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Abstract 

With increasing computational resources, the interest in high-fidelity simulations of 

wave-body interaction has increased. This is the case for the CFD modelling of 

Floating Offshore Wind Turbines (FOWT), as the industry moves towards 

commercial farms and the need for optimization increases. Previous computational 

models based on linear potential flow have shown a disagreement between the 

experimental and computational motions of the moored floaters subject to wave 

loading. The aim of this thesis is to help to clarify the influence of the mooring lines 

in this disagreement by performing a sensitivity analysis in the mooring line stiffness. 

A 1:50 scale model of a FOWT, defined by the OC5 project, is simulated using a 

coupled mooring analysis using CFD. The work uses OpenFOAM for the CFD part 

and Moody is used to model the mooring lines. The model is used to construct 

surrogate models for the floater motions and tensions in the mooring lines using 

Polynomial Chaos Expansion (PCE) in UQlab.  The motions of the floater, the forces 

on the mooring lines fairleads and some flow characteristics are reported. It was found 

that for the wave case simulated the mooring stiffness had a negligible influence in 

the periodic motions of the floater, although it could affect significantly to the mean 

components of the mooring forces. The motions of the floater were found to be 

underpredicted with respect to the experimental data, but in agreement with 

simulations by other researchers.  
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Notations 

Bold letters are used to denote vector fields.  

Due to the variety of mathematical tools used on this project, some overlaps of 

notation occur with some variables. Those variables are either used in completely 

distinguishable contexts or marked with a different subscript.  

 

Acronyms 

 

CFD          Computational fluid dynamics 

FOWT         Floating off-shore wind turbine 

LCOE          Levelized cost of energy 

O&M           Operations and maintenance 

TLP             Tension Leg Platform 

OC5         Offshore Code Comparison, Collaboration, Continued, with Correlation 

RAO         Response Amplitude Operator 

C3SE           Chalmers Centre for Computational Science and Engineering 

RANS         Reynolds Averaged Navier Stokes 

MARIN      Maritime Research Institute of the Netherlands 

GUM          Guide to the expression of Uncertainty in Measurement 

AIAA         American Institute of Aeronautics and Astronautics 

ASME         American Society of Mechanical Engineers 



 

 

 

UQ          Uncertainty Quantification 

gPC             Generalized Polynomial Chaos 

V&V           Verification and validation 

 

Roman lowercase letters 

𝑏         Generic known vector 

𝑐         Wave velocity 

𝑑         Distance between floater and the far end of the simulation domain 

𝑒         Internal energy 

f         Force, force per unit of volume, function 

g         Gravity acceleration 

h         Grid size 

k         Turbulent kinetic energy, index for polynomial order  

𝑛         Number of grids 

𝑝         Pressure, convergence order, gPC polynomial order  

𝑞         Auxiliar variable for mooring equations 

𝑟         Position 

𝑡         Time 

𝑢         Fluid velocity 

𝑤         Grid weights  

𝑥         Generic unknown 

 

Roman uppercase letters 

𝐴         Diagonal of M, section 

𝐶         Stiffness matrix of the floater 

𝐷         Damping matrix of the floater 

𝐸         Young modulus 

𝐹         Security factor 

𝐻         Auxiliar matrix that arises during SIMPLE loop 

I         Turbulence intensity 

L         Characteristic length 



 

 

 

𝑀         Matrix of terms arising from a discretization coefficient 

𝑁         Number of faces 

Q         Generation per unit volume 

S         Surface, error function to be minimized 

𝑇         Tension on the mooring line 

𝑈         Uncertainty 

𝑉         Volume 

W         Mass matrix of the floater 

Z         Random input for a surrogate model 

 

Greek lowercase letters 

α         Volume fraction, parameter for error power expansion 

γ                  Mass per unit length of the mooring line 

ϵ                  Axial strain of the mooring line, discretization error 

𝜌         Fluid density, probability function density 

𝜏         Viscous stress tensor 

μ         Dynamic viscosity 

λ         Wavelength 

σ          Security factor 

ν         Kinematic viscosity 

𝜂                  Kolmogorov length scale  

ω                 Turbulent specific dissipation rate 

Greek uppercase letters 

Δ          Threshold parameter for error fitting to a power expansion 

Γ          Diffusion coefficient  

Φ          Generic scalar or vector field, basis function 
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1 Introduction 

1.1 Aim 

A CFD model of a moored floater has been developed in this work using the open-

source software OpenFOAM v2012 [1]. The free surface flow and the floating platform 

motion have been simulated in a coupled way, using a 6 degrees of freedom model. A 

non-linear dynamic mooring model has been included using the software Moody [2]. 

The semi-submersible floating platform has been defined using the DeepCWind 

geometry, following the OC5 and subsequent OC6 project guidelines [3]. The cases 

have been run in the C3SE computer cluster provided by Chalmers University of 

Technology, Sweden.  

The work intended to accomplish three goals: 

1. To draw conclusions out of any computational model, the convergence of the 

results should be assessed. This constituted the first objective of this work. The 

solution verification study quantified the discretization error and the associated 

uncertainty of the results, allowing to select a mesh size adequate for our 

purposes.  

2. In previous works, such as [4], an underprediction was identified between the 

motions of the floater reported in computational and in physical experiments 

with a test model. Section 1.2 expands upon this issue. The second objective of 

the project was to identify if this behaviour was still present when the mooring 

model became nonlinear.  

3. Though dynamic mooring has been routinely used in potential flow models, its 

use in conjunction with higher fidelity CFD modelling is rarer. It increases the 

complexity of the model introducing dependencies on a higher number of input 

parameters. These parameters (mooring stiffness, drag and lift coefficients of the 

mooring lines, position of the mooring fairleads, etc) are often not available with 

the desired precision due to difficulties in the measurement process, or are 

subject to significant tolerances [5]. An evaluation of the relative importance of 

said parameters in the behaviour of the mooring model was deemed interesting 

both as a way of potentially explaining the discrepancies between physical and 

computational models and to gain insight into the design drivers of these 

structures. Therefore, the second goal was to perform a sensitivity analysis on 

these parameters. Due to time constraints, only one parameter (mooring 

stiffness) could be evaluated. 

 

1.2 Project Background 

The design tools used to simulate floating offshore wind turbines are constantly being 

improved. There is a great variety of methods that can be used to simulate the 

hydrodynamics of the floater, as well as the aerodynamics of the tower and blades. To 

compare between the options available, the International Energy Agency Technology 

Collaboration Program created the Offshore Code Comparison, Collaboration, 

Continued, with Correlation (OC5) project. Most of the methods were based in linear 



 

 

 

potential flow for hydrodynamics, lumped mass for the motions of the tower and blade 

element theory for aerodynamics. It was concluded that such methods introduced 

simplifications to avoid paying too great of a computational price. In this way they 

lacked sufficient accuracy to model the floater motions in some design cases [4].  

In contrast, full CFD RANS models take into account all nonlinearities in the equations, 

offering additional accuracy but increasing a great deal the computational effort. 

Previously, it would have been unthinkable to use such models as an engineering tool. 

However, the advances in computational capacity have made such simulations possible. 

CFD RANS codes require extensive verification and validation (V&V) to become a 

useful design tool. A non-exhaustive list include lift and drag on the wind turbine 

blades, deformation of and loads on the structure, motions of the floater, wave 

propagation, mooring line forces, sensitivity to different numerical schemes, turbulence 

models, and the coupling with different tools, such as mooring models, or structural 

deformation and rigid body motion solvers [6].  

 

The Maritime Research Institute of the Netherlands (MARIN) tested a model FOWT at 

1:50 scale in 2011 and 2013, and the results are still being used by many researchers for 

validation. In successive investigations it was concluded that one of the main causes of 

the discrepancies between the experimental results and the CFD ones could be the 

mooring model. To correct this, the use of a non-linear mooring model was suggested 

[4]. The program Moody, based in the discontinuous Galerkin formulation of the finite 

element method, have been applied successfully as a nonlinear mooring model for 

marine applications. The final objective tackled was to perform a sensitivity analysis 

using a generalized Polynomial Chaos (gPC) surrogate model in order to quantify the 

impact of deviations and tolerances from the nominal mooring stiffness in that model 

when applied to the FOWT problem.  

 

1.3 Thesis structure 

To achieve the goals of this project the work is structured as follows. It first starts 

introducing some generalities about the offshore wind field and describing the current 

efforts for developing reliable floating offshore wind platforms providing examples of 

some of the topologies that have been recently considered and its associated challenges. 

After that, the theoretical basis is laid out, explaining the models developed for fluid, 

motion and mooring simulations and the mathematical methods used to quantify 

uncertainty and perform sensitivity analysis.  Following this, the methodology used to 

build the model, from the geometry modelling to the design considerations of the CFD 

simulation are described. The postprocessing steps are commented briefly. Lastly, the 

results are offered and reviewed. As an afterword, some possible future improvements 

are discussed.  

 

 



 

 

 

2 The state of the wind industry 

2.1 Introduction to wind energy and some figures 

 

Wind energy turbines use the kinetic energy available by the movement of the wind to 

make a turbine spin. This rotational energy is transmitted through a shaft to an electrical 

generator or any other device that can make use of it. Wind turbines face different 

challenges depending on where they are placed and because of this they are classified 

in: 

• Onshore wind, for turbines that are placed on land. 

 

• Offshore wind, for turbines that are placed on a body of water, thus requiring 

special supports. If instead of using fixed foundations floating ones are to be 

used, the resulting turbine may be called a floating offshore wind turbine 

(FOWT).  

Modern use of wind energy to produce electricity started shortly after the invention of 

the electric generator (1830). Electricity production started in the United Kingdom 

(1887) and the US (1888), but it was in Denmark where the first modern horizontal axis 

turbines were developed (1891). More than a century after that, the technology has 

developed in an exponential fashion. In the last 20 years, the worldwide installed 

capacity multiplied itself by 75 to reach 564 GW in 2018 [7]. A sustained reduction of 

costs due to technology improvements and economies of scale as well as the recent 

irruption of offshore wind ensures the continuity of the present relevance of wind 

energy.  

In 2020 in Europe the total installed wind power reached 220 GW and the wind farms 

covered 16% of the demand of electricity. New generators accounting for 14.7 GW of 

power were installed. The COVID crisis reduced the amount of new power installed, 

but not by much (6% with respect of the previous year). Of the new installed generation, 

only 20% was planned to be produced by offshore installations. However, this 

proportion is greater than the current share for offshore of 11.4%. In the next 5 years, a 

slight increase in the market share of offshore is predicted by WindEurope [8], with 

24% of the new installations being offshore. Offshore is gaining traction due to a greater 

resource availability and a cost reduction that is driving forward the whole wind 

industry [9]. This current trend is exemplified as seen in Figure 1. 



 

 

 

 

Figure 1: Increasing share of total installed power for offshore wind [8] 

 

2.2 Rationale behind using wind turbines offshore 

2.2.1 Causative factors 

 

Offshore wind produced 3% of Europe’s electricity demand in 2020. Onshore produced 

13%. Wind turbines were initially deployed on land because lower costs could be 

achieved. Offshore incurs in higher cost as installation, operation and maintenance need 

to be done at the sea, where the labour cost is very expensive.   

There are however several advantages of going offshore [10]: 

 

• Increased wind resource: Figure 2 shows the mean power density (W/m^2) 

available at onshore and offshore locations in Sweden, Norway and Finland. 

Very few onshore locations can compare with the amount of power that is 

available at the sea. This is applicable to most land areas in the world. The wind 

speeds available near the surface are greatly affected by the surface roughness of 

the terrain. Water provides a comparatively smooth surface and the winds 

become stronger closer to the surface [11].  



 

 

 

 

Figure 2: Mean Power Density layer of the Global Wind Atlas over the north of Europe [12] 

 

• More consistent wind speeds: wind tends to blow more reliably at the design 

speeds. This translates into an increment of the capacity factor.  

 

• Wind production is closer to consumption centres: Population centres tend to 

be in coastal areas in most countries with access to the sea. The ability to 

produce near those population centres means the energy does not need to be 

transported far away. This could alleviate the grid congestion, lower energy 

losses, and prevent potential grid overloads and blackouts.   

 

• Possibility of larger sized projects: as the potential sites are not restricted to a 

single location but to a large sea area. This is beneficial because it enables 

economies of scale.  

 

• Makes available bigger turbines: which in turn improve the total O&M cost by 

reducing the number of turbines needed to archive the same power. Figure 3 

shows this. Turbine size is difficult to scale up for onshore. In addition to the 

structural problems that arise, the size of the blades (even more than 100m), 

which are normally produced in one piece, is getting so big that it is increasingly 

difficult to transport them [13]. The possibility of water transport eliminates that 

disadvantage as the turbine blades can be manufactured along the coast and 

transported by boat to the assembly site.  

 



 

 

 

 

Figure 3: Yearly average of newly installed offshore wind rated capacity [8] 

 

• Relaxes some design constrains on the turbine: turbines can rotate faster, have 

two blades or adopt a downwind configuration [11]. This is in part possible 

because, in contrast with the platforms used by the oil and gas sector, some 

safety standards can be relaxed as there is no permanent human presence nearby 

and operation and maintenance can be performed with calm seas. The noise 

intensity, a design factor with potentially harmful effects in health [14], can also 

be increased because of the same reason. 

2.2.2 Economical comparison 

 

 

Figure 4: Total installed cost, capacity factor and LCOE for offshore (above) and onshore 

(below)  [9] 



 

 

 

 

Figure 4 offers a comparation between three important metrics to evaluate the cost 

performance of offshore and onshore energy. The levelized cost of energy (LCOE) is 

loosely defined as the total amount of money invested during the life cycle of a given 

project (including initial investment, installation, O&M, decommission, etc) divided by 

the energy produced during said product life. This metric provides a way of comparing 

power plants with vastly different cost structures. By inspection, one can see that the 

LCOE of offshore projects is more than double that of onshore ones.  

However, the LCOE is not the only metric widely used to measure technology 

performance within the electrical market. The electrical grids sustain a very delicate 

balance of production and consumption which needs to be sustained day and night. The 

grid operators desire (and pay for) the predictability of the power sources. The capacity 

factor is defined for a given period as the amount of energy produced divided by the 

amount of energy that would have been ideally produced if the generator had been 

operating at rated power [15]. The high capacity factor of fossil fuels is one of the 

biggest problems that are to be solved to achieve a sustainable grid, and therefore the 

industry is making efforts for improving the capacity factor of the available 

technologies and finding new technologies with better capacity factors. 

The existence of days without wind diminishes the capacity factor of wind energy. 

However, there is a great difference between offshore and onshore. For offshore energy 

the capacity factor is increased, due to more reliable and constant winds on the sea. For 

2019, for offshore energy the capacity was of 43.5%, whereas the onshore one was of 

35.6%. However, it could be even higher. The Hywind Scotland project [16], the world 

first floating wind farm, reports a capacity factor of 54%.  

 

2.3 Foundation and mooring technologies 

 

There are three main topologies that can be used for support structures of FOWT. They 

are spar, tensioned legs platforms (TLP) and semi-submergible concepts. The current 

projects deployed or in development use either one of these or a mix of several. This 

section intends to briefly describe these topologies and their associated engineering 

challenges. An illustration of these concepts can be found in Figure 5. 

 



 

 

 

 

Figure 5: Floating foundation concepts for FOWT [17] 

 

A spar foundation is stabilized by lowering the center of mass of the structure using 

ballast. It offers small waterplane areas, reducing the forces it experiences. It is efficient 

in harsh seas and deep waters, where the installation process is easier [18]. Some design 

challenges are to balance the size of the spar buoy to match the dynamic and static 

loading limits, to strengthen the turbine to withstand the heel movement produced 

during operation, and the assembly of the turbine on-site. This last step involves the 

complex process of raising the tower from the horizontal position in the sea [11]. The 

spar concept is the one that have been used most in already installed projects, such as 

the biggest current FOWT farm, Hywind Scotland.  

The Tension Leg Platform (TLP) technology relies on the moorings to keep the buoyant 

structure fixed to the ground. The mooring lines are inextensible, which offers a great 

amount of stability, but may create problems in high or low tides, or facing extreme 

waves. A loss of the mooring lines may cause the full collapse of the structure, as TLP 

is not inherently stable unlike other concepts [11]. There are also installation challenges. 

The hulls can experience instability when submerged before the attachment of the 

mooring lines. To solve this, buoyancy aids can be added at a significant cost. New 

methods are being researched to solve this [18].  

The semi-submergible type of foundation consist of a floating jacket which can be made 

from steel or concrete. It is moored to the floor to prevent excessive drifting. This kind 

of foundation is subject to higher motions and loads, as most of the structure is on the 

water surface where waves have a greater effect. Therefore the topology is designed to 

allow dampening of the structure motions. The heave plates that are installed below the 

floater in some topologies -including the OC5 floater- are a way of archieving that 



 

 

 

damping. Although the fabrication process is complex and expensive, a key advantage 

comes from this process: the possibility to tow the assembly. For some designs, most of 

the structural components can be mounted in a dry dock in shallow waters, allowing for 

a simpler installation afterwards and reducing expensive labour at the sea. This also 

applies to repairs and O&M, which could be performed close to land. 

As can be seen in Figure 6 spar designs are the most installed floating solutions, though 

semi-submergible foundations follow closely and both are still much less common than 

fixed foundations.  

 

 

Figure 6: Number of foundations installed by type, including fixed foundations [8] 

Mooring is a big part of an efficient design for a FOWT. Figure 7 provides a cost 

breakdown by components and processes. Although the cost of the mooring lines can 

account to only 5% of the total cost of the project, including the installation, it has a 

huge impact in the design of the foundations, which constitute up to 69% of the cost.  

 

 

Figure 7: Comparison of costs between floating and fixed offshore wind [19] 



 

 

 

 

Mooring lines affect to the dynamic response of the FOTW. This could be a cause of 

problems if the natural loading frequencies intersect the natural frequencies of the 

moored floater [20]. Previous research has identified discrepancies between the 

experimental movements of the FOWT and the computational experiments attributed to 

a simplified mooring system. Furthermore, failure rates of mooring lines are 

surprisingly high. While the industry targets useful lives of 104 to 105 years, the 

observed rate of failure of single lines was of only a few dozen years. 60% of the 

failures were attributed to a deficient design [5]. Further research needs to be done to 

achieve confidence in the design of mooring systems for FOWT.   

The material used for the mooring lines has traditionally been steel wire. The chains of 

steel have the advantage of an excellent resistance to abrasion with the sea floor. Wire 

rope has also been used because of its shock absorption resistance. In offshore oil and 

gas platforms, some polymers have been used at very deep waters, where the weight of 

steel became too expensive [11]. Some research is being done to investigate the effect 

of polymers with a smaller Young modulus for shallow water applications, where steel 

could prove to be too stiff. Such a variety of materials means important fluctuations in 

the Young modulus for design purposes are to be expected. Even when the material of 

the mooring lines is known well, differences in manufacturing can contribute to a 

different stiffness values. In the model experiment of the OC5 floater [21], the 

uncertainty level of the mooring stiffness reaches about 10% of its nominal value. This 

same article claims that the mooring stiffness uncertainty is the single most influential 

parameter in the surge response of the floater. The mooring stiffness is therefore 

deemed a relevant parameter to perform a gPC sensitivity analysis with a CFD model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

3 Fluid dynamics equations and discretization    

3.1 Conservation equations 

 

Within the CFD field, there are many models that could potentially benefit from a 

certain discretization or solving technique. Many conservation equations from different 

fields describe the same phenomena differing only on the nomenclature. For example, 

the equations for the spread of heat in a solid and the change of concentration of a 

chemical species may be identical from a mathematical perspective. Therefore, it seems 

like a sensible idea to refer the mathematical derivations to a general equation and then 

substitute for particular variables later, instead of doing the work for each individual 

equation. 

This general conservation equation represents the balance between four phenomena, and 

can be written as: 

∂

∂𝑡
(ρΦ) + ∇ ∙ (ρ𝒖Φ) = ∇ ∙ (ΓΦ∇Φ) + 𝑄Φ 

 

 

(1) 

 

Where: 

1. ρ is density 

2. Φ is the scalar or vector field that is conserved 

3. 𝒖 is velocity 

4. ΓΦ is a dissipation rate 

5. 𝑄Φ is generation of destruction of Φ 

The first term in the equation is the unsteady or transient term. It allows to describe the 

change of the solution with time. The second term is the convection term. It is 

associated with coherent, directional movement. The third term is called the diffusion 

term. It is associated with smoothing movement without a preferent direction. The 

fourth one is the source term. Is associated with creation or destruction (sources and 

sinks) of the quantity in the equation.  

The integral form of this equation applied to a single cell, using the divergence theorem 

is: 

∂

∂t
∫(ρΦ)dV + ∑ ∫(ρ𝒖Φ)𝑑𝑆

𝑁

1

= ∑ ∫(ΓΦ∇Φ)𝑑𝑆 + ∫ 𝑄ΦdV

𝑁

1

 

 

(2) 

 

 

Where N is the number of surfaces of that cell. This equation still does not include any 

assumption, so the solution field should be exact. To obtain an algebraic system of 

equations from this conservation equation, however, assumptions need to be made. For 

the FVM (Finite Volume Method) a key consideration is that the information stored in 

the cell centroids must be interpolated to the surfaces to be able to evaluate the integrals. 

The numerical evaluation of said integrals also create discretization error. Each term 



 

 

 

should be discretized to reach a desired order of accuracy and some terms require 

special treatment to ensure numerical stability and physical results. For this problem the 

terms were discretized up to second order. 

 

The Navier Stokes equations, as well as other equations used to model the fluid 

interface and for turbulent behaviour, can be described with this framework by choosing 

adequate Φ, ΓΦ and 𝑄Φ.  

 

3.2 The Navier Stokes equations 

 

The Navier Stokes equations are the most important equations of fluid dynamics. They 

describe the pressure, velocity, and internal energy of a fluid as it develops trough a 

certain spatial domain during a certain time interval. They are partial differential 

equations, meaning the velocity, pressure, density, and energy rates of change depend 

on time and each spatial direction, adding mathematical complexity. The convective 

term in the momentum equation makes the equations nonlinear.  The equations are 

written very generally and compactly as: 

 

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝒖) = 0 

 

(3) 

 

𝜌
𝐷𝒗

𝐷𝑡
= −∇p + ∇ ∙ 𝜏̿′ + 𝜌 𝒇̅𝒎 

 

 

(4) 

 

 

𝜌
𝐷𝑒

𝐷𝑡
= −p∇ ∙ 𝒖 + 𝜏̿′: ∇𝒖 − ∇ ∙ 𝒒 + 𝑄𝑟 + 𝑄𝑐 

 

 

 

(5) 

 

Where: 

1. u is the velocity vector field 

2. p is the pressure scalar field 

3. 𝜌 is the density scalar field 

4. 𝑒 is the internal energy scalar field 

5. 𝜏̿′ is the viscous stress tensor 

6. 𝑓𝑚̅ are the mass forces (such as gravity) per unit of volume 

7. 𝑄𝑟 y 𝑄𝑞 are heat terms produced by radiation and chemical reaction respectively 

8. The 
𝐷

𝐷𝑡
 operator represents the material derivative: 



 

 

 

𝐷Φ

𝐷𝑡
=

𝑑Φ

𝑑𝑡
+ 𝑢 ∙ ∇Φ 

9. The “:” operator is the internal tensor product 

10. The 
𝐷

𝐷𝑡
 operator represents the material derivative: 

𝐷Φ

𝐷𝑡
=

𝑑Φ

𝑑𝑡
+ 𝒖 ∙ ∇Φ 

 

(6) 

 

11. The “:” operator is the internal tensor product 

 

The first equation is the continuity equation. It is always needed, as it describes 

conservation of mass, which is always fulfilled. The second equation is the conservation 

of linear momentum. It is derived from Newton’s Second Law of motion. Continuity 

and momentum conservation equations can describe incompressible fluid. The third 

equation is an energy equation. It can be formulated in terms of temperature and can be 

used to describe heat transfer problems. These equations are often completed with the 

equations of state of the fluid to describe compressible flow problems, giving a 

complete description of almost every fluid problem relevant for industry.  

For a three-dimensional case, there are very few known analytical solutions to the 

Navier Stokes equations, and almost all of them are related to a very simple domain. For 

complex geometry or more involved fluid behaviour, the usage of numerical methods is 

always required.  

For simulations involving water, such as the model of the FOWT, the fluid can be 

considered incompressible (𝜌 is constant) and developing the viscous stress tensor, 

substituting the mass forces by gravity, and including the turbulent quantities k and μ𝑡 

the equations become:  

 

∇ ∙ 𝒖 = 0 (7) 

 

 

𝐷𝒖

𝐷𝑡
= −∇ (p +

2

3
ρk) + ∇ ∙ [(μ + μ𝑡)(∇𝒖 + ∇𝒖𝑇)] + 𝜌𝒈 

(8) 

 

 

Where the energy equation is dropped as we assume isothermal flow. The Finite 

Volume Method does not use the equations in this form, but rather requires an integral 

form. A problem that arises in the numerical treatment of these equations is the lack of 

the variable p in the first equation. To circumvent this, the equations are usually solved 

iteratively resulting in the SIMPLE (Semi-Implicit Method for Pressure Linked 

Equations), PISO (Pressure-Implicit with Splitting of Operators) or PIMPLE (Pressure-

Implicit Method for Pressure Linked Equations) loops.  

 



 

 

 

3.3 Turbulence modelling and boundary layers 

 

Turbulence is a phenomenon that happens as the small instabilities in the flow get 

amplificated by the non-linear inertial terms. This causes chaotic, three-dimensional 

motion that amplifies mixing and diffusion. Turbulence is usually described as a sum of 

eddies of different scales. Energy is transferred between the biggest eddies to the 

smallest ones in a “cascade” process, until the eddies are so small that molecular 

viscosity dissipate their energy as heat. The scale of the smallest eddies that can exist is 

called the Kolmogorov scale: 

𝜂 = (
ν3

g
)

1
4

 

 

 

 

(9) 

 

 

𝑡𝑛 = (
ν

𝑔
)

1
2
 

 

 

 

(10) 

 

These scales are extremely small for most engineering applications. As the element size 

has to be smaller than the Kolmogorov scale to be able to resolve the eddies, the direct 

approach, called Direct Navier-Stokes (DNS) is barely used as it would result in 

extremely big meshes.  

Most of the turbulence models used in industry work by averaging turbulent motion. 

Large Eddy Simulation (LES) only simulates the largest eddies, that carry more energy, 

while the smaller ones are approximated using a sub-grid model. This modelling 

strategy is quite accurate but proves to be too taxing for many applications.  

The Reynolds Averaged Navier Stokes family of models are an alternative with a lower 

computational cost. These methods separate the variables into a mean value and a 

fluctuating component and average the equations in time. The resulting averaged 

equations are very similar to the original ones except for a tensor that adds six 

unknowns that shall be modelled, arising from the non-linear term.  

Most models assume that the components on this tensor are a linear function of the 

velocity gradients (Boussinesq approximation). In that way, the problem for 

incompressible flows is often simplified to compute a turbulent viscosity, μ𝑡. This can 

be done using several methods. The two equation methods are popular in engineering 

modelling because they offer a trade-off between accuracy, computational cost, and 

stability. The 𝑘 − ϵ, and 𝑘 − ω families of models are the most used. [22] 

For our application, the model used was 𝑘 − ω SST. It requires to solve a conservation 

equation for the turbulent specific dissipation rate, ω, and for the turbulent kinetic 

energy, 𝑘.  It offered an advantage when modelling separated flow and adverse pressure 



 

 

 

gradients in comparison with the baseline 𝑘 − ω method. The equations for the 𝑘 − ω 

SST model can be found in [23].  

 

3.4 Free surface modelling 

There are several approaches to model multiphase flows. For continuous-continuous 

phase interaction, and immiscible phases, the most used one is the Volume of Fluid 

method. It is based in considering each cell of the mesh as a homogeneous mixture of 

both fluids with a volume fraction α, ranging from 0 to 1. A value of 0 would mean that 

the cell only contains one of the fluids, and a value of one only the other one. The 

properties of the cell are linearly interpolated based in α [4]. This approach allows to 

solve the conservation equations only one time for both fluids. The drawback is that an 

additional conservation equation is added: 

 

∂α

∂𝑡
+ ∇ ⋅ (α𝒖) = 0 

 

(11) 

 

 

The discretization of the divergence term in this equation uses special schemes to 

maintain a sharp interface between the fluids. If a normal upwind scheme were to be 

used, there would be diffusion of α from the interface to the rest of the fluid, which 

would be unphysical. The Flux Corrected Transport (FCT) is a framework in which 

some of the most used schemes work. Often, high order schemes can create unwanted 

oscillations in the result. To avoid this, the FCT theory proposes to blend high and low 

order schemes, extending the stability of the method at high Courant numbers [24]. In 

OpenFOAM, such implementation is coded through the MULES solver. Common 

schemes used in this method are vanLeer, SuperBee, HRIC and CICSAM [25]. 

 

 

 

3.5 Discretization process  

The objective of a discretization process is to achieve a set of equations that can be 

solved with a computer. These equations, in general, are formulated in matrix form such 

as: 

𝑀𝒙 = 𝒃 

 

(12) 

 

To accomplish this, there are three steps that need to be followed: 

 



 

 

 

• Physical modelling: The first decision that needs to be made is what is going to 

be included in the simulation. Specifically speaking, how are the boundaries of 

the domain going to look like and what are the physical phenomena that are 

going to be represented. In this simulation, for example, we are interested in the 

wave effect on the floater. If the domain boundaries were too close, the 

reflections would mix with the incoming waves and impede the retrieval of 

clean data. In this way there is a lower bound on the size of the domain. This 

kind of decisions are often highly uncertain, and should be made in accordance 

with previous research and industry experiences. 

 

• Domain discretization: Once the geometry of the simulation is known, the 

domain should be discretized. This is done by dividing it into small partitions 

called cells, in a process called meshing. Figure 8 illustrates how a simple 2D 

mesh looks like. In general, a cell is composed of vertex, faces and a centroid. A 

cell can have any number of faces. There are two approaches to FVM meshes: 

cell-centred and node (or vertex) centred. The most used one, and the one that 

was used used, is the cell centred approach. 

 

 

 

Figure 8: Cell centred mesh (a) and node centred mesh (b) approaches [27] 

 

 

 

• Equation discretization: There are several methods to discretize the governing 

equations, which can be transformed to more convenient form. The Finite 

Difference Method substitutes the derivatives for an algebraic expression 

directly on the original equations. The Finite Element Method derives a weak or 

variational form of the equations. The Finite Volume Method works with the 

integral form of the equations, which then are applied (introducing 

approximations) to each single element. Most computer software for CFD 

analysis use the FVM method, as it inherently preserves fluxes between an 

element and its neighbours [22].  

 

 



 

 

 

3.6 SIMPLE, PISO and PIMPLE loops 

 

The incompressible Navier-Stokes equations are a challenge to solve numerically 

because they do not include an equation for pressure. The continuity equation can be 

seen more as a restriction for the momentum equation. To circumvent this problem, 

some manipulation is done to achieve an equation for pressure from the continuity 

equation, and then the equations are solved iteratively until a combination of pressure 

and velocity fields that satisfy the equations is found. A very simplified introduction to 

the process is exposed here. Starting from a semi-discretized version of the original 

equations [28]: 

∇ ⋅ 𝒖 = 0 (13) 

 

 

𝑀𝒖 = ∇𝑝 (14) 

 

M is a matrix of coefficients known and constant at each time step that arise from the 

discretization of the momentum equation. 𝑢 is the vector that contains each cell 

velocity. ∇𝑝 is the gradient of the pressure of each field. A H vector is defined also as: 

 

𝐻 = 𝐴𝒖 − 𝑀𝒖 

 

(15) 

 

Where A is the diagonal matrix of M, so that H is only a function of u. This 

decomposition is done because A is trivial to invert, which will help in later steps. With 

these variables, manipulating the momentum equation and substituting in the continuity 

equation yields an equation for pressure: 

∇ ⋅ (𝐴−1∇𝑝) = ∇ ⋅ (𝐴−1𝐻) 

 

 

(16) 

 

Once the pressure is known, the velocity field can be retrieved explicitly as: 

 

𝒖 = 𝐴−1𝐻 − 𝐴−1∇𝑝 

 

(17) 

 

Though some methods solve the equation for pressure and velocity simultaneously, 

most solvers are iterative to reduce the computational expense. The SIMPLE loop 

iterates through these four equations until convergence is reached. First the momentum 

equation is implicitly solved for u. Then H is computed, and the pressure equation is 

solved. The velocity field is retrieved with the last equation. This is called an outer loop. 

Although the last one might not seem needed, it should be noticed that in this simplified 

explanation no distinction has been made between fluxes through the cell faces and 



 

 

 

values at the cell centroids. A more rigorous mathematical description of the process 

can be found in [29]. As it solves the momentum equation at each time step, the 

SIMPLE algorithm is very stable. 

The PISO loop starts as the SIMPLE by solving the momentum equation, computing H 

and ∇𝑝, and solving for u. However, instead solving again the momentum equation, 

several iterations of the three last equations are made (inner or corrector loops). This 

reduces the computational load, but it is less stable. The PIMPLE loop, a combination 

of SIMPLE and PISO, uses a mix of inner and outer loops to improve stability while 

keeping computational speed. Figure 9 shows a flow diagram of the methods. 

When simulating a transient problem, the transient term is dominant in the equations. 

This has the effect of making the simulation very stable. Hence, a fast method like the 

PISO or PIMPLE is often used. The SIMPLE loop excels at stationary cases where 

stability is critical, and often underrelaxation is needed to compute the loop in a stable 

way. 

 

Figure 9: SIMPLE and PISO flow diagrams [30] 

 

 

 

 

 



 

 

 

4 Rigid body motion and mooring equations 

4.1 Equations for rigid body motion 

The equations of motion are formulated as [6]: 

 

𝑊𝒓̈ = 𝒇𝐻 − 𝐶𝒓 − 𝐷𝒓̇ 

 

(18) 

 

W is the mass matrix, and C and D are the stiffness and the damping matrix 

respectively. For our problem this D matrix is zero, as the body is assumed to be 

completely rigid. The hydrodynamic forces 𝒇𝐻 depend on the velocity of the floater 𝒓̇ 

because of the Navier Stokes equations, as:  

𝐹 = ∫ ∫(𝑝𝒏 + 𝛕)𝑑𝑆
𝑆

+ 𝑭𝑴 

𝑀 = ∫ ∫(𝒓𝑪𝑺𝑥(𝑝𝒏 + 𝜏))𝑑𝑆
𝑆

+ 𝒓𝑪𝑴𝑥𝑭𝑴 

Where: 

1. 𝑝 is the pressure 

2. 𝒏 is the normal vector 

3. 𝑭𝑴 is the mooring force 

4. 𝒓𝑪𝑺 is the distance from the centre of mass to the element surface 

5. 𝒓𝑪𝑴 is the distance from the centre of mass to the mooring attachment point 

In this way the equations are non-linear, and the fluid and rigid body problem are 

coupled.  

OpenFOAM can solve the rigid body motion equations through several methods: 

Crank-Nicholson, Newmark, symplectic integrator, or even custom made solvers. The 

weak stability of the coupling can be improved via acceleration relaxation (a direct 

multiplier on the acceleration) or acceleration damping (where acceleration is reduced 

more the higher its value is) [31]. The movement of the floater, which is a boundary 

condition of the model, implies that the adoption of a moving mesh formulation must be 

implemented.   

 

4.2 Mooring equations 

 

For the mooring, the differential equations relate the second time derivative of the 

position of the mooring 𝒓, with the tension 𝑻 and the external forces 𝒇 [32]: 

 



 

 

 

∂2𝒓

∂𝑡2
=

1

γ0

∂𝑻

∂𝑠
+

𝒇

γ0
 

 

(19) 

 

 

𝑻 = 𝐸𝐴0

𝒒

1 + ϵ
 

 

(20) 

 

 

𝒒 =
∂𝒓

∂𝑠
 

 

(21) 

 

 
ϵ = |𝒒| + 1 

 

 

(22) 

 

Where ϵ is the axial strain, γ0 is the mass per unit of length and 𝒒 is an extra variable 

introduced to reduce the system to a first order system of equations. The external forces 

can be divided in 4 components [5]: 

• Added mass 

• Drag 

• Buoyancy 

• Contact force 

The first two arise because of the relative velocities and accelerations between the fluid 

(assumed to be quiescent) and the mooring cable and are computed using the Morrison 

equations. The buoyancy force is derived straightforwardly from the Archimedes 

principle. The contact force is modelled as spring-damper system in the normal 

direction and a Coulomb friction model in the tangential direction.  

The software used to solve the mooring model is Moody [2].  This software allowed to 

solve dynamics of cables, allowing the modelling of no bending stiffness chains, like 

the ones used for FOWT.. The solver implements a Discontinuous Galerkin method for 

spatial discretization. A few elements of high order are used to discretize the mooring 

line, taking advantage of the exponential convergence of high order methods for smooth 

solutions. Discretization in time is done via a third order Runge-Kutta scheme. An 

introduction to the mathematical formulation, as well as verification with several test 

cases relevant for offshore applications, can be found in [32]. 

The coupling algorithm specifies in OpenFOAM the positions of the fairleads, which 

are then passed as an input for Moody. In turn, Moody will return the mooring forces as 

an output for the rigid body solver. The time step of the fluid solver is in the range of 

10−3 𝑠 to 10−4 𝑠, whereas Moody operates in the range of 10−5 𝑠. While the rigid body 

solver is still in the previous step, there is a need for interpolation of the variables that 

Moody need as an input. A lagged quadratic interpolation is used to solve this. Of 

practical interest is that this algorithm damps high frequency motions and therefore 

needs a low enough time step in the fluid and rigid body motion solver to properly 

converge 



 

 

 

5 Uncertainty estimation method  

 

For each experiment that is performed, be it with a physical system or a computer 

simulation, differences with respect to the real system conditions will arise. For a 

physical experiment, the precision and accuracy of the measuring instruments is limited, 

some variables could be uncontrolled, or some process could be not well understood or 

random in some way. These factors cause uncertainty in the measure, and the measure is 

not complete without the uncertainty estimation.  

Providing an uncertainty estimation is useful for several tasks. It has importance in 

design, estimating how useful the data is to a certain design purpose. If the uncertainty 

is high, the data may only be relevant for qualitative information. Lower levels of 

uncertainty mean simulations can be used to study changes in the design once there is 

test data available, and a very low uncertainty is associated with a direct use of the 

magnitudes simulated for. Uncertainty estimation can also be a legal requirement to 

comply with a standard. 

For physical experiments there are well established procedures to provide an estimation 

of the uncertainty of a measure. The Guide to the Expression of Uncertainty in 

Measurement (GUM), is maybe the most important of such procedures. However, no 

such thing exists for numerical simulations. Several procedures have been proposed by 

several authors and institutions [33] [34] [35], and some guidelines published by ASME 

and AIAA [36] [37], but no consensus have been reached on how to fully account for 

the uncertainty of the measure [38].  

Within the CFD field, two complementary ways of addressing uncertainty can be found: 

• Verification is the process used to determine whether the programming and 

computational implementation is correct or not. Code verification is performed 

by the programmers before releasing the CFD for public use. Solution 

verification is performed by the end users, and it aims to estimate the 

error/uncertainty for a computational solution even if the exact solution is 

unknown. The approach described in this section is concerned with the solution 

verification. 

 

• Validation, on the other hand, assesses whether the simulation agrees with the 

performance of the real system. It addresses modelling errors. A validation 

assessment cannot be done for the CFD code itself, but rather to each specific 

kind of simulation performed with it. 

It has been said that verification is about solving the equations right, whereas validation 

looks into solving the right equations. There are subtypes of numerical error generally 

associated with verification [6], although several classifications exist: 

• Computer round-off error: The round-off error appears because of the storage 

of the numbers used in the simulation in a fixed-point way, with a fixed decimal 

length. This error is usually very small in comparison with other sources, as 

most computations are done using double precision arithmetic. 



 

 

 

 

• Iterative convergence error: The Navier-Stokes equations are non-linear 

equations. To solve this kind of problems numerically an iterative procedure is 

usually required. Said procedure must have a stopping point, and the iterative 

error appears to account for the variation between the stopping point and the true 

solution. This error can be computed and made arbitrarily small. To make it 

negligible for the uncertainty estimation, it has been suggested to make it at least 

two or three orders of magnitude smaller than the discretization error [35].  

 

 

• Discretization error: This is the error committed when transforming the 

continuous governing equations to an algebraic system that provides a 

discontinuous solution in the points defined by the mesh. This applies to the 

temporal discretization and to the spatial discretization. The sources of the 

discretization error are truncation error, dispersive error, and dissipative error. 

The parameter that controls this kind of error is the element size and the time 

step size. If the numerical scheme is consistent, when the element and time step 

size become infinitely small, the discretization error will tend to zero. This kind 

of error is dominant for practical CFD computations, and it is complex to 

quantify. Meshing is a complex problem. Its design shall consider, to cite some 

parameters, resolution, density, aspect ratio, stretching, orthogonality, grid 

singularities, and zonal boundary interfaces [38]. It has been said that meshing is 

as much of a science as of an art. Because of this, it becomes difficult to 

establish a concrete relationship between the quality of the mesh and the quality 

of the result prior to the simulation. Most verification techniques focus on this 

kind of error. 

 

• Modelling error is associated with validation. It happens when modelling a 

poorly understood phenomena, when making the problem well posed requires 

making modifications to the domain or equations, or when making conscious 

assumptions for the sake of modelling ease or calculation speed. Even if the base 

equations solved for are well understood, usually there are still models based on 

empirical experience. For CFD codes these occur in turbulence modelling and 

when modelling some boundary conditions.  

 

• In addition, one can talk about unacknowledged error (meaning there cannot 

be a systematic procedure to detect it) such as programming error or usage error.  

For this simulation, we address verification by checking the discretization error. The 

round-off error is assumed to be negligible, and the iterative convergence error would 

be checked to make sure the residuals were at least two orders of magnitude below the 

discretization error [35].  

The procedure used is the one described in Eça and Hoekstra [35]. In their paper they 

propose a way of estimating the discretization error for data in coarser grids, that may 

not present the mathematical characteristics to be estimated in the way previous works 

had focused on. To estimate the discretization error, several grids of increasing 



 

 

 

resolution are needed. The error is approximated with a truncated power series 

expansion of the form: 

𝜖Φ = Φ𝑖 − Φ0 = αℎ𝑖
𝑝

 (23) 

 

where: 

• Φ𝑖 is for the mesh number i the variable we want to estimate the error for. This 

is known in advance. 

• Φ0 is our estimation for the true solution, unknown. 

• α is a parameter we need to fit, unknown. 

• ℎ𝑖 is the representative cell size for the i:th mesh, known in advance. 

• 𝑝 is a parameter we need to fit related to the order of convergence. It is unknown 

and would ideally be 2, as our OpenFOAM implementation offers second order 

precision. 

The idea is to solve a system of equations for α, 𝑝 and Φ0 to get our 𝜖Φ estimate for 

each grid. As we have three variables to solve for, we would need three grids for that 

operation. However, it is advised in the paper to use at least four grids. The reason is 

that p is very sensible to small variations in the data (scatter) which often occur for 

engineering applications. Adding more grids adds to the reliability of the estimation and 

allows to check how good the fit is. As a counterpart, the more grids are used more 

expensive will be the simulations. If the fit is very bad (for example if the grids are too 

coarse), the uncertainty is higher, and therefore it will be computed using a greater 

security factor.  

To solve the equation for more than three grids a least squares estimation is suggested: 

 

𝑆 = √Σ
𝑖=1

𝑛𝑔 𝑤𝑖 (Φ𝑖 − (Φ0 + αℎ𝑖
𝑝

))
2
 

(24) 

 

 

Where α, 𝑝 and Φ0 are obtained by minimizing the function S, 𝑛𝑔 is the number of 

grids used in the simulation and 𝑤𝑖 are weights suitably selected to give more 

importance to the values of the finest grids.  

Once the fit has been made, if p is too small (less than 0.5) or too big (greater than 2), 

the procedure is repeated using other estimators in order to avoid over or under 

conservative results, respectively. After obtaining the error values, the uncertainty for 

each grid 𝑈Φ(Φ𝑖) is estimated. This estimation will be different if the data fit has been 

bad, which is to say if the standard deviation of the fit σ is greater than a threshold value 

ΔΦ. This value depends on the data scatter and number of grids: 

 

 



 

 

 

ΔΦ =
Φ𝑖,𝑚𝑎𝑥 − Φ𝑖,𝑚𝑖𝑛

𝑛𝑔
 

 

(25) 

 

 

Then if  σ < ΔΦ: 

 

𝑈Φ(Φ𝑖) = 𝐹𝑠ϵΦ(Φ𝑖) + σ + |Φ𝑖 − Φ𝑓𝑖𝑡| 

 

(26) 

 

with:  

𝐹𝑠 = {
1.25          0.5 < 𝑝 <  2.1
3                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        

 

 

(27) 

 

 

Otherwise. For σ > ΔΦ: 

 

𝑈Φ(Φ𝑖) =
3σ

ΔΦ
(ϵΦ(Φ𝑖) + σ + |Φ𝑖 − Φ𝑓𝑖𝑡|) 

 

(28) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

6 Sensitivity analysis and generalized polynomial 

chaos 

 

The purpose of a sensitivity analysis to see how the output reacts for variation of the 

input. In more rigorous terms, the input is considered as a random variable with an 

associated probability distribution and our objective is to see what the probability 

distribution of the output would be. The obvious disadvantage is that our computational 

model does not allow to run for a random variable, only discrete values it could take. 

This forces us to choose a non-intrusive uncertainty quantification (UQ) method.  

In many computational applications, there is often little reason to expect that the 

statistical distributions that will arise after running the model will have a canonical 

form. In addition, in most cases the relationship between the output and the input cannot 

be written in closed form. This rules out most analytical uncertainty propagation 

methods. For this cases, Monte Carlo (MC) simulations offer a way to perform 

uncertainty propagation numerically. The procedure is to take a random sample of 

inputs that follow the uncertainty distribution of that input variable and run each value 

through the model. The corresponding outputs approximate the real output distribution 

if the sample size is big enough. However, MC simulations converge slowly, and often 

require hundreds of thousands of iterations before reaching a stable distribution. This is 

impossible to do for a CFD simulation of this size. 

 

Generalized Polynomial Chaos aims to accelerate MC simulations by only choosing a 

handful of points to recreate this output uncertainty distribution. In this method we 

create a surrogate model as a sum of polynomials that approximate the original model 

as a function of our random inputs. If there are few inputs, the model coefficients are 

adjusted using a few computational experiments. Once this surrogate model is created, 

it is straightforward to evaluate it for arbitrarily large sets of our input variable without 

having to run the original CFD model.  

The mathematical foundations of the theory are intricate and are rooted in functional 

analysis. Here only an overview will be presented, following the introduction done in 

[5]. For clarity, the multivariate case is not discussed. A broader take with further 

references to the literature can be found in [39].  

A model with random and deterministic variables can be described as a function 𝑓(𝑥, 𝑍) 

where x refers to the deterministic and Z to the random variables. The idea of the 

polynomial chaos expansion is to decompose this function like: 

 

f(𝑥, 𝑍) ≈ ∑ 𝑓𝑘̂(𝑥)Φ𝑘(𝑍)

𝑝

𝑘=0

 

 

(29) 

 

 



 

 

 

Where 𝑓𝑘̂(𝑥) are coefficients for the model and Φ𝑘(𝑍) polynomial basis functions 

whose form should be selected based on the probability distribution of the random 

inputs Z. The parameter p is the polynomial order of the simulation. To make a perfect 

fit, p should be infinite, but the coefficients decay quickly and the model can be 

trimmed to a finite number without much loss of precision.  

The problem then becomes how to calculate 𝑓𝑘̂(𝑥). There are two main non-intrusive 

approaches to the computation of the model coefficient. They can be computed via a 

projection method or via a regression method. The projection method computes the 

coefficients via an inner product of 𝑓(𝑥, 𝑧) and Φ𝑘(𝑧) with respect to the probability 

density function of the input variable 𝜌(𝑧): 

 

𝑓𝑘̂(𝑥) =
∫ 𝑓(𝑥, 𝑧)Φ𝑘(𝑧)ρ(𝑧)𝑑𝑧

∫ Φ𝑘
2(𝑧)ρ(𝑧)𝑑𝑧

 
(30) 

 

 

Where the integrals can be computed using a quadrature method, which also determines 

the input values 𝑧𝑖 the CFD model will need to be evaluated for. However, for a high 

number of random input parameters (greater than 4-5), this approach requires a high 

number of model evaluations. This is known as the curse of dimensionality. In this case 

a regression method can be used. 

In a regression method, the input values are first sampled randomly, and the outputs are 

computed. Then a regression fits the values of the model coefficients in a way that 

minimizes the error to those outputs. There are several regression techniques that can 

achieve this. UQlab [40], the program that was used to perform this calculation, 

includes an ordinary least-squares method as well as sparce regression methods. Even in 

this case, increasing further the number of random inputs leads quickly to need a large 

number of model evaluations, making the whole approach impractical for models with a 

large number of random inputs.  

Once the coefficients are set, an arbitrarily large sample can be used as an input to the 

surrogate model following the uncertainty distribution of the input, like in a normal MC 

simulation. The uncertainty distribution at the output can be reconstructed from the 

resulting points.  

The sensitivity analysis was done using the software UQlab. UQlab is a framework of 

tools to perform uncertainty quantification (UQ). It is based in Matlab and it can be 

used for free for academic purposes. Among its tools there is a suite for performing 

Polynomial Chaos Expansion (PCE). A detailed description, as well as manuals for the 

program, can be found in [40].  



 

 

 

7 Methodology 

7.1 Problem statement 

 

To build the surrogate model and to verify the results two kind of simulations were 

performed: 

• A series of seven 2D simulations with increasingly refined meshes ranging from 

125.000 elements to 500.000 elements. These did not include the floater and 

were only intended to provide verification for the wave heights of the 

simulation. 

 

• A series of seven 3D simulations with a mesh of 2.000.000 elements. These 

included the floater and a mooring simulation. They were required to build the 

surrogate model. 

The simulations all included a water-air interface. The inlet generated the waves, which 

then propagated and eventually clashed with the walls of the floater. A 𝑘 − 𝜔 SST 

turbulence model was included. A moving portion of the mesh took care of the coupling 

between the floater movement and the wave interaction. The domain and the coordinate 

system are outlined in Figure 10.  

 

 

Figure 10: Domain of the simulation with measures and boundaries 

 

 



 

 

 

The simulations were performed using a symmetry about the x-z plane. Essentially, 

only half of the floater and water domain were simulated. This introduced assumptions 

in the model, namely the force about the y axis, and the moments of the x and z axis 

were considered negligible, thus restricting the degrees of freedom of the model from 

six to three. However, it also reduced greatly the computational cost by reducing in half 

the amount of elements involved in each simulation. Without this simplification, this 

work could have hardly been done within the time and computational power constraints 

that existed.  

In the next sections, some of the decisions that were made in the modelling and 

simulation process will be explained.  

 

7.2 Physical properties 

 

The physical properties were taken from [41] when available, and from online 

calculators when not available. Table 1 contains several physical properties from the 

floater and the environment relevant to the simulation. The fields that were not taken 

from the measurements in [41] are marked with an asterisk in Table 1. 

 

Table 1: Properties of the fluid field and the floater 

Property Value 

Density of the water 1025 𝑘𝑔 ⋅ 𝑚−3 

Kinematic viscosity of water* 1.81 ⋅ 10−5 𝑘𝑔 ⋅ 𝑚−1 ⋅ 𝑠−1 

Density of the air* 1.225 𝑘𝑔 ⋅ 𝑚−3 

Kinematic viscosity of the air* 1.477 ⋅ 10−5 𝑚2 ⋅ 𝑠−1 

Gravity* 9.81 m ⋅ 𝑠−1 

Mass of the floater 1.3958 ⋅ 107 𝑘𝑔 

Inertia about the x axis 1.3947 ⋅ 1010 𝑘𝑔 ⋅ 𝑚2 

Inertia about the y axis 1.5552 ⋅ 1010 𝑘𝑔 ⋅ 𝑚2 

Inertia about the z axis 1.3692 ⋅ 1010 𝑘𝑔 ⋅ 𝑚2 

Z coordinate of centre of mass 8.07 𝑚 below sea level 

 

The scaled model of the FOWT is depicted in Figure 11. The mass and inertia 

properties were referred in the original paper to the full floater. The way of downscaling 

them to the model properties was to perform Froude scaling. This approach does not 

predict viscous effects for the full floater, although some research is being done to 

circumvent this issue [6].  However, the use of this approach is general within the 

available papers. This dissimilarity should not affect our results, as the measurements 

were performed on the model scale, and the aim is to validate the computational model 

against these measurements.  



 

 

 

Froude scaling is performed by multiplying the data by a scale factor “s” given by Table 

2, where s is the geometric scale factor (in our case 
1

50
). The scaled down data 

introduced in the CFD model is presented in Table 3. 

 

Figure 11: Experimental setup at MARIN [41] 

 

Table 2: Froude scaling factors 

Quantity Scaling 

Wave height and length 𝑠 

Wave period 𝑠0.5 

Wave frequency 𝑠−0.5 

Power density 𝑠2.5 

Linear displacement 𝑠 

Angular displacement 1 

Linear velocity 𝑠0.5 

Angular velocity 𝑠−0.5 

Linear acceleration 1 

Angular acceleration 𝑠−1 

Mass 𝑠3 

Force 𝑠3 

Torque 𝑠4 

Power 𝑠3.5 

Linear stiffness 𝑠2 

Angular stiffness 𝑠4 

Linear damping 𝑠2.5 

Angular damping 𝑠4.5 

 

 



 

 

 

 

Table 3: Scaled down mass properties of the floater 

Mass of the floater 111.664 𝑘𝑔 

Inertia about the x axis 22.3152 𝑘𝑔 ⋅ 𝑚2 

Inertia about the y axis 24.8832 𝑘𝑔 ⋅ 𝑚2 

Inertia about the z axis 21.9072 𝑘𝑔 ⋅ 𝑚2 

Z coordinate of centre of mass 0.1614 𝑚 below sea level 

 

In most of the simulations performed, a symmetry condition was used and only half a 

floater was simulated. The mass properties were halved accordingly, and only the centre 

of mass location was unaffected. 

For the mooring lines, the properties used were gathered in Table 4.  

 

Table 4: Scaled down mass properties of the mooring lines 

Mass per meter 0.05024 𝑘𝑔/𝑚 

Stiffness (nominal) 5989.06 N  
Stiffness standard deviation 598,91 𝑁 (10% 𝑜𝑓 𝑛𝑜𝑚𝑖𝑛𝑎𝑙) 

Diameter 0.0027733 m 

Drag coefficient in normal direction 1.5 

Drag coefficient in tangential direction 0.5 

Added mass coefficient in normal direction 1.5 

 

 

7.3 Geometry modelling 

 

The geometry was modelled using the CAD software package SolidEdge [42].  

SolidEdge is a CAD environment developed by Siemens. As many other CAD software 

packages, it allows to create and modify geometry in a more agile, robust and intuitive 

way than doing it directly in the OpenFOAM environment. SolidEdge was used under a 

student license, and it was chosen instead of other CAD software because of previous 

experience using it. The geometry definition was relatively straightforward, so this 

modelling could be replicated in any other CAD package if needed. 

The geometry was replicated from Figure 12 with the dimensions scaled down by a 

factor of 50: 

 



 

 

 

 

Figure 12: DeepCWind semisubmersible platform measures [41] 

 

In the same way, the disposition of the mooring lines was gathered from Figure 13. The 

measures were also scaled down by a factor of 50:  

 

 

Figure 13: Mooring lines disposition [41] 



 

 

 

The CAD model is presented in Figure 14. The geometry was exported as five different 

STL files. This division was done separating the floater in each of its towers, the central 

tower and the braces connecting them. This was useful to be able to mesh each part of 

the floater with a different element size, and to be able to postprocess the forces and 

moments over the members of the structure separately if needed. The quality of the STL 

file had to be improved from the standard settings offered by Solid Edge to be able to 

achieve a sufficient resolution to face the meshing process without issues. 

 

 

Figure 14: Final CAD FOTW model 

Besides the floater, we had to define the box in which the fluid was enclosed. The depth 

of the water, 4 meters, was selected to replicate the setup from the experiments 

performed at MARIN, as described in [43]. From the free surface to the top of the box 

the distance was of 2 meters. The distance from the plane of symmetry to the edge of 

the simulation was of 5 meters. There were no STL files associated with the box. It was 

directly defined in the tool blockMesh during the meshing process.  

It would have been prohibitively expensive to recreate the entire wave tank, so only a 

fraction of its length in the wave propagation direction (x direction) was modelled. This 

was not a trivial decision. On one hand, a short length would mean less elements to 

simulate and therefore a faster simulation. On the other hand, a shorter domain left less 

space for the waves to develop. The waves are generated using a simplified model 

equation, a mathematical abstraction of the wave. While they propagate, they adapt to 

their developed shape and start to experience the full-model effects not simulated in the 

boundary condition. Therefore, some space is needed between the wave generation 

boundary and the floater. 

 

  



 

 

 

There is one more issue at hand that favoured a long domain: reflection. This 

phenomenon causes the waves to not stop at the outflow boundary that should absorb 

them, but rather to bounce back and travel towards the floater again. There is a 

difference in frequency between the model wave, which the wave absorption boundary 

condition would dissipate fully, and the real wave, which experiences variations in 

amplitude and numerical effects induced by the model. The consequence of this 

difference in frequency is that some components are not dissipated and instead travel 

back into the domain.  

There are several solutions to avoid this in the literature [44] , one of the most common 

ones in wave absorption zones in which the wave predicted with the CFD model is 

blended with an analytical solution in a wide area instead of one point. However, that 

solution was not implemented.  

For our simulation, reflection means that the simulation will only be a valid 

approximation of the intended sea state for a limited interval of time during the 

simulation. The wave is generated at the leftmost part of the domain and takes some 

time to arrive to the point where the FOWT model is located. This is considered the 

initial time stamp at which results ought to be collected. Eventually the wave front goes 

past the FOWT and arrives at the rightmost point of the free surface, where it is partly 

reflected and returns back to the floater. When the reflected wave interferes with the 

floater, the results are no longer recorded. 

We introduced also a ramp-up time to allow the height of the waves to be developed 

gradually without inducing transient effects. A theoretical estimation of both initial time 

and end time can be performed using the linear wave theory approximation. A 

derivation can be found on Appendix A. 

The range that we ended up selecting was slightly narrower to account for some 

transient effects. A discussion can be read in the results.  

As a compromise between computational cost and accuracy and following the steps of 

[43], we ended up deciding the length in the x direction as 5 times the wavelength, with 

the floater situated in the middle.  

7.4 Mesh creation 

The mesh creation process comprised three processes, as three different OpenFOAM 

commands had to be run. The first process was to create a cuboid uniform mesh all over 

the domain box where the fluid goes in. This was done using the blockMesh tool. After 

that, the surfaceExtractFeatures tool was used to extract the surface features of the STL 

CAD geometry, so that said surface features could be interpreted by the final meshing 

tool. This tool is called snappyHexMesh. Meshing with snappyHexMesh supposed the 

most complex and time consuming step of all the set-up.  

In a very simplified way, snappyHexMesh creates a hexahedral mesh by iteratively 

splitting and moving the background mesh created by blockMesh. It works in three 

steps. First, it splits the mesh at the surfaces of the STL files and removes the cells in 

the interior of the files. Then it snaps the edges. That is to say that the mesh vertices are 

moved towards the STL surface to avoid rough edges. The last step of the process is to 



 

 

 

add boundary layers to allow for turbulence models to accurately capture the flow 

characteristics near the wall. The process is illustrated in Figure 15. 

 

Figure 15: SnappyHexMesh meshing process [45] 

 

Additionally, snappyHexMesh allows for mesh refinement in many ways. It allows to 

refine surface features, regions of the mesh defined by basic geometric shapes, or refine 

more those points that are closer to a surface. These refinement options should be 

matched with the regions we are interested in solving accurately. For our mesh, the 

regions of interest were: 

 

• The free surface: Where the waves were constantly moving, and numerical 

dissipation associated with a coarse mesh would cause the wave to lose height. 

 

• The domain of fluid next to the floater: Where all the interaction between the 

fluid and the structure would be happening. 

 

• The floater in itself: Where a greater number of elements would be 

corresponded with a more faithful representation of the geometry, essential to 

avoid generating turbulence due to rough edges. 

 

For the free surface, a box type refinement region was selected. For the domain of fluid 

next to the floater, a cylinder type refinement region was used. For the floater in itself, 

the surface features of the braces were refined sufficiently to avoid irregularities in the 

geometry. The goal was to make our mesh similar to the ones that could be found on the 

literature, such as the one in Figure 16. 



 

 

 

 

 

Figure 16: Domain mesh found in the literature [36] 

One of the peculiarities of our work is that it includes a simplified 2D study to perform 

verification and validation. Therefore, both 2D and 3D meshes had to be created. 

Internally, OpenFOAM considers a 2D mesh a 3D mesh with only a cell width. 

Fortunately, a good portion of the code to create the 2D meshes could be reused to 

create the 3D ones, although some problems arose that made it impossible to make both 

type of meshes perfectly equivalent.   

 

 

Figure 17: 2D mesh with 52.000 elements 

 

The two-dimensional domains were meshed as seen in Figure 17. These 2D meshes did 

not include the floater, as the purpose of the 2D simulation was only to assess the 

quality of the wave generation. The 3D meshes however did include the floater. The 3D 

meshes were as can be seen in Figure 18 and Figure 19. The interested reader can find 

additional views of the mesh in Appendix D.  

 



 

 

 

 

Figure 18: Side view of the simulation domain with a mesh of 2 million cells 

 

Figure 19: Side view detail of the FOWT with a mesh of 2 million cells 

 

The meshes passed every test snappyHexMesh and checkMesh performs to ensure its 

quality. Despite this, they were not perfect. Upon closer inspection, one can see that 

some braces have not been meshed with the structured grid that appears in others. 

Irregular elements appear at some sharp corners of the floater, and the boundary layers 

are distorted in some places. The probable cause is that some of the settings of 

snappyHexMesh were relaxed to favour convergence in the meshing process. However, 

it was deemed that the meshes were good enough for our purposes. Although this 

imperfections on the mesh created additional turbulence, the case was mainly driven by 

inertia, so it was expected that the overall effect was small. The option of using more 

refined meshes if the uncertainty was too high also ensured the quality of the results.  

Other relevant parameter to measure the quality of the mesh regarding turbulence 

modelling is the y+, which is linked to the size of the boundary layers. In our 

simulation, as the relative importance of turbulence viscosity was low, we did not 

undertake the computationally expensive endeavour of getting y+ below one. The 



 

 

 

continuous wall function treatment that we used supported a wide range of values of y+, 

though values between 10-100 were targeted. 

 

7.5 Case setup 

 

Here, some justification of the election of said boundary condition and model settings is 

given.  Although it describes the process alluding to some OpenFOAM tools, the 

modelling choices would be similar for other CFD solvers. An introduction to the 

OpenFOAM interface can be found in Appendix E.  

OpenFOAM offers a variety of solvers for each possible application. For interphase 

modelling using the VoF method, the solver interFoam was used. An OpenFOAM case 

need both boundary conditions and initial values for the fields that are solved for. For 

interFoam and including dynamic mesh motion, the definition of the boundary 

conditions of seven fields was required. In addition, several files were used to define 

other properties of the model or controls of the simulation.  

The interphase between the two fluids also had to be defined. This required 

interpolation of the values of the volume fraction α near the interphase. A precise 

interpolation method was used as it was deemed it could help improve the stability of 

the first time steps. SetAlphaFields was used to accomplish said precise interpolation.   

For the velocity boundary conditions a no slip condition was chosen for the moving 

mesh of the floater. However, for the bottom boundary and the wall far from the floater, 

slip conditions were used. This discrepancy is present because as most of the movement 

of the wave happened near the free surface, investing computational resources in the full 

resolution of the bottom and side walls would be a waste of resources.  

Turbulence was modelled with a k-𝜔 SST model.  This model required three input files: 

k (turbulent kinetic energy), 𝜈𝑡 (turbulent viscosity) and 𝜔 (turbulent specific 

dissipation rate). The correct initial values for k and 𝜔 are uncertain and very difficult to 

determine for our specific simulation. Ideally, they should be subject to a sensitivity 

analysis, but as the influence of the turbulent model in the results is small for this 

simulation, this approach was not implemented. Instead, a reasonable guess was derived 

with a generic equation offered by the manual. The calculation is available in Appendix 

C.  

The combination of wall functions used allowed the solver to handle a wide range of 

y+. This was important as the periodicity of the wave movements could cause variations 

in the y+ that exceeded the recommended range for some formulations.  

The waves were generated with a 5th order Stokes model, and were absorbed using a 

shallow water wave absorption model. Unlike some of the works in the literature, and 

due to time and computational constraints, no wave absorption zones were used.  The 

wave height and wave period were specified to parameters were selected to match the 

experimental and computational data that was published (T = 1.711 s, 𝐻 = 0.143 𝑚). 



 

 

 

The wavelength λ was guessed initially using a deep wave approximation. Then this 

parameter was checked against the waves outputted by OpenFOAM. 

To simulate the motion of the floater, a Newmark solver was used. The accelerations 

were relaxed with a factor of 0.8. As the case was symmetric, motion constraint were 

defined to keep the movements into a plane. Three degrees of freedom were restricted: 

roll, yaw, and sway. 

 

7.6 Data operations 

7.6.1 General postprocessing 

 

At this step an important decision was how many time steps would the case run for 

before writing the resulting fields. This was important because of the storage space the 

files took up. For a mesh of 160 thousand elements 20MB were filled in the memory 

each time the fields were written, and this happened hundreds to thousands of times 

during a simulation. For bigger meshes this size increased too, and the sensitivity 

analysis required seven runs, resulting in a total computational cost on the order of 

hundreds of gigabytes. The compromise reached was to write the fields ten times per 

wave period, to allow for a fluid visualization, interpretation, and animation of the 

results. Forces, wave heights and y+ were less costly to write and therefore were written 

ten times more often. 

The results retrieved from the model were:  

• Wave heights: The height of the free surface was reported for 20 points equally 

spaced from inlet to outlet. 

• Interface iso-surfaces: These iso-surfaces the appearance of the interface 

between the fluid and the solid and were used to animate this field over time. 

• Y+: The maximum, average, and minimum y+ for each wall boundary were 

reported. The y+ field was also retrieved for visualization. 

• Forces and moments: Were reported for each floater patch as a resultant and 

separated between viscous and pressure driven terms. 

• Solver information: For each time step, the iterative error and the number of 

iterations needed to reach convergence were reported for velocity and pressure.  

 

The results were postprocessed using Moody, Matlab and Bash scripts. 

 

7.6.2 Surrogate model  

 

The variable used for the sensitivity analysis was the mooring stiffness. In a previous 

experiment by [21] the importance of the mooring stiffness in the motions of the floater 



 

 

 

was highlighted. However, the mooring system that was used for their experiment was 

very different from the original one that we were using and could not be used directly. 

The uncertainty they input to the mooring stiffness is of about 10% of the nominal 

value. As we did not have an uncertainty estimation for our mooring system, we used 

10% of out nominal mooring stiffness value. Seven simulations were performed with 

different stiffness levels to create the surrogate model using gPC. The stiffnesses were 

decided as the points of a Gauss quadrature, as seen in 

Table 5.  

 

Table 5: Mooring stiffness for each simulation 

Case Mooring stiffness [kN] 

1 3.7429 

2 4.5715 

3 5.2976 

4 5.9890 

5 6.6804 

6 7.4065 

7 8.2351 

 

 

The sensitivity analysis evaluated the effect of stiffness in two important parameters in 

the floater response: the forces in the fairleads and the motions of the floater. In order to 

compare to the literature, the data was decomposed into mean and first order component 

of a Fourier series, and the uncertainty estimation was performed separately for each. 

The frequency spectrum is also kept as a result, as it contained useful information.  A 

plot of the gPC model was also gathered. 

 

A sample of a million values was used to perform the MC simulation in the polynomial 

surrogate model. The probability density function (PDF) was obtained. The uncertainty 

values and the 95% interval of confidence were also reported. 

 

 

 

 

 

 

 

  



 

 

 

8 Results 

8.1 2D simulations 

8.1.1 Flow field  

 

The 2D simulation ran for 40.577 s. Figure 20 shows the propagated waves at the end of 

the simulation. The focus for this part of the project was on evaluating the quality of the 

waves. Wave period and wave height were evaluated against the theoretical target. The 

average wave period was 1.64 s, which was 4.15% lower than the expected period of 

1.771s. The wave heights were less accurate. With 0.1357 m at the floater, they were 

5.07% lower on average with respect to the wave model used at the inlet. This is 

comparable with previous experiments that show an error of about 3.5% [6]. 

 

 

 

Figure 20: Water surface elevation at t=40.577s 

 

 

A possible explanation for these differences is that they are produced due to diffusion, 

that is not predicted by the theoretical wave model. The case was run with a turbulence 

model, which could have contributed to the viscous dissipation. This was intended. The 

rationale of using said turbulence model was to make the results more extrapolatable to 

3D.  



 

 

 

 

Figure 21: Free surface height at the floater wave gauge for a 500.000 elements 2D mesh 

Figure 21 shows the wave height at the x disposition of the FOWT. From the time 

series, a clear distinction can be seen between the three regimes discussed in the 

Geometry section of the Methodology. First there is a ramping period, and the waves 

start to reach the floater location with increasing intensity. Then the wave height stays 

constant for some time, and after that the reflection begins to vary the water level 

inducing transient effects. The transitions should theoretically occur at 12.48 s and 

29.45 s, respectively. However, even within these intervals, the wave height changes a 

little bit. Burmester et al. [6] cites two reasons for this behaviour: 

 

• The inlet boundary condition for wave generation uses the Stokes 5th order 

theory, which only outputs a stable wave if the domain is fully developed. 

 

• The ramp up period means that there is a difference between the height of the 

waves. The small waves at the beginning travel slower and there is interference 

with the higher, faster waves that come behind, resulting in a varying range of 

wave heights.   

 

As a consequence of this, it was decided to include less wave periods and focus on the 

interval in which the wave height remains more or less constant (between bars in the 

figure).  

 



 

 

 

8.1.2 Model verification 

 

The verification study was performed to ascertain the number of elements needed to 

accurately resolve the waves. Six meshes were used, ranging from 125382 elements to 

500.000 elements, as presented in Table 6. The verification was performed for the wave 

height, as it had been the most sensitive variable in previous experiments [6]. The wave 

heights were normalized using the theoretical wave height.  

 

 

Figure 22: Computed fit (blue) vs theoretical fit (dotted line) 

Figure 22 shows the fit of the meshes to the model. The obtained order of convergence 

was of 1.06. As most of the numerical schemes reached second order, 2 would be the 

theoretical convergence order. However, modelling assumptions (flux limiters, damping 

functions) and unstructured meses add scatter and make the convergence order always 

lower in engineering practice [35]. The convergence we got was deemed good, as it 

showed monotonic convergence. 

 

Table 6: Uncertainties for each mesh 

Mesh Mesh size 

(elements) 

Uncertainty 

(%) 

Mesh 1 500668 1.493 

Mesh 2 427877 1.577 

Mesh 3 346574 1.695 

Mesh 4 281133 1.824 

Mesh 5 207560 2.026 

Mesh 6 125382 2.420 

 



 

 

 

The uncertainties associated can be seen in Table 6. They were in the range of 1-2% of 

the wave height. Other researchers showed uncertainties in the order of 0.3% to 9% for 

an equivalent experiment in a 3D setting [6].  For comparison, the height of the waves 

at the floater location exhibited a standard deviation of 1.46% within the selected 

interval. This shows that the uncertainty of the numerical method is comparable or even 

lower to the one due to the physics and the settings of the domain. Therefore, it was 

concluded that any mesh tested would be acceptable to reach the required uncertainty 

levels. 

8.2 3D simulations 

8.2.1 Flow field 

Figure 23 show the velocity profile at the floater region. Reflected waves from the 

towers can be seen. The braces were the parts that caused greater velocities, and often 

water was ejected upwards in the smaller structures of the floater. As the mesh 

resolution did not allow these to be fully resolved, they appear smeared out.  

 

 

Figure 23: Flow velocity resultant in the floater region at t=19.33 s 



 

 

 

Figure 24  shows the turbulent kinetic energy. Like velocity, it spreaded in a radial 

pattern from the towers and as a wake for the smaller braces.  

 

 

Figure 24: Turbulent kinetic energy at t=19.33 s 

 

The turbulence model is checked against the y+ results. The mean y+ can be found in 

Figure 25. For our formulation, it was considered sufficient to have mean values on the 

order of 10 − 102. This is plenty achieved. The results are higher at the towers than at 

the braces and in the central tower. This is expected, as the later were meshed up to a 

higher refinement to account for the smaller geometric features contained.  

 

Figure 25: Mean y+ values for a 2e6 mesh 



 

 

 

The residuals show the iterative error committed each time step the solver takes. For our 

approach to solution verification to be valid, the residuals should be two orders of 

magnitude below the discretization error. The discretization error is on the order of 

10−2, so the residuals should be below 10−4. As seen in Figure 26, for the time interval 

of interest of 12 to 25 seconds, this happens. It is therefore considered the residuals are 

kept sufficiently low. 

 

 

Figure 26: Residuals for a 25 s moored simulation in a 2e6 mesh 

8.2.2 Verification 

In the 2D simulation we concluded that the meshes resolved the waves with plenty of 

precision. As a target for the 3D meshes, the desired number of elements per meter on 

the free surface region was about 70 for an uncertainty level comparable with the one 

induced by transient effects. The meshes that were used ranged from 73.33 to 80, so it 

was concluded that the uncertainty level would be sufficiently low and the model would 

be verified.  

As the meshes were small, it was deemed interesting to try to perform verification for 

the 3D cases. This could not be done in the end, as only three meshes could be included 

due to time constraints, and the convergence trend was too weak for the uncertainty 

estimation methods to give a sound result. One interesting observed effect was that the 

meshes appeared to be showing oscillatory convergence. 

 

 



 

 

 

8.2.3 Sensitivity analysis  

First, plots of the floater motions and the fairlead forces with respect to time are 

presented. At a first glance, the results of the motions of the floater show very little 

difference between the runs, while the mooring forces do present a visible difference. 

Figure 27 and Figure 28 illustrate this difference. It is therefore expected to obtain a 

higher uncertainty in the mooring forces than in the motions of the floater. 

 

Figure 27: Heave motion for the seven runs 

 

Figure 28: Forces in the fairlead of the fairlead most exposed to the waves 



 

 

 

The results of the spectrum of frequencies, without the mean component, are presented 

next. Figure 29 shows the FFTs of the seven simulations performed. For the motions of 

the floater, the change in the spectrum with the mooring stiffness is inappreciable. The 

small differences also anticipate small influence of the mooring stiffness in the overall 

motion results. The frequency spectrum appears to be smooth, without other peaks at 

higher frequencies.  

 

Figure 29: FFT of heave motion for the seven runs 

 

The forces at the fairlead, however, show an interesting behaviour as the mooring 

changes. For the mooring line 1, directly in front of the waves, the first and second 

biggest peaks at Figure 30 and Figure 31 appear close to the excitation frequency (0.56 

Hz) and three times this frequency (1.78 Hz) respectively. When the mooring is slack, 

the dominant frequency component is the wave excitation frequency one. However, as 

the mooring becomes stiffer, the higher frequency component becomes dominant. As a 

downside, in mooring lines 2 and 3 as the mooring becomes stiffer a greater force 

appears. The spectrum is quite rough, with peaks at several harmonics. 



 

 

 

 

Figure 30: FFT of the mooring line 1 with a stiffness of 3.7429 kN 

 

 

Figure 31: FFT of the mooring line 1 with a stiffness of 8.2351 kN 

 

The surrogate models that arise from using gPC are plotted in Figure 32. The shape of 

the polynomial was distributed in a wide variety of arrangements, usually showing 

significant slopes at the extremes of the region of interest. The dots represent the points 

that were simulated using the CFD model. Here, only two plots are presented as an 

example. 

 



 

 

 

.  

Figure 32: Example plots of surrogate models 

 

The force component monotonically increase for the force surrogate models, while for 

the motions some of the plots show both increases and decreases on the motion 

amplitude when the stiffness increases. 

 

From the surrogate models presented, a normal MC method can be used to estimate the 

probability density functions (PDF). These were estimated using a sample of a million 

random mooring stiffness values from the assumed distribution and classifying the 

resulting motions and forces in an histogram. Figure 33 and Figure 34 show the 

probability density functions (PDF) for the motion and forces. The probability density 

distributions were very smooth for most of the force results, while for the floater 

motions the PDF presented spikes and abrupt changes. The results only resemble a 

normal distribution for the forces. The motions are much less well behaved, inducing to 

believe other factors aside from the mooring forces, such as numerical artifacts, were 

disrupting the results.   

  



 

 

 

 

Figure 33: Probability densitity function for the FOWT motions 

 

 



 

 

 

 

Figure 34: Probability density function of the mooring forces 

 

Lastly, Table 7 and Table 8 show the results of the UQ analysis for the floater motions 

and forces. It is the the key result of this work, as the uncertainty derived from the 

mooring stiffness is a measure of the importance of said parameter in the behaviour of 

each force and motion. The results presented are the size of the confidence interval of 

the PDFs. This interval is defined as the one that contains 95% of the values of the MC 

simulation. In the last row, the value is normalized using the mean value to make the 

results easier to compare.   

Table 7 shows the results for the motion components. The uncertainties for the first 

order components are under 0.2% for the three motions. The mean is much more 

sensible to variations, with pitch being the least well predicted with 41.5% uncertainty.  

 

Table 7: Uncertainties of the floater motions 

 Heave Pitch Surge 

Mean 1st order Mean 1st order Mean 1st order 

Value (mm) 24.4 1.44 -3.82 73.94 0.81 3.12 

Uncertainty (mm) 0.016 0.0013 1.6 0.13 0.053 0.0035 

Uncertainty (%) 0.065 0.090 41.50 0.17 6.52 0.11 

 



 

 

 

For the mooring forces, the opposite happens. Table 8 shows the results for the mooring 

forces. The mean was not very sensible with uncertainties below 1%, while the first 

order components were less well represented, with uncertainties of up to 15%.  

 

Table 8: Uncertainties for the mooring forces 

 Mooring line 1 Mooring lines 2 and 3 

Mean 1st order Mean 1st order 

Value (N) 4.52 0.12 3.11 0.07 

Uncertainty (N) 0.0397 0.0093 0.0207 0.01049 

Uncertainty (%) 0.87 7.75 0.67 14.98 

 

For this wave height and period, the 1st order component motions of the floater are 

barely affected by the mooring stiffness. It suggests there is less likelihood of aligning 

the CFD simulations with the experiments by improving the mooring model when it 

comes to the RAOs. This result is in contrast with [21], which identifies the surge 

motion as a significantly sensible quantity to the mooring stiffness. More work is 

needed to identify the reason for this discrepancy.  

 

The results also point at the alternating component of the mooring forces being 

significantly affected by the mooring stiffness, which is an interesting insight. More 

loading cases should be subjected to this analysis in order to identify patterns that could 

become useful for proper design of the mooring lines.  

 

 

8.2.4 Motions of the floater compared to previous research 

 

Figure 35 and Figure 36 show the agreement of the performed simulations with the 

experimental results at MARIN, as presented in [4]. The figures include the discrepancy 

as a percentage. The mean components are not at all well represented. This was 

however to be expected as the stationary position of the floater was very dependent on 

the experimental setup and cannot be compared directly.  



 

 

 

 

Figure 35: Comparison of mean motion results 

 

Figure 36: Comparison of 1st order component motion results 

The first order component motion is more relevant. Our model is underpredicting heave 

by 23%, pitch by 15% and surge by 3%. This underprediction is also present in [4], 

which reports a difference of 27% for heave, 16% for pitch and 4.8% for surge. Though 

this underprediction is a common problem in most simulations performed in this 

problem, the similarity between our results and the results of other teams hint at the 

dynamic mooring model offering only a small improvement in motion prediction for 

this wave loading case.  



 

 

 

Other possible causes for this underprediction may lay in the data gathered from the 

physical tests of the moored floater. Due to size constraints, the mooring lines are 

artificially corrected for axial stiffness with a spring, which may introduce differences 

in the mooring behaviour [41]. Additionally, no uncertainty estimation was provided for 

the first testing campaign, so there is no way to evaluate the effect of deviations of the 

measured properties or the RAOs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

9 Future work 

Overall, the objectives of this thesis have been accomplished. We got results from the 

sensitivity analysis that added to the current research performed in the topic. 

Furthermore, we compared the model results to the results of other researchers with 

good agreement. However, several improvements could be made providing both time 

and computational resources were available for the project.  

In order of perceived importance, they are: 

 

• Including more parameters in the gPC analysis: Though this work focused on 

the mooring stiffness, other parameters were interesting. The drag and lift 

coefficients of the mooring lines and other such parameters could improve our 

understanding of the mooring model and thus provide assessment on where to 

focus the modelling efforts.  

   

• Verification of the 3D meshes: The 2D verification performed was a 

compromise solution that was useful to avoid a great investment of resources. 

However, rigorous assessment of uncertainty for the 3D meshes would improve 

the credibility of the results.  

 

 

• Including more wave loading cases: The simulations were performed only for 

one wave height and period. However, real sea states usually involve several. 

Including other wave cases would allow to compare the results and their 

behaviour as wave frequency changes.  

 

 

• Improvements of the meshes: Some areas of the meshes had slight 

imperfections. A correction of those would improve the quality of the results. 

With enough computational power it could be interesting to resolve the floater 

walls to y+ values of less than one, and create smoother transitions between the 

free surface and floater area and the rest of the mesh. 
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Appendix A: Time until reflection calculation 

 

The wave that we are simulating can be approximated as a deep wave. The expression 

for the wave phase speed is:  

𝑐𝑝 =
1

2
√

𝑔λ

2π
 

 

(31) 

 

 

where λ is the wavelength. For this problem: 

λ = 4.56 𝑚 (32) 

 

𝑔 = 9.81 
𝑚

𝑠2
 

 

(33) 

 

 

The wave speed turns out to be: 

 

𝑐𝑝 = 1.345 
𝑚

𝑠
 

 

(34) 

 

 

And knowing the distance between the FOWT and both inlet and outlet: 

 

𝑑𝑖/0 = 11.41 𝑚 

 

(35) 

 

 

And the ramp up time: 

𝑡𝑟𝑎𝑚𝑝 = 4𝑠 

 

(36) 

 

 

 

The initial and final times are: 

𝑡𝑖𝑛𝑖 = 𝑡𝑟𝑎𝑚𝑝 +
𝑑𝑖/𝑜

𝑐𝑝
= 12.48 𝑠 

 

(37) 

 



 

 

 

 

𝑡𝑒𝑛𝑑 = 𝑡𝑟𝑎𝑚𝑝 + 3
𝑑𝑖/𝑜

𝑐𝑝
= 29.45 𝑠 

 

(38) 

 

 

 

 

  



 

 

 

Appendix B: Boundary and initial conditions 

 

In this appendix, the boundary and initial conditions for each field are presented: 

Boundary 

condition 

Top Bottom Inlet Outlet Left 

wall 

Symmetry Floater 

Α Zero 

Gradient 

Zero 

Gradient 

Wave 

Alpha 

Wave 

Alpha 

Zero 

Gradient 

Symmetry 

Plane 

Zero 

Gradient 

𝑢 Pressure 

inlet-

outlet 

velocity 

Slip Wave 

velocity 

Wave 

velocity 

Slip Symmetry 

Plane 

Moving 

wall 

velocity 

𝑝𝑟𝑔ℎ Total 

pressure 

Fixed 

flux 

pressure 

Fixed flux 

pressure 

Fixed flux 

pressure 

Fixed 

flux 

pressure 

Symmetry 

Plane 

Fixed flux 

pressure 

𝑘 Inlet-

outlet 

Zero 

Gradient 

Fixed 

value 

Inlet-

outlet 

Zero 

Gradient 

Symmetry 

Plane 
𝑘 Low Re 

Wall 

Function 

𝜔 Inlet-

outlet 

Zero 

Gradient 

Inlet-

outlet 

Inlet-

outlet 

Zero 

Gradient 

Symmetry 

Plane 
𝜔 Wall 

Function 

𝜈𝑡 Calculated Zero 

Gradient 

Calculated Calculated Zero 

Gradient 

Symmetry 

Plane 
𝜈𝑡 

Blended 

Wall 

Function 

Point 

displacement 

Fixed 

value 

Fixed 

value 

Fixed 

value 

Fixed 

value 

Fixed 

value 

Symmetry 

Plane 

Calculated 

 

 𝛼 𝑈 𝑝𝑟𝑔ℎ 𝑘 𝜔 𝜈𝑡 Point displacement 

Initial 

condition 

Uniform 

0 

Uniform 

(0 0 0) 

Uniform 

0 

Uniform 

1.5𝑒 − 6 

Uniform 

4.35e-3 

Uniform 

0 

Uniform 0 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Appendix C: Turbulence initialization 

 

The initial values were computed as the OpenFOAM reference recommended if there 

was no other data, using the formulas: 

𝑘 =
3

2
(𝐼|𝑢𝑟𝑒𝑓|)

2
 

 

(39) 

 

 

𝜔 =
𝑘0.5

0.548𝐿
 

 

(40) 

 

 

 

I is the turbulent intensity, which was chosen to be of 1%. The reference velocity was 

chosen as the mean velocity over the area of the floater, of about 0.1 m/s. The reference 

length was chosen as the diameter of one of the towers, 0.48 m. The final values used as 

initial condition were: 

 

𝑘 = 1.5 ⋅ 10−6
𝐽

𝑘𝑔
 

(41) 

 

 

𝜔 = 4.65 ⋅ 10−3 s−1 

 

(42) 

 

  
 

 

 

 

 

 

 

 

 

 

 



 

 

 

Appendix D: Additional mesh views 

 

 

Figure 37: Mesh detail of the FOWT surface 

 

Figure 38: Top view of the FOWT and its surroundings 

 



 

 

 

 

Figure 39: Side view of the FOWT and its surroundings 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Appendix E: Introduction to the OpenFOAM interface 

 

OpenFOAM is an open-source suite intended for Field Operation And Manipulation 

(hence FOAM). It is primarily focused in CFD simulations, but it also offers tools to 

perform thermal, mechanical, and electromagnetic field computations. It is written in 

C++ and based in the Finite Volume Method. OpenFOAM is a powerful tool, and it is 

gaining traction within the research community and some companies due to its open-

source nature and its capability to be adapted for tailor-made applications and external 

tools. For this project, it was chosen as it allowed to use the Moody mooring tool 

without a need for further code modification.  

The OpenFOAM environment is not immediately intuitive for the new user. A brief 

discussion of its structure and peculiarities is beneficial to understand better the process 

followed to set up the cases.  

An OpenFOAM case is a collection of folders that contain files with instructions on 

how to simulate it. The case is simulated by executing certain commands in a Linux 

console when browsing the directory that contains the case instruction, or via a script. 

The case directory takes the form showed in Figure 40:   

 

 

Figure 40: General file structure of and OpenFOAM case 

General view of an OpenFOAM case 

Where: 

• The 0 folder includes the initial fields and boundary conditions. Successive 

numerical folders include the output fields from the model, the number being the 

time stamp at which they are written out. 

• The constant folder include the mesh and the rigid body motion solver settings, 

as well as the properties that do not vary over time (such as density, viscosity, 

etc.). 

• The mooring folder is generated because of the coupling with the external tool 

Moody. It includes the mooring settings and results. 



 

 

 

•  The postProcessing folder includes the results of the simulation that are not 

fields, such as forces, moments, residuals, y+, wave heights, etc. 

• The system folder includes control for the meshing process, the simulation itself 

and the process of decomposition and recompositing for parallel computing. 

• The zero folder is just a backup of 0 that does not get changed during the 

simulation, to reset the simulation more easily. 

• The foam.foam file allows to open the simulation with the visualization 

program Paraview.  

• The submit script is a program that allows to run the case in the cluster  

 

In each of these folders, several text files exist. These control each individual parameter 

of the model. Some relevant parameters for this simulation are discussed within the 

Metodology section of this thesis.  

 

Figure 41: System folder 

 

Each of this text files can be opened with a text editor and modified: 

 



 

 

 

Figure 42: Code of an OpenFOAM case file 

 


