the Figure 4.6.

Figure 4.5: TA streams simulation

Figure 4.6: TA simulation results

It is now time to check if a real time simulation will give the same results as the

calculations by TA. Two IAR cards produce two flows with size and period identical

to a Confero video conference. In Figure 4.7 netANALYZER captures the traffic

and the program displays the streaming data accordingly to the ports of a network

card. The recreated stream is placed into a .hea file which is later read by SA. The
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later tool provides visualization of the traffic activity in the simulated network,

as seen in Figure 4.8. Due to the heavy load of the switch the forwarding time is

increasing for every packet. Growth of the forwarding time will proceed until the

switch will not be able to process both streams and thus one of the streams will be

banned from sending more data. In Figure 4.9 it is seen that cards stop sending

the green stream, thus at one point in time only blue stream transmits. In the

real life system, packet loss would occur in both of the streams. Forwarding time

envelope would have some fluctuations in contrary to the constant value after the

switch overload.

Figure 4.7: netANALYZER capturing packet in simulated traffic

The final step of the offline packet drop prediction mechanism is simulating the

network load with given streams passing through a network switch. Following

the same procedure as in TA - defining the numbers of streams and their size,

simulation can then start. As can be seen from Figure 4.10, the last line in the
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Figure 4.8: Forwarding time of the packets in one UDP datagram

command window shows that the last packet went in the switch before the danger

of losing packet occurred.

Therefore it is safer for a user to choose a video Q value that would correspond

to 88 frames or less. From Table 4.1, we can see that Q 95 satisfies the suggested

amount of frames.

After a process of simulating, checking and confirming this prediction with four

Q value 90 91 92 93 94 95 96 97 98 99 100

Frames 59 62 64 70 75 83 97 110 157 190 218

Compression 16 15 14 13 12 11 9 8 6 5 4

Table 4.1: Number of frames in one UDP datagram in correspondence to Q value

and compression
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Figure 4.9: Enlarged visualization of two simulated by IAR cards video streams

(blue and green), where a packet drop occurs in a green stream

different ways it was clear that the network is overloaded with video streams, and

the receiver does not get all the sent information. Therefore the video quality must

be reduced. According to the last simulations, the limit for this network would be

a video at Q value of 95.

In accordance with this prediction the suggestion, tests and simulations are then

tested with an updated Q parameter. All the steps are repeated which are not

described in detail.

The video conference began with Q95, and Figure 4.11 indicates zero packet loss

in the Confero statistic window. Meanwhile packets were captured, processed and

saved. A decrease in amount of UDP burst can be observed in Figure 4.12.

The same real-time video flow corresponding to the quality of 95 replicated by

IAR cards shows an increased forwarding time but no packet drop in transmission,

see Figure 4.13. The linearity of the forwarding time is continuous and does not

53



Figure 4.10: Result of SwitchSimulator estimation. ”received at time means the

time the packet arrives to the switch. Sent at time means tells at what time the

packet left the switch

present any loss. Constantly increasing forwarding time would eventually cause

packet drop if the quality was larger than 95 (if number of packets in the frame was

bigger, as in the previous case). Enlarged view on one UDP datagram confirms

(Figure 4.14) the prediction - all the cards were able to send out packets constantly

without halting.

The switch simulations show no buffer overload. Thus, the queue still contains

packets and the switch send them out after the transmission was finished, see

Figure 4.15.
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Figure 4.11: Confero video conference. Quality 95. Statistics and packet captur-

ing.

Figure 4.12: Capturing of the video stream with Q95
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Figure 4.13: IAR card simulation of the video flow Q95

Figure 4.14: IAR card simulation of the video flow Q95. Enlarged
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Figure 4.15: Switch simulation with parameters satisfying video flow of Q95
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5

Conclusions and future work

This Chapter will present the conclusions reached in this project. It will also give

suggestions on future work and improvement.

5.1 Conclusion

In this thesis, parts of a prototype system for dynamic network configuration has

been developed, it can react to the network throughput variations and alter input

parameters.

Such system was created and in addition it used a few other elements (switch and

IAR cards simulations). Test with these components showed the possibility to

predict network behaviour correctly.

Observations indicated deviation in results between the real-time streaming and

the predictions made. In this work, network simulation does not take all the

possible factors that affect a real-time streaming into account. One of the reasons is

that throughput is constant or may not correspond to the maximum Ethernet speed

that was assumed in the predictions. Furthermore a short test time doesu not give

reliable results. Having done enough tests for statistical conclusions would provide

an overview on the probability of receiving either of the outcomes. Considering
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that, the output variations are in within the acceptable limits between theory and

practice.

Tests with a real-time video conference showed that there exists packet loss at

Q96, or between Q95 and Q96 for this test system. That corresponds to 83 and

97 Ethernet packets for one UDP datagram burst, respectively.

Network simulations showed that it is possible to have a loss-free transmission

at Q95 and packet-loss transmission at Q96. The lucidity of the outcome was

impaired by the lack of control over the video quality in the range between Q90

and Q100. Gaps in 5 to 28 packets between each quality value prevented us from

carrying out precise observations of the video transmission performance. Therefore

the IAR cards tests and switch simulations were helpful for predicting an accurate

buffer size.

5.2 Future work

Incorporated software elements created a system of interactive units. Their joint

work requires numerous offline manipulations by the user. The tool for video con-

ferencing is easily manageable and controllable but developed and utilized compo-

nents should be further improved and simplified.

TimeAnalyzer could not provide fast estimations of the network environment when

it was loaded with video streams. That was caused by the complex computational

algorithm of the program. Simplifications or replacement of this algorithm may

solve the problem. Some improvement of the IAR cards can provide a possibility

to simulate two streams of data from one card. That replicates two applications

that can run one one computer.

The program that was developed for capturing network traffic has a large potential

for improvement. For example all the captured traffic is saved on the hard drive

and only after that all the computations and operations are done. That can be

avoided by processing the captured data immediately as it was received. Winpcap
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library contains functions that provide that option, thus they can be integrated

into the system without the loss of its’ functionality. In addition investigation of

possible media formats will help to extend system’s library of recognized codecs

and protocols.

SwitchSimulator is a raw product where all the parameters are still manually typed

in by the user( size of each frame, interframe interval, time delay between streams,

switch memory and number of frames in one burst). Later development can min-

imize that step by associating those parameters with codex and switch used. The

user will have to choose a type of a data stream from the library and the switch

model.

One of the disadvantages of the simulator is inability to process more that one

frame burst.Simulator also stops any data procession if the buffer of the switch is

full. Those options were not needed in this project but it might be very useful

to see a big picture of the simulated environment. They can be added as new

functions to the program code. Additionally a separate function should take care

of the speed drop in the incoming traffic.

It is expected to improve those disadvantages for a easy utilization of all the com-

ponents. It is particularly anticipated to have all the parts working under online

mode, automatically transferring parameters between each other and altering sys-

tem adjustments according to estimations.

The improved system can find its implementation in the car industry, especially in

in-vehicle communications. Intensive work has been done in the field of adapting

video streams in car systems. An internal car network has a complex network

topology, handling large amounts of data. Most data is sent from sensors and

vital car elements indicating a current state. It is therefore crucial to provide a

transmission without a single packet loss inside the network. Hence the project

can be adjusted to be utilized in such a systems.
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A .1 Development environment setup

Before any program was created several operations needed to be set to create an

environment on the developing machine. The software used was Windows 7 as

operating system and Microsoft Visual Studio 11 Beta as compiler.

Steps:

1. Download the latest version of WinPcap (developer’s pack ) from the website

winpcap.org.

2. Launch Visual Studio. Create a new project in Visual Studio: File → New

→ Project.

3. In the New Project window: Installed → Templates → Visual C++ →
General→ Empty project. Type in project, solution names and location

in the bottom of the window. Press OK.

4. In the Solution Explorer right-click on the Solution Files. In the menu choose

Add → New Item.

5. In the Add new item window: Visual C++ → C++ File(.cpp). Type in the

name of the file (usually main.cpp). Press OK.

6. Extract downloaded WinPcap into Solution directory of above created project.

7. Right-click on the project in Solution Explorer, choose Properties.

8. In Property Pages window:

(a) Go to Configuration Properties → C/C++ → General. In Additional

Include Directories add path to . . . ./WdpPack/Include.

(b) Go to Configuration Properties→ C/C++→ Preprocessor. In Prepro-

cessor Definitons add WIN32;WPCAP;HAVE REMOTE.

ii



(c) Go to Configuration Properties → Linker → General. In Additional

Library Directories add path to . . . ./WdpPack/Lib.

(d) Go to Configuration Properties → Linker → Input. In Additional De-

pendencies add winpcap.lib;Packet.lib. If there are other libraries in-

cluded already, there is no need in removing them. Press OK.

9. Open main.cpp file. Type in # include < pcap.h >. The compiler is now

ready to work with WinPcap [28].

iii


	Introduction
	Background
	Computer communication
	Network and switches
	Switching models
	Protocols and layers
	Ethernet
	IPv4
	UDP
	RTP/RTCP
	Multicast
	QoS
	Delay
	Throughput
	Jitter


	Video codecs
	MPEG-2
	H.264/MPEG-4/AVC
	M-JPEG


	Network simulation and estimation software
	TCN TimeAnalyzer
	TCN StreamAnalyzer
	Confero
	Wireshark
	WinPcap


	Network load testing
	First test: Network setup
	Hardware setup
	Software setup
	Test results

	Second test: Testing programs
	Hardware setup
	Software setup
	Test results

	Third test: Simulating traffic
	Hardware Setup
	Software Setup
	Test results

	The developed programs
	Obtaining network traffic parameters
	CP-EP algorithm
	Switch behaviour simulation
	SwitchSimulator


	Tests of the developed system
	Measurements
	Video transmission and traffic capture

	Conclusions and future work
	Conclusion
	Future work

	 References
	Appendix
	Development environment setup


