20 March 1995

Polytypism and
polytypic unification

Patrik Jansson
Chalmers University of Technology, 1995

Master’s Thesis in Computing Science
Supervisor: Johan Jeuring

Abstract

This report describes what polytypic programming is, a new system
for writing polytypic functions, and a number of useful example
functions including generalised versions of map, zip and a specific
lazy array based unification algorithm.

Sammanfattning

Denna rapport beskriver hur man med ett programsystem automa-
tiskt kan generera funktioner som fungerar for alla tradtyper och
detta systems tillampning pa ett antal anvandbara funktioner som
map, zip och en speciell unifieringsalgoritm baserad pa lata falt.

Polytypism and polytypic unification

1

Introduction

1.1 Background

1.2 Preliminaries and notation
1.3 Overview

Polytypism

2.1 Map

2.2 Cata

2.3 Functors

Basic polytypic functions

3.1 Predefined functions and types
3.1.1 Products
3.1.2 Sums

3.2 Notation

3.3 Object and arrow

3.4 Inand out

3.5 Map

3.6 Cata

3.7 Ana

3.8 Hylo

3.9 Flatten

3.10 Partial functions

3.11 Zip

Program construction combinators
4.1 A combinator example

4.2 Basic building blocks

4.3 Binary combinators

4.4 Other combinators

System

5.1 Overall structure

5.2 Constructing a functor for a datatype
5.2.1 Representation of types
5.2.2 Mutually recursive datatypes
5.2.3 Functorize

5.3 Implementing the combinators
5.3.1 Types for expressions
5.3.2 Basic building blocks
5.3.3 Binary combinators
5.3.4 Other combinators

5.4 Function generators

5.5 Simplification

Unification

6.1 Introduction to unification

6.2 Definitions

6.3 Outline of a unification algorithm

6.4 Unification with lazyArray

6.5 Polytypic unification

Conclusions

References

3

~N o1 o1

10
10

10
11
11

12
13
14
15
16
16
17

18
19

20
20
20
20
21

22
22
22
23
23
24
24
24
25
25
25
25
26
27
27
27
28
28
30
32

33

Appendix A - example of generated code

Appendix B - prelude

Introduction

1 Introduction
This report describes polytypism, unification and a specific array based polytypic
unification algorithm. We will also describe a system for generating code for poly-
typic functions.
1.1 Background

As an example of a polytypidunction we can take unification. Unification is the
process of making two expressions containing variables equal by substituting
expressions for the variables. Unification is used for type inference by unifying type
expressions containing type variables, in automatic proof systems by unifying
proofs with proof methods and in compilers to unify the patterns of function defini-
tions with function calls [10]. Each of these applications requires a unification algo-
rithm for their specific type. As the unification algorithm is so widely used it would
be nice to have a general algorithm for unification parametrised by a datatype. This
means that given a datatype, it automatically generates a unification algorithm for
this type. This is a typical polytypic algorithm and we will give an implementation
of it in section 6.5.

Interest in polytypic functions arose when it became clear that most of the theory of
lists [1] could be generalised to other datatypes [11]. This has theoretical interest as
many of the powerful methods of calculating programs from specifications, and
thereby proving their correctness, that had been developed for list based programs
[5] also could be generalised [2].

The practical interest comes mainly from the prospects of not having to rewrite all
those standard functions that are defined for lists in most functional languages for
every datatype in a program. After having written a number of versions of the func-
tion map on different tree types one realises that with a suitable theory these should
be possible to generate automatically. The categorial theory of datatypes [13],
where datatypes are initial fixpoints of functors, provides a sound mathematical
basis for defining and reasoning about polytypic functions. One actual implementa-
tion of a system for automatic generation of polytypic functions, Hollum, was writ-
ten by Jeuring et. al. [7].

Hollum reads a Haskell program, parses it, extracts the datatype definitions, gener-
ates a number of polytypic functions for each of the types and outputs the result as a
Haskell program. The system is self contained but does not handle all tree types as
it can not generate code for mutual recursive functions, and also requires that all
constructors in the types have exactly one argument (though that argument may be a
tuple). The fact that this last requirement is caused by the parser used, and the diffi-
culty in analysing and optimizing the output (which is text) made me interested in

1. Also called type parametric or generic function.

Introduction

1.2

1.3

writing a system that only works from and to parsed programs as there are already
enough parsers and compilers to take care of the rest.

Preliminaries and notation

We will use the purely functional lazy programming language Haskell [4] in the
examples, but they would probably work with minor modifications in other func-
tional languages as ML or Scheme. All code in the system as well as all the code
generated by the system runs in Gofer [9], a language that includes most of Haskell
and has a fast interpreter which has been used in the development of the system.

In Haskell (and Gofer), function composition is denoted by a period and has lower
precedence than application. (Application is as usual written with juxtaposition)

This means thgtst . map f . sort) | will be interpreted as

fst (map f (sort 1)) . Anonymous functions (often call@dexpressions) are
written (\ args -> exp) so that the definitioh x y = 1+x+y is equivalent to
f=(Xxy -> 1+x+y) . Infix operators, such ascan be made prefix by wrap-

ping them in parenthesig:) , and a normal functiofunc taking at least two argu-
ment can be made infix by using single backqudtes; . Comments are written
as;{- comment section, possibly many lines long -}

-- line comment, extends to the end of the line

Expressions can be explicitly typed by writiexp :: type

We will writeconst :: a-> b -> a , whereconst x y = x for the constant
function. (Often written with just K but in Haskell words starting with capital letters
are type constructors.) We will use the operétay :: [a] -> [a] -> [a] to
concatenate two lists ardncat :: [[a]] -> [a] to concatenate a list of lists.

Overview

Section 2 introduces polytypism and gives some simple examples of polytypic
functions. Section 3 describes a number of polytypic functions that are generated by
the system in more detail. In section 4 we show program construction combinators
with which the code for polytypic functions can be built. Section 5 describes a sys-
tem for generating polytypic functions and its implementation. In section 6 we
describe unification and we generalise a specific lazy unification algorithm to a pol-
ytypic unification algorithm. We end the report in section 7 with some concluding
remarks.

In appendix A we show all the code generated by the system for two directly recur-
sive types and one pair of mutually recursive types. The prelude in appendix B con-
tains some common functions used by the functions defined in appendix A.

Polytypism

Polytypism

FIGURE 1.

2.1

A polytypic program is a program that works for types of different structures. There
are at least two other kinds of polymorphism in functional programming. Normal
(parametric) polymorphic functions that can be written in most functional lan-
guages work for a class of types having the same structure but with different values
of the type variables. An example heredéigth which calculates the length of a

list, no matter what type the list elements have. Overloading, or ad-hoc-polymor-
phism, is yet another way of making (apparently) the same function work for a class
of types, but here one definition of the function has to be supplied for every type in
the class. A typical example of an often overloaded functierikich normally

works both for integers and floating point numbers.

A polytypic function has one definition that works even for types of different struc-
ture. It can but need not be polymorphic in the traditional sense; the function
alleven that returns true if and only if all integers in a structure are even is poly-
typic, but not polymorphic.

In the following two sections we will give some examples of polytypic functions.

Map

One simple example of a polytypic function is the generalisatiomapfThe com-
monly usednap_L (normally called jusinap) on lists takes a functidnand applies

it to all elements (if any) in the list. The essence here, which can be generalised to
other types than lists, is thatptakes a function and applies it to all elements of a
data structure without changing the form of the structure. In figure 1 and 2 we give
the definitions of map for two simple types. Note the similarity between the type
definitions and the function definitions.

data Lista = map_L :: (a->b) -> Lista -> List b

Nil

| Cons a (List a) map_L f (Cons x xs)= Cons (f x) (map_L f xs)

map_L f Nil = Nil

The definition of map for lists.

data Tree a =
Leaf a

| Bin (Tree a) (Tree a) map_T f (Bin I r) = Bin (map_T f 1) (map_T fr)

map_T :: (a->b)->Treea->Treeb
map_T f (Leaf x) = Leaf (f x)

FIGURE 2.

The definition of map for simple binary trees with information in the nodes only.

2.2 Cata

A more general and very powerful polytypic functiorasa . On listscata_L is
normally calledoldr (fold right) and takes a start value, an operator and a list and

1. cata abbreviates catamorphism

Polytypism

FIGURE 3.

inserts the operator between the elements of the list, with the start value on the far
right end. (See figure 3)

data Lista =
Nil

| Cons a (List a) cata_L e op (Cons x xs) = x ‘op‘ (cata_L e op xs)

cata L :b->(@a->b->b)->Lista->b
cata_L e op Nil =e

The definition of cata for lists

Some simple examples of functions defined by list-catamorphisms are:

sum_L :: List Int -> Int

sum_L =cata L O (+)

all_L :: (a->Bool) -> List a -> Bool
all_Lp=cata_L True (\x b -> (p x) && b)

wheresum_L computes the sum of a list of numbers aihd p determines if all
elements of a list satisfy the predicate

The key to generalising the definitionaafta to other tree types is to observe that
cata_L simply replaces the datatype construdtior with the supplied constaat

and the construct@ons with the operatoop. The recursive occurrenceldt a

in the datatype definition is replaced by a recursive calitto L in the function
definition. In the general case every constructor in the definition of the datatype is

replaced by a function of the same driaynd recursive datatypes are transformed to
recursive functions with exactly the same structure.

Now the definition otata_T is straightforward; we just replateaf by a func-
tionf andBin by a binary operatamp:

data Tree a =

Leaf a
| Bin (Tree a) (Tree a)

cata T:(@a->b)->(b->b->b)->Treea->b
cata_Tfop (Leaf x) =fx
cata_Tfop (Binlr)=op (cal)(car)

where ca = cata_T fop

FIGURE 4.

The definition of the catamorphism for binary trees.

Despite the simplicity of the definition, this is a very sophisticated higher order
function with which we can define many other functions. Informally a catamor-
phism can calculate anything for a structure that can be calculated given the infor-
mation in the top node and the result of the catamorphism on all substructures.

1. The arity of a function is the number of arguments it takes. We will consider constants to
be functions with arity zero.

Polytypism

2.3

Some examples are:

map_T: (a->b)->Treea->Treeb
map_T f =cata_T (Leaf.f) Bin
-- This definition is equivalent to the one above.

flatten_T :: Tree a -> [a]
flatten_T = cata_T wrap (++)
where wrap x = [X]
-- The structure is flattened to a list.

unzip_T :: Tree (a,b) -> (Tree a,Tree b)
unzip_T =cata_T (prod (Leaf,Leaf)) (prod . prod (Bin,Bin))
where prod (f,g) (a,b) =(fa,g b)
-- Takes a tree of pairs and returns a pair of trees.

size_T :: Tree a->Int
size_ T =cata_T (const 1) (\l r-> 1+I+r)
-- Counts the number of constructors.

depth_T :: Tree a -> Int
depth_T =cata_T (const 0) (\Ir -> 1+(max | r))
-- Calculates the maximal level of the constructors.

leftmost_T :: Treea->a
leftmost_T= cata_T id const
-- returns the leftmost element of the tree.

mirror_T :: Tree a -> Tree a
mirror_T =cata_T Leaf (flip Bin)
-- Mirrors the tree in a line through its root.

Except for the last one (that depends on the fact that the two argumeintsatiee
of the same type) all these functions can be generalised to all tree types.

Using a catamorphism for that datatype lots of functions from a datatype to some-
thing else can be written. A simple example of a function that is not a catamorphism
istail that gives the tail of a list. Faail to be a catamorphism we would need a
function that could calculatail (x:xs) fromx andtail xs which is clearly
impossible since the information about the first elemenrs a§ lost.

Functors
The recursive definitions of the two types in the previous section can be thought of
as being the fixpoints with respect to the parameter x of these two types:

data FList x a = FNil
| FCons a x

data FTree x a = FLeaf a
| FBin x x

The structure of these types and the names of the constructors is all that is needed to
generatenap, cata and other polytypic functions. When dealing with these func-

tions theoretically it is useful to go one step further and ignore the actual names of
the constructors retaining only the structure, as all datatypes that differ only in the
names of the constructors are isomorphic. This stripped structure of the type will be

called a functok.

Polytypism

By ignoring the specific constructor names we getifar the functor
Lx a= 1+axx,and forTree we getT x a = a+ xx x. Here the arguments

aandx can be thought of as sets, the sum means disjoint union of sets and the prod-
uct is the cross product.

The concept of functors is essential to the underlying theory of polytypism and
almost all polytypic functions are defined either using induction on the structure
functors or by combining other polytypic functions. This means that it is very
important to have a sufficiently rich structure representing functors, as the polytypic
functions we define will work only for the types that we can represent by fixpoints
of functors.

In the system functors are represented as elements of the d&atype

data Func a =
Prod [Func a] -- direct product of functors

| Sum [Func a] -- sum of functors

| Comp a [Func a] -- composition of a constructor
-- with a list of functors

| Par IntInt -- type parameter, first the position
-- number in the mut. rec. group
-- then the local argument number

| Rec Int -- recursive parameter

For a functor representing a datatype in Haskell the top level is alvysvath a

list of functors representing the alternatives, one for each constructor in the type.
Each of these alternatives i®ad with a list of the representations of the argu-
ments of the corresponding constructor. Esr andTree we get:

funcList = Sum [Prod [],
Prod [Par 1 1,Rec 1]]
funcTree = Sum [Prod [Par 1 1],
Prod [Rec 1, Rec 1]]

The second argument ar is the position of the corresponding parameter in the
type’s argument list, and as both these types only have one argumentitis 1. The first
argument to Par and the only argument to Rec is 1 for all directly recursive (as
opposed to the mutually recursive) types.

1. A functor is mathematically a function between categories that preserves the algebraic
structure of the category. As such they can be applied to both functions (arrows) and
datatypes (objects) [13].

Polytypism

As an example of a group of mutually recursive datatype definitions we can take
Zig andzag defined by:

data Zig a b = Blib

| Ping a (Zag a b)
data Zag a b = Blob

| Pong b (Zig a b)

By replacing the right hand side recursive referencégtab andzagab by
Rec 1 andRec 2 respectively we get:

funczig = Sum [Prod],

Prod [Par 1 1, Rec 2]]
funcZag = Sum [Prod [],

Prod [Par 2 2, Rec 1]]

Finally Compis used when a type definition refers to another type which does not
itself refer back to the first type. (That is, these two types are not in the same mutual
recursive group.) A typical example of this is rose trees:

data Rose a = Fork a (List (Rose a))
funcRose = Sum [Prod [Par 1 1,
Comp “List” [Rec 1]]]

It is important to note here that not all types can be represented by a functor in the
system. The datatypes we can handle do not include function spaces (though it
could be included in this formalism, see [12]) and requires that recursive occur-
rences of the datatype be exactly equal to the left hand sides of the definitions. But
as we have seen it does handle ordinary tree types including mutual recursive ones.
Two examples of types that we can not handle are:

data Zigzag a b = Bliob | Piong a (Zigzag b a)
data Strange a = This a | That (Strange (a,a))

The first example has a recursive reference to itself which is not identical to the left
hand side, but this can be worked around by instead using the pair of mutually
recursive typegig andzZag above. The second example is worse, even trying to
define a map by hand on this type fails in Haskell.

map_Strange f (This x) = This (f x)
map_Strange f (That s) = That (map_Strange (prod f f) s)
where prod f g (a,b) = (fa,g b)

Intuitively this is what a map on this type should do, but the problem is that
map_Strange is used on different types on the left and right hand side which gives
us an error message from the type checker.

Basic polytypic functions

Basic polytypic functions

3.1

3.11

To be able to reason about functional programs in a more mathematical style we
will try to write functions with a limited number of combinators, standard functions
and types. The following sections will describe how most of the functions generated
by the system work and how they can be used.

Predefined functions and types

We use a number of families of functions indexed by integers where each family
would preferably be implemented as one function taking this index as its first argu-
ment. As the Haskell type system doesn’t support the types such functions would
have we have implemented these function families by just extending the families
names with integers. In the following we will still use the index notation but only as
a more readable form of just extending the name with the numbero¢se will
meanprod3 .)

Products
The first function families comes together with a type that is predefined in most

functional languages; the tuple or product type. We define type synonyms the get
type constructors for all tuples.

Prod,:a .->..->a n>@ 4,...,a n)

typeProd p,a;..a p,=(@ 4,..,a n

To easily write functions from a tuple to a tuple we also define

prod ,::(@ 1->bq)->..->(a n->b) ->
Prod pndi..a ,->Prod ,b,..b
prod nf 1 o f n (x 1y e s X n) =(f 1 X1y e f n Xn)

which can be seen as the map for the Bfod |, as it takes one function for every
type parameter and applies that function to the corresponding argument.

As a generalisation afhcurry :: (a->b ->c) -> (a,b) ->¢ we define
uncurry p(@ (->..->a n ->b) -> Prod nadi..a ,->b
uncurry pf(x q,...X =X 1x g

which can be seen as the catamorphism on tuples where the tuple conBtodctor
is replaced by the functidn

The last tuple-related functiaplit ~ which builds a tuple from any type and thus
can be seen as the anamorphism on tuples:

split , :: (a->b 1)->...->(@>b n) ->a-> Prod nb1..b

split ,f q..f nX=0F 1% ..,f n X)

10

Basic polytypic functions

3.1.2

3.2

Sums
To represent a choice between different alternatives we will use theuype

defined by

dataSum ,aq ..a p=In paql..|In nn @n

We will identify Sum a with a andin ;; x with x.

The map on this type is
sum, (@ 1->bq)->..->(a n=>b p) ->

Sum pndqi..a p,->Sum p,b,..b
sum, f 4 .. f n==s

where s (In nX)=In 1 (f 1%

s (In nn X) =1n nn (0 X)

The functionjoin , that joins all then cases together to one resulting type is
defined by

join (@ q->b)y->..->(a n->b) ->
Sum ndqi..a ,->b

join ,f 1.t =]

where j (In nX)=f 1Xx

j(n mX)=f X

This can be seen as the catamorphisr@uwmy as the constructors ,; are replaced
byf; foralli.

The composition of a sum and a join can be simplified to just a join: (For brevity we
here introduce a vector notation defined in the next section.)

join , f.sum , g==join , (f.0)

Notation
Polytypic functions will be written with an index specifying what type they work on
as inmapre - In the system this is writtenapTree but we will use the index nota-

tion as a remainder that we think about polytypic functions as functions taking a
type as first argument and that the actual implementation is just a way of simulating
this behaviour.

Normally we will work with an unspecified example type 1 ...a

dataDa ;..a ,=C ;€17 ..€ 11

| c n€ in - € kn,n

11

Basic polytypic functions

3.3

Here theC are type constructors;; are type expressions using the type parame-
tersa; ...a ,andkl tokn are the arities of the construct@ysto G,. This type is

not mutually recursive to make the examples easier to read, but all functions
described in this chapter works also for groups of mutually recursive'tyfms
readability we will in some examples use a vector notation and avinigtead of

a; ... a p,wheren always will be the number of type parameters of the bype

This vector notation is also used for composition, pair forming, etc. The following
examples, where==3 andD==Test , shows the intended interpretation of this:

short form stands for
f1a flal a2 a3

map p f.g mapTest (f1.91) (f2.92) (f3.93)
f pc f.g fTestcflf2f3.g
D (ab) Test (al,bl) (a2,b2) (a3,b3)

Object and arrow

Mathematically a functor is a function that can be applied to objects (types) and
arrows (functions). To simulate this behaviour we provide for each functor one type
Fp (which can be seen as a function from its type parameters to a type) and one

functionf .

The datatyp&p has exactly the same structure as the functor. This means that it has
the same structure as the typwith a recursive parameter added which is used in
place of the recursive references. (See the examples in section 2.3) The right hand
side of the type definition is generated by a catamorphism on thEuypevhere

the constructosumin Func is replaced by the code callisgm,, Prod by a call to

Prod i , Compby a call to the referred type aRdc andPar by their corresponding
parameters from the left hand side. We get something of the form:

type F pr a= Sum n (Prod k1t 1,1 .t 1kl)

(Prod knt o1 -t nkn)

wheret ;; is the result of this catamorphismep .

The functionf pis the map on the typg, and will therefore also denoted tmap-p.

Its structure is also very similar to that of the functor and it is defined by a catamor-
phism on the typ&unc with almost the same arguments as the catgforhe dif-
ference is that, as we generate a map here, we change the calls to the type

1. In appendix A the code for all functions generated by the system is shown for a mutually
recursive pair of types.

12

Basic polytypic functions

3.4

constructors to calls to the maps over those type constructors. The function defini-
tion has the form:

fpi(ra->rb)->(a 1->b) ->...>(a n>b) ->
F D ra @ -> F D rb D

fpr a=sum (prod 3911 9 1k1)

(prod kn 9n1 -0 nkn)

We exemplify this for two datatypes; fbist we get:

--funcList = Sum [Prod [], Prod [Par 1 1, Rec 1]]
typeF st raa=Sum 5 () (ara)

flisc 199 =sum 2 prod o (prod g rg)
and forRose we get: (remember that we have identifseth a with a)

--data Rose a = Fork a (List (Rose a))
--funcRose = Sum [Prod [Par 1 1, Comp “List” [Rec 1]]]

type F Rose f@aa= (a,(List ra))
fRose 199 = (prod2 g (map List r9))
In and out

We define a functionut p so that the pattern matching for all the cases of the type
D ais done by this function once and for allt strips off the constructors from
the top level of a value of type areplacing them bguns andProd s.

outp:Da->F p(Da)a
outp(C 1 Xg..X)= g (X 10X)
out p(C nX1..X)= pp (X 1,0 X kn)

It is important to note that theit is not recursive and that the substructures of the

result can be of the typasandD a . As an example we can taket for the type
List

out |jst : Lista->F List (Lista)a
out |jst (Nil) =In 21 0
out it (Consxxs)=1In 22 (X,XS)

The dual functionn does the opposite ofit ; it puts back all the correct con-
structors to create a value of the typdt is so to sayheconstructor of the typeas

it is ajoin of the different constructors.
inp:F p(MDa)a->Da

in p=join (uncurry 4 Cy) ... (uncurry kn Cn)

13

Basic polytypic functions

3.5

Here we can see the real use of the predefined functions letting us witea
concise way without any pattern matchijugn matches the cases of the top level
sum anduncurry makes the constructors applicable to tuples. As examples we
showin forList andRose:

in st =Jjoin , (const Nil) (uncurry > Cons)

iN Rose = UNcurry , Fork

Bothin pandout p are isomorphisms, and they are each others inverses:

in D.OUt D== id == out D- in D

Map

The map on a datatypmeis a higher order function taking as many functions as
arguments as the type has type parameters. When the resulting furistagplied
to an object of typ®, each of these argument functions is applied to all occurrences
of elements of their specific type leaving the structure of the object unchanged.

map (@ 1->bq)->...->(a n>b) >
Da 1..a pp>Db ;..b

mapgi1.-9 =M
where m =in p-(f pmgq...0 p).out p

m =D a-> D b
out p =D a->F p(D a) a

f pm g: F pD a a->F p(D b) b

in D = F p(D b) b>D b

The functionmfirst removes the constructors witlx . Then, usindg p == mapgp,
mis called recursively for all occurrences of the recursive argumegt Finally
in pinjects the resulting object into the typagain.

It is instructive to compare what this definition will give usTare with the intui-
tive definition ofmap_T in section 2.1. (The following is a calculation, not a defini-
tion.)

maprree f==m==in Tree T Tree Mf.OUt ree ==

{ Insert the definitions of in and f }

join 5 Leaf (uncurry 5 Bin).sum ,f(prod ,mm).out e ==
{'Use a law for join and sum: join n f.sum , g==join | fg}
join 5 (Leaf.f) (uncurry 2 Bin . prod 2Mm).out qee ==

{ Use a law for uncurry and prod:
uncurry . prod n a==(\Prod , x->f ax)}

join 5 (Leaf.f) (\(x 1,X 2)-> Bin (m x 1) (mx 5)).out Tree

Basic polytypic functions

Thejoin together with theut on the far right is equivalent to pattern matching on
the left so we get:

maprree f=m
where m (Leaf x) = Leaf (f x)
m (Bin x1 x2)= Bin (m x1) (m x2)

which can be compared withap_T from section 2.1:

map_T f (Leaf x) = Leaf (f x)
map_T f (Bin I r) = Bin (map_T f1) (map_T fr)

Cata
The catamorphism is, like map, a higher order function, but it takes only one argu-

ment instead of one for each parameter.

The definition of the catamorphism is similar to the definition of mappfits is
used to remove the constructors, thgrapplies the catamorphism to the recursive
substructures. The difference is that here we leave the values on the top level
unchanged by usingd in the call tof and, most importantly, we insert the values
into another type thab by using the argument functioninstead ofn p,.

cata p::(F pb a->b)->D a->b
cata pi=c
wherec =i. (f pC id).out D
c =D a-> b
out p =D a>F p(D a a
f pC id:: F p(D a a->F pb a
i F pb a->b
Hereid means copies of the identity function.
Note that we could have definethp usingcata :
mapp:i(@ 1->bq)->...->(a n>bp)->D a->D b
mapp g=cata pi
where i = in p-f pid g
i =F p(D b) a-> D b
f pid guF p(MD b) a->F p(b) b
in D = F p(D b) b>D b

This is equivalent to the definition in section 3.5 but slightly less efficient.

1. Actually, for a group of mutually recursive types, the catamorphism (for all types) takes
one argument function for each type in the group.

15

Basic polytypic functions

3.7

3.8

Ana

The anamorphism is the dual of the catamorphism in the sense that everything in the
definition ofana has the same types as in the definitiocatd except that all
arrows are reversed.

anap: (b->F pb a->b->D a

anapo=a
where a=in p-f pa id).o
a tbhb-> D a
o} tb->F pb a
f pa id: F pb a->F p(D a) a
in D F p(D a a->D a

The anamorphism can be used to build elements of a type from something else. As
an example we can build perfect trees of degfilled with an element by using
theana onTree :

anatree 1 (b->F Tree D@)->b->Treea
If we take the argument to the resulting function to be a pair of the desired depth
and the element to fill with we get= (Int,a) so that

Frree ba==Sum 5 a(b,b) ==Sum > a ((Int,a),(Int,a))

o :: (Int,a) -> Sum > a ((Int,a),(Int,a))
0 x)=In 21 X
o (n+1,x) = In 22 ((N,X), (N,x))

perf==ana 1. 0 :(Int,a)->Treea
perf (2,'a’) == Bin (Bin (Leaf 'a’) (Leaf 'a’))
(Bin (Leaf ’'a’) (Leaf 'a’))

Hylo

Often a programming problem can be solved using an intermediate syoh that
we first construct an elementblisinganap and then build the result by destruct-
ing this element witleata p. The resulting program is a composition of a catamor-

phism with an anamorphism. This composition can be simplified by unfolding the
definitions ofcata andana:

cata pi.ana po==c.a==

{ the definitions of cata and ana }

i.(f pc id).out p-in p.(f pa id).o==

{out p.in p==id}

i.(f pC id). (f pa id).o

{f p==map gp, property of all maps: map f.map g==map fg}
i.(f p(c.a) id).o

16

Basic polytypic functions

3.9

This composition is a hylomorphism:

hylo p::(F pc a->c)->(b->F pb a->b->c
hylo pio=h
where h=i. (f ph id).o

h tbh-> c

o} tb->F pb a

f ph id: F pb a->F pc a

i :: F pC a->c

As we can see from the type, the hylomorphism never really refers to the datatype
directly; using a hylomorphism is using a virtual datastructure.

The cata- and anamorphisms can be defined as special cases of the hylomorphism
where

cata pi=hylo piout p
anap o = hylo pin po

Flatten

We now have the necessary basis to go on to define more specific polytypic func-
tions. By flattening an element of a datatyppeith respect to a type parameser

we mean making a list of all occurrences of values of thedypethe element. As

this is a function fronD to a list it is natural to try to use a catamorphism to define

it. For this to be possible we must construct a function (the argumemetta p)

that, given the flattened substructures and the data in the top level nodes, calculates
the resulting list. Intuitively this is done by simply concatenating all sublists and
prepending all elements in the top level. This is not much worse in practice though
one has to keep track of some indices.

We will call the generated functiofisp, ...fl p, where

fl pj:D a->[a ;]

fl Di = cata Dﬂ

where fl = cup fl epi (concat.fl FDr)
flF pla j] a->[a]
fl i ©F plai] a->[a]
fl ror 2 F pla il a->[la]l

cupfgx=(fx)++ (g x)

17

Basic polytypic functions

3.10

Here we have used flatten on the nonrecursiveRypéth respect t@; (this is
fl gpi) and with respect to the parameter representing the recursive argument
(fl epr Wherer is the letter r and not an index variable).

The functiondl g, are defined by induction over the structure of the functor which
means that the definition can be generated by a catamorphimamaowith suitable
arguments.

Partial functions
For the definition of zip we will need to deal with partial functions. For this purpose
we introduce the typklaybe (defined bydata Maybe a = No | Yes a) and
implement partial functions as functions returniteg x for arguments where they
are well defined ando otherwise. Composition of partial functions is stricNm
and is written with the functioomp. We also provideartfun , a simple way of
defining a partial function from a predicate and a normal function.
cmp:(b->1+c)->(a->1+b)->a->1+c
cmp fg x = case g x of

No -> No

(Yesx) ->fx
partfun :: (a->Bool) -> (a->b)->a->1+b
partfun pfx | p x =Yes (fx)

| otherwise = No

We will usually write the typ&laybe a as1+ a.l

The polytypic functiorprop pis used to propagaié® out of the type. This means
that if there is &lo somewhere in an elemenbf D 1+ a the value oprop pe is
No, and otherwise itisese’ wheree’ ise with all occurences ofes x replaced
by justx.

prop p:: D l+a->1+D a

prop p=cata pp

where p = (Yes . in p) ‘cmp’ prop ED
p tF p(l+D a) 1ta-> 1+D a
prop b o F p(l+D a) 1+a->1+F p(D a) a
Yes .in D F p(D a a->1+D a

prop pp:i F p(1+a) 1+b->1+F pa b

1. The functor representing the tylgdaybe isM a = 1+a orjustM = 1 +

18

Basic polytypic functions

3.11

We define a partial function hylomorphigrarthylo that works as a normal hylo-
morphism foryes values and propagatiie values up to the top level.

parthylo p:(F pc a->1+c)->(b->1+F pb a->b->1+c
parthylo ppipo =ph
where ph = pi ‘cmp’ (prop ep- T pph pid) ‘cmp’ po
pid= Yes
ph tbh-> 1+ ¢
po tb->1+F pb a
f pph pid : F pb a->
Fp(@+c) l+a
prop ED F p(1+c) l+a->1+F pc a
pi " F pC a->1+c

As we mentioned in section 3.8 (whésdo is defined)cata andana can be very
easily defined by usingylo and analogously we can define the partial function
version ofana usingparthylo

partana p:(b->1+F pb a)->b->1+D a
partana pro = parthylo p(Yes.in p)ro
Zip

The normal zip on lists takes two lists and return a list of pairs where the i:th pair
contains the i:th element from both lists. The polytypic zip takes a pair of structures
to a structure of pairs. The problem with this is that for a general datatype this oper-
ation is well defined only if the elements have exactly the same form. For lists this
is often handled by just truncating the longer list but for a general type it is not clear
how this truncating should be done. It is, for example, impossible to zip the tree
Leaf x withBin | r . We have therefore chosen to define zip as a partial function:

zip p:: (D a,D b)->1+D (ab)

If it had not been fot+ on the right hand side this would be a typical case for a nor-
mal anamorphism as zip builds values of tppés we know that zip is strict iKo
we can instead define zip by a partial function anamorphism.

zip p=partana pz
where z = zip gp- prod ,out pout p

z: (D aD b)->1+F (D ab b) (ab)
zip ppii(F pa bF pc d)->1+F p(ac) (bd)

The zip on the functorip p) can be defined by induction over the structure of the

functor and thus it can be generated by a catamorphism on thextypeAs an
example of one of these cases we show the zip for a tuple:

zipProd (@ 1...a p)bd 1....b L)) =Yes((a b 1).(a 1.0 1))

19

Program construction combinators

Program construction combinators

4.1

4.2

4.3

In the system we need function builders that given a functor generate the code for
that specific instance of a polytypic function. To simplify writing a function builder
starting with a description of a polytypic function in the notation of section 3 we
will in this section describe a number of code combinators and basic code-building
blocks.

A combinator example
As an example of the use of the program construction combinators, consider the
definition ofcata for some type® a:

cata pf=f.f p(cata pf)id. out D

With the combinators the program code generating this function definition can be
written as:

ca-= f-.(arcd -@ [ca,idc]) -. (outc d)
whereca =catacd-@ [f]
arc d=q (" ++d)
outc d =q (“out” ++d)
catac d = q (“cata’++d)
idc =q"“id”
f =q‘f

providedd is the name of the datatype.

In the following sections we will describe the combinaters-. , -@ and the basic
building blocksarc , outc , ... in more detail.

Basic building blocks

Here we have shorthand notation for the code representing many common func-
tions;id is generated bigc , const byconstc and so on. To give the possibility
to use functions not included here there is also a fungtiote or justq that

embeds any string in the code. The tgpr that is used to represent the expres-
sions is defined in section 5.3.

idc :: Expr String
q :a->Expra

Binary combinators

The basic building blocks are put together to expressions with operators for compo-
sition (-.) and application-@).

(-.) :: Expra->Expra ->Expra

(-@) :: Expr a -> [Expr a] -> Expr a

20

Program construction combinators

4.4

The composition operator takes two expressions and forms a new expression repre-
senting the composition of the two just as the normal compositjoitite applica-

tion operator takes an expression (hopefully representing a function) and an
expression list and forms the application of the first expression to the list of argu-
ments. Neither of these operators do any typechecking of their arguments, leaving
the responsibility of generating typecorrect programs to the programmer using the
combinators.

The code generated for mutual recursive datatypes is often a list a similar functions
generated in parallel and to simplify this we also provide Y and ¢@-) which are
vectorized versions of.() and (@) in the same sense as normal addition is gener-
alised to vectors. This means that for two lists of the same length the one-element
version of the operator is used componentwise so that:

[fL, ..., fn]--[0l, ... gn]==[f1 -. 01,...,fn -. gn]

To build function (or variable) definitions from these expressions we provide a defi-
nition operator £) (together with its vectorized versiom{)) which are used in

place of the ordinary equality sign witt -= right forming a definition given

the left and right hand sides.

(-=) :: Expr a -> Expr a -> Def a

Other combinators

To generate type definitions we have chosen to use identically the same operators to
build datatype definitions as function definitions and then mark datatype definitions
as such by applying the functidatadef as in:

datadef [(q "Test” -@ [q "a"]) -=
(sumF 2 [g "One” -@ [q "a”],
g "Two” -@ [q "a",q "a"])]

generating the code representing:

data Testa =
One a
| Twoaa

After being marked byatadef a list of function declarations will be interpreted as
a list of datatype definitions. In the same way the funafioedef markes defini-
tions as type synonym declarations.

We also supply a number of functions which are combinations of simple building
blocks and the application operator to use as a shorthand notation for functions that
are almost always applied to all their arguments immediately. A simple example is:

quotef :: a -> [Expr a] -> Expr a
quotef str list = q str -@ list

21

System

System

51

5.2

As there is currently no (typed) language available that can handle polytypic func-
tions we have, loosely based on Hollum, made a system that generates (a represen-
tation of) the Haskell code defining a number of polytypic functions given a type
declaration.

Overall structure

We have taken advantage of the fact that there already are compilers which can han-
dle both the parsing of program text to a datatype representing the definitions and
the transformation of programs (as objects of this type) to executable code, so we
will only deal with getting from a parsed program to a new parsed program with the
declarations of the necessary generalised functions added. More specifically the
system is based on nhc [14] but the part that depends on the specific compiler has
been kept small by, as the first and last step, transforming input to, and output from,
our internal representations.

The generalised functions are generated in three phases:

* The parsed program is scanned for type declarations and these are transformed to
functors.

* The generalised function definitions (internally represented as equalities between
expressions) are built from the structure of the functors. (Some intermediate
functions are also defined to make the use and definition of the generalised func-
tions easier.)

* Finally the functions built are transformed from the internal representation to the
datatype of parsed programs in the compiler, and appended to the original pro-
gram. This phase also cleans up the code a bit by doing some purely algebraic
optimizations of the expressions (such as removing unnecésssyy

To make testing easier the system can also show the program text in the last step.

Constructing a functor for a datatype

The first phase of the function generation converts definitions to functors in three
steps; it takes a list of declarations from after the parser, extracts the datatype defini-
tions, groups them into lists of mutually recursive type definitiansl converts

these (with some restrictions) to functors.

1. A group of type definitions is mutually recursive if all definitions, directly or indirectly,
refer to each other.

System

521

522

Representation of types
A type definition in Haskell has the structure

Cioaggag m K
Tv..v, = .. DZ [C; x rlai,jE

i=1 i=1
Crnami@my J

where on the left sid& is the name of the typeythe are type variables and on the

right sides theC, are type constructors andaqne are type expressions.

We store this information in the following structure:
-- ((typename, [type variables]),

[(constructor name, [arguments])])
type Data a = ((a.[a]), [(a,[Typ a])])

Here a type expression can be either a type name with type expressions as argu-
ments, a type variable or a type tuple:

data Typa =
TypCons a [Typ a]
| TypVar a
| TypTuple [Typ a]

The result type from the parser used must include at least the information needed to
build this structure.

The first step in the conversion from datatype definitions to functors takes the
parsed data into a list Dfata , throwing away everything else. After this step noth-
ing remains of the dependence on the datatype of the parsed result.

Mutually recursive datatypes
In the second step we sort the type definitions into mutually recursive groups, each

of which will later become a mutually recursive functor list. We do this by seeing

the list of type definitions as a directed graph, where each defined type name is a
node that is connected to all the type names referenced on the right hand side of its
definition. With this view finding the mutual recursive groups is the same as finding

the strongly connected componénts this digraph. These can be found by stand-

ard graph searchiﬁgEvery directly recursive type will be treated as a group of
mutually recursive types with just one element.

1. A strongly connected component (s.c.c.) of a digraph is a subgraph in which all nodes are
connected to all other nodes, directly or indirectly.

2. For each node we find the intersection of the set of all nodes reachable from it, and the set
of all nodes that can reach it. This intersection is the set of all elements in the s.c.c. to
which this node belongs.

23

System

5.2.3 Functorize
In the third step every type definition gets its top level list of constructors replaced
by aSum The elements in each constructors argument list are transformed and col-
lected into &rod . The transformation of these elements takes a description of a
type expression to a functarans :: Typ a -> Func a , Where
data Func a =
Prod [Func a] -- direct product of functors
| Sum [Func a] -- sum of functors
| Comp a [Func a] -- composition of a constructor
-- with a list of functors
| ParIntInt -- type parameter, first the position
-- number in the Func list

-- then the local argument number
| Rec Int -- recursive parameter

As the structure of the type expression is preserved in this process it is natural to
define this transformation by means of a catamorphism on th&yype. This cat-
amorphism replaces type variables by their positions on the left hand side of the
type definition yar2par), tuples byProd s and occurrences of any of the mutually
recursive type names Rec provided that all the arguments are type variables, and
in the right orderdomp2rec).

comp2rec :: a -> [Func a] -> Func a

var2par ::a -> Func a

Prod :[Funca] ->Funca

cata_Typ:: (a->[b]->b)->(a->b)->([b]->b) ->
Typa->b

trans :Typa -> Func a

trans = cata_Typ comp2rec var2par Prod

If some recursive reference is not identical to any left hand side, or if a function
type is encounterehns will report an error and functorize will fail.

5.3 Implementing the combinators
We have chosen to represent a program as a list of definitions where each definition
is marked as being either a datatype definition or a function definition but otherwise
identical in structure. We represent definitions simply by a pair of a left and a right
hand side expression.

5.3.1 Types for expressions
An expression has a very simple structure, it is either a primitive function or con-

stant or an application of one expression to a list of expredsions

data Expr a = EApp (Expr a) [Expr a]
| EPrim (PrimExpr a)

1. Compared witt-calculus we lack the abstraction case, but with the primitive functions
supplied we can write all the functions we need.

System

5.3.2

533

534

54

HerePrimExpr contains the quote case, and the representation of a number of use-
ful functions. It would have been sufficient to use the quote case for everything, but
having special cases for different functions makes it easy to do simplifications of
the generated expressions in a separate phase.

data PrimExpr a = PEQuote a
| PEprod Int | PEProd Int
| PEsum Int | PESum Int
| PEid | PEconst ...

Theint argument to some of these constructors is the index on these functions. As
an example the expressigRrim (PEprod 3) represents the functigmod .

Basic building blocks
To be able to make changes to these types without having to change the whole sys-

tem we have defined a number of very simple functions which correspond to the
different cases of the type definitions:

g:a->Expra

g = EPrim . PEQuote
prodc :: Int -> Expr a
prodc = EPrim . PEprod

idc :: Expr a
idc = EPrim PEid

Binary combinators
With the chosen type for expressions the definition of the application and composi-

tion operators is very simple:

(-@) :: Expr a -> [Expr a] -> Expr a
f-@1=EAppfl
(-.) :: Expr a -> Expr a -> Expr a
f-.g=dot-@ [f,g]

where dot = EPrim PEdot

The definition operatar=) just pairs the left and right arguments and marks this
as a function definition as default.

Other combinators
The functionglatadef andtypedef change the marks on a list of definitions to

make them datadefinitions and typedefinitions respectively.

Function generators

We provide functions generating the functions defined in section 3 (object and
arrow, in and out, cata, ana, hylo, map, flatten, zip, parthylo and prop) for all
datatypes for which we can construct a functor. We also provide functions generat-

25

System

55

ing the functions needed for unification (unify, match and datatypes with variables
added, see section 6.5) but only for directly recursive types. All the generating func-
tions take a description of a functor as first argument and can be mapped over the
list of functor descriptions that is generated by the functorize step.

Simplification
The simplification functiosimp is applied to both the left and the right hand side
of all function definitions. It is written as a catamorphism on the Eype:

simp :: Expr a -> Expr a
simp = cata_Expr simpapp (EPrim . simpprim)
where cata_Expr :: (b -> [b] -> b) -> (PrimExpr a -> b) ->
Expra->b
simpapp :: Expr a -> [Expr a] -> Expr a
simpprim:: PrimExpr a -> PrimExpr a

The functionsimpprim simplifies the indexed functions for small indices by
replacingprod ; andsum; withid , uncurry ¢ with const and a number of other
cases like these. Everything else is left unchanged.

simpprim (PEProd 1) = PEid
simpprim (PEsum 1) = PEid

simpprim (PEuncurry 0) = EPrim PEconst
simpprimp =p

The functionsimpapp simplifies applications with four rules:

id . f ==f f.id=="f
(f.g) x==f (@ x) idx==x

This can easily be extended to handle more complicated cases but already now it
makes the generated code much more readable in some cases and also a bit more
efficient.

After these simplifications the code is either transformed to the datatype represent-
ing programs in the compiler, or printed as text. Both of these transformations are
written as catamorphisms on the typer .

26

Unification

Unification

6.1

6.2

In this section we will describe unification (closely following Fokkinga [3]), a spe-
cific implementation of a unification algorithm using lazy arrays, and the generali-
sation of this algorithm to a polytypic unification algorithm.

Introduction to unification

Unification is, informally, the process of making two given expressions containing
variables equal by substituting expressions for the variables. For example consider
unifying f (x, f(a, b)) withf(g(y, @,y) wherex y arevariablesaad b, are
constants. As both expressions are of the fbfm) we only need toxunify

with g (y, @ and, with the same substitutidr(,a, b) with . These two pairs can
be trivially unified with the substitutiod = [x - g(y, @,y - f(a b] . Thus

the original pair is unified bg (b = 02 (we need to apply the substitution twice
as y occurs in the substitution from x) to form the unified expression

f(g(f(a b),a),f(ab))).

The unification fails if we ever have to unify two different constructors or constants
(which we will treat as nullary constructors) or if we have to assign two different
(that is, not unifiable) expressions to the same variable.

If we try to unify x withf(x) we willgeto = [x - f(X)] which does not by

any finite number of iterations make the two expressions equal, but whose fixpoint
can be seen as an infinite substitution that actually makes the expressions equal. In
most applications one does not consider infinite substitutions but by allowing them
in the result from the unification algorithm we can still choose if it should be

allowed or not thus making the program more general.

Definitions

To make the notation more precise we will call the expressions that we unify terms.
A term is recursively defined as either a numbered variable or an expression con-
sisting of a constructor followed by a list of terms.

A substitution is a function from variables to terms, but we will also use it on terms
by mapping the function to all variables in the term. Note that after one application
of a substitution the resulting expression may still contain variables from the substi-
tution.

A unifier of a pair of terms is a substitution that makes the two terms equal. A uni-
fier of a list of such pairs is a substitution that unifies all of the pairs.

27

Unification

6.3

6.4

A substitutions is at least as generalsas Siff rs where r is a substitution.

With this order the identity substitution is at least as general as all other substitu-
tions.

The problem of unification can now be specified as the task of finding the most gen-
eral unifier of a list of pairs of terms.

Outline of a unification algorithm

We want a function that given a lists of pairs of expressions finds the most general
substitution or, if some pair is not unifiable, reports an error. To do this we can look
at one pair at a time collecting assignments for the variables as we go through the
list always checking that every new assignment conforms with the old ones.

To unify a pair of terms we can have a number of different cases depending on the

form of the pair:

1. (Exp a, Exp b) :To unify two expressions we have first check that their top
level constructors are identical and then that all their argu-

ments are pairwise unifiable by a recursive call to unify.

2. (Vari, Vari) :A variable is trivially unifiable with itself without any new

associations.

3. (Vari, term) . To unify a variable with any term we have to include the
association of with the term, in the substitution. If there is
already an association for this variable the old and the new
terms must be unified which can be done with a recursive

call to unify.

4. (term, Var i) . This case is handled by the previous case by just swapping

the elements of the pair as unification is symmetric.

This description of the algorithm does not depend on the datatype of the expressions
which makes it a perfect candidate for a polytypic algorithm. Case 2, 3 and 4 do not
directly refer to the expressions so the only part that necessarily differs between
unification programs for different types is case 1, the matching of two expressions.

Unification with lazyArray

One important choice that has to be made when implementing the unification algo-
rithm is how to represent the substitutions. We know that when an association has
been added to the substitution it will never be changed but probably looked up a
number of times. In our algorithm we will also need to do lookups before the whole
substitution is determined. This can all be implemented in an efficient way by using
a lazy array, lazier than the standard Haske#ly construct that evaluates all indi-

28

Unification

ces to check that they are nonequal and within the bounds. We have therefore cho-
senlazyArray (defined in [8]) which has the desired properties.

This version of the unification algorithm is based on the one occurring in [8].

2 unifyT :: (Eq b, Enum a, Ix a) =>
(a,a) -> [(Term a b,Term a b)] -> Array a [Term a b]
- unifyT r g = amap (map snd) a

. where

1

2

3

4

5: a=lazyArray r (unify 1 q)
6 unify :: Int -> [(Term a b, Term a b)] ->

7 [Assoc a (Int,Term a b)]

8: unifyu[]=[] --the empty listis trivially unified

9 unify u ((Exp a,Exp b):q) = unify u ((match (a,b))++q)
10: unify u ((Varn,Varm):q) | m==n=unifyuq

11 : unify u ((Var m,t):q) =

12: (m := (u,b):

13: case head (a!m) of

14 : (u,t)|u==u" ->unify (u+l) q
15: | otherwise -> unify u ((t',t):q)

16 : unify u ((t,v):q) = unify u ((v,t):q)
17 : match p = case matchD p of
18 : No -> error “can’t match expressions”

19: Yesq->(q

The algorithm takes two argumentsis a range of the forifmin,max) that con-

tains all variables occurring in the second argumenthich is the list of pairs of

terms to be unified. The range is needed to make an array and could have been cal-
culated by searching through the whole list of tegrbsit this is left to the user.

The output is an array with rangeand with lists of terms as elements. If a certain
variable is free im, the corresponding list in the resulting array will be empty, but
otherwise the first element of this list will be the term the variable is set equal to.

The internal functiominify produces a list of variable associations that are lazily
inserted into an array bgzyArray on line 5. This means that when the assign-
ment for a variable ia is asked for, for example by the array indexihg on

line 13,lazyArray will search through its list of assignments until it finds one for
the required variabland, at the same time, when passing the other assignments on
the way, it will insert them too into the arramify is the main unification algo-

rithm and contains the four cases of the previous section:

29

Unification

6.5

In the first case (line 9) the functiomatch takes care of checking the constructors
and, if they are equal, zips the arguments to a list but otherwise reports an error. As
all these pairs of subexpressions also have to uniféfgl, is called recursively

with the new pairs concatenated to (the beginning of) the.list

The second case where two equal variables are matched jushigallswith the
rest of the list.

In the third case, where a variable is matched against a term (line 11), we must
check if there already is an association for that variakdeTinis is dangerous since

if no association has yet been made the program would get stuck waiting for itself.
To prevent this from happening we first emit this association paired with a unique
numberu to the resulting list (line 12) and then check to see what the first associa-
tion for this variable is (line 13). If the uniqgue numbers are equal the looked up
association is the one we just emitted and thus it is the first association for this vari-
able so all is well and we can go on to unify the rest of the list (line 14). If the num-
bers are not equal we have an earlier association for the same variable so we have to
check that the old and the new associated terms can be unified by watfling
with this pair prepended to the list.

The resulting array is finally stripped of the internally used numbers with the
amap on line 3.

As an example of the use of this algorithm we can take the first pair of terms from
the introduction in section 6.1:

p=(app f [x, app f [a,b]],
app ‘' [app ‘g’ [y.al.x])
where app x | = Exp (x,)
a=app‘a’[l
b =app ‘b []
x=Varl
y=Var 2
I = unifyT (1,2) [p]

The result is an array that satisfies the following two equalities: (where we assume
the samavhere definitions as in the definition of)

11 == [app ‘g’ [y.all
112 == [app ‘f' [a,b]]

Polytypic unification
The polytypic unification algorithm for a datatypeises as terms elements of type
VD v which is the typ® with variables of type added:

dataVDv a=VDVarv|VDExp (F p(VDv a) a)

30

Unification

This means that a value of the tyyi@is either a variable, or an expression which is
almost of the typ®. Everything inD is same except that instead of recursive refer-
ences tm itself we insert references .

In the way we have written the lazy unification algorithm almost all type depend-
ence is already abstracted out. When we change from th&edypdo VDwe get
VDEXxp instead oExp andvDVar instead ofvar in the pattern matching of the four
unification cases. To get rid of this dependence too we cauuggon the input to
remove the constructors and usepon the output to get back to the correct type.
What is left after this is just the three functiomsp, out \pandmatch p and these

can be supplied as arguments to an intermediate funatityh . This function is
completely independent @fand can therefore be defined once and for all in a prel-
ude and need not be generated by the system. The differences hetifly¢enand

the lazy array unification algorithm from section 6.4 are markethlgs below:

unifyl mat chD i nVD out VDr g = amap (map (i nVD.snd)) a
where
a = lazyArray r (unify 1 (outlist q))

{- these lines are the same except that
Var becomes I ny; and Exp becomes I nys -}
match p = case matchD p of
No -> error “can’t match expressions”
Yes q -> outlistq
outlist = map (prod2 outVD out VD)

With unifyl defined the definition afnify s trivial.

unify = unifyl match pin ypout yp

The functionmatch takes care of most of case 1 in the unification algorithm. First,
by usingzip gpit checks that the constructors in the top level of the two expressions
are equal. After the zip the expression can contain pairs of constants which all must
be equal if the expressions are to be unifiable. This is checked by first flattening the
expression usintj p; (for alli) and then mapping= over the resulting lists. If

any of these checks faihatch returnsNo, but if all succeeds it returites g

whereq is the list of pairs of subexpressions which need to be unified.

matchp:: (Eqa 4,..,Eqa n) =>

(F pb a F pb a)->1+[(b,b)]
match p = partfun pred fl EDr ‘CMP'zZip gp
where pred = and n (alleq . fl Fpy - (alleq . fl FDn)
pred :: FD (b,b) (a,a) -> Bool
alleq = all (uncurry (==))
zip gp (F pb a F pb a)->1+FD(bb) (aa)
fl FDr FD (b,b) a,a) -> [(b,b)]

31

Conclusions

Conclusions

In this report we have explained what polytypism is, we have presented a number of
basic polytypic functions, and we have shown how polytypic functions can be used.
We have described a system in which a number of polytypic functions can be auto-
matically generated using a formalism rather close to normal functional program-
ming. The generating functions take a description of a datatype and generate
functions that in some way depend on this type. We have shown that by small
changes of a traditional unification algorithm, we obtain a polytypic version work-
ing for all directly recursive tree like types.

The system could be a good basis for the implementation of a polytypic program-
ming language where types are (maybe somewhat restricted) values and polytypic
functions are functions taking a type as an argument. There are a number of prob-
lems with doing this as we would need new notation to express types as values, a
new type system and many other things.

A quicker way of making this system more available for experimentation would be
to extend a Haskell compiler with one new keywgederating to be used with

the same syntax as tHeriving clause after a datatype declaration. The compiler
could then call our system after the parser requesting that the code, defining the pol-
ytypic functions named in thgenerating construct, be generated. It would then
compile the generated functions together with the rest of the program. In this way
the programmer could use these polytypic functions very easily.

32

References

References

[1] BIRD, R. S. An Introduction to the Theory of LisBroy, M, editor,Logic of
Programming and Calculi of Discrete Desjgrol. F36 of NATO ASI Series,
pages 5-42, Springer-Verlag, 1987.

[2] BIRD R.S., de MOOR O., HOOGENDIJK 8eneric programming with rela-
tions and functorsSubmitted for publication, 1993.

[3] FOKKINGA, M. Algorithmic synthesis of the Unification Algorithbmpub-
lished manuscript. 1989.

[4] HUDAK P., PEYTON JONES S.L., WADLER P. (editors) Report on the Pro-
gramming Language Haskell. Version 1AZM SIGPLAN notice7 (5),
May 1992

[5] JEURING, J. Algorithms from Theorems. In M. Broy and C.B. Jones, editors,
Programming Concepts and Methogages 247-316. North-Holland, 1990.

[6] JEURING, J.Constructive Algorithmics: calculating programs from their
specificationLecture notes for course on the subject at Chalmers University of
Technology, 1994.

[7] JEURING J., HUTTON G.,de MOOR ®lollum - a generic-programming
preprocessor for GofetJnpublished. Available by anonymous ftp from

ftp.cs.chalmers.se in pub/users/johanj/hollum.tar.Z

[8] JOHNSSON, T., FUNCTIONAL PEARLS Efficient Graph Algorithms Using
Lazy Monolithic Arrays. Submitted for publication (in J. Functional Program-
ming), 1993.

[9] JONES, M. PAn Introduction to Gofewrersion 2.20, draft, included as part of
the standard Gofer distribution. 1991.

[10] KNIGHT,K. Unification: A Multidisciplinary SurveyComputing Surveys
Vol 21, no 1, p. 93, acm press, 1989.

[11] MALCOLM, G. Data structures and program transformatfacience of Com-
puter ProgrammingVol 14, pp 255-279, 1990.

[12] MEIJER, E. and HUTTON, Bananas in Space - extending fold and unfold
to exponential type§o appear in FPCA 95

[13] PIERCE, B. CBasic Category Theory for Computer Scientigisindations of
Computing Series, The MIT Press, 1991.

[14] ROJEMO, NHighlights from nhc - a space efficient Haskell compiler.
appear in FPCA 95

33

Appendix A - example of generated code

Following is all the code generated by the system for the tygtes Rose, Zig
andzag. The first two types are not mutually recursive Rage usesdlist . Zig
andzag are mutually recursive and therefore defined in parallel.

data List a = Nil | Cons a (List a)

fList r1 p11 = (sum2 id (prod2 p11 r1))

type FList r1 p11 = (Sum2 () (p11,r1))

inList = (join2 (const Nil) (uncurry2 Cons))

outList Nil = (In21 ())

outList (Cons x1 x2) = (In22 (x1,x2))

cataList rl = (rl . ((fList (cataList rl) id) . outList))
analist rl = (inList . ((fList (anaList r1) id) . r1))
hyloList i1 01 = (i1 . ((fList (hyloList i1 01) id) . 01))
maplList f1 = (inList . ((fList (mapList f1) f1) . outList))
propList = (cataList ((mapMaybe inList) . propFList))
propFList = (propsum2 . (sum2 propprod0 propprod2))

zipList = (parthyloList (Yes . inList) (zipFList . (prod2
outList outList)))

zipFList = (cmp (propsum2 . (sum2 (cmp propprod0 zipprod0)
(cmp (propprod2 . (prod2 Yes Yes)) zipprod2))) zipsum2)

parthyloList i1 01 = (cmp i1 (cmp (propFList . (fList
(parthyloList i1 01) Yes)) o1))

flList ca fIF1 = (ca (cup2 fIF1 (concat . fIFListrl)))
flListl = (flList catalList fIFList1)

fIFListrl = (flsum2 flprodO (flprod2 nil wrap))
fIFList1 = (flsum2 flprodO (flprod2 wrap nil))

data VList al a2 = (VListVar al) | (VListExp (FList (VList al
a2) a2))

inVList = (join2 VListVar VListExp)
outVList (VListVar x1) = (In21 x1)
outVList (VListExp x1) = (In22 x1)

matchList p = (cmp (partfun (and1 ((all (uncurry2 (==))) .
fIFList1)) fIFListrl) zipFList p)

unifyList p = (unify matchList inVList outVList p)

data Rose a = Fork a (List (Rose a))

fRose rl p11 = (prod2 p11 (mapList r1))

type FRose rl pl11 = (p11,((List) r1))

inRose = (uncurry2 Fork)

outRose (Fork x1 x2) = (x1,x2)

cataRose rl = (rl . ((fRose (cataRose rl) id) . outRose))
anaRose rl = (inRose . ((fRose (anaRose rl) id) . rl))
hyloRose i1 01 = (i1 . ((fRose (hyloRose i1 01) id) . 01))

1/5

mapRose f1 = (inRose . ((fRose (mapRose f1) f1) . outRose))
propRose = (cataRose ((mapMaybe inRose) . propFRose))

propFRose = (propsum1l . (propprod2 . (prod2 id (propList .
(maplList id)))))

zipRose = (parthyloRose (Yes . inRose) (zipFRose . (prod2
outRose outRose)))

zipFRose = (cmp (propsuml . (cmp (propprod2 . (prod2 Yes (cmp
(propList . (mapList Yes)) zipList))) zipprod2)) zipsum1)

parthyloRose i1 01 = (cmp i1 (cmp (propFRose . (fRose
(parthyloRose i1 01) Yes)) 0l))

flRose ca fIF1 = (ca (cup2 fIF1 (concat . fIFRoser1)))

flRosel = (flRose cataRose fIFRosel)

fIFRoserl = (flsum1 (flprod2 nil (cupl (concat . (flListl .
(mapList wrap))))))

fIFRosel = (flsum1 (flporod2 wrap (cupl (concat . (flListl .
(maplList nil))))))

data VRose al a2 = (VRoseVar al) | (VRoseExp (FRose (VRose al

a2) a2))
inVRose = (join2 VRoseVar VRoseExp)
outVRose (VRoseVar x1) = (In21 x1)
outVRose (VRoseExp x1) = (In22 x1)

matchRose p = (cmp (partfun (andl ((all (uncurry2 (==))) .
flFRosel)) fIFRoserl) zipFRose p)

unifyRose p = (unify matchRose inVRose outVRose p)

data Zig a b = Blib | Ping a (Zag a b)

data Zag a b = Blob | Pong b (Zig a b)
fZigrl r2 p11 p12 = (sum2 id (prod2 p11 r2))
fzag rlr2 p21 p22 = (sum2 id (prod2 p22 r1))
type FZig r1 r2 p11 p12 = (Sum2 () (p11,r2))
type FZag rl r2 p21 p22 = (Sum2 () (p22,r1))
inZig = (join2 (const Blib) (uncurry2 Ping))
inZag = (join2 (const Blob) (uncurry2 Pong))
outZig Blib = (In21 ())

outZig (Ping x1 x2) = (In22 (x1,x2))

outZag Blob = (In21 ())

outZag (Pong x1 x2) = (In22 (x1,x2))

catazigrlr2=(rl. ((fZig (catazig rlr2) (catazagrlr2)id
id) . outZig))

cataZagrlr2=(r2.((fZag (cataZigrlr2) (cataZagrlr2)id
id) . outZag))

anazigrlr2 =(inzig . ((fZig (anazig r1 r2) (anaZagrlr2)id
id) . r1))

anaZagrlr2 =(inZag. ((fZag (anazigrlr2) (anaZagrlr2)id
id) . r2))

hyloZig il i2 01 02 = (i1 . ((fZig (hyloZig i1 i2 01 02)
(hyloZag il i2 01 02) id id) . 01))

2/5

hyloZag il i2 01 02 = (i2 . ((fZag (hyloZig i1 i2 01 02)
(hylozag il i2 01 02) id id) . 02))

mapZzig f1 2 = (inZig . ((fZig (mapZig f1 f2) (mapZag f1 f2) f1
f2) . outZig))

mapZag f1 f2 = (inZag . ((fZag (mapZig f1 f2) (mapZag f1 f2) f1
f2) . outZag))

propZig = (cataZig ((mapMaybe inzig) . propFZig) ((mapMaybe
inZag) . propFZag))

propZag = (cataZag ((mapMaybe inZig) . propFZig) ((mapMaybe
inZag) . propFZag))

propFZig = (propsumz2 . (sum2 propprod0 propprod?2))
propFZag = (propsum?2 . (sum2 propprodO propprod2))

zipZig = (parthyloZig (Yes . inZig) (Yes . inZag) (zipFZig .
(prod2 outZig outZig)) (zipFZag . (prod2 outZag outZag)))

zipZag = (parthyloZag (Yes . inZig) (Yes . inZag) (zipFZig .
(prod2 outZig outZig)) (zipFZag . (prod2 outZag outZag)))

zipFZig = (cmp (propsum2 . (sum2 (cmp propprodO zipprod0) (cmp
(propprod?2 . (prod2 Yes Yes)) zipprod2))) zipsum2)

zipFZag = (cmp (propsum2 . (sum2 (cmp propprod0 zipprodO) (cmp
(propprod2 . (prod2 Yes Yes)) zipprod2))) zipsumz2)

parthyloZig i1 i2 01 02 = (cmp il (cmp (propFZig . (fZig
(parthylozig i1 i2 01 02) (parthyloZag il i2 01 02) Yes
Yes)) o0l))

parthyloZag il i2 01 02 = (cmp i2 (cmp (propFZag . (fZag
(parthylozig i1 i2 01 02) (parthyloZag il i2 01 02) Yes
Yes)) 02))

flzig caflF1 fIF2 = (ca (cup3 flIF1 (concat . fIFZigrl) (concat
. fIFZigr2)) (cup3 fIF2 (concat . fIFZagrl) (concat .
fIFZagr2)))

flzigl = (flzig catazig fIFZigl fIFZagl)
flzagl = (flZig cataZag fIFZigl fIFZag1)
flzig2 = (flzig catazig fIFZig2 fIFZag2)
flzag2 = (flZig cataZag fIFZig2 fIFZag2)
fIFZigrl = (flsum2 flprod0 (flprod2 nil nil))
fIFZigr2 = (flsum2 flprod0 (flprod2 nil wrap))
fIFZigl = (flsum2 flprodO (flprod2 wrap nil))
fIFZig2 = (flsum2 flprodO (flprod2 nil nil))
fIFZagrl = (flsum2 flprodO (flprod2 nil wrap))
fIFZagr2 = (flsum2 flprodO (flprod2 nil nil))
fIFZagl = (flsum2 flprod0 (flprod2 nil nil))
fIFZag2 = (flsum2 flprod0 (flprod2 wrap nil))
fIFZag2 = (flsum2 flprodO (flprod2 wrap nil))

3/5

Appendix B - prelude

Following are all the functions needed to make the code in appendix A run.

-- Product

type Prod2 a b = (a,b)
prod2 fg (a,b) = (fa, g b)
uncurry2 f (x,y) =fxy
split2fga=(fa, ga)

-- Sum

data Sum2ab=1In2la|In22b
sum2 fg (In21 a) = In21 (f a)
sum2 fg (In22 b) = In22 (g b)
join2fg(n2l1a)=fa

join2fg (In22b)=gb

-- Flatten
cup0 x =]
cuplf x=fx
cup2fg x=fx++gx
cup3fghx=fx++gx++hx

flsuml =id
flsum2 = join2

florod0 () =[]
florodlf (a) =fa
florod2 fg (a,b) =fa++gb

nilx =]
wrapa =][a]

-- Partial functions

data Maybe a=No | Yes a
mapMaybe f No = No
mapMaybe f (Yes x) = Yes (f x)
cmp fg x =case g x of

No -> No
(Yesx) ->fx
partfun pfx | p x =Yes (f x)
| otherwise = No
-- Prop
propprodO () =Yes ()
propprodl (Yes x) =Yes ()

propprodl _ = No
propprod2 (Yes x1,Yes x2) = Yes (x1,x2)
propprod2 _ = No

propsuml =id

propsum?2 (In21 (Yes x)) = Yes (In21 x)
propsum?2 (In22 (Yes x)) = Yes (In22 x)
propsum2 _ = No

4/5

- Zip

zipprod2 ((a,b),(c,d)) = Yes ((a,c),(b,d))
zipprodl ((a), (b)) =Yes ((a,b))
zipprod0 ((), (O)=Yes()

zipsum?2 (In21 x,In21 y)= Yes (In21 (x,y))
zipsum2 (In22 x,In22 y)= Yes (In22 (x,y))
zipsum2 _ = No

zipsuml (x,y) = Yes (X,y)

-- Match

ando x =True

andlpl x= plx

and2 p1 p2 x = (pl x) && (p2 x)

-- UNIFICATION
-- unify is independent of the datatype it works on!
-- The unification algorithm
-- (s the list of pairs of terms to unify
-- risarange covering all variables in the expressionpairs
in g
unify matchD inVD outVD r g = amap (map (inVD.snd)) a
where
a = lazyArray r (unify (1::Int) (outlist q))
unify u] =]
unify u ((In22 a,In22 b):q) = unify u (outlist (match
(a,b)) ++q)
unify u ((IN21 n,In21 m):q) | m==n=unifyuq
unify u ((INn21 m,t):q) =
(m :=(u,t)):
case head (a!m) of
(u,t) | u==u’->unify (u+1) q
| otherwise -> unify u ((t',t):q)
unify u ((t,v):q) = unify u ((v,t):q)
outlist = map (prod2 outVD outVD)
match p = case matchD p of
No -> error “unify: can’t match expressionpair”
Yes|->|

{-
-- A simulation of lazyArray
lazyArray (min,max) xs = array (min,max) [i:=[Vv | (:=v) <-
XS, i==j]
| i <- [min..max]

]

5/5

