
Very Lazy Evaluation
A new execution model for functional programming languages
Master of Science Thesis in Computer Science and Engineering

JAN ROCHEL

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Göteborg, Sweden, 2009­06­18

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Very Lazy Evaluation (version 0.7.1)
A new execution model for functional programming languages

Jan Rochel

© Jan Rochel, 2009­06­18.

Examiner: Patrik Jansson

Department of Computer Science and Engineering
Chalmers University of Technology
SE­412 96 Göteborg
Sweden
Telephone + 46 (0)31­772 1000

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Göteborg, Sweden, 2009­06­18

Very Lazy Evaluation (version 0.7.1)

Jan Rochel 2009-06-12

Acknowledgements
I would like to express my gratitude to both Carsten Sinz and Patrik Jansson not
only for supervising my work, but also for giving me the excellent opportunity to
carry out this project as a diploma thesis in the first place.

Abstract
In the recent years a multitude of functional language implementations has been
developed, whereby those being intended for practical use share a very fundamen-
tal property: The execution models employed by implementations designed for
efficient program execution are all based on some form of graph-reduction. This
thesis introduces a new execution model for strongly-typed, higher-order, non-strict,
purely-functional programming languages, that does not rely on graph-reduction
but a new concept calledvery lazy evaluation. It uses an unconventional approach
to evaluate expressions of theń-calculus, that differs considerably from traditional
term rewrite systems. Its method to perform function applications allows arguments
to be handled in a way, that is more lazy than in existing graph-reduction based
models. This leads to a new type of abstract machine, which promises very efficient
program execution and might also be quite suitable to be implemented in hardware.
A proof-of-concept implementation of the execution model is given, which consists
of a compiler generating abstract machine code from a sourceprogram, and the
abstract machine that interpretes the result. By using it to execute real programs it
is shown, that the correct results are evaluated and that theapproach therefore is a
valid alternative to existing execution models.

i 2009-06-12

Jan Rochel

Contents

1 Introduction 1
1.1 Scope . 1
1.2 Motivation . 1

2 The Source Language 3
2.1 Abstract Syntax . 3
2.2 Semantics . 4

3 Conventional Execution Models 5
3.1 Reduction . 5
3.2 Lazy Evaluation . 5
3.3 Call-by-Need Strategy . 6
3.4 Interim Conclusion . 6
3.5 Graph Reduction . 6
3.6 Argument Handling . 7
3.7 Free Variables . 7
3.8 Summary . 8

4 Very Lazy Evaluation 9
4.1 Lazy Evaluation, revisited . 9
4.2 A new Model . 10
4.3 Evaluation Stack . 10
4.4 Parameters . 11
4.5 Evaluation Stack, revisited . 11
4.6 Registers . 12
4.7 Currying . 12
4.8 Interim Conclusion . 13
4.9 Subfunctions . 13
4.10 Parameters, revisited . 14
4.11 Continuation Stack . 17
4.12 Case-Discrimination . 17
4.13 Primitives . 20
4.14 Sharing . 20

5 Model Specification 21
5.1 Target Language . 21
5.2 Abstract Machine Configuration 22
5.3 Abstract Machine Semantics . 23

ii 2009-06-12

Jan Rochel

6 Implementation 26
6.1 The Compiler . 26
6.2 The Interpreter . 30
6.3 Implementation Status . 33

7 Perspectives 34

References 36

Appendix 38

iii 2009-06-12

1 Introduction
In this thesis a new execution model for functional programming languages is
presented. A system is specified for executing programs written in a purely
functional language. Such a system typically comprises a compiler for translating a
program from the source language into a machine language andan abstract machine,
which interpretes the machine language thus executing the program.

In contrast to already existing functional language implementations a new
approach is chosen based on a new concept calledvery lazy evaluation. It differs
considerably from previous execution models as it does not rely on term-rewriting
but a more abstract mode of operation in which function arguments are treated more
lazily.

1.1 Scope
The source languages covered by this model arestrongly-typed, higher-order, non-
strict, purely-functionallanguages (2. The Source Language) such as Haskell on
which we focus.

The intention is to give a detailed explanation of the underlying concept as well
as an accurate description of the system (4. Very Lazy Evaluation).

To show how it differs from existing concepts, at first a shortoverview over
execution models (3. Conventional Execution Models) is given that are used in
today’s functional language implementations.

A formal specification of the abstract machine and the abstract machine lan-
guage is presented (5. Model Specification), which is to constitute a solid foun-
dation for a novel class of efficient implementations for functional programming
languages.

A proof-of-concept implementation of the system’s components is provided
(6. Implementation) to show the applicability of the approach. The compiler
processes Haskell as a source language and is written in Haskell 98, the interpreter
in C. The implementation might help to estimate the performance that is to be
expected from the model in comparison to existing implementations.

Finally, possibilities of further research are outlined that are opened by the in-
troduced execution model as well as potentialities for optimisations and extensions
of the presented system (7. Perspectives).

1.2 Motivation
In the last decades a lot of research work has been put into thecompilation
and execution of functional languages resulting in a numberof different abstract
machines such as the SECD [P. J. Landin (1963)], the CAM [G. Cousineau (1985)],
the CMCM [Simon Thompson (1992)], the TIM [Jon Fairbairn (1987)], the
ZAM [Xavier Leroy (1990)], the Krivine-machine [Cregut Pierre (1991)],
the G-machine [Simon L. Peyton Jones (1987)], and the spineless tagless G-

1 2009-06-12

1.2 Motivation

machine (STG-machine) [Simon L. Peyton Jones (1992)] plus various adaptions
[Ian Holyer (1998), Daan Leijen (2005)]. The attempt to makeanother contribution
to this list is motivated by the fact that the presented modelstands out from the
previous ones. While the latter do differ amongst each other by various degrees,
they share one fundamental property: Ultimately, they implement theń-calculus
by term-rewriting, either relying on thepush/enteror the eval/apply model
[Simon Marlow (2006)] to access function parameters. Here,this is solved by a
serve/requestmechanism in which function parameters are treated more lazily.
This leads to a new type of execution model.

It is highly interesting how it performs (in terms of run-time efficiency) on
actual machines compared to other methods. In particular the increased laziness
of the model promises some potential in this respect. Currently, all notable
Haskell implementations are more or less based on the STG-machine, thus one
can fairly assume, that it is of the models above the one most suited for efficient
execution on current computer systems. Therefore, to illustrate the characteristics
of the presented model, in this thesis often comparisons with the well-established
STG-machine are given. Although the match is far from fair, the most plausible
competitor in terms performance is the highly optimized Glasgow Haskell Compiler
GHC,http://www.haskell.org/ghc/).

Finally, the abstractness of the model holds its own beauty.While previous
designs based on the concepts of term-rewriting and graph-reduction directly
implement theń-calculus by repeated application of reduction rules, which leads
to iterated expression substitution, here a different approach is devised. It is due to
the increased abstraction, that the abstract machine is on the one hand surprisingly
simple and thus easy to implement (notably even in hardware), but at the same time
for the same reason more difficult to understand.

Since it promises to allow execution on very simple architectures it might
open up interesting perspectives in the field of embedded computing but could
also motivate research in the areas of parallel computing, system security, and
virtualisation (see7. Perspectives)

2 2009-06-12

2 The Source Language
The execution model can be applied to any higher-order, strongly-typed, non-strict,
purely-functional language. The most relevant member of this set of languages is
Haskell. Other languages are among others its derivatives such as Agda-2 or Clean.
But also (enriched)ń-calculus variants are supported.

2.1 Abstract Syntax
To cover this whole class of languages, we consider the abstract syntax below
(Figure 1), which defines a simple untyped functional language. Bare of any
dispensable language-specific constructs such as comments, parameter patterns for
function definitions, or type-classes, it is still sufficiently expressive to act as a
qualified representative for this class. Abstracting away from a concrete syntax
helps to focus on the essence of the model rather than on tedious compilation details.
Intermediate languages used by various compilers are oftenof similar appearance.1

To avoid defining a concrete syntax for the source language, we use Haskell 98
to denote the source code of example programs throughout this document.

program → datatype∗ function∗

datatype → constructor∗

constructor → constructor-name parameter-name∗

function → function-name parameter-name∗ expression
expression → variable | application | case-discrimination|

let-expression| integer | float
variable → constructor-name| function-name|

parameter-name| primitive
application → expression+

case-discrimination→ expression alternative∗

alternative → pattern expression
let-expression → function∗ expression
pattern → constructor-name parameter-name∗ | integer | default

Figure 1: Abstract syntax of the source language as a context-free grammar

Because correctness is guaranteed by the type-checker before translating the
source program into this language, it causes no harm to leaveout type infor-
mation completely.2 Ad-hoc polymorphism3 can be resolved to ordinary case-
discrimination.

1This is a very useful feature, because that makes it easy to use existing compilers as a front-end
for the implementation of the execution model (see6.1. The Compiler).

2Therefore datatype definitions do not include a datatype name, since this is just type-
information.

3polymorphism involving different behaviour depending on the concerning type

3 2009-06-12

2.2 Semantics

Many language elements commonly used in functional programming have been
omitted in favour of others. In order to minimise the language, it is sensible to retain
only one of two language elements that are capable of expressing the same concept.

Table 1: Some omitted language elements known in Haskell
and the corresponding representation

ń-abstraction (λx1···xn. e) let-expression (letf x1···xn = e in f)
function parameter pattern case-discrimination
infix operator (x + y) function application (plus x y)
character literals either as integers or constructors
if -then -else -expression case-discrimination

Higher-level constructs such as type-classes or popular language extensions are
not discussed here, but are indirectly supported by the model, since it should be
possible to eliminate them by a source-to-source transformation.

2.2 Semantics
The most common perception of a program given in this (or any other functional)
language is to interprete it as a singleń-expression. For that purpose every function
definition can be regarded as a namedń-abstraction. Beginning from a well-
defined entry point (themain -function in Haskell) by recursively expanding every
function application to the correspondingń-abstraction, a (possibly infinitely large)4

ń-expression is obtained.5

The source language merely enriches the expressiveness of the pureń-calculus
by a few additional language constructs. In the above language these are three con-
cepts: Constants (integers, floats, and constructors), case-discrimination, and prim-
itives. Although theń-calculus is powerful enough to express case-discrimination
and integer-arithmetics using the Church-encoding for numerals and booleans, it
is not possible to implement this representation efficiently. Primitives give access
to the underlying architecure’s capacities (like I/O, interaction with the operating
system, or arithmetic functions), and can also be used to force strictness6.

We conclude, that the function definitions constituting a program, ultimately
define ań-expression, thus the program is executed by evaluating this expression.
Therefore, the execution model of a functional language implementation is charac-
terised by the very method it employs for processing a givenń-expression.

4if recursion or mutual recursion occurs, which should be thecase for non-trivial programs
5see [Zena M. Ariola (1994)]
6In this document the termstrictnessis synonymic toeagerness

4 2009-06-12

3 Conventional Execution Models
This section provides a basic insight into the fundamental approach used by current
functional language implementations, in order to exhibit the uniqueness of the
approach used by the presented execution model. Therefore,the explanations do
not go deeper than it is necessary to serve that purpose.

3.1 Reduction
The natural way to evaluateń-expressions is by applying the rules of theń-calculus7,
which defines an equivalence relation onń-expressions. The conversion of an
expression into another is defined to be valid, if the expressions are equivalent.
The ń-calculus defines three transformation rules:α-conversion,B-reduction, and
η-conversion.

In a compiled setting, the abstract machine never needs to perform α-
conversion. In theń-calculus it is only required to prevent clashes of different
variables with the same name. In an efficient implementation, the target language
interpreted by the abstract machine does not reference variables by name, but rather
relies on some unambiguous, numeric kind of identifier. Variable names are already
resolved during the compilation of the program, which couldbe regarded as a form
of static application of theα-conversion rule.

Also η-conversion does not play a too important role in this context. Some
functional language implementations do not need to performη-conversion at all,
but even if it is done, it does not occur very frequently.

This leavesB-reduction as the central mechanism of the evaluation process.
Indeed, the primary task of conventional abstract machinesis to repeatedly perform
B-reduction in order to transform theń-expression step-by-step to itsnormal form
(if existent), where the evaluation terminates.

3.2 Lazy Evaluation
These seem to be quite definite directions for the abstract machine, but an important
aspect of the evaluation is still unsettled: the reduction order. In ań-expression,
each saturatedń-abstraction is a valid candidate for applyingB-reduction. However
this question has already been dismissed by limiting the scope only to non-strict
(lazy) languages. Lazy evaluation implies, that arguments are not evaluated and is
achieved bynormal order reduction8.

Normal order reduction states, that in ań-expression (f x y) always theleftmost
outermostpart (f) is to be considered forB-reduction. If theB-reduction rule is
applicable that way, we speak of areducible expression(or redex). An expression
that can not be reduced by normal order reduction is inweak head normal form
(WHNF).

7see [Peter Sestoft (2002)]
8see [Simon L. Peyton Jones (1987), 2.3. Reduction Order, p 23ff]

5 2009-06-12

3.3 Call-by-Need Strategy

3.3 Call-by-Need Strategy
Furthermore we postulate thecall-by-needevaluation strategy, which amends lazy
evaluation by the assertion, that a named expression that occurs multiple times
in a certain context is evaluated at most once. This is an adequate choice for an
implementation that is to be taken seriously. To give this guarantee, an evaluation
model needs to include asharing-mechanism, which preserves the evaluated form
of a shared expression to deploy it in case of subsequent uses. (Sharing may not
be considered a merely optional optimisation. In a functional language without
a sharing mechanism, for any expression that is used multiple times it would be
necessary to evaluate it for each occasion that its value is required.)

3.4 Interim Conclusion
Summarising, program execution corresponds to aterm rewrite system, imple-
mented by repeatedly performing normal order reduction to WHNF on a given
redex. This imposes a strong assumption on the execution model’s abstract machine
design: Its configuration basically is a representation of the current ń-expression.
In each step the abstract machine applies a transformation rule to it, the resulting
expression being thenewcurrent expression of the abstract machine. This constricts
the design space to only a few remaining aspects:

• term representation, i.e. how the abstract machine state (the currentń-
expression) is encoded

• how B-reduction is performed efficiently on that representation

• sharing: how a computation result can be preserved and reused later

3.5 Graph Reduction
In all the practically relevant functional language implementations terms are repre-
sented as a graph. The nested structure of ań-expression can be interpreted as a
tree. Sharing implies, that a set of tree nodes, each representing the same shared
expression, which occurs multiple times in the term, can be merged into a single
node. Such a node then has more than one ancestor and the tree becomes a graph.
A graph node is kept in a data structure calledclosure(or thunk). Program execution
is achieved by performingB-reduction on this graph. This particular form of term
rewriting is calledgraph-reduction.

In a real implementation on a system with finite resources theprogram graph
can not be maintained in its expanded form.9 Therefore the procedure of graph-
reduction really is an alternation of expansions and reductions. The expansion
of a reference to a function takes place by allocating a closure for the function
definition, which holds its own bound variables. Depending on the implementation

9We keep in mind, that the expression might very well be infinitely large

6 2009-06-12

3.6 Argument Handling

this is either achieved by copying the function definition (which is held in form of a
closure) or by building a closure from scratch by executing the function definition
(which consists of the instructions to build the closure).

3.6 Argument Handling
The starting point of aB-reduction is ań-abstraction applied to a number of argu-
ments:(λx1···xn. e) a1···am. It is essential for the efficiency of current implemen-
tations not to treat such ań-abstraction with multiple arguments as a cascade of
applications of single-argument abstractionsλx1. (λx2. (···(λxn. e)···)) a1···am. This
approach was chosen by the G-machine, and rectified by the STG-machine.

In a higher-order language it can usually not be statically determined for a
applicationf a1···am occuring somewhere in the program definition, how many
arguments are expected byf .10 For f = λx1···xn. a1···am bothm > n (oversatura-
tion) andm < n (undersaturation) may occur. Therefore the model must include
a mechanism to ensure, that always the right number of arguments is applied to a
ń-abstraction.11

There are two strategies to pass arguments, both of which areused in existing
implementations:12

• Push/Enter: The arguments are pushed on an argument stack before the
function is entered. The function, which statically knows its own arity
(parameter count), checks if enough arguments are present,and if so, takes
the correct number of arguments from the stack and performs the evaluation.

• Eval/Apply: Before a function is applied, the caller must examine the function
closure in order to determine its arity. Then the correct number of arguments
are passed (possibly using registers and the stack) according to an specific
argument passing convention (similarly as in imperative languages) and the
function is called, knowing where its parameters are stored.

3.7 Free Variables
There are two methods to cope with free variables. One is to avoid free variables
completely, which is achieved by a source-to-source transformation of theń-
calculus calledń-lifting13. It raises allń-abstractions to top-level, binding free
variables to additional parameters.

Relevant implementations however, do generally not performń-lifting, but
rather bind them at runtime in closures. Every time a closureis allocated, for each

10In higher-order languages,f may be a parameter as inflip f x y = f y x . Therefore it
is not clear at compile-time, which concrete function is applied on the right-hand side.

11In case of undersaturation the expression is already in WHNF.
12More detailed explanations and a comparison between the twostrategies is given in

[Simon Marlow (2006)]
13see [Simon L. Peyton Jones (1987), 13. Supercombinators andLambda-Lifting, p 220 ff]

7 2009-06-12

3.8 Summary

of its free variables, a value needs to be supplied. These values are stored at a
predefined location in the closure and are accessible for theclosure once it is being
entered.14

3.8 Summary
This section’s explanations can be rakishly subsumed in theformulars below. They
define a rough schema of today’s functional language implementations.

• program definition =ń-expression

• program execution = evaluation of theń-expression

• evaluation ofń-expression = repeatedB-reduction

• abstract machine state = currentń-expression

• term representation as graph→ graph reduction

• lazy evaluation = normal order reduction

• B-reduction = push/enter or eval/apply

In the next section we will see how the presented execution model stands out
from previous ones as it does not quite fit into the above schema. It relies on another
more abstract approach, which emerges from lifting the concept of lazy evaluation
to the abstract machine.

14see [Simon L. Peyton Jones (1992), 4. The STG Language, p 19 ff]

8 2009-06-12

4 Very Lazy Evaluation
This section is dedicated to explain the idea behind the presented execution
model and its implications for the design of the abstract machine. One very
important characteristic is how function arguments are treated more lazily than in
the push/enter or eval/apply models, which serves well as anentry into the matter.

4.1 Lazy Evaluation, revisited
Lazy evaluation describes the notion of delaying the evaluation of an expression to
the moment its result is required. In conventional models this is achieved by normal
order reduction of an expression to WHNF, with the result, that the arguments
of the current expression are not evaluated. From a more abstract perspective,
lazy evaluation connotes the idea to delay a task to the latest moment possible,
speculating for the eventuality, that this moment never occurs, because the task has
vanished somehow. In that case the effort of attending to thetask is saved.

main = flip const a id b
flip f x y = f y x
const x y = x
id x = x

Figure 2: Trivial program

We will now see how we can squeeze out an additional portion oflaziness by
that idea, and thereby save some redundant effort. Therefore, we use an example
(Figure 2) to try to identify a source of spare strictness in term-rewriting-based
evaluation models.

main
−> flip const a id b
−> const id a b
−> id b
−> b

Figure 3: Normal order reduction

To avoid dealing with specifics of the Haskell standard library, we ignore the
fact, that the main function does not have theIO() -type expected from a valid
Haskell program. Normal order reduction (Figure 3) terminates after performing
four B-reductions.15

It is due to lazy evaluation, thata never needs to be evaluated, since theconst -
function drops its second parameter. Despite the fact, thata is never used, it is

15The expansion frommain to flip const a id b is not really areduction, but can be
treated as one, if it is regarded as ań-abstraction without parameters.

9 2009-06-12

4.2 A new Model

evoked bymain , passed on toflip , rearranged in the subsequentB-reduction, just
to be discarded byconst in the end. This is just the kind of redundant effort that
one would expect to be avoided by laziness. Here it occurs here because arguments
are handled in a strict way: They are passed just as soon as they are available, rather
than at the moment they are required.

The latter approach is pursued our model. It avoids the redundant effort that
occurs because arguments are evoked too early. It does not serve arguments on a
silver plate for functions to consume them.16 Instead, functions as soon as they
require a parameter have to go fetch it. This way the effort ofpassing arguments is
delayed to the moment the parameter is really accessed, and does not occur at all if
the access does neither.

At first glance, the saved expense might seem rather low (after all maintaining
arguments does not implyevaluatingthem). But a new argument often requires the
allocation of a closure on the heap.

4.2 A new Model
We have shown, how (lazy) parameter retrieval promises the prospect of reduced
evaluation costs compared to the conventional (strict) argument passing methods.
Let us now see how this is realised in the presented executionmodel and how this
appoints major characteristics of the abstract machine.

We begin the evaluation by examining the function definitionof main . But
opposed to the conventional models, the arguments of the expression on its right-
hand side are not considered. This will not be done before absolutely necessary,
so for now, only theleftmostportion is used17. In the example above (Figure 2)
instead of rewriting the termmain asflip const a id b only flip as the
leftmost portion of the expression is considered. That implies, thatmain may not
be discarded, otherwiseflip ’s arguments (const , a, andb) would be lost.

4.3 Evaluation Stack
Therefore the original abstract machine state (initially only consisting ofmain) has
to be transformed to a configuration containing bothflip andmain (for supplying
arguments toflip when required). For that purpose the presented abstract machine
maintains a stack, theevaluation stack, which is its primary data structure.18 It
contains a sequence ofstack tokens, for now we assume solelyfunction tokens. A
function token represents an instance of a specific functionand is a simple reference
to its definition. We denote the evaluation stack in parentheses growing from right

16In the push/enter model, the function itself still needs to pick the correct amount of parameters
off the silver plate (argument stack), while in the eval/apply model the correct amount is served in
the most convenient manner.

17While this method is not based onreduction, it still pursues to proceed bynormal order
18Whenever the term “the stack” is used, the evaluation stack ismeant.

10 2009-06-12

4.4 Parameters

to left.19 In the first state transition the initial state (main) is transformed to (flip
main). This notation is by no means equal to theexpressionflip main . It rather
expresses the situation, that the the function definition ofmain has beenpartially
enforced,flip being the candidate for the next step. The transition is intuitively
written as (main) → (flip main).

The evaluation procedure takes place in a sequence of steps,where in each
step the topmost token of the evaluation stack is examined (without taking it off
the stack) and (if it holds a function token) the leftmost portion of the associated
definition is scrutinised, and action is taken depending on its value.

4.4 Parameters
The current configuration is interesting, because the leftmost portion of the topmost
token flip is f , a function parameter, more specifically the first parameterin
flip ’s parameter list (f , x , y).

The ordinary argument passing rule for functions (in mathematics and most
programming languages) states, that thenth parameter of a function correpsonds
to thenth argument passed by its caller, in other words: Parametersare identified
with their corresponding arguments by position.

The caller offlip is main , so the first parameterf of flip is identical
with the first argumentconst in the definition ofmain . Just as in the preceding
transition, we push a new function token on the stack, which corresponds to the
leftmost part of the topmost function token: (flip main) → (const flip
main). Only this time one level of indirection is required to determine the
respective function.

In general, the method to access thenth parameter of a function token is to
requestthenth argument of itspredecessor(the token immediately to the right on
the evaluation stack). This works, because a function tokenis always pushed on the
stack as the leftmost part of the previously topmost token. Thus it is always adjacent
to its caller and the arguments of the caller correspond directly to its parameters.20

4.5 Evaluation Stack, revisited
For this method it is necessary to be able to read itemswithin the evaluation stack,
which contradicts the conventional conception of the stackdata structure. Therefore
the evaluation stack is a more potent data structure. Later we will see how it is in
fact a hybrid of a heap and a stack, as it is destined to render aconventional heap
obsolete.

19The terms “on top of” is equivalent to “left of”, such as “topmost” can be used instead of
“leftmost”, etc.

20In case of unsaturated or oversaturated function calls, notall arguments are imperatively
supplied directly by the caller (see4.7. Currying).

11 2009-06-12

4.6 Registers

4.6 Registers
In the current abstract machine state (const flip main), the next evaluation
step is similar to the previous one. Leftmost part ofconst ’s definition is its first
parameter, namelyx . To obtain it, the first argument is requested fromconst ’s
predecessorflip . But this argument again is a parameter (y , third parameter of
flip), so another request has to be performed to gather the third argumentid
of main , which is then put on the stack: (const flip main) → (id const
flip main).

Here, for an update of the evaluation stack to occur, two requests had to be
issued. In more complex cases, a complete cascade of requests might be necessary.
Therefore it is sensible to model additional intermediate states between stack
updates.

(A0, 1, main) →
(A0, 2, flip main) →
(A1, 1, flip main) →
(A0, 3, const flip main) →
(A1, 2, const flip main) →
(A3, 1, const flip main) →
(A0, 4, id const flip main) →
(A1, 3, id const flip main)

Figure 4: Trivial program evaluated: first part

For this purpose, two registers are employed, thestatus register(SR) and
the stack position register(SP). The former expresses which operation is to be
performed by the abstract machine during the next step, the latter addresses the
stack token referenced by the operation. For now we know onlyof one operation,
the argument request, which we denote byAi, requesting theith argument of the
token addressed bySP . SP holds a natural number and addresses theSP th token
on the evaluation stack (ES), the bottom token having the address1. Whenever a
function token is pushed,SP is adjusted to point to this new token, andSR is set
to A0. The leftmost portion of an expression is addressed as the0th argument.

We extend the configuration of the abstract machine from(ES) to
(SR, SP,ES). The evaluation of our example can then be depicted more
fine-grained (Figure 4).

4.7 Currying
At this point however, the request for the first argument (A1) can not beservedby the
tokenconst atSP = 3, as its definition does not have an argument. This happens
whenever unsaturated function applications occur, in thisexampleconst supplies
not enough arguments toid . This can usually be remedied bycurrying, whenever

12 2009-06-12

4.8 Interim Conclusion

there exists a corresponding oversaturation. Here this is the case, asmain supplies
4 arguments toflip while the latter has only an arity of 3.

(A1, 3, id const flip main) →
(A3, 2, id const flip main) →
(A4, 1, id const flip main) →
(A0, 5, b id const flip main)

Figure 5: Example evaluated: last part

The curry-mechanism of the presented abstract machine consists of a simple
rule, which ensures that an unsatisfied request is redirected, such that it eventually
ends up at the corresponding oversaturation:(Ai, SP,ES)→ (Ai−a+p, SP−1, ES),
wherea is the argument count andp the arity of the function token atSP . After
applying it twice, the evaluation can gently be completed (Figure 5).

4.8 Interim Conclusion
In this very simple example the basic procedure of the presented execution model
could be depicted, but fundamental mechanisms for simple issues such as case-
discrimination and let-expressions or more elaborate solutions for sophisticated
problems like sharing are still to be discussed. Nevertheless some interesting
features of the model could already be observerd:

• The procedure is not based on term-rewriting or ordinaryń-conversion rules.
The evaluation can rather be seen as a series of partial function applications.

• Opposed to the conventional models, the state of the abstract machine is not
equal to “the current expression”, or at least it relies on a much more abstract
representation.

• As promised, the rendundant effort of dealing with arguments that are never
required is avoided. The argumenta of main remains untouched throughout
the evaluation!

• The approach heavily relies onrequestsaddressed at function tokens, which
can beservedif the corresponding function definition has enough arguments.

4.9 Subfunctions
One fundamental language construct did not appear in the example above at all:
nested expressions. Whenever anapplication in the source language does not
exclusively consist of atomic components (variable, integer, float), we speak of
anested expression.

13 2009-06-12

4.10 Parameters, revisited

During compilation from the source language to the target language, non-
atomic sub-expressions are factored out into seperate function definitions, so called
subfunctions. This leads to a flattened structure of the program definition, where
the components of the function definitions are atomic. That way originally nested
parts of an expression can be handled by the request-mechanism just like before by
pushing the corresponding subfunction token on the evaluation stack. Consider the
function definitionconst’ x y = id (flip const x (id y)) .

const' x y = id flip_const_x_id_y
flip_const_x_id_y = flip const x id_y
id_y = id y

Figure 6: Unnested form

If the outsourcing of nested expressions is performed without any precau-
tions (Figure 6) a new problem arises: Previously bound variables might be torn
out of their context. While inconst’ the variablesx and y are bound, in
flip_const_x_id_y andid_y they occur as free variables. Onlyconst’ is
able to obtain these parameters by performing a request to its predecessor token, the
two subfunctions do not have that possibility.21 We therefore need a mechanism, by
which flip_const_x_id_y andid_y can access the parameters ofconst’ .22

We call const’ the parent of flip_const_x_id_y , which in return is
thechild of const’ . The above problem can be solved by redirecting parameter
requests addressed at a subfunction token to its parent token, or in case of multi-
level nestings to one of itsancestortokens. To perform this redirection, the parent-
child relationship needs to be articulated in the evaluation stack. This is achieved
by establishing for each emerging subfunction token a reference (parent-edge) to
the corresponding parent token. This is simple, because a subfunction can only be
evoked due to a request served by its parent. That way even in the case of multi-level
nestings, for every subfunction token, a connection to all its ancestors is guaranteed,
through a cascade of parent-edges. Subfunctions can followthese edges to locate
parameters that belong to an ancestor.

From now on we denote a function token at the stack positiona that belongs to
the function definition off and has a parent-edge to the stack positionp by aFf

p .

4.10 Parameters, revisited
The subfunction approach implies, that to unambigously denote a specific parameter
not only its index (position within the parameter list) needs to be defined, but
also the function by which the parameter variable is bound. We demonstrate the

21The subfunctions may be requested fromconst’ much later, and therefore be positioned at a
very different location in the stack.

22A valid solution would be to performń-lifting, which however leads to very inefficient results.

14 2009-06-12

4.10 Parameters, revisited

parameter notation in the target language by taking the compilation of the example
(Figure 6) one step further (Figure 7). We also include the definitions of flip ,
const , andid .

const’ 2 = id flip_const_x_id_y
flip_const_x_id_y 0 = flip const Pconst′

1 id_y
id_y 0 = id Pconst′

2

flip 3 = P
flip
1 P

flip
3 P

flip
2

const 2 = Pconst
1

id 1 = Pid
1

Figure 7: Unnested form with correcly resolved parameters

The integer that follows each function name in each definition denotes the arity
of the function. It is always0 for subfunctions. The symbolPf

i simply denotes the
f ’s ith parameter. Whenever such a parameter atom is served, the abstract machine
goes into a corresponding parameter stateSR = P

f
i .

If SP addresses the correct functionf in which the parameter was bound,
the corresponding argument is requested (Ai) from the predecessor. OtherwisePf

i

represents a free variable and is bound somewhere in the surrounding environment
reachable through the parent edge of the function token atSP . The process of
following parent-edges untilf is reached is calledbacktracking. In the evaluation
(Figure 8) of the example above (Figure 7 the new mechanisms can be seen at work.

We see, that in this execution model it is quite hard to followthe evaluation
even for a very simple example. To understand this sequence it might be useful
to consult the first few of the inference rules given below (Figure 17). Just a few
central aspects are to be pointed out here:

• Whenever a token is pushed on the stack, the parent edges are easily
established by usingSP as the pointer value.

• Backtracking takes place in the last four lines, where theSP -register is
decreased from6 to 3 and then to1. This is whereid_y requests a parameter
of its second-generation ancestor (const’), therefore the parent-edge has to
be followed twice, until it is addressed to the right token.

• The sequence of the pushed functions (can be obtained by reading the tokens
in the last evaluation stack from right to left) correspondsexactly to the
sequence of function applied by normal order reduction:const’ x y
→ id flip_const_x_id_y → flip_const_id_x_id_y → flip
const x id_y → ...

• The evaluation terminates, because in the last line SP points outside the
evaluation stack. This indicates, that the WHNF of the evaluated expression

15 2009-06-12

4.10 Parameters, revisited

(A0, 1, 1Fconst′
0) →

(A0, 2, 2Fid
1 1Fconst′

0) →
(A0, 2, 2Fid

1 1Fconst′
0) →

(Pid
1 , 2, 2Fid

1 1Fconst′
0) →

(A1, 1, 2Fid
1 1Fconst′

0) →
(A0, 3, 3F

flip_const_x_id_y
1 2Fid

1 1Fconst′
0) →

(A0, 4, 4F
flip
3 3F

flip_const_x_id_y
1 2Fid

1 1Fconst′
0) →

(Pflip
1 , 4, 4F

flip
3 3F

flip_const_x_id_y
1 2Fid

1 1Fconst′
0) →

(A1, 3, 4F
flip
3 3F

flip_const_x_id_y
1 2Fid

1 1Fconst′
0) →

(A0, 5, 5Fconst
3 4F

flip
3 3F

flip_const_x_id_y
1 2Fid

1 1Fconst′
0) →

(Pconst
1 , 5, 5Fconst

3 4F
flip
3 3F

flip_const_x_id_y
1 2Fid

1 1Fconst′
0) →

(A1, 4, 5Fconst
3 4F

flip
3 3F

flip_const_x_id_y
1 2Fid

1 1Fconst′
0) →

(Pflip
3 , 4, 5Fconst

3 4F
flip
3 3F

flip_const_x_id_y
1 2Fid

1 1Fconst′
0) →

(A3, 3, 5Fconst
3 4F

flip
3 3F

flip_const_x_id_y
1 2Fid

1 1Fconst′
0) →

(A0, 6, 6F
id_y
3 5Fconst

3 4F
flip
3 3F

flip_const_x_id_y
1 2Fid

1 1Fconst′
0) →

(A0, 7, 7Fid
6 6F

id_y
3 5Fconst

3 4F
flip
3 3F

flip_const_x_id_y
1 2Fid

1 1Fconst′
0) →

(Pid
1 , 7, 7Fid

6 6F
id_y
3 5Fconst

3 4F
flip
3 3F

flip_const_x_id_y
1 2Fid

1 1Fconst′
0) →

(A1, 6, 7Fid
6 6F

id_y
3 5Fconst

3 4F
flip
3 3F

flip_const_x_id_y
1 2Fid

1 1Fconst′
0) →

(Pconst′
2 , 6, 7Fid

6 6F
id_y
3 5Fconst

3 4F
flip
3 3F

flip_const_x_id_y
1 2Fid

1 1Fconst′
0) →

(Pconst′
2 , 3, 7Fid

6 6F
id_y
3 5Fconst

3 4F
flip
3 3F

flip_const_x_id_y
1 2Fid

1 1Fconst′
0) →

(Pconst′
2 , 1, 7Fid

6 6F
id_y
3 5Fconst

3 4F
flip
3 3F

flip_const_x_id_y
1 2Fid

1 1Fconst′
0) →

(A2, 0, 7Fid
6 6F

id_y
3 5Fconst

3 4F
flip
3 3F

flip_const_x_id_y
1 2Fid

1 1Fconst′
0)

Figure 8: Evaluation with Backtracking

16 2009-06-12

4.11 Continuation Stack

exists and is unsaturated. More about the relationship between WHNF and
very lazy evaluation below (VWHNF)).

4.11 Continuation Stack
To permit useful computations two more issues need to be taken care of: case-
discrimination and primitives, both of which share the necissity for a certain kind
of strictness. The selection of the right alternative in a case-discrimination depends
on the value of its scrutinee, just as primitive operators can only be applied to fully
evaluated operands.

Therefore a mechanism is required, that enforces the evaluation of the required
value and ensures, that after its computation the evaluation returns with the result to
the point of origin that initiated this computation.23 This is achieved by introducing
another stack, thecontinuation stack, which contrary to the evaluation stack is an
ordinary stack and can only be accessed at its top. It can contain two types of
continuation tokens,case-continuation tokensandoperator tokens. We extend the
abstract machine configuration from(SR, SP,ES) to (SR, SP,ES,CS).

4.12 Case-Discrimination
Whenever a function token is pushed on the evaluation stack, whose function
definition incorporates a case-discrimination, a case-continuation token is pushed
on the continuation stack. It holds a reference to this function token. The evaluation
proceeds just as usual, interpreting the scrutinee as the function definition’s right-
hand side. As soon as the subsequent computation yields aconstantvalue24 v,
indicated bySR = Cv, the case-continuation token is popped off the continuation
stack and the case-discrimination can be concluded by selecting the appropriate
case-alternative in the function definition of the referenced function token, accord-
ing to the computed value. The alternative’s function tokenis then pushed on the
evaluation stack and the evaluation can be resumed as usual.

The method comes with the extra benefit, that in the resultingmachine state
the function token that accounts for the evokation of the constant directly precedes
the alternative’s function token. That way in the target language, constructors do
not need to be included, and be represented by a simple integer constant. The
constructor’s parameter list can be discarded, because they can be accessed just
as regular function parameters by the alternative’s function.

Note, how in the example (Figure 9) the right-hand side of thecase-alternative
Nothing -> id is outsourced in the compilation result (Figure 10) into thefunc-
tion id’ . The reason why this is necessary, even though with only a sole argument
(id) the right-hand side is atomic, is explained later (5. Model Specification).

23Note: What is required is controlled strictness.
24only integer values are possible, since characters are represented as integers in the source

language and constructors are resolved to integers in the compilation. Case-discrimination over
non-integral values is not supported.

17 2009-06-12

4.12 Case-Discrimination

main = f 4 3
maybe = Just
f x = case maybe x of
 Nothing −> id
 Just x −> const x

Figure 9: Case-discrimination and constructors

main 0 = f 4 3
maybe 0 = 1
f 1 = maybe P

f
1

0 → id’
1 → const_x

const_x 0 = const Pconstx
1

const 2 = Pconst
1

id’ 0 = id
id 1 = Pid

1

Figure 10: Example compiled withconst andid included

(A0, 1, 1Fmain
0 , ǫ) →

(A0, 2, 2F
f
0 1Fmain

0 , C2) →
Figure 11: Evaluation - part 1

18 2009-06-12

4.12 Case-Discrimination

According to the explanations above, in part 1 a continuation token is pushed
on the continuation stack, sincef ’s definition contains a case-discrimination.

(A0, 3, 3F
maybe
2 2F

f
0 1Fmain

0 , C2) →
(A0, 4, 4Fconst

3 3F
maybe
2 2F

f
0 1Fmain

0 , C2) →
(Pconst

1 , 4, 4Fconst
3 3F

maybe
2 2F

f
0 1Fmain

0 , C2) →
(A1, 3, 4Fconst

3 3F
maybe
2 2F

f
0 1Fmain

0 , C2) →
(C1, 3, 4Fconst

3 3F
maybe
2 2F

f
0 1Fmain

0 , C2) →
Figure 12: Evaluation - part 2

At the end of part 2 the continuation token is used to return tof and to select the
alternative based on the propagated constant, which is1. Therefore the appropriate
alternative function is pushed (const_x).

(A0, 5, 5Fconst_x
3 4Fconst

3 3F
maybe
2 2F

f
0 1Fmain

0 , ǫ) →
(A0, 6, 6Fconst

5 5Fconst_x
3 4Fconst

3 3F
maybe
2 2F

f
0 1Fmain

0 , ǫ) →
(Pconst

1 , 6, 6Fconst
5 5Fconst_x

3 4Fconst
3 3F

maybe
2 2F

f
0 1Fmain

0 , ǫ) →
(A1, 5, 6Fconst

5 5Fconst_x
3 4Fconst

3 3F
maybe
2 2F

f
0 1Fmain

0 , ǫ) →
(Pconst_x

1 , 5, 6Fconst
5 5Fconst_x

3 4Fconst
3 3F

maybe
2 2F

f
0 1Fmain

0 , ǫ) →

Figure 13: Evaluation - part 3

const_x obtains the constructor-parameter ofJust by treating it as if it was
its own function parameter.

(A1, 4, 6Fconst
5 5Fconst_x

3 4Fconst
3 3F

maybe
2 2F

f
0 1Fmain

0 , ǫ) →
(Pconst

1 , 4, 6Fconst
5 5Fconst_x

3 4Fconst
3 3F

maybe
2 2F

f
0 1Fmain

0 , ǫ) →
(A1, 3, 6Fconst

5 5Fconst_x
3 4Fconst

3 3F
maybe
2 2F

f
0 1Fmain

0 , ǫ) →
(A1, 2, 6Fconst

5 5Fconst_x
3 4Fconst

3 3F
maybe
2 2F

f
0 1Fmain

0 , ǫ) →
(Pf

1 , 2, 6Fconst
5 5Fconst_x

3 4Fconst
3 3F

maybe
2 2F

f
0 1Fmain

0 , ǫ) →
(A1, 1, 6Fconst

5 5Fconst_x
3 4Fconst

3 3F
maybe
2 2F

f
0 1Fmain

0 , ǫ) →
(C4, 1, 6Fconst

5 5Fconst_x
3 4Fconst

3 3F
maybe
2 2F

f
0 1Fmain

0 , ǫ)

Figure 14: Evaluation - part 4

Indeed at the end of part 4 the request does arrive atmain , which serves the
request with the correct argument. The evaluation terminates, since there are no
continuation tokens on the stack with which the constant in the status register could
be processed with. This corresponds roughly to WHNF.

19 2009-06-12

4.13 Primitives

4.13 Primitives
Primitive operators can be handled almost the same way. When an operator
is served, anoperator tokenis pushed on the continuation stack. Operator-
continuations have to be treated sligtly different than case-continuations. First,
the continuation token must specify the employed operator.Second, the operator
might require more than one constant as an operand. Therefore its operands must
be acquired one by one.

4.14 Sharing
In this version of the document, a sharing-mechanism is not included.

20 2009-06-12

5 Model Specification
The presented execution model consists of two components, the first being the
abstract machine language, given below along with directions for the compilation
from the source language (Figure 1). The second component isthe abstract
machine, with a description of how to interprete the target language.

5.1 Target Language
The language interpreted by the abstract machine is a very simple, untyped, func-
tional language with a flat structure, i.e. its abstract syntax does not involve (mutual)
recursion. This property harmonises well with the request/serve mechanism, as it
can be implemented most efficiently, if every component of a function definition’s
is atomic. That way, theith argument of a function definition can be easily accessed
by reading theith atom relative to the function definition’s address, an operation,
which is very well supported on current computer architectures.

program → function-binding∗

function-binding → type arity atom∗ alternative∗

type → TLF |ASF|RSF
arity → integer
atom → parameter | function | integer | float
parameter → function index
function → function-address
alternative → integer function |default function
index → integer

Figure 15: Abstract syntax of the target language as a context-free grammar

As in the source language (2. The Source Language), a program definition
comprises a set of function definitions. The most important members of such a
function-bindingare itsarity and the list ofatoms that correspond to its right hand-
side expression.

The type is TLF for functions defined at top-level in the source language.
Stack tokens of top-level functions do not need to maintain aparent-edge in the
evaluation stack. Subfunctions (function definitions resulting from the outsourcing
of nested expressions) have the typeASF(alternative subfunction) if the outsourced
expression was the right-hand side of a case alternative in the source language,
otherwise it is aRSF(regular subfunction).

If the function defines a case-discrimination, it also has a non-empty set of
alternatives, each of which assigns a function to adefault - or integer-pattern.

Functions references inalternatives, function- and parameter-atomsare rep-
resented by theirfunction-address, which constitutes a unique identifier for each
function definition.

21 2009-06-12

5.2 Abstract Machine Configuration

The target language representation of a program is gained bya straightforward
compilation process from the source language. Any kind of nesting is factored out
into subfunctions, thus the result has a flat structure. Constructors are resolved to
mere integers.

Table 2: Transformation of some source language elements

nested expression subfunction
let-expression subfunctions
datatype association of every member constructor with a differ-

ent integer
variable depending on the binding with the same name, either a

function-reference orinteger(encoding a constructor)
application list of atoms
case-
discrimination

list of arguments

5.2 Abstract Machine Configuration
The state space of the abstract is specified in a context-freegrammar (Figure 16).

(configuration) ST → (SR, SP ,ES,CS)

(status register) SR → Ff | Cc | Pf
int | Aint | Oop

(current stack position) SP → sp
(stack position) sp → usp | 1 | 2 | ··· | n
(undefined stack position)usp → 0

(evaluation stack) ES → nst n−1st ··· 1st
(stack token) st → Ff

sp

(continuation stack) CS → ct∗

(continuation token) ct → Csp | Osp
op(c

∗)

(operator code) op → int
(function address) f → int
(constant) c → int | float

Figure 16: Configuration grammar

• The configuration (ST) comprises a status register (SR), a stack position
register (SP), the evaluation stack (ES), and the continuation stack (CS).

22 2009-06-12

5.3 Abstract Machine Semantics

• Except for the request (Ai), the possible values for the status register (SR)
correspond to theatoms of the target language above:Ff (function), Cc

(constant:integerorfloat), Pf
i (parameter), Oop (primitive). The status register

is set to one of these values, when the corresponding atom is served.

• The evaluation stack is an indexed array ofn stack tokens growing from right
to left, indexed from1 to n. A stack position (sp) is a number, addressing a
token in the evaluation stack by index. Whenever there is the need to leave a
stack position undefined, the value0 (usp) can be used.

• A stack token represents an instance of a function definitionf that has a parent
token referenced byp.

• The continuation stack is a stack of continuation tokens (ct). Both case-
continuation tokensCsp and operator-continuation tokesOsp

op(c
∗) define the

function token (addressed bysp), where the evaluation is to be continued.
For the operator-continuation also the corresponding operator (op) needs to
be defined along with the operands (c∗) that have already been computed.

5.3 Abstract Machine Semantics
In the operational semantics (Figure 17) the transitions are given in a special
inference rule format. It comprises a set ofsituations, each of which specifies a
configuration pattern and a set of transitions. A transitionmay include a condition.
In each evaluation step, the machine configuration matches at least one of the
situations’ patterns, and of the belonging transitions there should be exactly one,
of which the associated condition is satisfied. Once, the transition rule has been
selected, the machine configuration is transformed according to the inference from
the situation’s pattern to the transition’s pattern.

• Initial State: At the beginning of the evaluation, both stacks are empty, and
SP is undefined. The status register indicates, that themain function token
is to be pushed on the evaluation stack.

• Function: Indicates the intent to push a function token on the stack, typically
the result of the function token at stack positiona serving a function atom,
but besides the initial state, also case-continuations lead here. A function
token for the functionf is pushed on the evaluation stack with a parent-
reference to the originating function’s token ata. SR and SP are set to
request the leftmost part off . If it performs a case-discrimination also a
case-continuation has to be pushed onto the continuation stack, pointing to
thef ’s function token.

• Request: A request for theith argument of the function token ata can only
be served, if the definition of the associated functionf has enough atoms on

23 2009-06-12

5.3 Abstract Machine Semantics

Initial State:(Fmain, 0, ǫ, ǫ)

Function:(Ff , a, ···, ···)
→ (A0, n, nFf

a ···, ···) |alts(f)| = 0 (Push)
→ (A0, n, nFf

a ···, C
n
0 ···) |alts(f)| > 0 (Scrutinise)

Request:(Ai, a, ···aFf
p ···pF

g
−···, ···)

→ (Ai−|args(f)|+arity(f), a− 1, ···aFf
p ···pF

g
−···, ···) |args(f)| < i (Curry)

type(f) 6= ASF

→ (Ai−|args(f)|+arity(g), p− 1, ···aFf
p ···pF

g
−···, ···) |args(f)| < i (Redirect)

type(f) = ASF

→ (argsi(f), a, ···aFf
p ···pF

g
−···, ···) |args(f)| ≥ i (Serve)

Parameter:(Pf
i , a, ···aFg

p···, ···)
→ (Pf

i , p, ···aF
g
p···, ···) f 6= g (Backtrack)

→ (Ai, a− 1, ···aFg
p···, ···) f = g (Request)

Operator:(Oop, −, nt···, ···)
→ (A1, n, nt···, On

op()) (1st Operand)

Operand:(Cv, −, ···, Oa
op(v1, ···, vc)···)

→ (Capplyop(v1,···,vc,v), −, ···, ···) arity(op) = c (Apply Operator)
→ (An, a, ···, Oa

op(v1, ···, vn, v)···) arity(op) > c (Next Operand)

Scrutinee:(Cc, −, ···aFf
p ···, C

a
0 ···)

→ (altsc(f), a, ···aFf
p ···, ···) c ∈ int (Alternative)

Figure 17: Operational semantics of the abstract machine

24 2009-06-12

5.3 Abstract Machine Semantics

its right-hand side. A function definition’s atoms in the program definition
can be accessed byargs(f), which returns a sequence of arguments. To
extract a single atom, the sequence can be indexed (beginning with 0 for the
leftmost atom) byargsi(f). In the argument count|args(f)| the obligatory
leftmost atom is not counted. If the function application isunsatisfied, the
curry rule needs to be applied, in case of an alternative subfunction (ASF
the curried request needs to be diverted to the discriminating function (see
4.12. Case-Discrimination)

• Parameter: If a parameter request is not addressed to the function token of the
intended functionf , it must be of an descendant off . Therefore the parameter
request needs to backtrack to the parent token. A parameter request to the
correct function can be translated to the corresponding argument request to
the predecessor (see4.4. Parameters)

• Operator: When an operator has been served, an operator continuation token
is pushed on the continuation stack, which has a reference tothe current
topmost evaluation stack token. This token is an instance ofthe function
that produced this operator as its leftmost atom. Future requests for operands
have to be addressed to this token. After setting up the operator continuation,
the first operand is requested.

• Operand: Whenever a constant is served, the continuation stack is examined.
If the topmost token is a operator continuation, the constant is an operand
to the operator. In case the operator has acquired its required amount of
operands, it is applied to the operands in a primitive operation, and the
result is propagated as another constant. Otherwise the operator requires yet
another operand, and the current constant is stored along with the operator
continuation and the next operand is requested from the token that evoked the
operand.

• Scrutinee: When a constant is served, and the topmost continuation token
is a case-continuation token, the constant is the result of evaluating the
scrutinee of a case-discrimination. The continuation token refers to the
token of the function that has the corresponding case-discrimination on its
right-hand side, thus the constant is used to select the right alternative from
that function. Similar as theargs-function, alts(f) returns a sequence of
function-references each representing one off ’s alternatives.

25 2009-06-12

6 Implementation
To prove the applicability of the execution model, it has been implemented as a part
of this project. For the source code, see the appendix. The implementation supports
Haskell as a source language and is compatible with a varietyof architectures. The
system comprises two components:

• The compiler, which produces for a given source program the corresponding
program in the target language. It is written in Haskell (about 2000 lines of
code).

• The interpreter is written in C (about 400 lines of code) and implements the
abstract machine for executing a program given in the targetlanguage.

6.1 The Compiler
To avoid the effort of implementing a complete Haskell-compiler, while even so
supporting Haskell as a source language, currently the YorkHaskell Compiler
(YHC, http://www.haskell.org/yhc/) is used as a front-end. YHC
provides an interface to its intermediate language YHC-Core,a functional language,
which is basically simplified Haskell 98. In the compilationfrom Haskell to YHC-
Core typechecking is already performed. Therefore it is an easy task for the
presented compiler to convert YHC-Core to its own internal untyped representation
of the source language (Figure 18).25 In fact, the languages are very similar, the
same goes for most intermediate languages used by other compilers like GHC or
JHC.

The fact, that the compiler does not operate on a concrete programing language
but the rather abstract source language (Figure 1) displays, how not only one
specific functional language is eligible for the execution model, but rather a whole
class of languages.26 This is respected by the compiler architecture (Figure 20),in
which besides the parts of the system (bold) that have been implemented also other
possible solutions are shown.

The real compilation takes place in the translation step from the intermediate
source to the intermediate target language (Figure 19).27 The main task of the com-
piler during the transformation is to recursively outsource nested expressions28 and
therefore flatten the module structure. Thereby variables that address parameters
are resolved to the corresponding (function-name, index)-pair.

25While in this document the possible module structure of source languages is ignored, it is
regarded by the implemented compiler, and therefore in the intermediate source language.

26The language class being higher-order, strongly-typed, non-strict, purely-functional languages
27intermediatelanguages as opposed to a source language such as Haskell or aconcrete (binary

or textual) form of the target language
28The recursive structure of the source language can be observed in the source language module

(Figure 18), where e.g.Expression appears on the right-hand side of its own data-type definition.

26 2009-06-12

6.1 The Compiler

data Module = Module
 {modName :: String,
 imports :: [String],
 bindings :: [Binding]}

data Binding = Binding
 {exported :: Bool,
 definition :: Either Function DataType}

type DataType = [Constructor]
data Constructor = Constructor {cName :: String, cParams :: [String]}

data Function = Function
 {fName :: String, fParams :: [String], fExpr :: Expression}

data Expression
 = Variable {var :: String]}
 | Application {components :: [Expression]}
 | Case {scrutinee :: Expression, cases :: [Alternative]}
 | Let {functions :: [Function], inExpr :: Expression}
 | Int {intValue :: Int}
 | Float {floatValue :: Float}
 | Primitive {name :: String}

data Alternative = Alternative
 {condition :: Condition, alternative :: Expression}

data Condition = CaseConst {const :: String, params :: [String]}
 | CaseInt Int
 | Default

Figure 18:CHaOS.Language.IntermediateSource

27 2009-06-12

6.1 The Compiler

data Module = Module
 {modName :: String,
 imports :: [String],
 bindings :: [Binding]}

data Binding = Binding
 {name :: String,
 exported :: Bool,
 definition :: Definition}

data Definition
 = Constructor {code :: Int}
 | Function {fType :: FunctionType, expr :: [Atom], cases :: [Case]}

data FunctionType = TopLevelFunction | RegularSubFunction | CaseAlternative

type Variable = String −− function or constructor name

data Atom
 = Parameter Variable Int
 | Variable Variable
 | Int Int
 | Float Float
 | Primitive String

data Case
 = Equals (Either Int Variable) Variable
 | Default Variable

Figure 19:CHaOS.Language.IntermediateTarget

28 2009-06-12

6.1 The Compiler

Figure 20: Compiler pipeline

29 2009-06-12

6.2 The Interpreter

Note, that in the target language, functions and constructors are still referenced
by name, rather than by address (for functions) or integer code (for constructors).
The reason for this is again the idea, to leave tasks that are not inherent to the
execution model to other well-established software, in this case an external linker
program.

This strategy harmonises nicely with the approach to use theC programming
language as another intermediate step to represent the target language.29 In order to
obtain a concrete binary form from the target language, the compiler produces a C
source file, in which every function definition appears as an array of structs, where
every member of the array represents one atom or case-discrimination. The name
of the array is identical to the function’s name.

This makes it also very easy to bind together the interpreter, which is also
written in C, simply by using a C compiler to produce an object file for both the
interpreter and the program definition and linking them intoa single executable
using a conventional linker. Thereby the symbolic references within the program
definition are resolved to their respective addresses.

6.2 The Interpreter
The particular characteristics of the presented executionmodel suggest certain
aspects concerning the implementation of the abstract machine. Here we explore
what kind of architecture might be most adequate for this purpose. The abstract
machine comprises two kinds of components that need to be included in the target
system:

• Dynamiccomponents: evaluation stack, continuation stack, statusregister,
stack position register. Their contents are constantly modified by the abstract
machine during the execution.

• Static components: program definition, operational semantics implementa-
tion. These remain unaltered throughout the program run.

An important feature of the execution model is the simplicity of the operational
semantics. It operates on the other components and requiresno further state
information. This might permit an efficient implementationof the operational
semantics in hardware (making the abstract machine concrete). The task of
implementing non-strict, functional languages in hardware based on other execution
models has been attempted multiple times, but has not yet lead to lasting success.

An operational implementation is however much more easily gained by using
current computer systems to run the abstract machine as a program given in the
architecture’s machine code. Typically the program code iskept in a special non-
resizable section for executable code in the program’s address space, along with
the program definition (of the interpreted program given in the abstract machine

29In fact, C is generated from yet another representation based on C macros.

30 2009-06-12

6.2 The Interpreter

language) in an also non-resizable data-section. To avoid an early exhaustion of the
address space, it is most convenient to locate the two stacksat the opposite bounds
of the remaining address space growing towards each other.

Figure 21: Typical address space of a software implementation

A different approach employed by the STG-machine is to implement the oper-
ational semantics by compiling the program definition from the abstract machine
code to machine code, and thereby mangling the semantics into the program defini-
tion.30 For several reasons, this seems not to be a very good choice for the presented
execution model in terms of efficency:

• In this model, a function definition is not evaluated at once as a whole,
but rather partially, atom by atom. Therefore only very short sequences of
instructions would be executed, before performing a jump toanother atom.

• These jump instructions and the frequent case-distinctions on what inference
rule to apply next, would bloat the code for each single atom,and therefore
the complete program definition. Yet, for efficient program execution the size
of the cache-footprint is a very important factor on currentarchitectures and
is in this model vastly determined by the size of the program definition.

• In this model a fast request/serve-mechanism is crucial. Ifcompiled to
machine-code, the resulting code for each atom would certainly not have the

30See [Simon L. Peyton Jones (1992), Part III: Mapping the abstract machine to stock hardware,
p 41 ff]

31 2009-06-12

6.2 The Interpreter

same size. If this is ensured however, a specific atomAi of a functionf can
be efficiently accessed by addressing it relative tof ’s function definition31,
an operation well supported by most architecures. The specified abstract
machine language (Figure 15) is designed to allow a compact,equally sized
representation for atoms in a concrete binary format.

A

F

O

P

C

Figure 22: Flow graph of the operational semantics

The operational semantics however can only be kept in a non-growing section
in the address space, if in the implementation the depth of (mutually) recursive
function-calls can be bounded by a constant. Otherwise it would require a
dynamically growing function-call stack (also calledreturn stack). The control
flow of the operational semantics however exibits a structure (Figure 22) that does
not harmonise very well with an implementation that encapsulates routines of
the operational semantics in functions. In fact, the operational semantics can be
implemented without relying on function-calls at all.

That means, that control flow is achieved solely by (conditional) jumps, a
programming style often referred to as spaghetti code.32 That way no function-call
stack needs to be maintained, which leaves the function-call mechanisms possibly
supplied by the underlying architecure unused. On certain platforms these might be
abused to manage the evaluation and/or continuation stack for an additional portion
of performance.

The given implementation of the abstract machine in C usesinlined functions
to encapsulate operations used at different locations in the code. One has to keep in
mind, that this leads to replication of the the encapsulatedcode.

31argsi(f) is at:address(f) + i ∗ sizeof(atom)
32Usually spaghetti code is not recommended regardless of theproject size and rightly so. This is

however a special setting, where the intended behaviour deviates from conventional programs.

32 2009-06-12

6.3 Implementation Status

The stack position register can be represented by a regular integer variable,
but is due to frequent usage probably best kept in a machine register (if enough
are available), rather than in memory.33 In a software implementation, the status
register is automatically partly encoded by the instruction pointer (also called
program counter), since every inference rule of the operational semantics has
a corresponding fragment in the code section, therefore modifying the status is
achieved performing a jump to its code location. Thereby only the status register’s
parameters need to be put into (at most 2) variables, for examplePf

i requires one for
eachf andi.

6.3 Implementation Status
While the implementation of the compiler is fully functionaland even generates
all information required for sharing and garbage collection, the current version of
the interpreter is merely fit to demonstrate the general applicability of the execution
model. It is not optimised at all and therefore not qualified to yield useful runtime
measurements that could be compared with GHC. In fact for manysource programs,
the evaluation currently fails, because support for most primitives of YHC’s Haskell
libraries needs still to be implemented.

Sharing is not yet included, neither a garbage collection mechanism, the hints
given by the compiler are simply ignored. Therefore the stack grows very fast and
is never compacted.34

However, for programs that make only use of the implemented primitives, the
evaluation delivers the same results as when run using otherHaskell implemen-
tations. This is a strong evidence for the correctness of theexecution model and
its operational semantics. The reassurence that in the still early stadium of the
project, it can be used to run real programs is the most important outcome of the
implementation work.

33Due to optimising C compilers, this does not need to be explicitely specified in the abstract
machine implementation.

34Without sharing, problems of linear complexity can easily require exponential runtime.

33 2009-06-12

7 Perspectives
There are a few matters that would have been appropriate to include in the thesis
and are to be covered in future versions of this document:

• Currently, the affirmation of the correctness of the execution model relies on
pure reasoning and repeated validation of the evaluation result. While this
delivers strong evidence, it still would be desirable to verify the correctness
of the operational semantics by a formal deduction from the denotational
semantics of a source language like Haskell or theń-calculus.

• Several important issues have been mentioned that are not covered by this
thesis, such as sharing and garbage collection. They require an updated, more
complex revision of the abstract machine’s operational semantics.

• If a method could be found to systematically infer this execution model from
a graph-reduction based approach (preferably the STG-machine), one could
make a formal comparison of the two execution models’ run-time behaviour
(execution time, memory usage, timing parameters). Again,the assumption,
that the presented execution model is at least as efficient asconventional
models, relies on pure reasoning.

• Support for parallel execution on a multi-processor (or multi-core processor)
system.

Also a lot of work needs to be put into the yet very crude implementation,
particularly the interpreter:

• The lack of a sharing-mechanism in the interpreter constitutes the main draw-
back, which impedes to benchmark the system’s efficiency andto compare
it to other functional language implementations (preferably GHC). But also
garbage collection is mandatory for more complex programs.

• Unfortunately the YHC project is not maintained anymore.
Therefore sooner or later the compiler should include support
for other front-ends. Attractive candidates are GHC and Jhc
(http://repetae.net/computer/jhc/).

• To support all given programs in the source language, the complete set of
primitives used by the front-end’s standard libraries needs to be implemented.

• The applicability of different kinds of optimisations to the execution model
is to be explored. Some of the traditional optimisations based on program
analysis by the compiler might not be adaptable to the execution model. The
novel type of abstract machine on the other hand, might lead to new kinds of
optimisations for the interpreter.35

35Presently, not even the most obvious optimisations or thosedescribed in this document are
included in the current implementation.

34 2009-06-12

Finally, once the execution model is proven to constitute a serious competitor for
current functional language implementations, there are visions for future research
that are to be explored, like how the execution model could besupported on
a operating-system level, or even building an operating system based on the
model. One might even think about implementing the operational semantics on
a specialised processor. These approaches might prove useful especially for simple,
embedded systems where the simplicity of the operational semantics could be very
valuable.

In this thesis it could be shown, how the observation of the strictness of argument
handling in the normal order reduction led to a new idea for the approach of
evaluating a program in a functional programming language and how the idea
evolved into a fully operational execution model. For the model a proof-of-concept
implementation was developed by which the applicability ofthe concept could be
demonstrated.

35 2009-06-12

References
[Rémi Douence]A Systematic Study of Functional Language Implementations,

Rémi Douence, Pascal Fradet. INRIA / IRISA.

[Zena M. Ariola (1994)]Cyclic Lambda Graph Rewriting, Zena M. Ariola, Jan
Willem Klop. 1994. pp 416-425. (Symposium on Logic in Computer Science,
1994. Proceedings)

[Peter Sestoft (2002)]Demonstrating Lambda Calculus Reduction, Peter Sestoft.
2002. Department of Mathematics and Physics Royal Veterinary and Agricul-
tural University, Denmark and IT University of Copenhagen, Denmark . pp
420-435.The Essence of Computation: Complexity, Analysis, Transformation,
T. Mogensen, D. Schmidt, I. H. Sudburough (eds.) Lecture Notes in Computer
Science 2566.

[Simon L. Peyton Jones (1992)]Implementing lazy functional languages on stock
hardware: the Spineless Tagless G-machine - Version 2.5, Simon L. Peyton
Jones. 1992. Department of Computing Science, University ofGlasgow G12
8QQ .

[Cregut Pierre (1991)]Machines à environnement pour la réduction symbolique et
l’évaluation partielle, Cregut Pierre, Cousineau Guy.Travaux Universitaires -
Thèse nouveau doctorat, 1991. Université de Paris 07. p 168 ff.

[Simon Marlow (2006)] Simon Marlow, Simon Peyton Jones.Making a fast curry:
push/enter vs. eval/apply for higher-order languages, 2006. Microsoft Re-
search, Cambridge, UK. pp 415-449.Journal of Functional Programming,
Cambridge University Press (ed.) Volume 16 2006.

[Ian Holyer (1998)] The Brisk Machine: A Simplified STG Machine, Ian Holyer,
Eleni Spiliopoulou. 1998. University of Bristol, Department of Computer
Science .

[G. Cousineau (1985)] G. Cousineau, P. L. Curien, M. Mauny.The categorical
abstract machine, Proc. of a conference on Functional programming languages
and computer architecture, 1985. Springer-Verlag New York, Inc.. pp 50-64.

[Simon Thompson (1992)] Simon Thompson, Rafael Lins.The Categorical Multi-
Combinator Machine: CMCM, 1992. pp 170-176.The Computer Journal, The
British Computer Society (ed.) Volume 35, Number 2.

[Simon L. Peyton Jones (1987)]The implementation of functional programming
languages, Simon L. Peyton Jones, Philip Wadler, Peter Hancock, David
Turner. 1987. Prentice Hall International (UK) Ltd.

36 2009-06-12

[Daan Leijen (2005)]The Lazy Virtual Machine specification, Daan Leijen. 2005.
Institute of Information and Computing Sciences, Utrecht University .

[P. J. Landin (1963)] P. J. Landin.The mechanical evaluation of expressions, 1963.
pp 308-320.The Computer Journal, The British Computer Society (ed.) Vol-
ume 6, Number 4.

[Xavier Leroy (1990)] Xavier Leroy.The ZINC Experiment: An economical Im-
plementation of the ML language, 1990. Institut National de Rercherche en
Informatique et en Automatique.

[Jon Fairbairn (1987)]Tim: A simple, lazy abstract machine to execute supercom-
binators, Jon Fairbairn, Stuart Wray.Functional Programming Languages and
Computer Architecture, pp 34-45. 1987. Springer Berlin / Heidelberg.Lecture
Notes in Computer Science, Volume 274/1987.

37 2009-06-12

Appendix
This document is available along with the implementation ofthe execution model
at http://rochel.info/ . The material will be updated with future versions
as the project evolves.

38 2009-06-12

