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Abstract
Accurately predicting the energy consumption of road segments is an important
topic in electric vehicles that might alleviate the range concerns if it is addressed
properly. We employ a contextual combinatorial multi-armed bandit framework to
learn the unknown parameters of an energy consumption model which is necessary
for energy-efficient navigation. Four different agents: Thompson Sampling, Disjoint
LinUCB, Hybrid LinUCB, and greedy algorithms are implemented to observe their
performance. All experiments are conducted on the output of a Luxembourg SUMO
traffic simulation. The main finding of this research is that contextual information
such as speed and acceleration data contributes to better learning of parameters.
Although the contextual combinatorial algorithms seem promising for addressing
the energy-efficient shortest path problem, none of the agents achieve zero regret
consistently which indicates that further improvements are necessary to obtain the
desired results.

Keywords: Contextual combinatorial multi-armed bandit, online learning, electric
vehicles, energy consumption prediction, computer science.
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1
Introduction

1.1 Motivation
The development of electric vehicles (EV) has increased very rapidly in the last
decade due to growing interest towards both EV and environmental consciousness.
However, battery capacities still pose an obstacle for higher demand. Despite the
presence of fast chargers, long charging times compared to fuel refilling is another
obstacle for electric vehicles to replace conventional vehicles. We can alleviate these
concerns by taking advantage of data science to predict energy consumption to con-
struct more robust route planning methods.

Volvo Cars currently has several plug-in hybrid models and aims to transform the
conventional combustion engine models into electrified versions. For all these vehi-
cles, they can benefit from having route planning algorithms to calculate the most
efficient, thus the most environment-friendly path.

1.2 Problem Description
Our aim is to address Energy-Optimal Shortest Path Problem in electric vehicles,
which is choosing the best path with respect to energy consumption while satisfy-
ing battery constraints. When the energy consumption associated with each road
segment is known in advance, it is fairly easy to address a navigation problem using
some existing shortest path algorithm. Even though it is possible to calculate the
theoretical energy consumption of a road segment, the actual consumption can vary
from theoretic results and thus cause unreliable predictions of remaining energy.
Instead, this paper investigates how user consumption data can be utilized to better
predict the energy consumption of a road segment with the help of online learning
methods. The advantage of adopting an online learning method is that we do not
have to re-train the model with each newly arrived data, since these methods process
the data sequentially.

In order to solve this problem, we aim to map the problem into a multi-arm ban-
dit problem which is an online learning method and involves probabilistic energy
consumptions represented by edge weights. These edge weights will later be used
in addressing the shortest path problem. Our intended outcome is to minimize
the regret that we get while learning the parameters of these distributions. The
first question that we try to address throughout the thesis is whether training the

1



1. Introduction

multi-armed bandit by only using observed energy consumption yields a sufficient
approximation or whether we can benefit from introducing contextual information,
such as speed and acceleration. Secondly, we will evaluate different learning strate-
gies in the multi-armed bandit setting.

1.3 Scope
We simplify the energy-optimal shortest path problem to only concern energy con-
sumption and disregard battery constraints. We focus on navigation in the city
of Luxembourg. We intend to see how existing contextual bandit methods in lit-
erature can be adapted to address the energy-optimal shortest path problem. We
will also assess the degree of benefit from introducing contextual information to the
algorithms.

1.4 Thesis Outline
Chapter 2 presents some background information about energy consumption in elec-
tric vehicles and multi-armed bandits, collected from several studies in literature.
The process of preparing data to be fed into the algorithms is described in chapter
3. The details of algorithms are presented in chapter 4. Chapter 5 contains resulting
figures and plots with explanations and discussions. Finally, we present future work
and reach a conclusion in chapter 6.

2



2
Background

2.1 Energy Consumption Estimation of Electric
Vehicles

In order to address energy-efficient shortest path problem, a deterministic approach
can be to compute the theoretical consumptions of road segments as edge weights.
There are several approximation methods of energy consumption in electric vehi-
cles but they either lack precision or require detailed driving cycles (Demir et al.,
2014). However, these approximations can still be useful to determine the contexts
in our algorithms. The approximation proposed by Basso et al. (2019) involves ap-
proximated constant acceleration a, approximated inclination angle θ over the road
segment length d, and initial and final speeds (vi,vf ). There are also some vehicle
specific parameters required for a better approximation, such as rolling resistance
coefficient Cr, drag coefficient Cd, frontal surface area of the vehicle A and pow-
ertrain efficiency η. Apart from these parameters, air density ρ and gravitational
constant g are also important factors that affect energy consumption. Putting all
together, the equation 2.1 shows the total electric energy need (Wh) to complete a
certain road segment.

e =
mad+mgd sin θ +mgCrd cos θ + 0.5CdAρd(v2

f + (v2
f − v2

i )/2)
3600η (2.1)

We can infer from equation 2.1 that squared speed and acceleration are proportional
to the estimated energy consumption.

2.2 Multi-armed Bandits
A probabilistic approach to the energy-optimal shortest path problem can be achieved
by a framework called multi-armed bandits. This framework enables us to model
edge weights as probability distributions of energy consumption which may help us
to capture the energy consumption pattern that may be missed by the approxima-
tion methods.

The original multi-armed bandit problem is formulated as a gambler trying to get
the maximum benefit from a slot machine through experimenting. The slot machine,
i.e., bandit is assumed to have several arms with different probability distribution
of rewards. The aim is to estimate these distribution parameters and maximize the

3



2. Background

expected reward at the end of T steps. Initially, the gambler has no information
of which arm yields more reward. While he tries to learn the best benefiting arm,
he faces a dilemma of “explore-exploit”. Exploiting the best arm according to our
best knowledge may not always give the best reward in the long-term since the pa-
rameter estimations at that time may be far from reality. If the gambler chooses
to explore, he may gain more knowledge about the reward distributions, but it may
result in less short-term reward. For those reasons, neither pure exploration (ran-
dom strategy) nor pure exploitation (greedy strategy) is a valid option for solving
the problem effectively. There are several algorithms to address this explore-exploit
dilemma which will be discussed in the following section. But let us first introduce
some technical terms and discuss the multi-armed bandit problem formally.

The multi-armed bandit problem is described as a game between a learning agent
and an environment in literature (Lattimore & Szepesvári, 2020, ch. 1). The learn-
ing agent, also referred to as an algorithm, observes the environment to choose an
action (namely arm) in each round. According to the chosen action in each round,
the environment reveals a reward for that action. The aim of an agent is to adopt a
suitable policy to maximize the received reward over some time period. The policy is
formally defined as a mapping from history (a sequence of observed (action, reward)
pairs) to actions (Lattimore & Szepesvári, 2020, ch. 1). At the end of each round,
instant regret is calculated by subtracting the expected reward of the played arm
from the expected reward of the best arm. Cumulative regret is calculated by adding
those instant regrets at the end of some time period to evaluate the performance of
a learner.

Consider a bandit problem with a set A of K possible arms to pull. Each arm a
has a probability distribution of rewards with mean µa (also expected reward). It
is important to note that all rewards are assumed to be independent of each other.
Let a∗t = argmaxa∈A µa be the optimal arm at time t. Every agent/algorithm has
a different way to choose the best arm. Let arm at be the played arm at time t
according to some algorithm. Then, instant regret is calculated as:

µa∗
t
− µat (2.2)

and cumulative regret after T rounds is:

T∑
t=1

(µa∗
t
− µat) (2.3)

The overall intention is to estimate the parameters as close as possible to the true
values of actions while keeping cumulative regret at the end of T rounds as low as
possible.

4



2. Background

2.3 Algorithms to Address Explore-Exploit Dilemma

2.3.1 Greedy Algorithms
Since pure exploitation is not an effective solution as we argued in the previous
section, ε-greedy is one possible method to enforce some exploration (Sutton &
Barto, 1998, ch. 2). With small probability ε, the algorithm chooses arms randomly
which corresponds to exploring the probability distribution of a sub-optimal arm.
The natural implication of this statement is that the algorithm exploits the arm
with highest expected reward the rest of the time (i.e. with 1− ε probability).

Algorithm 1 ε-greedy
Input: ε
for t=1...T do
pick random real number N ∈ [0, 1]
if N < ε then
select an arm at random at ∈ A

else
for all a ∈ A do
estimate the mean µ̂a

end for
choose arm at = argmaxa∈A µ̂a

end if
apply at and observe reward rt,at

update the distribution of at
end for

Besides its simplicity, another advantage of this algorithm is, as the number of trials
goes to infinity, every arm will be explored infinitely many times. Thus, in theory,
we would be able to learn the actual value of every action. However, in many real-life
problems, the dataset is limited, and we are more interested in learning the optimal
action. Thus, wasting time on learning the actual values of the arms that are far
from being optimal decreases the efficiency of the algorithm. This is because the
ε-greedy algorithm explores completely at random.

2.3.2 Thompson Sampling
Thompson sampling (Thompson, 1933) was introduced in 1933 as a method for
balancing the explore-exploit dilemma in a smarter way compared to randomly
selecting arms. Initially, Thompson sampling assumes that a prior distribution is
chosen to represent the prior knowledge of the reward distribution of arms. In each
round, the Thompson sampling algorithm samples parameters from the posterior
distribution of the reward for each arm and uses these sampled parameters to decide
the best choice, i.e., the arm the highest sampled expected reward (Lattimore &
Szepesvári, 2020, ch. 7). With each reward that the algorithm gets from the chosen
action, the relevant distribution is updated with respect to Bayes rule.

5



2. Background

Algorithm 2 Thompson Sampling
for t=1...T do
for all a ∈ A do
sample mean µ̂a from posterior distribution

end for
choose arm at = argmaxa∈A µ̂a and observe reward rt,at

update the distribution of at
end for

As the arms get selected, their posterior mean is expected to get closer to the true
mean and their posterior variance is expected to get smaller. As a consequence, an
arm with a low mean and a large variance has a chance of being pulled instead of
an arm with a high mean and a small variance. However, it is unlikely that an arm
with a low mean and a small variance is selected since it has been sampled enough to
determine that is far from being the optimal arm. Therefore, this algorithm allows
us to make more reasonable choices in exploration due to the uncertainty involved in
the decision process. Consider the following example with 3 options demonstrated
in Figure 2.1.

Figure 2.1: An example of the posterior distributions of the expected rewards of
3 arms after T steps with sampled means

In the current setting, the posterior mean of option 2 is higher than any other
options, but option 3 has a higher sampled expected reward caused by its large
uncertainty, in other words, large variance. This means that option 3 also has a
high probability of being the optimal arm but we do not know whether it has a
higher true mean reward than option 2 because we did not sample option 3 enough.

2.3.3 Upper Confidence Bound Algorithms (UCB)
Upper Confidence Bound algorithms propose a way to select the action by assessing
their potential to be the optimal arm (Sutton & Barto, 1998, ch. 2). The decision
process involves both the expected reward and a confidence level associated with
each arm. The action is selected based on the following formula:

argmax
a∈At

µ̂a +

√√√√α ln t
nt,a

(2.4)

where the first part of the formula (µ̂a) is the current estimation of the mean reward
for arm a and the second part of the formula corresponds to a measure of uncertainty.

6



2. Background

In the calculation of uncertainty, t is time, nt,a is the count for how many times arm
a has been pulled until time t and α is the parameter to control the degree of
exploration (ch. 1 Nicol, 2014; Sutton & Barto, 1998, ch. 2). The overall algorithm
is presented in algorithm 3.

Algorithm 3 UCB
Input: α
na ← 0
for t=1...T do
for all a ∈ A do
estimate the mean µ̂a

end for
choose arm at = argmaxa∈A µ̂a +

√
α ln t
nt,a

and observe reward rt,at

nat ← nat + 1
update the distribution of at

end for

Pulling an arm less often results in higher uncertainty. Therefore, the algorithm
tends to favor the less explored arms and enforces optimism in the decision process.
Compared with the ε-greedy algorithm, introducing confidence intervals enables us
to make more sensible selection of arms for exploration (Li et al., 2010). Again,
consider the same example but this time with the UCB approach in Figure 2.2:

Figure 2.2: An example of the posterior distributions of the expected rewards of
3 arms with the upper confidence bounds after T steps

The yellow lines are calculated by adding the estimated mean (indicated with dashed
line) to the uncertainty term as described in formula 2.4 above. The values corre-
sponding to these yellow lines are used for the decision process. Again, the algo-
rithm favors option 3 over option 2 because of the algorithm’s optimism towards
not-sufficiently-explored arms.

2.4 Combinatorial Semi-Bandits
In the original multi-armed bandit setting, only one arm is selected and pulled by
the agent. However, it is not suitable for some applications that require pulling
more than one arm at the same time. Recently, combinatorial multi-armed bandits
are actively being studied by scientists to be able to adapt the multi-armed bandit
framework to different applications with different requirements. One example for

7



2. Background

such applications is presented by Qin et al. (2014) suggesting that many real life
recommendation systems actually yield a set of recommendations rather than just
one. Such a requirement corresponds to pulling a set of arms in each round in the
multi-armed bandit setting. A combinatorial multi-armed bandit setting enables an
agent to pull more than one arm at once, which is called a super arm. The arms
in the played super arm are called base arms. The agent can either observe only
the reward for the super arm or observe individual rewards for each base arm in the
super arm. If the agent receives individual rewards for each base arm, then such a
setting is called a semi bandit (Wang & Chen, 2018).

2.5 Contextual Bandits
The multi-arm bandit problem can be extended to consider additional information
while deciding on the action. Several real-world problems such as the user-oriented
movie recommendation problem can benefit from additional information such as
users’ age, gender, previously watched movies, etc., to be able to provide more rel-
evant recommendations (Lattimore & Szepesvári, 2020, ch. 5).

Additional information, namely context, is associated with each arm and observed in
each iteration before picking an action that maximizes the expected reward. Again,
the aim is to learn a good policy that yields less cumulative regret at the end of T
rounds; but here, the policy is defined as a mapping from contexts to actions. Sup-
pose the contextual information is represented by a d-dimensional feature vector xt,a
for arm a at time t and θ∗a is a d-dimensional coefficient vector of arm a (Deshmukh
et al., 2017). Then, the expected reward is calculated as:

E(rt,a|xt,a) = xTt,aθ
∗
a (2.5)

To indicate each step separately for solving a contextual bandit problem, the algo-
rithm for the contextual bandits is presented below (Deshmukh et al., 2017):

Algorithm 4 General Algorithm for Contextual Bandits
for t=1...T do
for all a ∈ A do
estimate the parameters θ̂a
observe context xt,a

end for
choose arm at = argmaxa∈A xTt,aθ∗a and observe reward rt,at

update the distribution of at
end for

2.5.1 Contextual Thompson Sampling
Like in the context-free setting, the Thompson sampling algorithm assumes a prior
distribution of rewards initially. In each round, the agent samples a set of parameters
θ̂a from posterior distribution. Since the agent is able to observe the context xa,

8



2. Background

it can calculate the estimated expected reward for each arm with these sampled
parameters and the observed context vector according to formula 2.5. Then, it
selects the best arm that maximizes the expected reward. Algorithm 5 demonstrates
this procedure.

Algorithm 5 Contextual Thompson Sampling
for t=1...T do
for all a ∈ A do
sample parameters θ̂a from posterior distribution
observe context xt,a

end for
choose arm at = argmaxa∈A xTt,aθ̂a and observe reward rt,at

update the distribution of at
end for

2.5.2 Contextual UCB

The linear UCB, LinUCB, method was proposed by Li et. al. to calculate confidence
bounds efficiently in the presence of contextual information when the reward function
is linear (Li et al., 2010). Two variants of LinUCB are introduced in the paper: the
first one, disjoint LinUCB, assumes that arms do not share information, i.e., do not
share any parameters and the second one, hybrid LinUCB, assumes another set of
parameters that is common for all arms in addition to arm-specific ones.
For disjoint LinUCB, the expected reward is calculated in the same way as it is
presented in the formula 2.5. The coefficient vector θ∗a is estimated with ridge
regression according to the following formula:

θ̂a = (DT
aDa + Id)−1DT

a ra (2.6)

where Da is the matrix for representing previously observed contexts and ra is the
reward associated with arm a. After the parameters for all arms are estimated, the
arm that maximizes the following formula is chosen:

at = argmax
a∈At

(xTt,aθ̂a + α
√
xTt,aA−1

a xt,a) (2.7)

where Aa is defined as DT
aDa + Id and α is a variable to control the degree of

exploration. The algorithm allows to introduce a new set of arms in any iteration;
thus, the set of arms at time t is denoted by at. The clear flow of algorithm is
presented in the algorithm 6:

9



2. Background

Algorithm 6 Disjoint LinUCB
Input: α
for t=1...T do
xt,a ← observe features of all arms a ∈ At
for all a ∈ At do
if a is new then
Aa ← Id
ba ← 0d×1

end if
θ̂a ← A−1

a ba
pt,a ← θ̂Ta xt,a + α

√
xTt,aA−1

a xt,a
end for
choose arm at = argmaxa∈At

pt,a and observe reward rt,at

Aat ← Aat + xt,atx
T
t,at

bat ← bat + rt,atxt,at

end for

For hybrid LinUCB algorithm, let β∗ be the coefficient vector shared by all arms and
zt,a be the k-dimensional feature vector of the shared context. Then, the expected
reward is calculated by:

E(rt,a|xt,a) = zTt,aβ
∗ + xTt,aθ

∗
a (2.8)

Since we do not assume independence among arms in the hybrid LinUCB algorithm,
we need a different formula to calculate the upper confidence bound than how it is
presented for the disjoint LinUCB (see equation 2.7). The coefficient vectors are
estimated by the following formulas:

θ̂a = A−1
a (ba −Baβ̂) (2.9)

β̂ = A−1
0 b0 (2.10)

where the calculations of Aa, A0, Ba, B0, and ba are presented clearly in algorithm
7. Then the arm that maximizes below formula is selected to observe the reward.

at = argmax
a∈At

zTt,aβ
∗ + xTt,aθ

∗
a + α

√
st,a (2.11)

where st,a is (zTt,aA−1
0 zt,a−2zTt,aA−1

0 BT
a A
−1
a xt,a+xTt,aA−1

a xt,a+xTt,aA−1
a BaA

−1
0 BT

a A
−1
a xt,a).
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Algorithm 7 Hybrid LinUCB
Input: α
A0 ← Ik
b0 ← 0k
for t=1...T do
zt,a, xt,a ← observe features of all arms a ∈ At
β̂ = A−1

0 b0
for all a ∈ At do
if a is new then
Aa ← Id
Ba ← 0d×k
ba ← 0d×1

end if
θ̂a ← A−1

a (ba −Baβ̂)
st,a ← zTt,aA

−1
0 zt,a−2zTt,aA−1

0 BT
a A
−1
a xt,a+xTt,aA−1

a xt,a+xTt,aA−1
a BaA

−1
0 BT

a A
−1
a xt,a

pt,a ← zTt,aβ̂ + xTt,aθ̂a + α
√
st,a

end for
choose arm at = argmaxa∈At

pt,a and observe reward rt,at

A0 ← A0 +BT
at
A−1
at
Bat

b0 ← b0 +BT
at
A−1
at
bat

Aat ← Aat + xt,atx
T
t,at

Bat ← Bat + xt,atz
T
t,at

bat ← bat + rt,atxt,at

A0 ← A0 + zt,atz
T
t,at
−BT

at
A−1
at
Bat

b0 ← b0 + rt,atzt,at −BT
at
A−1
at
bat

end for
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3
Data

3.1 SUMO
Simulation of Urban Mobility, abbreviated as SUMO (Lopez et al., 2018), is a
tool for simulating traffic on a road network given some scenarios as input. The
microscopic nature of SUMO is one of the important features which enables users to
individually model the vehicle parameters and the routes for every vehicle. Codecá
et al. (2017) have benefited from this microscopic nature and the open-source nature
of the tool to create their own realistic scenario of a regular day in Luxembourg. The
LuST (Luxembourg SUMO traffic) scenario network consists of 2365 nodes and 5959
edges where the edges belong to any of 3 different road types: highways, arterial
roads, and residential roads marked with blue, red, and black respectively in Figure
3.1.

Figure 3.1: LuST scenario road network

To make this simulation realistic, two main rush-hour periods are defined by the
authors of the scenario. The vehicle density reaches its peaks around 8.15 and
again at 18.30 with approximately 5000 vehicles. There is also a smaller rush hour
period in the middle of the day whose peak is centered around 13.00 with 3500
vehicles. Within the working hours, the lowest vehicle density occurs at 11.00 and
15.30 with approximately 1500 vehicles. In general, the lowest traffic demand is at
night between 21.00-06.00. We can say that the traffic demand is modelled almost
symmetrically around 13.00 as it can be observed in the following figure:
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3. Data

Figure 3.2: Traffic Demand

Although the original LuST scenario does not contain any electric vehicles, SUMO
supports modelling electric vehicles since version 0.24.0 with energy consumption
models implemented by Kurczveil et al. (2014). It is possible to modify some vehicle
parameters that have an impact on energy consumption like vehicle mass, front
surface area, air drag coefficient, recuperation efficiency etc. In addition to these
vehicle-based parameters, it is also possible to set maximum speed, acceleration,
and deceleration for each vehicle type to simulate different driving habits. We
modified the vehicle parameters file to add 6 types of electric vehicles equivalent
to standard passenger cars. The parameters we used are mainly the default values
proposed by Kurczveil et al. (2014) with some modifications presented in the paper
by Genikomsakis & Mitrentsis (2017). The common parameters for all 6 vehicle
types are shown in Table 3.1.

Table 3.1: Electric vehicle parameters in SUMO

maximumBatteryCapacity 50000
maximumPower 80000
vehicleMass 2000
frontSurfaceArea 2.19
airDragCoefficient 0.29
internalMomentOfInertia 0.01
radialDragCoefficient 0.5
rollDragCoefficient 0.008
constantPowerIntake 300
propulsionEfficiency 0.9
recuperationEfficiency 0.95
stoppingTreshold 0.1
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To introduce different driving patterns, we modified maximum speed, acceleration,
and deceleration data differently for each type of vehicle. It is also important to
note that all vehicles do not appear equally often in the simulation. The difference
can be better observed in the following table:

Table 3.2: Driver-based parameters

maximum speed acceleration deceleration frequency
V ehicle1 70 2.6 4.5 40%
V ehicle2 90 4.5 4.5 20%
V ehicle3 50 2.0 4.0 20%
V ehicle4 70 2.7 4.5 10%
V ehicle5 30 2.4 4.5 5%
V ehicle6 30 2.3 4.5 5%

To generate realistic energy consumptions, we also need elevation data for each
edge. To achieve that, we used USGS/NASA SRTM elevation data post-processed
by Reuter et al. (2007) in tif format. We used a built-in function of SUMO for
combining elevation data and road network: netconvert.

We have run the simulation for 24 simulation-hours to obtain the results of a regular
day in Luxembourg. The output is an xml file of approximately 60GB. For each
timestep, there is a list of vehicles currently active on some roads. The list also
includes energy consumed, speed, acceleration, and road id fields that are necessary to
form the reward and contextual data. An example of the output file is demonstrated
in Table 3.3:

Table 3.3: Selected samples from simulation output, where timestep is 24.0

vehicle id road id energy consumed speed acceleration
0DEtoFR.0 -31622#1 -85.16 28.84 -1.14
0DEtoLU.0 -31622#0 205.11 33.06 2.03

randUni16882:1 -7046_5 287.36 7.08 2.07
randUni20481:1 —32964#8 24.12 13.48 0.54

Since a vehicle can stay on a specific road for more than one second, we need to
aggregate those samples. We generated a total of 4 fields by aggregating all records
of a specific vehicle on a specific road segment: (energy consumption, speed, acceler-
ation, and deceleration). To generate the energy consumption field, we summed all
samples. This field can either be positive or negative related to whether the vehicle
consumed or regenerated energy on that road segment. To obtain the value of the
speed field, we took the average of all records. Acceleration and deceleration fields
were obtained by summing the positive and negative acceleration data separately
where the sum of negative acceleration corresponds to the deceleration field in the
output file. The reason for obtaining both acceleration and deceleration data is that
we wanted to observe the effect of both fields. Another reason is that negative and
positive acceleration data can cancel each other which might result in misleading
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the model. After the processing step, we get a json file where the road ids are the
field names, which contains a list of (energy consumption, speed, acceleration, and
deceleration) tuples. An example data of some roads is given in the Figure 3.3.

Figure 3.3: A small part of json output file containing data of some roads after
the first 600 seconds, (key, value): (road id, list of tuples)

Since 60GB of data does not fit into our computer’s memory, aggregating approxi-
mately 60GB of data is not a straightforward process. We continuously iterated over
the xml file and created the output file, but this process is also very time consum-
ing. Therefore, we processed only half of the data, i.e. until approximately 12.00
in simulation time. No significant information loss is expected due to this decision
because the traffic demand is almost symmetrical around 13.00.

After these processing steps, we found out that some road segments have no samples.
This may be due to the sampling rate, which is one sample per second. We believe
that travelling with high speed on very short road segments caused this issue. The
road segments with at least one sample are demonstrated in Figure 3.4

Figure 3.4: The road segments of Luxembourg map with at least one sample
after the preprocessing steps
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4.1 Contextual Combinatorial Semi-Bandit
In order to address the energy efficient navigation problem, a contextual combinato-
rial semi-bandit setting is adopted. When the map of a city is represented by a graph
where junctions correspond to nodes and road segments correspond to edges, pulling
one arm in a standard multi-armed bandit setting (selecting one road segment) is
not enough to form a whole path. For this reason, a combinatorial multi-armed ban-
dit setting is employed in the application where each path corresponds to a super
arm with road segments as base arms. The road segments should receive individual
rewards since energy consumption of a road segment can be assumed to be inde-
pendent of the chosen path. To embed this structure, it is appropriate to adopt a
semi-bandit setting as well.

Lastly, a contextual bandit setting is chosen, even though it may not be necessary, it
may achieve better predictions of energy consumptions. Average speed, acceleration,
and deceleration data are included as the contextual information. Since keeping
contextual information constant at every iteration would be equivalent to have a
context-free bandit, different contexts are needed for every iteration. To achieve
this diversity at every iteration, the samples are selected from the data presented in
Figure 3.2 for each edge in the network graph. The first field of sampled data (energy
consumption) is used in the reward calculation and the rest is for constructing the
context vector xt,a. Two sets of context vectors are used to observe the effect of
utilizing acceleration and deceleration data separately. The context vectors are
formulized as following:

[
(speed)2

acceleration+ deceleration

]  (speed)2

acceleration
deceleration


(4.1)

For the evaluation of algorithms, the true parameters of all road segments should
be known to be able to find the optimal path and to calculate the regret. Shortest
path algorithms like Dijkstra’s algorithm (Dijkstra, 1958) can reveal the optimal
path according to these true parameters treated as edge weights. Then, the optimal
reward is calculated by summing the true mean rewards of the base arms in the
optimal super arm found by Dijkstra’s algorithm. Likewise, summing the true mean
rewards of the base arms in the played super arm at each iteration would reveal the
mean reward of playing that super arm. Subtracting the reward of the played super
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arm from the reward of the optimal path yields the instant regret. One approach
to approximate the true parameters can be to calculate the mean energy consump-
tion from history. Since it is averaged over the whole dataset related to a specific
edge, this approach can be seen as an offline evaluation technique. Another evalu-
ation method that uses expected reward conditioned on context as true parameters
can be adopted. To approximate the expected reward conditioned on context, it is
fairly reasonable to use the actual historic energy consumption associated with the
sampled context. The major difference from the previous approach is that at each
iteration, the optimal path is recalculated with new edge weights. The reason for
choosing such an evaluation method is the fact that the optimal path may change
when different contexts are sampled. Additionally, this method does not require a
static dataset; thus, it may be seen as an online evaluation technique.

The base code that is used was initially created by Russo et al. (2017) and later
modified by Åkerblom et al. (2020) to support more functionalities. This code is
modified to use the road network graph of Luxembourg and contextual information
obtained from SUMO. Additionally, disjoint LinUCB and hybrid LinUCB algorithms
have also been implemented.

4.1.1 Thompson Sampling for Contextual Combinatorial Semi-
Bandit

A Gaussian prior distribution and a Gaussian likelihood function are chosen since
the Gaussian family is self-conjugate, meaning that the posterior distribution will
also be Gaussian in the Bayesian setting. Thus, it is fairly easy to compute the
parameters of the posterior distribution. The cumulative regret can depend on the
selection of prior parameters in Thompson sampling; thus, they should be selected
carefully. The prior parameters can be selected proportionally to the length of in-
dividual edges or according to some energy calculation formula. It is also possible
to choose a completely uninformative prior. The reason for choosing an uninforma-
tive prior is to be able to fairly compare the Thompson sampling algorithm with
UCB-based algorithms. Additionally, it can be interesting to observe the effect of
choosing different priors on cumulative regret. When d fields are selected as contex-
tual information, the prior mean µ0,e is in the form of a d × 1 column matrix and
the prior covariance Σ0,e is a d× d matrix. The first set of priors includes the same
constant mean and covariance matrix for every edge. The prior mean is defined as a
d×1 column-vector of zeros and the covariance matrix as d×d identity matrix. The
second set of priors is chosen by taking edge lengths into account. Let φe = [length
of e]·0.01 and σ2

e = φe · 5 for edge e. Then, the prior mean is a d× 1 column-vector
of ones multiplied with φe and the prior covariance matrix is σ2

e · I for edge e where
I is a d× d identity matrix.

The agent samples parameters θ̂e from the posterior distribution for each edge e and
uses the sampled contextual information xt,e to calculate the expected reward. The
calculation of expected reward is given in the equation 2.4. To be able to select
the best super arm, Dijkstra’s algorithm is used to find the shortest path between
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a source node and a destination node. The calculated expected rewards are given
as edge weights to the algorithm. The base arms in the super arm proposed by
Dijkstra’s algorithm are pulled to observe the reward. The reward is given for each
individual base arm as the negative sum of the energy consumption field of the
sampled data. Then, only the distributions of base arms in the played super arm
are updated according to the following formula where µt,e represents the posterior
mean vector and Σt,e represents the posterior covariance matrix:

Σt,e ← (Σ−1
t−1,e + 1

σ̃e
2x

T
t,ext,e)−1

µt,e ← Σt,e(Σ−1
t−1,eµt−1,e + 1

σ̃e
2x

T
t,ert,e)

(4.2)

where σ̃e is the standard deviation of the samples of edge e. It is assumed that the
standard deviation of the energy consumption of all edges is known in advance to
ease the calculations. The overall algorithm is presented in algorithm 8:

Algorithm 8 Contextual Combinatorial Thompson Sampling
Input: µ0, Σ0, G = (V,E)
for t=1...T do
for all e ∈ E do
θ̂e ← sample parameters from posterior distribution N (µt−1,e,Σt−1,e)
xt,e ← observe the context of edge e
Update edge weight of e in G with xTt,eθ̂e

end for
St ← run Dijkstra’s algorithm on G to find the shortest path
for all e ∈ St do
rt,e ← observe the reward of played edge e
Σt,e ← (Σ−1

t−1,e + 1
σ̃e

2xTt,ext,e)−1

µt,e ← Σt,e(Σ−1
t−1,eµt−1,e + 1

σ̃e
2xTt,ert,e)

end for
end for

4.1.2 Disjoint LinUCB for Contextual Combinatorial Semi-
Bandit

The pseudocode presented in algorithm 6 is used for implementing the disjoint Lin-
UCB algorithm with minor changes both in the calculation of upper confidence
bound pt,e and updating the parameters A and b. In the general algorithm, it is
reasonable to add the confidence width term to the mean, since the optimistic be-
havior would be to think that it is possible to receive a higher reward from playing
that arm. However, in this application, this approach would result in a pessimistic
behavior, i.e. thinking that the edge may result in a higher cost (energy consump-
tion). Therefore, the confidence width should be subtracted from the mean to adopt
an optimistic behavior. For clarity, the new calculation of upper confidence bound
is presented in equation 4.3.

pt,e ← θ̂Te xt,e − α
√
xTt,eA−1

e xt,e (4.3)
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For updating the parameters, A and b, standard deviation of edges σ̃e is also added
to the calculation like in the Thompson Sampling algorithm. Equation 4.4 shows
the new update algorithms.

Ae ← Ae + 1
σ̃e

2x
T
t,ext,e

be ← be + 1
σ̃e

2x
T
t,ert,e

(4.4)

Since UCB-based algorithms do not have any priors to set, the only input is α which
controls the degree of exploration. Setting α to 0 is expected to result in less explo-
ration. In fact, it would be equivalent to have a greedy algorithm where the prior
mean is a zero vector and the prior covariance is an identity matrix. The reason
is that A−1b can be interpreted as prior mean and the inverse of A, A−1, as prior
covariance matrix in the Bayesian setting. These facts are also utilized to perform
sanity checks.

However, the difference is that at least in the standardized LinUCB, A and b are
initialized with constants, in contrast to the Thompson Sampling where the prior
parameters are treated as hyperparameters and can be adjusted. Thus, some ex-
periments are run with changing the only adjustable parameter of LinUCB, α, to
assess how the degree of exploration contributes to learning process. The chosen α
values are: 2, 1, 0.5, 0.1. The overall algorithm is presented in algorithm 9.

Algorithm 9 Combinatorial Disjoint LinUCB
Input: α, G = (V,E)
d← dimension of context vectors
for all e ∈ E do
Ae ← Id×d
be ← 0d×1

end for
for t=1...T do
for all e ∈ E do
xt,e ← observe the context of edge e
θ̂e ← A−1

e be
pt,e ← θ̂Te xt,e − α

√
xTt,eA−1

e xt,e
Update edge weight of e in G with pt,e

end for
St ← run Dijkstra’s algorithm on G to find the shortest path
for all e ∈ St do
rt,e ← observe the reward of played edge e
Ae ← Ae + 1

σ̃e
2xt,ex

T
t,e

be ← be + 1
σ̃e

2 rt,ext,e
end for

end for
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4.1.3 Hybrid LinUCB for Contextual Combinatorial Semi-
Bandit

Similar to disjoint LinUCB, the implementation of the hybrid LinUCB also has
small differences from the original implementation presented in algorithm 7. The
modification of subtracting the confidence width from the mean is also valid in this
case. Likewise, the sample standard deviation is used in updating the parameters.
The equations will not be presented individually to avoid repetition, but can be
observed in algorithm 10. The same set of α introduced for disjoint LinUCB is also
used for hybrid LinUCB experiments.

In addition to the edge-specific contexts used in disjoint LinUCB and Thompson
Sampling, hybrid LinUCB utilizes population data as a common feature represented
as z. The idea is that the edges with similar population density are expected to
have similar energy consumptions, since electric vehicles are considered to be more
efficient in urban driving compared to e.g. highways (Wu et al., 2015).
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Algorithm 10 Combinatorial Hybrid LinUCB
Input: α, G = (V,E)
d← dimension of edge-specific context vectors
k ← dimension of shared context vectors
A0 ← Ik×k
b0 ← 0k×1
for all e ∈ E do
Aa ← Id×d
Ba ← 0d×k
ba ← 0d×1

end for
for t=1...T do
β̂ = A−1

0 b0
for all e ∈ E do
zt,e, xt,e ← observe features of edge e
θ̂e ← A−1

e (be −Beβ̂)
st,e ← zTt,eA

−1
0 zt,e−2zTt,eA−1

0 BT
e A
−1
e xt,e+xTt,eA

−1
e xt,e+xTt,eA

−1
e BeA

−1
0 BT

e A
−1
e xt,e

pt,e ← zTt,eβ̂ + xTt,eθ̂a − α
√
st,e

Update edge weight of e in G with pt,e
end for
St ← run Dijkstra’s algorithm on G to find the shortest path
for all e ∈ St do
rt,e ← observe the reward of played edge e
A0 ← A0 +BT

e A
−1
e Be

b0 ← b0 +BT
e A
−1
e be

Ae ← Ae + 1
σ̃e

2xt,ex
T
t,e

Be ← Be + 1
σ̃e

2xt,ez
T
t,e

be ← be + 1
σ̃e

2 rt,ext,e
A0 ← A0 + 1

σ̃e
2 zt,ez

T
t,e −BT

e A
−1
e Be

b0 ← b0 + 1
σ̃e

2 rt,ezt,e −BT
e A
−1
e be

end for
end for

4.1.4 Greedy Algorithm for Contextual Combinatorial Semi-
Bandit

The greedy algorithm is expected to explore less when compared to other algorithms;
thus, is expected to result in higher regret. Because of this characteristic, the greedy
algorithm is implemented to constitute a baseline for comparing different algorithms.
Like the Thompson Sampling algorithm, the priors are set at the beginning. The
same set of priors introduced for Thompson Sampling is also used for the greedy
algorithm. The algorithm is implemented based on the ε-greedy algorithm presented
in algorithm 1 with ε set to 0. The overall algorithm is demonstrated in algorithm
11.
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Algorithm 11 Contextual Combinatorial Greedy Algorithm
Input: µ0, Σ0, G = (V,E)
for t=1...T do
for all e ∈ E do
θ̂e ← estimate the mean of posterior distribution N (µt−1,e,Σt−1,e)
xt,e ← observe the context of edge e
Update edge weight of e in G with xTt,eθ̂e

end for
St ← run Dijkstra’s algorithm on G to find the shortest path
for all e ∈ St do
rt,e ← observe the reward of played edge e
Σt,e ← (Σ−1

t−1,e + 1
σ̃e

2xTt,ext,e)−1

µt,e ← Σt,e(Σ−1
t−1,eµt−1,e + 1

σ̃e
2xTt,ert,e)

end for
end for

4.2 Context-free Combinatorial Semi-Bandits
These bandits will serve as baselines for assessing the degree of benefit from in-
troducing contexts. Replacing context vectors with a constant 1 (1 × 1 matrix) in
contextual algorithms, all contextual algorithms listed in the previous section can be
converted to context-free versions except for hybrid LinUCB. Hybrid LinUCB is a
contextual algorithm inherently and setting both arm-specific and shared contexts to
1 causes more harm than good since it raises the issue of multicollinearity. Likewise,
removing the shared context would result in the same algorithm as disjoint LinUCB.
For this reason, no experiment on context-free hybrid LinUCB is conducted.

The parameters that can tuned are prior mean and variance for Thompson Sampling
and α for disjoint LinUCB. The one-dimensional versions of previously introduced
sets of parameters for the contextual algorithms will also be used in the context-free
setting in order to compare the algorithms fairly.
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5
Results and Discussion

In this chapter, the results of different scenarios are presented with comparisons. For
each agent in a scenario, the regret is calculated by averaging over 3 experiments to
decrease the effect of randomness. Figure 5.1 shows the start and end points of all
scenarios, unless otherwise stated.

Figure 5.1: Start and end points of main scenario

Likewise, the default values/methods used in the experiments are as follows unless
otherwise stated:

• semi-informative prior mean and covariance/variance
• α=0.1
• context vector:

[
(speed)2 acceleration deceleration

]T
• regret calculation: historic mean

5.1 Prior Selection for Thompson Sampling and
Greedy Algorithm

In contrast to the context-free setting, prior means do not represent mean energy
consumption here. Rather, they represent the coefficients to be multiplied with the
sampled context. Therefore, coefficients (prior means) are expected to be much
smaller than the energy consumption in contextual setting. For this reason, the
priors are chosen to be small numbers initially and they can be observed in Table
5.1.

25



5. Results and Discussion

Table 5.1: Two different set of priors

semi-informative priors uninformative priors
µ0,e =

[
length(e) · 0.01 length(e) · 0.01 length(e) · 0.01

]T
µ0,e =

[
0 0 0

]T
Σ0,e =

length(e) · 0.05 0 0
0 length(e) · 0.05 0
0 0 length(e) · 0.05

 Σ0,e =

1 0 0
0 1 0
0 0 1



The first set of priors, semi-informative priors, is unique to each edge with respect
to its length. 2882 road segments out of 5959 are shorter than 100 meters and only
87 road segments have length of more than 1000 meters. Thus, for most of the road
segments, dividing the edge length to 100 would result in small numbers, i.e. they
start with relatively small prior mean while taking advantage of edge lengths. The
second set of priors, uninformative priors, are chosen to ease the comparison between
UCB-based algorithms with Thompson Sampling. Something which is important to
be careful about is to make sure that Thompson Sampling explores enough with
these relatively small prior variances.
The Figures 5.2, 5.3, 5.4, and 5.5 are the resulting plots where Thompson Sampling
and greedy agents are initiated with semi-informative priors.

Figure 5.2: Exploration of Thompson
Sampling with semi-informative priors

Figure 5.3: Exploration of the greedy
algorithm with semi-informative priors

Figure 5.4: Instant regret plot of two
agents with semi-informative priors over
1000 iterations

Figure 5.5: Cumulative regret plot of
two agents with semi-informative priors
over 1000 iterations
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In Figures 5.2 and 5.3, it can be observed that Thompson Sampling explores more
than the greedy algorithm. This exploration enables Thompson Sampling to learn
better predictions, which can be seen in the instant regret plot. While the instant
regret of Thompson Sampling decreases over time, the instant regret of the greedy
algorithm stays the same. The cumulative regret plot (Figure 5.5) clearly indicates
the difference between the two agents.

The Figures 5.6, 5.7, 5.8 and 5.9 are the resulting plots where Thompson Sampling
and greedy agents are initiated with uninformative priors.

Figure 5.6: Exploration of Thompson
Sampling with uninformative priors

Figure 5.7: Exploration of the greedy
algorithm with uninformative priors

Figure 5.8: Instant regret plot of two
agents with uninformative priors over
1000 iterations

Figure 5.9: Cumulative regret plot
of two agents with uninformative priors
over 1000 iterations

In this case, both Thompson Sampling and the greedy algorithm explore more than
in the previous case. For the greedy algorithm, an improvement may be noticed
which shows the need for exploration to some degree. However, that does not
necessarily lead to a better cumulative regret. For Thompson Sampling, a worse
cumulative regret is observed when it is initiated with uninformative priors.

The above cumulative regret plots are combined into one plot in Figure 5.10 to
visually ease the comparison. The best agent is seemingly Thompson Sampling
with semi-informative priors. Even though the greedy agent with semi-informative
priors results in the worst regret by far, it behaves no differently than a greedy agent
is expected to behave. Thus, we choose not to take this into consideration while
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deciding on the priors. For these reasons, the majority of the rest of the work is
conducted with semi-informative priors.

Figure 5.10: The cumulative regrets of Thompson Sampling and greedy agents
initiated with both semi-informative and uninformative priors

As a bonus, to experimentally show that larger prior mean leads to worse cumulative
regret, an experiment is conducted where semi-informative prior mean is decupled,
but the prior covariance stays the same. To be clear, the formulation of bonus priors
are as following:

µ0,e =
[
length(e) · 0.1 length(e) · 0.1 length(e) · 0.1

]T
Σ0,e =

length(e) · 0.05 0 0
0 length(e) · 0.05 0
0 0 length(e) · 0.05


The Figures 5.11, 5.12, 5.13, and 5.14 are the resulting plots where Thompson
Sampling and greedy agents are initiated with these bonus priors.

Figure 5.11: Exploration of Thompson
Sampling with bonus priors

Figure 5.12: Exploration of Greedy
Algorithm with bonus priors
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Figure 5.13: Instant regret plot of two
agents with bonus priors over 1000 iter-
ations

Figure 5.14: Cumulative regret plot of
two agents with bonus priors over 1000
iterations

Looking at the exploration plots of semi-informative case and this case (Figures
5.2, 5.3, 5.11, and 5.12), it can be claimed that the larger the prior mean, the less
it explores when the prior covariance is fixed. When an agent chooses a path at
the first iteration and receives the reward, it updates so that the selected path is
believed to result in substantially better regret at the next iteration. This behavior
causes the agents to be pessimistic.

5.2 Hyperparameter Tuning for Disjoint and Hy-
brid LinUCB

The experiments in this section are conducted using 4 different α values: 2, 1, 0.5,
and 0.1

Figure 5.15: Cumulative regret of disjoint and hybrid LinUCB agents with several
different α values over 500 iterations

From Figure 5.15, it can be observed that the smaller α values result in lower
cumulative regret in both agents. However, before reaching a conclusion from this
plot, we need to be sure that the agents with α = 0.1 also explore sufficiently. Table
5.2 shows the amount of exploration by each agent.
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Table 5.2: Explored edges with different α values where agents are disjoint and
hybrid LinUCB

Hybrid LinUCB Disjoint LinUCB

α = 2

α = 1

α = 0.5

α = 0.1

Table 5.2 shows the effect of changing α on controlling the degree of exploration for
both agents. While the degree of exploration does not change much between two
agents for the same α value, decreasing α to 0.1 reduces the unnecessary exploration
for both agents. Nevertheless, it should not be inferred that decreasing α further will
always yield a better result. In the following sections, it is shown that the greedy
approach, where α = 0, has the worst regret.
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5.3 Choice of Context

In order to determine whether 2×1 or 3×1 context vector yields a lower cumulative
regret, the experiments with 1000 iterations are run and the results are shown in
Figure 5.16.

• 2 contexts: squared speed, acceleration + deceleration

• 3 contexts: squared speed, acceleration, deceleration

Figure 5.16: Cumulative regret of greedy, Thompson Sampling, disjoint LinUCB
and hybrid LinUCB agents with two different sets of contextual information

Except for greedy, all agents yield lower cumulative regret when the context involves
squared speed, acceleration, and deceleration data. This supports the hypothesis
made in the Data section: Disregarding the positive and negative acceleration and
adding them up to reach an average acceleration would mislead the model. Here, at
least some information from the driving cycle is retained.

5.4 Contextual vs Context-free Algorithms

The default parameters mentioned at the beginning of Results and Discussion chap-
ter are used for contextual algorithms, whereas the context-free priors are the one
dimensional versions of contextual priors. The cumulative regrets of contextual and
context-free algorithms are merged into one plot in Figure 5.17. The instant regret
can be observed separately in Figures 5.18 and 5.19.
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Figure 5.17: Cumulative regret of contextual and context-free algorithms

Figure 5.18: Instant regret of contextual algorithms

Figure 5.19: Instant regret of context-free algorithms

From the cumulative regret plot, it is clear that context-free algorithms perform
worse than contextual ones except for the context-free greedy algorithm. This can
also be observed in the instant regret plots. The instant regrets of contextual agents
tend to decrease over time, indicating that the agents are learning the parameters
of the energy consumption distributions, whereas the instant regrets of context-free
agents do not decrease. Thus, it can be concluded that contextual algorithms are
superior to the context-free ones here.
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5.5 Evaluation of Different Regret Calculations

As mentioned in the Methods chapter, two different regret calculations are used to
investigate a suitable way to evaluate contextual algorithms. First approach uses
sample mean consumption as edge weight, referred to here as sample mean regret.
The second approach uses the energy consumption of the sampled context as edge
weight, referred to as conditional regret in this section. The instant and cumulative
regrets of all 4 agents with different regret calculation methods are demonstrated in
Figure 5.20 and 5.21.

Figure 5.20: Instant regret of all 4 agents with different regret calculation methods

Figure 5.21: Cumulative regret of all 4 agents with different regret calculation
methods

When the regret calculation methods are compared for each agent individually, it
is obvious that the conditional regret method results in worse cumulative regret.
Although it is true that mean energy consumption should change with different
contexts, some irregularities in the data are observed such that similar contexts do
not always yield similar energy consumptions. Thus, conditional regret calculation
suffers from outliers in this case.
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5.6 Different Paths

Experiments on other scenarios are also conducted where starting and end points
are changed. The purpose here is to learn whether a certain agent performs better
under certain circumstances. The first path is presented in Figure 5.1, referred to
here as east-west path. The second path starts from north of the city and ends in
the southern part (Figure 5.22), referred to as north-south path. The last one is
selected to be a short path where both source and destination points are located in
the city center (Figure 5.23), referred to as short path.

Figure 5.22: Starting and end points
of north-south path

Figure 5.23: Starting and end points
of short path

Since the length of paths are different from each other, it would not be wise to com-
pare the cumulative regrets of these different paths. Nevertheless, it can be checked
that whether one agent performs better compared to the other agents regardless of
the source and destination points. Figure 5.24, 5.26, and 5.28 are the cumulative
regret plots of different paths, whereas Figures 5.25, 5.27, and 5.29 are the instant
regret plots.

Figure 5.24: Cumulative regret of all 4
agents on east-west path

Figure 5.25: Instant regret of all 4
agents on east-west path

34



5. Results and Discussion

Figure 5.26: Cumulative regret of all 4
agents on north-south path

Figure 5.27: Instant regret of all 4
agents on north-south path

Figure 5.28: Cumulative regret of all 4
agents on short path

Figure 5.29: Instant regret of all 4
agents on short path

It is clear that the greedy agent gives worse regret regardless of path, but the best
agent depends on the selection of path. For longer routes, hybrid LinUCB performs
slightly better than other agents, whereas for the short path, Thompson Sampling
has the lowest cumulative regret. Looking at the cumulative regrets of UCB-based
algorithms, one thing to notice is that hybrid LinUCB seems to take advantage of
population data when it is compared with disjoint LinUCB. The exception here is
the short path, where the edges are located in the city center and expected to have
similar population data. In this case, we avoid claiming that hybrid LinUCB is
worse than disjoint LinUCB, since the inclination of cumulative regret plots sug-
gests that they are likely to converge at some point in the future. However, it is
also obvious that using population data for navigation in the city center offers no
significant contribution.

Another thing to infer from the plots is that short paths do not need much opti-
mism. The optimism of UCB-based algorithms is determined by tuning the α value
and this implies that UCB-based algorithms need α tuning for different paths. This
situation makes UCB-based algorithms ineffective for navigation purposes. Thus,
Thompson Sampling can be preferable considering its performance even for longer
routes.

The point of performing all these experiments is to obtain zero regret consistently
such that cumulative regret converge to some value. With longer routes, none of
the agents have reached zero regret at any point of time. With the short route, all
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agents except for greedy agent have reached zero regret at some point but this time
not consistently. All these findings suggest that the data contains non-linear energy
consumption in contexts, since the predictions of agents do not converge to the mean
energy consumption. One reason for not having a linear energy consumption in
contexts can be the auxiliary energy consumption such as air conditioning. Another
cause can be the sampling rate of the simulation. Sampling in every 1 second might
not be sufficient to obtain close results to the real world.
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6
Conclusion

6.1 Conclusion
In this thesis, we studied the contextual combinatorial multi-armed bandits in or-
der to address the energy-efficient shortest path problem. Four different agents are
implemented to learn the parameters of energy consumption models of each edge
in a road network graph: Thompson Sampling, Hybrid LinUCB, Disjoint LinUCB
and greedy. The experiments are conducted on the map of Luxembourg city with
simulated energy consumption data. To determine whether contextual information
helps agents to learn better parameters of the model, we use three kinds of context
extracted from simulated data: squared speed, acceleration, and deceleration.

After tuning priors for Thompson Sampling and greedy agents and exploration co-
efficient for hybrid and disjoint LinUCB, we found that contextual algorithms result
in lower cumulative regret in general. Overall, hybrid LinUCB performs best on long
routes whereas Thompson Sampling is the best agent when the route is relatively
shorter. On the downside, neither of the agents has achieved zero instant regret
consistently. This situation can be caused by several things. First, our simulated
data might not be linear in contexts. In this case, one can either increase the sam-
pling rate of the simulation and preprocess all the output again to check whether the
resulting energy consumptions are linear in the chosen contexts or implement other
agents that do not require linearity in rewards. Second, computing mean energy
consumptions of edges and using them in the regret calculation might not be suit-
able for evaluating contextual algorithms. In this case, some other regret calculation
methods can be employed. In summary, contextual combinatorial multi-armed ban-
dits seem promising for addressing the energy-efficient shortest path problem if the
specified issues are resolved.

6.2 Future Work
In order to enhance the learning, we could change the sampling method. Currently,
we are sampling i.i.d. from history and the sampled contexts of consecutive road
segments might be very different from each other. However, it is more rational to
think that consecutive edges might have similar contexts. One way to achieve this
dependence could be to define time intervals such that rush hours are captured.
Then, only sampling from the data created at the selected time interval for each
edge might lead to similar contexts. Also, for the regret calculation, the mean en-
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ergy consumption of the sampled time interval can be used as edge weight for finding
the optimal path. This way, we might suffer less from outliers. Another advantage
of adopting this approach is the opportunity to supply time interval information to
the hybrid LinUCB agent as another common feature.

Increasing the sampling rate of the simulation and regenerating the energy consump-
tions might help us to achieve the desired linearity in rewards. However, this would
significantly increase the time complexity of preprocessing of the simulation output.
If it is not possible to reach the desired linearity of the data, we can adopt some
other learning algorithms that do not require the linearity assumption.

Lastly, if a better solution is obtained by applying the above suggestions, then it
is also advised to conduct the similar experiments with high precision real data to
assess the applicability to real life scenarios.

38



References

Basso, R., Kulcsár, B., Egardt, B., Lindroth, P., & Sánchez-Díaz, I. (2019, 04). En-
ergy consumption estimation integrated into the electric vehicle routing problem.
Transportation Research Part D: Transport and Environment, 69 , 141-167. doi:
10.1016/j.trd.2019.01.006

Codecá, L., Frank, R., Faye, S., & Engel, T. (2017). Luxembourg SUMO Traffic
(LuST) Scenario: Traffic Demand Evaluation. IEEE Intelligent Transportation
Systems Magazine, 9 (2), 52–63.

Demir, E., Bektaş, T., & Laporte, G. (2014, 09). A review of recent research
on green road freight transportation. European Journal of Operational Research,
237 , 775–793. doi: 10.1016/j.ejor.2013.12.033

Deshmukh, A., Dogan, U., & Scott, C. (2017, 05). Multi-task learning for contextual
bandits. Advances in neural information processing systems, 4848-4856.

Dijkstra, E. (1958, 11). A note on two problems in connexion with graphs. Numb.
Math., 1 .

Genikomsakis, K., & Mitrentsis, G. (2017, 01). A computationally efficient simula-
tion model for estimating energy consumption of electric vehicles in the context
of route planning applications. Transportation Research Part D: Transport and
Environment, 50 . doi: 10.1016/j.trd.2016.10.014

Kurczveil, T., Álvarez López, P., & Schnieder, E. (2014, 11). Implementation
of an energy model and a charging infrastructure in sumo. In (p. 33-43). doi:
10.1007/978-3-662-45079-6_3

Lattimore, T., & Szepesvári, C. (2020). Bandit algorithms. Cambridge University
Press.

Li, L., Chu, W., Langford, J., & Schapire, R. (2010, 02). A contextual-bandit ap-
proach to personalized news article recommendation. Computing Research Repos-
itory - CORR. doi: 10.1145/1772690.1772758

Lopez, P. A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flötteröd, Y.-P., Hilbrich,
R., . . . Wießner, E. (2018). Microscopic traffic simulation using sumo. In The
21st ieee international conference on intelligent transportation systems. IEEE.
Retrieved from <https://elib.dlr.de/124092/

39

<https://elib.dlr.de/124092/


References

Nicol, O. (2014). Data-driven evaluation of contextual bandit algorithms and appli-
cations to dynamic recommendation (Unpublished doctoral dissertation).

Qin, L., Chen, S., & Zhu, X. (2014, 04). Contextual combinatorial bandit
and its application on diversified online recommendation. In Proceedings of the
2014 siam international conference on data mining (p. 461-469). doi: 10.1137/
1.9781611973440.53

Reuter, H., Nelson, A., & Jarvis, A. (2007, 10). An evaluation of void-filling interpo-
lation methods for srtm data. International Journal of Geographical Information
Science, 21 , 983-1008. doi: 10.1080/13658810601169899

Russo, D., Van Roy, B., Kazerouni, A., Osband, I., & Wen, Z. (2017). A tutorial
on thompson sampling. arXiv preprint arXiv:1707.02038 .

Sutton, R., & Barto, A. (1998, 02). Reinforcement learning: An introduction. IEEE
transactions on neural networks / a publication of the IEEE Neural Networks
Council, 9 , 1054. doi: 10.1109/TNN.1998.712192

Thompson, W. (1933, 01). On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples. Biometrika, 25 , 285-. doi:
10.1093/biomet/25.3-4.285

Wang, S., & Chen, W. (2018, 03). Thompson sampling for combinatorial semi-
bandits. arXiv preprint arXiv:1803.04623 .

Wu, X., Freese, D., Cabrera, A., & Kitch, W. (2015, 01). Electric vehicles’ en-
ergy consumption measurement and estimation. Transportation Research Part D:
Transport and Environment, 34 . doi: 10.1016/j.trd.2014.10.007

Åkerblom, N., Chen, Y., & Chehreghani, M. (2020, 03). An online learning
framework for energy-efficient navigation of electric vehicles. arXiv preprint
arXiv:2003.01416 .

40


	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Description
	Scope
	Thesis Outline

	Background
	Energy Consumption Estimation of Electric Vehicles
	Multi-armed Bandits
	Algorithms to Address Explore-Exploit Dilemma
	Greedy Algorithms
	Thompson Sampling
	Upper Confidence Bound Algorithms (UCB)

	Combinatorial Semi-Bandits
	Contextual Bandits
	Contextual Thompson Sampling
	Contextual UCB


	Data
	SUMO

	Methods
	Contextual Combinatorial Semi-Bandit
	Thompson Sampling for Contextual Combinatorial Semi-Bandit
	Disjoint LinUCB for Contextual Combinatorial Semi-Bandit
	Hybrid LinUCB for Contextual Combinatorial Semi-Bandit
	Greedy Algorithm for Contextual Combinatorial Semi-Bandit

	Context-free Combinatorial Semi-Bandits

	Results and Discussion
	Prior Selection for Thompson Sampling and Greedy Algorithm
	Hyperparameter Tuning for Disjoint and Hybrid LinUCB
	Choice of Context
	Contextual vs Context-free Algorithms
	Evaluation of Different Regret Calculations
	Different Paths

	Conclusion
	Conclusion
	Future Work

	Bibliography

