
20 March 1995

1

Polytypism and
polytypic unification

Patrik Jansson
Chalmers University of Technology, 1995

Master’s Thesis in Computing Science
Supervisor: Johan Jeuring

Abstract

This report describes what polytypic programming is, a new system
for writing polytypic functions, and a number of useful example
functions including generalised versions of map, zip and a specific
lazy array based unification algorithm.

Sammanfattning

Denna rapport beskriver hur man med ett programsystem automa-
tiskt kan generera funktioner som fungerar för alla trädtyper och
detta systems tillämpning på ett antal användbara funktioner som
map, zip och en speciell unifieringsalgoritm baserad på lata fält.

2

Polytypism and polytypic unification
1 Introduction 3

1.1 Background 3
1.2 Preliminaries and notation 4
1.3 Overview 4

2 Polytypism 5
2.1 Map 5
2.2 Cata 5
2.3 Functors 7

3 Basic polytypic functions 10
3.1 Predefined functions and types 10

3.1.1 Products 10
3.1.2 Sums 11

3.2 Notation 11
3.3 Object and arrow 12
3.4 In and out 13
3.5 Map 14
3.6 Cata 15
3.7 Ana 16
3.8 Hylo 16
3.9 Flatten 17
3.10 Partial functions 18
3.11 Zip 19

4 Program construction combinators 20
4.1 A combinator example 20
4.2 Basic building blocks 20
4.3 Binary combinators 20
4.4 Other combinators 21

5 System 22
5.1 Overall structure 22
5.2 Constructing a functor for a datatype 22

5.2.1 Representation of types 23
5.2.2 Mutually recursive datatypes 23
5.2.3 Functorize 24

5.3 Implementing the combinators 24
5.3.1 Types for expressions 24
5.3.2 Basic building blocks 25
5.3.3 Binary combinators 25
5.3.4 Other combinators 25

5.4 Function generators 25
5.5 Simplification 26

6 Unification 27
6.1 Introduction to unification 27
6.2 Definitions 27
6.3 Outline of a unification algorithm 28
6.4 Unification with lazyArray 28
6.5 Polytypic unification 30

7 Conclusions 32
8 References 33

Appendix A - example of generated code

Appendix B - prelude

Introduction

3

1 Introduction

This report describes polytypism, unification and a specific array based polytypic

unification algorithm. We will also describe a system for generating code for poly-

typic functions.

1.1 Background

As an example of a polytypic1 function we can take unification. Unification is the

process of making two expressions containing variables equal by substituting

expressions for the variables. Unification is used for type inference by unifying type

expressions containing type variables, in automatic proof systems by unifying

proofs with proof methods and in compilers to unify the patterns of function defini-

tions with function calls [10]. Each of these applications requires a unification algo-

rithm for their specific type. As the unification algorithm is so widely used it would

be nice to have a general algorithm for unification parametrised by a datatype. This

means that given a datatype, it automatically generates a unification algorithm for

this type. This is a typical polytypic algorithm and we will give an implementation

of it in section 6.5.

Interest in polytypic functions arose when it became clear that most of the theory of

lists [1] could be generalised to other datatypes [11]. This has theoretical interest as

many of the powerful methods of calculating programs from specifications, and

thereby proving their correctness, that had been developed for list based programs

[5] also could be generalised [2].

The practical interest comes mainly from the prospects of not having to rewrite all

those standard functions that are defined for lists in most functional languages for

every datatype in a program. After having written a number of versions of the func-

tion map on different tree types one realises that with a suitable theory these should

be possible to generate automatically. The categorial theory of datatypes [13],

where datatypes are initial fixpoints of functors, provides a sound mathematical

basis for defining and reasoning about polytypic functions. One actual implementa-

tion of a system for automatic generation of polytypic functions, Hollum, was writ-

ten by Jeuring et. al. [7].

Hollum reads a Haskell program, parses it, extracts the datatype definitions, gener-

ates a number of polytypic functions for each of the types and outputs the result as a

Haskell program. The system is self contained but does not handle all tree types as

it can not generate code for mutual recursive functions, and also requires that all

constructors in the types have exactly one argument (though that argument may be a

tuple). The fact that this last requirement is caused by the parser used, and the diffi-

culty in analysing and optimizing the output (which is text) made me interested in

1. Also called type parametric or generic function.

Introduction

4

writing a system that only works from and to parsed programs as there are already

enough parsers and compilers to take care of the rest.

1.2 Preliminaries and notation

We will use the purely functional lazy programming language Haskell [4] in the

examples, but they would probably work with minor modifications in other func-

tional languages as ML or Scheme. All code in the system as well as all the code

generated by the system runs in Gofer [9], a language that includes most of Haskell

and has a fast interpreter which has been used in the development of the system.

In Haskell (and Gofer), function composition is denoted by a period and has lower

precedence than application. (Application is as usual written with juxtaposition)

This means that(fst . map f . sort) l will be interpreted as

fst (map f (sort l)) . Anonymous functions (often calledλ-expressions) are

written (\ args -> exp) so that the definitionf x y = 1+x+y is equivalent to

f = (\x y -> 1+x+y) . Infix operators, such as+ can be made prefix by wrap-

ping them in parenthesis;(+) , and a normal functionfunc taking at least two argu-

ment can be made infix by using single backquotes;‘func‘ . Comments are written

as;{- comment section, possibly many lines long -}

-- line comment, extends to the end of the line

Expressions can be explicitly typed by writingexp :: type .

We will write const :: a -> b -> a , whereconst x y = x for the constant

function. (Often written with just K but in Haskell words starting with capital letters

are type constructors.) We will use the operator(++) :: [a] -> [a] -> [a] to

concatenate two lists andconcat :: [[a]] -> [a] to concatenate a list of lists.

1.3 Overview

Section 2 introduces polytypism and gives some simple examples of polytypic

functions. Section 3 describes a number of polytypic functions that are generated by

the system in more detail. In section 4 we show program construction combinators

with which the code for polytypic functions can be built. Section 5 describes a sys-

tem for generating polytypic functions and its implementation. In section 6 we

describe unification and we generalise a specific lazy unification algorithm to a pol-

ytypic unification algorithm. We end the report in section 7 with some concluding

remarks.

In appendix A we show all the code generated by the system for two directly recur-

sive types and one pair of mutually recursive types. The prelude in appendix B con-

tains some common functions used by the functions defined in appendix A.

Polytypism

5

2 Polytypism

A polytypic program is a program that works for types of different structures. There

are at least two other kinds of polymorphism in functional programming. Normal

(parametric) polymorphic functions that can be written in most functional lan-

guages work for a class of types having the same structure but with different values

of the type variables. An example hereof islength which calculates the length of a

list, no matter what type the list elements have. Overloading, or ad-hoc-polymor-

phism, is yet another way of making (apparently) the same function work for a class

of types, but here one definition of the function has to be supplied for every type in

the class. A typical example of an often overloaded function is+ which normally

works both for integers and floating point numbers.

A polytypic function has one definition that works even for types of different struc-

ture. It can but need not be polymorphic in the traditional sense; the function

alleven that returns true if and only if all integers in a structure are even is poly-

typic, but not polymorphic.

In the following two sections we will give some examples of polytypic functions.

2.1 Map

One simple example of a polytypic function is the generalisation ofmap. The com-

monly usedmap_L (normally called justmap) on lists takes a functionf and applies

it to all elements (if any) in the list. The essence here, which can be generalised to

other types than lists, is thatmap takes a function and applies it to all elements of a

data structure without changing the form of the structure. In figure 1 and 2 we give

the definitions of map for two simple types. Note the similarity between the type

definitions and the function definitions.

2.2 Cata

A more general and very powerful polytypic function iscata 1. On listscata_L is

normally calledfoldr (fold right) and takes a start value, an operator and a list and

1. cata abbreviates catamorphism

data List a =
 Nil
 | Cons a (List a)

map_L :: (a -> b) -> List a -> List b
map_L f Nil = Nil
map_L f (Cons x xs)= Cons (f x) (map_L f xs)

FIGURE 1. The definition of map for lists.

data Tree a =
 Leaf a
 | Bin (Tree a) (Tree a)

map_T :: (a -> b) -> Tree a -> Tree b
map_T f (Leaf x) = Leaf (f x)
map_T f (Bin l r) = Bin (map_T f l) (map_T f r)

FIGURE 2. The definition of map for simple binary trees with information in the nodes only.

Polytypism

6

inserts the operator between the elements of the list, with the start value on the far

right end. (See figure 3)

Some simple examples of functions defined by list-catamorphisms are:

sum_L :: List Int -> Int

sum_L = cata_L 0 (+)

all_L :: (a -> Bool) -> List a -> Bool

all_L p = cata_L True (\x b -> (p x) && b)

wheresum_L computes the sum of a list of numbers andall_L p determines if all

elements of a list satisfy the predicatep.

The key to generalising the definition ofcata to other tree types is to observe that

cata_L simply replaces the datatype constructorNil with the supplied constante

and the constructorCons with the operatorop. The recursive occurrence ofList a

in the datatype definition is replaced by a recursive call tocata_L in the function

definition. In the general case every constructor in the definition of the datatype is

replaced by a function of the same arity1 and recursive datatypes are transformed to

recursive functions with exactly the same structure.

Now the definition ofcata_T is straightforward; we just replaceLeaf by a func-

tion f andBin by a binary operatorop:

Despite the simplicity of the definition, this is a very sophisticated higher order

function with which we can define many other functions. Informally a catamor-

phism can calculate anything for a structure that can be calculated given the infor-

mation in the top node and the result of the catamorphism on all substructures.

1. The arity of a function is the number of arguments it takes. We will consider constants to
be functions with arity zero.

data List a =
 Nil
 | Cons a (List a)

cata_L :: b -> (a -> b -> b) -> List a -> b
cata_L e op Nil = e
cata_L e op (Cons x xs) = x ‘op‘ (cata_L e op xs)

FIGURE 3. The definition of cata for lists

data Tree a =
 Leaf a
 | Bin (Tree a) (Tree a)

cata_T :: (a -> b) -> (b -> b -> b) -> Tree a -> b
cata_T f op (Leaf x) = f x
cata_T f op (Bin l r) = op (ca l) (ca r)
 where ca = cata_T f op

FIGURE 4. The definition of the catamorphism for binary trees.

Polytypism

7

Some examples are:

map_T :: (a -> b) -> Tree a -> Tree b
map_T f = cata_T (Leaf . f) Bin
 -- This definition is equivalent to the one above.

flatten_T :: Tree a -> [a]
flatten_T = cata_T wrap (++)
 where wrap x = [x]
 -- The structure is flattened to a list.

unzip_T :: Tree (a,b) -> (Tree a,Tree b)
unzip_T = cata_T (prod (Leaf,Leaf)) (prod . prod (Bin,Bin))
 where prod (f,g) (a,b) =(f a,g b)
 -- Takes a tree of pairs and returns a pair of trees.

size_T :: Tree a -> Int
size_T = cata_T (const 1) (\l r -> 1+l+r)
 -- Counts the number of constructors.

depth_T :: Tree a -> Int
depth_T = cata_T (const 0) (\l r -> 1+(max l r))
 -- Calculates the maximal level of the constructors.

leftmost_T :: Tree a -> a
leftmost_T= cata_T id const
 -- returns the leftmost element of the tree.

mirror_T :: Tree a -> Tree a
mirror_T = cata_T Leaf (flip Bin)
 -- Mirrors the tree in a line through its root.

Except for the last one (that depends on the fact that the two arguments toBin are

of the same type) all these functions can be generalised to all tree types.

Using a catamorphism for that datatype lots of functions from a datatype to some-

thing else can be written. A simple example of a function that is not a catamorphism

is tail that gives the tail of a list. Fortail to be a catamorphism we would need a

function that could calculatetail (x:xs) from x andtail xs which is clearly

impossible since the information about the first element ofxs is lost.

2.3 Functors

The recursive definitions of the two types in the previous section can be thought of

as being the fixpoints with respect to the parameter x of these two types:

data FList x a = FNil
 | FCons a x

data FTree x a = FLeaf a
 | FBin x x

The structure of these types and the names of the constructors is all that is needed to

generatemap, cata and other polytypic functions. When dealing with these func-

tions theoretically it is useful to go one step further and ignore the actual names of

the constructors retaining only the structure, as all datatypes that differ only in the

names of the constructors are isomorphic. This stripped structure of the type will be

called a functor1.

Polytypism

8

By ignoring the specific constructor names we get forList the functor

, and forTree we get . Here the arguments

and can be thought of as sets, the sum means disjoint union of sets and the prod-

uct is the cross product.

The concept of functors is essential to the underlying theory of polytypism and

almost all polytypic functions are defined either using induction on the structure

functors or by combining other polytypic functions. This means that it is very

important to have a sufficiently rich structure representing functors, as the polytypic

functions we define will work only for the types that we can represent by fixpoints

of functors.

In the system functors are represented as elements of the datatypeFunc :

data Func a =
 Prod [Func a] -- direct product of functors
 | Sum [Func a] -- sum of functors
 | Comp a [Func a] -- composition of a constructor
 -- with a list of functors
 | Par Int Int -- type parameter, first the position
 -- number in the mut. rec. group
 -- then the local argument number
 | Rec Int -- recursive parameter

For a functor representing a datatype in Haskell the top level is always aSum with a

list of functors representing the alternatives, one for each constructor in the type.

Each of these alternatives is aProd with a list of the representations of the argu-

ments of the corresponding constructor. ForList andTree we get:

funcList = Sum [Prod [],

 Prod [Par 1 1, Rec 1]]

funcTree = Sum [Prod [Par 1 1],

 Prod [Rec 1, Rec 1]]

The second argument toPar is the position of the corresponding parameter in the

type’s argument list, and as both these types only have one argument it is 1. The first

argument to Par and the only argument to Rec is 1 for all directly recursive (as

opposed to the mutually recursive) types.

1. A functor is mathematically a function between categories that preserves the algebraic
structure of the category. As such they can be applied to both functions (arrows) and
datatypes (objects) [13].

L x a 1 a x×+= T x a a x x×+=

a x

Polytypism

9

As an example of a group of mutually recursive datatype definitions we can take

Zig andZag defined by:

data Zig a b = Blib

 | Ping a (Zag a b)

data Zag a b = Blob

 | Pong b (Zig a b)

By replacing the right hand side recursive references toZig a b andZag a b by

Rec 1 andRec 2 respectively we get:

funcZig = Sum [Prod [],

 Prod [Par 1 1, Rec 2]]

funcZag = Sum [Prod [],

 Prod [Par 2 2, Rec 1]]

Finally Comp is used when a type definition refers to another type which does not

itself refer back to the first type. (That is, these two types are not in the same mutual

recursive group.) A typical example of this is rose trees:

data Rose a = Fork a (List (Rose a))

funcRose = Sum [Prod [Par 1 1,

 Comp “List” [Rec 1]]]

It is important to note here that not all types can be represented by a functor in the

system. The datatypes we can handle do not include function spaces (though it

could be included in this formalism, see [12]) and requires that recursive occur-

rences of the datatype be exactly equal to the left hand sides of the definitions. But

as we have seen it does handle ordinary tree types including mutual recursive ones.

Two examples of types that we can not handle are:

data Zigzag a b = Bliob | Piong a (Zigzag b a)

data Strange a = This a | That (Strange (a,a))

The first example has a recursive reference to itself which is not identical to the left

hand side, but this can be worked around by instead using the pair of mutually

recursive typesZig andZag above. The second example is worse, even trying to

define a map by hand on this type fails in Haskell.

map_Strange f (This x) = This (f x)

map_Strange f (That s) = That (map_Strange (prod f f) s)

 where prod f g (a,b) = (f a,g b)

Intuitively this is what a map on this type should do, but the problem is that

map_Strange is used on different types on the left and right hand side which gives

us an error message from the type checker.

Basic polytypic functions

10

3 Basic polytypic functions

To be able to reason about functional programs in a more mathematical style we

will try to write functions with a limited number of combinators, standard functions

and types. The following sections will describe how most of the functions generated

by the system work and how they can be used.

3.1 Predefined functions and types

We use a number of families of functions indexed by integers where each family

would preferably be implemented as one function taking this index as its first argu-

ment. As the Haskell type system doesn’t support the types such functions would

have we have implemented these function families by just extending the families

names with integers. In the following we will still use the index notation but only as

a more readable form of just extending the name with the number. (soprod 3 will

meanprod3 .)

3.1.1 Products
The first function families comes together with a type that is predefined in most

functional languages; the tuple or product type. We define type synonyms the get

type constructors for all tuples.

Prod n :: a 1 -> ... -> a n -> (a 1, ... ,a n)

type Prod n a 1 ... a n = (a 1, ... ,a n)

To easily write functions from a tuple to a tuple we also define

prod n :: (a 1->b 1) -> ... -> (a n->b n) ->

 Prod n a 1 ... a n -> Prod n b 1 ... b n

prod n f 1 ... f n (x 1, ... ,x n) = (f 1 x1, ... ,f n xn)

which can be seen as the map for the typeProd n as it takes one function for every

type parameter and applies that function to the corresponding argument.

As a generalisation ofuncurry :: (a -> b -> c) -> (a,b) -> c we define

uncurry n :: (a 1 -> ... -> a n -> b) -> Prod n a 1 ... a n -> b

uncurry n f (x 1, ... ,x n) = f x 1 ... x n

which can be seen as the catamorphism on tuples where the tuple constructorProd n

is replaced by the functionf .

The last tuple-related functionsplit which builds a tuple from any type and thus

can be seen as the anamorphism on tuples:

split n :: (a->b 1) -> ... -> (a->b n) -> a -> Prod n b 1 ... b n

split n f 1 ... f n x = (f 1 x, ..., f n x)

Basic polytypic functions

11

3.1.2 Sums
To represent a choice between different alternatives we will use the typeSumn

defined by

data Sum n a 1 ... a n = In n1 a 1 | ... | In nn a n

We will identify Sum1 a with a andIn 11 x with x .

The map on this type is

sumn :: (a 1->b 1) -> ... -> (a n->b n) ->

 Sum n a 1 ... a n -> Sum n b 1 ... b n

sumn f 1 ... f n = s

 where s (In n1 x) = In n1 (f 1 x)

 ...

 s (In nn x) = In nn (f n x)

The functionjoin n that joins all then cases together to one resulting type is

defined by

join n :: (a 1->b) -> ... -> (a n->b) ->

 Sum n a 1 ... a n -> b

join n f 1 ... f n = j

 where j (In n1 x) = f 1 x

 ...

 j (In nn x) = f n x

This can be seen as the catamorphism onSumn as the constructorsIn ni are replaced

by f i for all i .

The composition of a sum and a join can be simplified to just a join: (For brevity we

here introduce a vector notation defined in the next section.)

join n f . sum n g == join n (f.g)

3.2 Notation

Polytypic functions will be written with an index specifying what type they work on

as inmapTree . In the system this is writtenmapTree but we will use the index nota-

tion as a remainder that we think about polytypic functions as functions taking a

type as first argument and that the actual implementation is just a way of simulating

this behaviour.

Normally we will work with an unspecified example typeD a 1 ... a n:

data D a 1 ... a n = C 1 e 1,1 ... e k1,1

 | ...

 | C n e 1,n ... e kn,n

Basic polytypic functions

12

Here theCi are type constructors,ei,j are type expressions using the type parame-

tersa1 ... a n andk1 to kn are the arities of the constructorsC1 to Cn. This type is

not mutually recursive to make the examples easier to read, but all functions

described in this chapter works also for groups of mutually recursive types1. For

readability we will in some examples use a vector notation and writea instead of

a1 ... a n wheren always will be the number of type parameters of the typeD.

This vector notation is also used for composition, pair forming, etc. The following

examples, wheren==3 andD==Test , shows the intended interpretation of this:

 short form stands for

 f 1 a f1 a1 a2 a3

 map D f.g mapTest (f1.g1) (f2.g2) (f3.g3)

 f D c f . g fTest c f1 f2 f3 . g

 D (a,b) Test (a1,b1) (a2,b2) (a3,b3)

3.3 Object and arrow

Mathematically a functor is a function that can be applied to objects (types) and

arrows (functions). To simulate this behaviour we provide for each functor one type

FD (which can be seen as a function from its type parameters to a type) and one

function f D.

The datatypeFD has exactly the same structure as the functor. This means that it has

the same structure as the typeD with a recursive parameter added which is used in

place of the recursive references. (See the examples in section 2.3) The right hand

side of the type definition is generated by a catamorphism on the typeFunc where

the constructorSum in Func is replaced by the code callingSumn, Prod by a call to

Prod ki , Comp by a call to the referred type andRec andPar by their corresponding

parameters from the left hand side. We get something of the form:

type F D r a = Sum n (Prod k1 t 1,1 ... t 1,k1)

 ...

 (Prod kn t n,1 ... t n,kn)

wheret i,j is the result of this catamorphism onei,j .

The functionf D is the map on the typeFD and will therefore also denoted bymapFD.

Its structure is also very similar to that of the functor and it is defined by a catamor-

phism on the typeFunc with almost the same arguments as the cata forFD. The dif-

ference is that, as we generate a map here, we change the calls to the type

1. In appendix A the code for all functions generated by the system is shown for a mutually
recursive pair of types.

Basic polytypic functions

13

constructors to calls to the maps over those type constructors. The function defini-

tion has the form:

f D :: (ra -> rb) -> (a 1->b 1) -> ... -> (a n->b n) ->

 F D ra a -> F D rb b

f D r a = sum n (prod k1 g 1,1 ... g 1,k1)

 ...

 (prod kn g n,1 ... g n,kn)

We exemplify this for two datatypes; forList we get:

--funcList = Sum [Prod [], Prod [Par 1 1, Rec 1]]

type F List ra a = Sum 2 () (a,ra)

f List rg g = sum 2 prod 0 (prod 2 g rg)

and forRose we get: (remember that we have identifiedSum1 a with a)

--data Rose a = Fork a (List (Rose a))

--funcRose = Sum [Prod [Par 1 1, Comp “List” [Rec 1]]]

type F Rose ra a = (a,(List ra))

f Rose rg g = (prod2 g (map List rg))

3.4 In and out

We define a functionout D so that the pattern matching for all the cases of the type

D a is done by this function once and for all.out D strips off the constructors from

the top level of a value of typeD a replacing them bySums andProd s.

out D :: D a -> F D (D a) a

out D (C 1 x 1 ... x k1) = In n1 (x 1, ... ,x k1)

 ...

out D (C n x 1 ... x kn) = In nn (x 1, ... ,x kn)

It is important to note that theout D is not recursive and that the substructures of the

result can be of the typesa andD a . As an example we can takeout for the type

List :

out List :: List a -> F List (List a) a

out List (Nil) = In 21 ()

out List (Cons x xs) = In 22 (x,xs)

The dual functionin D does the opposite ofout D; it puts back all the correct con-

structors to create a value of the typeD. It is so to saythe constructor of the typeD as

it is a join of the different constructors.

in D :: F D (D a) a -> D a

in D = join n (uncurry k1 C 1) ... (uncurry kn C n)

Basic polytypic functions

14

Here we can see the real use of the predefined functions letting us writein D in a

concise way without any pattern matching.join matches the cases of the top level

sum anduncurry makes the constructors applicable to tuples. As examples we

showin for List andRose:

in List = join 2 (const Nil) (uncurry 2 Cons)

in Rose = uncurry 2 Fork

Both in D andout D are isomorphisms, and they are each others inverses:

in D . out D == id == out D . in D

3.5 Map

The map on a datatypeD is a higher order function taking as many functions as

arguments as the type has type parameters. When the resulting functionm is applied

to an object of typeD, each of these argument functions is applied to all occurrences

of elements of their specific type leaving the structure of the object unchanged.

mapD :: (a 1->b 1) -> ... -> (a n->b n) ->

 D a 1 ... a n -> D b 1 ... b n

mapD g 1 ... g n = m

 where m = in D . (f D m g 1 ... g n) . out D

 m :: D a -> D b

 out D :: D a -> F D (D a) a

 f D m g :: F D (D a) a -> F D (D b) b

 in D :: F D (D b) b -> D b

The functionm first removes the constructors without D. Then, usingf D == mapFD,

m is called recursively for all occurrences of the recursive argument inFD. Finally

in D injects the resulting object into the typeD again.

It is instructive to compare what this definition will give us forTree with the intui-

tive definition ofmap_T in section 2.1. (The following is a calculation, not a defini-

tion.)

mapTree f == m == in Tree . f Tree m f . out Tree ==

{ Insert the definitions of in and f }

join 2 Leaf (uncurry 2 Bin) . sum 2 f (prod 2 m m) . out Tree ==

{ Use a law for join and sum: join n f . sum n g == join n f.g }

join 2 (Leaf.f) (uncurry 2 Bin . prod 2 m m) . out Tree ==

{ Use a law for uncurry and prod:
 uncurry n f . prod n g == (\Prod n x -> f g x) }

join 2 (Leaf.f) (\(x 1,x 2)-> Bin (m x 1) (m x 2)) . out Tree

Basic polytypic functions

15

Thejoin together with theout on the far right is equivalent to pattern matching on

the left so we get:

mapTree f = m

 where m (Leaf x) = Leaf (f x)
 m (Bin x1 x2)= Bin (m x1) (m x2)

which can be compared withmap_T from section 2.1:

map_T f (Leaf x) = Leaf (f x)
map_T f (Bin l r) = Bin (map_T f l) (map_T f r)

3.6 Cata

The catamorphism is, like map, a higher order function, but it takes only one argu-

ment1 instead of one for each parameter.

The definition of the catamorphism is similar to the definition of map; firstout D is

used to remove the constructors, thenf D applies the catamorphism to the recursive

substructures. The difference is that here we leave the values on the top level

unchanged by usingid in the call tof D and, most importantly, we insert the values

into another type thanD by using the argument functioni instead ofin D.

cata D :: (F D b a -> b) -> D a -> b

cata D i = c

 where c = i . (f D c id) . out D

 c :: D a -> b

 out D :: D a -> F D (D a) a

 f D c id :: F D (D a) a -> F D b a

 i :: F D b a -> b

Hereid meansn copies of the identity function.

Note that we could have definedmap usingcata :

mapD :: (a 1->b 1) -> ... -> (a n->b n) -> D a -> D b

mapD g = cata D i

 where i = in D . f D id g

 i :: F D (D b) a -> D b

 f D id g :: F D (D b) a -> F D (D b) b

 in D :: F D (D b) b -> D b

This is equivalent to the definition in section 3.5 but slightly less efficient.

1. Actually, for a group of mutually recursive types, the catamorphism (for all types) takes
one argument function for each type in the group.

Basic polytypic functions

16

3.7 Ana

The anamorphism is the dual of the catamorphism in the sense that everything in the

definition ofana has the same types as in the definition ofcata except that all

arrows are reversed.

ana D :: (b -> F D b a) -> b -> D a

ana D o = a

 where a = in D . (f D a id) . o

 a :: b -> D a

 o :: b -> F D b a

 f D a id :: F D b a -> F D (D a) a

 in D :: F D (D a) a -> D a

The anamorphism can be used to build elements of a type from something else. As

an example we can build perfect trees of depthd filled with an elementx by using

theana onTree :

ana Tree :: (b -> F Tree b a) -> b -> Tree a

If we take the argument to the resulting function to be a pair of the desired depth

and the element to fill with we getb == (Int,a) so that

FTree b a == Sum 2 a (b,b) == Sum 2 a ((Int,a),(Int,a))

o :: (Int,a) -> Sum 2 a ((Int,a),(Int,a))

o (0 ,x) = In 21 x

o (n+1,x) = In 22 ((n,x) , (n,x))

perf == ana Tree o :: (Int,a) -> Tree a

perf (2,’a’) == Bin (Bin (Leaf ’a’) (Leaf ’a’))

 (Bin (Leaf ’a’) (Leaf ’a’))

3.8 Hylo

Often a programming problem can be solved using an intermediate typeD such that

we first construct an element ofD usingana D and then build the result by destruct-

ing this element withcata D. The resulting program is a composition of a catamor-

phism with an anamorphism. This composition can be simplified by unfolding the

definitions ofcata andana :

cata D i . ana D o == c . a ==

{ the definitions of cata and ana }

i . (f D c id) . out D . in D . (f D a id) . o ==

{ out D . in D == id }

i . (f D c id) . (f D a id) . o

{ f D == map FD, property of all maps: map f . map g == map f.g }

i . (f D (c . a) id) . o

Basic polytypic functions

17

This composition is a hylomorphism:

hylo D :: (F D c a -> c) -> (b -> F D b a) -> b -> c

hylo D i o = h

 where h = i . (f D h id) . o

 h :: b -> c

 o :: b -> F D b a

 f D h id :: F D b a -> F D c a

 i :: F D c a -> c

As we can see from the type, the hylomorphism never really refers to the datatypeD

directly; using a hylomorphism is using a virtual datastructure.

The cata- and anamorphisms can be defined as special cases of the hylomorphism

where

cata D i = hylo D i out D

ana D o = hylo D in D o

3.9 Flatten

We now have the necessary basis to go on to define more specific polytypic func-

tions. By flattening an element of a datatypeD with respect to a type parameterai

we mean making a list of all occurrences of values of the typeai in the element. As

this is a function fromD to a list it is natural to try to use a catamorphism to define

it. For this to be possible we must construct a function (the argumenti to cata D)

that, given the flattened substructures and the data in the top level nodes, calculates

the resulting list. Intuitively this is done by simply concatenating all sublists and

prepending all elements in the top level. This is not much worse in practice though

one has to keep track of some indices.

We will call the generated functionsfl D1 ... fl Dn where

fl Di :: D a -> [a i]

fl Di = cata D fl

 where fl = cup fl FDi (concat.fl FDr)

 fl :: F D [a i] a -> [a i]

 fl FDi :: F D [a i] a -> [a i]

 fl FDr :: F D [a i] a -> [[a i]]

 cup f g x = (f x) ++ (g x)

Basic polytypic functions

18

Here we have used flatten on the nonrecursive typeFD with respect toai (this is

fl FDi) and with respect to the parameter representing the recursive argument

(fl FDr wherer is the letter r and not an index variable).

fl FDi :: F D b a -> [a i]

fl FDr :: F D b a -> [b]

The functionsfl F? are defined by induction over the structure of the functor which

means that the definition can be generated by a catamorphism onFunc with suitable

arguments.

3.10 Partial functions

For the definition of zip we will need to deal with partial functions. For this purpose

we introduce the typeMaybe (defined bydata Maybe a = No | Yes a) and

implement partial functions as functions returningYes x for arguments where they

are well defined andNo otherwise. Composition of partial functions is strict inNo

and is written with the functioncmp. We also providepartfun , a simple way of

defining a partial function from a predicate and a normal function.

cmp :: (b -> 1+ c) -> (a -> 1+ b) -> a -> 1+ c

cmp f g x = case g x of

 No -> No

 (Yes x) -> f x

partfun :: (a -> Bool) -> (a -> b) -> a -> 1+ b

partfun p f x | p x = Yes (f x)

 | otherwise = No

We will usually write the typeMaybe a as1+ a .1

The polytypic functionprop D is used to propagateNo out of the typeD. This means

that if there is aNo somewhere in an elemente of D 1+ a the value ofprop D e is

No, and otherwise it isYes e’ wheree’ is e with all occurences ofYes x replaced

by justx .

prop D :: D 1+ a -> 1+ D a

prop D = cata D p

 where p = (Yes . in D) ‘cmp‘ prop FD

 p :: F D (1+ D a) 1+ a -> 1+ D a

 prop FD :: F D (1+ D a) 1+ a -> 1+ F D (D a) a

 Yes . in D :: F D (D a) a -> 1+ D a

prop FD :: F D (1+ a) 1+ b -> 1+ F D a b

1. The functor representing the typeMaybe is or just .M a 1 a+= M 1 +=

Basic polytypic functions

19

We define a partial function hylomorphismparthylo that works as a normal hylo-

morphism forYes values and propagatesNo values up to the top level.

parthylo D :: (F D c a -> 1+ c) -> (b -> 1+ F D b a) -> b -> 1+ c

parthylo D pi po = ph

 where ph = pi ‘cmp‘ (prop FD . f D ph pid) ‘cmp‘ po

 pid= Yes

 ph :: b -> 1+ c

 po :: b -> 1+ F D b a

 f D ph pid :: F D b a ->

 F D (1+ c) 1+ a

 prop FD :: F D (1+ c) 1+ a -> 1+ F D c a

 pi :: F D c a -> 1+ c

As we mentioned in section 3.8 (wherehylo is defined),cata andana can be very

easily defined by usinghylo and analogously we can define the partial function

version ofana usingparthylo :

partana D :: (b -> 1+ F D b a) -> b -> 1+ D a

partana D ro = parthylo D (Yes.in D) ro

3.11 Zip

The normal zip on lists takes two lists and return a list of pairs where the i:th pair

contains the i:th element from both lists. The polytypic zip takes a pair of structures

to a structure of pairs. The problem with this is that for a general datatype this oper-

ation is well defined only if the elements have exactly the same form. For lists this

is often handled by just truncating the longer list but for a general type it is not clear

how this truncating should be done. It is, for example, impossible to zip the tree

Leaf x with Bin l r . We have therefore chosen to define zip as a partial function:

zip D :: (D a, D b) -> 1+ D (a,b)

If it had not been for1+ on the right hand side this would be a typical case for a nor-

mal anamorphism as zip builds values of typeD. As we know that zip is strict inNo

we can instead define zip by a partial function anamorphism.

zip D = partana D z

 where z = zip FD . prod 2 out D out D

 z :: (D a,D b) -> 1+ F D (D a,D b) (a,b)

zip FD :: (F D a b, F D c d) -> 1+ F D (a,c) (b,d)

The zip on the functor (zip FD) can be defined by induction over the structure of the

functor and thus it can be generated by a catamorphism on the typeExpr . As an

example of one of these cases we show the zip for a tuple:

zipProd n ((a 1,...,a n),(b 1,...,b n)) = Yes ((a 1,b 1),...,(a 1,b 1))

Program construction combinators

20

4 Program construction combinators

In the system we need function builders that given a functor generate the code for

that specific instance of a polytypic function. To simplify writing a function builder

starting with a description of a polytypic function in the notation of section 3 we

will in this section describe a number of code combinators and basic code-building

blocks.

4.1 A combinator example

As an example of the use of the program construction combinators, consider the

definition ofcata for some typeD a :

cata D f = f . f D (cata D f) id . out D

With the combinators the program code generating this function definition can be

written as:

ca -= f -. (arc d -@ [ca,idc]) -. (outc d)

 where ca = catac d -@ [f]

 arc d = q (“f” ++d)

 outc d = q (“out” ++d)

 catac d = q (“cata”++d)

 idc = q “id”

 f = q “f”

providedd is the name of the datatype.

In the following sections we will describe the combinators-= , -. , -@ and the basic

building blocksarc , outc , ... in more detail.

4.2 Basic building blocks

Here we have shorthand notation for the code representing many common func-

tions; id is generated byidc , const by constc and so on. To give the possibility

to use functions not included here there is also a functionquote or justq that

embeds any string in the code. The typeExpr that is used to represent the expres-

sions is defined in section 5.3.

idc :: Expr String

q :: a -> Expr a

4.3 Binary combinators

The basic building blocks are put together to expressions with operators for compo-

sition (-.) and application (-@).

(-.) :: Expr a -> Expr a -> Expr a

(-@) :: Expr a -> [Expr a] -> Expr a

Program construction combinators

21

The composition operator takes two expressions and forms a new expression repre-

senting the composition of the two just as the normal composition (.). The applica-

tion operator takes an expression (hopefully representing a function) and an

expression list and forms the application of the first expression to the list of argu-

ments. Neither of these operators do any typechecking of their arguments, leaving

the responsibility of generating typecorrect programs to the programmer using the

combinators.

The code generated for mutual recursive datatypes is often a list a similar functions

generated in parallel and to simplify this we also provide (-.-) and (-@-) which are

vectorized versions of (-.) and (-@) in the same sense as normal addition is gener-

alised to vectors. This means that for two lists of the same length the one-element

version of the operator is used componentwise so that:

[f1, ... , fn] -.- [g1, ... gn] == [f1 -. g1, ... , fn -. gn]

To build function (or variable) definitions from these expressions we provide a defi-

nition operator (-=) (together with its vectorized version (-=-)) which are used in

place of the ordinary equality sign withleft -= right forming a definition given

the left and right hand sides.

(-=) :: Expr a -> Expr a -> Def a

4.4 Other combinators

To generate type definitions we have chosen to use identically the same operators to

build datatype definitions as function definitions and then mark datatype definitions

as such by applying the functiondatadef as in:

datadef [(q ”Test” -@ [q ”a”]) -=

 (sumF 2 [q ”One” -@ [q ”a”],

 q ”Two” -@ [q ”a”,q ”a”]])]

generating the code representing:

data Test a =

 One a

 | Two a a

After being marked bydatadef a list of function declarations will be interpreted as

a list of datatype definitions. In the same way the functiontypedef markes defini-

tions as type synonym declarations.

We also supply a number of functions which are combinations of simple building

blocks and the application operator to use as a shorthand notation for functions that

are almost always applied to all their arguments immediately. A simple example is:

quotef :: a -> [Expr a] -> Expr a

quotef str list = q str -@ list

System

22

5 System

As there is currently no (typed) language available that can handle polytypic func-

tions we have, loosely based on Hollum, made a system that generates (a represen-

tation of) the Haskell code defining a number of polytypic functions given a type

declaration.

5.1 Overall structure

We have taken advantage of the fact that there already are compilers which can han-

dle both the parsing of program text to a datatype representing the definitions and

the transformation of programs (as objects of this type) to executable code, so we

will only deal with getting from a parsed program to a new parsed program with the

declarations of the necessary generalised functions added. More specifically the

system is based on nhc [14] but the part that depends on the specific compiler has

been kept small by, as the first and last step, transforming input to, and output from,

our internal representations.

The generalised functions are generated in three phases:

• The parsed program is scanned for type declarations and these are transformed to
functors.

• The generalised function definitions (internally represented as equalities between
expressions) are built from the structure of the functors. (Some intermediate
functions are also defined to make the use and definition of the generalised func-
tions easier.)

• Finally the functions built are transformed from the internal representation to the
datatype of parsed programs in the compiler, and appended to the original pro-
gram. This phase also cleans up the code a bit by doing some purely algebraic
optimizations of the expressions (such as removing unnecessaryid ’s)

To make testing easier the system can also show the program text in the last step.

5.2 Constructing a functor for a datatype

The first phase of the function generation converts definitions to functors in three

steps; it takes a list of declarations from after the parser, extracts the datatype defini-

tions, groups them into lists of mutually recursive type definitions1 and converts

these (with some restrictions) to functors.

1. A group of type definitions is mutually recursive if all definitions, directly or indirectly,
refer to each other.

System

23

5.2.1 Representation of types
A type definition in Haskell has the structure

where on the left side is the name of the type, the are type variables and on the

right sides the are type constructors and the are type expressions.

We store this information in the following structure:

 -- ((typename, [type variables]),
 [(constructor name, [arguments])])

type Data a = ((a,[a]), [(a,[Typ a])])

Here a type expression can be either a type name with type expressions as argu-

ments, a type variable or a type tuple:

data Typ a =

 TypCons a [Typ a]

 | TypVar a

 | TypTuple [Typ a]

The result type from the parser used must include at least the information needed to

build this structure.

The first step in the conversion from datatype definitions to functors takes the

parsed data into a list ofData , throwing away everything else. After this step noth-

ing remains of the dependence on the datatype of the parsed result.

5.2.2 Mutually recursive datatypes
In the second step we sort the type definitions into mutually recursive groups, each

of which will later become a mutually recursive functor list. We do this by seeing

the list of type definitions as a directed graph, where each defined type name is a

node that is connected to all the type names referenced on the right hand side of its

definition. With this view finding the mutual recursive groups is the same as finding

the strongly connected components1 of this digraph. These can be found by stand-

ard graph searching2. Every directly recursive type will be treated as a group of

mutually recursive types with just one element.

1. A strongly connected component (s.c.c.) of a digraph is a subgraph in which all nodes are
connected to all other nodes, directly or indirectly.

2. For each node we find the intersection of the set of all nodes reachable from it, and the set
of all nodes that can reach it. This intersection is the set of all elements in the s.c.c. to
which this node belongs.

T v1…vn

C1 a1 1, …a1 k1,

… …
Cm am 1, …am km,

Ci ai j,
j 1=

ki

∏×〈 〉
i 1=

m

∑∼=

T vi

Ci ai j,

System

24

5.2.3 Functorize
In the third step every type definition gets its top level list of constructors replaced

by aSum. The elements in each constructors argument list are transformed and col-

lected into aProd . The transformation of these elements takes a description of a

type expression to a functor;trans :: Typ a -> Func a , where

data Func a =
 Prod [Func a] -- direct product of functors
 | Sum [Func a] -- sum of functors
 | Comp a [Func a] -- composition of a constructor
 -- with a list of functors
 | Par Int Int -- type parameter, first the position
 -- number in the Func list
 -- then the local argument number
 | Rec Int -- recursive parameter

As the structure of the type expression is preserved in this process it is natural to

define this transformation by means of a catamorphism on the typeTyp a . This cat-

amorphism replaces type variables by their positions on the left hand side of the

type definition (var2par), tuples byProd s and occurrences of any of the mutually

recursive type names toRec provided that all the arguments are type variables, and

in the right order (comp2rec).

comp2rec :: a -> [Func a] -> Func a

var2par :: a -> Func a

Prod :: [Func a] -> Func a

cata_Typ :: (a -> [b] -> b) -> (a -> b) -> ([b] -> b) ->

 Typ a -> b

trans :: Typ a -> Func a

trans = cata_Typ comp2rec var2par Prod

If some recursive reference is not identical to any left hand side, or if a function

type is encounteredtrans will report an error and functorize will fail.

5.3 Implementing the combinators

We have chosen to represent a program as a list of definitions where each definition

is marked as being either a datatype definition or a function definition but otherwise

identical in structure. We represent definitions simply by a pair of a left and a right

hand side expression.

5.3.1 Types for expressions
An expression has a very simple structure, it is either a primitive function or con-

stant or an application of one expression to a list of expressions1.

data Expr a = EApp (Expr a) [Expr a]

 | EPrim (PrimExpr a)

1. Compared withλ-calculus we lack the abstraction case, but with the primitive functions
supplied we can write all the functions we need.

System

25

HerePrimExpr contains the quote case, and the representation of a number of use-

ful functions. It would have been sufficient to use the quote case for everything, but

having special cases for different functions makes it easy to do simplifications of

the generated expressions in a separate phase.

data PrimExpr a = PEQuote a

 | PEprod Int | PEProd Int

 | PEsum Int | PESum Int

 | PEid | PEconst ...

TheInt argument to some of these constructors is the index on these functions. As

an example the expressionEPrim (PEprod 3) represents the functionprod 3.

5.3.2 Basic building blocks
To be able to make changes to these types without having to change the whole sys-

tem we have defined a number of very simple functions which correspond to the

different cases of the type definitions:

q :: a -> Expr a

q = EPrim . PEQuote

prodc :: Int -> Expr a

prodc = EPrim . PEprod

...

idc :: Expr a

idc = EPrim PEid

...

5.3.3 Binary combinators
With the chosen type for expressions the definition of the application and composi-

tion operators is very simple:

(-@) :: Expr a -> [Expr a] -> Expr a

f -@ l = EApp f l

(-.) :: Expr a -> Expr a -> Expr a

f -. g = dot -@ [f,g]

 where dot = EPrim PEdot

The definition operator(-=) just pairs the left and right arguments and marks this

as a function definition as default.

5.3.4 Other combinators
The functionsdatadef andtypedef change the marks on a list of definitions to

make them datadefinitions and typedefinitions respectively.

5.4 Function generators

We provide functions generating the functions defined in section 3 (object and

arrow, in and out, cata, ana, hylo, map, flatten, zip, parthylo and prop) for all

datatypes for which we can construct a functor. We also provide functions generat-

System

26

ing the functions needed for unification (unify, match and datatypes with variables

added, see section 6.5) but only for directly recursive types. All the generating func-

tions take a description of a functor as first argument and can be mapped over the

list of functor descriptions that is generated by the functorize step.

5.5 Simplification

The simplification functionsimp is applied to both the left and the right hand side

of all function definitions. It is written as a catamorphism on the typeExpr :

simp :: Expr a -> Expr a

simp = cata_Expr simpapp (EPrim . simpprim)

 where cata_Expr :: (b -> [b] -> b) -> (PrimExpr a -> b) ->

 Expr a -> b

 simpapp :: Expr a -> [Expr a] -> Expr a

 simpprim:: PrimExpr a -> PrimExpr a

The functionsimpprim simplifies the indexed functions for small indices by

replacingprod 1 andsum1 with id , uncurry 0 with const and a number of other

cases like these. Everything else is left unchanged.

simpprim (PEProd 1) = PEid

simpprim (PEsum 1) = PEid

...

simpprim (PEuncurry 0) = EPrim PEconst

...

simpprim p = p

The functionsimpapp simplifies applications with four rules:

id . f == f f . id == f
(f . g) x == f (g x) id x == x

This can easily be extended to handle more complicated cases but already now it

makes the generated code much more readable in some cases and also a bit more

efficient.

After these simplifications the code is either transformed to the datatype represent-

ing programs in the compiler, or printed as text. Both of these transformations are

written as catamorphisms on the typeExpr .

Unification

27

6 Unification

In this section we will describe unification (closely following Fokkinga [3]), a spe-

cific implementation of a unification algorithm using lazy arrays, and the generali-

sation of this algorithm to a polytypic unification algorithm.

6.1 Introduction to unification

Unification is, informally, the process of making two given expressions containing

variables equal by substituting expressions for the variables. For example consider

unifying with where , are variables and , are

constants. As both expressions are of the form we only need to unify

with and, with the same substitution, with . These two pairs can

be trivially unified with the substitution . Thus

the original pair is unified by (we need to apply the substitution twice

as y occurs in the substitution from x) to form the unified expression

.

The unification fails if we ever have to unify two different constructors or constants

(which we will treat as nullary constructors) or if we have to assign two different

(that is, not unifiable) expressions to the same variable.

If we try to unify with we will get which does not by

any finite number of iterations make the two expressions equal, but whose fixpoint

can be seen as an infinite substitution that actually makes the expressions equal. In

most applications one does not consider infinite substitutions but by allowing them

in the result from the unification algorithm we can still choose if it should be

allowed or not thus making the program more general.

6.2 Definitions

To make the notation more precise we will call the expressions that we unify terms.

A term is recursively defined as either a numbered variable or an expression con-

sisting of a constructor followed by a list of terms.

A substitution is a function from variables to terms, but we will also use it on terms

by mapping the function to all variables in the term. Note that after one application

of a substitution the resulting expression may still contain variables from the substi-

tution.

A unifier of a pair of terms is a substitution that makes the two terms equal. A uni-

fier of a list of such pairs is a substitution that unifies all of the pairs.

f x f a b,(),() f g y a,() y,() x y a b

f ,() x

g y a,() f a b,() y

σ x g y a,()→ y f a b,()→,[]=

σ σ⋅ σ2=

f g f a b,() a,() f a b),(),()

x f x() σ x f x()→[]=

Unification

28

A substitution is at least as general as iff where r is a substitution.

With this order the identity substitution is at least as general as all other substitu-

tions.

The problem of unification can now be specified as the task of finding the most gen-

eral unifier of a list of pairs of terms.

6.3 Outline of a unification algorithm

We want a function that given a lists of pairs of expressions finds the most general

substitution or, if some pair is not unifiable, reports an error. To do this we can look

at one pair at a time collecting assignments for the variables as we go through the

list always checking that every new assignment conforms with the old ones.

To unify a pair of terms we can have a number of different cases depending on the

form of the pair:

1. (Exp a, Exp b) :To unify two expressions we have first check that their top

level constructors are identical and then that all their argu-

ments are pairwise unifiable by a recursive call to unify.

2. (Var i, Var i) :A variable is trivially unifiable with itself without any new

associations.

3. (Var i, term) : To unify a variable with any term we have to include the

association ofi with the term, in the substitution. If there is

already an association for this variable the old and the new

terms must be unified which can be done with a recursive

call to unify.

4. (term, Var i) : This case is handled by the previous case by just swapping

the elements of the pair as unification is symmetric.

This description of the algorithm does not depend on the datatype of the expressions

which makes it a perfect candidate for a polytypic algorithm. Case 2, 3 and 4 do not

directly refer to the expressions so the only part that necessarily differs between

unification programs for different types is case 1, the matching of two expressions.

6.4 Unification with lazyArray

One important choice that has to be made when implementing the unification algo-

rithm is how to represent the substitutions. We know that when an association has

been added to the substitution it will never be changed but probably looked up a

number of times. In our algorithm we will also need to do lookups before the whole

substitution is determined. This can all be implemented in an efficient way by using

a lazy array, lazier than the standard HaskellArray construct that evaluates all indi-

s S S r s⋅=

Unification

29

ces to check that they are nonequal and within the bounds. We have therefore cho-

senlazyArray (defined in [8]) which has the desired properties.

This version of the unification algorithm is based on the one occurring in [8].

1 : unifyT :: (Eq b, Enum a, Ix a) =>

2 : (a,a) -> [(Term a b,Term a b)] -> Array a [Term a b]

3 : unifyT r q = amap (map snd) a

4 : where

5 : a = lazyArray r (unify 1 q)

6 : unify :: Int -> [(Term a b, Term a b)] ->

7 : [Assoc a (Int,Term a b)]

8 : unify u [] = [] -- the empty list is trivially unified

9 : unify u ((Exp a,Exp b):q) = unify u ((match (a,b))++q)

10 : unify u ((Var n,Var m):q) | m == n = unify u q

11 : unify u ((Var m,t):q) =

12 : (m := (u,t)):

13 : case head (a!m) of

14 : (u’,t’) | u == u’ -> unify (u+1) q

15 : | otherwise -> unify u ((t’,t):q)

16 : unify u ((t,v):q) = unify u ((v,t):q)

17 : match p = case matchD p of

18 : No -> error “can’t match expressions”

19 : Yes q -> q

The algorithm takes two arguments;r is a range of the form(min,max) that con-

tains all variables occurring in the second argumentq, which is the list of pairs of

terms to be unified. The range is needed to make an array and could have been cal-

culated by searching through the whole list of termsq but this is left to the user.

The output is an array with ranger and with lists of terms as elements. If a certain

variable is free inq, the corresponding list in the resulting array will be empty, but

otherwise the first element of this list will be the term the variable is set equal to.

The internal functionunify produces a list of variable associations that are lazily

inserted into an array bylazyArray on line 5. This means that when the assign-

ment for a variable ina is asked for, for example by the array indexinga!m on

line 13,lazyArray will search through its list of assignments until it finds one for

the required variableand, at the same time, when passing the other assignments on

the way, it will insert them too into the array.unify is the main unification algo-

rithm and contains the four cases of the previous section:

Unification

30

In the first case (line 9) the functionmatch takes care of checking the constructors

and, if they are equal, zips the arguments to a list but otherwise reports an error. As

all these pairs of subexpressions also have to unified,unify is called recursively

with the new pairs concatenated to (the beginning of) the listq.

The second case where two equal variables are matched just callsunify with the

rest of the list.

In the third case, where a variable is matched against a term (line 11), we must

check if there already is an association for that variable ina. This is dangerous since

if no association has yet been made the program would get stuck waiting for itself.

To prevent this from happening we first emit this association paired with a unique

numberu to the resulting list (line 12) and then check to see what the first associa-

tion for this variable is (line 13). If the unique numbers are equal the looked up

association is the one we just emitted and thus it is the first association for this vari-

able so all is well and we can go on to unify the rest of the list (line 14). If the num-

bers are not equal we have an earlier association for the same variable so we have to

check that the old and the new associated terms can be unified by callingunify

with this pair prepended to the list.

The resulting arraya is finally stripped of the internally used numbers with the

amap on line 3.

As an example of the use of this algorithm we can take the first pair of terms from

the introduction in section 6.1:

p = (app ‘f’ [x, app ‘f’ [a,b]],

 app ‘f’ [app ‘g’ [y,a],x])

 where app x l = Exp (x,l)

 a = app ‘a’ []

 b = app ‘b’ []

 x = Var 1

 y = Var 2

l = unifyT (1,2) [p]

The result is an array that satisfies the following two equalities: (where we assume

the samewhere definitions as in the definition ofp.)

l!1 == [app ‘g’ [y,a]]

l!2 == [app ‘f’ [a,b]]

6.5 Polytypic unification

The polytypic unification algorithm for a datatypeD uses as terms elements of type

VD v which is the typeD with variables of typev added:

data VD v a = VDVar v | VDExp (F D (VD v a) a)

Unification

31

This means that a value of the typeVD is either a variable, or an expression which is

almost of the typeD. Everything inD is same except that instead of recursive refer-

ences toD itself we insert references toVD.

In the way we have written the lazy unification algorithm almost all type depend-

ence is already abstracted out. When we change from the typeTerm to VD we get

VDExp instead ofExp andVDVar instead ofVar in the pattern matching of the four

unification cases. To get rid of this dependence too we can useout VD on the input to

remove the constructors and usein VD on the output to get back to the correct type.

What is left after this is just the three functionsin VD, out VD andmatch D and these

can be supplied as arguments to an intermediate functionunifyI . This function is

completely independent ofD and can therefore be defined once and for all in a prel-

ude and need not be generated by the system. The differences betweenunifyI and

the lazy array unification algorithm from section 6.4 are marked byitalics below:

unifyI matchD inVD outVD r q = amap (map (inVD.snd)) a

 where

 a = lazyArray r (unify 1 (outlist q))

 {- these lines are the same except that

 Var becomes In21 and Exp becomes In22 -}

 match p = case matchD p of

 No -> error “can’t match expressions”

 Yes q -> outlist q

outlist = map (prod2 outVD outVD)

With unifyI defined the definition ofunify is trivial.

unify D = unifyI match D in VD out VD

The functionmatch takes care of most of case 1 in the unification algorithm. First,

by usingzip FD it checks that the constructors in the top level of the two expressions

are equal. After the zip the expression can contain pairs of constants which all must

be equal if the expressions are to be unifiable. This is checked by first flattening the

expression usingfl FDi (for all i) and then mapping== over the resulting lists. If

any of these checks fail,match returnsNo, but if all succeeds it returnsYes q

whereq is the list of pairs of subexpressions which need to be unified.

match D :: (Eq a 1, ..., Eq a n) =>

 (F D b a, F D b a) -> 1+ [(b,b)]

match D = partfun pred fl FDr ‘cmp‘ zip FD

 where pred = and n (alleq . fl FD1) ... (alleq . fl FDn)

 pred :: FD (b,b) (a,a) -> Bool

 alleq = all (uncurry (==))

 zip FD :: (F D b a, F D b a) -> 1+ FD (b,b) (a,a)

 fl FDr :: FD (b,b) (a,a) -> [(b,b)]

Conclusions

32

7 Conclusions

In this report we have explained what polytypism is, we have presented a number of

basic polytypic functions, and we have shown how polytypic functions can be used.

We have described a system in which a number of polytypic functions can be auto-

matically generated using a formalism rather close to normal functional program-

ming. The generating functions take a description of a datatype and generate

functions that in some way depend on this type. We have shown that by small

changes of a traditional unification algorithm, we obtain a polytypic version work-

ing for all directly recursive tree like types.

The system could be a good basis for the implementation of a polytypic program-

ming language where types are (maybe somewhat restricted) values and polytypic

functions are functions taking a type as an argument. There are a number of prob-

lems with doing this as we would need new notation to express types as values, a

new type system and many other things.

A quicker way of making this system more available for experimentation would be

to extend a Haskell compiler with one new keywordgenerating to be used with

the same syntax as thederiving clause after a datatype declaration. The compiler

could then call our system after the parser requesting that the code, defining the pol-

ytypic functions named in thegenerating construct, be generated. It would then

compile the generated functions together with the rest of the program. In this way

the programmer could use these polytypic functions very easily.

References

33

8 References

[1] BIRD, R. S. An Introduction to the Theory of Lists. Broy, M, editor,Logic of

Programming and Calculi of Discrete Design, vol. F36 of NATO ASI Series,

pages 5-42, Springer-Verlag, 1987.

[2] BIRD R.S., de MOOR O., HOOGENDIJK P.Generic programming with rela-

tions and functors. Submitted for publication, 1993.

[3] FOKKINGA, M. Algorithmic synthesis of the Unification Algorithm. Unpub-

lished manuscript. 1989.

[4] HUDAK P., PEYTON JONES S.L., WADLER P. (editors) Report on the Pro-

gramming Language Haskell. Version 1.2.ACM SIGPLAN notices, 27 (5),

May 1992

[5] JEURING, J. Algorithms from Theorems. In M. Broy and C.B. Jones, editors,

Programming Concepts and Methods, pages 247-316. North-Holland, 1990.

[6] JEURING, J.Constructive Algorithmics: calculating programs from their

specification. Lecture notes for course on the subject at Chalmers University of

Technology, 1994.

[7] JEURING J., HUTTON G.,de MOOR O.Hollum - a generic-programming

preprocessor for Gofer. Unpublished. Available by anonymous ftp from

ftp.cs.chalmers.se in pub/users/johanj/hollum.tar.Z .

[8] JOHNSSON, T., FUNCTIONAL PEARLS Efficient Graph Algorithms Using

Lazy Monolithic Arrays. Submitted for publication (in J. Functional Program-

ming), 1993.

[9] JONES, M. P.An Introduction to Gofer. version 2.20, draft, included as part of

the standard Gofer distribution. 1991.

[10] KNIGHT,K. Unification: A Multidisciplinary Survey. Computing Surveys.

Vol 21, no 1, p. 93, acm press, 1989.

[11] MALCOLM, G. Data structures and program transformation.Science of Com-

puter Programming, Vol 14, pp 255-279, 1990.

[12] MEIJER, E. and HUTTON, G.Bananas in Space - extending fold and unfold

to exponential types. To appear in FPCA 95

[13] PIERCE, B. C.Basic Category Theory for Computer Scientists Foundations of

Computing Series, The MIT Press, 1991.

[14] RÖJEMO, N.Highlights from nhc - a space efficient Haskell compiler. To

appear in FPCA 95

1/5

Appendix A - example of generated code

Following is all the code generated by the system for the typesList , Rose, Zig

andZag. The first two types are not mutually recursive butRose usesList . Zig

andZag are mutually recursive and therefore defined in parallel.

--

data List a = Nil | Cons a (List a)

fList r1 p11 = (sum2 id (prod2 p11 r1))

type FList r1 p11 = (Sum2 () (p11,r1))

inList = (join2 (const Nil) (uncurry2 Cons))

outList Nil = (In21 ())

outList (Cons x1 x2) = (In22 (x1,x2))

cataList r1 = (r1 . ((fList (cataList r1) id) . outList))

anaList r1 = (inList . ((fList (anaList r1) id) . r1))

hyloList i1 o1 = (i1 . ((fList (hyloList i1 o1) id) . o1))

mapList f1 = (inList . ((fList (mapList f1) f1) . outList))

propList = (cataList ((mapMaybe inList) . propFList))

propFList = (propsum2 . (sum2 propprod0 propprod2))

zipList = (parthyloList (Yes . inList) (zipFList . (prod2
outList outList)))

zipFList = (cmp (propsum2 . (sum2 (cmp propprod0 zipprod0)
(cmp (propprod2 . (prod2 Yes Yes)) zipprod2))) zipsum2)

parthyloList i1 o1 = (cmp i1 (cmp (propFList . (fList
(parthyloList i1 o1) Yes)) o1))

flList ca flF1 = (ca (cup2 flF1 (concat . flFListr1)))

flList1 = (flList cataList flFList1)

flFListr1 = (flsum2 flprod0 (flprod2 nil wrap))

flFList1 = (flsum2 flprod0 (flprod2 wrap nil))

data VList a1 a2 = (VListVar a1) | (VListExp (FList (VList a1
a2) a2))

inVList = (join2 VListVar VListExp)

outVList (VListVar x1) = (In21 x1)

outVList (VListExp x1) = (In22 x1)

matchList p = (cmp (partfun (and1 ((all (uncurry2 (==))) .
flFList1)) flFListr1) zipFList p)

unifyList p = (unify matchList inVList outVList p)

--

--

data Rose a = Fork a (List (Rose a))

fRose r1 p11 = (prod2 p11 (mapList r1))

type FRose r1 p11 = (p11,((List) r1))

inRose = (uncurry2 Fork)

outRose (Fork x1 x2) = (x1,x2)

cataRose r1 = (r1 . ((fRose (cataRose r1) id) . outRose))

anaRose r1 = (inRose . ((fRose (anaRose r1) id) . r1))

hyloRose i1 o1 = (i1 . ((fRose (hyloRose i1 o1) id) . o1))

2/5

mapRose f1 = (inRose . ((fRose (mapRose f1) f1) . outRose))

propRose = (cataRose ((mapMaybe inRose) . propFRose))

propFRose = (propsum1 . (propprod2 . (prod2 id (propList .
(mapList id)))))

zipRose = (parthyloRose (Yes . inRose) (zipFRose . (prod2
outRose outRose)))

zipFRose = (cmp (propsum1 . (cmp (propprod2 . (prod2 Yes (cmp
(propList . (mapList Yes)) zipList))) zipprod2)) zipsum1)

parthyloRose i1 o1 = (cmp i1 (cmp (propFRose . (fRose
(parthyloRose i1 o1) Yes)) o1))

flRose ca flF1 = (ca (cup2 flF1 (concat . flFRoser1)))

flRose1 = (flRose cataRose flFRose1)

flFRoser1 = (flsum1 (flprod2 nil (cup1 (concat . (flList1 .
(mapList wrap))))))

flFRose1 = (flsum1 (flprod2 wrap (cup1 (concat . (flList1 .
(mapList nil))))))

data VRose a1 a2 = (VRoseVar a1) | (VRoseExp (FRose (VRose a1
a2) a2))

inVRose = (join2 VRoseVar VRoseExp)

outVRose (VRoseVar x1) = (In21 x1)

outVRose (VRoseExp x1) = (In22 x1)

matchRose p = (cmp (partfun (and1 ((all (uncurry2 (==))) .
flFRose1)) flFRoser1) zipFRose p)

unifyRose p = (unify matchRose inVRose outVRose p)

--

--

data Zig a b = Blib | Ping a (Zag a b)

data Zag a b = Blob | Pong b (Zig a b)

fZig r1 r2 p11 p12 = (sum2 id (prod2 p11 r2))

fZag r1 r2 p21 p22 = (sum2 id (prod2 p22 r1))

type FZig r1 r2 p11 p12 = (Sum2 () (p11,r2))

type FZag r1 r2 p21 p22 = (Sum2 () (p22,r1))

inZig = (join2 (const Blib) (uncurry2 Ping))

inZag = (join2 (const Blob) (uncurry2 Pong))

outZig Blib = (In21 ())

outZig (Ping x1 x2) = (In22 (x1,x2))

outZag Blob = (In21 ())

outZag (Pong x1 x2) = (In22 (x1,x2))

cataZig r1 r2 = (r1 . ((fZig (cataZig r1 r2) (cataZag r1 r2) id
id) . outZig))

cataZag r1 r2 = (r2 . ((fZag (cataZig r1 r2) (cataZag r1 r2) id
id) . outZag))

anaZig r1 r2 = (inZig . ((fZig (anaZig r1 r2) (anaZag r1 r2) id
id) . r1))

anaZag r1 r2 = (inZag . ((fZag (anaZig r1 r2) (anaZag r1 r2) id
id) . r2))

hyloZig i1 i2 o1 o2 = (i1 . ((fZig (hyloZig i1 i2 o1 o2)
(hyloZag i1 i2 o1 o2) id id) . o1))

3/5

hyloZag i1 i2 o1 o2 = (i2 . ((fZag (hyloZig i1 i2 o1 o2)
(hyloZag i1 i2 o1 o2) id id) . o2))

mapZig f1 f2 = (inZig . ((fZig (mapZig f1 f2) (mapZag f1 f2) f1
f2) . outZig))

mapZag f1 f2 = (inZag . ((fZag (mapZig f1 f2) (mapZag f1 f2) f1
f2) . outZag))

propZig = (cataZig ((mapMaybe inZig) . propFZig) ((mapMaybe
inZag) . propFZag))

propZag = (cataZag ((mapMaybe inZig) . propFZig) ((mapMaybe
inZag) . propFZag))

propFZig = (propsum2 . (sum2 propprod0 propprod2))

propFZag = (propsum2 . (sum2 propprod0 propprod2))

zipZig = (parthyloZig (Yes . inZig) (Yes . inZag) (zipFZig .
(prod2 outZig outZig)) (zipFZag . (prod2 outZag outZag)))

zipZag = (parthyloZag (Yes . inZig) (Yes . inZag) (zipFZig .
(prod2 outZig outZig)) (zipFZag . (prod2 outZag outZag)))

zipFZig = (cmp (propsum2 . (sum2 (cmp propprod0 zipprod0) (cmp
(propprod2 . (prod2 Yes Yes)) zipprod2))) zipsum2)

zipFZag = (cmp (propsum2 . (sum2 (cmp propprod0 zipprod0) (cmp
(propprod2 . (prod2 Yes Yes)) zipprod2))) zipsum2)

parthyloZig i1 i2 o1 o2 = (cmp i1 (cmp (propFZig . (fZig
(parthyloZig i1 i2 o1 o2) (parthyloZag i1 i2 o1 o2) Yes
Yes)) o1))

parthyloZag i1 i2 o1 o2 = (cmp i2 (cmp (propFZag . (fZag
(parthyloZig i1 i2 o1 o2) (parthyloZag i1 i2 o1 o2) Yes
Yes)) o2))

flZig ca flF1 flF2 = (ca (cup3 flF1 (concat . flFZigr1) (concat
. flFZigr2)) (cup3 flF2 (concat . flFZagr1) (concat .
flFZagr2)))

flZig1 = (flZig cataZig flFZig1 flFZag1)

flZag1 = (flZig cataZag flFZig1 flFZag1)

flZig2 = (flZig cataZig flFZig2 flFZag2)

flZag2 = (flZig cataZag flFZig2 flFZag2)

flFZigr1 = (flsum2 flprod0 (flprod2 nil nil))

flFZigr2 = (flsum2 flprod0 (flprod2 nil wrap))

flFZig1 = (flsum2 flprod0 (flprod2 wrap nil))

flFZig2 = (flsum2 flprod0 (flprod2 nil nil))

flFZagr1 = (flsum2 flprod0 (flprod2 nil wrap))

flFZagr2 = (flsum2 flprod0 (flprod2 nil nil))

flFZag1 = (flsum2 flprod0 (flprod2 nil nil))

flFZag2 = (flsum2 flprod0 (flprod2 wrap nil))

flFZag2 = (flsum2 flprod0 (flprod2 wrap nil))

--

4/5

Appendix B - prelude

Following are all the functions needed to make the code in appendix A run.

-- Product
type Prod2 a b = (a,b)
prod2 f g (a,b) = (f a, g b)
uncurry2 f (x,y) = f x y
split2 f g a = (f a, g a)

-- Sum
data Sum2 a b = In21 a | In22 b
sum2 f g (In21 a) = In21 (f a)
sum2 f g (In22 b) = In22 (g b)
join2 f g (In21 a) = f a
join2 f g (In22 b) = g b

-- Flatten
cup0 x = []
cup1 f x = f x
cup2 f g x = f x ++ g x
cup3 f g h x = f x ++ g x ++ h x

flsum1 = id
flsum2 = join2

flprod0 () = []
flprod1 f (a) = f a
flprod2 f g (a,b) = f a ++ g b

nil x = []
wrap a = [a]

-- Partial functions
data Maybe a = No | Yes a
mapMaybe f No = No
mapMaybe f (Yes x) = Yes (f x)
cmp f g x = case g x of
 No -> No
 (Yes x) -> f x
partfun p f x | p x = Yes (f x)
 | otherwise = No

-- Prop
propprod0 () = Yes ()
propprod1 (Yes x) = Yes (x)
propprod1 _ = No
propprod2 (Yes x1,Yes x2) = Yes (x1,x2)
propprod2 _ = No

propsum1 = id
propsum2 (In21 (Yes x)) = Yes (In21 x)
propsum2 (In22 (Yes x)) = Yes (In22 x)
propsum2 _ = No

5/5

-- Zip
zipprod2 ((a,b),(c,d)) = Yes ((a,c),(b,d))
zipprod1 ((a), (b)) = Yes ((a,b))
zipprod0 ((), ()) = Yes ()
zipsum2 (In21 x,In21 y)= Yes (In21 (x,y))
zipsum2 (In22 x,In22 y)= Yes (In22 (x,y))
zipsum2 _ = No
zipsum1 (x,y) = Yes (x,y)

-- Match
and0 x = True
and1 p1 x = p1 x
and2 p1 p2 x = (p1 x) && (p2 x)

-- UNIFICATION
-- unify is independent of the datatype it works on!
-- The unification algorithm
-- q is the list of pairs of terms to unify
-- r is a range covering all variables in the expressionpairs

in q
unify matchD inVD outVD r q = amap (map (inVD.snd)) a
 where
 a = lazyArray r (unify (1::Int) (outlist q))
 unify u [] = []
 unify u ((In22 a,In22 b):q) = unify u (outlist (match

(a,b)) ++ q)
 unify u ((In21 n,In21 m):q) | m == n = unify u q
 unify u ((In21 m,t):q) =
 (m := (u,t)):
 case head (a!m) of
 (u’,t’) | u == u’ -> unify (u+1) q
 | otherwise -> unify u ((t’,t):q)
 unify u ((t,v):q) = unify u ((v,t):q)
 outlist = map (prod2 outVD outVD)
 match p = case matchD p of
 No -> error “unify: can’t match expressionpair”
 Yes l -> l

{-
-- A simulation of lazyArray
lazyArray (min,max) xs = array (min,max) [i:= [v | (j:=v) <-

xs , i==j]
 | i <- [min..max]
]
-}

