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Abstract

In the recent years a multitude of functional language im@gletations has been
developed, whereby those being intended for practical hiaeesa very fundamen-
tal property: The execution models employed by implemématdesigned for
efficient program execution are all based on some form oflgragduction. This
thesis introduces a new execution model for strongly-typegher-order, non-strict,
purely-functional programming languages, that does nigtaa graph-reduction
but a new concept callegery lazy evaluationlt uses an unconventional approach
to evaluate expressions of thecalculus, that differs considerably from traditional
term rewrite systems. Its method to perform function agions allows arguments
to be handled in a way, that is more lazy than in existing gnagluction based
models. This leads to a new type of abstract machine, whimimises very efficient
program execution and might also be quite suitable to beamphted in hardware.
A proof-of-concept implementation of the execution modeajiven, which consists
of a compiler generating abstract machine code from a squmagram, and the
abstract machine that interpretes the result. By using ikécw@e real programs it
is shown, that the correct results are evaluated and thapheach therefore is a
valid alternative to existing execution models.
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1 Introduction

In this thesis a new execution model for functional prograngrianguages is
presented. A system is specified for executing programdenriin a purely
functional language. Such a system typically compriseswgpder for translating a
program from the source language into a machine languagareaoistract machine,
which interpretes the machine language thus executingrtigram.

In contrast to already existing functional language imgamtions a new
approach is chosen based on a new concept caledlazy evaluationlt differs
considerably from previous execution models as it doesealgtan term-rewriting
but a more abstract mode of operation in which function agnuisiare treated more
lazily.

1.1 Scope

The source languages covered by this modekamngly-typedhigher-order non-
strict, purely-functionallanguagesd. The Source Languagsuch as Haskell on
which we focus.

The intention is to give a detailed explanation of the unded concept as well
as an accurate description of the systdm\ery Lazy Evaluation

To show how it differs from existing concepts, at first a shmrérview over
execution models3 Conventional Execution Modglss given that are used in
today’s functional language implementations.

A formal specification of the abstract machine and the atistreachine lan-
guage is presented.(Model Specification which is to constitute a solid foun-
dation for a novel class of efficient implementations fordtional programming
languages.

A proof-of-concept implementation of the system’s compuseds provided
(6. Implementationto show the applicability of the approach. The compiler
processes Haskell as a source language and is written ireti@8k the interpreter
in C. The implementation might help to estimate the perforreathat is to be
expected from the model in comparison to existing imple@tors.

Finally, possibilities of further research are outlinedtthre opened by the in-
troduced execution model as well as potentialities forrogations and extensions
of the presented system.(Perspectives

1.2 Motivation

In the last decades a lot of research work has been put intacdh®ilation
and execution of functional languages resulting in a nunabeafifferent abstract
machines such as the SECD [P. J. Landin (1963)], the CAM [G. @Geasi (1985)],
the CMCM [Simon Thompson (1992)], the TIM [Jon Fairbairn (1g87the
ZAM [Xavier Leroy (1990)], the Krivine-machine [Cregut Prer(1991)],
the G-machine [Simon L. Peyton Jones (1987)], and the s@eelagless G-
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1.2 Motivation

machine (STG-machine) [Simon L. Peyton Jones (1992)] plrsous adaptions
[lan Holyer (1998), Daan Leijen (2005)]. The attempt to makether contribution
to this list is motivated by the fact that the presented mati@hds out from the
previous ones. While the latter do differ amongst each otlgerdbious degrees,
they share one fundamental property: Ultimately, they enmnt thex-calculus
by term-rewriting, either relying on th@ush/enteror the eval/apply model
[Simon Marlow (2006)] to access function parameters. H#s, is solved by a
serve/requestmechanism in which function parameters are treated moig.laz
This leads to a new type of execution model.

It is highly interesting how it performs (in terms of run-gnefficiency) on
actual machines compared to other methods. In particugainitreased laziness
of the model promises some potential in this respect. Cuyentl notable
Haskell implementations are more or less based on the STehingg thus one
can fairly assume, that it is of the models above the one motgdsfor efficient
execution on current computer systems. Therefore, taiifitesthe characteristics
of the presented model, in this thesis often comparisons thig well-established
STG-machine are given. Although the match is far from fdig most plausible
competitor in terms performance is the highly optimizedsgtaw Haskell Compiler
GHC, http://www.haskell.org/ghc/ ).

Finally, the abstractness of the model holds its own beaWtfile previous
designs based on the concepts of term-rewriting and greghhetion directly
implement the\-calculus by repeated application of reduction rules, Wheads
to iterated expression substitution, here a different @aggn is devised. It is due to
the increased abstraction, that the abstract machine iseoonte hand surprisingly
simple and thus easy to implement (notably even in hardwbuat the same time
for the same reason more difficult to understand.

Since it promises to allow execution on very simple architess it might
open up interesting perspectives in the field of embeddedpatng but could
also motivate research in the areas of parallel computipgies security, and
virtualisation (se€. Perspectivgs
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2 The Source Language

The execution model can be applied to any higher-ordemglyetyped, non-strict,
purely-functional language. The most relevant member isfght of languages is
Haskell. Other languages are among others its derivatiwdsas Agda-2 or Clean.
But also (enriched)-calculus variants are supported.

2.1 Abstract Syntax

To cover this whole class of languages, we consider the aistiyntax below
(Figure 1), which defines a simple untyped functional lamgua Bare of any
dispensable language-specific constructs such as comrparasneter patterns for
function definitions, or type-classes, it is still sufficiignexpressive to act as a
gualified representative for this class. Abstracting awaynfa concrete syntax
helps to focus on the essence of the model rather than onutedionpilation details.
Intermediate languages used by various compilers are oftsimilar appearance.

To avoid defining a concrete syntax for the source languagejse Haskell 98
to denote the source code of example programs throughsutidlsument.

program —  datatype* function*

datatype — constructor®

constructor — constructor-name parameter-name

function — function-name parameter-namerpression

expression — wariable | application | case-discrimination
let-expressiointeger | float

variable — constructor-naméfunction-nameé
parameter-nameprimitive

application — expression™

case-discrimination — expression alternative*

alternative —  pattern expression

let-expression —  function® expression

pattern — constructor-name parameter-namenteger | default

Figure 1: Abstract syntax of the source language as a cofrexgrammar

Because correctness is guaranteed by the type-checkeeliedoslating the
source program into this language, it causes no harm to leaveaype infor-
mation completely. Ad-hoc polymorphism can be resolved to ordinary case-
discrimination.

1This is a very useful feature, because that makes it easyetexisting compilers as a front-end
for the implementation of the execution model ($et. The Compiler

2Therefore datatype definitions do not include a datatype epasince this is just type-
information.

3polymorphism involving different behaviour depending be toncerning type
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2.2 Semantics

Many language elements commonly used in functional progrug have been
omitted in favour of others. In order to minimise the langeiagis sensible to retain
only one of two language elements that are capable of expgette same concept.

Table 1: Some omitted language elements known in Haskell
and the corresponding representation

\-abstraction kz;..z,,. €) let-expression (lef z;..xz, = ein f)
function parameter pattern case-discrimination

infix operatork + vy) function applicationglus x y )
character literals either as integers or constructors
if -then -else -expression case-discrimination

Higher-level constructs such as type-classes or populgukge extensions are
not discussed here, but are indirectly supported by the metee it should be
possible to eliminate them by a source-to-source transtbom.

2.2 Semantics

The most common perception of a program given in this (or @ahgradunctional)
language is to interprete it as a singlexpression. For that purpose every function
definition can be regarded as a namedbstraction. Beginning from a well-
defined entry point (thenain -function in Haskell) by recursively expanding every
function application to the correspondikgibstraction, a (possibly infinitely larde)
\-expression is obtained.

The source language merely enriches the expressivendss péitex-calculus
by a few additional language constructs. In the above laggjtizese are three con-
cepts: Constants (integers, floats, and constructors),diasemination, and prim-
itives. Although the\-calculus is powerful enough to express case-discrimonati
and integer-arithmetics using the Church-encoding for mateeand booleans, it
is not possible to implement this representation efficier®rimitives give access
to the underlying architecure’s capacities (like 1/0, mtion with the operating
system, or arithmetic functions), and can also be used te fatrictness

We conclude, that the function definitions constituting agram, ultimately
define ax-expression, thus the program is executed by evaluatisgetpression.
Therefore, the execution model of a functional languagdempntation is charac-
terised by the very method it employs for processing a ghrerpression.

4if recursion or mutual recursion occurs, which should bectise for non-trivial programs
Ssee [Zena M. Ariola (1994)]
8In this document the terrstrictnesss synonymic taeagerness
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3 Conventional Execution Models

This section provides a basic insight into the fundamemgpt@ach used by current
functional language implementations, in order to exhibg tuniqueness of the
approach used by the presented execution model. Thergfi@rexplanations do
not go deeper than it is necessary to serve that purpose.

3.1 Reduction

The natural way to evaluakeexpressions is by applying the rules of dealculug,
which defines an equivalence relation ®prexpressions. The conversion of an
expression into another is defined to be valid, if the expoassare equivalent.
The \-calculus defines three transformation rulesconversion $-reduction, and
n-conversion.

In a compiled setting, the abstract machine never needs trpe a-
conversion. In the\-calculus it is only required to prevent clashes of différen
variables with the same name. In an efficient implementatios target language
interpreted by the abstract machine does not referencablkasi by name, but rather
relies on some unambiguous, numeric kind of identifier. Afale names are already
resolved during the compilation of the program, which ccagdegarded as a form
of static application of the:-conversion rule.

Also n-conversion does not play a too important role in this cantéxome
functional language implementations do not need to perfgirronversion at all,
but even if it is done, it does not occur very frequently.

This leavesp-reduction as the central mechanism of the evaluation psoce
Indeed, the primary task of conventional abstract machsiesrepeatedly perform
p-reduction in order to transform tReexpression step-by-step to iermal form
(if existent), where the evaluation terminates.

3.2 Lazy Evaluation

These seem to be quite definite directions for the abstrachime, but an important
aspect of the evaluation is still unsettled: the reductiofen In a\-expression,
each saturatestabstraction is a valid candidate for applyipgeduction. However
this question has already been dismissed by limiting th@esa@mly to non-strict
(lazy) languages. Lazy evaluation implies, that arguments arevaluated and is
achieved bynormal order reductiof
Normal order reduction states, that in-@xpression f = y) always thdeftmost

outermostpart (f) is to be considered foB-reduction. If thep-reduction rule is
applicable that way, we speak ofeducible expressiofor redeX. An expression
that can not be reduced by normal order reduction is/@ak head normal form
(WHNP).

’see [Peter Sestoft (2002)]
8see [Simon L. Peyton Jones (1987), 2.3. Reduction Order,ff) 23
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3.3 Call-by-Need Strategy

3.3 Call-by-Need Strategy

Furthermore we postulate tlwall-by-needevaluation strategy, which amends lazy
evaluation by the assertion, that a named expression tlzatroenultiple times

in a certain context is evaluated at most once. This is anwsdeghoice for an
implementation that is to be taken seriously. To give thigrgatee, an evaluation
model needs to include sharingmechanism, which preserves the evaluated form
of a shared expression to deploy it in case of subsequent (Skaring may not
be considered a merely optional optimisation. In a fun@idanguage without

a sharing mechanism, for any expression that is used nuuliiples it would be
necessary to evaluate it for each occasion that its valiejigned.)

3.4 Interim Conclusion

Summarising, program execution corresponds t@ran rewrite systemimple-
mented by repeatedly performing normal order reduction toNKHbn a given
redex. This imposes a strong assumption on the executioelimatbstract machine
design: Its configuration basically is a representatiorhefcurrent A\-expression.

In each step the abstract machine applies a transformatlerta it, the resulting
expression being theewcurrent expression of the abstract machine. This constrict
the design space to only a few remaining aspects:

e term representation, i.e. how the abstract machine sth& quirrenti-
expression) is encoded

e how p-reduction is performed efficiently on that representation

¢ sharing: how a computation result can be preserved andd datee

3.5 Graph Reduction

In all the practically relevant functional language impartations terms are repre-
sented as a graph. The nested structure Xofeapression can be interpreted as a
tree. Sharing implies, that a set of tree nodes, each ragmnegdhe same shared
expression, which occurs multiple times in the term, can leeged into a single
node. Such a node then has more than one ancestor and thedoeeds a graph.
A graph node is kept in a data structure caltemsure(or thunk. Program execution
Is achieved by performin@-reduction on this graph. This particular form of term
rewriting is calledgraph-reduction

In a real implementation on a system with finite resourcegtiogram graph
can not be maintained in its expanded fotnTherefore the procedure of graph-
reduction really is an alternation of expansions and redost The expansion
of a reference to a function takes place by allocating a céo$or the function
definition, which holds its own bound variables. Dependinghe implementation

%We keep in mind, that the expression might very well be irdigitarge
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3.6 Argument Handling

this is either achieved by copying the function definitiorn{@h is held in form of a
closure) or by building a closure from scratch by executhgyfunction definition
(which consists of the instructions to build the closure).

3.6 Argument Handling

The starting point of @-reduction is a\-abstraction applied to a number of argu-
ments: (\z;..z,. €) a;..a,. Itis essential for the efficiency of current implemen-
tations not to treat such }abstraction with multiple arguments as a cascade of
applications of single-argument abstractions. (Azs. (...(Az,.€)...)) ai...an,. This
approach was chosen by the G-machine, and rectified by ther&dchine.

In a higher-order language it can usually not be staticaliiednined for a
application f a;...a,, occuring somewhere in the program definition, how many
arguments are expected By° For f = \z,..x,. a,..a,, bothm > n (oversatura-
tion) andm < n (undersaturatiop may occur. Therefore the model must include
a mechanism to ensure, that always the right number of angtsne applied to a
\-abstractiort!

There are two strategies to pass arguments, both of whichsae in existing
implementationg?

e Push/Enter: The arguments are pushed on an argument stéure biee
function is entered. The function, which statically knows own arity
(parameter count), checks if enough arguments are presmahif so, takes
the correct number of arguments from the stack and perfdmmevaluation.

e Eval/Apply: Before a function is applied, the caller mustmxae the function
closure in order to determine its arity. Then the correct benof arguments
are passed (possibly using registers and the stack) angoraian specific
argument passing convention (similarly as in imperativeyleages) and the
function is called, knowing where its parameters are stored

3.7 Free Variables

There are two methods to cope with free variables. One isdaadvee variables
completely, which is achieved by a source-to-source toansdtion of the-
calculus called\-lifting®3. It raises allx-abstractions to top-level, binding free
variables to additional parameters.

Relevant implementations however, do generally not perfarhfting, but
rather bind them at runtime in closures. Every time a closiedlocated, for each

010 higher-order languageg,may be a parameter asfiip f x y = f y x . Therefore it
is not clear at compile-time, which concrete function islaggpon the right-hand side.

n case of undersaturation the expression is already in WHNF.

2More detailed explanations and a comparison between the sinategies is given in
[Simon Marlow (2006)]

L3see [Simon L. Peyton Jones (1987), 13. Supercombinatorsambda-Lifting, p 220 ff]

7 2009-06-12



3.8 Summary

of its free variables, a value needs to be supplied. Theseesare stored at a
predefined location in the closure and are accessible farltiseire once it is being
entered-

3.8 Summary

This section’s explanations can be rakishly subsumed ifottmeulars below. They
define a rough schema of today’s functional language imphatiens.

e program definition s\-expression

program execution = evaluation of theexpression

evaluation ol\-expression = repeatgdreduction

abstract machine state = currénéxpression

term representation as graphgraph reduction

lazy evaluation = normal order reduction
e [(-reduction = push/enter or eval/apply

In the next section we will see how the presented executiodemstands out
from previous ones as it does not quite fit into the above sehémelies on another
more abstract approach, which emerges from lifting the ephof lazy evaluation
to the abstract machine.

l4see [Simon L. Peyton Jones (1992), 4. The STG Language, p 19 ff
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4 Very Lazy Evaluation

This section is dedicated to explain the idea behind theepted execution
model and its implications for the design of the abstract mmee One very
important characteristic is how function arguments araté@ more lazily than in
the push/enter or eval/apply models, which serves well anay into the matter.

4.1 Lazy Evaluation, revisited

Lazy evaluation describes the notion of delaying the evalnaf an expression to
the moment its result is required. In conventional modatsighachieved by normal
order reduction of an expression to WHNF, with the resultt tha arguments
of the current expression are not evaluated. From a moreaabgierspective,
lazy evaluation connotes the idea to delay a task to thetlatesnent possible,
speculating for the eventuality, that this moment neveumgdecause the task has
vanished somehow. In that case the effort of attending ttetbleis saved.

main =flip constaid b
flipfxy =fyx
const xy =X

idx =x

Figure 2: Trivial program

We will now see how we can squeeze out an additional portidaziiess by
that idea, and thereby save some redundant effort. Theref@ use an example
(Figure 2) to try to identify a source of spare stricthessanm:-rewriting-based
evaluation models.
main
—> flip constaid b
->constidab
->idb
- b

Figure 3: Normal order reduction

To avoid dealing with specifics of the Haskell standard hjarave ignore the
fact, that the main function does not have tX) -type expected from a valid
Haskell program. Normal order reduction (Figure 3) terrtesaafter performing
four p-reductionst®

Itis due to lazy evaluation, thatnever needs to be evaluated, sincedtwest -
function drops its second parameter. Despite the fact,ahiatnever used, it is

5The expansion fronrmain to flip const a id b is not really areduction but can be
treated as one, if it is regarded ak-abstraction without parameters.
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4.2 A new Model

evoked bymain , passed ontlip , rearranged in the subsequ@nteduction, just

to be discarded bgonst in the end. This is just the kind of redundant effort that
one would expect to be avoided by laziness. Here it occueslimrause arguments
are handled in a strict way: They are passed just as soonyaarihavailable, rather
than at the moment they are required.

The latter approach is pursued our model. It avoids the maiineffort that
occurs because arguments are evoked too early. It doesmetaguments on a
silver plate for functions to consume théfn.Instead, functions as soon as they
require a parameter have to go fetch it. This way the effopgasfsing arguments is
delayed to the moment the parameter is really accessed omschdt occur at all if
the access does neither.

At first glance, the saved expense might seem rather low (@ftenaintaining
arguments does not impgvaluatingthem). But a new argument often requires the
allocation of a closure on the heap.

4.2 A new Model

We have shown, how (lazy) parameter retrieval promises tbspect of reduced
evaluation costs compared to the conventional (stricthirment passing methods.
Let us now see how this is realised in the presented execuotamel and how this
appoints major characteristics of the abstract machine.

We begin the evaluation by examining the function definitadrmain . But
opposed to the conventional models, the arguments of thegsipn on its right-
hand side are not considered. This will not be done beforelatedy necessary,
so for now, only thdeftmostportion is use. In the example above (Figure 2)
instead of rewriting the terrmain asflip const a id b only flip asthe
leftmost portion of the expression is considered. Thatiegpithatmain may not
be discarded, otherwidlp ’s argumentsdonst , a, andb) would be lost.

4.3 Evaluation Stack

Therefore the original abstract machine state (initiafijyaconsisting oimain ) has
to be transformed to a configuration containing dbgh  andmain (for supplying
arguments télip when required). For that purpose the presented abstratiineac
maintains a stack, thevaluation stackwhich is its primary data structuré. It
contains a sequence stfack tokensfor now we assume solefynction tokens A
function token represents an instance of a specific funetmahis a simple reference
to its definition. We denote the evaluation stack in paresghayrowing from right

18In the push/enter model, the function itself still needsitik phe correct amount of parameters
off the silver plate (argument stack), while in the evallgppodel the correct amount is served in
the most convenient manner.

"While this method is not based eeduction it still pursues to proceed byormal order

B\Whenever the term “the stack” is used, the evaluation stacieint.
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4.4 Parameters

to left.2® In the first state transition the initial stat@4in ) is transformed tofl{ip
main ). This notation is by no means equal to theressiorilip main . It rather
expresses the situation, that the the function definitiomain has beerpartially
enforcedflip  being the candidate for the next step. The transition istinély
written as (nain ) — (flip main ).

The evaluation procedure takes place in a sequence of stéese in each
step the topmost token of the evaluation stack is examinéthdqut taking it off
the stack) and (if it holds a function token) the leftmosttor of the associated
definition is scrutinised, and action is taken depending®wdlue.

4.4 Parameters

The current configuration is interesting, because the testmportion of the topmost
tokenflip is f, a function parameter, more specifically the first paramigter
flip ’s parameter listf(, x, y).

The ordinary argument passing rule for functions (in matéges and most
programming languages) states, that tile parameter of a function correpsonds
to thenth argument passed by its caller, in other words: Paramaterglentified
with their corresponding arguments by position.

The caller offlip is main, so the first parametdr of flip is identical
with the first argumentonst in the definition ofmain . Just as in the preceding
transition, we push a new function token on the stack, whmtesponds to the
leftmost part of the topmost function tokenflig main ) — (const flip
main). Only this time one level of indirection is required to detine the
respective function.

In general, the method to access thth parameter of a function token is to
requestthe nth argument of itpredecesso(the token immediately to the right on
the evaluation stack). This works, because a function takahways pushed on the
stack as the leftmost part of the previously topmost tokdruslit is always adjacent
to its caller and the arguments of the caller correspondtijréo its parameter®

4.5 Evaluation Stack, revisited

For this method it is necessary to be able to read itertisn the evaluation stack,
which contradicts the conventional conception of the sthatk structure. Therefore
the evaluation stack is a more potent data structure. LagewilV see how it is in
fact a hybrid of a heap and a stack, as it is destined to rendengentional heap
obsolete.

1°The terms “on top of” is equivalent to “left of’, such as “topst” can be used instead of
“leftmost”, etc.

2OIn case of unsaturated or oversaturated function calls,alioairguments are imperatively
supplied directly by the caller (s€e7. Currying.
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4.6 Registers

4.6 Registers

In the current abstract machine staterfst flip main ), the next evaluation
step is similar to the previous one. Leftmost partohst ’s definition is its first
parameter, namely. To obtain it, the first argument is requested froonst ’s
predecessdiip . But this argument again is a parametgr third parameter of
flip ), so another request has to be performed to gather the tigtdnentid
of main , which is then put on the stackcdnst flip main ) — (id const

flip main ).

Here, for an update of the evaluation stack to occur, two estguhad to be
issued. In more complex cases, a complete cascade of reeuigs$it be necessary.
Therefore it is sensible to model additional intermediaies between stack
updates.

Ay, 1,main ) —
Ay, 2,flip main ) —
Al,l,fllp main ) —

Ay, 3,const flip main ) —

N
A, 1,const flip main ) —
Ap,4,id const flip main ) —
A1,3 id const flip main )

(
(
E
(Al, 2,const flip main )
(
(
(

Figure 4: Trivial program evaluated: first part

For this purpose, two registers are employed, stedus register(SR) and
the stack position registe(SP). The former expresses which operation is to be
performed by the abstract machine during the next step,atter laddresses the
stack token referenced by the operation. For now we know ohbne operation,
the argument request, which we denoteApyrequesting théth argument of the
token addressed byP. S P holds a natural number and addressesStiéh token
on the evaluation stackilS), the bottom token having the addressWhenever a
function token is pushedy P is adjusted to point to this new token, afd is set
to Ay. The leftmost portion of an expression is addressed astthargument.

We extend the configuration of the abstract machine froalS) to
(SR,SP,ES). The evaluation of our example can then be depicted more
fine-grained (Figure 4).

4.7 Currying

At this point however, the request for the first argumen} ¢an not beservedoy the
tokenconst atSP = 3, as its definition does not have an argument. This happens
whenever unsaturated function applications occur, ingk&npleconst supplies

not enough arguments td . This can usually be remedied byrrying, whenever
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4.8 Interim Conclusion

there exists a corresponding oversaturation. Here thieisdse, amain supplies
4 arguments tdlip  while the latter has only an arity of 3.

(A1,3,id const flip main ) —
(As,2,id const flip main ) —
(A4,1,id const flip main ) —
(Ap,5,b id const flip main )

Figure 5: Example evaluated: last part

The curry-mechanism of the presented abstract machinestems a simple
rule, which ensures that an unsatisfied request is reditesteeh that it eventually
ends up at the corresponding oversaturatian:SP, £S) — (Aj_q1p, SP—1, ES5),
wherea is the argument count andthe arity of the function token & P. After
applying it twice, the evaluation can gently be completadiFe 5).

4.8 Interim Conclusion

In this very simple example the basic procedure of the ptesesxecution model

could be depicted, but fundamental mechanisms for simglgess such as case-
discrimination and let-expressions or more elaboratetieolsi for sophisticated

problems like sharing are still to be discussed. Neversekme interesting

features of the model could already be observerd:

e The procedure is not based on term-rewriting or ordinacpnversion rules.
The evaluation can rather be seen as a series of partialdaragiplications.

e Opposed to the conventional models, the state of the absti@hine is not
equal to “the current expression”, or at least it relies oruglmmore abstract
representation.

e As promised, the rendundant effort of dealing with argurae¢hnat are never
required is avoided. The argumenbf main remains untouched throughout
the evaluation!

e The approach heavily relies saquestsaddressed at function tokens, which
can beservedf the corresponding function definition has enough argusien

4.9 Subfunctions

One fundamental language construct did not appear in the@raabove at all:
nested expressions. Whenever aplication in the source language does not
exclusively consist of atomic componentsfiable integer, float), we speak of
anested expression
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410 Parameters, revisited

During compilation from the source language to the targgjlage, non-
atomic sub-expressions are factored out into seperatédaraefinitions, so called
subfunctions This leads to a flattened structure of the program definitrdmere
the components of the function definitions are atomic. Thay ariginally nested
parts of an expression can be handled by the request-meaharst like before by
pushing the corresponding subfunction token on the evaluatack. Consider the
function definitionconst’ x y = id (flip const x (id y))

Figure 6: Unnested form

If the outsourcing of nested expressions is performed withamy precau-
tions (Figure 6) a new problem arises: Previously boundatées might be torn
out of their context. While inconst’ the variablesx andy are bound, in
flip_const_x_id_y andid_y they occur as free variables. Ordgnst’ s
able to obtain these parameters by performing a requestpoatiecessor token, the
two subfunctions do not have that possibifitywe therefore need a mechanism, by
whichflip_const_x_id_y andid_y can access the parametergofist’ .22

We call const’ the parentof flip_const_x _id_y , Which in return is
thechild of const’ . The above problem can be solved by redirecting parameter
requests addressed at a subfunction token to its paremt,token case of multi-
level nestings to one of i@ncestortokens. To perform this redirection, the parent-
child relationship needs to be articulated in the evalmasiack. This is achieved
by establishing for each emerging subfunction token a eefss parent-edggto
the corresponding parent token. This is simple, becausefarsttion can only be
evoked due to arequest served by its parent. That way evia case of multi-level
nestings, for every subfunction token, a connection tas#dmncestors is guaranteed,
through a cascade of parent-edges. Subfunctions can fttlese edges to locate
parameters that belong to an ancestor.

From now on we denote a function token at the stack posititirat belongs to
the function definition off and has a parent-edge to the stack positiby aF,{ .

4.10 Parameters, revisited

The subfunction approach implies, that to unambigouslytiea specific parameter
not only its index (position within the parameter list) neeid be defined, but
also the function by which the parameter variable is boune& démonstrate the

21The subfunctions may be requested froamst'”  much later, and therefore be positioned at a
very different location in the stack.
22A valid solution would be to perform-lifting, which however leads to very inefficient results.
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410 Parameters, revisited

parameter notation in the target language by taking the datigm of the example
(Figure 6) one step further (Figure 7). We also include thindiens of flip
const , andid .

const' 2 = id flip_const_x_id_y

flip_const x_id y O = flip const psonst’ id_y
idy 0 =id pgrst

flip 3 =  pflw pflwplliv

const 2 = p{onst

id 1 = pid

Figure 7: Unnested form with correcly resolved parameters

The integer that follows each function name in each defimitienotes the arity
of the function. It is alway$ for subfunctions. The symbd?lf simply denotes the
f’s ith parameter. Whenever such a parameter atom is served dinacilmachine
goes into a corresponding parameter stale= P{ .

If SP addresses the correct functighin which the parameter was bound,
the corresponding argument is requestid from the predecessor. OtherwiBﬁ
represents a free variable and is bound somewhere in theusiaing environment
reachable through the parent edge of the function toket\fat The process of
following parent-edges untjf is reached is callebdacktracking In the evaluation
(Figure 8) of the example above (Figure 7 the new mechaniambe seen at work.

We see, that in this execution model it is quite hard to folkve evaluation
even for a very simple example. To understand this sequeémeght be useful
to consult the first few of the inference rules given belowg(fe 17). Just a few
central aspects are to be pointed out here:

e Whenever a token is pushed on the stack, the parent edges silg ea
established by usin§ P as the pointer value.

e Backtracking takes place in the last four lines, where $lfe-register is
decreased frorito 3 and then td. Thisis wherad_y requests a parameter
of its second-generation ancestooiist’ ), therefore the parent-edge has to
be followed twice, until it is addressed to the right token.

e The sequence of the pushed functions (can be obtained biyngethe tokens
in the last evaluation stack from right to left) correspomdsctly to the
sequence of function applied by normal order reducti@onst’ x y
—id flip_const_x_id_y — flip_const_id_x_id_y — flip
const x idy —..

e The evaluation terminates, because in the last line SP goiatside the
evaluation stack. This indicates, that the WHNF of the evalli@xpression
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410 Parameters, revisited

A07 chonst ) N

AO; 1]._-‘-const ) N
AO, chonst ) N

de Fconst ) —
Ala Fconst ) N

AO Fflzp const _x_id_y de Fconst) N
)

AO 4 4Fflzp Fflzp const_x zd |y Fld Fconst) _

Pflzp 4 Fflzp Fflzp const_x zd_y F’Ld FconSt) N

A1 3 Fflzp Fflzp const_x_id_y de Fconst) _

zd zd_y Fgonst Fglll’ F{llp const_x_1id_y led Fgonst) N

AO 5 Fcanst Ffllp Ffllp const_x 1d_y de Fconst ) N
)
Pconst 5 Fconst Ffllp Ffllp const_x Zd y de Fconst) N
Al Fconst Ffllp Ffllp const_x zd_y de Fconst ) N
) O
leP 4 Fconst F:J;llp Ffllp const_x_id_y de Fconst ) N
A3, Fconst Ffllp Ffllp const_x_id_y de Fconst ) N
AO Fconst Ffllp Ffllp const_x Zd_y de Fccmst )
)
AO; ’Ld y Fconst Ffl’Lp Ffllp const_x_ id y de Fconst ) N
s

(
(
(
(Y
(
(
(
(
(
(
(
(
(P3
(
(
(
(Y
(
(P
(
(
(

A1 z Zd_y Fconst Fflip Fflip const_x_id_y Fid Fconst’)
const bde_y Fconst Ffllp Ffllp const_x Zd_y de Fconst ) N
Pconst 3 71;- 6Fld_y Fgonst Fgllp F{llp const_x_1id_y led F(c)onst ) N
d li li t id ; /
Pconst dGFZ Y Fgon;;f41;'§ ;Z;SF{ lp_tcons ;ff_l _y2lele(c;onst ) N
z 1 Y _tconst p 1p_const_x_1d_Y pid_ pconst
Ay, 0 N F AL oFid Feonst’y

Figure 8: Evaluation with Backtracking
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4.11 Continuation Stack

exists and is unsaturated. More about the relationship detWwVHNF and
very lazy evaluation belowMWHNE.

4.11 Continuation Stack

To permit useful computations two more issues need to bentakee of: case-
discrimination and primitives, both of which share the seity for a certain kind
of strictness. The selection of the right alternative in seediscrimination depends
on the value of its scrutinee, just as primitive operatorsaay be applied to fully
evaluated operands.

Therefore a mechanism is required, that enforces the di@uaf the required
value and ensures, that after its computation the evalueginirns with the result to
the point of origin that initiated this computatiéhThis is achieved by introducing
another stack, theontinuation stackwhich contrary to the evaluation stack is an
ordinary stack and can only be accessed at its top. It caraicotwo types of
continuation tokens;ase-continuation tokerendoperator tokensWe extend the
abstract machine configuration froiiR, SP, ES) to (SR, SP, ES,CS).

4.12 Case-Discrimination

Whenever a function token is pushed on the evaluation statksevfunction
definition incorporates a case-discrimination, a casenzoation token is pushed
on the continuation stack. It holds a reference to this fondbken. The evaluation
proceeds just as usual, interpreting the scrutinee as tiwidm definition’s right-
hand side. As soon as the subsequent computation yietdmstantvalue? v,
indicated bySR = C,, the case-continuation token is popped off the continnatio
stack and the case-discrimination can be concluded bytsejeihe appropriate
case-alternative in the function definition of the refeshéunction token, accord-
ing to the computed value. The alternative’s function toleethen pushed on the
evaluation stack and the evaluation can be resumed as usual.

The method comes with the extra benefit, that in the resuttiaghine state
the function token that accounts for the evokation of thestamt directly precedes
the alternative’s function token. That way in the targeglaage, constructors do
not need to be included, and be represented by a simple integstant. The
constructor's parameter list can be discarded, becaugectre be accessed just
as regular function parameters by the alternative’s foncti

Note, how in the example (Figure 9) the right-hand side ofddiee-alternative
Nothing -> i disoutsourced inthe compilation result (Figure 10) intoftivec-
tionid’ . The reason why this is necessary, even though with onlyeassgiment
(id ) the right-hand side is atomic, is explained laterodel Specification

23Note: What is required is controlled strictness.

24only integer values are possible, since characters aresepted as integers in the source
language and constructors are resolved to integers in thpitation. Case-discrimination over
non-integral values is not supported.
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4.12 Case-Discrimination

main =f 4 3
maybe = Just

fx = case maybe x of
Nothing —>id
Just x —> const x

Figure 9: Case-discrimination and constructors

main 0 = f 4 3
maybe 0 = 1
f 1 = maybe P/

0 — id

1 — const_x
const x 0 = const
const 2 = pgonst
id 0 = id
id 1 = pid

Pi(mstm

Figure 10: Example compiled wittbnst andid included

(Ao, 1, 1Fg“””, €) —
(Ao, 2, 2F ) Frain G2) —

Figure 11: Evaluation - part 1
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4.12 Case-Discrimination

According to the explanations above, in part 1 a continumatiaken is pushed
on the continuation stack, sin€és definition contains a case-discrimination.

(A maybe2Ff Fmain C2)

(AO’ 4Fconst Fmaybe Ff Fmam C2)
(Pconst 4 Fconst Fmaybe Ff Fmazn C2)
(A17 4Fconst Fmaybe Ff Fmam CQ)
(Cla 3 4Fconst Fmaybe Ff Fmazn C2)

Figure 12: Evaluation - part 2

At the end of part 2 the continuation token is used to returhdad to select the
alternative based on the propagated constant, whithTiferefore the appropriate
alternative function is pusheddgnst_x ).

A 5 Fgonst x Fconst Fmaybe Ff Fmazn 6) N

t b
AO, ()Fconst FCOTLS x Fconst Fmay € Ff Fmam E) s

(5ot 6, apeont ponsts peonst g £ pain o) _,
(Ah 6]._-.-const Fconst T Fconst Fglaybengngminj 6) _

t t maybe ;
cons _ T Fconst FCOTLS z F:c))onst3F2 Y 2F§1F6ﬂam, 6) N

Figure 13: Evaluation - part 3

const_x obtains the constructor-parameterJost by treating it as if it was
its own function parameter.

(Al GFconst Fconst T Fconst Fmaybe Ff Fmain ) N

)

(Pconst 4 Fconst FCO’VLSt ﬂC Fconst Fmaybe Ff Fmazn ) N
( 6Fconst FCOTLSt T Fconst Fmaybe Ff anam7 6) N
( Fconst Fconst T Fconst Fmaybe Ff ]-_-,-main7 6) N
( 1 2 Fconst FCOTLSt x Fconst Fmaybe Ff Fmazn 6) —
(Al GFconst Fconst T Fconst Fmaybe Ff Fmam’ 6) N
<C4 Fconst FCONSt T Fconst Fmaybe Ff Fgmzn’ 6)

Figure 14: Evaluation - part 4

Indeed at the end of part 4 the request does arrivaah , which serves the
request with the correct argument. The evaluation terrag)atince there are no
continuation tokens on the stack with which the constartiéstatus register could
be processed with. This corresponds roughly to WHNF.
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4.13 Primitives

4.13 Primitives

Primitive operators can be handled almost the same way. Wheoparator

Is served, anoperator tokenis pushed on the continuation stack. Operator-
continuations have to be treated sligtly different thaneeasntinuations. First,
the continuation token must specify the employed operaecond, the operator
might require more than one constant as an operand. Therg$ooperands must
be acquired one by one.

4.14 Sharing

In this version of the document, a sharing-mechanism isnabtded.
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5 Model Specification

The presented execution model consists of two compondmisfirst being the
abstract machine language, given below along with dirastior the compilation
from the source language (Figure 1). The second componetiteisabstract
machine, with a description of how to interprete the targagliage.

5.1 Target Language

The language interpreted by the abstract machine is a veyylaj untyped, func-
tional language with a flat structure, i.e. its abstractaydies not involve (mutual)
recursion. This property harmonises well with the reqgesie mechanism, as it
can be implemented most efficiently, if every component afrecfion definition’s

is atomic. That way, thé&h argument of a function definition can be easily accessed
by reading thath atom relative to the function definition’s address, anrapen,
which is very well supported on current computer architesgu

program — function-binding

function-binding — type arity atom* alternative*

type — TLF|ASF|RSF

arity — integer

atom —  parameter | function | integer | float
parameter —  function index

function — function-address

alternative — integer function |default  function
index — integer

Figure 15: Abstract syntax of the target language as a cbfrsx grammar

As in the source language.(The Source Languapjea program definition
comprises a set of function definitions. The most importaatniners of such a
function-bindingare itsarity and the list ofatornrs that correspond to its right hand-
side expression.

The type is TLF for functions defined at top-level in the source language.
Stack tokens of top-level functions do not need to maintapaeent-edge in the
evaluation stack. Subfunctions (function definitions hasg from the outsourcing
of nested expressions) have the tyfF (alternative subfunction) if the outsourced
expression was the right-hand side of a case alternativeersburce language,
otherwise it is &RSF(regular subfunction).

If the function defines a case-discrimination, it also hasoa-empty set of
alternatives, each of which assigns a function tdefault - or integer-pattern.

Functions references ialternatives, function and parameteratomsare rep-
resented by theifunction-addresswhich constitutes a unique identifier for each
function definition.
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5.2 Abstract Machine Configuration

The target language representation of a program is gainedsimaightforward
compilation process from the source language. Any kind efing is factored out
into subfunctions, thus the result has a flat structure. @acistrs are resolved to
mere integers.

Table 2: Transformation of some source language elements

nested expression subfunction

let-expression subfunctions

datatype association of every member constructor with a differ-
ent integer

variable depending on the binding with the same name, either a
functionreference omteger(encoding a constructor)

application list of atons

case- list of argumens

discrimination

5.2 Abstract Machine Configuration
The state space of the abstract is specified in a contexgfeeemar (Figure 16).

(configuration) ST — (SR,SP,ES,CS)
(status register) SR — F/|C.|PL, | At | Oop
(current stack position) SP — sp

(stack position) sp — wusp|1]2]. |n
(undefined stack position)usp — 0

(evaluation stack) ES — ustaist.. st
(stack token) st — Fl

(continuation stack) cS — ct*

(continuation token) ct — CP[0P(c)
(operator code) op — int

(function address) f — int

(constant) c — ant | float

Figure 16: Configuration grammar

e The configuration §7") comprises a status registe¥ ), a stack position
register 5 P), the evaluation stackiS), and the continuation stack'Q).
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5.3 Abstract Machine Semantics

e Except for the requesty(), the possible values for the status registeR)
correspond to thetons of the target language above&? (function), C.
(constantintegeror floaf), P/ (parametey, 0.p (primitive). The status register
is set to one of these values, when the corresponding atoemisds

e The evaluation stack is an indexed array:aftack tokens growing from right
to left, indexed froml to n. A stack position §p) is a number, addressing a
token in the evaluation stack by index. Whenever there is ¢éeel ho leave a
stack position undefined, the valQgusp can be used.

e A stack token represents an instance of a function definiittbat has a parent
token referenced bp.

e The continuation stack is a stack of continuation tokests (Both case-
continuation tokeng* and operator-continuation tok&sy(c*) define the
function token (addressed ®p), where the evaluation is to be continued.
For the operator-continuation also the correspondingaipeop) needs to
be defined along with the operands)(that have already been computed.

5.3 Abstract Machine Semantics

In the operational semantics (Figure 17) the transitiores given in a special
inference rule format. It comprises a setsfuations each of which specifies a
configuration pattern and a set of transitions. A transitray include a condition.
In each evaluation step, the machine configuration matchésaat one of the
situations’ patterns, and of the belonging transitionsdhshould be exactly one,
of which the associated condition is satisfied. Once, thesitian rule has been
selected, the machine configuration is transformed aaogitdi the inference from
the situation’s pattern to the transition’s pattern.

¢ Initial State: At the beginning of the evaluation, both &mare empty, and
SP is undefined. The status register indicates, thatithén function token
is to be pushed on the evaluation stack.

e Function: Indicates the intent to push a function token enstack, typically
the result of the function token at stack positioiserving a function atom,
but besides the initial state, also case-continuations heae. A function
token for the functionf is pushed on the evaluation stack with a parent-
reference to the originating function’s tokenat SR and SP are set to
request the leftmost part of. If it performs a case-discrimination also a
case-continuation has to be pushed onto the continuatamk,spointing to
the f’s function token.

e Request: A request for thigh argument of the function token atcan only
be served, if the definition of the associated functfomas enough atoms on
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5.3 Abstract Machine Semantics

Initial State:(F™" 0, ¢, €)

Function:(F/,a, .., ..

— (Ro,m, oF, ) lalts(f)] =0 (Push)
— (R, n, Ff ., CO.) lalts(f)] >0 (Scrutinise)

Request{A;, a, ..F{ . .F9.. ..)

— (Bizjargs(f)|+arity(f)> @ — 1, ...aFlf;...pFL‘[..., =) args(f)| < (Curry)
type(f) # ASF _

— (Az’—|args(f)\+arity(g)ap —1, ...aFg.‘.ng_ ...... ) |args(f)| <1 (Redirect)
type(f) = ASF

— (argsi(f), a, ..aF)...F9.. ) largs(f)| > i (Serve)

Parameter(P!, a, ....FJ..., ...

— (P, p, .aFY.., ) f#g (Backtrack)

— (Aj,a—1,.F) ., .) f=g (Request)

Operator:(0,,, -, nt..., ...)

— (A1, n,nt.,0p,()) (1st Operand)

Operand:(Cy, -, ..., 05, (v1, ., Vc)...)

— (Capplyop (v1,...;0es0)s = -5 ) arity(op) = ¢ (Apply Operator)

— (An, a,..,05,(v1, .., Uy, 0)...) arity(op) > ¢ (Next Operand)

Scrutinee:(C,, -, ...FJ..., C...)

— (alts.(f), a, ...F].....) c € int (Alternative)

Figure 17: Operational semantics of the abstract machine

24 2009-06-12



5.3 Abstract Machine Semantics

its right-hand side. A function definition’s atoms in the gram definition
can be accessed hy-gs(f), which returns a sequence of arguments. To
extract a single atom, the sequence can be indexed (begiwitin 0 for the
leftmost atom) byurgs;(f). In the argument countrgs(f)| the obligatory
leftmost atom is not counted. If the function applicatioruissatisfied, the
curry rule needs to be applied, in case of an alternativeusichibn ASF
the curried request needs to be diverted to the discrinmgdtinction (see
4.12. Case-Discrimination

Parameter: If a parameter request is not addressed to ttiointoken of the
intended functiory, it must be of an descendant ff Therefore the parameter
request needs to backtrack to the parent token. A paranmexjgest to the
correct function can be translated to the correspondingraegt request to
the predecessor (sdet. Parameters

Operator: When an operator has been served, an operatanuatitin token
is pushed on the continuation stack, which has a referentket@urrent
topmost evaluation stack token. This token is an instancieffunction
that produced this operator as its leftmost atom. Futureastg for operands
have to be addressed to this token. After setting up the tgrezantinuation,
the first operand is requested.

Operand: Whenever a constant is served, the continuatiok istaxamined.
If the topmost token is a operator continuation, the corissaan operand
to the operator. In case the operator has acquired its emj@mount of
operands, it is applied to the operands in a primitive opamatand the
result is propagated as another constant. Otherwise thratopeequires yet
another operand, and the current constant is stored alaihgthng operator
continuation and the next operand is requested from thentihied evoked the
operand.

Scrutinee: When a constant is served, and the topmost catibnutoken
is a case-continuation token, the constant is the resultvafuating the
scrutinee of a case-discrimination. The continuation mokefers to the
token of the function that has the corresponding caseidigttion on its
right-hand side, thus the constant is used to select thé aiggrnative from
that function. Similar as thergs-function, alts(f) returns a sequence of
function-references each representing ong'eflternatives.
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6 Implementation

To prove the applicability of the execution model, it hasrbmeplemented as a part
of this project. For the source code, see the appendix. Thiementation supports
Haskell as a source language and is compatible with a vasfetychitectures. The
system comprises two components:

e The compiler, which produces for a given source program tineesponding
program in the target language. It is written in Haskell @000 lines of
code).

e The interpreter is written in C (about 400 lines of code) anglements the
abstract machine for executing a program given in the tdageage.

6.1 The Compiler

To avoid the effort of implementing a complete Haskell-cderp while even so
supporting Haskell as a source language, currently the Yaagkell Compiler
(YHC, http://lwww.haskell.org/yhc/ ) is used as a front-end. YHC
provides an interface to its intermediate language YHC-CGofanctional language,
which is basically simplified Haskell 98. In the compilatifstom Haskell to YHC-
Core typechecking is already performed. Therefore it is asy @¢ask for the
presented compiler to convert YHC-Core to its own internaypetl representation
of the source language (Figure £8).In fact, the languages are very similar, the
same goes for most intermediate languages used by otherleosrifke GHC or
JHC.

The fact, that the compiler does not operate on a concretggrong language
but the rather abstract source language (Figure 1) displag® not only one
specific functional language is eligible for the executiood®l, but rather a whole
class of language®. This is respected by the compiler architecture (Figure i20),
which besides the parts of the system (bold) that have begleimented also other
possible solutions are shown.

The real compilation takes place in the translation stepiftbe intermediate
source to the intermediate target language (Figuré13he main task of the com-
piler during the transformation is to recursively outs@nested expressiofisand
therefore flatten the module structure. Thereby varialilas address parameters
are resolved to the corresponding (function-name, ingex)-

25While in this document the possible module structure of seuanguages is ignored, it is
regarded by the implemented compiler, and therefore inrttegrnediate source language.

26The language class being higher-order, strongly-typeakstact, purely-functional languages

?Tlintermediatdanguages as opposed to a source language such as Haskebroerate (binary
or textual) form of the target language

28The recursive structure of the source language can be @akarthe source language module
(Figure 18), where e.dgeExpression  appears on the right-hand side of its own data-type definitio
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6.1 The Compiler

data Module = Module

{modName : String,

imports o [String],

bindings . [Binding]}
data Binding = Binding

{exported . Bool,

definition :: Either Function DataType}
type DataType = [Constructor]
data Constructor = Constructor {cName .. String, cParams o [String]}
data Function = Function

{fName : String, fParams o [String], fExpr .. Expression}
data Expression

= Variable {var o String]}

| Application {components . [Expression]}

| Case {scrutinee . Expression, cases . [Alternative]}

| Let {functions .. [Function], inExpr . Expression}

| Int {intValue o Int}

| Float {floatValue . Float}

| Primitive {name . String}
data Alternative = Alternative

{condition . Condition, alternative .. Expression}
data Condition = CaseConst {const :: String, params o [String]}
| Caselnt Int
| Default

Figure 18:CHaOS.Language.IntermediateSource
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6.1 The Compiler

data Module = Module

{modName . String,
imports o [String],
bindings - [Binding]}
data Binding = Binding
{name ;. String,
exported . Bool,
definition .. Definition}
data Definition
= Constructor {code o Int}
| Function {fType = FunctionType, expr . [Atom], cases
data FunctionType = TopLevelFunction | RegularSubFunction
type Variable = String —— function or constructor name
data Atom

= Parameter Variable Int
| Variable Variable
| IntInt
| Float Float
| Primitive String
data Case

= Equals (Either Int Variable) Variable
| Default Variable

Figure 19:CHaOS.Language.IntermediateTarget

[Case]}

| CaseAlternative
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6.1 The Compiler

Clean

YHC

GHC-Core | [ JHC-Core | [ YHC-Core | /[ Pure M-Calculus

Intermediate
Source
\
Intermediate
Target
| Abstract Machine (C) | | C Source File |
C-Compiler
[ object File (ELF) | [ object File (ELF) |

Executable

Figure 20: Compiler pipeline
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6.2 The Interpreter

Note, that in the target language, functions and constrsieie still referenced
by name, rather than by address (for functions) or integde ¢tor constructors).
The reason for this is again the idea, to leave tasks that @rénherent to the
execution model to other well-established software, is ttase an external linker
program.

This strategy harmonises nicely with the approach to use&Ctipeogramming
language as another intermediate step to represent tled kanguagé® In order to
obtain a concrete binary form from the target language, timepiler produces a C
source file, in which every function definition appears asraayeof structs, where
every member of the array represents one atom or caserndisation. The name
of the array is identical to the function’s name.

This makes it also very easy to bind together the interpretbich is also
written in C, simply by using a C compiler to produce an objdet for both the
interpreter and the program definition and linking them iatsingle executable
using a conventional linker. Thereby the symbolic refeesnwithin the program
definition are resolved to their respective addresses.

6.2 The Interpreter

The particular characteristics of the presented executiodel suggest certain
aspects concerning the implementation of the abstract imaclHere we explore
what kind of architecture might be most adequate for thigppse. The abstract
machine comprises two kinds of components that need to lhadied in the target
system:

e Dynamiccomponents: evaluation stack, continuation stack, stagister,
stack position register. Their contents are constantlyifisatby the abstract
machine during the execution.

e Staticcomponents: program definition, operational semanticdeémenta-
tion. These remain unaltered throughout the program run.

An important feature of the execution model is the simpliot the operational
semantics. It operates on the other components and requirdarther state
information. This might permit an efficient implementatioh the operational
semantics in hardware (making the abstract machine c@)crefThe task of
implementing non-strict, functional languages in hardn@ased on other execution
models has been attempted multiple times, but has not ye&tédasting success.

An operational implementation is however much more easiped by using
current computer systems to run the abstract machine asgaapnogiven in the
architecture’s machine code. Typically the program codeej in a special non-
resizable section for executable code in the program’sesddspace, along with
the program definition (of the interpreted program givenha &bstract machine

29In fact, C is generated from yet another representationcbais€C macros.
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6.2 The Interpreter

language) in an also non-resizable data-section. To avoghdy exhaustion of the
address space, it is most convenient to locate the two stddke opposite bounds
of the remaining address space growing towards each other.

Continuation
Stack

Evaluation
Stack

vy

[ W Y

Program Definition

Abstract Machine Code

Figure 21: Typical address space of a software implememtati

A different approach employed by the STG-machine is to immgliet the oper-
ational semantics by compiling the program definition frdra abstract machine
code to machine code, and thereby mangling the semantati@program defini-
tion.° For several reasons, this seems not to be a very good choitefpresented
execution model in terms of efficency:

e In this model, a function definition is not evaluated at onseaawhole,
but rather partially, atom by atom. Therefore only very sis@quences of
instructions would be executed, before performing a jumgntather atom.

e These jump instructions and the frequent case-distingtonwhat inference
rule to apply next, would bloat the code for each single atana therefore
the complete program definition. Yet, for efficient prograxe@ition the size
of the cache-footprint is a very important factor on curramhitectures and
is in this model vastly determined by the size of the prografimdion.

e In this model a fast request/serve-mechanism is crucial.cothpiled to
machine-code, the resulting code for each atom would odytabt have the

30See [Simon L. Peyton Jones (1992), Part lIl: Mapping therabsmachine to stock hardware,
p 41 ff]
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6.2 The Interpreter

same size. If this is ensured however, a specific atpof a function f can
be efficiently accessed by addressing it relativef'function definitior?,
an operation well supported by most architecures. The Bpécbstract
machine language (Figure 15) is designed to allow a compgaglly sized
representation for atoms in a concrete binary format.

Figure 22: Flow graph of the operational semantics

The operational semantics however can only be kept in a nonwkgg section
in the address space, if in the implementation the depth oftyally) recursive
function-calls can be bounded by a constant. Otherwise uldvoequire a
dynamically growing function-call stack (also calleeturn stack). The control
flow of the operational semantics however exibits a striec(Eigure 22) that does
not harmonise very well with an implementation that enclgisa routines of
the operational semantics in functions. In fact, the opemat semantics can be
implemented without relying on function-calls at all.

That means, that control flow is achieved solely by (condélp jumps, a
programming style often referred to as spaghetti c8dghat way no function-call
stack needs to be maintained, which leaves the functidnyeathanisms possibly
supplied by the underlying architecure unused. On certaifigpms these might be
abused to manage the evaluation and/or continuation staefadditional portion
of performance.

The given implementation of the abstract machine in C usesed functions
to encapsulate operations used at different locationsicdke. One has to keep in
mind, that this leads to replication of the the encapsulateke.

SYargs;(f) is at:address(f) + i x sizeof (atom)
32Usually spaghetti code is not recommended regardless @irthect size and rightly so. This is
however a special setting, where the intended behaviouatdsvfrom conventional programs.

32 2009-06-12



6.3 Implementation Status

The stack position register can be represented by a regukegear variable,
but is due to frequent usage probably best kept in a machugistee (if enough
are available), rather than in memdfyIn a software implementation, the status
register is automatically partly encoded by the instructgminter (also called
program counte), since every inference rule of the operational semantas h
a corresponding fragment in the code section, thereforeifgmiog the status is
achieved performing a jump to its code location. Thereby ¢timé status register’s
parameters need to be put into (at most 2) variables, for pbaa?ﬁ requires one for
eachf andi.

6.3 Implementation Status

While the implementation of the compiler is fully functionahd even generates
all information required for sharing and garbage collattithe current version of
the interpreter is merely fit to demonstrate the generaliegdplity of the execution
model. It is not optimised at all and therefore not qualifiedield useful runtime
measurements that could be compared with GHC. In fact for reansce programs,
the evaluation currently fails, because support for mastigives of YHC’s Haskell
libraries needs still to be implemented.

Sharing is not yet included, neither a garbage collectionhaerism, the hints
given by the compiler are simply ignored. Therefore thelsgrows very fast and
is never compactetf.

However, for programs that make only use of the implementedifives, the
evaluation delivers the same results as when run using éthskell implemen-
tations. This is a strong evidence for the correctness oeaeeution model and
its operational semantics. The reassurence that in tHeeatly stadium of the
project, it can be used to run real programs is the most impbdutcome of the
implementation work.

33Due to optimising C compilers, this does not need to be eitpljcspecified in the abstract
machine implementation.
34without sharing, problems of linear complexity can easélgiuire exponential runtime.
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7 Perspectives

There are a few matters that would have been appropriatechoda in the thesis
and are to be covered in future versions of this document:

e Currently, the affirmation of the correctness of the executimdel relies on
pure reasoning and repeated validation of the evaluatisunltreWhile this
delivers strong evidence, it still would be desirable tofyethe correctness
of the operational semantics by a formal deduction from teeothtional
semantics of a source language like Haskell ontizalculus.

e Several important issues have been mentioned that are wetecbby this
thesis, such as sharing and garbage collection. They eegniupdated, more
complex revision of the abstract machine’s operationalesgios.

¢ If a method could be found to systematically infer this exsrumodel from
a graph-reduction based approach (preferably the STGing¢lone could
make a formal comparison of the two execution models’ raretbehaviour
(execution time, memory usage, timing parameters). Agahmassumption,
that the presented execution model is at least as efficiecbagentional
models, relies on pure reasoning.

e Support for parallel execution on a multi-processor (ortiradre processor)
system.

Also a lot of work needs to be put into the yet very crude impmatation,
particularly the interpreter:

e The lack of a sharing-mechanism in the interpreter coriegtthe main draw-
back, which impedes to benchmark the system’s efficiencytarmmpare
it to other functional language implementations (prefgrabHC). But also
garbage collection is mandatory for more complex programs.

e Unfortunately the YHC project is not maintained anymore.
Therefore sooner or later the compiler should include stppo
for other front-ends. Attractive candidates are GHC and Jhc
(http://repetae.net/computer/jhc/ ).

e To support all given programs in the source language, theptaimset of
primitives used by the front-end’s standard libraries isd¢ede implemented.

e The applicability of different kinds of optimisations toetlexecution model
is to be explored. Some of the traditional optimisationseldasn program
analysis by the compiler might not be adaptable to the ei@tutodel. The
novel type of abstract machine on the other hand, might leaew kinds of
optimisations for the interpretét.

35presently, not even the most obvious optimisations or thteseribed in this document are
included in the current implementation.
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Finally, once the execution model is proven to constituterenas competitor for
current functional language implementations, there as®ns for future research
that are to be explored, like how the execution model couldsingported on
a operating-system level, or even building an operatingesysbased on the
model. One might even think about implementing the opematisemantics on
a specialised processor. These approaches might proud espécially for simple,
embedded systems where the simplicity of the operatiomaasécs could be very
valuable.

In this thesis it could be shown, how the observation of thetaess of argument
handling in the normal order reduction led to a new idea fa& #pproach of
evaluating a program in a functional programming language laow the idea
evolved into a fully operational execution model. For thedela proof-of-concept
implementation was developed by which the applicabilityh@f concept could be
demonstrated.
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Appendix

This document is available along with the implementatiothef execution model
at http://rochel.info/ . The material will be updated with future versions
as the project evolves.
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