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Abstract

Active safety systems and autonomous drive functionality are being developed as an increasingly
important competitive advantage for car manufacturers. Modern cars are equipped with a variety
of sensors such as radar, ultrasound, GPS and camera. All of those information streams are
then fused into an optimal estimation of the surrounding environment, in order for the car to
follow a certain trajectory or avoid collisions with other objects. In order to test accuracy of
the aforementioned sensors, costly high precision GPS sensors are placed on objects of interest
around the car. Therefore a more cost effective and easy to use system for sensor validation is
desirable.

A promising method for creating such a system is to utilize high-resolution data created by a
lidar sensor. State-of-the-art lidar sensors are capable of capturing very detailed information
about the surroundings in the form of a point cloud with up to 150,000 points per scan. Not
only can this data be used to verify other sensors, it also opens up a new level of tracking
dynamic (non-stationary) objects around the vehicle. In addition to the kinematic state (position,
velocity, acceleration) the highly structured point data can be used to estimate the shape and
size of objects of interest very accurately. However, the sheer amount of data requires a quite
sophisticated pre-processing pipeline that removes irrelevant parts and partitions the point cloud
into clusters. One way to achieve this is by utilizing prior knowledge about the surrounding
environment.

This thesis describes the implementation of a tracking algorithm able to both estimate the
kinematic state as well as shape and size of a time varying and unknown number of dynamic
objects in lidar data. A prerequisite for the algorithm is available prior knowledge about the
static surrounding environment. The algorithm is based on Bayesian inference. Methods and
techniques normally used with other sensor types, such as radar and camera, are modified for
usage with lidar data and used by the algorithm. Inferences on the shape of objects are modelled
as either elliptical or rectangular, based on the type of target. In addition to that, a supervised
neural network is trained to accurately classify detected objects (e.g. car, cyclist, pedestrian).
This enables the algorithm to apply specific tracking approaches for different kinds of targets
and more effectively dismiss clutter measurements that are not deemed to be important.

The tracking algorithm is evaluated using real data with four defined categories of targets: pedes-
trian, car, bicycle and pedestrian group. Rectangular shape estimation is used for cars and ellip-
tical shape estimation for the remaining classes. Both tracking and identification of objects are
achieved with high precision. However, due to a lack of reference system only visual evaluation
of algorithm performance is made. Additionally, benefits of the detect-before-track approach
utilized in this thesis are evaluated, mainly in regards to computational complexity.

The algorithm proposed in this thesis indicates that lidar sensor data can be used to successfully
identify and track dynamic objects of interest around a car. Testing the algorithm using data
where high precision GPS systems are attached on all objects of interest is needed in order to
determine how suitable of a replacement a lidar based system would be. Additionally, an imple-
mentation of the algorithm on an embedded system is necessary in order to evaluate potential
real-time use.
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1

Introduction

A
utonomous cars and active safety systems have transitioned from the realm of thought
experiments and science fiction concepts into reality over the recent years. All major
automobile manufacturers are developing some form of autonomous drive technology,
examples of this being the 2017 Volvo Drive Me program [1] and Tesla Autopilot func-

tionality [2]. Growing interest and demand for autonomous vehicles has pushed the development
of vehicle sensor technology, increasing vehicle capability to better sense the surrounding en-
vironment. The key to successfully integrate and fuse together different sensor technologies is
the ability to verify robustness and performance of both detection, identification and tracking
of non-stationary objects of interest; such as pedestrians, cars and cyclists. This is currently
an expensive process, involving the use of high-precision GPS systems attached to targets of
interests around the autonomous vehicle. In order to verify sensor performance a cost effective
and fast system of generating reference data (also called ground truth) is necessary.

In light of this problem, interest regarding lidar sensors has increased. A lidar sensor offers
high accuracy measurements of range and bearing of the sensor’s surrounding area, making it
possible to construct a point cloud of the environment around a vehicle equipped with lidar.
Lidar is frequently used in autonomous concept vehicles, such as the Google autonomous car
[3]. Unfortunately, high cost and relatively large size have limited its usefulness for consumer
offerings of autonomous vehicles. The lidar sensor might, however, offer the possibility to serve
as a comparatively cheap and easy to use reference system for test and verification purposes
of autonomous cars. Instead of equipping objects of interest around the autonomous car with
expensive GPS systems, the car itself could be equipped with a lidar sensor, offering accurate
enough ground truth for sensor verification.

This thesis shows how different methods can be used and integrated in order to provide an
accurate reference system solely based on a lidar sensor. Target detection, identification and
tracking are of interest, with a focus on finding robust and computationally effective methods.
Necessary modifications to existing and previously used methods for other sensor types, such as
radar and camera, are investigated in order to enable their usage with lidar sensor data.
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1.1. THESIS OBJECTIVES CHAPTER 1. INTRODUCTION

1.1 Thesis Objectives

The objective behind the work presented in this thesis is to find, modify if necessary, and imple-
ment methods useful for detecting, tracking and identifying dynamic objects of interest around
an autonomous car by using lidar data. The explicit goals are formulated as implementing a
system capable of:

• Identifying and classifying objects of interest: cars, cyclists, pedestrians and pedestrian
groups.

• Detecting and accurately tracking multiple objects of interest.

• Handling objects with multiple measurements associated to them.

• Removing uninformative measurements.

• Scaling well with additional objects and measurements.

• Capable of real-time implementation without significant changes to chosen algorithms.

1.1.1 Thesis Delimitations

Given the wide range of thesis objectives, several delimitations were necessary in order to fulfill
the objectives within a time-frame of 20 weeks. Every delimitation was chosen in such a way that
the work presented in this thesis could serve as a basis for further extensions, with less imposed
delimitations. The following delimitations are present in this work:

• All objects of interest are seen as moving on perfectly flat horizontal plane. As such, no
vertical motion is considered.

• Spatial extent (shape and size) is only estimated in regards to the length and width of
objects, not height.

• The position of the lidar sensor is considered to be fixed, with no motion or rotation.

• Prior information of the surrounding environment is available, containing information of
stationary objects such as houses, walls and so on.

• The capability of identifying objects is limited to four types: cars, cyclists, pedestrians and
pedestrian groups.

1.1.2 Thesis Limitations

The work presented in this thesis is subject to several limitations, mainly connected to how
the presented results are evaluated. Due to scheduling difficulties, data from a controlled test
environment in the form of a crossing was not available. As such, no numeric reference measure
(attained from a high precision GPS-system) is available for evaluating the proposed algorithm.
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1.2. MAJOR CONTRIBUTIONS CHAPTER 1. INTRODUCTION

Consequently, there is no way to explicitly compare the accuracy of the algorithm presented in
this work to that of a high precision GPS-system.

The scenario used for evaluating the proposed algorithm was obtained from the public KITTI
dataset [4]. Efforts were made to replicate conditions from the originally planned test environ-
ment. This resulted in choosing data recorded at a college campus, where the lidar sensor stood
still while several groups of pedestrians, two cars and two cyclists moved across the campus.
From this scenario, an evaluation of the algorithm’s capability to identify and track objects was
performed by visual inspection.

1.2 Major Contributions

This thesis proposes a rigorous framework for tracking and identification of common road partic-
ipants in lidar data. The overall algorithm makes heavy use of the structured and highly detailed
data produced by a lidar sensor in order to solve both problems.

Extended targets are used as an improvement over center point targets, and enable tracking of
both kinematic state as well as the extent of a target. This added complexity pays off in the
form of a very robust tracker with much lower estimation uncertainty.

A neural network is used to classify objects before they enter the filtering part of the algorithm.
This is done to then be able to run different filters on different kinds of objects to be able to
employ different motion models and extent estimations for e.g. cars or pedestrians.

This integrated identification and tracking approach is very promising. It enables use of diverse
tracking strategies for different classes of objects and lowers the complexity of multitarget tracking
at the same time.

1.3 Thesis Outline

At first the basic underlying theory of the implemented algorithms is explained and references
to related work are given. Then the different steps of the solution are explained thoroughly by
following the data flow through the proposed algorithm. After that the results of this thesis
are presented as a visual evaluation of the algorithm on a test scenario. This is followed by an
interpretation and a discussion of the results. Lastly, a conclusion examines whether the thesis
succesfully fulfilled the posed objectives and how the work could be extended in the future.
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2

Theory

I
n this chapter a brief review of relevant theory, necessary in order to understand the im-
plemented algorithm, is presented. The chapter begins with Bayesian single target state
estimation, covering the general formulation as well as describing linear and non-linear re-
cursive implementations. This is followed by a section on multi-target state estimation;

focusing on the random finite set approach. Next, a section on extended target tracking is pre-
sented, illustrating how to incorporate shape and size when multiple measurements are associated
to a target. Finally, the chapter closes with a section detailing how neural networks can be used
for classification.

2.1 Single Target State Estimation

Single target state estimation concerns with the problem of estimating the state of a known target
under uncertainty. There is uncertainty in how the state evolves over time, as well as uncertainty
in how accurate sensor readings of the target are. In order to model and deal with uncertainty,
a probabilistic framework is employed. By using a probabilistic framework, the single target
tracking problem can be expressed in the following way.

xk = fk−1(xk−1,qk−1)

yk = hk(xk,rk)
(2.1)

The state, xk, of a known target is assumed to evolve over time according to a discrete time
Markov model f(·) and is subject to motion noise qk−1. Each incremental time step is denoted
by k. The initial state is distributed according to x0 ∼ p(x0). At each time step a measurement,
denoted yk, is generated as a function h(·) of the state xk and the measurement noise rk.

4



2.1. SINGLE TARGET STATE ESTIMATION CHAPTER 2. THEORY

The optimal filtering problem is to compute the posterior density p(xk|y1:k) when k ≥ 1, k ∈ N.
By using Bayesian statistics, the state conditioned on all measurements up to time k can be
expressed as

p(xk|y1:k) =

∫
p(x0:k|y1:k)dx0:k−1 (2.2)

p(x0:k|y1:k) =
p(y1:k|x0:k)p(x0:k)

p(y1:k)
∝ p(x0)

k∏
i=1

p(yi|xi)p(xi|xi−1) (2.3)

A drawback with the formulation in (2.2)-(2.3) is that complexity grows with k. Instead, it
is possible to express the posterior density as a recursive solution which utilises the previous
posterior density. The recursive solution is expressed in two steps, the prediction step and the
update step. The prediction step represents the expected posterior density at time k conditioned
on all measurements up to time k − 1, which can be expressed using the Chapman-Kolomogrov
equation as

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (2.4)

The update step incorporates knowledge from the measurement yk into the prediction step,
yielding the updated posterior as

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
(2.5)

The two equations (2.4) and (2.5) present a general recursive solution to the optimal filtering
problem. However, they do not offer a general closed form solution, which makes them difficult
to implement in practice. Nonetheless, under certain conditions closed form solutions can be
found, such as the Kalman Filter.

2.1.1 Kalman Filter

The Kalman Filter (KF) offers a closed form solution to the recursive optimal filtering formulation
found in (2.4)-(2.5) by imposing the following conditions

• State and measurements evolve over time according to a linear model.

• The underlying prior distribution p(x0) is assumed to be Gaussian, i.e. x0 ∼ N (x̂0,P0).

5



2.1. SINGLE TARGET STATE ESTIMATION CHAPTER 2. THEORY

• Motion noise qk and measurement noise rk are i.i.d. Gaussian.

With these conditions the general motion and measurement model equations (2.1) can be rewrit-
ten as

xk = Fk−1xk−1 + qk−1,

yk = Hkxk + rk,

qk ∼ N (0,Qk−1)

rk ∼ N (0,Rk)
(2.6)

(Both motion and sensor noise are imposed as zero-mean to keep subsequent equations more
clear). Since all densities are of Gaussian nature, only two moments are needed to describe the
posterior density: the mean x̂k|k and the covariance Pk|k. As such, key densities in the recursive
formulation (2.4) and (2.5) can be expressed as

p(xk−1|y1:k−1) ∼ N (x̂k−1|k−1,Pk−1|k−1) (2.7)

p(xk|y1:k−1) ∼ N (x̂k|k−1,Pk|k−1) (2.8)

p(xk|y1:k) ∼ N (x̂k|k,Pk|k) (2.9)

The prediction step in the KF corresponds to finding expressions for the moments found in (2.8).
Since the models are linear, this corresponds to finding the expected value and covariance of a
linearly scaled and shifted Gaussian density.

Prediction

E[xk|y1:k−1] ≡ x̂k|k−1 = Fk−1x̂k−1|k−1

Cov[xk|y1:k−1] ≡ Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 + Qk

(2.10)

The update step in the KF is divided into several components which are used to find expressions
for the moments of the posterior density. Detailed information on how these components are
derived can be found in [5].

vk = yk −Hkx̂k|k−1 (2.11)

Sk = HkPk|k−1H
T
k + Rk (2.12)

Kk = Pk|k−1H
T
k (Sk)−1 (2.13)

The term vk in (2.11) is the so called innovation and represents the difference between the
actual measurement and the predicted measurement. The innovation is zero-mean and has a
covariance equal to Sk. The covariance Sk in (2.12) can be viewed as representing the expected
measurement covariance. In other words, it expresses a region around the predicted state where
measurements are likely to be received from. The final term Kk, known as the Kalman gain, can
be interpreted as a measure of how much the innovation should be included in the posterior.

6



2.1. SINGLE TARGET STATE ESTIMATION CHAPTER 2. THEORY

By using (2.11)-(2.13) the posterior mean and covariance can be formulated as

Update

x̂k|k = x̂k|k−1 + Kkvk

Pk|k = Pk|k−1 −KkSkK
T
k

(2.14)

With these final two moments the complete KF recursion is formulated. Filter performance is
heavily influenced by the ratio between motion and measurement noise, which in effect corre-
sponds to signal-to-noise ratio (SNR). A high SNR (i.e. ‖R‖ � ‖Q‖) will result in a filter which
is more responsive to measurements and follows these more closely. Conversely, a low SNR (i.e.
‖R‖ � ‖Q‖) will result in a less responsive filter which lags behind new measurements.

2.1.2 Non-linear Extensions of the Kalman Filter

One of the assumptions for deriving the Kalman Filter are linear motion and measurement
models. By utilizing linear models, all densities in the filter are Gaussian, since the initial state
is considered to be a Gaussian. In many practical applications however, the assumption of linear
models is no longer valid. As such, non-linear extensions of the KF have been formulated. In
general, two different approaches exist when dealing with non-linear models: linearization and
Gaussian moment matching. A commonly used algorithm utilizing linearization is the Extended
Kalman Filter (EKF). In the family of Gaussian moment matching algorithms [5] the Unscented
Kalman Filter (UKF) is frequently used, mainly due to how well the algorithm scales with the
number of states. What follows is a general description of each algorithm as well as a comparison
of the two. For more in-depth derivations and information on each algorithm, the reader is
referred to [5] and [6] respectively.

The Extended Kalman Filter

The Extended Kalman Filter enables non-linear motion and measurements models to be in-
corporated within the KF framework by utilizing linearization. For a system of motion and
measurement models,

xk|k−1 = fk−1(xk−1) + qk−1

yk = hk(xk|k−1) + rk
(2.15)

where fk−1(·) and hk(·) are nonlinear, linearization through first-order Taylor expansion can be
performed for each function around the expected values x̂k−1|k−1 and x̂k|k−1 respectively,

fk−1(xk−1) ≈ fk−1(x̂k−1|k−1) +
∂fk−1(·)
∂x̂k−1|k−1

(xk−1 − x̂k−1|k−1)

hk(xk|k−1) ≈ hk(x̂k|k−1) +
∂hk(·)
∂x̂k|k−1

(xk|k−1 − x̂k|k−1)

(2.16)

7



2.1. SINGLE TARGET STATE ESTIMATION CHAPTER 2. THEORY

With linearizations derived for each model, the prediction and update steps in the KF recursion
can now be expressed.

Prediction

x̂k|k−1 = fk−1(x̂k−1|k−1)

Pk|k−1 =

(
∂fk−1(·)
∂x̂k−1|k−1

)
Pk−1|k−1

(
∂fk−1(·)
∂x̂k−1|k−1

)T
+ Qk−1

(2.17)

Update

vk = yk − hk(x̂k|k−1)

Sk =

(
∂hk(·)
∂x̂k|k−1

)
Pk|k−1

(
∂hk(·)
∂x̂k|k−1

)T
+ Rk

Kk = Pk|k−1

(
∂hk(·)
∂x̂k|k−1

)T
S−1
k

x̂k|k = x̂k|k−1 + Kkvk

Pk|k = Pk|k−1 −KkSkK
T
k

(2.18)

It is important to note that the EKF, unlike the KF, is not an optimal solution in any way.

The Unscented Kalman Filter

The Unscented Kalman Filter (UKF) belongs to the family of Gaussian moment matching fil-
ters. The key difference between these filters and the EKF is that instead of linearizing non-linear
functions, the resulting non-Gaussian distribution is approximated as a Gaussian. This is per-
formed by deterministically selecting so called σ-points from a Gaussian distribution, where each
point has an associated (also deterministically chosen) weight. The σ-points are then propagated
through the non-linear function, and from the transformed σ-points a numerical estimation of
the mean and covariance is calculated. These methods can be seen as sophisticated Monte Carlo
methods that, through their use of deterministically chosen sample-points, require less compu-
tation time, although with less accurate estimations.

The difference between Gaussian moment matching filters is in how they select σ-points, where
some filters better estimate higher order effects while others scale better with the number of
states. The UKF guarantees estimation of a function up to second order effects and utilizes a
total of 1 + 2n σ-points, where n is the number of states in the state vector. The UKF is a
common choice when dealing with non-linear motion or measurement models, especially since its
computational complexity is equal to the EKF [6].

For the UKF, the prediction and update steps are defined as the following:

Prediction

8



2.1. SINGLE TARGET STATE ESTIMATION CHAPTER 2. THEORY

Form a set of 2n+ 1 σ-points

X (0)
k−1 = x̂k−1|k−1, W0 = 1− n/3

X (i)
k−1 = x̂k−1|k−1 +

√
3(P

1/2
k−1|k−1)i, i = 1,2, . . . , n

X (i+n)
k−1 = x̂k−1|k−1 −

√
3(P

1/2
k−1|k−1)i, i = 1,2, . . . , n

Wi =
1−W0

2n
, i = 1,2, . . . , 2n

(2.19)

where (P1/2)i denotes the i-th column of P1/2, which is the square-root1 of the covariance matrix.
The predicted moments are then computed as

x̂k|k−1 ≈
2n∑
i=0

f(X (i)
k−1)Wi

Pk|k−1 ≈ Qk−1 +

2n∑
i=0

(f(X (i)
k−1)− x̂k|k−1)(·)TWi

(2.20)

Update
Form a set of 2n+ 1 σ-points

X (0)
k = x̂k|k−1, W0 = 1− n/3

X (i)
k = x̂k|k−1 +

√
3(P

1/2
k|k−1)i, i = 1,2, . . . , n

X (i+n)
k = x̂k|k−1 −

√
3(P

1/2
k|k−1)i, i = 1,2, . . . , n

Wi =
1−W0

2n
, i = 1,2, . . . , 2n

(2.21)

The desired moments can be computed as

ŷk|k−1 ≈
2n∑
i=0

h(X (i)
k )Wi

Pxy ≈
2n∑
i=0

(X (i)
k − x̂k|k−1)(h(X (i)

k )− ŷk|k−1)TWi

Pyy ≈ Rk +

2n∑
i=0

(h(X (i)
k )− ŷk|k−1)(·)TWi

Kk = PxyP
−1
yy

(2.22)

The updated state can then be computed as

x̂k|k = x̂k|k−1 + Kk(yk − ŷk|k−1)

Pk|k = Pk|k−1 −KkSkK
T
k

(2.23)

Comparison of EKF and UKF

Both the EKF and UKF enable non-linear motion and measurement models to be incorporated
into the recursive KF framework, although with different approaches. The EKF is capable of

1Lower triangular matrix, can be obtained through Cholesky decomposition
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capturing first order effects, while the UKF guarantees accuracy up to second order effects.
Computing Jacobians in the EKF can be time consuming as well as pose problems when an
analytical solution is not possible, necessitating the use of numerical differentiation techniques.
The UKF does not require calculation of any Jacobians. However, calculating the square-root
of the state covariance can produce problems, since special care needs to be taken in order to
guarantee positive semi-definiteness of the state-covariance [7].

An illustration of the difference between EKF and UKF can be seen in Figure 2.1

Figure 2.1: A conceptual illustration of the difference between EKF and UKF. The leftmost picture
illustrates the true non-linearly transformed mean and covariance, achieved through sampling. The
middle picture illustrates how the EKF through linearization produces an estimate of both moments.
The rightmost picture illustrates how σ-points in the UKF are used to determine both transformed
moments.

2.1.3 Interacting Multiple Models

In many practical applications a single motion model is not sufficient in order to accurately
describe the behaviour of a target. For example, the dynamics for a vehicle are significantly
different when driving in a straight line as compared to performing a turn. In literature, such
actions are commonly referred to as maneuvers. A way to remedy this problem is to increase the
motion noise Qk−1 in order to account for the model miss-match. However, this will result in an
overall less accurate motion model, with reduced accuracy for state estimation as a result.

10
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Another way of dealing with ambiguous state behaviour is through the use of multiple motion
models. Multiple models utilize Jump Markov Linear Systems (JMLS), where each specified
motion model corresponds to a discrete mode λk, which needs to be estimated from the received
measurement yk in addition to the state xk. Under JMLS, the general motion and measurement
equations can be expressed as

xk = fk−1(xk−1,λk) + qk−1(λk) qk−1(λk) ∼ N (0,Qk−1(λk)) (2.24)

yk = hk(xk, λk) + rk(λk), rk(λk) ∼ N (0,Rk(λk)) (2.25)

where λk = 1,2, . . . ,Nλ corresponds to model number, where fk−1(·),qk−1(·),hk(·), rk(·) all de-
pend on the mode λk. Two different approaches exist when dealing with mode transitions: hard
and soft decisions. With hard decisions the most probable mode is chosen and used for determin-
ing the subsequent state xk. With soft decisions a weighted average of all modes is calculated
for determining the state xk. An advantage with the soft decision approach is more robustness
to model errors. For example, in a filter with two modes, one utilizing low motion noise and
the other high motion noise, a soft decision approach makes it possible to in effect use motion
noise in between the two. In practice, utilizing hard decision making will result in serial use of
different KFs, while soft decision making results in parallel use of KFs at each timestep.

A frequently used filter for incorporating multiple models is the Interacting Multiple Models
(IMM) filter, which utilizes soft decision making for determining mode. In the IMM filter the
posterior state is modeled as

p(xk|yk) =

Nλ∑
i=1

wikN (xk; x̂ik|k,P
i
k|k) (2.26)

In order to determine the posterior state, a prior describing transitions between the modes is
necessary. The prior is expressed as a Transition Probability Matrix2 (TPM), where each element
πij = Pr{λ = j|λ = i}, i.e. describes the probability of transitioning from mode i to j.

TPM =


π11 π12 . . . π1Nλ

π21 π22 . . . π1Nλ
...

...
. . .

...

πNλ1 πNλ2 . . . πNλNλ

 (2.27)

An important step in the IMM algorithm is so called Mixing. For each mode j, the output of
all filters in the IMM are merged, where each component is weighted with the probability that
mode switches to j next time step. Without mixing, the number of components in the IMM

2It should be noted that the TPM can be modelled as state-dependent, i.e πij(x̂k|k−1).
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filter would grow combinatorially with each iteration. A complete iteration of the IMM filter is
performed in the following way.

Mixing
Calculate mixing weights and merge the estimates and covariances.

wjik−1|k−1 =
wjk−1πji∑Nλ
γ=1 w

γ
k−1πγi

x̂0i
k−1|k−1 =

Nλ∑
j=1

wjik−1|k−1x̂
j
k−1|k−1

P0i
k−1|k−1 =

Nλ∑
j=1

wjik−1|k−1

[
Pj
k−1|k−1 + (x̂jk−1|k−1 − x̂0i

k−1|k−1)(·)T
]

(2.28)

Mode Matched Prediction
Perform a prediction for each mode.

{x̂ik|k−1,P
i
k|k−1} = predict

(
f ik−1(·),qik−1, x̂

0i
k−1|k−1,P

0i
k−1|k−1

)
(2.29)

Mode Matched Update
Perform an update for each mode and calculate mode probabilities.

{x̂ik|k,P
i
k|k, ŷ

i
k|k−1,S

i
k} = update

(
hik(·), rik, x̂ik|k−1,P

i
k|k−1

)
(2.30)

wik =
N (yk; ŷik|k−1,S

i
k)
∑Nλ
j=1 w

j
k−1πji∑Nλ

γ=1N (yk; ŷγk|k−1,S
γ
k)
∑Nλ
j=1 w

j
k−1πjγ

(2.31)

Output Estimate Calculation
Compute the estimated state by merging the estimates for each mode.

x̂k|k =

Nλ∑
i=1

wikx̂
i
k|k

Pk|k =

Nλ∑
i=1

wik

[
Pi
k|k + (x̂ik|k − x̂k|k)(·)T

] (2.32)

The terms predict() and update() correspond to the prediction and update equations for the
filter utilized in the IMM (e.g. KF or UKF, see Sections 2.1.1-2.1.2).
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2.2 Multiple Target State Estimation

A single-target tracking filter can make several simplifying assumptions that are usually not
given given in a real-world scenario. It works under the premise that there is only one target to
track and that any measurement is therefore automatically associated with that one target. As
soon as several targets and several measurements in each time-step are considered, the tracking
problem becomes much more complicated.

One recursive solution to solving the multi-target tracking problem is the Multiple Hypothesis
Tracking (MHT) filter. The MHT approach considers all possible hypotheses for associating
measurements to existing targets, new targets and false alarms. The probability of each generated
hypothesis is evaluated, and the most probable hypothesis is selected. The amount of tracks and
corresponding states in the most probable hypothesis are presented as the filter output. Detailed
information regarding the MHT filter can be found in [8].

A principal problem with the MHT filter arises from basic combinatorics. Data association
occurs by initiating a separate hypothesis for every measurement that lies within the 3σ-gate of
any of the predictions. It is therefore easy to see that the MHT filter does not scale well for
neither an increased number of measurements nor targets. In addition to that, a robust filter
implementation will have to keep lower-probability hypotheses for at least a few time steps and
cannot discard them right away. Therefore, the effectiveness of hypothesis pruning techniques is
always limited by the need for a certain robustness. Out of consideration for a computationally
efficient algorithm other possible solutions for the multiple target tracking problem are required.

2.2.1 Multiple Target Tracking Using Random Finite Sets

A promising approach that does not suffer from the typical problem of associating a potentially
high number of targets and measurements is to use random finite sets (RFS). A RFS is a set,
i.e. an unstructured collection of elements, whose cardinality (the number of elements in the set)
is a random variable. In this setting at any given time k there are two RFS:s of interest. One
is the state RFS Xk containing individual targets and the other is the measurements RFS Zk
containing observations. Describing both the number of targets and the number of measurements
as a random variable makes it possible to apply a Bayesian framework to the estimation of both
the number of targets as well as their states [9].

RFS are used because they allow to model uncertainty in both the number of targets and the tar-
gets’ states. In a single-target tracking scenario, uncertainty about the state and measurements
is modelled by using random vectors. In the multi-target tracking case both the state and the
measurements are modelled as RFS whose cardinality can be described by a discrete probability
distribution (e.g. a Poisson distribution) and whose elements are characterized by a number of
joint probability densities (e.g. several multivariate Gaussian components) [9].

Extending Bayesian reasoning to multi-target problems defined on RFS requires similar tools,
that are available in general statistics, to derive predictions, likelihoods and posterior densities.
For example set integrals and set derivatives have to be defined in order to be able to compute
e.g. the multi-target prediction density fk|k−1(Xk|Xk−1) based on the state RFS Xk or the
multi-target measurement density fk(Zk|Xk) based on the measurement RFS Zk and the state
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RFS Xk. Those tools are provided by finite-set statistics (FISST) [10].

Each element in a given state RFS xk−1 ∈ Xk−1 might continue to exist at time k with probability
pS,k or die with probability 1−pS,k. Those that continue to exist transition to state xk according
to a transition function fk|k−1(xk|xk−1). The state RFS at Xk can therefore be predicted as the
transition to {xk} of all surviving elements xk−1 ∈ Xk−1 or ∅ otherwise. This entire logic can
be modelled as the transition Sk|k−1(xk−1).[9]

In addition to previous targets surviving from the previous time-step there can also be new
targets that are born at k, denoted as Γk. In theory, the RFS approach can also handle new
targets spawning from existing targets (e.g. a person leaving its car and walking away from it
or a plane firing off a rocket) but as those were not relevant for this thesis, that part is omitted
here. The multi-target RFS Xk can therefore be described as follows.

Xk =

 ⋃
xk−1∈Xk−1

Sk|k−1(xk−1)

 ∪ Γk (2.33)

The measurement RFS Zk consists both of actual target observations as well as of clutter. The
probability of detecting a target xk ∈ Xk is pD,k and missing it is 1 − pD,k. The likelihood
function of any measurement zk is described by gk(zk|xk) if it is detected or ∅ otherwise. This
logic can be expressed by a transition function Θk(xk). In addition to measurements originating
from actual targets there are also the aforementioned clutter observations denoted as Kk. The
entire measurement RFS Zk is therefore the union of the following sets.

Zk =

[ ⋃
xk∈Xk

Θk(xk)

]
∪Kk (2.34)

As such, an optimal Bayesian multi-target filter has the following prediction and update steps,
analogous to the general single-target Bayesian recursion described in equations (2.4) and (2.5).

pk|k−1(Xk|Z1:k−1) =

∫
fk|k−1(Xk|Xk−1)pk−1(Xk−1|Z1:k−1)µs(dXk−1)

pk(Xk|Z1:k) =
gk(Zk|Xk)pk|k−1(Xk|Z1:k−1)∫

gk(Zk|Xk)pk|k−1(Xk|Z1:k−1)µs(dXk−1)

(2.35)

Here µs has to be a reference measure on the entire collection of subsets of Xk [9].

2.2.2 The Probability Hypothesis Density Filter

Deriving an optimal filtering solution to the multi-target tracking problem in a Bayesian frame-
work follows similar ideas as the Kalman filter for the general single-target tracking case. Instead
of propagating the entire posterior density, the state can usually be approximated well enough by
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only propagating some of its statistical moments. For example, the constant gain Kalman filter
only propagates the first-order statistical moment of the posterior density: the posterior expec-
tation. Similarly, a first-order statistical moment of the multi-target posterior density is defined
as the probability hypothesis density (PHD). The PHD is a function over the state-space that
yields the expected number of targets over some sub-area S of the state-space when integrated
over S [10]. An illustration of the PHD can be seen in Figure 2.2.

Figure 2.2: Example PHD visualizing three potential targets.

The PHD is defined over the entire state space x, where the area blow the curve represents
the number of targets present. Each peak in the figure represents a potential target. The
corresponding x for each peak represents the state of the potential target. Higher peaks in
the PHD represent more probable targets. A recursive filtering algorithm, again similar to the
Kalman filter, that propagates the PHD over time is known as the probability hypothesis density
filter (PHD filter).

There are several assumptions that have to be considered in order to be able to derive a recursive
solution for propagating the PHD υk(x):

• Targets move independently of each other.

• Clutter is Poisson-distributed and independent of target-generated measurements.

• Predicted RFS, described by pk|k−1, is Poisson-distributed.
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Assuming that the predicted RFS is Poisson-distributed is important because a Poisson distri-
bution is completely described by it’s intensity. In a Poisson distribution, the first moment (the
mean) is denoted as λ and all other moments can be derived from it [11, p.146]. The prediction
and update step for recursively computing the PHD vk(x) are then as follows [9].

υk|k−1(x) =

∫
pS,k(xk−1)fk|k−1(xk|xk−1)vk−1(xk−1)dxk−1

+

∫
βk|k−1(xk|xk−1)vk−1(xk−1)dxk−1 + γk(x)

υk(x) = [1− pD,k(x)]υk|k−1(x)

+
∑
z∈Zk

pD,k(x)gk(z|x)υk|k−1(x)

κk(z) +
∫
pD,k(xk|k−1)gk(z|xk|k−1)υk|k−1(xk|k−1)dxk|k−1

(2.36)

This recursion does not allow for a closed-form solution in the general case. However, a solution
exists for the more specific case of linear motion and measurement models and considering only
Gaussian noise on the models.

GM-PHD Filter For The Linear And Gaussian Case

Assuming linear models and only Gaussian noise, the following state transition fk|k−1(xk|xk−1)
and likelihood gk(z|xk) can be formulated. The variables are analogous to the ones used in the
general motion and measurement model for the single-target tracking case described in equation
(2.6).

fk|k−1(xk|xk−1) = N (xk; Fk−1xk−1, Qk−1)

gk(zk|xk) = N (zk; Hkxk|k−1, Rk)
(2.37)

The resulting Gaussian distribution is the key component in the linear, Gaussian Mixture for-
mulation of the PHD (GM-PHD) filter. Both the state RFS Xk and the measurement RFS Zk
consist of Gaussian components. This multimodal distribution over the state space for every
time-step k is what can be seen in Figure 2.2.

Since the Bayesian recursion always needs prior information to work on, a birth RFS γk(x) has
to be defined. The components in the birth RFS describe regions in the state-space in which new
targets are most likely to appear. This could e.g. be an airport in the case of a flight-surveillance
system or the borders of the sensor-range around an autonomous car that wants to track new
objects coming into view. The birth RFS is a multimodal distribution comprised as a Gaussian
Mixture of components [9].

γk(x) =

Jγ,k∑
i=1

w
(i)
γ,kN (xk; m

(i)
γ,k,P

(i)
γ,k) (2.38)

16



2.2. MULTIPLE TARGET STATE ESTIMATION CHAPTER 2. THEORY

The mean and covariance of the Gaussian components are used to position the distribution in the

state-space and the weight w
(i)
γ,k is used to determine the expected number of targets within that

distribution. Jγ,k is the number of components in the set. Just like the Gaussian components,
their associated weights will subsequently be updated in the Bayesian recursion and are then
used to identify the most likely target states.

Now, assuming that the posterior PHD at time k − 1 is a multimodal Gaussian distribution

υk−1(x) =

Jk−1∑
i=1

w
(i)
k−1N (xk; m

(i)
k−1,P

(i)
k−1) (2.39)

the predicted PHD at time k is a multimodal Gaussian distribution as well

υk|k−1(x) = υS,k|k−1(x) + γk(x) (2.40)

i.e. the predictions of the surviving targets from k − 1 and the new births at k. Previous
targets survive according to the defined survival probability pS,k and their next state is predicted
according to the motion model defined in equation (2.37).

υS,k|k−1(x) =

Jk−1∑
j=1

w
(j)
k−1N (xk; m

(j)
S,k|k−1,P

(j)
S,k|k−1) (2.41)

From this multimodal Gaussian prediction, the update to the posterior can now be calculated
as a sum of two terms. The first term consists of all predictions, assumed to not be detected
by measurements at step k and are therefore down-weighted. The second term assumes that all
predictions actually are detected and updates them towards each of the measurements received
at step k analogous to a Kalman update [12].
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υk(x) = (1− pD,k)υk|k−1(x) +
∑

zk∈Zk

υD,k(xk; zk)

υD,k(xk; zk) =

Jk|k−1∑
j=1

w
(j)
k (zk)N (xk; m

(j)
k|k(zk),P

(j)
k|k)

w
(j)
k (zk) =

pD,kw
(j)
k|k−1q

(j)
k (zk)

κk(zk) + pD,k

Jk|k−1∑
l=1

w
(l)
k|k−1q

(l)
k (zk)

q
(j)
k (zk) = N (zk; Hkmk|k−1,HkPk|k−1H

T
k + Rk)

m
(j)
k|k(zk) = m

(j)
k|k−1 + K

(j)
k

(
zk −Hkm

(j)
k|k−1

)
P

(j)
k|k =

[
I−K

(j)
k Hk

]
P

(j)
k|k−1

K
(j)
k = P

(j)
k|k−1H

T
k

(
HkP

(j)
k|k−1H

T
k + Rk

)−1

(2.42)

As mentioned before, apart from propagating the PHD of the state RFS, the PHD filter is also
used to recursively update the weight associated with each Gaussian component. Those can then
be used to estimate the number of targets present in the current time-step N̂k. Given a previous
estimate N̂k|k−1 (or an initial estimate for k = 0) the current estimate can be computed in the
following way.[9]

N̂k|k−1 = pS,kN̂k−1 +

Jγ,k∑
j=1

w
(j)
γ,k

N̂k = (1− pD,k)N̂k|k−1 +
∑

zk∈Zk

Jk|k−1∑
j=1

w
(j)
k (zk)

(2.43)

Thus, the PHD filter can be used to jointly estimate the number of targets and their states.

2.3 Extended Target Tracking

The different Bayesian state estimation methods presented in sections 2.1-2.2.1 are all introduced
based on the assumption of dealing with point targets - targets that generate at most one mea-
surement per sensor scan. In practice however, especially when using a range sensor such as a
lidar, multiple measurements may arise from a target, especially when targets are relatively near
the sensor. Such targets are commonly referred to as Extended Targets. The distribution of lidar
distance measurements arising from a target is dependent on which section of the targets spatial
extent is within sensor view. As such, at any given sensor scan only a subset of the extended
target will be seen.
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A simplistic approach when dealing with multiple measurements arising from a target is to
calculate the mean value of all measurement. This enables the extended target to be treated
as a point target. Such a method is suitable when dealing with targets whose spatial extent is
relatively small, or in cases where the entire extended target is seen in the sensor field of view.
However, large and partially viewed extended targets require more complex methods. Calculating
the mean value of measurements will result in a loss of information about spatial extent, as well
as induce large estimation errors for a target’s state. An illustrative example can be seen in
Figure 2.3.

Figure 2.3: An example of how an extended target is viewed by a Lidar sensor. The red x’s
indicate measurements generated by the lidar Sensor. The small blue circle denotes the center
point of the Extended target, and the red small circle denotes the mean value of all measurements.

Here the extended target has an elliptical shape, but only a circular sector is seen from the
sensor’s field of view. Calculating the mean of all received measurements (the red exes) and
treating it as a single measurement (the red circle) of the target’s center point will yield a far
more inaccurate measurement than the inherent inaccuracy for each individual measurement.
Changes in for example heading for the extended target will be seen as changes in position, even
though the target might not have necessarily performed any translative movement. Additionally,
calculating target extent based solely on the spread of received measurements will underestimate
the true spatial extent of the target. Not utilizing prior and historical knowledge about shape
severely limit practical usefulness of the method.

In order to accurately estimate the behaviour of extended targets more robust techniques need
to be considered, where a target’s size and shape are examined as well. The following sections
describe two different ways of dealing with extended targets: assuming a rectangular shape or
by utilizing random matrices.

2.3.1 Tracking Under Assumed Rectangle Shape

Rectangular shape modelling of targets is a suitable simplified model for describing the spatial
extent of cars in cases where the shape and size of a car can be estimated to a high degree. By
incorporating two additional parameters into the state vector, rectangle length l and width w
[13], the extended state vector can be formulated as (time-step indexing with k is dropped in
this section to make equations more readable)
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ξ = [xT , w, l]T (2.44)

Where x is the kinematic state-vector. In order to incorporate tracking of extended rectangular

targets, an analytical expression of the likelihood must be formulated. For a set Z = {z(j)}|Z|j=1

of measurements, the likelihood can be expressed as

p(Z|ξ) = p(z(1), z(2), . . . ,z(|Z|)|ξ) (2.45)

By treating each measurement a as random independent variable drawn from a shape-dependent
distribution, the joint likelihood can instead be expressed as the product of each individual
measurement likelihood

p(Z|ξ) =

|Z|∏
j=1

p(z(j)|ξ) (2.46)

The shape-dependent distribution can be approximated with a Gaussian mixture (GM) model,
where the weights of the mixture sum to unity. The number of components Nc in the GM
govern how well the mixture approximates the true underlying distribution, where Nc → ∞
asymptotically approximates the distribution completely. For a rectangular shape, the GM
approach results in placing Nc Gaussian kernels along the sides of a rectangle.

p(z(j)|ξ) ≈
Nc∑
i=1

w(i)N (z(j);µ(i)(ξ),Σ(i)(ξ)),

Nc∑
i=1

w(i) = 1 (2.47)

The two equations (2.46) and (2.47) give sufficient analytical expressions for handling extended
targets in a Bayesian fashion. By collapsing the GM to just consisting of a single component,
each measurement z(j) can be seen as arising from a measurement generating point (MGP). As
such, µ(i)(ξ) represents a non-linear function describing the location of the MGP as dependent
on the state ξ.

A benefit with this approach is that it allows (2.46) to be expressed in the form of (2.48), where
zZ ,µZ(ξ) are vertical concatenations of all measurements and associated MGPs in the set Z,
and nz is the size of each MGPs measurement vector zZ . This enables the use of standard KF
equations for prediction and estimation, negating the use of sequential Monte Carlo (particle
filter) methods to evaluate the general forms expressed in (2.46) and (2.47).
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p(Z|ξ) =

|Z|∏
j=1

N (z(j);µ(ξ),Σ(ξ)) = N (zZ ;µZ(ξ), σ2
ΣInz|Z|)

zZ = [z(1), z(2), . . . , z(|Z|)]T

µZ(ξ) = [µ(ξ)(1),µ(ξ)(2), . . . ,µ(ξ)(|Z|)]T

(2.48)

However, a difficulty with (2.48) is that it introduces an association problem, since each mea-
surement z(i) must be associated to a corresponding MGP µ(ξ)(i). A solution to the association
problem can be found in [13], however such a solution requires measurements to be sorted ac-
cording to bearing and incorporates all measurements, making such a method computationally
intensive for a high number of measurements. The solution to the association problem in this
thesis is presented in Section 3.6.

The state of a rectangular target can be (minimally) described as consisting of positional coor-
dinates x and y, for example specifying the center point of the target. This makes it possible to
express positional coordinates in terms of rectangle length l and width w, which are also included
in the state vector. Additionally, rotation of the rectangle can be described by its heading φ.

ξmin = [x y φ w l]T (2.49)

Figure 2.4: Car modelled as a rectangular shape.

Since each MGP is a function dependent on state, µ(ξ), any arbitrary point along any of the sides
of the rectangle must be expressed in terms of the components in the state vector. For any scan,
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either one or two sides of a car will be seen by the range sensor. As such, each corner position
{hic}4i=1 of the rectangle, visualized in Figure 2.4, can be used as base component for describing
any arbitrary point along any of the rectangle’s sides. For a rectangle where x and y are defined
as placed in the center of the rectangular shape, each corner position can be expressed as

h1
c(ξmin) =

[
x− 1

2

√
(w2 + l2) cos(arctan(w/l) + φ)

y − 1
2

√
(w2 + l2) sin(arctan(w/l) + φ)

]

h2
c(ξmin) = h1

c(ξmin) +

[
w cos(φ+ π/4)

w sin(φ+ π/4)

]

h3
c(ξmin) = h2

c(ξmin) +

[
l cos(φ)

l sin(φ)

]

h4
c(ξmin) = h1

c(ξmin) +

[
l cos(φ)

l sin(φ)

]
(2.50)

Considering how range sensors work, a reasonable assumption is that measurements are uniformly
distributed along each visible side of the rectangle. As such the position for NMGP uniformly
distributed MGPs along the width or length, relative to corner i, can be described by

{hjl (ξmin)}NMGP
j=1 = hic(ξmin) +

j

1 +NMGP

ρl

[
l cos(φ+ η(i))

l sin(φ+ η(i))

]
, η(i)→ {0,0,π,π} (2.51)

{hjw(ξmin)}NMGP
j=1 = hic(ξmin) +

j

1 +NMGP

ρw

[
w cos(φ+ η(i))

w sin(φ+ η(i))

]
, η(i)→

{
π

2
,
3π

2
,
3π

2
,
π

2

}
(2.52)

Where 0 ≤ ρw,ρl ≤ 1 represents how much of each side is in view of the sensor. This is an
important parameter, since in practice range sensor may not see the entire side due to factors
such as reflectivity or range to target. As such, distributing MGPs only along the viewed length
and width is necessary in order to get good estimates of shape and (by extension) kinematic
state.

2.3.2 Tracking With Random Matrices

The rectangular shape model for cars is specifically tailored for that particular use case. This,
however, makes it impractical to use with other objects that don’t show such a shape or general
behaviour that can be accurately described by the state vector introduced in equation (2.49).
Since this thesis is not only concerned with tracking cars but also other common traffic partici-
pants (namely pedestrians and cyclists), an efficient model for estimating their shape and size is
required.
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It is worth pointing out a principal difference of how cars, pedestrians and cyclists usually show
their extent in lidar data. In general, a car is a solid object that is much longer and wider than
a pedestrian or cyclist. It therefore has the potential to block out a large portion of its shape
from sensor view. An example of this can be observed in Figure 2.5.

Figure 2.5: A car blocking parts of its own extent from the sensor view, isometric and top-down
perspective.

Since a car has relatively large size, this leads to a loss of information about the target. Due to
this, the rectangular tracking method is important, since it enables better estimates of a car’s
true center position. However, this does not hold true for cyclists and pedestrians. They are
significantly smaller in size and thus their extent is directly seen in lidar data. This can be seen
for the case of a cyclist in Figure 2.6. That is also true for pedestrians, since they are smaller in
extent as compared to cyclists.

Figure 2.6: A cyclists true extent directly viewed in lidar data, isometric and top-down perspective.

With that in mind, a reasonable approach is to track the observed extent of pedestrians and
cyclists in lidar data in order to infer sufficiently good estimates of their true shape and size.
This can be achieved by approximating shape and size with ellipses. Ellipses are versatile since
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they can approximate different shapes and sizes by adjusting length, width and eccentricity, in
addition to being easy to model and incorporate into a tracking framework. Koch, who first used
elliptical target tracking within a Bayesian framework, describes that ellipses can effectively be
used to track the size, shape and orientation of an extended target [14].

Koch introduces an extended state

ξ = xk,Xk (2.53)

which models both kinematic state xk of a target (e.g. position, velocity, acceleration) as well as
target extent Xk, which contains the parameters needed to define the ellipse. Xk in a Bayesian
framework is a random variable and can be modelled as a random matrix drawn from an inverse
Wishart distribution [14].

Considering the elliptical shape of level curves for a covariance matrix in a 2-dimensional Gaussian
distribution, it becomes clear how an elliptical shape can be derived from a random positive-
definite matrix. This is also why it can be modelled as an inverse Wishart distribution, which
is a probability distribution over positive-definite matrices. It can be used as a conjugate prior
to estimate the random matrix that defines the extent ellipse [15]. Using it as a conjugate
prior ensures that the random matrix will, throughout the entire filter recursion, remain inverse
Wishart distributed. Drawing a sample from it will therefore always result in obtaining a positive-
definite matrix.

An inverse Wishart distribution is described by the following probability density function [14,
p.1056]

p(X|V,υ) =
|V| υ2

2
υd
2 Γd(

υ
2 )
|X|−

υ+d−1
2 e−

1
2 tr(VX−1) (2.54)

where Γd is the multivariate gamma function, tr is the trace function, d is the size d × d of X,
υ is the degrees of freedom of the distribution and V is the positive definite scale matrix. The
expected value of a draw from this distribution is defined as

E[X] =
V

υ − d− 1
(2.55)

As can be seen, the probability density function is parametrized by υ and V. The type of ellipses
possible to draw from an inverse Wishart distribution can be visualized by drawing several
samples for varying degrees of freedom υ. Equation (2.55) states that the expected value is the
scale matrix V scaled down by the degrees of freedom υ subtracted with the dimensions d and 1.
The expected value for a sample drawn from an inverse Wishart distribution therefore diminishes
for an increasing υ. This can be seen in Figure 2.7. In addition, the variance in the samples
decreases, such that the samples converge to a scaled down version of V with little variation in
orientation or eccentricity.
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Figure 2.7: 9 inverse Wishart distribution samples for varying degrees of freedom v = {4,10,25}
and constant V = diag([1,1]). Red circle is 1σ-plot of the drawn sample X, gray circle is 1σ-plot of
V and dashed black circle is E[X]. Note E[X] = V for υ = 4.

A closed-form Bayesian recursion to propagate both the kinematic state xk and the extent of
a target Xk was developed by Koch in [14]. It follows the standard Bayesian filtering steps
of prediction through a motion model and update through a likelihood function based on a
measurement model. The kinematic state is modelled as a Gaussian distribution parametrized
by the mean xk and covariance Pk, while the extent is modelled as an inverse Wishart distribution
as described before.

Prediction
The kinematic part:

xk|k−1 = (Fk|k−1 ⊗ Id)xk−1|k−1

Pk|k−1 = Fk|k−1Pk|k−1F
T
k|k−1 + Qk|k−1

(2.56)
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The extent part:

υk|k−1 = e−T/τυk−1|k−1

Vk|k−1 =
e−T/τυk−1|k−1 − d− 1

υk−1|k−1 − d− 1
Vk−1|k−1

(2.57)

Here T is the sample time of the process and τ a decay constant which determines how much υ
and V decrease in the prediction step. Lower values for υ and V can be interpreted as higher
uncertainty in the estimates drawn from the distribution, as illustrated in Figure 2.7. Id is the
identity matrix of dimension d. It should be noted that Fk−1|k−1 models motion for a single
dimension, which is why Id is used to specify the number of total dimensions.

Update
The center zk and scatter matrix Zk of a measurement cluster with nk measurements:

zk =
1

nk

nk∑
j=1

zjk

Zk =

nk∑
j=1

(zjk − zk)(·)T
(2.58)

The kinematic part:

Sk|k−1 = HkPk|k−1H
T
k +

1

nk

Kk|k−1 = Pk|k−1H
T
k S
−1
k|k−1

xk|k = xk|k−1 + (Kk|k−1 ⊗ Id)(zk − (Hk ⊗ Id)xk|k−1)

Pk|k = Pk|k−1 −Kk|k−1Sk|k−1K
T
k|k−1

(2.59)

Where Sk|k−1 is the innovation factor (in other literature often called the measurement covari-
ance) and Kk|k−1 is the gain.

The extent part:

Nk|k−1 = S−1
k|k−1(zk − (Hk ⊗ Id)xk|k−1)(zk − (Hk ⊗ Id)xk|k−1)T

υk|k = υk|k−1 + nk

Vk|k = Vk|k−1 + Nk|k−1 + Zk

(2.60)

Where Nk|k−1 is the innovation matrix.

For derivation of these equations, details on assumptions made and theoretical background the
reader is referred to [14].
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Random Matrix PHD Filter

Propagation of random matrices to estimate the extent of a target can be included into a basic
PHD Filter framework as described in section 2.2.1 and 2.2.2. Instead of propagating a Gaussian
mixture RFS there is now a Gaussian component (for the kinematic state) and an inverse Wishart
component (for the extent) associated with every target. Granström and Orguner showed an
implementation in [16].

The main problem to solve is to derive a suitable likelihood function that can be used to update
the components’ weights. Based on predictions about the kinematic state and extent of a target
together with received measurements, the target for which measurements fit best needs to be
found.

Prediction
At first, each of the Jk−1|k−1 existing prior component’s weight is adjusted based on the survival
probability pS .

w
(i)
k|k−1 = Psw

(i)
k−1|k−1, ∀i ∈ Jk−1|k−1 (2.61)

Update
The update step is partitioned into two parts. In the case of no available measurement (no
detection) for a particular target the weight is lowered

w
(j)
k|k = (1− (1− e−γ(j))p

(j)
D )w

(j)
k|k−1, ∀j ∈ Jk|k−1 (2.62)

with γ(j) being the expected number of measurements for that target.

Otherwise the weight is updated according to a likelihood function that says how well the shape
and position of the predicted ellipse matches the position and shape of the updated ellipse. Every
measurement zi ∈ Zk is used to update and calculate a likelihood for every existing predicted
target j ∈ Jk|k−1.

w
(j+Jk|k−1(i−1))

k|k =
e−γ

(j)

(γ(j))|zi|p
(j)
D

β
|zi|
k (π|zi||zi|S)

d
2

|V(j)
k|k−1|

υ
(j)

k|k−1
/2

|V(j+Jk|k−1(i−1))

k|k |V
(j+Jk|k−1(i−1))

k|k /2

×
Γd(υ

(j+Jk|k−1(i−1))

k|k /2)

Γd(υ
j
k|k/2)

wjk|k−1,∀j ∈ Jk|k−1,∀zi ∈ Zk

(2.63)

with Γd being the multivariate gamma function, |zi| being the number of points in measure-
ment zi, βk being the expected number of clutter measurements in Zk and |V| denoting the
determinant of matrix V. The number of measurements arising from a target is modelled by a

Poisson distribution, with parameter γ. Both υ
(j+Jk|k−1(i−1))

k|k and V
(j+Jk|k−1(i−1))

k|k are the up-
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dated parameters of the inverse Wishart distribution, the computation of which can be seen in
[16].

All updated predictions for a certain measurement zi are normalized amongst themselves in the
following way.

dzi = δ|zi|,1 +

Jk|k−1∑
j=1

w
(j+Jk|k−1(i−1))

k|k

w
(j+Jk|k−1(i−1))

k|k =
w

(j+Jk|k−1(i−1))

k|k

dzi

, ∀j ∈ Jk|k−1

(2.64)

δ|zi|,1 is the Kronecker delta which evaluates to 1 if the two subscripts are equal or to 0 otherwise.

For more details on the Gaussian inverse Wishart PHD (GIW-PHD) filter the reader is referred
to article [16] and the accompanying technical report [17] that provides pseudo-code for an
implementation and also talks about implementation issues and the computational complexity
of the filter.

2.4 Neural Networks for Classification

This section aims to explain the basic algorithms used by two common Machine Learning tools
to solve classification tasks: Logistic Regression and Neural Networks. A Neural Network for
classification can be seen as a combination of several logistic regression blocks. As such, this
explains the order in which the concepts are introduced.

A neural network is trained on labeled data, i.e. there are output labels for every data sample.
The employed algorithm therefore falls into the category of supervised learning.

The theory explained in this section is based on [18], [19] and [20]. The reader is encouraged to
turn to those books for a much more in-depth explanation of the following topics.

2.4.1 Logistic Regression

At the root of logistic regression lies the desire to find an appropriate function that defines a
boundary between different classes present in data. In this thesis this is e.g. the decision whether
a certain object is a car or not. An example of such a boundary can be seen on the left side
in Figure 2.8 for a case where a linear function works well to separate the two areas. The red
circles are examples for one class in the dataset, the blue crosses signify the other class. More
difficult cases like the one shown on the right side in Figure 2.8 cannot be separated by a linear
function, a nonlinear function is needed to differentiate between them. For a growing complexity
of separation between different classes or a growing number of input dimensions (both examples
are in 2D) more and more complex separation functions are needed.
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Figure 2.8: Logistic regression with a linear and a polynomial boundary.

The x- and y-domains in Figure 2.8 are the so-called features of that particular classification
problem. Features are carefully chosen properties of the objects to be classified. In this thesis
this could e.g. be the density and the number of points in a point cluster. Those features need to
have somewhat unique values for different classes in the dataset such that the respective examples
(i.e. the datapoints in Figure 2.8) actually end up in different parts of the plot and are therefore
separable.

Plotting such datasets and their decision boundary is only useful for the 2-dimensional (data
with 2 features, separated by a line or curve) and 3-dimensional case (data with 3 features,
separated by a plane or a curved plane). Humans generally lack the the ability to visualize e.g.
4-dimensional features separated by a 3-dimensional plane. However, the following concepts and
equations hold true for the general case of an n-dimensional space separated in the dimension of
it’s hyperspace.

Logistic Regression Cost Function

Considering a column vector of features X and a scalar binary class label (between 0 and 1) Y ,
the relation between them can be expressed as the linear combination of X with a column vector
of weights Θ. For p features, the following hypothesis equation hΘ holds.

Y = hΘ(X) = g(ΘTX) = g(Θ1X1 + Θ2X2 + . . .+ ΘpXp) (2.65)

With g(x) being the sigmoid function which is applied in order to scale the output to an actual
classification value between 0 and 1.

g(x) =
1

1 + e−x
(2.66)
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A plot of the sigmoid function is shown in Figure 2.9.

Figure 2.9: Sigmoid function.

In a supervised learning scenario, both the features X and the true class labels Ytrue are known.
The aim is therefore to find the weight vector Θ that optimizes the decision boundary, such that
the predicted class labels Ypred resemble the true class labels Ytrue as closely as possible.

This optimal decision boundary is found by optimizing a cost function, a function of Θ, that sums
up the difference between the predicted outputs Ypred with that particular weight configuration
Θ and the true outputs Ytrue from the training data. A plot of an example cost function over
two Θ values can be seen in Figure 2.10.
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Figure 2.10: An example cost function J(Θ) over sample values in two dimensions of Θ.

The cost function in the case of logistic regression for m data samples and a binary classification
class label output Y is as follows.

J(Θ) =
1

m

[
m∑
i=1

−Y (i)
true log(hΘ(X(i)))− (1− Y (i)

true) log(1− hΘ(X(i)))

]
(2.67)

Here (i) denotes the ith sample. Extending binary classification to more than two classes is
shown when explaining neural networks in 2.4.2.

Equation (2.67) includes two distinct cases for being part of a certain class (Y = 1) and the other
for not being part of that class (Y = 0).

J(Θ) =
1

m

m∑
i=1

Y (i)
true = 1, − log(hΘ(X(i)))

Y
(i)
true = 0, − log(1− hΘ(X(i)))

(2.68)

If the true output Ytrue is 1 then the cost of the prediction hΘ(X) is calculated by case 1 in
(2.68). If Ytrue is 0 then the cost is calculated by case 2 in (2.68). Considering the plots for both
− log(X) and − log(1−X) in Figure 2.11 it can be seen that the cost for predicting exactly the
true output is zero but increases exponentially for deviations further and further away from the
true output.
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Figure 2.11: Both parts of the logistic regression cost function: − log(x) and − log(1− x).

The cost function J(Θ) sums up the cost for all examples a logistic regression classifier is being
trained on. This is then the cost for a certain configuration of Θ. The aim is to try and find
the values for Θ that render the lowest possible cost for J(Θ). Considering the plot of the cost
function in Figure 2.10 it can be seen that the goal is to find the bottom of the ”bowl-shaped”,
convex function.

Gradient Descent

In order to find the minimum of the cost function J(Θ) a technique called gradient descent
can be used. An intuitive understanding of the algorithm can be gained by considering Figure
2.10 once more. The starting point would be a random configuration for Θ. From there, you
iteratively subtract the current gradient in all Θ directions. You will descend into the ”bowl”
until you reach the bottom. This can be expressed as follows.

Θj = Θj − α
∂

∂Θj
J(Θ) (2.69)

Here Θj is the jth element of the Θ vector and α is a learning parameter that controls the speed
with which J(Θ) approaches its minimum. Choosing α too low will result in a slow convergence
towards the minimum while choosing α too high can result in missing the minimum and actually
diverging. The partial derivative of of J(Θ) w.r.t a certain element of Θ is computed as:

∂

∂Θj
=

m∑
i=1

(
(hΘ(X(i))− Y (i)

true

)
X

(i)
j (2.70)

Again, (i) denotes the ith example in the dataset used to train the classifier, which contains m
examples in total. hΘ(X(i)) is therefore the ith prediction based on the ith feature-input and

Y
(i)
true is the ith true class label to compare the prediction with. An example plot of minimizing

the cost over subsequent iterations of the gradient descent algorithm can be seen in Figure 2.12.
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Figure 2.12: Example plot of a converging gradient descent algorithm.

2.4.2 Neural Network

A single hidden layer, fully connected neural network for classification can be described in the
following way. 3

The network is basically a nonlinear function mapping from an input vector of features X to an
output vector of classifications Y. The length of X is p, with p being the number of features.
The length of Y is k, with k being the number of different classes to be classified.

Y = f(X) (2.71)

Calculation of an output is done by processing the inputs through a neural network structure as
depicted in Figure 2.4.2. The structure of the network consists of 3 important building blocks:
layers, units and connections. The layers are the vertical groupings seen in Figure 2.4.2. The
first is the input layer, the second the hidden layer and the third the output layer. Every layer
consists of a number of units (so-called neurons), drawn as the circles in Figure 2.4.2. Each
neuron has several input connections from other neurons in the previous layer and several output
connections to neurons in the next layer. A connection always has a weight assigned to it.

3The reasoning behind using a single hidden layer, fully connected neural network is given in 3.4.
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Computation of the output layer is performed in two steps, each advancing one layer forward.
As the input layer is given, the first step is to compute the values for the hidden layer. Each
unit’s value is determined as the linear combination of the respective input neurons’ values times
the weight of the connection. In order to actually receive a classification value, this value is then
scaled to be between 0 and 1 by applying the sigmoid function to it. This function is called the
activation function of the neuron.

For example, the value of Z1 would be computed as

Z1 = g(X1Θ11
1 +X2Θ21

1 + ...+XPΘ1P
1 ) (2.72)

with Θ1 being the weight matrix for each connection between the input layer and the hidden
layer containing p (number of input units) rows and q (number of hidden units) columns.

This approach can be vectorized to calculate the entire vector of hidden units Z in the following
way.

Z = g(ΘT
1 X) (2.73)

The same procedure is repeated from the hidden layer Z to the output layer Y to calculate the
classification of the inputs.

Y = g(ΘT
2 Z) (2.74)
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As can be seen from Figure 2.9 the outputs will be values between 0 and 1 and describe the
probability of the input to belong to that particular class signified by the respective unit in the
output layer.

The entire computation from input to output layer could then be written as follows.

Y = g(ΘT
2 g(ΘT

1 X)) (2.75)

Training the Neural Network

As can be seen from the equations and the principal structure of the network, there are basically
3 ways to influence the mapping from inputs X to outputs Y:

• number of hidden layers

• number of units in the hidden layers

• connection weights

Backpropagation

With a fixed number of layers and units in the network, the only way to change its output is to
adjust the weights of the connections Θ. Similarly to the gradient descent algorithm described to
calculate the optimal values for Θ in logistic regression, there is a process to derive the optimal
Θ configuration for a neural network: backpropagation.

The intuition behind it is similar to gradient descent - the aim is to minimize a cost function.
However, instead of one Θ vector mapping the inputs X to the predictions Ypred = hΘ(X) there
are now two Θ matrices each describing the weights from one layer to the next. Each of these
Θ matrices is made up of several vectors, each containing the weights of all units in layer l to a
particular unit in layer l + 1.

Optimizing the entire neural network’s Θ configuration can therefore be seen as a combination
of several local optimizations between the layers. Backpropagation is an iterative approach that
computes the partial derivatives of the overall cost function JΘ(X) for all elements of Θ. After
that, gradient descent can be used to minimize the cost function like in logistic regression.

The cost function for a neural network is as follows

J(Θ) =
1

m

 m∑
i=1

k∑
j=1

−Y
(i)
true,j log((hΘ(X(i)))j)− (1−Y

(i)
true,j) log(1− (hΘ(X(i)))j)

 (2.76)

The only difference in comparison with (2.67) is the additional summation over all different
classes k.

35



2.4. NEURAL NETWORKS FOR CLASSIFICATION CHAPTER 2. THEORY

The algorithm iterates over all training examples from 1 to m and for every input vector it
calculates an error term δ for each layer l except for the input layer. For the case of 3 layers the
following calculations have to be made to get the error terms for the second and third layers.
There is no error term for the first layer, because that is the input layer.

δ(3) = Ypred −Ytrue

δ(2) = Θ(2)δ(3) � ġ(Z)
(2.77)

with ġ being the derivative of the sigmoid function and � denoting element-wise multiplication
between two vectors. ġ can be computed as follows

ġ(x) = g(x)� (1− g(x)) (2.78)

Those error terms for each layer and every input sample are then used to accumulate the share
of every connection in the overall error from a node j in layer l to a node i in layer l+ 1, denoted

as ∆
(l)
ij . Those terms are initialized to 0 and then updated on every input as follows

∆
(l)
ij = ∆

(l)
ij + a

(l)
j (δ(l+1))T (2.79)

where a
(l)
j denotes the jth element in the value vector for the lth layer, i.e. a(l) would be Z for

l = 2 and Ypred for l = 3.

This computation can also be done in a vectorized way directly for each layer.

∆(l) = ∆(l) + δ(l+1)(a(l))T (2.80)

Once the share of every connection in the error in each of the m data samples is accumulated,
this value can be used to derive the gradient of the cost function J(Θ). The following relation
holds

∂

∂Θ
(l)
ij

J(Θ) =
1

m
∆

(l)
ij (2.81)

Those derivative terms can then be used as described in 2.4.1 to run gradient descent in order
to minimize the cost function and find a suitable configuration for Θ.
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Algorithm

T
he resulting algorithm implemented in this thesis uses the material found in the
previous section as a basis for solving the outlined thesis objectives. How to incor-
porate the different theoretical frameworks together in a single algorithm, in addition
to important steps for making the algorithm suitable for practical use are outlined in

this chapter. An overview of how the algorithm works can be seen in Figure 3.1, where a single
iteration of the Algorithm is outlined. Each component in the Figure corresponds to a section in
this chapter. In addition, the chapter begins with a brief description of relevant sensor properties
associated with a lidar.
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Lidar Scan

∼ 150,000 points

Static Map
Removal

∼ 20,000 points

Clustering

∼ 10,000 points
20-30 clusters: Potential dynamic objects

Neural Network

Pedestrians, crowds, cyclists, unknown targets Cars

Elliptical
PHD filter

Car Cluster
Pre-processing

Elliptical shape, size & state estimation Viewed width & length, corner point

Rectangular
PHD filter

Rectangular shape, size & state estimation

Targets

Figure 3.1: A flowchart detailing a single iteration of the algorithm.

3.1 Sensor Properties

Figure 3.2 shows a schematic overview of the lidar sensor. It explains for example why objects
further away reflect fewer and fewer beams and therefore consist of fewer and fewer points in the
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data. It also shows why there are usually a lot of ground points in the data when the sensor is
positioned on top of a car.

Figure 3.2: Schematic overview of the lidar sensor

The exact sensor model is a Velodyne HDL-64E. Some key properties can be seen in Table 3.1.
[21]

Table 3.1: Key properties of the Velodyne HDL-64E lidar sensor.

Property Value

frequency 10Hz1

vertical FOV 26.8◦

vertical Channels 64

horizontal FOV 360◦

horizontal resolution 0.09◦

max. distance ∼ 120m

The high resolution results in about 150,000 points per scan, which adds up to 1.5× 106 points
to process every second.

1The HDL-64E can be operated in a frequency range from 5 − 15Hz but the data used in this thesis was
gathered with 10Hz.
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3.2 Static Point Removal

3.2.1 Ground Removal

In a typical traffic environment, lidar data captured by a sensor mounted on the roof of a vehicle
contains a substantial amount of points that stem from the ground. Those usually amount to
around 50-70% of the points in one frame (one lidar scan). In this thesis those ground points are
not useful for any practical purpose and are therefore discarded.

The employed algorithm lays a grid over the point cloud in the x-y-plane. For every grid cell the
points, whose z-value falls within the lower c% of the entire cell, are removed. Figure 3.3 shows
the difference between an unprocessed lidar frame and the same frame after the ground removal
algorithm.

Figure 3.3: An unprocessed frame (top) and the same frame with the ground points removed
(bottom).
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Algorithm 1 Remove Ground Points

input: Set of points P , number of grid columns/rows n, cut-off c
init: Pkeep ← ∅ as the set of points to keep

for i = 1 to n do
for j = 1 to n do

Pij ← get all points that lie within cell ij
zij,max, zij,min ← calculate max and min z value for points Pij
Pij,keep ← keep only the points that have a z value above c(zij,max − zij,min)
Pkeep ← (Pkeep ∪ Pij,keep)

end for
end for

output: P ← Pkeep, set of points that are not ground points

The cut-off percentage c and the number of grid columns/rows n are design parameters that
influence performance of the algorithm. A higher cut-off will remove ground points more robustly
but might impact the quality of processed data by e.g. ”cutting off” tyres of cars or lower legs of
pedestrians. More grid cells allow for a more fine-tuned result by making it less likely that big
and small objects end up in the same cell which usually results in removing substantial parts of
the smaller object. However, the smaller the cell size, the longer the computation time of the
algorithm.

In this thesis values of n = 200 and a cut-off of c = 0.3 were found to be a good compromise
between performance and speed. The algorithm removes about 80,000 to 110,000 points, empha-
sizing the large amount of data produced by a lidar sensor. It also provides further proof that
pre-processing is needed in order to utilize the high resolution only for the parts of the data that
are actually needed.

3.2.2 Static Objects

A core part of this thesis is to determine the eligibility of using a priori information about the
environment in order to easily dismiss static parts of the data. The high resolution of a lidar
sensor is very useful for gathering detailed information about surrounding targets. Unfortunately
this also means that the raw data contains a lot of information about objects that are not useful
for the purpose of this thesis. Being able to dismiss static data in a straightforward way could
therefore greatly ease the computational load of all following steps of the algorithm.

The static map is made up of simple cuboids that describe walls, buildings and trees. Figure
3.4 shows an example of such a map in comparison with the point cloud data captured by the
sensor.
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Figure 3.4: Lidar data (top) and the same data overlain by the static map (bottom)2.

The concept of using prior information about the static environment was suggested by ÅF Tech-
nologies Gothenburg were this thesis was written. By measuring the environment with a static
lidar sensor, a highly accurate local static map can be built. This point cloud map is then used
to derive the cuboids.

Due to scheduling issues, no test data from the official test site (for which the static map existed)
was available for this thesis. To still be able to incorporate that concept, the static map over the
test data was created manually by placing cuboids over big static objects in the data: buildings
and trees. This resembles the original static map very closely.

Cuboids are used instead of the raw point cloud data because a geometrical approach was much
faster and more robust than a nearest neighbor algorithm.

Since all corner points pcor and the center of each cuboid pcen are known, a geometrical approach
was chosen. First, the normal vector for each of the 6 faces is calculated. Those vectors are then
used to determine whether pcen has a positive or negative distance to each of the faces. By
checking whether the point to test ptest has the same type of distance (negative or positive)
towards each face it can be determined whether ptest lies within the cuboid or not. The following

2N.B. the ground points seen in both images would usually have been removed at this stage of the algorithm
but were left in this Figure to make it easier to see where the static map cuboids are positioned within the frame
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pseudocode describes the entire process as a nested loop over all points and all cuboids.

In practice it was also found that the algorithm can be sped up significantly by first ordering
the set of all cuboids by distance from the current ego position. Since a lidar sensor captures
fewer and fewer points the further away an object is, it is reasonable to test against the cuboids
in order of increasing distance from the sensor. Any point that is removed at an early stage in
the algorithm will not have to be checked against all the other cuboids anymore.

Algorithm 2 Remove Static Points

input: Set of points P , Set of cuboids C
init: Sort C by distance to current ego position (ascending)

for j = 1 to C do
calculate normal vectors for each of the 6 faces of Cj
dj ← calculate the distance vector of the center cj

end for
for i = 1 to P do

for j = 1 to C do
dij ← calculate the distance vector of pi
if dij ./abs(dij)− dj ./abs(dj) = 0 then

remove pi from P
break

end if
end for

end for
output: Set of points P that are not within any of the cuboids

The algorithm effectively reduces the data by about 20,000 to 30,000 points and is a key com-
ponent to speed up the subsequent clustering and filtering.
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3.3 Clustering

At this point the pointcloud usually contains somewhere between 10,000 and 20,000 points and
looks like the example in Figure 3.5.

Figure 3.5: A typical pointcloud frame after removing the ground and static objects.

As can be seen, distinct objects appear in the data very clearly. However, the data is still only a
set of points with no indication of whether a pair of points might belong to the same object or
not. Clustering uses the fact that measurements originating from the same object are assumed
to be spatially close.

What kind of clusters are found can be adjusted by two parameters: the minimum number of
points in a cluster nmin and the maximum distance between any two points in a cluster that are
closest to each other dmax.

The implemented algorithm builds on creating a k-d-tree structure of the points to be clustered.
k-d-trees allow for efficient nearest-neighbour searches (nnsearch) that are important for this
application. A k-d-tree is built by continually branching the tree over hyperplanes that divide
the entire space into smaller and smaller subspaces. Each point is a node of the tree, with points
that are on the same side of any of the dividing hyperplanes ending up in the same branch of
the tree. For an introduction to k-d-trees the reader is referred to [22].

Pseudocode for the implemented algorithm can be found in Algorithm 3.
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Algorithm 3 Clustering Points

input: Set of points P , mmin, dmax
init: build a k-d-tree from P , empty set of clusters C
i = 0
while P 6= ∅ do

Ci = ∅, initialize a new empty cluster
T ← P0, initialize a new temporary set with the current first point in P
while T 6= ∅ do

X ← nnsearch(T0, dmax), find all neighbors with less than dmax distance to T0

T ← T ∪X, add all the points X to T
Ci ← Ci ∪ T0

T ← T \ T0

end while
if |Ci| ≥ mmin then

C ← C ∪ Ci, add the new cluster to the set of clusters
P ← P \ Ci
i← i+ 1

else
P ← P \ Ci
Ci ← ∅

end if
end while

output: Set of clusters C

In this thesis it was found that values of nmin = 50 and dmax = 0.7m delivered good results.
Using a fixed threshold is not optimal when using a range sensor like lidar whose data resolution
decreases proportionally to the distance from the sensor. A pedestrian that might be defined
by ≈ 200 points when 10m away from the sensor, may only end up being composed of ≈ 20
points at 100m distance. However, the mentioned values were found to be robust for all objects
of interest within a radius of 50m around the sensor.

Considering Figure 3.5, the goal with clustering is quite diverse. Ideally distinct objects should
also be clustered as distinct clusters. This can be quite a challenging task sometimes, e.g. for
two pedestrians that walk very close to each other. Also it is beneficial to dismiss tiny objects
like tree branches or fence poles that were not discarded by the static point removal and are
known to be much smaller than any object this thesis is potentially interested in (i.e. smaller
than a pedestrian).
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Figure 3.6: A typical pointcloud frame after clustering, different colors indicate different clusters.

Figure 3.6 shows the result of the clustering step performed on the frame in Figure 3.5. It can be
seen that a substantial amount of tiny objects could be dismissed and all other major objects are
successfully clustered. However, some typical clustering problems can be observed as illustrated
in Figure 3.7.

Figure 3.7: Two common clustering problems: a group of 4 pedestrians, 3 of which get clustered
into the same cluster (left) and a car that is being clustered together with some nearby ground
points (right).
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A possible way to remedy this problem is by re-clustering large clusters with a lower distance
threshold. However, this also increases computational complexity. As such, performing re-
clustering is dependent on performance requirements (accuracy vs. computational complexity).

3.4 Classification

As a first approach a basic single hidden layer, fully connected classification network is imple-
mented for this thesis because it allows to adjust the complexity as needed (up to a certain degree)
by adjusting the number of hidden units. It worked so well that a more complex structure was
deemed not to be necessary.

Performance of the object-tracking filter can be greatly enhanced by using knowledge about
the different objects that will be encountered in typical traffic scenarios. At this point, the
pre-processing steps have reduced the large amount of initial points to a small number (usually
10-20) of clusters.

The subsequent filter’s task is now to both track all dynamic objects and reject clutter. It is
beneficial to the filter’s performance to know whether a cluster is an object of interest or clutter
(like fragments of walls, trees or poles that were not discarded during the pre-processing). The
scope of this thesis limits the former to pedestrians, pedestrian groups, cyclists and cars.

The question is whether the shape of clusters can be used to determine what type of object it is.
This is a typical classification problem, which can be solved with a machine learning approach.
By looking at lidar data, e.g. Figure 3.7, it becomes apparent that it captures the environment
with a clear perception of both depth and shapes. It is easy to detect not only cyclists and cars
but also pedestrians with the naked eye, which is usually a meaningful indicator that such a task
can indeed be solved by machine learning.

Therefore, it indeed seemed promising to try and classify objects that are within a reasonable
range of the sensor. This was found to be about 50m, after that the resolution of objects starts
to decrease quite rapidly. Classification also seems like a reasonable idea to pursue in the sense
that a Bayesian framework always tries to include every possible prior information available.

Finally, a data-driven algorithm for object classification made sense from a runtime point of view.
Initial training might be time-intensive, but the eventual hypothesis function will be a mapping
from certain features of a cluster (such as height, length, width or center point) to a classification
vector. This function will therefore scale linearly with the number of clusters to classify and will
be much faster than any other part of the pipeline. The expected increase in performance is
therefore a good trade off.

3.4.1 Features

At the heart of any machine learning algorithm lie the features that are used to quantify each of
the available datapoints. In this thesis, those datapoints are the individual lidar clusters. The
aim is to choose those features in a way that they have very distinct values for the respective
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classes that you expect to appear in the data. Initial guesses for potential features can often be
derived from human intuition. Figure 3.8 shows examples of typical lidar representations of the
four objects of interest while being approximately equidistant to the sensor position.

Figure 3.8: Typical lidar representations of the four objects of interest.

As can be seen, there are distinct differences in the dimensions of all four objects especially in
x and y direction. Therefore width w, length l and height h of the clusters are considered to be
valuable features. Also, while the pedestrian has all it’s points spread quite closely around the
center, the points of a car or cyclist are more widespread. Thus the point density ρ is viewed
as a valuable feature. In addition to that, although not directly visible in Figure 3.8, the total
number of points n is different for all four objects. The car consists of ∼ 800, the cyclist of
∼ 200, the pedestrian of ∼ 100 and the pedestrian group of ∼ 300 points, which shows that the
number of points contains a lot of valuable information. However, since the number of points of
an object decrease for an increasing distance to the sensor, the number of points is divided by
the distance d of that cluster towards the sensor.

The final feature vector is therefore:

f = [w l h ρ
n

d
]T (3.1)
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3.4.2 Training and Testing

The network was trained on 186 frames of manually labeled data from the final example scenario
(presented more in detail in the results chapter 4 of this thesis). In total there were almost
5,000 clusters. The dataset was shuffled and then split 60/40 into a training and a test set.
As the names say, the training set is solely used for training the network, while the test set is
used for subsequent evaluation. By doing so, it is ensures that the algorithm generalizes to new
datapoints that it has not seen in the training phase.

However, this training process is slightly flawed. Essentially the training and test set, even though
they contain different datapoints, still originate from the exact same scenario. Since labeling data
is a very time-consuming process, it was deemed unreasonable for the scope of this thesis to tag
several scenarios. Instead, the results of the neural network classification can be regarded as a
proof-of-concept that shows that a machine learning approach can successfully and quickly solve
the classification task. With an increasing amount of data the algorithm could then be made
more general and robust.

The available data samples are quite skewed in the way that there are a lot more clutter clusters
than cars, pedestrians or cycles. Table 3.2 shows the composition of the entire dataset.

Table 3.2: Dataset composition showing how many clusters of each class there are.

Clutter Cars Cyclists Pedestrians Total

Number 3579 378 164 783 4904

Fraction of total 0.73 0.077 0.033 0.16 1.0

It would therefore be misleading to check performance by computing the accuracy, i.e. the
fraction of correct predictions of the network. If the network would only predict ”clutter” on
every single input, accuracy would still be about 73%. When working with skewed datasets,
precision and recall are more suitable evaluation metrics.

Precision =
True positives

true positives + False positives

Recall =
True positives

True positives + False negatives

(3.2)

Precision denotes the fraction of e.g. how often the network predicted a car and it actually was
a car. Recall denotes the fraction of e.g. how many of all car samples the network correctly
predicted as cars. As can be seen, especially recall would have a very low value when only
predicting all clusters to be clutter. The performance of the network can be seen in the Results
Chapter, Section 4.2.2.
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3.5 Elliptical PHD filtering

All clusters that are not classified as cars are used in the elliptical PHD filter. Since classification
is never 100% accurate, there is a possibility of an object of interest being classified as clutter.
As such, even clutter clusters are used in this filter and will need to be rejected by the filter as
targets if necessary. The elliptical PHD filter can be seen as the general purpose extended target
tracking filter with good results for all kinds of different objects.

As described in 2.3.2, the elliptical PHD filter follows the general Bayesian recursion of prediction
and update. The kinematic state vector is defined as position, velocity and acceleration in both
x and y direction.

xk = [xk yk ẋk ẏk ẍk ÿk]T (3.3)

The kinematic motion model with state transition matrix Fk|k−1 and noise term Qk|k−1 are
defined according to [14] as follows:

Fk|k−1 =

1 T 1
2T

2

0 1 T

0 0 e
−T
θ



Qk|k−1 = Σ2(1− e
−2T
θ )

0 0 0

0 0 0

0 0 1


(3.4)

T is sample time, θ is the maneuver correlation time constant and Σ is the scalar acceleration. As
you can see, θ is used to scale the negative exponent of an exponential function. This function
will therefore result in values between 0 and 1, depending on θ. The state transition Fk|k−1

therefore scales down the previous time step’s acceleration, while the noise term adds a certain
value to the acceleration variance.

It is worth noting that both matrices can be written as 3 × 3. This is possible because the
prediction and update steps described in equations (2.56) and (2.59) make use of the Kronecker
product to extend the state transition Fk|k−1 according to the number of desired dimensions,
e.g. 2 for tracking x and y or 3 for x, y and z. The noise term Qk|k−1 is 3 × 3 because the
covariance term P is also considered to be 3× 3 and is then also dynamically extended by using
the Kronecker product. This means that no covariance between the states in different dimensions,
e.g. x and y, is assumed.

The extent state consists of the two inverse Wishart parameters υ and V (where vec(V) is a
column vector, the vectorized form of V):

Xe = [υ, vec(V)T ]T (3.5)
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Both the kinematic and the extent state together form the combined Gaussian inverse Wishart
(GIW) state component consisting of the following variables:

ξ = [x y ẋ ẏ ẍ ÿ υ vec(V)T ]T (3.6)

The basic structure of one iteration of the elliptical PHD filter is outlined in the following
pseudocode. It can be seen in much more detail in [17].

Algorithm 4 A single PHD iteration for Elliptical Targets.

input: GIW PHD from k − 1: vk−1(ξ), Birth PHD γk(ξ), set of m non-car clusters C¬car

init: calculate center and scatter matrix for all C¬car according to equation (2.58)
for j = 1, . . . ,|vk−1| do

vk|k−1 ← predict(vk−1), according to (2.56), (2.57) and (2.61)
end for
vk|k−1 ← vk|k−1 ∪ γk(ξ), add birth PHD to the predictions
update weights for no detection case according to (2.62)
vk|k ← ∅, initialize empty set for all new updated components
for i = 1, . . . ,m do

for j = 1, . . . , |vk−1| do
vk|k ← vk|k ∪ update(vjk−1, C

i), according to (2.59), (2.60) and (2.63)
end for
normalize weights of all components updated with Ci according to (2.64)

end for
vk|k ← pruning(vk|k), merging(vk|k)

output: the updated Gaussian inverse Wishart PHD components vk|k

Pruning and Merging are essential steps to reduce the computational complexity of the filter by
keeping the number of components in the filter at a minimum. Pruning removes all components
whose weight falls below a certain pruning threshold T , while merging aims to join components
whose states are below a certain merging distance U to each other. A practical approach to
implementing both pruning and merging in a filter with Gaussian inverse Wishart components
can be seen in [17] and is therefore not repeated here.

Calculation of the likelihood in (2.63) is susceptible for computational errors since it computes
the ratio of very large numbers. This is especially true when working with lidar data, as some
values like e.g. vk|k are directly influenced by the number of measurement points in a cluster.
Due to the high resolution of lidar data, the number of points per cluster tends to be much higher
than with other sensors like e.g. radar. It is therefore essential to use a log likelihood weight
update in order to not run into out of bounds errors when calculating the values. This is also
suggested in [17].
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3.6 Car Cluster Pre-Processing

Each cluster of measurements classified as originating from a car needs several steps of pre-
processing before being incorporated into rectangular target tracking. One necessary step is
identifying which sides of the car are in view of the lidar sensor. This is especially important,
since at any scan either one or two sides of the car will be visible. Distinguishing between the
two is important when for example determining viewed length and width, important parameters
when generating MGPs. Additionally, measurements in each cluster should be assigned for later
use in the rectangular PHD filter.

3.6.1 L-Shape Fitting With Height Based Filtering

A way to identify which measurements belong to which side is by use of Incremental Sub-Matrix
Eigen Decomposition (ISED), first proposed in [23] and initially developed for laser scanner
data. With ISED an L-shape is efficiently fitted to 2D data in a least-squares optimal way. By
fitting an L-shape, the corner point between the two sides can be identified, as well as the two
orthogonal lines spanning each side. However, a prerequisite for this method are measurements
sorted according to bearing, i.e. clockwise or counter clockwise. This does not hold for lidar
sensor data, which necessitates the need to sort measurements according to bearing before using
the method.

The simple approach for utilizing ISED is to project all measurements onto the XY-plane, sort
them according to bearing (the lidar sensor is located at origin), and then use the ISED method
to find the corner point as well as two lines spanning each side. However, such an approach
suffers from several drawbacks. A problem with projecting all measurements onto the XY-plane
is that several measurements will be from the inside of the car. This is due to the fact that lidar
beams can pass through transparent objects (like car windows), and then get reflected back from
within the car. Additionally, several clutter measurements can also be present. For example,
ground measurements can still be present, or measurements arising from steam emitted from the
exhaust-pipe. As a consequence, this will result in poor estimates from the ISED method.

This problem can be alleviated by taking into account how lidar measurements are distributed
and by considering the geometric shape of cars. For one lidar scan, the sensor is rotated 360◦.
Each of the sensor’s 64 channels are vertically spaced from each other, each with a different
downward tilt. As such, measurements arising from a car are distributed vertically in the form of
several horizontal layers, where each layer is at a different height (see Figure 3.9 for illustration).
Due to the general geometric shape of cars, the further up along the height of the car a layer is,
the less measurements it will consist of. This is due to increasing reflectivity from windows and
curved surfaces (e.g. the hood of the car). In addition, a car’s vertical spatial extent decreases
with its height.

With these properties in mind, the mean height µz of all measurements should be skewed towards
measurement layers not encompassing any of the car’s windows or curved surfaces. As such,
measurements can first be filtered based on height, where measurements within in a bound
around the mean height µz are kept.

The remaining measurements are then used in the ISED method. This will not only result in a
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Figure 3.9: Top left corner illustrates the fitted L-shape (in blue), using all clustered measure-
ments. Lower left corner illustrates all clustered measurements in 3D. Top right corner illustrates the
fitted L-shape (in blue) using height-filtered measurements (in red). Lower right corner illustrates
where height-filtered measurements (in red) are located in the car cluster in 3D.

more accurate estimate from ISED, but it also reduces computational complexity, since less mea-
surements need to be sorted according to bearing beforehand. Additionally, since computational
complexity in ISED scales linearly with the amount of measurements, reducing the amount of
measurements will also result in more computationally efficient L-shape fitting.

In this work the following bound was used for height-based filtering of car clusters measurements,
where σz is the standard deviation of the height of all measurements. The bound is skewed
more towards lower layers since these layers encompass more surface area of the car, while
measurements from layers above the mean risk encompassing windows and curved surfaces. This
choice in parameters resulted on average in a 75% decrease of the number of measurements used
for L-shape fitting.

µz − 0.50σz < zik < µz + 0.25σz (3.7)

3.6.2 Estimating length of viewed sides

The corner point and orthogonal lines from ISED can be used to estimate the length of each
viewed side. The remaining measurements from the filtering step are projected onto each of the
orthogonal lines. The two largest distances between the corner point and a measurement from
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each set of projected measurements correspond to the viewed lengths.

It is important to note that at this step in the algorithm it is not possible to distinguish between
which side corresponds to a car’s width or length, and by extension which car corner is in view.
This is dependent on the predicted car state, see section 3.7.2 for more information.

3.6.3 Measurement Selection

An important problem when tracking rectangular targets is how to assign measurements to each
MGP. One solution to this problem, when dealing with radar measurements sorted by bearing,
involves associating an MGP to each measurement present in the car cluster, see [13]. Such a
solution has two general drawbacks when dealing with a lidar sensor. Firstly, the large amount
of measurements per car will result in increased computational complexity. Secondly, such a
solution is based on the assumption that measurements are uniformly distributed along each side
of the car. This assumption does not hold when using lidar data, since other objects placed in
between the lidar sensor and surrounding cars will result in regions of some cars being subject
to occlusion, as in Figure 3.10.

Figure 3.10: Lidar measurements of a car viewed from above. Due to an object in between the
car and the sensor, a region of the car is subject to occlusion.

The solution to the measurement assignment problem in this work relies on the estimated corner
point and orthogonal lines from the ISED method, while not suffering from the drawbacks listed
above. By using the orthogonal lines attained from fitting an L-shape, a 2 dimensional vector
v can be defined for each visible side (i.e. orthogonal line), where the magnitude of each vector
is equal to the viewed length ε of its corresponding side (calculated as per Section 3.6.2), see
Figure 3.11

54



3.6. CAR CLUSTER PRE-PROCESSING CHAPTER 3. ALGORITHM

v1, ||v1|| = ε1 (3.8)

v2, ||v2|| = ε2 (3.9)

Figure 3.11: By performing L-shape fitting with measurements marked in red, it is possible to
locate the corner point Pc, as well as two vectors v1,v2, both originating from the corner point and
spanning each of the viewed sides.

These vectors can be used to create uniformly distributed ideal MGPs δi along each visible
side. The ideal MGPs δi represent positions along the car’s length and width where MGPs
ideally ought to be placed, since by definition a measurement generating point is considered as a
specific point which at each time step (potentially) generates a sensor measurement. By creating
ideal MGPs and assigning them measurements, the same assignment can later be used when
constructing MGPs based on the predicted state, µi(ξk|k−1). As such, ideal MGPs can be seen
as MGPs constructed from measured data, used to assign measurements and associate them to
MGPs constructed from the state ξ.

As such, under the presence of no occlusion, the ideal MGPs are uniformly distributed. Conse-
quently, 1 + 2N ideal MGPs δi are created in the following way

δ0 = Pc,

δi = G(Pc, i, N,v1) = Pc +
i

1 +N
v1, i = 1,2, . . . ,N (3.10)

δi+N = G(Pc, i, N,v2) = Pc +
i

1 +N
v2, i = 1,2, . . . ,N

where Pc is the corner point. The resulting ideal MGPs are uniformly placed along the vectors
v1 and v2. Each δi needs to be associated with a measurement, which can be performed by
conducting a nearest neighbor search. Note that special care needs to be taken in order for
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no duplicate measurements to appear among assigned measurements; each measurement can by
definition only be associated to one MGP. If the distance between an ideal MGP δi and its
associated measurement zi is above the threshold dmax, then the ideal MGP is not assigned a
measurement. Given how closely spaced lidar measurements are, the threshold dmax will make
sure that ideal MGPs placed in occluded regions are not included for later use in the car PHD
filter.

An additional threshold, εmin, is used to determine whether one or both sides of the L-shape are
visible enough to be used for state estimation. Consequently, if any of the vectors v1 and v2 have
a magnitude less than εmin then no MGPs will be created for the associated side, resulting in a
one-sided measurement update in Section 3.7.2. By formulating the two vectors v1 and v2, this
method enables an upper limit of Nλ = 1+2N measurements to be associated (and by extension
the number of MGPs), thus making it possible to adjust computational complexity, although at
the expense of state estimation accuracy. Additionally, the distance threshold dmax can be used
to take occluded regions into account.

The final algorithm for selecting measurements is detailed in Algorithm 5.

Algorithm 5 Select Measurements

input: Pc, v1, v2, dmax, εmin, N , Set of measurements Z
δ0 = Pc
if ||v1|| > εmin then

for i = 1 to N do
δi ← G(Pc, i, N,v1)

end for
end if
if ||v2|| > εmin then

for i = 1 to N do
δi+N ← G(Pc, i, N,v1)

end for
end if
for j = 1 to |δ| do
{zj ,dj} ← unique nearest neighbor search for δj
if dj > dmax then

zj = Null
end if
Za ← add zj to Za

end for
output: Vector of assigned measurements Za

After conducting pre-processing for all car cluster measurements, each car cluster Ci
car passed to

the rectangular PHD filter will consist of the following set

Ci
car = {Zia,vi1,vi2} (3.11)

where Zia are assigned measurements and vi1,v
i
2 are the vectors spanning each viewed side.
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3.7 Rectangular PHD filter

The rectangular PHD filter incorporates the general recursive equations presented in Section
2.2.2, with the main difference consisting of how each target is represented. In the general
PHD recursion, each target consists of a single Gaussian component; this enables use of the
basic KF equations found in Section 2.1.1 to calculate all key steps during a PHD recursion:
Prediction, Likelihood and Update. For rectangular tracking however, each component is
instead represented by an IMM filter. In turn, the IMM filter utilizes either the EKF or UKF
equations to perform necessary steps for each mode in the IMM filter.

As such, motion models for use in the IMM filter need to be defined, as well as MGP-functions
for each prediction, in order to perform all key steps in the PHD recursion.

3.7.1 Choice of Motion Models

In this work, the IMM framework is used to incorporate two different motion models, one model
for when the car is turning and one for when the car is driving straight. In order to incorporate
both of these behaviours the following extended state vector is used

ξk = [xk yk vk φk φ̇k wk lk]T (3.12)

where xk and yk denote the mid-point of the car, vk is velocity, φk and φ̇k are heading and
turning-rate, wk and lk are the width and length on the car respectively. The two different
motion models, f t(ξ) and fs(ξ), where t denotes the model for turning, and s denotes the model
for driving straight, are defined in the following way, where ∆T = 0.1 sec is lidar sample time.

ξtk+1 = f t(ξk) =

 xk + ∆Tvk cos(φ)

yk + ∆Tvk sin(φ)

[vk, φk + ∆T φ̇k, φ̇k, wk, lk]T

+ qtk, (3.13)

ξsk+1 = fs(ξk) =

 xk + ∆Tvk cos(φ)

yk + ∆Tvk sin(φ)

[vk, φk, 0, wk, lk]T

+ qsk (3.14)
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qtk ∼ N (07×1,Qt) , Qt = ΓTt


σ2
v 0 0 0

0 σ2
φ̇

0 0

0 0 σ2
w 0

0 0 0 σ2
l

Γt, Γt =


0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


(3.15)

qsk ∼ N (07×1,Qs) , Qs = ΓTs


σ2
v 0 0 0

0 σ2
φ 0 0

0 0 σ2
w 0

0 0 0 σ2
l

Γs, Γs =


0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


(3.16)

With the two motion models defined, calculating each prediction ξtk|k−1, ξ
s
k|k−1 is performed with

{ξ̂0t
k|k−1,P

0t
k|k−1, ξ̂

0s
k|k−1,P

0s
k|k−1} = IMM.Mixing

(
ξ̂tk−1|k−1,P

t
k−1|k−1,ξ̂

s
k−1|k−1,P

s
k−1|k−1

)
{ξ̂tk|k−1,P

t
k|k−1} = IMM.Predict

(
f t(·), ξ̂0t

k|k−1,P
0t
k|k−1

)
{ξ̂sk|k−1,P

s
k|k−1} = IMM.Predict

(
fs(·), ξ̂0s

k|k−1,P
0s
k|k−1

)
(3.17)

The IMM block first performs mixing (see Section 2.1.3) in order to get mixed estimates, before
the Predict operation is called, which can either be performed using the EKF predict or UKF
predict equations (see Section 2.1.1-2.1.2).

3.7.2 Generating Measurement Generating Points

In order to calculate the likelihood and update for each estimate, MGPs need to be created for
each prediction. From the pre-processing step, each car cluster Ci

car consists of

Ci
car = {Zia,vi1,vi2} (3.18)

where Zia are assigned measurements and vi1,v
i
2 are vectors spanning each viewed side. As such,

in order to generate MGPs the vectors vi1,v
i
2 must be identified by which side they correspond

to (i.e. which vector is width and which is length), and by extension from which corner point
Pc they originate from (i.e. Pc corresponds to either corner 1,2,3,4). This is important, since
selection and ordering of the assigned measurements Za is dependent on the viewed corner in
the pre-processing step.
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The implication of this is that each prediction will act as a form of hypothesis regarding which
corner (and by extension which sides) are seen in the data. This results in MGPs-generation
which is dependant on predicted state. This can most easily be illustrated by viewing Figure
3.12.

Figure 3.12: Three different predictions, each marked with a different color. Depending on
predicted heading, each prediction will act as a hypothesis regarding which corner is seen in the
data. Filled colored circles represent each predictions hypothesis regarding viewed corner. Magenta
stars mark selected measurements, performed with Algorithm 5. Gray x:s represent measurements
remaining after height based filtering.

In the figure measurements remaining after height based filtering are seen, as well as predictions
from three different IMM components, each with a different color. For clarity only one prediction
is illustrated for each component in the figure.

The two vectors vi1,v
i
2 are known since pre-processing has occurred, and as such a number of

measurements have already been assigned. In the figure a total of 3 measurements have been
chosen, marked as magenta stars. Since there exists ambiguity in which corner of the car is
actually seen, each IMM component will act as a hypothesis on this matter. In the case of the
red component, the corner point is seen as Pc → corner1 according to definition (See Section
2.3.1). For the blue and orange components, the corner will be seen as Pc → corner4 and
Pc → corner2 respectively. Depending on how the car behaves in the next time step, only one
(or none) of these three components will prove to be correct. As such, if one of these predictions
proves to be valid, it will result in a higher weight for said component in the PHD filter.
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The choice in which corner is seen is solely dependant on predicted heading φk|k−1, and can
be determined by utilizing linear algebra. Consequently, deciding which side the vectors vi1,v

i
2

belong to is also dependant on predicted heading and can also be determined with linear algebra.
Knowledge about corner point and which side is seen, are necessary to construct MGPs for each
prediction. The necessary steps for deciding corner and which sides are seen can be found in
Algorithm 6 and 7.

Algorithm 6 Identify which corner is seen

input: φk|k−1, v1, v2

init: Generate unit vectors of v1, v2: u1, u2

Inverse rotate each unit vector with the predicted heading
u0

1 ← inv.rot(u1, φk|k−1)
u0

2 ← inv.rot(u2, φk|k−1)
Calculate angle 0 ≤ ψ ≤ 2π
ψ ← arccos(dot(u0

1,u
0
2)),

if 0 < ψ ≤ π/2 then
corner = 1

else if π/2 < ψ ≤ π then
corner = 4

else if π < ψ ≤ 3π/2 then
corner = 3

else if 3π/2 < ψ ≤ 2π then
corner = 2

end if
output: corner

Algorithm 7 Identify viewed width and length

input: φk|k−1, v1, v2

init: Generate unit vectors of v1, v2: u1, u2

Construct unit vector representing φk|k−1

uφ = [cos(φ), sin(φ)]T

if dot(uφ,u1) > dot(uφ,u2) then
s1 = ”length”
s2 = ”width”
lview = ||v1||
wview = ||v2||

else
s1 = ”width”
s2 = ”length”
wview = ||v1||
lview = ||v2||

end if
output: s1, s2, wview, lview

By performing the steps outlined in Algorithm 6 and 7, MGP functions can be generated for
each prediction and associated measurement. It is important to note that MGPs are not created,
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instead MGP-functions are created. Revisiting the general MGP equations from Section 2.3.1,

{hjl (ξmin)}Nj=1 = hic(ξmin) +
j

1 +N
ρl

[
l cos(φ+ η(i))

l sin(φ+ η(i))

]
, η(i)→ {0,0,π,π} (3.19)

{hjw(ξmin)}Nj=1 = hic(ξmin) +
j

1 +N
ρw

[
w cos(φ+ η(i))

w sin(φ+ η(i))

]
, η(i)→

{
π

2
,
3π

2
,
3π

2
,
π

2

}
(3.20)

it can be seen that while they do depend on the state ξ, they also depend on a number of
other variables as well: i, N , ρw and ρl. The variable i represents the corner point, which at
this point is determined with Algorithm 6. The variable N represents the number of MGPs,
which is also known since 1 + 2N measurements are assigned at the pre-processing step (the
parameter N is user selected). The two ratios, ρl and ρw are also known, since both predicted
state ξk|k−1 as well as wview and lview are known (Algorithm 7). As such, constructing a vector of
MGP-functions corresponds to using the general equations together with the state-independent
parameters (i, N , ρw and ρl) to form MGP-functions which solely depend on the state ξ. Since
assigned measurements Zia are ordered according to Pc-MGP, v1-MGPs and v2-MGPs, the MGP-
functions need to be generated in same order. The same threshold for viewed length and width,
εmin, is also used when generating MGP-functions.

For example, for N = 2, corner = 1, ρw = ρl = 1, ε1 > εmin, ε2 > εmin and where v1

corresponds to width and v2 to length, the MGP-function vector is the following:

H(ξ) =



hi=1
c (ξ)

h1
w(ξ, ρw = 1, i = 1)

h2
w(ξ, ρw = 1, i = 1)

h1
l (ξ, ρl = 1, i = 1)

h2
l (ξ, ρl = 1, i = 1)


︸ ︷︷ ︸

2(1+4)×1

(3.21)

The final step, before using the H(ξ) function vector and the assigned measurements Zia for
Update or Likelihood, is to remove empty measurements from Zia and their corresponding
MGP-functions from H(ξ). This is since empty measurements fall outside of the threshold dmax,
indicating that an occluded region is present for the corresponding MGP-functions.

3.7.3 Incorporating Rectangular Targets in PHD recursion

With motion models defined, as well as the capability to generate MGP-functions for each pre-
diction in an IMM component, an entire PHD recursion can be computed, detailed in Algorithm
8.

61



3.7. RECTANGULAR PHD FILTER CHAPTER 3. ALGORITHM

Algorithm 8 A single PHD recursion for Rectangular Targets.

input: Number of components to keep between recursions NPHD, Birth PHD γk(ξ), Previous
PHD vk−1(ξ), Measurement clusters {Cicar = {Zia,v1,v1}}mi=1

Add birth PHD to predicted set
vk|k−1 ← γk(ξ)
for j = 1, . . . ,NPHD do

Predict each IMM component in previous PHD vk−1(ξ), add to predicted set
vk|k−1 ← IMM(j).Predict

end for
Calculate updated PHD, first insert non-detected components from prediction
vk|k(ξ)← (1− PD)vk|k−1(ξ)
for i = 1, . . . ,m do

for j = 1, . . . , NPHD do
Algorithm 5
Algorithm 6
Algorithm 7
H(ξ)← Generate MGP functions
wjk|k ← PD × wjk|k−1×IMM.Likelihood(Zia, H(ξ),σ2

R)

end for
for j = 1, . . . , NPHD do

wjk|k ← Normalize with K +
∑NPHD

j=1 wjk|k−1

end for
end for
Perform Merging, Pruning, etc.
Update remaining components
for j = 1, . . . , NPHD do

vk|k(ξ)← IMM(j).Update
end for

output: vk|k(ξ)
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4

Results

T
his chapter shows the results of the proposed algorithm. Behaviour and performance
is tested on an example scenario from the KITTI Vision Benchmark dataset [4]. Un-
fortunately, no ground truth for any of the tracked objects is available, which is why
the algorithm is evaluated visually only.

Since there are around 5-10 tracked objects at any given time step, it is impossible to visualize the
entire filter performance in this report in a satisfactory way. Instead, examples of characteristic
and interesting filter behaviour are given and explained.

The best way to get an overview of the algorithm’s performance is to view it in practice. There-
fore, a short (22s) video was created and uploaded to a hosting platform. The reader is encouraged
to watch it before continuing in this chapter in order to get a better understanding of subsequent
explanations [24].

4.1 Scenario Description

The scenario consists of 186 frames of lidar data in an urban area with pedestrians, cyclists and
cars moving through the field of view. As outlined in thesis delimitations 1.1.1, ego position
is constant, the observed area is assumed to be a flat horizontal plane and a static map of the
environment is available.

The area consists of a T-shaped intersection on which two cars and two bicycles are observed
during the scenario. There are also several sidewalks around the roads, and a crossing over one of
them, on which pedestrians and groups of pedestrians can be seen throughout the entire example.
An example frame of the scenario is shown in Figure 4.1.
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Figure 4.1: An overview of the test scenario area.

4.2 Algorithm Performance

4.2.1 Pre-Processing

The several pre-processing steps - ground removal, static map removal and clustering - all aim
to dismiss uninformative data and bundle measurements into objects. As pointed out in the
description of these algorithms, all of them can be tuned between reducing the data as much as
possible or keeping a high level of detail.

For example, the clustering algorithm is parametrized by a minimum amount of points and a
maximum distance between any two points in a cluster. The further an object is away from the
lidar sensor, the fewer points it will consist of and the longer the distance between any two of
these points will be. Setting a fixed threshold for the clustering parameters thus invariably leads
to a decrease in the distance at which objects are tracked and identified by the implemented
filter as opposed to the raw data.

An example of this can be seen in Figure 4.2 which compares the raw point data of an example
frame with the clusters derived from that data. In the raw data, the point that is furthest away
from the sensor lies at a distance of about 100m. In the clustered data this distance is reduced
to about 50m.
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Figure 4.2: The difference in range of perception between raw data (gray) and clusters (colorful).

While this decrease in effective range is unfortunate, it is necessary to achieve a robust filter
implementation. Both the neural network and the extended target tracking filters need objects
with a certain minimum amount of points in order to derive distinct features (neural network)
and extent measurements (tracker). Higher sensor resolution is one way to remedy this problem.
Additionally, a dynamic clustering threshold (dependent on distance) can be employed. Distance
between measurements increases with range, which can be incorporated when clustering: objects
nearby have a comparatively smaller clustering threshold than objects further away.

4.2.2 Neural Network

The features described in the algorithm chapter 3 were added one by one and a ceiling analysis
was performed to verify the eligibility of each. Table 4.1 shows the influence of each feature on
the network performance.

Feature vector Precision (%) Recall (%)

[w, l, h] 75.4 73.7

[w, l, h, ρ] 81.1 79.9

[w, l, h, ρ, nd ] 88.4 83.0

Table 4.1: Ceiling analysis of a feature vector with an increasing amount of features.

As can be seen, the neural network shows promising performance. This makes it possible to
incorporate the neural network as a classification layer before filtering, in order to use specific
filtering approaches for different classes of objects.

65



4.2. ALGORITHM PERFORMANCE CHAPTER 4. RESULTS

4.2.3 Tracking Filter

The following examples are all taken from the test scenario described at the beginning of this
chapter. Elliptical targets are displayed with a pink ellipse under the object cluster. Rectangular
targets are shown as cuboid bounding boxes around the cluster. Classification of different kinds
of objects is visualized by a specific color value for all points in the cluster of that object. All
clusters are drawn as an overlay over the original raw data to make orientation in the scenario
easier. The different colors can be seen in Table 4.2.

Class Raw Data Clutter Cars Cyclists Pedestrians Pedestrian Groups

Color

Table 4.2: Legend showing different colors used to visualize different classes of objects.

Elliptical Filter

The elliptical PHD filter manages to keep track of the multiple targets moving through the area
of perception at any given time. Figure 4.3 shows that 8 objects are being tracked as ellipses: 2
cyclists, 3 pedestrians and 3 groups of pedestrians. Although some of those targets are spatially
very close, the tracker manages to track the individual objects.

Figure 4.3: Tracking multiple targets, some of them spatially close, k = 163.

Internally, each Gaussian inverse Wishart component propagated in the filter, is assigned a
unique index. This index can be used to identify the trajectory of any particular target in the
multitarget scenario. Figures 4.4 and 4.5 show how the filter effectively keeps track of the index
of an example pedestrian and an example cyclist throughout their entire lifetime in the scenario.
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(a) k = 1 (b) k = 186

Figure 4.4: Keeping track of the index of a pedestrian target within the multitarget scenario.

(a) k = 123 (b) k = 186

Figure 4.5: Keeping track of the index of a cyclist target within the multitarget scenario.

The only time a target might lose its index is if it is merged with another target of a higher
weight.

Another interesting point is how the filter manages to handle situations where a group of people
are suddenly clustered as individual objects, or the other way around. Those situations are
complex because the extent of the measurement suddenly changes significantly. The filter has
to either split up an existing target and use it as a prior for several measurements, or it has to
merge several existing targets into one.

67



4.2. ALGORITHM PERFORMANCE CHAPTER 4. RESULTS

An example of this kind of behaviour in Figure 4.6.

(a) k = 41 (b) k = 98

Figure 4.6: Splitting up a pedestrian group target into 4 single pedestrian targets.

The elliptical filter also manages to keep targets for a couple of time steps even if no measurements
are received. It does so by propagating the prediction without performing an update step. The
weight of the target is lowered for every prediction-only step, so after a certain number of steps
without a measurement, the target will eventually be discarded. However, the filter shows that
it successfully detects targets again after approximately 10 prediction-only steps as soon as they
then reappear.

This robustness towards missing measurements is important to be able to handle e.g. occlusion
cases, where a target is temporarily hidden behind another object. In the test scenario one
pedestrian is moving very close to a fence. In some frames that pedestrian is then clustered into
one cluster with the nearby fence, which results in that cluster becoming a lot bigger than a
normal pedestrian cluster. Therefore, a matching measurement is effectively not available for
several time steps. The described problem can be seen in Figure 4.7.
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(a) k = 94, measurement available, target
is being tracked.

(b) k = 95, no measurement, pedestrian
is clustered together witht the adjacent
fence, prediction only.

(c) k = 98, no measurement, prediction
only, weight has become so low that it is
not considered to be a likely target any-
more.

(d) k = 102, measurement reappears, tar-
get is picked up again (as indicated by
keeping the same index value as before).

Figure 4.7: A pedestrian target’s measurements are not available for several timesteps, still it is
tracked again when it reappears.

Rectangular Filter

During the scenario two non-stationary cars are present. One of them, from now on referred to
as Car 1, is present at the start of the scenario near the ego position, and drives in a more or
less straight path before disappearing from sensor view. In total, Car 1 is present for 35 frames.
The other one ,Car 2, appears after approximately 20 frames, drives towards the ego car and
later performs a 90◦ turn, after which it drives away from the ego car and disappears from sensor
view. In total, Car 2 is visible for 55 frames.

Both cars are instantly detected by the PHD filter. Estimation of size, as well as position, velocity
and heading all appear to be within a reasonable range. Estimation of size changes very little
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during the scenario, even though at some instances only one side of each car is seen. In addition
to this, estimation appears to be robust even when partial occlusion of the cars occur. This is
illustrated in Figure 4.8, where filter estimates are plotted as boxes on top of each car cluster.
Velocity as well as estimated width and length are visible above each box.

(a) Car 1, k = 9 (b) Car 1, k = 31

(c) Car 2, k = 34 (d) Car 2, k = 69

Figure 4.8: Car 1 and Car 2 illustrated for selected frames (denoted ky k). Estimation of shape
and size varies minimally between successive frames, even though several sides are not visible. In
4.8a a pedestrian is located between Car 1 and ego, resulting in partial occlusion of the car.

Estimation of width and length appear to be slightly underestimated. This can probably be
attributed to the combination of only viewing 1-2 sides of the cars and reflectivity around their
rounded corners. Before disappearing from sensor view, both cars are subject to missed mea-
surements. This is due to their clusters not containing more than 50 points, resulting in their
clusters being discarded. The PHD filter struggles to track them under these instances, most
probably due to the choice of survival and detection rate PS = PD = 1 in the filter. Additionally,
before Car 2 disappears from sensor view it is omitted by the PHD filter. This appears to be
due to the choice of clutter constant K = 1.

The rectangular PHD filter was tested with both an EKF and UKF when performing the standard
KF steps of prediction, likelihood and update. Of these two, the UKF outperformed the EKF
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in terms of capability to track both cars. The EKF only managed to track each car for 10− 20
frames before becoming unstable. The UKF on the other hand did not experience any of these
problems. The problems associated with the EKF can either be attributed to a high degree of
non-linearity in both motion and measurement model, or due to programming errors present in
the EKF implementation1.

1Several tests were performed to see whether the Jacobians were correctly calculated. Both numerical and
analytical calculations were tested, with neither resulting in better filter performance.
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Discussion

R
esults show that by incorporating elliptical and rectangular extended targets, common
road participants can successfully be tracked in lidar data. In addition, the spatial
extent of tracked objects is also estimated. This thesis thereby extends similar work on
radar data [25] and builds a rigorous framework for the data processing and tracking

algorithms needed for a viable solution. By testing the proposed algorithm on real-world data,
its potential for practical use is shown.

5.1 Benefits of Neural Network Classifier

Similar solutions for radar data, like [25], make use of a track-before-classify approach. This
method initializes one component of each type (i.e. elliptical and rectangular) for each new
target. It then propagates both components until the weights of one of them converge in a way
that the filter will dismiss it as unlikely. The remaining component is then considered to signify
the type of the target. In a way, this can be seen as a classification approach internally in the
filter. The downside to this is that until one component can be dismissed, the computational
load for that target is essentially at least doubled1. If one would like to diversify into even more
types of components in the future, this method would not scale well.

In contrast, this thesis proposes a classify-before-track approach. Essentially, the idea is that each
cluster of lidar point data holds sufficient information for classification even before subsequent
motion of that cluster can be observed. This is mainly due to the much higher resolution of a
lidar sensor as compared to e.g. radar. By using statistical tools from machine learning, this
information can be exploited to classify clusters before they actually enter the filter. Therefore,

1PHD filter complexity isO(mn), wherem is number of measurements and n number of components. Increasing
the number of components can also result in more measurements being included, i.e. measurements from both
elliptical and rectangular targets. As such, computational complexity will at least double.
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m clusters

Neural Network

All other clusters, mo Car clusters, mc

Elliptical
PHD filter

Rectangular
PHD filter

Figure 5.1: The filtering strategy used in this thesis, two dedicated PHD filters, one for cars and
the other one for all the rest

any new target can instantly be initialized with the right kind of component. Additionally, any
non-stationary target not classified by the neural network will still be tracked, since it will be
used in the elliptical tracking filter. As such, elliptical tracking essentially works as a catch-all
tracking method, capable of tracking any type of non-stationary target.

Interestingly, classify-before-track not only solves the computational overhead of track-before-
classify, it actually even results in lower computational complexity for each additional component
type. Since e.g. car components will only be updated with car measurements, there are far less
combinations to compute likelihoods for. Figures 5.1 and 5.2 exemplify this for using a classify-
before-track approach that then utilizes the clusters into different PHD filters that track the
objects with suitable components (e.g. ellipses or rectangles) and motion models.

Figure 5.1 shows the approach chosen in this thesis, with one specific PHD filter for cars and
another for all other objects. The total number of clusters m is therefore divided into two
subsets m = mo + mc. Existing components in the filters no and nc have to be updated with
those measurements. The main complexity of a PHD filter lies in the operations of computing
likelihoods and updating existing components with new measurements, so there are generally mn
operations to perform. If all components were handled in one filter the overall complexity would
thus be O((no+nc)m), while the divided filter approach results in O(nomo+ncmc). Given that

O(nomo + ncmc) < O((no + nc)m) (5.1)

it shows that a PHD filter that has to match fewer measurements against fewer tracked compo-
nents will have a lower computational complexity than a single PHD tracking all components
and matching them against all incoming measurements. 2

Figure 5.2 shows that the more this approach is diversified to use different PHD filters for different
types the less computationally complex the algorithm will be. Figure 5.2 gives an examples of
extending the filtering proposed in this thesis with a custom PHD filter for trucks. Thus, the
m = mo +mc +mt clusters received as measurements could be divided into smaller subsets. In
theory, the main computational complexity in the PHD filters would then look as follows.

2In addition, this offers the ability to implement tailor-made components and models for tracking that particular
kind of object.
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m clusters

Neural Network

All other clusters, mo Car clusters, mc Truck clusters, mt

Elliptical
PHD filter

Rectangular
Car PHD filter

Rectangular
Truck PHD filter

Figure 5.2: A more diversified PHD filtering approach using an additional PHD filter for trucks.

O(nomo + ncmc + ntmt) < O((no + nt)(mo +mt) + ncmc) < O((no + nc + nt)m) (5.2)

5.2 Comparison of Extended Rectangular vs. Point Target
Tracking

Since no reference data is available evaluation of the algorithm’s accuracy is limited. However, one
way to evaluate the use of extended target tracking for the scenario is to compare filter covariance
when incorporating rectangular shape and size in the state-vector, to that when ignoring spatial
extent and instead treating each car as a point target. In the case of treating each car as a
point target, some type of mean or average is computed for each cluster of measurements, and
subsequently treated as a point measurement.

By comparing filter covariance for each kinematic state between the two different approaches to
target tracking, it is possible to investigate how uncertain each estimate of state is. As such, this
can yield insight into how large the confidence bounds are for each state, an important aspect
when incorporating filter output into subsequent sensor fusion or control systems.

In order to perform the comparison an additional rectangular UKF filter is implemented. The
additional UKF filter takes the mean of each cluster of measurements and views that as a point
measurement. This filter is then used for both cars in the scenario. Filter parameters in terms of
initial state (prior), motion noise Qk−1, measurement noise Rk are identical, the only difference
being that terms related to the extended states wk, lk are omitted. It should be noted that IMM
is not used in this comparison; only the motion model for steering is used. The resulting filter
covariance for both approaches, performed on both Car 1 and Car 2, is illustrated in Figure 5.3.

By looking at Figure 5.3 it can clearly be seen that extended rectangular target (ERT) tracking
results in significantly lower covariance for all states, compared to point target (PT) tracking.
This is most apparent for heading φk and position xk,yk, since these parameters are highly
dependant on the shape and size of a car respectively. Calculating the root mean square (RMS)
of each filter’s standard deviation over the entire sequence for Car 1 and Car 2, seen in Table
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Figure 5.3: Filter covariance, expressed as 3σ bounds, for all kinematic states during the scenario.
Red indicates filter covariance when assuming point target (PT), in this case using the mean of all
clustered measurements as a point measurement. Blue indicates filter covariance when assuming
extended rectangular targets (ERT), i.e. incorporating shape and size in state vector.

5.1, further illustrates the difference between these two different approaches.

For all states a significant gain in confidence is achieved with ERT tracking, when compared
to PT tracking. In the case of Car 2, which performs a 90◦ turn in the scenario, covariance
regarding heading σφ is decreased by a factor of 11.1. The least affected states are velocity and
turning-rate. The reason why these states experience a comparatively smaller gain in confidence
has to do with how the general MGP function is defined, see Section 2.3.1. Each MGP function
incorporates all states except velocity and turning-rate. As such, inference on these states results
in higher uncertainty, which is reflected in their corresponding filter covariance.
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Table 5.1: Root mean square (RMS) of each state’s standard deviation, for each filter and car in
the scenario. PT - Point Target assumption, ERT - Extended Rectangular Target assumption.

RMS

σxx σyy σvv σφφ σφ̇φ̇

Car 1
PT 0.192 0.264 0.433 0.245 0.764

ERT 0.041 0.070 0.259 0.038 0.380

Ratio 4.7 3.8 1.7 6.4 2.0

Car 2
PT 0.222 0.214 0.434 0.343 0.846

ERT 0.028 0.040 0.263 0.031 0.399

Ratio 7.9 5.4 1.7 11.1 2.2
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6

Conclusion

Evaluation shows that the implemented tracker works and fulfills the main goals that were
formulated when starting this thesis work.

Sophisticated pre-processing algorithms are necessary in order to reduce the vast amount of data
that a lidar sensor provides and in order to make the proposed solution computationally feasible.

The approach of using a combined classifier and tracker is very promising. It allows the usage
of specific motion models for certain types of objects in a straightforward way, without having
to compute several parallel filters and checking which one of them suits a certain object best.
In addition, it makes it possible to update existing targets only against measurements that
are deemed to belong to the same type. This reduces computational complexity for the overall
solution, since the sum of the number of possible target-measurement combinations for the subsets
is much smaller than for the entire set.

Using extended target trackers, as opposed to center point trackers, utilizes the high resolution
in lidar data. The added complexity results in a more robust tracker and much less uncertain
state estimates.

Unfortunately, the proposed solution could not be tested against ground truth data to verify the
estimated state of the tracked objects at this point. While visual results seem very promising,
for now the evaluation remains incomplete. Thus, this is one of the most obvious areas in which
this thesis could be expanded upon.

The neural network approach could also be improved. The network can be integrated with
the rest of the algorithm even more. Currently, its output is only used to decide between two
different trackers, one for cars and the other for everything else. However, pedestrians or cyclists
also display different behaviour and the filter could therefore benefit from having tailor-made
motion models for both of them. This could also be extended to even more road participants
like e.g. trucks. Training of the network can also be improved. The current approach of training

77



CHAPTER 6. CONCLUSION

and testing on split datasets from the same scenario is not optimal. Ideally the neural network
should be trained on a much bigger dataset, preferably coming from many different scenarios,
and it should then be checked how well it generalizes to data from a new, previously unseen,
scenario.

In addition, the algorithm should be extended beyond the thesis delimitations 1.1.1 present in
this work. These mainly include accounting for ego-motion and to track targets not only in x-
and y-, but also in the z-direction.

Some implications of using PHD filters for multitarget tracking should also be investigated. In the
evaluation, a maximum of around 10 targets at any given point were seen. Since the estimation
of the number of targets in a PHD filter is a Poisson distribution, the mean number of targets is
also the variance of that value. Therefore, a higher number of estimated targets equals a higher
variance in that estimate. Thus, it would be interesting to see how the PHD filters perform
in a scenario with a much higher number of targets. A way to eliminate the problem of high
variance with many targets is to utilize the Cardinalized Probability Hypothesis Density (CPHD)
filter instead, which in addition to the PHD also propagates the cardinality of the set of targets.
However, the CPHD has higher computational complexity than the PHD. As such, implementing
and comparing the CPHD to the PHD when using a lidar sensor is an area for future research.

Additionally, a more sophisticated method of placing birth PHD ought to be considered. In
this thesis the birth PHD was placed in areas where clustered objects were found. While this is
sufficient for an early prototype, it does not necessarily extend to a practical implementation of
the proposed algorithm.

Regarding the problems arising from using fixed parameters in the clustering algorithm, it should
be examined whether a dynamically decreasing minimum number of points and increasing max-
imum distance between two points could help to augment the region of perception.
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Nomenclature

CPHD Cardinalized Probability Hypothesis Density

EKF Extended Kalman Filter

ERT Extended Rectangular Target

FISST Finite-set statistics

FOV Field of View

GIW Gaussian Inverse Wishart

GM Gaussian Mixture

IMM Interacting Multiple Models

ISED Incremental Sub-Matrix Eigen Decomposition

JMLS Jump Markov Linear Systems

KF Kalman Filter

MGP Measurement Generating Point

MHT Multiple Hypothesis Tracking

PHD Probability Hypothesis Density

PT Point Target

RFS Random Finite Sets

RMS Root Mean Square

SNR Signal to Noise Ratio

TPM Transition Probability Matrix

UKF Unscented Kalman Filter
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