A system for semi-automated testing in
industrial practice

Master of Science thesis in Software Engineering

Duy HUYNH
Stefan SPASOV

Chalmers University of Technology

University of Gothenburg

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
Gothenburg, Sweden 2015

The Authors grant to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet. The Authors warrant that they are the au-
thors to the Work, and warrant that the Work does not contain text, pictures or other
material that violates copyright law.

The Authors shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agreement.
If the Authors have signed a copyright agreement with a third party regarding the Work,
the Authors warrant hereby that they have obtained any necessary permission from this
third party to let Chalmers University of Technology and University of Gothenburg store
the Work electronically and make it accessible on the Internet.

Duy HuynH, June 2015
Stefan SpAsov, June 2015

Supervisors: PhD Emil Alégroth, Dr Richard Berntsson Svensson
Examiner: Matthias Tichy

Chalmers University of Technology

University of Gothenburg
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
SE-412 96 Gothenburg

Sweden
Telephone + 46 (0)31-772 1000

Acknowledgements

First and foremost, we would like to gratefully and sincerely thank PhD Emil Alégroth
and Dr Richard Berntsson Svensson for their invaluable feedback and dedicated guid-
ance. We would also like to extend the gratitude to our industrial supervisor, Fredrik
Sjoberg, who helped bring this research project to fruition.

The Authors, Gothenburg 15/06/2015

Abstract

In the recent years the complexity of software products has increased tremendously.
Many software companies strive to achieve higher quality software with shorter delivery
time. Today software testing is used by the companies to increase the quality of their
products and to ensure that the client requirements are met. In the industrial prac-
tice, verification and validation activities are often performed with pricey, laborious and
error-prone manual test practices. Developers are usually under the pressure to release
faster, thus, quality often becomes hindered. A possible solution to this problem is test
automation, but the available tools and techniques bear a lack of generic applicability.
One way to mitigate these problems is to unify various test methods and practices. This
thesis presents a design science research, which explores the challenges of unification.
Additionally, it tries to find a solution to the problems that these challenges present by
developing a system for semi-automated testing (SeAT). The thesis also analyzes the
effects of SeAT on the testing processes at a case company.

Keywords: manual testing; automated testing; software; unification challenges

Contents

Introduction

Background and Related Work

2.1 Background

2.2 Related Work

Case Company and System

Research Approach

4.1 Research Objectives

4.2 Research Methodologyo

4.3 Research Procedures L
4.3.1 Challenges Exploration
4.3.2 SeAT Development
4.3.3 Effectsof SeAT
4.3.4 Data Analysis.

4.4 Threats to Validity oo
4.4.1 Construct Validity
4.4.2 Internal Validity
4.4.3 External Validity
444 Reliability oo

Technical Implementation

5.1 Overview Lo e
51.1 Anexample
5.1.2 Test case structure and semantics.
5.1.3 Test case manipulation. oL
5.1.4 Screen-shots.

5.2 Physical Viewo

5.3 Development View Lo

10

12
12
12
14
14
15
16
18
20
20
21
21
22

CONTENTS

5.3.1 Orchestrator 30

5.3.2 Client e 31

5.4 Logical View e 32
5.4.1 IExecutor interface, 32

5.4.2 IOrganizer interface 0oL 34

5.4.3 Dependency injectiono 35

5.5 Process View e 35

6 Results 37
6.1 RQ1 — Challenges of using different test technologies and practices together 37
6.1.1 Untidiness L 37

6.1.2 Insufficient knowledge oL 38

6.1.3 Test reporting problem 39

6.1.4 Inefficient time exploitation 39

6.2 RQ2 — Method for unifying different test technologies and practices . . . 39
6.3 RQ3 — Effects of the unified test framework on testing activities 40
6.3.1 Framework assessment 40

6.3.2 Tidinesso 43

6.3.3 Test reporting aid Lo 43

6.3.4 Simplified test cases oL 43

6.3.5 Knowledge gap resolution 44

6.3.6 Productivity enhancement oL 44

6.3.7 Test process reformulation, 45

6.3.8 Test automation encouragement 45

6.3.9 Towards continuous integration 45

7 Discussion 47
7.1 RQ1 — Challenges of using different test technologies and practices together 47
7.2 RQ2 — Method for unifying different test technologies and practices . . . 49
7.3 RQ3 — Effects of the unified test framework on testing activities 50

8 Conclusion 53
Bibliography 58

A Interview Questions 1

ii

List of Figures

2.1 Different views on testing o oL 6
4.1 Methodology overview using Hevner’s framework [1] 13
4.2 Chainofevidence L 19
5.1 Test case execution: an example scenario 26
5.2 Test caseexampleo 27
5.3 Orchestrator user interface L. 28
5.4 Contextual menu of test case/test step lists 29
5.5 Client console application 29
5.6 Deployment view of SeAT 30
5.7 Development view of SeAT 31
5.8 Sub-modules within Orchestrator 31
5.9 Sub-modules within Client 32
5.10 IExecutor interface and its implementations 33
5.11 IOrganizer interface and its implementations 33
5.12 Register newly-built test technology adaptors to SeAT 35
5.13 Test execution sequence diagram 36

6.1 Subjects’ assessment about SeAT’s usability and extensibility 41

iii

List of Tables

4.1 Subjects demographics oL o

v

Introduction

ANY SOFTWARE COMPANIES today use software testing to increase the qual-
ity of their products and to ensure that the client requirements are met.
Verification and validation in industrial practice are often performed with
costly, tedious and error-prone manual test practices. Under the pressure to

release faster, quality often becomes hampered. Test automation has been proposed as a
solution, but the available tools and techniques experience a lack of generic applicability.

Furthermore, efficient automation requires alignment between verification and valida-
tion activities, which is poorly supported in the current state-of-practice solutions, where
various test technologies are being used. Some examples for technologies which could
be used together are unit testing frameworks, visual GUI testing, in-house developed
solutions. This diversity makes it difficult for the testers to switch from one technology
to another when they conduct test cases consisting of several test technologies. These
insights reveal the need for an unified test approach.

On one hand is the unification between manual and automated testing. Manual
testing is the process of manually checking the system for defects. In some test cases
which require many repetitive steps automation could be applied to control the execution.
In practice manual and automated testing techniques are being unified, meaning that
a test case is designed to contain steps executed by a person and steps executed by a
machine.

In addition, testing on different abstraction levels could be unified. In the Soft-
ware Engineering Body of Knowledge [2] four main methods of testing are identified and
grouped by the test target: unit, integration, system, and acceptance testing. The differ-
ent views on test methods bear their own advantages and disadvantages. A combination
could potentially provide a better overall view on the defects in a system and the sys-
tem’s compliance with its requirement specification. Thus, to obtain the advantages and
ultimately mitigate the potential drawbacks it is reasonable to take a hybrid approach
for testing the system on various levels of test target abstraction.

CHAPTER 1. INTRODUCTION

In the different domains there are reasons to use diversified test technologies. There-
fore unification is encouraged so that the maximum balance between cost, time and
errors found is achieved. For instance, in the safety-critical systems domain using only
manual testing is not a proper choice because of the high level of human factor. Never-
theless, an enormous part of the testing in industries is done in a manual manner, e.g.
scenario-based manual testing [3], exploratory testing [4]. Currently automation is not
applied because of its high cost and its time consumption.

There are some domains in which the system under test involves, not only software
components, but actual hardware units. In these cases, manual testing could be au-
tomated partially, but the test cases involving hardware components are not feasibly
automated. The solution is designing test cases, consisting of manual and automated
testing all together. However, this solution implies that the testers would have to syn-
chronize their work with the execution of the scripts and that they have the required
knowledge to operate the needed software tools for automation. In addition, time is
wasted for starting the test framework, finding the correct script and checking the result
after its execution.

Similar to the case of safety-critical domains is the case with domains containing
distributed systems. Due to the distributed nature of a system, processes inside this
system happen asynchronously and the sequential ordering of events is often unknown.
In such scenarios, output data on different devices should be evaluated to ensure the
success of testing activities. Therefore, test automation could be sometimes tedious and
a human oracle could be needed. This fact makes the mixture between manual and
automated test approaches and the related complications a requirement.

Furthermore, in some cases full automation is applicable, but still the potential bene-
fits of several test tools are desirable. For instance, the power of visual GUI testing [5] on
system level could be combined with stimulating lower level components through their
external interfaces or observing the output of such. This creates a very versatile and
not so costly testing technique. Nevertheless, this technique comes with the drawback
that orchestration during execution is needed, in the form of starting the correct test
tool at the right time, running scripts consecutively, observing outputs and registering
results. This orchestration is time consuming and currently is performed by testers with
the right level of knowledge.

The identified problem in the context of a legacy distributed system is the integration
of new automation test technologies. The software market is continuously being updated
with different test framework with added functionality. Companies would prefer to stay
up to date with the newest test software, thus harvesting its benefits. Consequently,
a framework or approach for unification should be able to easily integrate new test
automation tools with yet unknown characteristics.

The aim of this thesis is to further explore the challenges of unifying different test
technologies and techniques, through a design science research at company X. Addition-
ally, it tries to find a solution to the problems that these challenges present by developing
a system for semi-automated testing (SeAT). The thesis also analyzes the effects of the
solution to the industrial practice.

CHAPTER 1. INTRODUCTION

The remainder of this report is organized as follows: in the next section, the back-
ground and the related studies are presented. In chapter 3, a description of the case
company where this study was conducted is presented along with the current test prac-
tices in that company. In chapter 4, the research objectives and the methodology for
data collection and analyses are introduced. In chapter 5 the implemented system for
semi-automated testing (SeAT) is described in details. Chapter 6 shows the results of
the data collection followed by a discussion of the results in chapter 7. This report ends
with a conclusion and possible future work (chapter 8).

Background and Related Work

HE PURPOSE OF THIS CHAPTER is to provide the background of this study and

a review of the related literature. First, the background section is introduced,

where different viewpoints on the process of testing are discussed, followed

by a related work section showing the advantages and disadvantages of these
technologies as analysed by other researchers.

2.1 Background

Software testing is an analysis performed to assess the quality of the system under test
[6]. There are various test techniques with the intent of reassuring that a component
or a system under test meet their requirement specification, behave properly to plenty
of inputs and achieve the results desired by the stakeholders. Various strategies for
software testing are used to select different test techniques. That is because the amount
of possible tests are infinite and time and resources are not. The models of software
development regulate the time and the techniques for testing. In the more traditional
Waterfall model [7] testing appear only after the system is designed and implemented
completely. In comparison, if an agile approach is used during the development of the
system, the testing phase is conducted concurrently with the implementation phase.

In this chapter various methods for testing are further explained. They can be
grouped by different criteria in several groups and one method can belong to one or
many groups. Each group has its positive sides and potential drawbacks. In many cases,
these groups are complementary and only by combining them can the testers address
their drawbacks as well as thoroughly verify and validate the system.

Firstly, taking into consideration the point of view of the test engineer who designs
the test cases, software testing methods are divided into three groups: white-box, black-
box and grey-box testing [8]. On the one hand, designing a white-box test case requires
internal perspective of the system. On the other hand, black-box testing assesses the

2.1. BACKGROUND CHAPTER 2. BACKGROUND AND RELATED WORK

functionality of the system under test without requiring any knowledge of the inter-
nal implementation. Grey-box testing is a combination of white- and black-box where
knowledge of internals of a program is used to design test cases, while the execution of
tests is at the user level.

Additionally test methods could be divided by their level of abstraction of the test
target. On the lowest level is unit testing [9] which assures that each part of the software
fulfils its designation correctly in isolation. These tests are usually written by the de-
velopers themselves before or after writing the code. White-box testing most commonly
relates to the unit level of abstraction due to its detailed nature. On the second level is
integration testing, where software components are combined and tested together as a
group. Its primary goal is to detect defects during interactions of individual components.
Consecutively, when the integrated system is tested from end to end to assure that it
meets its requirements, system tests are conducted. The difference between them and
the following acceptance tests is that the latter are performed on the client site where
the system is tested in the environment where it will operate. The test cases differ, too,
since test cases for acceptance tests should involve only steps which are relevant and
important from the customer’s viewpoint.

The levels of abstraction of the tests are closely related to the independent procedures
that they are involved in — either validation or verification. The validation procedure
is to assure that a system meets the needs of the stakeholders. On the contrary, the
verification procedure evaluates whether a system complies with its requirement speci-
fication. The lower-level test techniques are part of the verification activities while the
upper-level are part of the validation.

Moreover, on the unit level of abstraction exists a form of software testing that does
not require the system to be running. To be specific, that is static testing, during which
either the developer who wrote the code checks for sanity of the code, the documentation
and the used algorithms, or experts conduct code reviews, inspections or walkthroughs.
In opposition to static testing is dynamic testing in which the software must actually be
compiled and run. It requires interacting with the system, providing input values and
analysing if the output is as expected.

Test techniques could also be divided if they use support tools, scripts or other
software during the execution or not. Manual testing is referred in cases that the test
cases are executed without any assistance of automation software. The tester follows a
written test plan and goes through different test cases to warrant that all of the features
of an application have correct behaviours. This process can be automated which means
that special software is used to control the execution of the test cases and compare the
actual results with predicted ones [10]. All of the previously mentioned test methods
could be either manual or automated. For instance even static testing can be automated.
In that case there is a static test suite consisting of programs to be analyzed by an
interpreter or a compiler that asserts the program’s syntactic validity.

All of these different views of the test techniques could be used to extract various
advantages from the combination between them. Most of the companies are currently
using diverse methods to assure the quality and the functionality of the developed sys-

2.2. RELATED WORK CHAPTER 2. BACKGROUND AND RELATED WORK

N — <
Acceptance Carried out on the client side U S w T Q_)
E a
All possible dimensions for all L L
intended purposes and platforms E o
System purposes and p g 5
F |
Integ rat'on Boundary-value analysis ,\Lj
Equivalence partitioning
Orthgonal arrays <
Decision table (_Di
Unit =
2
5
\ 5

Manual Automated

- - Black-box testing
- - White-box testing

- - Static testing

Figure 2.1: Different views on testing

tems. Unification is the process of combining different test techniques in order to take
advantage of their strong sides and lower the impact of their drawbacks on the testing
process. There are many related benefits to unification. Mainly it could shrink the
learning curve required to test both user interface and application logic and ultimately
connect verification and validation activities from end to end. Testing teams usually
lack the software infrastructure that could guide their efforts. Thus, testers need a uni-
fication tool to allow them to efficiently pick between existing and quickly integrate new
test technologies for efficient verification and validation of requirement conformance.
Furthermore unification eases ongoing test asset maintenance and encourages test asset
reuse rather than duplication of effort. On top of that, simplification of the process of
test automation is needed to leverage existing investment in manual testing.

2.2 Related Work

Testing is the most widespread validation and verification technique for assuring ad-
equate software behavior. Although it is widely used in industry it is largely ad-hoc
and expensive. Bertolino [11] states that software testing involves a lot of activities,
conducted in different manner and aiming at different goals. Hence, software testing
faces a number of challenges. In Bertolino’s work a roadmap of the challenges which
are common in industry is created. While the challenges identified in Bertolino’s paper
should be taken into consideration by the companies they are not clearly focused on the

2.2. RELATED WORK CHAPTER 2. BACKGROUND AND RELATED WORK

problem of unifying different test activities (manual scenario-based testing, unit testing,
Visual GUI Testing) which is the main topic of this study.

Certainly, to be able to conclude what are the most efficient combinations of test
technologies, their positive and negative sides have to be known. In fact, the research in
the area of software testing has investigated the differences between contradicting groups
of test methods. A research conducted by Khan [12] makes a comparison between black—,
white— and grey—box testing. He concludes that white-box testing forces the tester to
reason carefully about implementation and it helps in removing extra lines of code, which
can bring in hidden defects. However, it is very expensive as it requires a skilled tester
to perform it. Besides, this approach misses cases that are in the scope of the system’s
requirement specification but are not covered by the code. In contrast, black-box testing
examines the fundamental aspects of the system and it is much more effective on larger
units of code. The testers need no knowledge of implementation, including specific
programming languages and they can be non-technical people. Above all, black-box
testing helps expose any ambiguities or inconsistencies within the specifications and
therefore black-box test cases could be designed right after the requirements for the
system are elicited. Although this approach does not provide reasons for a failure when
one is found and may leave many program paths untested. Unifying black- and white-box
testing has proven to be efficient as shown in Khan’s research. Namely that is grey-box
testing and is provenly useful for designing excellent test scenarios.

Moreover, knowledge of the advantages and disadvantages of the methods, which
are lying within different levels of abstraction of the test target, is potentially beneficial
for their unification. On the one hand, unit testing ensures that the small individual
components of a system are verified in isolation and they do something the way they
are supposed to do it without any defects [13]. Therefore unit testing should be done in
conjunction with other test methods, as they can only show the presence or absence of
particular errors but they cannot connect these errors to their effect on the functionality
of the system. In addition, unit tests are referred as a complementary documentation for
developers who are trying to understand what functionality is provided by a specific unit
[14]. While unit testing has its benefits, its implementation requires available experts
with knowledge of the code and that is considered as a concern because of the time
and cost involved in it. Automation support for unit testing could lower the time that
testers are involved in this stage and hence lower the cost. The research of Singh [15]
compares the available automation tools and categorizes them so that the testers could
easily choose an appropriate unit testing tool.

On the other hand, system testing is the best at evaluating the system’s compliance
with its requirement specification. Integration, release and acceptance testing can be
viewed as subcategories of system testing [13]. In fact, the integration testing’s priority
is to find defects while the system testing’s priority is to validate that the system meets
its requirements. However, in practice, the processes of validation testing and defect
testing are interleaved. Release testing is usually black-box testing and it assures that
the system does what it is supposed to do. As for acceptance tests they can be viewed
as release tests in which the customers are involved and the focus is on functionality,

2.2. RELATED WORK CHAPTER 2. BACKGROUND AND RELATED WORK

usability and performance [13].

In practice, tools have been developed to automate the system tests of software
through different interfaces. There are two main approaches at the GUI level the first
of which is Record and Replay (R&R), where user interaction is recorded via direct
references to the GUI components, or with the use of the components’ coordinates. A
bright example of R&R is the Selenium test automation tool [16, 17, 18]. The second
approach is visual GUI testing (VGT), which is similar to R&R, but it uses image
recognition. For instance, Sikuli is a tool using this approach. In recent research Alégroth
and Feldt [19] have proven that Visual GUI testing (VGT) could be applied in the
industry but that there are several problems that have to be solved first. Additionally,
systems could be tested based on the component interfaces which they provide. External
software could connect to these interfaces to check the inputs or the outputs. Usually
this software requires internal knowledge of the system and it is developed “in-house”.

Altogether, system testing displays which parts of the functionality of the system
do not meet their specification but does not pinpoint where the errors are in the code,
conversely to unit testing. Although the two strategies are used in complementarity in
practice, the tools for testing are usually different, leading to decreased productivity and
reliability of the testing process.

In like manner, there are three considerable benefits of static analysis according to
[13]. Firstly, during dynamic testing errors could be easily hidden or masked. That is
because once an error is found, the tester cannot be sure if other observed anomalies
are side effects of the same error. Static inspections mitigate the concern of interactions
between errors. Secondly, during static analysis there is no need for the whole system
and all of its parts to be developed, consequently removing the need for development
of specialised stub subsystems, which are needed for a subsystem to be run and tested.
The most important advantage of static analysis is that it allows the tester to look
for inappropriate algorithms and poor programming style that could make the system
difficult to maintain and update. Static analysis are actually a very old idea. In a report
from 1986 Fagan [20] shows that more than 60% of the defects in a system could be
found using informal inspections. There are two studies [21, 22] which conclude that
static code reviewing is cheaper and more effective than dynamic testing. However,
static techniques take time to arrange and they seem to hinder the development process
and that is why it is difficult to implement formal static reviewing in the industry. There
are automation tools for static analysis [13] which parse the source code of a program
and detect incorrect statements and check the control flow of a program. Static analysers
are very effective when there are weaknesses in the design of the programming language
which was used. However, some of the more modern programming languages have less
error-prone design which minimizes the effects of external static analysers.

As mentioned in [13], both static and dynamic testing have benefits and drawbacks
and should be used together in the verification and validation process. A good example,
as suggested by Gilb and Graham [22], is to review the test cases for a system so that
problems with the testing could be discovered early in the testing process. The best
practice is to perform static analysis early in the implementation process of a system and

2.2. RELATED WORK CHAPTER 2. BACKGROUND AND RELATED WORK

later, when the system has already been integrated, to validate it against its requirement
specifications.

Another research conducted by Leitner [10] has shown a positive result related to the
unification of manual and automated testing (being unit testing in that case). The two
strategies are seemingly contrasting, but as the research shows they are complementary
in a way that each has flaws which the other outdoes. The disadvantage of manual test-
ing is that it allows testers to perform only sequential test runs, hence increasing the time
needed to complete the tests [23]. On the other hand, an important advantage related
to this approach is that developers can use their reasoning to develop useful test cases
and construct complicated input data. As for automated testing, it can potentially save
time as it provides the testers the capability to perform parallel testing. Additionally,
automated tests are not dependent on testers’ working hours and they could run con-
stantly [23]. Due to automation testing’s efficient nature, it is implied that test coverage
is increased, since there is more time for testing. Moreover, automated testing tools are
useful during test case execution, test case generation and test result verification [10].

Paradoxically, one of the disadvantages of this approach is the lack of human input
in cases where human reasoning is required, for instance in the manual selection of use-
cases, which is believed to find additional bugs. Moreover, developing and maintaining
automated tests is challenging and expensive in projects which are prone to change. In
summary, the strong side of the manual method is to cover test cases in details but
it is not efficient for extensive coverage, whereas automation can potentially execute a
huge number of cases in brief time. Leitner’s research [10] resulted in a test tool which
combines the advantages of both strategies in a unified fashion. However, the findings
have been limited to two types of testing, and little has been discovered about the
consequences of unifying different testing activities, especially when they are in different
abstraction levels of the test target.

To conclude with, there are advantages and disadvantages related to all of the testing
techniques and different combinations amongst them is crucial for the successful testing
of a system. Consequently, there are many issues bound to the mixed testing activities.
Therefore, the intent of this thesis is to further investigate the issues by creating a
framework on which different test technologies can be executed together in order to
benefit from their strengths.

Case Company and System

HE STUDY was conducted with the collaboration of a large international security
organization which has more than 10,000 employees and has operations on all
continents. The site where the research was conducted was a department of
this organization with approximately 80 employees.

The system which was chosen to be the unit of analysis is an Air Traffic Control
(ATC) system. The ATC is a distributed safety-critical system which contains various
components built upon different technologies. Such system needs to maintain a high
level of availability and to be able to recover within a second without any information
losses if it was to encounter a failure. Data transmission amongst subsystems or between
the ATC and external services has to be guaranteed with correctness and precision in
real time. Moreover, any detected failures have to be reported to the ATC officers. In
this particular system, the absence of data is worse than the invalidity of data.

Undeniably, testing is an essential part in the development process of any safety-
critical systems. Unit testing, integration testing and system testing are mandatory.
In this particular case, in order to assist the testing process, there are specialized ap-
plications which are being used as simulators, for instance flight plan simulator, radar
simulator or weather simulator. These simulators work on component or system level
of abstraction of the test target. The open source framework NUnit is being used for
unit and integration testing while Sikuli is being used for visual GUI testing. All of
these co-existing technologies form an ecosystem within the current test environment of
the ATC system. On top of that, extensive acceptance test still needs to be performed
to meet the quality assurance standard ED-153 — a set of software safety assurance
guidelines to be implemented by air navigation service providers to conform with the
commission regulation EC 482 of the European communities.

Lastly, as adhered to the attributes of the aviation and avionics industry, the de-
velopment cycle spreads in a period of years to decades. This fact results in a huge
amount of legacy code. Additionally, the co-existence of several branches specially built

10

CHAPTER 3. CASE COMPANY AND SYSTEM

for different customer sites adds up to the management burden of software source code
and tests. As the project evolves, regression testing takes longer and longer, and only
by introducing more automation in testing can the verification and validation activities
be focused on new features and be more efficient.

11

Research Approach

HIS CHAPTER describes the research approach based on which the design science
research [1] was conducted. It starts with describing research objectives (sec-
tion 4.1) and explaining the design science research methodology which was
used as well as providing arguments about why such methodology was chosen

(section 4.2). It, then, continues with the research procedures (section 4.3) and based
on that, threats to validity are discussed (section 4.4).

4.1 Research Objectives

The main purpose of the study is to investigate if the developed system for unifying test
technologies is more efficient than the current processes and practices.
The following research questions were addressed:

e RQ1 — What challenges are experienced in practice when different test technolo-
gies and practices are used together for system verification and validation?

e RQ2 — How could different test technologies and practices be unified in a frame-
work?

e RQ3 — How does the unified test framework affect the verification and validation
activities in industrial practice?

4.2 Research Methodology

This thesis reports on a six-month (January 2014 — June 2014) study at the case com-
pany. The thesis was conducted following the design science research framework which
was proposed by Hevner in 2010 [1]. Design science is fundamentally a problem-solving
paradigm [1], which provides analytical techniques and perspectives for performing and

12

4.2. RESEARCH METHODOLOGY CHAPTER 4. RESEARCH APPROACH

Environment IS Research Knowledge Base

People

s Project managers

» Developers DeveloprmId Foundations

s Testers System for Semi- ¢+ Knowledge shbout

s Researchers automated Testing verification/validation

Business Applicable activities

Organizaticlns Needs Knowledge * Knowledge sbout pros/

* Aviation System cons of test techniques on
Development Company 9 o different abstraction levels

s AirTraffic Controllers g = s Relevant research showing

s Legacy Systems =T g a positive result on

unifying automated unit

Techncllclgies testing and manual testing

s Windows-based .

e Unit/Component/ . Methodologies
Integration/System, JUStIfVIASSESS s DataAnalysis Techniques
Acceptance Testing Case Company and + Measures

s Visual GUITesting (Sikuli) System s Validation Criteria

¢ Ad-hoc System
(Simulators)

Application in the Additions to the
Appropriate Environment Knowledge Base

Figure 4.1: Methodology overview using Hevner’s framework [1]

research in information systems. It centers around the innovative creations of IT ar-
tifacts upon which the usages, performance and efficiency of new ideas, practices and
technical capabilities applied to information systems are evaluated. IT artifacts are
broadly defined as constructs (vocabulary and symbols), models (abstractions and rep-
resentations), methods (algorithms and practices), and instantiations (implemented and
prototype systems) [1].

As the intention of the study is to develop a system for unification of testing technolo-
gies and practices, the design science methodology is highly applicable. Furthermore,
the qualitative approach was chosen since its nature is to examine in-depth “purposive
samples” to better understand a phenomenon [24]. Subsequently, the findings can be
further validated using quantitative research.

An overview of the thesis methodology is illustrated in Figure 4.1. This model was
constructed based on Hevner’s framework for design science research [1]. Details about
Environment including people, organizations and technologies are discussed in Case
Company and System (chapter 3), whereas Knowledge Base is indicated in Back-
ground and Related Work (chapter 2) and in Data Analysis section of this chapter. The
implementation of SeAT, which is the IT artifact, is discussed in Technical Implementa-
tion (chapter 5). The challenges of unification of test practices identified in this research
are considered as the Business Needs and solving them would contribute to the com-
panies to improve their testing process. The addition of this study to the Knowledge

13

4.3. RESEARCH PROCEDURES CHAPTER 4. RESEARCH APPROACH

Base is presented in the Discussion (chapter 7).

4.3 Research Procedures

This section describes the research approach used to answer each of the questions stated
in the objectives. The main activities include the exploration of challenges in practice
(subsection 4.3.1), the development of SeAT (subsection 4.3.2), assessment of the effects
of SeAT on the validation and verification process (subsection 4.3.3) and the analysis of
the collected data (subsection 4.3.4).

4.3.1 Challenges Exploration

Based on the challenges, which are mentioned in chapter 1, initial ideas about a system
for semi-automated testing have been created. However, more input from the studied
context was needed to elicit essential business needs for such a system. Therefore, a
thorough exploration of the demands and challenges which the organization encountered,
having both manual and automated tests scattered amongst different abstraction levels,
was performed.

According to Stake [25] triangulation is needed to increase the validity of the research
and to make it more precise. This means that several perspectives should be taken into
consideration to get a broader picture of the challenges in testing through multiple ac-
tivities. Data or source triangulation [25], is the collection of data from different sources.
It was used in the exploration of the challenges, consisting of the following steps: observ-
ing testers who were conducting verification activities, building knowledge on the unit
of analysis by reading source code and related documentation, eliciting functional and
quality requirements of the system by unstructured interviews with various stakeholders.

Observation: In order to make sense of the difficulties the testers confronted while
performing verification activities, an observation [26] was conducted during a major
system test before a delivery of the system under analysis. Because people are not
always aware of what they really do and how they do it, observing what is being done is
one way around this mental blindness, and vastly improves the knowledge of the current
work and some of the associated work problems [26]. In the beginning of the research, to
be able to quickly familiarize themselves with the system, the authors used a variant of
interviewing and observation, called task demonstration. A tester was asked to explain
the system and to demonstrate how to perform a specific task. During the test execution,
the tester was told to think aloud what has to be done, why and how it could be done.
By using this approach, some usability problems were detected, too. For instance, why
did it take longer time for some particular tasks or why certain mistakes were made
during the execution. One of the objectives of this research is to find a way for testers to
effectively switch amongst testing technologies without considerable hindrance. Hence,
usability is definitely one of the quality criteria needed for SeAT.

Document study: The fact that technicality played a major role in the development
of SeAT made document study [26] an important step in the process. Furthermore,

14

4.3. RESEARCH PROCEDURES CHAPTER 4. RESEARCH APPROACH

document study is a way to cross-check the interview and observation information [26].
There were two documents under investigation, which were the System/Subsystem Spec-
ification (SSS) and the Acceptance Test Description (ATD). Through this process, basic
information about which framework SeAT should be built on and which technologies it
should support were identified. However, such findings were just a starting point for
developing the system. In order to increase the generalizability, common testing tech-
nologies being used in practice ware also investigated and considered to be incorporated
into SeAT.

Unstructured and semi-structured interviews: Being in the exploration phase, un-
structured and semi-structured interviews [26] allowed new ideas to be brought up as
a result of what the interviewees said, thus, increased the amount of valuable infor-
mation elicited. Simultaneously with the aforementioned activities, unstructured inter-
views were conducted with a variety of stakeholders to ensure that different aspects of
the demands and challenges were correctly addressed and validated based on different
viewpoints. Such stakeholders included developers, project managers, testers, university
researchers and students. The authors decided not to limit the study within the context
of the organization. Hence, not only industrial experts have been interviewed but also
university researchers and students, which led to increase of the external validity. The
methodology for semi-structured interviewing and the used subjects are the same as in
(subsection 4.3.3), where they are described in detail.

One of the outcomes of the exploration were the challenges being experienced in
practice when different test technologies and practices are used together for system
verification and validation, resulting to be the answer for the first research question

(RQ1).

4.3.2 SeAT Development

SeAT is the main information system artifact from Hevner’s model for design science
research [1] and it played a featured role in this study. The information elicited from the
previous phase in combination with the theory foundation formed a list of functionalities
and quality attributes which should be supported by SeAT. Since SeAT is a framework
for unifying test technologies, it has to be general and flexible enough for future ex-
tensions when it might need to support unforeseen technologies with minimum effort
to customize. Being aware of the importance of such quality attributes, the authors
decided to construct a simplified version of a quality model following the guidelines pro-
vided by the ISO standard [27]. The simplified quality model addresses the basic quality
attributes SeAT needed to conform to and lists the metrics for defining how to gauge
these quality attributes in order to validate the system after it has been developed. An-
other work product during this phase was an initial architectural design for SeAT which
would be revised as the system evolves.

Inspired by the Agile methodologies, the authors developed SeAT iteratively and
incrementally. The very reason for an incremental and iterative strategy is to allow
for people’s inevitable mistakes to be discovered relatively early and fixed in a tidy
manner [28]. No matter how good the requirements elicitation is, there are always

15

4.3. RESEARCH PROCEDURES CHAPTER 4. RESEARCH APPROACH

gaps between each pair of consecutive stages where information is being transferred and
transformed, e.g. what the real demands are and what the stakeholders perceive, what
they understand and what they describe, what is documented in the specification and
what is developed. The idea was to have, as fast as possible, a working prototype of the
system which could be used to validate the ideas with the stakeholders. Based on that,
necessary modifications could be made incrementally. The approach and design which
were chosen to implement SeAT were the answer to the second research question (RQ2).

4.3.3 Effects of SeAT

In order to answer the main research question (RQ3), which was to investigate the
influences of unifying test technologies on industrial verification and validation activities,
semi-structured interviews [29] were used as a method of data collection. This type of
interviews was suitable because it provides space for the researcher to explore and to
investigate further topics, related to the main subject. The main topics were thought
in advance and an interview protocol was created, containing the predefined questions.
Following this protocol strictly was not a necessity [29], although it was very helpful.
The authors used the the funnel model for creating the interview protocol [30], which
begins with open questions and moves toward more specific questions. The questions
were not asked in the same order and the interviewers often influenced the interview to
make a flowing conversation. This approach helped them explore issues that have not
been thought in advance [30].

The subjects were chosen from industry and from the academia to ensure a better
distribution of viewpoints. Additionally, employees with different roles and experience
were chosen. SeAT was installed in laboratory workstations at the company. These
workstations replicated the ATC system under test which was used in reality by the
testers. To show the wide range of applicability of the framework not only the ATC sys-
tem was used during the interviews. A simple web-site with relatively complex graphical
interface was used as system under test during the interviews with the students. Due
to non-disclosure agreement with the case company their system could not be shown to
the students.

The selection criterion for the test cases, which were used during the interviews,
was the complexity of the test cases. According to this criterion the example test cases
were categorized in four categories. The first category are test cases in which all steps
could be automated using only one tool for automation. In this case - Sikuli. The
second category are test cases, which have steps that could be automated using different
automation tools, namely simulators and Sikuli. The third category are test cases with
steps that cannot be fully automated and require a person to perform some of them.
The fourth category are completely manual test cases. The decision if a step could
be automated and with what tool was taken with the support from the experts at the
company. Test cases from all the categories were presented at the interviewees.

All the employees at the department and students in the I'T field were invited by email
through a common email template containing a short description of the purpose of the
study and the intention of the interview. A total of 9 interviews were performed for this

16

4.3. RESEARCH PROCEDURES CHAPTER 4. RESEARCH APPROACH

Subject Current role Industrial ~ Familiar ~ with Familiar with
experience manual testing automated
(years) testing

S1 System Developer 1020 Yes Yes

S2 Developer Consultant 1-3 Yes No

S3 Product Development 10-20 Yes Yes

Manager

S4 Test Specialist 10-20 Yes Yes

S5 System Developer 4-9 Yes Yes

S6 Senior System Developer 4-9 Yes Yes

S7 Master Student 1-3 Yes Yes

S8 Master Student 1-3 Yes Yes

S9 Master Student 1-3 Yes Yes

Table 4.1: Subjects demographics

study. All of the interviewees were familiar to manual testing prior to the interview and
almost all of them, with the exception of one, were familiar with automated testing. This
was important for the study because the subjects were able to understand the interview
questions easily. Table 4.1 contains details about the interviewees such as their current
role at a company or if they are students and their years of experience in the I'T industry.
The interview protocol (Appendix A) was inspired by the work of Runeson [30].

As suggested by Yin [31], a pilot interview was conducted so that the sanity and
consistency of the interview protocol could be checked. The pilot interview was used
to see if the asked questions are easily understood by the subject. During the pilot
interview special attention was given to the way interview questions are formulated. The
subject was asked how difficult the questions are to be answered and how understandable.
Additionally, the time that the interview requires was recorded to assure that it is not
too long for the employees at the company, who had definite time for the interview.
The feedback from this pilot interview was used to make small changes to the interview
protocol and formulate the questions in a more proper way.

The interviews were performed on both the company site with the employees and
in campus Lindholmen (Chalmers). The average time for one interview was about one
hour. Both authors were present during the interviews. One of the authors was asking
questions and the other was documenting more important answers. At the beginning of
each interview the interviewees were presented with the purpose of the study and how
it fits a company needs. Moreover, the interviewees were informed that the interview is
being recorded and that it is anonymous [29]. All of the interviews ended with wrap-up
questions so that the interviewers could see if something was omitted in the research or
if the interviewee could contribute with some relevant information.

17

4.3. RESEARCH PROCEDURES CHAPTER 4. RESEARCH APPROACH

After performing an interview the researchers summarized the answers of the ques-
tions and took out some relevant quotes. This approach is commonly used as an alter-
native to full transcription [32]. This technique assures that the researcher understood
correctly the answers of the interviewees. With the same purpose, the summaries were
send via email to the interviewees and verified by them. No changes were required after
the summaries were verified by the interviewees.

In addition, one of the key quality requirements for SeAT is its extensibility, meaning
that a new test technology could be easily added to it. The extensibility of SeAT
makes the framework applicable in various domains, thus is very important for the
generalisability of the study. At the end of the study the authors decided to add support
for Microsoft Unit Testing Framework, which is a unit level test framework to SeAT and
record the time it takes. Both authors were not familiar with Microsoft Unit Testing
Framework prior to the implementation, however they were familiar to similar unit level
frameworks.

4.3.4 Data Analysis

The data collection and analysis were conducted in three consecutive steps. Keeping a
clear chain of evidence [33], conclusions were drawn in each step and used as input for the
next step. This implies that the authors should present relevant information in each step
in the research and justify the crucial decisions that were taken. Inspired by Runeson’s
model [29] the chain of evidence is illustrated with on Figure 4.2. A structured approach
is vital in qualitative analysis [29]. This requires that the used instrumentation must be
kept and links between data must be documented.

The first step of the research was the identification of the challenges, experienced
in industry when different test technologies and practices are used. The data collected
from unstructured and semi-structured interviews, observations and document study
was coded, based on Robson’s guidelines for qualitative analysis [32]. Coding is the
process of giving a code representing a certain construct to a part of text. The level of
formalism was chosen to be editing approach according to Robson’s pattern [32], which
guides codes to be defined by the researchers during the analysis. The editing approach
eases the reader to understand the clear chain of evidence and to interpret the results
from the analyses. Additionally, comments were added to the codes by the researchers
to help them categorize the data.

Patterns in the collected data, related to the challenges, were identified in the first
step of the research. These patterns were used to formulate the functional and quality
requirements for the unification framework. The implementation, which is based on the
elicited requirements, represents the second step in the the research. This structured ap-
proach of identifying patterns and relationships in the data and concluding a baseline for
a framework makes the chain of evidence visible to the reader and helps him understand
the trustworthiness of the conclusions [29].

The implemented framework was used as input for answering the third question,
namely how such framework affects the validation and verification process in industry.
In the third step of this research the effects of the framework were assessed with the help

18

4.3. RESEARCH PROCEDURES CHAPTER 4. RESEARCH APPROACH

STEP 1 P e
C Testactivites)
A ™
€
Testers, developers % % %
Interviews Observations Document study

Figure 4.2: Chain of evidence

19

4.4. THREATS TO VALIDITY CHAPTER 4. RESEARCH APPROACH

of semi-structured interviews. The interviews were transcribed into text files and parts
of the text were marked by codes [32]. According to Runeson [29] tabulation is a very
useful technique for the analyses of data, and hence the data from the interviews was
presented in a table. Standard spreadsheet tool was used for managing the textual data.
Using the tabulation approach, data can be overviewed easily because it is organized in
rows of interest according to the codes. The different columns in the table represent the
interviewees. This approach allowed the researchers to generalize the finding, resulting
into formalized body of knowledge and it was presented as the final result of the research.

In order to reduce the bias of the individual researchers on the findings, a beneficial
approach which was used in this research is the coding of the data by the two authors
individually. After this process, the results from each author were merged into common
analysis results. This approached helped for the increase of the validity of the results
[29] and also broadened the codes, thus, the inferred generalizations.

4.4 Threats to Validity

The trustworthiness of qualitative research can be ensured by providing evidence that
the findings were concluded from the data and not the authors’ opinions [34]. According
to Shenton [34] the researchers should always strive to provide information on the con-
text of the research so that the readers could decide if it is applicable to other setting.
Moreover, the researchers should enable possible repetition of the study, although this
task is difficult in qualitative studies. To make the proof of trustworthiness possible,
four categories for addressing validity threats are used in unison with Runeson and Host
model [29]. This model was designed to be more suitable for qualitative research.

4.4.1 Construct Validity

Construct validity indicates to what extend the researcher’s perception of the studied
subject is being investigated by the research questions [29].

To ensure source triangulation [25] during the process of data collection various
approaches on different sources were used such as observation of the testers, document
study on several key documents for the case company, interviews and discussions with
diverse interviewees. To ensure observer triangulation [25] both authors were present
on every observation or interview. Although the data collected from observations and
documents was of tremendous value for the authors to understand the challenges in the
given context, the main method for drawing conclusions were the interviews.

Having this in mind that the data from the interviews was precious, several ap-
proaches were undertaken to remove any possible bias. The selection of subjects was not
based on the authors preferences since a common email with description of the study
was sent to all employees in one department of the case company and interviews were
conducted to all employees who responded to it, assuring convenience sampling to the
research [35]. Similar email was sent to a large group of students and all respondents
were interviewed.

20

4.4. THREATS TO VALIDITY CHAPTER 4. RESEARCH APPROACH

Additionally, a pilot interview [29] was conducted with one of the students to assure
that the questions from the interview protocol were understood the same way the au-
thors understood them. The student was asked to evaluate the difficulty of answering
the questions. The chosen interviewee was a student because students usually have less
experience than the professionals and if a student does not have difficulties in under-
standing the questions the possibility that an employee would not have is high. Some
minor fixes were made on the formulation of the questions after the pilot interview.

Before each interview the interviewees were introduced to the purpose of the study
so that a common understanding could be achieved [29]. Moreover, the interviewees
were asked about different key terms related to testing (such as unit, integration and
system testing) and short discussions were conducted on each term mainly because even
the literature does not fully agree on the exact meaning of these terms. To enable the
interviewees to give their true opinions, the authors guaranteed their full anonymity
before each interview. To keep the chain of evidence [33] all interviews were recorded
with the permissions of the interviewees and are available on request.

The study was limited to only nine interviews, due to the fact that only nine people
volunteered and the researchers were limited in terms of resources to find more inter-
viewees. In spite of this fact, saturation of data [29] was reached, which means that
it is unlikely that the researchers would extract any new information even if they had
continued with the collection of data.

4.4.2 Internal Validity

To be able to identify the threats to the internal validity of a study, every researcher has
to answer two key questions according to Feldt [36]: Does the solution affect the outcome
and are there any other factors that might have an effect.

This study was trying to find the effects of SeAT on the verification and validation
process in a company and the drawn conclusions were that it positively affects the ef-
forts and the needed time for testing as well as it encourages the testers to use more
automation. These findings were concluded from the opinions of experts and students
during the interviews. Reducing the effects of the previous experience of the intervie-
wees is the fact that all of them had different backgrounds and positions. During the
interviews, the interviewees were not provided any hints or guided in any way towards
answering positively about SeAT’s qualities and effects. Additionally, all key terms were
discussed prior to the interviews so that no misunderstandings could effect the answers
of the interviewees.

4.4.3 External Validity

External validity indicates to what extend the findings of this research could be gener-
alised and used in other companies [30].

To improve the external validity, the employees who responded to the invitational
emails had different positions in the company and the students had different education
background in IT. The limitation is that all employees were from the same company

21

4.4. THREATS TO VALIDITY CHAPTER 4. RESEARCH APPROACH

and all students were from the same university, which affects the generalisability of the
study negatively. However, conducting a qualitative study, the indicated challenges were
abstracted from the context of the company and are applicable in other cases.

During the interviews with the employees, one system under test was used to show the
capabilities of SeAT and another was used with the students to show that the developed
framework is applicable in different domains and on different systems. Selection of the
test cases was performed based on their complexity so that it would not be biased by the
authors preferences, thus making the framework applicable to test cases with different
complexity and nature. The automation tools which were used for comparison were
selected according to the level of abstraction (Unit, Integration, System) that they work
on, showing that the framework supports tools on all levels. However, the selection of
these tools was affected by the company’s preferences and their requirements, which could
threaten the generalisability of the framework. To deal with this problem, the authors
investigated the extensibility of the system through interviews and it was concluded that
the framework is easily extensible and it is usable with any other tools for automation
testing. Regarding the observations, used to identify the challenges in using different test
approaches, they were conducted in micro scale and might lack representative sample
[37]. Yet another limitation is that the framework is build on Microsoft .NET framework
and currently only supports devices which have .NET framework installed.

4.4.4 Reliability

Possible threats to the validity of the study are the dependencies between the conclusions
and the researches. A reliable study could be re-conducted with the same or similar
results [29].

Robson [32] has introduced a list with methods on how to rise the reliability of a
study. From that list several methods have been used by the authors. Peer debrief-
ing relates to the group work of two or more researchers, in order to lower the risk of
biasing the results. In that manner the two authors of this thesis were present in all
observations, interviews and discussions with various stakeholders. Member checking
is another method from Robson’s list [32] and it refers to various materials obtained
during the study to be reviewed by different participants. In unison with that method,
the authors sent summaries from the interviews to the interviewees to ensure that noth-
ing was misunderstood. Moreover, SeAT was reviewed on weekly basis by a company’s
employee who is in the position of a product development manager, in order to ensure
that it addresses the challenges during validation and verification and that the frame-
work conforms with its requirements. Importantly, all research design artifacts such as
the interview questions protocol and SeAT requirements were reviewed by university
researchers. Moreover, observations are generally regarded as less reliable [37] since they
are very difficult to be replicated by other researchers in other contexts. Conforming
with another method from Robson’s list [32], namely audit trail, all collected data was
documented and saved. Interview notes, audio recordings and observation notes were
stored and are available on request, thus keeping a clean chain of evidence [33].

Furthermore, negative case analysis [30], which is the process of formulating alterna-

22

4.4. THREATS TO VALIDITY CHAPTER 4. RESEARCH APPROACH

tive theories in order to improve the analysis, was used. The authors summarized and
coded the transcripts from the interviews individually and then one set of codes was
synthesized. No predefined codes were used, but instead all codes were induced from the
collected data [32], thus the data was not forced into a concrete category.

23

Technical Implementation

HIS CHAPTER starts by giving an overview of the system with a concrete exam-
ple and screen-shots (section 5.1). Then, it describes in details the technical
implementation of SeAT illustrated in four different architectural views [38],
which are physical view (section 5.2), development view (section 5.3), logical

view (section 5.4) and process view (section 5.5).

5.1 Overview

In general, SeAT is a system which supports semi-automation and unification of test tech-
nologies and practices. SeAT comprises two components, which are called Orchestrator
and Client. Orchestrator is installed in a tester’s workstation and it acts as a centralized
server directing the test executions on various client machines. Client is installed in each
of the subsystems under test. It receives and executes instructions from Orchestrator.
This design decision is affected by the service orchestration approach where a central
process (coordinator of the orchestration) controls the execution of different operations
on the services participating in the process [39]. The Orchestration is usually compared
to Choreography which, in contrast, does not depend on a central orchestrator and all
participants know exactly when to become active. In order to make SeAT’s Clients more
agile and maintainable the Orchestration approach was chosen for SeAT’s implementa-
tion. This choice was further encouraged by the fact that Orchestration also provides
centralized management of the resource pool [40] — test descriptions, test scripts and
other resources.

Furthermore, there was a choice of implementing the Clients as web service providers,
which wrap the supported test tools in web services so that these services could be
consumed by the Orchestrator. In fact, there are many existing frameworks, which
support services and service Orchestration [41]. They are all based on Service-oriented
architecture [42] to support the loosely coupling principle and they incorporate a subset

24

5.1. OVERVIEW CHAPTER 5. TECHNICAL IMPLEMENTATION

of Business Process Execution Language (BPEL) [43] to define a set of web service
orchestration concepts. Some of the complete solutions by the major software vendors
are:

e Oracle Fusion Middleware (OFM)
e IBM WebSphere Enterprise Service Bus (ESB)

e Microsoft Workflow Foundation (WF) with Windows Communication Foundation
(WCF)

e SAP NetWeaver SOA Middleware

As a matter of fact, with the use of any of these software the goal of the study could be
achieved. However, some of the quality attributes are that the developed system should
be easy to learn and simple to be extended. In case of using external SOA frameworks,
to add a new test tool would require from the users of SeAT to know and understand
the frameworks for service orchestration. As SOA and the web service specifications
practitioners expand, update and refine their output, it requires skilled people to work
on SOA-based systems, including the integration of services and construction of services
infrastructure. According to the interviewed developers, they prefer simplicity to exten-
sive functionality. Since the external frameworks are built for general purposes, they
do not specifically target the unification of test technologies. As a result, much more
functionality than needed is implemented and this affects the performance in terms of
execution time and space required. Therefore, SeAT is aimed to create a thin Client
component which has as little impact as possible on the systems under test. In contrast
to SeAT’s non-intrusive approach, external SOA frameworks would require a server (IIS,
Oracle WebLogic Server, WebSphere Application Server) and other software to be in-
stalled on each Client, which is time-consuming and requires a lot of effort. On top of
that, these servers usually consume a big amount of computational resources ([44, 45])
from the system during execution and this might make the systems under test to behave
differently while performing tests.

Importantly, the main research question is to evaluate the idea that having such
a unified test framework will positively affect the verification and validation activities.
Therefore, although the IT artifact plays an important role in this research, the effects of
a unified test framework is validated regardless of the employed technologies. However,
additional research is needed to evaluate if the adoption of the external frameworks for
service orchestration would affect the results.

Additionally, in order to analyze the effects of a unified test framework on the verifi-
cation and validation activities several systems for unified testing were investigated, but
none of them fulfilled all the requirements for this study. One of the most used software
for similar purposes is HP Unified Functional Testing (UFT) [46] which provides func-
tional and regression test automation for software applications and environments, but
lacks the ability to incorporate third-party test software. Another application is Test
Director [47] which offers integration with third-party and custom testing tools, but on
the other hand cannot control test cases distributively.

25

5.1. OVERVIEW CHAPTER 5. TECHNICAL IMPLEMENTATION

Test case tc_ssat_01

ExecuteX 1 on Client 1 using Sikuli

=<l X1=>
e
<<response X 1>

|
. —

ExecuteX 2 on Client 2 using Simulator h d R1zip=: ”

ExecuteX3 on Client 2 using Sikuli r

==ackss

I
<= execute X1/ =ikl

<<read test cases=>

[]
P-=Z2EEE- N
N
Client 1)

<zend R2 zips=

— = — ==acksE

<=all X3=>
[
=£response X 3=
y ot
e, I -::_J‘
—_—r
<< response XK=
o | <<call X2=>
<<ggecute X3sikuliz> > [] |
L wresponsmi@e Lo
\ X <<response X2=>

Client 2

Orchestrator

Figure 5.1: Test case execution: an example scenario

5.1.1 An example

Figure 5.1 shows an example scenario of executing a test case.

o FEnvironment setup:
The tester’s machine is named Orchestrator and it has Orchestrator component
installed and stores all test scripts. The system under test consists of two machines:
Client 1 and Client 2. The two machines are installed with Client component.

o Test case sample:

— Execute command X1 on Client 1 using Sikuli.
— Execute command X2 on Client 2 using Simulator.

— Execute command X3 on Client 2 using Sikuli.

As can be seen in the sample test case, the test execution requires interactions
with two machines. These interactions are on two different levels of abstraction —
Sikuli on the acceptance level and Simulator on the system level.

26

5.1. OVERVIEW CHAPTER 5. TECHNICAL IMPLEMENTATION

<TestCase Id="123" Description="Test the correctness of the bocking function." Name="tecl">
<Steps>
<Step Description="Create a package" IsCritical="true">

<Operation Directive="Create a package with one flight and one hotel." Executor="Human" />
<TargetClient Name:"TRIP_2" />
</8tep>

<Step Description="Check if a package appears on the screen" IsCritical="true">
<Operation Directive="scripts.sikuli" Executor="gikuli" />
<TargetClient Name="TRIP_2" />
</Step>
</Steps>
</TestCase>

Figure 5.2: Test case example

e [Lzecution:

When the tester starts running the test cases, relevant resources (test scripts) are
zipped and sent to the clients. The process of sending test scripts is denoted with
green arrows in the Figure 5.1. Sending test scripts is independent on their execu-
tion, therefore, as soon as a test script is available on the Client, the Orchestrator
can execute it. By this way, the Orchestrator does not need to wait for all test
scripts to be sent to the Clients. The Orchestrator executes the steps sequentially.
The executions are denoted with blue arrows. Not until a response of a particu-
lar step is received will the next step be proceeded. The dashed arrows are the
responses of the interactions.

Inside the Clients, the commands are processed by the Client component and they
are translated to interactions with the test technologies using the corresponding
executors. The executors are extensible and can be easily built/modified /added to
be compatible with the target system under test.

5.1.2 Test case structure and semantics

Figure 5.2 depicts an XML representation of the structure of a test case. One test case
contains a list of sequential steps, each of which is an operation performed on a particular
target client.

Independence amongst test steps was noticed during the document study process
at the case company. One reason for the independence is that the time consumed by
setting up the environment for each test case is too long. Therefore, several test cases
are combined in order to test one set of requirements at the same time. This observation
led to the design decision that a test step inside SeAT can be critical or non-critical.
A non-critical test step does not break the execution of a test case if it fails. In the
case company only dependent or independent sequential steps were observed, however,
in practice there might be test cases with more complex structures involving loops and
conditions. Although, the complexity of the test cases is out of scope of this thesis,
further research in this area might improve the applicability and efficiency of SeAT.

27

5.2. PHYSICAL VIEW CHAPTER 5. TECHNICAL IMPLEMENTATION

al Orchestrator | (50 |
File Test
. e o
. Action: Siart the Simulator
Test Resub: - Tests run (2/8) ~ Tests passed (7/8) [[Seve | Fesponss:sm ras been s aeacy
Test Case ;
7 Lsest 376 fort] 20150603 1157:56@ TRIP_1: 192.168.180.11
% ‘-“at- 15 C'““‘:f “'L nps ‘;‘E’”\:”” I t_ssat_10 - Booking function with Administration role: Action: Send flights and hotels information in scenaria 0157 using the Simuator
Y 1seat_"9™ance aooking win Adminisiration ol Response: Done with the following command: 10000"call 0157 bt
@) 1_ssat_23 ~ Create travel package Check f the booking fuction works corectly when there are changes inthe fightand
t_ssat_24 ~ Update travel package hotel infometion 20150603 115756@ TRIP_1:192.162.180.11
1 ssat_25 - Delete ravel package _ Action: Cheok i 3 fights and 2 hotels appear on the soreen

Response: passed

ssat_10 - Booking funcion with ole
: t_ssat_38 - Browsing for trips scenario 2 4 Start the Simulator ~| 20150603115758@ TRIP_1:192.168.180.11 &
L2111 tsset_39 - Browsingfor ips sosnao 3 IVY Snd ights and hotels information in scenario 0157 using the Smulator] ‘Action” Choose the fir fight and the firt hotel
i Check f Hfights and 2 hotels sppear on the screen =| Response: passed
: Crooas et it and e fu otel | 20150603 115759 @ TRIP_1 : 192.168.180.11
V' Continue with the scanario 0157 using the Simuiator Action: Continue with the scanario 0157 using the Simulator
The frt fight disappears Responss: Done wih the folowing command go
1 Continus wih the soanario 0157 using the Simulator -
<[»
Test Step
TRIPT - Sm = Crtical

Send flights and hotels information in scenario 0157 using the Simulator

10000"call 01576¢ [Fie

Figure 5.3: Orchestrator user interface

5.1.3 Test case manipulation

SeAT allows users to create/modify/delete test cases and test steps through the graphical
interface. The screen-shot of the Orchestrator user interface (Figure 5.3) shows various
controls for updating test cases and test steps. For example, the target client can be
selected from the drop-down list which is currently set to TRIP_1; test description can
be updated via the description text-box. Button ‘Save’ is used to save such kinds of
modifications. Creation or deletion of test steps/cases could be performed by a contex-
tual menu (Figure 5.4). Additionally, since the test cases are serialized into an XML file
(shown in Figure 5.2), direct modification to such file also changes the test cases. The
only requirement for this approach is that the users have to be familiar with the XML
markup language.

5.1.4 Screen-shots

Figure 5.3 and Figure 5.5 illustrate Orchestrator and Client applications. Orchestrator
is an Windows form application while Client is a console application. Figure 5.3 depicts
how the test cases and test steps look like when running. An output windows on the
right of Orchestrator shows the responses received from Client. Figure 5.5 portrays
the directives obtained from Orchestrator and information of what is being operated in
Client.

5.2 Physical View

This view encompasses the nodes that form the system’s hardware topology on which
the system executes; it focuses on distribution, communication and provisioning [38]. In
this view, the deployment design will be demonstrated.

28

5.2. PHYSICAL VIEW CHAPTER 5. TECHNICAL IMPLEMENTATION

Create
Delete
Mowe Up

Mowve Down

Figure 5.4: Contextual menu of test case/test step lists

| ADLXPSim S | E |

Receiving file: Sikuli.zip

File received: Sikuli.zip

Executing operation: {"Directive":"{staprt>","Executo
Operation executed: {"Directive':"{start>","Executor
Receiving file: t183_»l.sikuli.=

Executing operation: {"Directive

Scenario for [B157]
Delavying Flights

file: tiB3_aZ2r2.sikuli.zip

operation: {"Directive':'"t183_»l.sikuli". "Executor'":"S5ikuli'>

executed: {"DlPBCter": 183 _»1.s5ikuli", "Executor':"Sikali'>
g operation: {"Directive' 183 a2P2.o1ku11","Execut01':"Sikuli"}

executed: {"Directive":"t1B3_aZ2r2.s 1ku11" "Executor':"Sikuli'">
operation: {"Directive':"{start>","Executor'":"Sim'">

executed: {"Directive":"{start>","Executor":"S5im">

file: t67_rl1.sikuli.=ip

flight plans

Figure 5.5: Client console application

In particular, SeAT consists of two components which are called Orchestrator and
Client. They are implemented following the Server—Client design. Orchestrator is
installed in a tester’s workstation and acts as a server. Client is installed in each of the
subsystems under test and acts as a client of Orchestrator. The deployment is illustrated
in Figure 5.6.

Orchestrator retrieves test cases stored in database and shows them to the tester, who
can then select what to run. Each of the test cases contains test steps. Each of the test
steps contains an action directive stating how a step is done and an assertion directive
stating how to validate the outcome of such step. Action and assertion directives can be
manual or automated and performed on a specific client. Since the system under test is
distributed and contains subsystems, every directive should have information about the
target client. Manual directives are in the form of natural language whereas automated
directives are test scripts. Once a test case is chosen to be run, its test steps will be
performed sequentially by Orchestrator. If a directive within a step is manual, 2 dialog
boxes will appear on both Orchestrator and target Client to show the description to the
tester. These two dialogs are identical and the tester can interact with either of them.
The only purpose of having multiple dialogs is to enhance the usability. After performing
the action or assertion stated in the dialog boxes, the tester can choose to pass or fail

29

5.3. DEVELOPMENT VIEW CHAPTER 5. TECHNICAL IMPLEMENTATION

% Orchestrator

SUT WS2

% Client

Figure 5.6: Deployment view of SeAT

Orchestrator /

the current directive. The tester can also add comments providing reasons why such
directives are failed or additional information needed to be logged during verification
and validation activities. If a directive is automated, it will be performed immediately
at Client and the result will be sent back to Orchestrator. If any of the directives are
failed, the related step and the related test case will be failed and terminated.

In order for Clients to be located, configuration is made and it can be changed at
run-time. Due to the fact that test environment at the studied context is quite stable,
which means that the subsystems under test have fixed locations and IP addresses for
a long period of time, such configuration, despite being manual, does not hinder the
whole process of testing. However, SeAT is open for changes and automated or semi-
automated configuration with location detection, which is more user-friendly, can be
easily incorporated in the future.

5.3 Development View

The development view focuses on the actual software module organization on the software
development environment [38]. As described in the previous section (section 5.2), SeAT
has 2 modules — Orchestrator and Client. The modules, sub-modules and exposed
interfaces are depicted in Figure 5.7, Figure 5.8 and Figure 5.9.

5.3.1 Orchestrator

Orchestrator contains 4 sub-modules, namely TestAccess, Controller, Organizer and
UI. TestAccess is in charge of retrieving test data from the database and transforming
them if necessary. UI is a user interface module which has responsibility of displaying
visualized data to the tester. Organizer enables the ability of setting up and tearing
down the test environment during each test suite execution. Organizer depends on
actual implementations of particular test technologies and the behavior is described in

30

5.3. DEVELOPMENT VIEW CHAPTER 5. TECHNICAL IMPLEMENTATION

=l =l

|Operation

+QOrchastrator []—©—[] +Client

]

{ Y} ITestDataAccess

Figure 5.7: Development view of SeAT

component: Orchestrator /

0

ITestAccess

{I {I |0Operation
D—[:l% +TestAccess []—O +Controller %[]—C

ITestDataAccess

IController |0rganizer

(O]

=l =l

+Ul +0Organizer

Figure 5.8: Sub-modules within Orchestrator

section section 5.4. Controller is the core module of Orchestrator. It connects all
internal sub-modules and orchestrates the clients through an exposed interface I0per-
ation. It is a “Thick Server—Thin Client” design and every control is centralized at
Orchestrator while Client has no knowledge about the running test suite, test cases or
test actions. It simply receives and performs any directives sent from Orchestrator.

5.3.2 Client

Client contains 2 sub-modules, namely Coordinator and Executor. Coordinator acts
as a facade to receive commands from Orchestrator. Depending on which test technology
is being used, Executor interprets and executes these commands accordingly. Executor
is built in such a way that it can be easily extended for future integration of new test

31

5.4. LOGICAL VIEW CHAPTER 5. TECHNICAL IMPLEMENTATION

component: Client)

=l

IOperation E |Fxecutor E
O—[] +Coordinator [] (C [] +Executor

Figure 5.9: Sub-modules within Client

technologies. Such extension and the way to achieve it are described in details in the
next section (section 5.4)

5.4 Logical View

In this view, the system is decomposed into a set of key abstractions, taken (mostly)
from the problem domain, in the form of objects or object classes. They exploit the
principles of abstraction, encapsulation, and inheritance [38]. Removing unnecessary
details, the authors focus on describing the implementation of Executor and Organizer
and how they are designed to maximize flexibility and extensibility. Figure 5.10 and
5.11 demonstrate the interfaces defined in SeAT and their current implementations to
support testing against the ATC system. In general, the executors and organizers act as
adaptors between SeAT and the test technologies which are required to be incorporated.
In particular, the executors extend the Client’s capabilities, while the organizers augment
the Orchestrator’s capabilities.

5.4.1 IExecutor interface

There are three methods declared in IExecutor, i.e. Execute(string), StartUp() and
ShutDown (), amongst which, Execute (string) is the most important. It executes every
command string sent from Orchestrator and would be called once for each test action. By
delegating the knowledge to the executors, it depends on certain cases, needs and testers
to decide the execution commands and how they are interpreted. For instance, "call
0123.txt:1000" could be added as a test step command through the Orchestrator’s
user interface (Figure 5.3). Then this string is sent to the Client and the corresponding
Executor parses the message into two parts — "call 0123.txt", which is given to the
simulator and instructs it to execute script 0123.txt, and "1000" which is the amount of
miliseconds that the Client should wait for the simulator to finish executing the script.
This is just an example and the actual execution commands and how they are handled

32

5.4. LOGICAL VIEW CHAPTER 5. TECHNICAL IMPLEMENTATION

Execute(string): Execute a commatn
string sent from Orchestrator

startUp()/ShutDown () : Start up/Shut
down environment on the Client side
a.longwiﬂlthe Client's life CYC]B. — <<Interface»:
B IExecutor

+Execute(string)
+StartUp()

1
1
|
|
| +ShutDown()
|
|
|
|
|

A
I
I
I

m UnitTEStEXECUtQP

|

Figure 5.10: IExecutor interface and its implementations

<<Interface>>

Setlp(): Set up environment before
the test suite is run.

TearDown () : Clean up environment
after the test suite is run. +setlp()
+TearDown()

IOrganizer

Siku;lior‘ganiz)

Figure 5.11: I0rganizer interface and its implementations

by the Executors are left for the users of the system to decide. For the purposes of this
study, five different Executors have been implemented, but the system is designed to be
easily extended by its users.

The reason why string was chosen to be the type of the input parameter is that
almost everything can be passed as string in a concise and human-readable format. This
enables the extensibility for unforeseen test technologies which might be incorporated
into SeAT. More complex data structures, for example represented in forms of JSON
or XML, could be sent from the Orchestrator to the Client instead of simple strings,
but this may hamper the flexibility of the system. Furthermore, knowledge of these
formats would be required for the IExecutor interface to be implemented. On the other
hand, using complex messages, will be far more reliable and resistant to change than any
custom string parsing. More test technologies should be investigated before a common
structure for the parameter could be concluded.

Pertaining to the other two methods declared in IExecutor: StartUp() is called

33

5.4. LOGICAL VIEW CHAPTER 5. TECHNICAL IMPLEMENTATION

when Client is started in order to kickoff dependent applications needed for a specific test
technology; whereas ShutDown () is called when Client is stopped in order to terminate
such dependent applications. This ensures the life-time of dependable components is in
accordance with the life-time of Client.

As can be seen in Figure 5.10, IExecutor interface is actualized by SikuliExecu-
tor, CmdExecutor, ManualExecutor, SimExecutor and UnitExecutor. The roles of the
particular executors are:

e SikuliExecutor executes Sikuli scripts sent from Orchestrator. It takes quite
some time to start Sikuli each run, therefore, a simple internal Python server which
was named SikHost is started once and kept running to host the Sikuli executable
during the whole test process. The commands are forwarded from SikuliExecutor
to SikHost and results of the directives are sent back via this connection. Thanks
to the hot-swapping technology embedded in the built-in Python libraries, any new
commands or Python files sent can be executed during run-time. The SikHost
instance is terminated once the test is done. With this approach, the running time
of the Sikuli tests was sped up dramatically.

e CmdExecutor executes Windows commands sent from Orchestrator. It is a general
executor and theoretically it can perform any directive in Windows systems.

e ManualExecutor displays a dialog box on the Client’s screen showing action or
assertion directives. The tester will manually perform test activities as instructed
by the directives and let the system know if they are successfully done by clicking
on Pass or Fail buttons.

e SimExecutor executes specialized commands on the simulators being used in the
ATC system.

e UnitExecutor executes unit tests and returns results to SeAT.

5.4.2 IOrganizer interface

I0rganizer introduces 2 methods: SetUp() and TearDown(). These terms are borrowed
from unit test terminology. The purpose of these methods, as the terms suggest, is
to set up and clean up the test environment during each of the runs, each of which
consists of many selected test cases. Figure 5.11 illustrates I0rganizer interface and
its implementations, namely SikuliOrganizer and SimOrganizer. Purposes of such
implementations are:

e SikuliOrganizer sends scripts which are reusable within one test run at the be-
ginning of each run and clean up every script once all executions have been finished.

e SimOrganizer resets the simulator to its starting state each run.

34

5.5. PROCESS VIEW CHAPTER 5. TECHNICAL IMPLEMENTATION

<unity>
<typeAliases>
<!-- Lifetime manager types --»
<typeAlias alias="singleton" type="Microsoft.Practices.Unity.ContainerControlledlifetimeManager, Microsoft.Practices.Unity"/>
<typeAlias alias="perresolve” type="Microsoft.Practices.Unity.PerResolvelifetimeManager, Microsoft.Practices.Unity™/>

<!-- Custom object types --»
<typeAlias alias="IExecuter” type="TestEnvironment.Executors.IExecutor, TestEnvironment™/>
</typeAliases:

<containers:
<container>
<register mapTo="TestEnvironment.Executors.ManualExecutor, Adaptors.ManualAdaptor™ name="ManualExecutor”™ type="IExecutor”:
<!-- Create new instance each resolve -->
<lifetime type="perresclve”/>
</register>
<register mapTo="TestEnvircnment.Executors.SikuliExecutor, Adaptors.SikuliAdaptor” name="SikuliExecutor" type="IExecutor™:
<lifetime type="singleton™/>
</register>
<register mapTo="TestEnvircnment.Executors.SimExecutor, Adaptors.SimAdaptor” name="SimExecutor” type="IExecutor"s
<lifetime type="singleton™/>
</register>
<register mapTo="TestEnvircnment.Executors.UnitTestExecutor, Adaptors.UnitTestAdaptor” name="UnitTestExecutor” type="IExecutor™:>
<lifetime type="singleton™/>
</register>
</containers>
</containers>
<Junity>

Figure 5.12: Register newly-built test technology adaptors to SeAT

5.4.3 Dependency injection

Above are the default and customized adaptors (executors/organizers) which were devel-
oped for the system under analysis. They implement the same interfaces and this enables
any extension needed in the future. Each of these implementations is compiled into a
dynamic-link library. Dependency Injection [48] (or sometimes known as Dependency
Inversion Principle [49]) is, then, used to incorporate the libraries into SeAT. Additional
configuration is necessary for SeAT to locate the libraries during run-time. Such con-
figuration also specifies life-time of the components, such as singleton or non-singleton.
With this approach, no recomplilation of the whole system is required for extensions.
An example of the part of the configuration file containing the component registration
is shown in Figure 5.12.

5.5 Process View

The process view addresses issues of concurrency and distribution, system’s integrity,
fault-tolerance. In addition, it shows how the main abstractions from the logical view fit
within the process architecture, that is, on which thread of control is an operation exe-
cuted [38]. An illustration of the communication between different components regarding
the main flow of interactions is shown in Figure 5.13

During the test execution process, Orchestrator sends test’s resources to Clients
for each of the directives. Not until receiving an acknowledgement that corresponding
resources have been sent correctly does Orchestrator start executing the directives. The
resources can be images, text files or other test scripts. To optimize performance, the
resource sending process is decoupled from the execution, in other words, they are done
asynchronously. Therefore, Clients can receive resources for upcoming test steps before
hand, while the previous ones are being run.

35

5.5. PROCESS VIEW CHAPTER 5. TECHNICAL IMPLEMENTATION

interaction TestExecution)

Q: Orchestrator C: Coordinator E: Executor

1 - ResourceMetaData

7 - Response

g - Response

Figure 5.13: Test execution sequence diagram

36

Results

HIS CHAPTER presents the findings of the study. Challenges of using different
test technologies and practices are demonstrated in section 6.1. Based on
the challenges detected, guidelines for developing a framework to unify test
technologies and practices are revealed in section 6.2. Finally, assessment of

the developed framework as well as its effects on the verification and validation activities
are stated in section 6.3.

6.1 RQ1 — Challenges of using different test technologies
and practices together

There are various challenges adhere in the testing process especially when it comprises
different test technologies and practices within one test case. Amongst them, there are
some significant issues which were observed, discovered and elicited during the course of
the study.

6.1.1 Untidiness

First and foremost, the employment of different test technologies have caused a burden
both on the creation and execution of tests. Since most of the industrial respondents
had experienced the case where a mixture of such technologies was adopted within one
test case, they came up with thoughtful ideas about the problems it brought. One is
that automation supporting tools have to be installed and located on the system under
test. The number of test scripts developed and executed on each tool is large — over
200 in one of the tools under investigation. It was observed that in many occasions, the
tester struggled with searching for the correct test scripts, which are situated in various
folders. One senior system developer admitted:

37

6.1. RQ1 — CHALLENGES OF USING DIFFERENT TEST TECHNOLOGIES

AND PRACTICES TOGETHER CHAPTER 6. RESULTS
“It is often hard to find the right scenario (test script).” — Senior System
Developer

Another system developer added that it took time to setup such tools into correct
states before performing the tests. This is one of the biggest problems they are facing
today and it makes the whole testing process more costly.

“It’s time consuming to setup the simulators and it’s also hard to find the
scenario files if they scatter all over the place.” — System Developer

Furthermore, according to a product development manager, things would get quite
messy if many technologies are being used. By looking at a single script, one cannot
see the relation with other scripts and/or a test case as a whole. Therefore, it would be
good if there is a way to organize the test scripts of different technologies. He asserted:

“If you have a lot of automated things that would fit together and it’s not clear
where the result is, it would be a mess.” — Product Development Manager

Besides, integration was amongst the problems detected by a system developer when
various technologies were employed:

“There could be integration problems among the test tools.” — System De-
veloper

6.1.2 Insufficient knowledge

Having such a wide range of technologies to embrace, sometimes even skilled testers
had problems conducting tests if there was quite some time since the last test activities.
It was observed that after several months having not performed any test activities in
a particular system, the tester found it hard to reminisce the right configurations for
the simulators. Inevitably, for new-comers, the situations are worse, as stated by some
interviewees:

“The tester (sometimes) does not know what the script does. After a failure
of a test script, he is not sure where the problem comes from, such as misun-
derstanding of the test case, a bug in the system or a bug in the simulator.”

— Product Development Manager

“The test cases do not describe really well what to do. If you are not familiar
with the simulators and do something wrong the tests might not show what
you expect.” — System Developer

Therefore, familiarity with the simulators is one of the requirements for testers of the
ATC system. Needless to say, familiarity with the system is also a must due to the fact
that test cases are usually described in a high level of abstraction. Additionally, test

38

6.2. RQ2 — METHOD FOR UNIFYING DIFFERENT TEST TECHNOLOGIES
AND PRACTICES CHAPTER 6. RESULTS

cases use distinctive business terminologies, and testers need to understand the system in
details to assert if a test case is passed or failed. Such finding was discovered during the
document study performed in the beginning of the thesis. The senior system developer
confirmed:

“Often you need to be very experienced with the system to see the problems.
Often the test cases succeed but you see other issues that are not covered by
the test. It is just some other things fail.” — Senior System Developer

6.1.3 Test reporting problem

The observation showed its strength when detecting a problem which is usually ignored
unintentionally during interviews, that is the result reporting of the test cases. It was
seen that the tester went through the test cases and tested the system step by step fol-
lowing a 300-page test specification. More often than not, the tester stopped to perform
a complicated step and when he continued, he lost track of the current step and had to
search for it. Upon his investigation, he noted down unexpected behaviours correspond-
ing to each step on paper, then, created additional issues if applicable. Test results after
each step were also written down in a notebook and input to a test management tool
afterwards.

6.1.4 Inefficient time exploitation

There were challenges which made the efficiency of time used not maximized. In most
of the test cases, the tester started a simulator and had to wait the whole time before
proceeding to the next step. Additionally, setting up the system into a correct state
before any test cases was time consuming. The product development manager confirmed:

“Setting the system to the correct state takes time but does not add value to
the test.” — Product Development Manager

A distributed system with asynchronous communication caused another challenge.
The tester interacted with many machines and had to switch workstation between the
steps. Moreover, results of the interactions with one machine were sometimes expected
to be shown in a different machine after an arbitrary amount of waiting time.

6.2 RQ2 — Method for unifying different test technologies
and practices

In order to successfully unify different test technologies and practices a framework —

which complies with the challenges from RQ1 which are actually the company business

needs — has to be created. Moreover, certain quality requirements have to be met
in order for the framework to be generalizable and can be used in other projects and

39

6.3. RQ3 — EFFECTS OF THE UNIFIED TEST FRAMEWORK ON TESTING
ACTIVITIES CHAPTER 6. RESULTS

contexts. Such quality attributes are: applicability, usability, extensibility and flexibility.
The evaluation of these attributes is presented in subsection 6.3.1.

The result for this research question is the developed framework for unifying test
technologies and practices — SeAT. The technical solution to unifying different test
technologies is described in the previous chapter (chapter 5). Some guidelines about how
to unify test technologies and practices as well as rationales behind them are discussed
in section 7.2.

6.3 RQ3 — Effects of the unified test framework on testing
activities

This section discusses the effects of the developed unified test framework on testing
activities. However, before any discussion being made, the assessment of the framework
based on its quality requirements — which are conveyed in the results of research question
RQ2 — is demonstrated in subsection 6.3.1 in order to make sense of the trustworthiness
of the framework. Subsequently, various effects of the framework on the testing process
are reported in the succeeding subsections.

6.3.1 Framework assessment

In this subsection, results about the assessment of SeAT’s quality attributes, namely
applicability, usability, extensibility and flexibility, are discussed.
— Applicability

In general, the system received appreciations from all of the interviewees and many
agreed that the framework would certainly fit well to the testing process of their
projects. As most of the practitioners (5/6) are working with legacy systems, where
lacking of automated tests is quite common, the approach of reconciling manual
and automated tests is highly appreciated. Because it takes time and effort to
convert to a new way of writing and executing tests, SeAT shows it strength in
backward compatibility with the traditional way of performing testing. Incremental
changes can be made in order to fully utilize the framework capacity. The product
development manager concluded about the applicability of SeAT:

“It (the framework) would certainly fit very well.” — Product Develop-
ment Manager

When asked if the framework solved the problem of using many automation test
technologies together in one test case, all of the interviewees responded ‘Yes’, espe-
cially when “it comes to executing the tests” — the product development manager
added.

Similarly, all respondents were positive about the way the framework solved the
problem of having manual and automated steps within one test case. The impres-
sion was that even though testers need to be present to perform semi-automated

40

6.3. RQ3 — EFFECTS OF THE UNIFIED TEST FRAMEWORK ON TESTING

ACTIVITIES CHAPTER 6. RESULTS
=10
=
5 9
8
7
: T
5 T T
, 1
3 E @
i,l__a_‘ 2 T -’— "'
S) 4 I |
Q12 Q13 Q14 Q15

Figure 6.1: Subjects’ assessment about SeAT’s usability and extensibility

tests, the assistance of the framework makes it easier for them to execute the test
cases.

“Fven if you only use simulators and manual steps it can be still quite
helpful” — System Developer

Usability

In combination with the open-ended questions to assess the usability of SeAT, the
following questions were asked during the interview:

12. From 1 (easy) to 10 (difficult), how difficult is it to understand the purpose of
the framework?

13. From 1 (easy) to 10 (difficult), how difficult is it to create test cases and related
test steps?

14. From 1 (easy) to 10 (difficult), how difficult is it to get the result from the
execution of a test case?

The full list of all interview questions are included in Appendix A.

Figure 6.1 is a box—plot diagram which illustrates the assessments of SeAT’s us-
ability and extensibility. The scale is from 1 (easy) to 10 (difficult). Q12, Q13 and
Q14 stand for the results for questions 12—-14. It can be seen that SeAT was found
relatively easy to be understood and used for creating and executing test cases.

41

6.3. RQ3 — EFFECTS OF THE UNIFIED TEST FRAMEWORK ON TESTING
ACTIVITIES CHAPTER 6. RESULTS

Regarding getting the results from the test cases, it was believed to be slightly
more difficult than the rest (with median=4). The reason why it is still moderately
difficult to export test results is because of the current system for archiving test
results.

With respect to the test case execution, SeAT provides a way for testers to continue
their tests even though some steps fail and log down their findings during the test
execution. Such a feature ensures the compatibility of the framework to the existing
way of performing tests in the company. Because the thorough reformulation of
the test cases to fully adapt to a new approach of writing tests takes time and
effort, this feature received positive feedback from most of the interviewees. A
system developer claimed:

“It’s good to have a way to say that you can continue testing anyway or
not. Because sometimes it’s worth continuing even though one step was
failed.” — System Developer

Notwithstanding, there was some skepticism about the usefulness of the feature.
Another system developer questioned if such a step can be skipped during execu-
tion, why should it be included in the beginning. The reason is that to save time
due to the complexity of setting up the environment, many requirements were com-
bined and tested once. Thus, there exist test steps which are independent of one
another. As a result, skipping some of the steps does not affect the validity of the
succeeding steps.

— FEaxtensibility

The result for question 15, which is about extensibility of SeAT, is also included
in Figure 6.1. The question is:

15. From 1 (easy) to 10 (difficult), do you think that a new test technology could
be easily added to this framework? Example?

It can be noticed that adding a new test technology to the framework is relatively
easy, especially for the developers. In addition, 3 of the interviewees, despite being
students, found it simple to extend the framework also. A reason was provided by
system developer that “it’s just one method which takes a string and you can do
whatever you want.” The senior system developer stated:

“It was very clean, the interface for new executors was very simple and
easy to extend and that’s very good point.” — Senior System Developer

Upon the justification of SeAT’s extensibility, a new adaptor to Microsoft Unit
Testing Framework was added to SeAT by the authors. The process was timed
and it took around 4 hours to add such a new adaptor. It was estimated by a system
developer that it would take him a couple of hours to add a new technology to
SeAT as he found it effortless.

42

6.3. RQ3 — EFFECTS OF THE UNIFIED TEST FRAMEWORK ON TESTING
ACTIVITIES CHAPTER 6. RESULTS

— Flexibility
During the assessment, SeAT was used to create and execute test cases in another
project. This project is a website built in Java with RESTful services. 2 executors
were used, i.e. SikuliExecutor and ManualExecutor. The framework worked as
intended with this new project. If there is a need of testing the RESTful services,
a new executor can be created to interact with the website on the component level.
The result shows the flexibility of the framework when applied to different projects.

6.3.2 Tidiness

With a centralized Orchestrator, where all test scripts of different technologies are co-
located, SeAT successfully solves the biggest problem encountered by the practitioners
— the disorganization and distribution of simulators and test scenarios. Consequently,
it encourages the practitioners to do it right from the beginning which in turn reduces
the possibility of troublesome searching process for the corresponding test scripts when
needed.

The industrial respondents showed positivity towards the solution:

“We would have everything (simulators and scenarios) in one place which
makes it easy to find.” — System Developer

“If you use this, you have to put everything in one place otherwise it won’t
run, you will encourage people to do it right. The testers don’t need to hunt
for the files.” — System Developer

6.3.3 Test reporting aid

With the support from the system, test reporting is made easier for the testers. Such
improvement is much appreciated since reporting and tracking test results in the current
situation is time consuming and error prone. There is room for enhancement which is to
send these results to the test management system. To express the simplicity of reporting
test results, a senior system developer said:

“Instead of reading the paper and doing the notes on a paper just click click
click and read what’s on the screen.” — Senior System Developer

6.3.4 Simplified test cases

As defined in the framework, a test step is a single action performed on a specific target
machine. Thus, a step has to be straightforward and unambiguous. On the one hand,
such a step can be easily automated without breaking the whole structure of a test
cases. Therefore, the automation process can be done incrementally which is suitable
for a legacy system. On the other hand, such convention motivates a better way of
writing test cases where test steps are granulated, sequential, clear and simple as a
system developer put it:

43

6.3. RQ3 — EFFECTS OF THE UNIFIED TEST FRAMEWORK ON TESTING
ACTIVITIES CHAPTER 6. RESULTS

“It could encourage better way to write them. Now it can be that someone
writes a step in a test case that is too huge. This encourages them to write
clearer test cases.” — System Developer

6.3.5 Knowledge gap resolution

As mentioned earlier in the challenges of the current test activities, experience with the
system and the simulators is crucial for the testers today to do their job with the ATC
system. Testers need to understand what is going on, which makes not anyone can do the
testing, especially since test specifications and other documentations are not guaranteed
to be up-to-date.

By introducing SeAT — which improves productivity of the testing process, requires
test cases to be written in a clean, clear and simple manner and organizes every tech-
nologies in one place — prior knowledge about the system needs not be extensive.

“You don’t need to be an expert of the system. You can get anyone to do the
testing.” — System Developer

6.3.6 Productivity enhancement

The interviewees agreed that the system boosts the productivity of the testers in the
testing activities. One of the reasons is that they no longer need to refer to a lengthy
test specification when executing the test cases step by step. In combination with the
encouragement to write clear and simple test cases, the risks of misinterpretation are
mitigated. Thereupon, testers are more focused on the testing itself. Even though pure
manual test cases are performed using the framework, a sequence of pop-up windows
instructing how to execute the test steps gives testers a better medium than referring to
a stack of papers. The product development manager said:

“It goes much faster. There’s much less room for misinterpretation, misread-
ing and misunderstanding of the test cases. It’s also when you are reading
test cases, you mneed to jump back and forth between the system under test
and the things you are reading and you forget where you were. Here, it takes
step by step and it’s much easier to see where you are. The quality of the
testing process itself could be improved.” — Product Development Manager

In this particular project, setting up the system to the correct state before each test
case is time-consuming. These setups most of the time repeat the same pattern and
are a combination of different technologies. With the framework, such setups can be
fully-automated and it definitely speeds up the activities. It was confirmed by a senior
system developer:

“A lot of time you spend on setting up the simulator and finding files. So
that could be very large improvement.” — Senior System Developer

44

6.3. RQ3 — EFFECTS OF THE UNIFIED TEST FRAMEWORK ON TESTING
ACTIVITIES CHAPTER 6. RESULTS

6.3.7 Test process reformulation

To employ SeAT into the current projects at the company, changes in the process of
writing tests are inevitable. At the moment, the practitioners use DOORS — a require-
ment management application developed by IBM to organize requirements and test cases
specifications. Therefore, integration to such system is needed and approval from the
high level managers is required.

“The way we should do it is to work with DOORS and enter the test cases
there. But DOORS is really cumbersome. I think that we would prefer to do
it with this tool and probably make some import into DOORS.” — Product
Development Manager

However, as the senior system developer declared, this problem is more or less out of
scope of the framework since it is more or less their issue of using SeAT in an efficient
way. Nevertheless, the product development manager was confident about the potential
of SeAT and believed that other engineers would prefer using a unified framework to
create and execute their tests.

“People would like to write test cases using this tool.” — Product Develop-
ment Manager

6.3.8 Test automation encouragement

Having had a platform to unify test technologies, testers are encouraged to write fully-
automated test cases. Otherwise, there is still a need of manual interventions and testers
have to be present during the testing process. One system developer claimed:

“It is a big difference between everything automatic and having one manual
step in the middle.” — System Developer

The product development manager affirmed: “Writing automation is more fun than
testing itself.” Such motivation leads to the fact that: “People would be more inclined to
write good automated tests, which improves the quality, and (they) would feel confident
that the things written is going to work.” — he added. Understandably, most developers
have a mindset of not doing things manually. If they are provided a useful tool to assist
their job, they are willing to change their way of working.

6.3.9 Towards continuous integration

SeAT provides a good platform on which test technologies can be unified and automated
or at least semi-automated. In all cases, it is a step toward continuous integration —
which is now performed mostly on low levels of abstractions, namely unit level and
integration level. It opens up a possibility of increasing high level testing in projects
which adopt continuous integration ideology. A test specialist endorsed the capability
of SeAT:

45

6.3. RQ3 — EFFECTS OF THE UNIFIED TEST FRAMEWORK ON TESTING
ACTIVITIES CHAPTER 6. RESULTS

“It’s good for smoke tests, which are boring to run. And you have to run
them repetitively.” — Test Specialist

46

Discussion

HIS CHAPTER discusses the results presented in chapter 6 and connects them
to earlier research literature. In the begining (section 7.1) the focus falls on
the challenges of using different test technologies and practices together. Later
(section 7.2) the method of unifying different test technologies and practices

is discussed. The last section (section 7.3) points out the effects of the unified test
framework on the validation and verification activities.

7.1 RQ1 — Challenges of using different test technologies
and practices together

All software companies today apply software testing techniques in order to increase
the quality of their products and to ensure that the client requirements are met. Test
automation [10] is essential and can have positive impact in many areas [50], it could
potentially save money and solve many testing problems. In spite of its benefits, automa-
tion is not a silver bullet [50], meaning that it experiences a lack of generic applicability.
Some of the results of this research also show that there are cases where automation
cannot be applied or its cost, in terms of time and effort, is too high. The researchers
observed a case where automation is inapplicable: the tester had to go to a server room
to disconnect a network cable to test the redundancy.

Testers, who want to harvest the benefits from automation, but stumble upon cases
where full automation is impossible, are left with no choice but to combine manual
practices with automation tools in their test cases. Although, manual and automated
testing are seemingly contrasting, they could be complementary [10]. On the other hand,
their common use introduces new problems to the testers. Leither’s research [10] has
identified some challenges in using manual and automated testing, however it is limited
to unit testing only. There are other works, which focus on comparison of automation
tools [5], problems with automation [50], or challenges in software testing as a whole [11],

47

7.1. RQl1 — CHALLENGES OF USING DIFFERENT TEST TECHNOLOGIES
AND PRACTICES TOGETHER CHAPTER 7. DISCUSSION

but none of them seems to refer to the problem of unification. This thesis has identified
four categories of challenges in combining automation tools on different abstraction levels
and manual testing.

In a company which has vast amounts of automated scripts, written in different
languages and supported by various tools, it could be a nightmare for the testers to find
the right script, the right tool and start a scenario. Serious amount of time is wasted
in performing these actions over and over again, especially during regression testing [51]
where tests are run after each and every test. All problems which are related to (a) the
connection between a test step and an executable script and (b) running such a script
with the help of a proper tool have been classified as Untidiness.

In addition, having a wide range of automation tools leads to a large amount of
cognitive information that has to be kept in the testers’ minds. Specifically, the testers
need to be familiar with the exact steps to run a test script, and they have to know
the features of the tools and details about the scripts. This problem concerns mostly
inexperienced testers. However, in many companies the testing process is performed
once in a few months, therefore even skilled testers have to reminisce such information
needed to perform test cases. Moreover, familiarity of the system is needed in many
occasions, because the test cases are not descriptive enough. Challenges related to these
problems have been classified as Insufficient knowledge.

As the researchers observed the current practices in the case company, reporting the
outcome of a test case is performed manually via paper form. Then the information is
input electronically into an archive system. Many companies use this approach, which is
time consuming and it leads to unnecessary effort from the testers. On top of that, this
method is error-prone because the tester might omit writing down the result of an action
or connect the output to the wrong step. Moreover, if any unexpected output — which
is not specified in the test case — occurs, it requires additional effort from the tester to
document. Similar problems have been categorized as Test reporting problems.

One of the reasons to automate test execution is to allow the tester to proceed with
other tasks while the tests are being executed. Without test orchestration this is highly
unlikely. In order to observe the output from a test script the tester has to wait for
its execution, especially in the case of smaller scripts. Moreover, in case of distributed
environments different scripts have to be executed on different machines, which leads
to interacting with several workstations and possible waste of time. This research has
concluded that even in case of automation of the test scripts the testers are all the time
involved in the process of testing and are not able to refer to other tasks or to perform
many test cases at the same time. This problem is specifically severe when most of the
test steps in a test case are automated but few of them or even one is manual. Then
the presence of the tester is required all the time because he is unaware at what time
exactly he has to perform this manual step. Problems referring to unnecessary waste of
time are classified as Inefficient time exploitation.

In conclusion of this section, there are advantages and disadvantages related to all
of the testing techniques and different combinations amongst them is crucial for the
successful testing of a system. Consequently, there are many issues bound to the mixed

48

7.2. RQ2 — METHOD FOR UNIFYING DIFFERENT TEST TECHNOLOGIES
AND PRACTICES CHAPTER 7. DISCUSSION

testing activities. All of the identified problems lead to inefficiency in the process of
software testing. The time taken to perform a test suite is prolonged and testers’ effort
is being wasted.

7.2 RQ2 — Method for unifying different test technologies
and practices

Challenges found in the prior exploration were derived into functional and quality re-
quirements of the developed framework. This section provides a mapping between the
challenges and the supported features of SeAT.

— Untidiness was solved by having a centralized Orchestrator to store all test scripts
in an organized manner.

— To assist testers who have insufficient knowledge about the system and simu-
lator, Orchestrator was built with a descriptive user interface. Every test case is
decomposed into test steps, each of which is a single interaction with a particular
machine. Such approach ensures the simplicity of the tests.

— Regarding test reporting problem, SeAT provides a way for the tester to trace
for exceptions and responses from the automation tools and also a place to write
down their exploration while performing the tests.

— Pertaining to the inefficient time exploitation problem, SeAT accelerates the
test process by encouraging automation and running all consecutive automated
steps at once.

Although the study was conducted in a legacy system within a company, it is ap-
plicable for other systems as well since the framework was also tested against a web
project. Besides, with the well-defined interfaces and the employment of dependency
injection technology, SeAT is highly extensible. The results of such quality attributes
are mentioned in the framework assessment (subsection 6.3.1) Therefore, the framework
is generalizable.

In the course of investigating an appropriate way to unify different test technologies
and practices, some patterns were detected.

— Granularity of the steps: a way to unify them is to make the test steps as small as
possible. There should not be any mixture of several test technologies or compli-
cated interactions with several machines within one test step. Instead, each step
consists strictly of interaction(s) on a particular level against a particular target
machine. Such an approach guarantees the automatability of the test steps. It also
enables the reusability of the test scripts since many test cases repeat the same
patterns or have mutual subsets of test steps which are ideally reused throughout
a test suite.

49

7.3. RQ3 — EFFECTS OF THE UNIFIED TEST FRAMEWORK ON TESTING
ACTIVITIES CHAPTER 7. DISCUSSION

— Simplicity of the structure: test cases should be written in a clear and simple
manner with sequential steps. The needs of complicated structures such as loops
and conditions can be compensated by highly reusable test scripts. Such high level
logic can, as well, be delegated to the extensible executors.

— Amongst adjacent abstraction levels: unification amongst different levels of ab-
straction is one of the core ideas of the framework. However, it is unrealistic to
unify all of them or any arbitrary combination of the levels in one test case. For
instance, it is irrational to have a step which runs on the unit level in the middle of
other acceptance level test steps. Therefore, combining adjacent levels — such as
acceptance level and system level or system level and integration level — is consid-
ered more appropriate. When it comes towards the unit test level, the combination
is more restricted since ideally unit tests are independent. Nevertheless, looking at
another angle of the unification, it provides a good way to systematise and arrange
all test cases in a centralized system which serves as a living documentation of the
application status.

— Semi-automation on the high levels: Semi-automation achieves its best value when
performed on acceptance and system levels as it accelerates manual work. On the
unit level, semi-automation is possible but it does not add value to the process.
Preferably, code analyses, inspections and reviews are conducted separately from
automated unit tests in order to minimize the running time of such tests.

In addition, one of the encountered problems in the studied company was the length
of the test cases. It is due to the fact that one test case usually covers many requirements.
Such approach of verifying a set of requirements with one test case is not academically
appreciated but it helps the testers to save time. This is due to the fact that setting up
the system into a correct state before any test cases is time consuming, thus, combining
test cases omits the repetition of setting up the system multiple times. Nevertheless,
the bulky test cases result in a situation where some sequentially written test steps are
independent of one another. SeAT supports independent steps by allowing the user to
specify if a step is critical or not. If two steps are dependent the first one is defined as
critical and if it fails the test execution does not continue to the next step. In the test
cases more complex control statements (such as loops and conditional statements) are
not recommended by Google [52] and there was none similar found in the case company
test specification. However, although SeAT does not support control statements, their
usage could be delegated in the automation scripts if needed.

7.3 RQ3 — Effects of the unified test framework on testing
activities

Testing is the most widespread validation and verification technique for assuring ade-
quate software behavior and it involves a lot of activities, thus, it faces a number of
challenges [11]. SeAT affects the testing process by focusing on these challenges. As all

20

7.3. RQ3 — EFFECTS OF THE UNIFIED TEST FRAMEWORK ON TESTING
ACTIVITIES CHAPTER 7. DISCUSSION

of the interviewees agreed, it makes the testing process less time consuming and sim-
plified by organizing the resources needed for execution of test cases. As the research
of Cervantes [23] implies, the spare time could be used for more testing activities. This
leads to an increase in the test coverage, hence, the quality of the software is improved
[23].

As previously concluded, there are some cases where manual testing in inevitable,
moreover, Leither has shown in his research [10] that unification of manual and auto-
mated testing produces positive results. This fact is dependent on the disadvantage of
manual testing, that is, it allows testers to perform only sequential test runs. This leads
to an increase in the time needed to complete the tests [23]. However, manual testing
is indeed needed so that developers can use their reasoning to develop useful test cases
and construct complicated input data. Therefore, SeAT incorporates the use of manual
testing and automation test tools together and it is a useful Productivity enhance-
ment tool as several of the experts in the case company have pointed out. The pop-up
window in SeAT indicates the time for manual action and allows the testers to multitask
during the process of execution of test scripts because they do not need to wait for the
result. SeAT simplifies the whole process and bypasses the need for the testers to refer
to the test cases written in paper form. This feature results in less errors during testing
because jumping back and forth between the system under test and the test specification
is a potential place for mistakes as the product development manager said during the
interviews. It was even suggested by one system developer that SeAT could be used even
if there is absolutely no automation in the test cases and the framework still be helpful.

On the other hand are the cases where tests are fully automated, meaning that there
are scripts covering all the steps in a test case. This results in extensive amount of
test scripts, and as observed, the scripts are spread in different locations and run with
the help of various tools. However, many papers have concluded that it can potentially
save time. Cervantes [23] states that automation provides the testers the capability to
perform parallel testing and that automated tests are not dependent on testers’ working
hours and they could run constantly. The problem that a large amount of scattered
scripts and tools brings is being mitigated with the use of SeAT. All of the interviewees
responded that the framework solves the problem with multiple-automation-technology
integration. Moreover, the centralized Orchestrator (section 5.2) stores all scripts in one
place and executes them on the correct client machine. The testers no longer need to keep
different scripts on different machines. Before this practice was hampering the execution
of scripts as well as their maintenance. One system developer referred to this problem as
“file hunting” and several developers were quite positive about the Tidiness that SeAT
brings to the testing process. A similar tool has been developed during Leitner research
[10], although it only supported unit testing and lacked the distributed capabilities of
SeAT.

In addition, SeAT has proved to be a good reporting tool. The testers had difficulties
to input the result from a manual or automated test step into an appropriate software.
Currently they are documenting the results in paper form which is time consuming and
requires effort, particularly in the case of a distributed environment. SeAT successfully

o1

7.3. RQ3 — EFFECTS OF THE UNIFIED TEST FRAMEWORK ON TESTING
ACTIVITIES CHAPTER 7. DISCUSSION

solves this problem and introduces a structured, organized and simple way of document-
ing the results. The results are gathered and stored in the Orchestrator and could be
easily extracted. However, additional research and implementation about the supported
formats is needed.

Furthermore, the testing process suffers from insufficient knowledge from the testers’
side because the test automation implementation requires available experts [13]. In addi-
tion, the test case specification is ambiguous and requires prior knowledge of the system,
which new testers usually lack. SeAT could be used as a helping tool where all tests are
created by experienced developers and then run and controlled by employees with less
knowledge of the system. Several senior testers were anxious about this capability of
SeAT since they can use the tool to mitigate some of their responsibility to the junior
testers or developers. A possible feature is that a screen-shot of a successfully executed
manual step could be taken during the creation of a test case and shown to the tester
who runs the test case. This screen-shot will be complementary to the step description.
This approach could help the inexperienced testers to easily recognize when a step fails
or passes without any knowledge of the system under test.

SeAT affects the process of creation of the test cases and it encourages automation.
This encouragement is due to the fact that many of the problems that are faced during
unification of test activities are solved by SeAT and the users would feel confident that
the written test cases are going to work. After the evaluation interviews it was discovered
that SeAT is perfectly suited for testing during continuous integration process [53] which
requires tests to be run after every build of the system since companies want to shorten
the feedback loop to detect errors early on in the development process. This approach
requires repetitive run of the test cases and any excessive time is multiplied by the number
of runs. Vitally, automation is a must to achieve continuous integration and most of the
automated tests, particularly in the projects at the studied company, are in the low levels
of abstraction, namely unit level and integration level. However, the validity of a single
component or a combination of components do not justify the correctness on the system
level or acceptance level. During regression acceptance test, many of the test scenarios
are repeated throughout the project lifetime to ensure a minimum level of acceptance.
If such tests are automated, they can also be integrated to continuous integration and
run all the time. Because SeAT strives to reduce the excessive time which is wasted in
putting the system under test in the correct state, “file hunting” and reporting the results
of test runs its benefits are harvested best in continuous integration environment. This
observation is supported by the opinion of a test specialist in the case company who also
suggested that SeAT could be also beneficial while performing smoke tests [54], whose
main characteristic is to be able to be performed fast. Consequently, testers only need
to perform exploratory testing, which is believed to be a good way of detecting defects
in the system. The repetitive tedious job is automated.

92

Conclusion

HIS RESEARCH identifies the problems from unification of different test practices,
provides a solution and studies effects of the latter on the verification and
validation process in a software company. Through a design science research
a set of unification challenges (section 6.1) are identified, an IT artifact is

developed (chapter 5) and effects of the implementation of this artifact in the case
company are observed (section 6.3).

In relation to RQ1 — challenges of using different test technologies and practices —
four categories have been defined: 1) Untidiness is a category consisting of all problems
arising from the missing connection between a test case step and an executable script, and
disorganization of the supporting automation tools. These problems include excessive
time and effort. Regression testing seems to suffer the most from untidy testing process.
2) Due to Insufficient knowledge, which concerns mostly inexperienced testers, the
testing process is hindered and errors are often made. 3) The testers are often obliged
to waste efforts on writing the results of test cases on paper and then transferring this
information to electronic systems, especially in the case of manual testing. These efforts
require time, they are error-prone, hence, this study categorize them as Test reporting
problems. 4) There are other cases where time is being wasted during the testing
process. Good example is the case where automated and manual testing are interleaved.
Although automation is supposed to save time it actually requires the presence of a tester
during execution. Therefore Inefficient time exploration is defined as a category of
problems related to unification.

Based on the requirements elicited from the challenges a method for effectively uni-
fying different test technologies and practices has been developed and implemented as a
framework — SeAT. This framework has been applied in the appropriate environment
and its attributes and functions have been assessed by experts and students. Addi-
tionally, the effect that SeAT introduces to the testing process of a company has been
studied. SeAT has proved that it confronts to the business needs by solving the identified

93

CHAPTER 8. CONCLUSION

challenges of unification. It is a good tool for reporting and it keeps the testing process
more organized. Furthermore, SeAT assists the testers when they experience lack of
knowledge, thus, reducing the errors during testing. The framework helps its users to
save time and allows them to effectively multitask since it does not require their presence
at all time. By supporting the testers in different ways, SeAT affects the whole process
of testing and most importantly encourages automation.

The challenges identified by this thesis can be used as a checklist by companies
which struggle with the use of many automation tools and also use manual testing. The
method for unification allows practitioners to develop similar frameworks and tools and it
helps them understand which are the key concepts of developing such framework. SeAT
is potentially a very useful tool for productivity enhancement, although some additions
and changes might be required. This thesis contributes to the existing body of knowledge
within the field of software engineering. It compromises with the lack of studies related
to the unification of software testing methods and practices.

Although students were involved in the research, the case company was only one and
it would be beneficial to extend this study to other companies as well. More challenges
of unification could be identified in other domains and the effects of the method for
unification can be further investigated with experiments on other systems and testing
processes. Out of scope was the complexity of the test cases and how companies write
their test suites. Further studies in this area will improve the applicability and efficiency
of SeAT. Finally, in order to make SeAT a finished tool usable by experts in industry,
some changes are required on its user interface and functionality such as: 1) connecting
to test management tools, reading test cases from them or reporting back; 2) changing
SeAT’s clients so that they connect to the Orchestrator automatically; 3) SeAT is built
on Microsoft .NET framework it requires .NET framework to run. Thus, supports for
operation systems different than Windows will be much appreciated.

54

1]

Bibliography

A. Hevner, S. Chatterjee, Design research in information systems, Integrated Series
9 in Information Systems 11, (2010).

P. Bourque, Guide to the Software Engineering Body of Knowledge (SWEBOK),
The IEEE Computer Society, Angela Burgess, 2004.

J. Ryser, M. Glinz, A practical approach to validating and testing software systems
using scenarios, QWE 99, 3 rd International Software Quality Week Europe, 1999.

C. Kaner, J. Falk, H. Q. Nguyen, Testing Computer Software, 2nd Edition, Van
Nostrand Reinhold, New York, 1993.

E. Borjesson, R. Feldt, Automated system testing using visual gui testing tools:
A comparative study in industry, Software Testing, Verification and Validation
(ICST), 2012 IEEE Fifth International Conference, IEEE, Montreal, QC, 2012,
pp. 350-359.

C. Kaner, Exploratory testing, Quality Assurance Institute Worldwide Annual Soft-
ware Testing Conference, Orlando, FL, 2006, pp. 1-9.

W. W. Royce, Managing the development of large software systems, Proceedings of
IEEE WESCON 26 (August), 1970, pp. 1-9.

N. Dhingra, Mayank, Contingent study of black box and white box testing tech-
niques, International Journal of Current Engineering and Technology 4.

Ieee standard for software unit testing, 1008-1987 (1986).

A. Leitner, I. Ciupa, B. Meyer, M. Howard, Reconciling manual and automated
testing: The autotest experience, System Sciences, 2007. HICSS 2007. 40th Annual
Hawaii International Conference, IEEE, 2007, p. 261a.

A. Bertolino, Software testing research: achievements, challenges, dreams, Future of
Software Engineering, 2007. FOSE 07, IEEE, Minneapolis, MN, 2007, pp. 85-103.

95

BIBLIOGRAPHY BIBLIOGRAPHY

[12]

[13]

M. E. Khan, F. K., A comparative study of white box, black box and grey box testing
techniques, International Journal of Advanced Computer Science and Applications,
(2012).

I. Sommerville, Software engineering, 8th Edition, Pearson Education Limited, 2006.
G. Adzic, Specification by example, 2011.

I. Singh, A mapping study of automation support tools for unit testing, Mélardalen
University School of Innovation, Design and Engineering, 2012.

A. Adamoli, D. Zaparanuks, M. Jovic, M. Hauswirth, Automated gui performance
testing, Software Quality Journal (2011) 1-39.

J. Andersson, G. Bache, The video store revisited yet again: Adventures in gui
acceptance testing, Extreme Programming and Agile Processes in Software Engi-
neering (2004) 1-10.

A. M. Memon, Gui testing: Pitfalls and process, IEEE Computer 35 (2002) 87-88.

E. Alégroth, F. R., H. Olsson, Transitioning manual system test suites to automated
testing: An industrial case study, Software Testing, Verification and Validation
(ICST), IEEE, 2013.

M. Fagan, Advances in software inspections, IEEE Transactions on Software Engi-
neering (1986) 744-751.

R. W. Selby, V. R. Basili, F. T. Baker, Cleanroom software development: an em-
pirical evaluation, IEEE Trans. on Software Engineering, (1987).

T. Gilb, D. Graham, Software Inspection, Wokingham: Addison-Wesley, (1993).

A. Cervantes, Exploring the use of a test automation framework, Aerospace confer-
ence, 2009 IEEE, IEEE, Big Sky, MT, 2009, pp. 350-359.

J. Racino, Policy, program evaluation and research in disability: Community sup-
port for all, 1999.

E. Stake, The Art of Case Study Research, SAGE Publications, 1995.

S. Lauesen, Software Requirements Styles and Techniques, Biddles Ltd of Guildford
and King’s Lynn, Edinburgh Gate, Harlow, 2002.

Iso standard for software engineering — product quality, parts 1, 2 and 3, 9126-9126
(2003).

A. Cockburn, Agile Software Development, 2nd Edition, Highsmith Series Editors,
20009.

o6

BIBLIOGRAPHY BIBLIOGRAPHY

[29]

[30]

[31]
[32]

33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

P. Runeson, M. Host, Guidelines for conducting and reporting case study research
in software engineering, Empirical Software Engineering 2 (2009) 131-164.

P. Runeson, M. Host, A. Rainer, B. Regnell, Case study research in software engi-
neering, Wiley, 2012.

Yin, R. K., Case study research: Design and methods, Sage, 1994.

C. Robson, Real World Research: A Resource for Social Scientists and Practitioner-
Researchers, Wiley, 2002.

R. K. Yin, Case Study Research: Design and Methods, 3rd edition, SAGE Publi-
cations, 2003.

A. Shenton, Strategies for ensuring trustworthiness in qualitative research projects.,
Education for Information 2 (2004) 63-75.

I. Boxill, C. Chambers, E. Wint, Introduction to social research with applications
to the caribbean, University of The West Indies Press, (1997).

R. Feldt, A. Magazinius, Validity threats in empirical software engineering research-
an initial survey, SEKE (2010) 374-379.

S. A. McLeod, Observation methods (2015).
URL http://www.simplypsychology.org/observation.html

P. Kruchten, Architectural blueprints — the “44+1” view model of software archi-
tecture, IEEE Software 12 (6) (1995) 42-50.

M. B. Juric, A hands-on introduction to bpel (2009).
URL http://www.oracle.com/technology/pub/articles/matjaz_bpell.html

A. Karande, M. Karande, B.B.Meshram, Choreography and orchestration using
business process execution language for soa with web services, IJCSI International
Journal of Computer Science Issues, 2011.

M. J., K. Pant, Business Process Driven SOA using BPMN and BPEL: From Busi-
ness Process Modeling to Orchestration and Service Oriented Architecture, Packt
Publishing, 2008.

R. Perrey, M. Lycett, Service-oriented architecture, Applications and the Internet
Workshops (2003) 116-119.

T. Andrews, F. Curbera, H. Dholakia, Business process execution language for web
services, version 1.1, bea, ibm, microsoft, siebel systems, 2003.

Microsoft, Iis 7.0 and your hardware (2015).
URL https://msdn.microsoft.com/en-us/library/cc268240.aspx

o7

http://www.simplypsychology.org/observation.html
http://www.oracle.com/technology/pub/articles/matjaz_bpel1.html
https://msdn.microsoft.com/en-us/library/cc268240.aspx

BIBLIOGRAPHY

[45]

[52]

[53]

[54]

[55]

[56]

[57]

Oracle, Ofm system requirements (2015).
URL http://docs.oracle.com/html/E38687_01/12c_fusion_requirements.
htm#SYSRS2998

H.-P. D. Company, Unified functional testing (uft) (2015).
URL http://www8.hp.com/se/sv/software-solutions/unified-functional-
automated-testing/

EtestingHub, Software testing tools-test director (2012).
URL http://www.etestinghub.com/testdirector.php

M. Fowler, Inversion of control containers and the dependency injection pattern
(2004).
URL http://martinfowler.com/articles/injection.html

R. C. Martin, The dependency inversion principle, C++ Report 8 (1996) 61-66.

D. Hoffman, Cost benefits analysis of test automation, Software Quality Methods,
1999.

J.-M. Kim, A. Porter, G. Rothermel, An empirical study of regression test applica-
tion frequency, The Journal of Software Testing, Verification & Reliability 15 (2005)
257-279.

Google, How to write good test cases (2015).
URL https://code.google.com/p/robotframework/wiki/
HowToWriteGoodTestCases

M. Fowler, Continues integration (2006).
URL http://martinfowler.com/articles/continuousIntegration.html

Standard glossary of terms used in software testing, version 2.4, International Soft-
ware Testing Qualifications Board.

H. Y. Yang, E. Tempero, H. Melton, An empirical study into use of dependency
injection in java, Software Engineering, 19th Australian Conference, IEEE, Perth,
Australia, 2008, pp. 239-247.

H. Olsson, H. Alahyari, J. Bosch, Climbing the “stairway to heaven” a multiple-
case study exploring barriers, Transition from agile development towards continuous
deployment of software (2012) 392-399.

A. Albreshne, P. Fuhrer, J. Pasquire, Web services orchestration and composition
— case study of web services composition (2009).

o8

http://docs.oracle.com/html/E38687_01/12c_fusion_requirements.htm#SYSRS2998
http://docs.oracle.com/html/E38687_01/12c_fusion_requirements.htm#SYSRS2998
http://www8.hp.com/se/sv/software-solutions/unified-functional-automated-testing/
http://www8.hp.com/se/sv/software-solutions/unified-functional-automated-testing/
http://www.etestinghub.com/testdirector.php
http://martinfowler.com/articles/injection.html
https://code.google.com/p/robotframework/wiki/HowToWriteGoodTestCases
https://code.google.com/p/robotframework/wiki/HowToWriteGoodTestCases
http://martinfowler.com/articles/continuousIntegration.html

Interview Questions

Interview questions Categories

1. What is your role in the organization? Background
2. How many years of IT industrial experience do you have?
3. Have you done automatic or manual testing before?

4. Are you familiar with the following types of testing:
e Unit
e Integration
e System

e Acceptance

RQ1 — What challenges are experienced in practice when different test
technologies and practices are used together for system verification and val-
idation?

5. Do you think that automatic testing could help you in your
work?

Make it less time consuming

Make it possible to multitask
Challenges

and Potentials

Raise the quality
Other?

APPENDIX A. INTERVIEW QUESTIONS

6. Have you used tools for automatic testing? Which ones? If
YES, can you think of any problems? Examples?

7. Have you used manual testing and automation testing tools
together in one test case? If YES, what are the benefits? Any
problems?

8. Have you used different tools for automatic testing together in
one test case? Which ones? If YES, what are the benefits? Any
problems?

RQ3 — How does a unified test framework affect the verification and vali-

dation activities in industrial practice?

9. Do you think that this framework could fit into the testing
process of your company? Where?

e During the creation of the tests
e During the repetitive usage of the tests

e Other?

Applicability

10. Do you think that the framework solves the problems with the
usage of manual testing and automation testing tools in one test
case? Which ones and to what extend?

11. Do you think that the framework solves the problems with
the usage of different tools for automatic testing in one test case?
Which ones and to what extend?

Validity

12. From 1 (easy) to 10 (difficult), how difficult is it to understand
the purpose of the framework?

13. From 1 (easy) to 10 (difficult), how difficult is it to create test
cases and related test steps?

14. From 1 (easy) to 10 (difficult), how difficult is it to get the
result from the execution of a test case?

Usability

15. From 1 (easy) to 10 (difficult), do you think that a new test
technology could be easily added to this framework? Example?

Extensibility

16. In your opinion could this framework save time and effort for
the testers?” Why do you think so?

Productivity

17. How do you think this framework could be improved?

18. Other observations? Anything we have not covered?

Open-ended

questions

11

	Introduction
	Background and Related Work
	Background
	Related Work

	Case Company and System
	Research Approach
	Research Objectives
	Research Methodology
	Research Procedures
	Challenges Exploration
	SeAT Development
	Effects of SeAT
	Data Analysis

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability

	Technical Implementation
	Overview
	An example
	Test case structure and semantics
	Test case manipulation
	Screen-shots

	Physical View
	Development View
	Orchestrator
	Client

	Logical View
	IExecutor interface
	IOrganizer interface
	Dependency injection

	Process View

	Results
	RQ1 — Challenges of using different test technologies and practices together
	Untidiness
	Insufficient knowledge
	Test reporting problem
	Inefficient time exploitation

	RQ2 — Method for unifying different test technologies and practices
	RQ3 — Effects of the unified test framework on testing activities
	Framework assessment
	Tidiness
	Test reporting aid
	Simplified test cases
	Knowledge gap resolution
	Productivity enhancement
	Test process reformulation
	Test automation encouragement
	Towards continuous integration

	Discussion
	RQ1 — Challenges of using different test technologies and practices together
	RQ2 — Method for unifying different test technologies and practices
	RQ3 — Effects of the unified test framework on testing activities

	Conclusion
	 Bibliography
	Interview Questions

