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Potentials and limitations in finite element based crack propagation analysis using
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Master’s thesis in Applied Mechanics
FILIP ELFVING, JONAS HÆG
Department of Mechanics and Maritime Sciences
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Chalmers University of Technology

Abstract
About 80% to 95% of all structural failures occur due to a fatigue mechanism1. Ac-
curate fatigue assessment is therefore of great importance. This thesis focuses on a
finite element analysis based approach, implemented in the program FRANC3D, to
simulate crack propagation under fatigue loading. This approach is not commonly
used at GKN, where the thesis was carried out. FRANC3D offers the users many
options, the effect of which has not been previously investigated at GKN. In this
thesis, a sensitivity study of various settings in FRANC3D was performed for prop-
agation analyses of a semi-elliptical surface crack in a rectangular test specimen. A
group of settings were identified to be recommended and were later used for fatigue
assessment of Kb test specimens for two different load types: tensile and four-point
bending. The results were validated against handbook-type solutions, provided by
NASGRO, and towards test results. Fatigue crack growth assessment was also per-
formed for an embedded crack in a circular specimen—a load case not supported
within NASGRO. A statistical evaluation of the finite element based approach gave
similar results as the handbook-type solutions and matched the test results with
respect to mean fatigue life. Thus, this thesis can be considered to have validated
FRANC3D for GKN’s internal use. This opens up the opportunity for more accu-
rate fatigue life calculations for components with complex geometry and complex
thermal and mechanical loading histories.

Keywords: Fatigue, crack propagation, FRANC3D, NASGRO, fracture mechanics,
SIF, M -integral, surface crack, embedded crack.

1”How to predict fatigue life”, DESIGN NEWS, Dec. 2001, [Online]. Available: https://
www.designnews.com/materials-assembly/how-predict-fatigue-life/33271708340745, Ac-
cessed on: May 27, 2020.
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Nomenclature

Abbreviations

ASCII American Standard Code for Information Interchange
B.C. Boundary condition
FAC Fracture Analysis Consultants
FE Finite Element
FEA Finite Element Analysis
BEM Boundary Element Method
GKN Guest, Keen & Nettlefolds
GUI Graphical User Interface
LEFM Linear Elastic Fracture Mechanics
NASA National Aeronautics and Space Administration
RBM Rigid Body Motion
GTC Global Technology Centre
SIF Stress Intensity Factor
SwRI Southwest Research Institute

List of symbols

a Crack length mm
aend End crack length mm
astart Start crack length mm
c Half crack width mm
cstart Median start crack width (half) mm
e Error in prediction -
E Young’s modulus MPa
F Force N
h Height mm
J Value of J integral J/mm2

K SIF MPa
√

mm
Kc Fracture toughness MPa

√
mm

Kmax Maximum SIF during cycle MPa
√

mm
Kmin Minimum SIF during cycle MPa

√
mm

∆Kth Threshold SIF range MPa
√

mm
m Number of Gaussian integration points -
M Value of M integral J/mm2

N Number of cycles Cycles
Npred. Predicted number of cycles Cycles
Ntest Number of cycles from test Cycles
Ntran. Number of cycles until transition Cycles
R Stress ratio -

ix



Smax Maximum nominal stress MPa
Smin Minimum nominal stress MPa
t Thickness mm
T Temperature ◦C
u Displacement mm
V ∗ Volume of tube shaped integration domain mm3

w Width mm
wp Weights used for Gaussian quadrature -
W Strain energy density J/mm3

β SIF reduction factor for growth at surface -
θ Angle ◦

ε Strain -
ν Poisson’s ratio -
σy Yield stress MPa
τ Shear stress MPa
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1
Introduction

There is a large interest in developing lightweight aerospace components today due
to increase energy efficiency demands, which leads to demands on reduced fuel con-
sumption. The main driving force is likely to reduce the carbon footprint, but other
benefits are also obtained from lightweight design, these include improved flight
performance and reduced operating costs for airlines [1].

One aspect of lightweight design is to select appropriate materials. The selection
of structural materials and designs in the aerospace industry is based on several
requirements, i.e. mechanical, physical and chemical properties [1]. The fatigue
durability is one of these properties that is affected by the lightweight design. It is
therefore of interest to find more accurate methods for performing crack propagation
analyses and predicting the fatigue life.

1.1 Background

There are several codes available for crack propagation analyses. The codes consid-
ered in this thesis work are based on two different approaches to crack propagation
analyses.

The first approach is the one used at GKN today, it is based on handbook-type
solutions. This approach is implemented in NASGRO, developed jointly by SwRI
and NASA, NASGRO is widely used in industry today [2] and includes many ap-
plications for aircraft and spacecraft components. The SIFs are calculated from
tabulated values or analytical expressions to conjugate to the stresses in the crack
plane. These tabulated values are based on specific crack cases, e.g. a surface crack
in a cylinder or an embedded crack in a plate. For more complex geometries, it
is possible to evaluate the stresses at the crack plane for an uncracked model with
FEM, and import these into NASGRO.

The second approach is a numerical approach based on FEM that is included in FE-
codes such as ANSYS or ABAQUS which have builtin solvers for crack propagation
analyses.

The main difference between the two approaches is that the SIF solutions in the
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1. Introduction

first approach are calculated for a limited number of various crack types, geometries
and loading. In the second approach, the obtained stress field from the FE-analysis
is used to calculate the SIFs. This is possible in NASGRO as well, but only for
stresses from an uncracked model. Hence NASGRO is not taking into account, e.g.
the stress variation along the crack front. Including FE as an integrated tool makes
it possible to calculate SIFs needed to perform crack propagation analyses for more
non-standard components where handbook-type solutions are not available.

This thesis focuses on the FE-based approach, and in particular the implementation
in the code FRANC3D that can use ANSYS as FE-solver in conjunction with a crack
propagation evaluation and mesh-updating routine. FRANC3D uses the calculated
stress field for the cracked FE-model and evaluates the SIFs, e.g. by use of the M -
integral method. The predicted updated crack front is then used as input for a new
mesh generated by FRANC3D. The problem is solved repeatedly in this manner.

The difference between predictions using the two approaches needs to be investigated
more in detail. Knowledge about how FRANC3D predicts the new crack front
and performs the re-meshing around the crack front are also parts that have to be
explored.

1.2 Purpose
The main purpose of this thesis work is to evaluate the FE-based crack propagation
program FRANC3D in comparison to handbook-type solutions and experiments. Ef-
fects of different crack propagation prediction model parameters within FRANC3D
will be studied along with mesh sensitivity and accuracy of the simulations. A
collection of suitable settings for crack propagation analysis will also be presented.

The main aim is reached through the following steps:

• Familiarise with the topic of fracture mechanics as applied to industrial prob-
lems and literature studies.

• Learn to use and compare the required programs: NASGRO1, ANSYS2 and
FRANC3D3 for a simplified test case.

• Create FE-models of fatigue test specimens in ANSYS. Apply appropriate
boundary conditions, initial crack sizes, material properties etc.

• Investigate and select appropriate settings for crack propagation analysis in
FRANC3D.

• Validate simulations against available test data based on, i.e. cycles to failure,
cycles to a pre-determined crack size and crack shape.

1NASGRO, SwRI, version 9.1
2ANSYS Mechanical APDL, Ansys, Inc., version 19.1
3FRANC3D, FAC, Inc., version 7.4.2
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1. Introduction

• Perform crack propagation analyses in FRANC3D for a configuration not read-
ily available in NASGRO. Apply suitable assumptions for the NASGRO cal-
culations and compare results.

1.3 Scope and limitations
LEFM is assumed to be applicable and all analyses were performed for Mode I load-
ing only. Crack propagation under thermal load was not considered, i.e no temper-
ature difference was assumed. An explicit modelling of contact for the compressive
part of fatigue cycle was excluded in the analyses.

Several codes have possibilities to perform crack propagation analyses, but this the-
ses is limited to the following three programs: ANSYS, NASGRO and FRANC3D.
The considered crack types were limited to two types: surface crack and embed-
ded crack. The considered initial crack shapes were limited to semi-circular and
semi-elliptical.

All required material and test data were provided by GKN for two different materials:
denoted Material A and Material B. Material A is a nickel-chromium based alloy
and Material B a titanium alloy.

3
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2
Theory

2.1 Fracture mechanics basics

A crack can experience three modes of loading as shown in Figure 2.1. Mode I
loading is when the load is applied normal to the crack plane and is also called
the opening mode. For Mode II the load acts as an in-plane shear load where the
loading makes one crack face slide relative to the other. Mode III corresponds to
out-of-plane shear loading [3, p. 52].

Figure 2.1: Fracture modes. Taken from [4]

From theory of fracture mechanics a useful quantity called the SIF, denoted as K,
can be defined. The SIF is a measure of the severity of the crack loading as affected
by crack size, the stress situation and the geometry of the considered configuration
[5, p.339]. When defining K, assumptions are made that the material behaves in a
linear-elastic manner. This approach is called LEFM and is valid if the plastic zone
is sufficiently small as compared to the region influenced by the stress singularity at
the crack tip, denoted the K-dominated stress field. In order to determine what is
a sufficiently small plastic zone, Dowling [5, p. 388] presents an overall limit that
defines when LEFM is applicable for plane strain condition under static loading, see
Equation (2.1).

5



2. Theory

t, a, (b− a), h ≥ 2.5
(
K

σy

)2

(2.1)

In Equation (2.1), σy is the yield stress, t is the thickness, a is the crack length, b
is the width of the specimen and h is the height measured from the crack plane.
A configuration with a defined crack and its plastic zone together with the larger
K-field that must exist for LEFM to be valid is seen in Figure 2.2.

Figure 2.2: An illustration of a crack with its plastic zone and the required K-field
for LEFM to be applicable

The stress and displacement fields close to the crack front can be estimated from
the first terms in an asymptotic stress and displacement solution which is related to
the SIFs, [6, p. 244-245]. The stress field is defined as


σx
σy
τxy
τyz
τzx

 = 1√
2πr


cos θ

2(1− sin θ
2 sin 3θ

2 ) − sin θ
2(2 + cos θ

2 cos 3θ
2 ) 0

cos θ
2(1 + sin θ

2 sin 3θ
2 ) sin θ

2 cos θ
2 cos 3θ

2 0
cos θ

2 sin θ
2 cos 3θ

2 cos θ
2(1− sin θ

2 sin 3θ
2 ) 0

0 0 cos θ
2

0 0 − sin θ
2


 KI
KII
KIII


(2.2)
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2. Theory

An illustration of the local coordinate system at the crack front together with def-
initions describing the geometry of the crack, is shown in Figure 2.3. Here σz = 0
in all modes (I-III) for plane stress. For plane strain condition σz = 0 in Mode III,
while in Mode I and II it becomes

σz = ν(σx + σy). (2.3)

The displacement field under plane strain conditions is approximately

uxuy
uz

 = 2(1 + ν)
E

√
r

2π

cos θ
2(1− 2ν + sin2 θ

2) sin θ
2(2− 2ν + cos2 θ

2) 0
sin θ

2(2− 2ν − cos2 θ
2) cos θ

2(2ν − 1 + sin2 θ
2) 0

0 0 2 sin θ
2


 KI
KII
KIII


(2.4)

while in plane stress conditions, the displacement field can be found in textbooks,
e.g. [6, p. 244-245].

Figure 2.3: Local crack front coordinate system and crack geometry definitions

2.2 Methods for calculating SIFs
Stresses and displacements in the vicinity of the crack tip can be expressed according
to Equation (2.2) and (2.4) regardless of loading and geometry of the specimen. One
method to calculate the SIFs is to first solve for the displacement field using FEM
and then employ the relationship in Equation (2.4) to solve for the K values. This
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2. Theory

method is called the displacement correlation method and has been shown to be less
robust, than e.g. energy or integration methods [7], and therefore not so frequently
used today.

In this thesis, handbook-type solutions and numerical methods, i.e. path inde-
pendent integration methods, were considered. Two path independent integration
methods, J- and M -integrals, will be explained more in detail in sections 2.2.2 and
2.2.3.

2.2.1 Handbook solutions
As formulated in the NASRGO manual [8, p.9], the SIFs can be expressed as follows

K = [S0F0 + S1F1 + S2F2 + S3F3 + S4F4]
√
πa (2.5)

where the stress quantities S0 to S4 correspond to different types of loading and how
they are applied, e.g. S0 and S1 are the applied tension/compression and bending
in thickness direction respectively. F are geometric correction factors for each type
of loading and are specifically derived for each crack case. More on handbook-type
solutions can be found in various mechanical handbooks or in fatigue and fracture
mechanics course literature, see [3, 5, 6].

2.2.2 J-integral
Considering an arbitrary path Γ around the crack tip, the J-integral can be defined
as

J =
∫

Γ

(
Wnx − Ti

∂ui
∂x

)
ds (2.6)

where W = 1
2σijεij is the strain energy density, ni is the outpointing normal, Ti =

σijnj is the traction and ui are the displacements [3, p.126].

A relationship between the J-integral and the SIFs, in the context of LEFM [6,
p.248], can be expressed as follows

G = J = K2
I

E ′
+ K2

II
E ′

+ (1 + ν)K2
III

E
(2.7)

where G is the energy release rate, ν the Poisson’s ratio and E ′ is Young’s modulus,
see Equation (2.8).

E ′ =

E Plane stress
E

1−ν2 Plane strain
(2.8)

2.2.3 M-integral
It has been shown that theM -integral can be developed from the J-integral as a way
to evaluate the SIFs for all three fracture modes [9]. To formulate theM -integral, two
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2. Theory

independent equilibrium states are assumed and superposed according to Equation
(2.9). The actual state (with superscript (1)) is obtained from the FE-solution of
the actual boundary value problem. The auxiliary state (with superscript (2)) is
obtained from the known asymptotic stress and displacement fields (Equations (2.2)
to (2.4)). This split is possible for a linear elastic material [10].

σij =σ(1)
ij + σ

(2)
ij

εij =ε(1)
ij + ε

(2)
ij

ui =u(1)
i + u

(2)
i

Ki =K(1)
i +K

(2)
i

(2.9)

Substitution of the stress, strain and displacement fields (Equation (2.9)) into Equa-
tion (2.6) gives

J1 = J
(1)
1 + J

(2)
1 +M

(1,2)
1 (2.10)

where the interaction term M
(1,2)
1 is called the M -integral. This term is defined as

the first M -integral formulation denoted with subscript 1. M (1,2)
1 , J (1)

1 and J (2)
1 are

expressed as follows:

J
(1)
1 =

∫
(W (1)nx − T (1)

i

∂u
(1)
i

x
)ds

J
(2)
1 =

∫
(W (2)nx − T (2)

i

∂u
(2)
i

x
)ds

M
(1,2)
1 =

∫
(W (1,2)nx − T (1)

i

∂u
(2)
i

∂x
− T (2)

i

∂u
(1)
i

∂x
)ds

(2.11)

where W (1,2) = σ
(1)
ij ε

(2)
ij = σ

(2)
ij ε

(1)
ij is the interaction strain energy density and Ti =

σijnj is the traction.

The superposed SIFs from Equation (2.9) are then inserted into Equation (2.7) to
obtain the second M -integral formulation denoted with subscript 2:

J2 = J
(1)
2 + J

(2)
2 +M

(1,2)
2 (2.12)

where the interaction term M
(1,2)
2 , now in terms of the SIFs, is expressed as follows

M
(1,2)
2 = 2K(1)

I K
(2)
I

E ′
+ 2K(1)

II K
(2)
II

E ′
+ 2(1 + ν)K(1)

III K
(2)
III

E
(2.13)

The auxiliary states are then defined such that one solution is obtained for each
pure mode, according to Equation 2.14.

(K(2)
I , K

(2)
II , K

(2)
III ) =


(1, 0, 0) Pure mode I
(0, 1, 0) Pure mode II
(0, 0, 1) Pure mode III

(2.14)
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Three corresponding values of the first M -integral formulation are then obtained
from Equation (2.11) in combination with the solutions to the stress and displace-
ment fields in Equation (2.2) and (2.4). These values are denoted M

(1,2)
I , M (1,2)

II
and M (1,2)

III , for pure mode I–III respectively. The SIFs can then be evaluated from
Equation (2.13) resulting in the following expressions

K
(1)
I = E ′

2 M
(1,2)
I , K

(1)
II = E ′

2 M
(1,2)
II , K

(1)
III = E

2(1 + ν)M
(1,2)
III (2.15)

The M -integral in Equation (2.11) is on a form not well suited for FE-calculations.
A technique can be employed in order to formulate the integral as an equivalent
domain integral which is more compatible with FEM. This is done by introducing
a weight function q called the virtual crack extension. For more on this topic, see
[9, 10, 11].

2.2.4 Numerical evaluation of M- and J-integral
In a continuous body, the M - and J-integrals can be evaluated as described in the
previous two sections. It is also is possible to transform the surface integral, as
seen in Equation (2.6), into a domain integral which is more suitable for numerical
integration, see for instance Gauss quadrature method for numerical integration [13].
A typical domain of integration in 3D is illustrated in Figure 2.4. The integration
is carried out within the tubular volume enclosed by the inner and outer surfaces.

Figure 2.4: Integration domain with volume V ∗ used for evaluation of M - or
J-integral,

Several domains as seen in Figure 2.4, surrounds the crack front. The SIFs are
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2. Theory

evaluated within each of these tubular shaped domains. The summation of Gauss
points over each tube evaluates the J-integral, as employed in Equation (2.16).
This presumes the absence of traction at the crack surface. A weighted summation
is carried out over the tube volume V ∗, as defined in Figure 2.4. where m is the
number of Gaussian integration points within V ∗, wp the Gauss point weights and
the determinant expression corresponds to the area size transformation between the
spatial and iso-parametric elements.

J =
∑
V ∗

m∑
p=1


[(
σij

∂uj
∂x1
−Wδ1i

) ∂q
∂xi

]
det
(∂xj
∂ξk

)
p

wp (2.16)

Both the J- andM -integral are path independent for LEFM, as shown in [12] for the
J-integral. This property is naturally extended to the M -integral since it is made
up of superposition of J-integral expressions. This means that it is not necessary
to integrate within the elements closest to the crack front. In e.g. ANSYS one
can define a number of contours making up several tubes with different sizes to
have the integration performed for more than one tube size. If tubes with elements
having nodes that coincide with crack front is chosen for integration it is necessary
to include another type of element, that is made by collapsing the mid side node to
the quarter point of a wedge element in order to capture the singularity behaviour
near the crack front [3, p. 586].

Anderson [3, p. 586-589] describes a methodology on how to generate a convenient
mesh for SIF evaluation. An example of such a mesh, for a 2D case, is seen in Figure
2.5. Around the crack tip a more dense mesh is constructed similar to a spider’s
web, while further away the mesh is coarse.

Figure 2.5: 2D mesh, with symmetry about the x-axis, that illustrates a convenient
mesh for SIF evaluation around the crack tip. The area integration is carried out
within adjacent contours
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2. Theory

2.3 Crack propagation
The main driving force affecting the fatigue crack growth rate is the range of the
SIF, ∆K [5, p. 564]. The crack growth rate as a function of ∆K can be divided
into three regions as shown in Figure 2.6.

Figure 2.6: Illustration of the crack growth rate versus the SIF range divided into
three regions

For intermediate ∆K values, illustrated as region II in Figure 2.6, the curve is linear.
The linear part of the log–log plot can be described by a power law widely known
as the Paris law

da
dN = C∆Km (2.17)

where m and C are material constants obtained from experiments [3, p.517]. The
SIF range is defined as the difference between the maximum and minimum SIFs for
each cycle as follows: ∆K = Kmax −Kmin [5, p. 564].

In region I there exists a threshold value ∆Kth which implies that fatigue cracks
will not propagate for ∆K magnitudes below this value. It is difficult to predict
crack propagation in this region due to a large influence of both microstructure and
mean stress. An increased sensitivity to stress history and environmental effects
have also been observed in this region [14]. Extending Paris law (Equation (2.17))
to this region will often lead to an overestimation of the crack growth, it is therefore
necessary to find other models that can capture the behaviour in region I.

In region III, ∆K is very high, the crack growth rate accelerates and becomes infinite
as Kmax approaches the critical stress intensity KC. At this point fracture will occur.

12
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In this region the crack growth rate becomes extremely sensitive to microstructure
and mean stress [14]. In this case extending Paris law results in an underestimation
of the crack growth, it is there necessary to find models that capture this accelerating
crack growth behaviour in this region.

2.3.1 Effects of load ratio on fatigue crack growth
The stress ratio, commonly denoted as the R-ratio, is defined as R = Smin/Smax ≡
Kmin/Kmax. It is observed from experiments that the R-ratio affects the growth
rate, and an increase in the absolute value of the R-ratio causes the growth rate for
a given ∆K to be larger [5, p.574].

In order to capture these R-effects or mean stress effects on the crack growth rate
(da/dN) we introduce the Walker equation and modify the SIF range as follows

∆S =Smax(1−R)γ (2.18)

⇒ ∆K =Kmax(1−R)γ = ∆K
(1−R)1−γ (2.19)

where the Walker exponent γ is a material constant and ∆K is an equivalent zero-to-
tension stress intensity factor range. The constant C in Paris law (Equation (2.17))
is now denoted C0 for the special case R = 0 and ∆K is substituted for ∆K. The
modified crack growth equation, according to [5, p. 575], then takes the form

da
dN = C0(∆K)m = C0

(1−R)m(1−γ) (∆K)m (2.20)

C = C0

(1−R)m(1−γ) (2.21)

Compared to Equation (2.17), C now becomes a function depending on R as ex-
pressed in Equation (2.21). In a log–log plot the crack propagation rate plotted
against the SIF range will all be parallel lines with slope m, but shifted to the left
for increasing R-ratios.

2.3.2 NASGRO crack propagation model
Several crack propagation models have been developed over the years to improve
prediction accuracy and incorporate a variety of effects such as R-ratio, overloads
and load history effects. In this thesis work, the NASGRO equation will be used for
modelling the crack propagation. The NASGRO equation is more accurate than the
standard Paris law, in the sense that it includes lower growth rates near the threshold
and increased growth rates near KC. The NASGRO equation also accounts for mean
stress effects and is defined as

da
dN = C

[
(1− f)
(1−R)∆K

]n (1− ∆Kth
∆K )p

(1− Kmax
KC

)q
(2.22)
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where f is the crack opening function and C, n, p, q are empirically derived constants.
The SIF is calculated based on load case(s) and geometry as described by Equation
(2.5). Expressions for ∆Kth, Kc and f , can be found in [8]. For illustration, the
crack opening function, f , as a function of the stress ratio is seen in Figure 2.7.

Figure 2.7: Illustration of crack opening function. Taken from [8]

2.4 Crack propagation testing

For validation of the numerical methods, previously conducted crack propagation
tests of Kb test specimens were considered for two different load cases: tensile
loading and four-point bending. Figure 2.8 shows an illustration of the test specimen
as mounted in the test machine. The dimensions of the specimens vary slightly from
specimen to specimen, average values of the width and thickness were therefore used
in the simulations. The mean size of the cross section was 4.30x10.16 mm and the
height was set to 20 mm.

The testing procedure was divided into three stages: pre-cracking, crack growth
and fracture. A notch is located in the middle of the specimen and the pre-crack
is obtained from tensile pre-fatigue loading to obtain a sharp crack with its front
outside the influence zone of the notch. The crack grows under tensile or bending
fatigue until the final crack sizes are reached. Fracture is obtained by either a
monotonic bending or monotonic tension load. The fatigue crack size as a function
of cycles are obtained from a combination of potential drop technique and heat
tinting.
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Figure 2.8: Illustration of Kb test specimen mounted in test machine. A notch is
located in the middle of the specimen, as seen to the right

2.4.1 Tensile loading
A schematic illustration of the loading in a tensile test is seen in Figure 2.9. Both
ends of the test specimen are mounted into the test machine. During the test one
end is kept fixed while a load is applied on the other end. The initial surface crack,
after pre-cracking, is located in the middle of the specimen so that the load acts in
Mode I.

Figure 2.9: Schematic illustration of crack propagation test specimen under ten-
sile/compressive loading
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2.4.2 Four-point bending loading
Figure 2.10 shows a schematic illustration of the loading for a four-point bending
test. The specimen is placed between two pairs of rollers. The total force F is
applied and equally distributed to the pair of rollers at the top, while the crack is
located at the bottom surface in the middle of the specimen. This test is similar
to the 3-point bending test. The major benefit of adding a fourth roller is that
the portion of the specimen between the two loading points is put under maximum
stress, while for 3-point bending only the material under the roller at the centre is
affected. For this setup only R = 0 was considered.

Figure 2.10: Schematic illustration of crack propagation test specimen under four-
point bending
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3.1 Simulation process in FRANC3D
The simulation process in FRANC3D is divided into 5 steps, it is illustrated as a
flow chart in Figure 3.1. The first three steps consider the setup of the problem
by importing the uncracked FE-model, inserting the crack and specifying the crack
growth parameters. During the last two steps the analysis is preformed and relevant
results post processed. The different steps are described more in detail in sections
3.1.1–3.1.4.

Figure 3.1: Flow chart illustrating the simulation process in FRANC3D

A script was created in Matlab to automate the simulation process so that the
simulations could be preformed in batch mode instead of using the GUI. This was
done in order to reduce the time needed to perform the initial three steps (import
FE-model, insert crack and specify growth parameters). This made it possible to
perform a large amount of analyses for various initial crack sizes, growth parameters
and/or applied loads. More details about this script is presented in section 3.1.5.

3.1.1 Import FE-model
ANSYS was used for the initial setup of the FE-model. Boundary conditions, applied
loads and the global mesh were prescribed and exported as a .cdb file, which is an
ANSYS database file in ASCII format. The FE-model was then imported into
FRANC3D. For larger models or for more complex geometries, it is possible to
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include the crack in a local sub-model. The crack insertion and re-meshing is then
only applied to the local model. FRANC3D generates an updated input file for
ANSYS, with the new mesh after crack insertion, where it combines the local sub-
model and the global model. This input file is used by ANSYS to solve the resulting
FE-equations.

3.1.2 Crack insertion
The initial crack was inserted after importing the FE-model. Different crack shapes
are available, but for this thesis work an elliptical crack with one crack front was
considered (top left icon in Figure 3.2a). This crack shape can be used for both
surface and embedded cracks. It is also possible to insert multiple cracks and insert
material defects such as voids. The crack is then incorporated into the uncracked
model at the desired location, see Figure 3.2b, after defining the initial crack size.

(a) (b)

Figure 3.2: (a) Available crack types and (b) the inserted crack in FRANC3D

3.1.3 Crack growth prediction
The crack growth prediction process was divided into five steps, following [15]. First
the SIFs were computed for all node points along the crack front. Then the mag-
nitude of the crack front extension and direction of the growth were evaluated. In
order to predict the local direction of the crack growth, the Maximum Tensile Stress
criterion was used as default. Only Mode I loading was considered in this thesis
work, so planar growth is sufficient to chose in this case. A curve was fitted through
the newly predicted crack front points and extrapolated, if necessary, to extend out-
side of the model in order to create a closed curve for re-meshing. A new surface
mesh, consisting of Bézier patches (more on that topic can be found in [16]), was
created on the crack surface and the new extended crack inserted and connected to
the uncracked mesh.
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The amount of median extension and the front fitting type were specified, as shown
in 3.3a, while the size of the template radius was specified according to Figure 3.3b.

(a) (b)

Figure 3.3: Settings for crack growth analysis: (a) Extension and front fitting and
(b) template radius

3.1.4 Extraction of results
There are different ways to extract or plot the predicted fatigue life. One way is to
extract the number of cycles required to grow the crack from one size to another. An
alternative to this is to define paths through the predicted crack fronts as illustrated
in Figure 3.4. This makes it possible to plot the number of cycles, or alternatively
K versus the crack length along the defined paths.

Figure 3.4: Paths (marked by dotted lines) used for extracting the predicted fatigue
life. One path defined in the a-direction and one in the c-direction
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3.1.5 Automating FRANC3D simulations
Many test cases were considered and the test cases were different with respect to
applied force, stress ratio, initial crack size, temperature, etc. In order to automate
the simulation process, a Matlab script was created. The purpose of this script was
to generate and modify .cdb and .log files from tabulated values for each test case.
In the .cdb file the applied load was changed so that it corresponds to the load for
the actual test case. Then the crack propagation settings in the .log file that are
used as input to FRANC3D were modified and the initial crack size specified. The
modified .cdb file was then called from the .log file.

After creating these input files, they were executed automatically from the Mat-
lab command window in batch mode. The output files were saved in a predefined
folder. The main benefit of running simulations in batch mode is that input data
and settings can be specified in the Matlab script instead of manually typing these
in through the GUI. This reduces the time needed to run and prepare each sim-
ulation and makes it possible to run simulations for a large amount of test cases
automatically using a computational cluster.

3.2 Simulation process in NASGRO
NASGRO provides a variety of crack cases for fracture analysis. These cases are
mainly based on FEA- or BEM-solutions for SIF calculation [8]. As outlined in
Equation (2.22), K depends on the geometry and the load type specified by the
particular crack case. NASGRO has only the possibility to evaluate the Mode I
SIF, i.e KI.

The simulation process in NASGRO is outlined in Figure 3.5. In the first step the
simulation type is chosen, for this thesis work the simulation modules were limited
to NASSIF and NASFLA. The NASSIF module calculates stress intensity factor
solutions and the NASFLA module calculates fatigue crack growth rates at points
defined by NASGRO for the particular crack. In the NASSIF module one has to
chose the crack case and then define load(s) and initial crack size. An example of a
crack case is outlined in section 3.3.

Figure 3.5: Chart showing the steps for a NASGRO simulation used in this thesis
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In the NASFLA module the SIF is calculated based on load case, crack geometry
and load magnitude defined from the load schedule. By use of the calculated SIF
the crack growth is determined by the crack propagation law, e.g the NASGRO
equation as used in this thesis, see Equation (2.22). The SIFs are then evaluated
for the new crack geometry and the process continues repeatedly until the crack
has grown to a desired length or width, as specified in the output options, or if the
simulation results meet a failure criterion. In this thesis, the fracture toughness Kcr
has been used as the only failure criteria, which is calculated dependent on crack
case, see [8, Appendix U].

3.2.1 Semi-elliptical surface crack
Mainly semi-elliptical surface cracks have been investigated and the proceeding text
will therefore focus on these types of cracks. NASGRO calculates the SIFs at two
points along the crack front, as seen in Figure 3.6. NASGRO predicts how much
the crack will propagate at those points from the provided crack propagation model
with a cycle by cycle routine or by updating the crack growth rate at a user defined
increment size and then integrate the interpolated values between the increments,
An elliptical fitting between the crack growth points is then made. K at the position
c is taken as the maximum value close to the free surface of the crack front, usually
three degrees in from the free surface for the semi-elliptical surface crack [8, p.245,
Appendix C].

Figure 3.6: Points where NASGRO assigns K values and predicts crack growth

Observations from experiments have shown that the crack grows less at the surface
(point c in Figure 3.6) compared to the calculated growth [8, p.11]. To adjust for
this, a factor β is introduced that reduces the growth at the surface. This factor is
taken as β = 0.9 for R ≤ 0 and β ∈ [0.9, 1] for 0 ≤ R ≤ 1 [8], where β is linearly
increasing for higher R values for which the crack grows slower.
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3.3 Three-way comparison of SIF evaluation for
a surface crack

In order to investigate the ability of three different programs, (FRANC3D, ANSYS
and NASGRO) to evaluate SIFs, a study was performed for a simple test case. The
investigation was performed to compare the Mode I SIFs along the crack front for
static tensile loading. The case corresponds to NASGRO SC30 crack type as shown
in Figure 3.7, with geometry and load as defined in Table 3.1. The corresponding
FE-models that was used in ANSYS and FRANC3D is described in the following
sections.

Figure 3.7: Surface crack in a plate (Case SC30 in NASGRO) [8, Appendix C]

Table 3.1: Plate and crack geometry parameters used in the comparison for a
surface crack

S0 W t B a and c
100 MPa 20 mm 6 mm 10 mm 0.76 mm

3.3.1 Modelling of FE-specimen in ANSYS
In the ANSYS model, as shown in Figure 3.8, a symmetry condition was applied at
the crack plane. The ANSYS model has boundary condition uz = 0 at the symmetry
plane except were the crack surface is located. In addition ux = uy = 0 for one node
at the corner (marked in the right part of Figure 3.8). The pressure load is applied
to the top surface.
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Figure 3.8: ANSYS model with boundary conditions (magenta colour) at the
symmetry plane and pressure load (red colour)

3.3.2 Modelling of FE-specimen in FRANC3D
The FRANC3D model used the full size model defined in ANSYS. The crack was
inserted as described in section 3.1.2. The FE-model used in FRANC3D is seen
in Figure 3.9. The FRANC3D model had the B.C. uz = 0 at the whole bottom
surface. The FRANC3D model had in addition to the ANSYS model, also one
additional node constrained with ux = 0 to prevent RBM. The applied B.C. is seen
in the bottom left and right part of Figure 3.9, where node C1 is locked in x- and
y-direction and node C2 is locked in x-direction. The applied pressure load is seen
at the top of the model, in the top left part of Figure 3.9.

Figure 3.9: FRANC3D model with boundary conditions (magenta colour) and
pressure load (red colour)
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3.3.2.1 Domain integration in ANSYS

To obtain an accurate model in ANSYS a mesh that was conjugate to how the
domain integration is performed was needed. The ANSYS manual [17] describes
how to perform the domain integration in the program. The numeric integral is
evaluated along the user specified crack front, as described in section 2.2.4. The
user has to supply information to the ANSYS CINT command to carry out the
SIF calculation. The following information are needed for the SIF calculation: the
normal to the crack plane, a component of nodes that constitute the crack front,
numbers of contours to integrate within and if a symmetry condition is used.

A schematic view of the contours surrounding the elements used can be seen in
Figure 3.10, with the mesh topology as used in this test case for ANSYS. The
contours seen in Figure 3.10 are increasing in size when moving out from the crack
front nodes. Every new contour makes up the new integration volume together with
the previous one. Ideally the integrated values along the different contours should
be similar, but ANSYS gets poor result close to the crack front, which is an artefact
of the element definition. As described in section 2.2.4 another type of elements is
needed at the crack front to capture the asymptotic behaviour of the stresses. Some
contours away from the crack front it has been observed that the result is quite
stable with the type of mesh topology used in this case.

Figure 3.10: Integration domains for different contours

3.3.3 SIF comparison along crackfront
To investigate whether the solution for ANSYS, NASGRO and FRANC3D become
similar, KI was compared for the models described in the previous section along the
crack front. An analytic solution [3, p.627] for a semi-circular surface crack located
at the centre of a infinite large plate was used as a reference. The result is seen in
Figure 3.11, in this case a fine mesh was used for both FE-analyses. The KI values
are seen to be close for FRANC3D and ANSYS which suggest that either method
works in this case. The NASGRO solution is seen to match better at the centre of
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the crack front to the analytic solution. In ANSYS one has to define which contour
the SIFs are to be extracted from. With a fine mesh as used in this example the
variation between the contours is small, except for those closest to and the farthest
away from the crack.

Figure 3.11: SIF comparison along crack front between ANSYS, NASGRO, ana-
lytic solution and FRANC3D

3.3.3.1 Mesh refinement and SIF computation methods

Figure 3.12 shows the mesh around the crack front including the parameters de-
scribing the mesh division for the ANSYS model. The mesh division parameters
used gave a organised mesh, the integration domains along the crack front had same
size and shape and the elements were aligned parallel to adjacent elements around
the crack front, as seen in Figure 3.10. Stress field components were thus extracted
in the correct way for SIF evaluation. The mesh was refined in the crack plane by
division along R1, R2, R3 and along L. The mesh was denser in the volume direction
close to the crack plane than at the boundary where the load was applied, so that
the domain integration was carried out over a region with a finer mesh at the crack
front.
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Figure 3.12: ANSYS mesh at and around crack front including boundary condition
uz = 0 at the half symmetry plane

A mesh sensitivity study was also performed. The mesh topology used in ANSYS
is described above and the mesh topology around the crack front in FRANC3D is
illustrated in Figure 3.13. Nr is the number of elements in the radial direction within
the radius, called template radius. The template radius is defined as the distance
were the region of elements surrounds the crack front with the tubular mesh topol-
ogy. Ne defines the number of elements in the circumferential direction, α/β is the
progression ratio of the element size in the radial direction, the ratio for α/β is the
same for all chosen adjacent elements in the radial direction.

Figure 3.13: FRANC3D crack front template mesh. A 2D cut-out of the tube
mesh that encloses the crack front
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The number of elements used in this study are listed in Table 3.2 for the respective
methods. The same mesh topology was used for the ’coarse mesh’. The mesh settings
in FRANC3D with respect to number of rings Nr and circumferential divisions Ne

were changed to the standard setting to generate the FRANC3D coarse mesh with
the listed number of elements. In ANSYS the number of divisions at and around
the crack surface was changed and the base mesh refinement was also changed.

Table 3.2: Number of elements (NEL) for different meshes

Mesh Element divisions NEL
ANSYS fine R1 = R2 = R3 = 40, L = 15 64880
ANSYS coarse R1 = R2 = R3 = 20, L = 8 30060
FRANC3D fine Nr = 8, Ne = 15 103889
FRANC3D coarse Nr = 3, Ne = 8 16745

Both programs gave similar results for the coarser meshes as seen in Figure 3.14,
but ANSYS was seen to be unstable with respect to some integration contours. The
closest contours around the crack front and the contours furthest away were seen to
deviate to those in the middle. There were fewer contours yielding approximately
the same results as for the finer mesh.

The influence of SIF computation method in FRANC3D was investigated, as seen
in Figure 3.14b. In this case the results were close for the two methods. The
displacement correlation method converged with a finer mesh since the method uses
the displacements measured at the nodes closest to the crack front straight behind
it. For both the coarse and the finer mesh, the displacement correlation method
yielded results close to the solution of the M-integral, which suggests that the M-
integral is a sound evaluation technique for the SIF. The M-integral method is path
independent for LEFM, this makes the M-integral method robust with respect to
mesh density as long as the evaluation is carried out over an ordered mesh as used
here and the mesh is fine enough to resolve the global stress field and the influence
of the crack.

The refined mesh was seen to be smoother around half the crack front distance.
Away from that region, the coarser and the finer mesh results are coinciding, except
at the crack mouth were the ’finer mesh solution’ has larger drops in KI, results in
this region does not however provide a physical meaning. A similar behaviour was
seen from benchmark tests performed by the FRANC3D authors [18].
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(a) SIFs evaluated for different mesh densities in ANSYS

(b) SIFs evaluated for different mesh densities and SIF evaluation
methods in FRANC3D

Figure 3.14: SIF comparison along the crack front. SIF dependency of mesh and
KI evaluation method
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3.4 Sensitivity study for cyclic tensile loading
Various settings for crack propagation analyses are available within FRANC3D.
Information about how these affect the evaluation is limited. In this section different
settings regarding e.g. the crack front mesh, the crack growth increment etc. were
tested to investigate how these affect the accuracy and stability of the analyses.
All simulations in this sensitivity study were performed for Material A. Both semi-
circular and semi-elliptical surface cracks were considered. The crack was inserted
according to Figure 3.15.

Figure 3.15: Illustration of initial crack inserted into FE-model of Kb test specimen
performed in FRANC3D

3.4.1 Crack growth extension control
In order to control the extension of the crack, FRANC3D provides three different
options: median extension, number of cycles, and elapsed time. Only the median
extension method was considered in this thesis work, and is used to adjust the
amount of crack extension ∆am in each crack growth step. First the SIF range is
calculated from the applied load cycle for each point on the current crack front,
then the median crack extension ∆am is specified by the user for the point(s) that
coincide with median SIF range ∆Km. The extensions of the remaining points i on
the current crack front are then calculated according to Equation (3.1).

∆ai = ∆am
da
dNi

(∆Ki, Ri, ...)
da
dNm

(∆Km, Rm, ...)
(3.1)
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When the new crack front points are evaluated, a curve is fitted through these points
to obtain the new predicted crack front as shown in Figure 3.16. To perform the
curve fit, several options are available within FRANC3D. Some of these options are
studied more in detail in section 3.4.2.

Figure 3.16: Median crack extension. Taken from [16]

In order to investigate how the size of the median crack extension affects the crack
growth, a semi-circular surface crack with the initial size a = c = 0.76 mm was
studied (see Figure 3.7). The crack was inserted into a rectangular plate undergoing
cyclic zero-to-tension loading. In this study a fixed 3rd order polynomial (default
curve fit setting in FRANC3D) was selected as the crack front fitting type. Four
crack growth increments were considered varying from ∆am = 0.2 mm to 0.5 mm.

The crack size, in terms of the crack length a and the crack width c, was evaluated
as a function of N as illustrated in Figure 3.17. The crack size, for both a and c,
were seen not to be much affected by the increased crack growth extension. There
are therefore no clear incentives to choose a very small crack extension in this case.
Since will only lead to increased computational time.

(a) (b)

Figure 3.17: Crack size (a) a as a function of N and (b) c as a function of N
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The resulting aspect ratio a/c as a function of the crack length a is presented in
Figure 3.18. It was observed that the shape of the crack immediately transformed
from the initial circular shape to a more elliptical shape. The evolution of the aspect
ratios was similar for all the considered median crack extensions, hence the shape
of the crack was not very sensitive to crack extensions between ∆am approximately
25% -65% of the initial crack size for the current case.

Figure 3.18: a/c vs. a for different crack growth increments ∆am

3.4.2 Crack front fitting
The crack front fitting used initially in this study was a 3rd order fixed polynomial,
as seen in Figure 3.19. The same initial crack size was employed as for the crack
extension study.

Figure 3.19: New predicted crack front based on a 3rd order fixed polynomial fit
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For some cases, in particular when the crack becomes wide, a smaller growth is
predicted in the c-direction near the free surface. This behaviour is illustrated in
Figure 3.20. This behaviour was also observed in tests by examination of the fracture
surface. The fixed order polynomial resulted in an overestimation of the growth in
c-direction. In order to reduce the error other front fitting options were investigated
such as a ´´moving polynomial´´ and ´´no smoothing´´.

Figure 3.20: New front fit that overestimates the growth in c-direction. The green
dots are predicted from Equation (3.1), while the blue line is the curve fit

The crack seen in Figure 3.20 was propagated one additional step for the two al-
ternative crack front fitting options. The resulting crack fronts are seen in Figure
3.21. The reduced growth in c-direction was captured for both options, but for the
´´no smoothing´´ option a more discontinuous crack front was obtained. This may
lead to errors due to new predicted crack points overlapping each other. Another
observation was that the predicted crack front (blue line in Figure 3.21) this time
showed a reduced growth near the surface, but enhanced growth at the surface, cf.
Figure 3.20.

(a) (b)

Figure 3.21: New crack front based on two different front fitting options: (a)
moving polynomial and (b) no smoothing
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A different amount of extrapolation, see section 3.1.3, was tested in addition to
the default 3% extrapolation. This resulted in 5% as a recommended setting to
ensure that the predicted crack front intersects with the free surface. It has later
been found that large extrapolation also might lead to errors if the new predicted
crack front intersects with the old one. The recommendation in that case could
be to successively reduce the amount of extrapolation and/or exclude some of the
end points until the errors regarding intersection between new and old crack front
and/or error creating the new Bezier patch surface crack mesh stop occurring.

3.4.3 Mesh refinement around the crack front

A study was conducted for different mesh setting combinations around the crack
front in FRANC3D. Only the number of elements in circumferential direction (Ne)
and the number of rings (Nr) were considered in this study, while the template radius
and the progression ratio were set to constant values 0.076 mm and 1 respectively
(see Figure 3.13). The study was performed for a semi-circular surface crack with
length and width a = c = 0.76 mm in a Kb test specimen (see Figure 2.9) at
T = 20°C. The median crack growth extension was set to ∆am = 0.2 mm.

In total 9 combinations denoted M1-M9 were considered. The corresponding mesh
combinations are shown in Table 3.3. The resulting crack length, width and aspect
ratio as functions of N are shown in Figure 3.22 and 3.23 respectively. The results
were similar for all mesh combinations, except for the aspect ratio M1 at N ≈ 4300
cycles. Some mesh combinations led to computational errors related to the re-
meshing routine. The crack propagation for M8 and the last part of M6 are therefore
not included in Figure 3.23. In order to gain sufficiently accurate results and avoid
errors related to the re-meshing routine, the mesh configurations M4 or M6 are
recommended.

Table 3.3: Combinations of Ne and Nr used in mesh refinement study. These
combinations are defined as case ID M1 to M9

Ne = 8 Ne = 12 Ne = 16
Nr = 2 M1 M2 M3
Nr = 3 M4 M5 M6
Nr = 6 M7 M8 M9
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(a) (b)

Figure 3.22: Crack size (a) a as a function of N and (b) c as a function of N for
the mesh sensitivity study

Figure 3.23: a/c vs. N for different mesh combinations
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3.4.4 Mesh-template radius

The template radius as defined in section 3.3.3.1, can be specified either as relative
to crack growth increment or as an absolute value. The default is 10% of the smallest
crack dimension of the initial crack. To examine the effect of the template radius
on the crack propagation simulation results, a semi-elliptical surface crack in a Kb
specimen, undergoing cyclic tensile loading, was considered. The initial crack size
and applied load is seen in Table 3.4, and the median crack growth was set to
∆am = 0.5 mm.

Table 3.4: Initial crack size and loading for surface crack in Kb test specimen

a c Pmax R T
0.935 mm 0.978 mm 748 MPa 0.5 20°C

In the first simulation, a relative template radius of approximately 25% of the small-
est dimension of the initial crack was specified. This resulted in different SIF values
compared to NASGRO, as shown in Figure 3.24a, where SIF is plotted as a function
of crack growth. The SIFs were plotted along the growth path in the a-direction
(see Figure 3.4). In order to improve the accuracy of the predicted SIFs, the relative
template radius was changed to an absolute value of 0.05 mm, corresponding to ap-
proximately 5% of the smallest initial crack size, which resulted in SIFs closer to the
NASGRO solution, as shown in Figure 3.24b. A sufficiently small template radius
was therefore decided to be used in all further analyses. It has been experienced
that a template radius of approximately 10% of the smallest initial crack size (a or
c) gives sufficiently accurate SIFs.

(a) (b)

Figure 3.24: K along path for (a) relative template radius of 25% of the smallest
dimension of the initial crack and (b) absolute template radius of 0.05 mm
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3.4.5 Life evaluation in FRANC3D
To compute the number of cycles required to grow the crack front from one position
to another, FRANC3D uses a "multiple variable degree of freedom" approach [16, p.
194]. First all nodes on front i are projected perpendicularly from front i onto the
next crack front i + 1 to find the intersection points. This is illustrated in Figure
3.25 where index i represents the crack front, index j is the node number on front
i and index k is node numbers for crack front i + 1. The SIF range ∆K is then
found directly or interpolated at the intersection point on crack front i+ 1. A linear
variation of ∆K is assumed between the two crack fronts, and the crack growth
rate curve (da/dN -curve) is integrated to obtain the number of cycles. This is then
repeated for all crack front nodes and an average is calculated to obtain the value
of cycles required to grow from front i to front i+ 1. This cycle counting procedure
is illustrated more in detail in Figure 3.25.

Figure 3.25: Computation of cycles along the crack front. Taken from [16]

3.4.6 Recommended settings for further analyses
Based on the studies in this chapter, the main recommended settings can be sum-
marised as follows. These settings have also been used in further analyses in this
thesis.

• Crack growth increment size: ∆am should be larger than the template radius
and approximately 0.2 ·min(a, c)

• Crack front fitting: Usually works fine with the default 3rd order fixed poly-
nomial with 3% extrapolation. For long shallow cracks it’s recommended to
use a multiple polynomial. In some cases it’s even necessary to increase the
extrapolation and exclude some of the end points (located close to the free
surface).

• Crack front mesh: Default settings, i.e. 3 rings and 8 circumferential elements,
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are recommended. These settings might in some cases have an impact on the
error ”cannot triangulate new crack front surface” since it affects the overall
crack front mesh.

• Template radius: Seen to affect the accuracy of the SIFs. Should be smaller
than the crack growth increment and approximately 0.1 ·min(a, c)

3.5 Construction of FE-models

FRANC3D includes no possibilities to create FE-models starting from a CAD ge-
ometry file, so the base FE-models were created separately. The construction of FE-
models were made to simulate the tests of Kb specimens in tension and bending, see
section 2.4 for details about the test setup. First the FE-models were constructed
in ANSYS to later be used in crack propagation simulations in FRANC3D. The
forthcoming text will describe the modelling procedure in ANSYS.

The test specimens were modelled by use of ANSYS Mechanical APDL commands,
and a .cdb file was created for the global uncracked model, it includes the global
mesh, applied load and other boundary conditions. Elements used in the global
model were SOLID186 20-node 3D quadratic elements with three degrees of freedom
per node: translation in nodal x-, y- and z-directions [17].

The load and boundary conditions for tensile loading were applied according to
Figure 3.26. The load was applied on the top-most surface as a pressure while the
bottom surface was locked in z-direction. To allow for Poisson contraction, two lines
were created at the bottom surface crossing the centre of the specimen - one parallel
to the x-axis and one parallel to the y-axis. Nodes attached to these lines were then
locked in x- and y-direction respectively to prevent rigid body motion.
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Figure 3.26: FE-model of Kb specimen for tensile loading. The model contains
applied loads and boundary conditions

For four-point bending, loads and boundary conditions were applied according to
Figure 3.27. The bottom edges at both ends were prevented to move in the z-
direction, two nodes at one end-surface of the specimen were locked in y-direction
while one node at the same surface was locked in x-direction to allow for Poisson
contraction and not influence the stresses in the mid span of the specimen where
crack growth occurs. The load was applied as line-loads parallel to the x-axis with
an equal distance on both sides from the centre of the specimen.

Figure 3.27: FE-model of Kb specimen for four-point bending loading. The model
contains applied loads and boundary conditions
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Two different test types were investigated by both FRANC3D and NASGRO: one
tensile test and one four-point bending test, these consisted of 55 and 18 different
test specimens respectively. The FE-models used for both test types are illustrated
in section 3.5. The fracture mechanical attributes, i.e. number of cycles to final
crack length and the corresponding crack shape were predicted by both programs
and compared to test results. The quotient Ntest/Npred. between the test and the
predicted number of cycles was used in the comparisons.

The crack propagation testings were performed by GKN for different load magni-
tudes, load ratios, temperatures, initial crack sizes. The crack was propagated either
until a target final crack size was reached or until final fracture. The settings used
in FRANC3D were selected according to the recommendations in section 3.4.6.

The constants used in the crack propagation model and other relevant material
data were provided by GKN for two different materials denoted Material A and B.
Material A, a nickel-chromium-based alloy, was employed in both the tensile and
bending cases, while Material B, a titanium-based alloy, was used for a cylindrical
specimen with an embedded crack.
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4.1 Tensile Loading

4.1.1 Test results
The tensile tests were performed at five different temperatures: 20, 400, 550, 600 and
650◦C. The distribution of the 55 Kb specimens among the different temperature
sets is seen in Table 4.1.

Table 4.1: Distribution of Kb specimens among the different temperature sets

Temperature 20◦C 400◦C 550◦C 600◦C 650◦C
Number of tested specimens 13 10 12 12 8

To illustrate the results, one test set performed at 550◦C was chosen, since the trends
for the different temperature sets were similar. The test parameters that were used
for simulation are shown in Table 4.2. The corresponding numbers of test cycles seen
in the last column are used for comparison to the predicted results from NASGRO
and FRANC3D at the final crack length, aend in Table 4.2.

Table 4.2: Test results for test set at 550◦C for tensile loading. ID number for
the specimens, loading-, crack parameters and cycles to final crack length are shown
from left to right

Case ID σmax[MPa] R astart [mm] cstart [mm] aend [mm] cend [mm] Ntest [-]
24 649 0 0.565 0.583 2.33 2.35 9 011
25 648 0.5 0.565 0.578 2.34 2.43 23 020
26 647 -1 0.635 0.600 2.20 2.40 4 696
27 624 0 0.498 0.529 2.23 2.15 10 421
28 624 0 1.10 1.12 2.52 2.48 2 833
39 750 0.5 0.517 0.564 1.67 1.61 6 441
30 626 -1 0.610 0.579 1.83 1.92 2 679
31 750 0.5 1.15 1.12 2.39 2.53 6 623
32 624 -1 0.619 0.659 2.22 2.46 2 129
33 624 0 0.786 0.723 2.36 2.48 4 646
34 750 0.5 0.686 0.716 2.35 2.39 8 365
35 625 -1 0.565 0.645 1.82 2.01 2 649

4.1.2 Cycles to final crack length for test set at 550◦C
Figure 4.1 shows the quotient Ntest/Npred. for both NASGRO and FRANC3D. The
case ID in Figure 4.1 corresponds to the parameters given in Table 4.2. A quo-
tient equal to one means that the predicted number of cycles is the same as the
actual number of cycles. NASGRO and FRANC3D were both overestimating and
underestimating the number of cycles depending on the test case. NASGRO and
FRANC3D were seen to predict similar results. The largest deviation between the
two programs was seen for case ID 31 (9.1%), while the smallest deviation was seen
for case ID 26 (2.6%).
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Figure 4.1: Comparison of Ntest/Npred. between FRANC3D, NASGRO and test
for tensile loading at 550◦C

4.1.3 Crack shape at final crack length for test set at 550◦C

The corresponding crack shape from NASGRO is characterised by the elliptical
parameters a and c, as described in section 3.2.1. The final crack length aend was set
from test and the predicted final crack width c was compared between the programs
using the ratio defined in Equation (4.1), where the indices f and c means FRANC3D
and NASGRO, respectively.

χ = (cf − cc)
cc

(4.1)

FRANC3D always predicted a wider crack than NASGRO for the 550◦C test set
and a wider crack for the majority of the 55 Kb specimens. Figure 4.2 shows
the crack shape between the largest and smallest deviation in c-direction seen for
NASGRO and FRANC3D. These specimens have case IDs 27 and 35 respectively.
The percentage difference, according to Equation (4.1), were 17.8 % and 5.6 %
respectively. The graph in Figure 4.2 is defined by the values for c and a at the
crack front, the curve is represented by a third degree polynomial fit between those
points. The specimens that differed most in crack width did not correlate to the
biggest percentage difference in life as discussed in section 4.1.2.
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(a)

(b)

Figure 4.2: Comparison of crack shapes. (a) Largest and (b) smallest differences
between FRANC3D and NASGRO

To investigate if there is a correlation between the crack shape and the SIF, the
Mode 1 SIF was extracted from NASGRO and FRANC3D. The Mode 1 SIF was
extracted for FRANC3D as described in section 3.1.4. The paths were chosen to
capture K at a and K at c, where the path for K at c in FRANC3D was chosen to
be 5% of the total length of the crack front from the crack mouth since K exactly
at the free surface is unstable. The mode I SIFs are seen for case ID: 27 and 35 in
Figure 4.3, where t in the legend stands for test case followed by case ID. NASGRO
evaluates crack growth in c with the calculated K at c, which for crack growth
includes the reduction factor described in section 3.2.1. This factor is accounted
for in the results in Figure 4.3. FRANC3D is seen to have a higher SIF along a
and a smaller SIF along c from about 3 mm up to the point were NASGRO stops
propagating the crack. Between the test cases, the SIFs do not differ much, however
the simulation in FRANC3D is seen to continue further for test case 27, i.e. the
simulation is not intervened by numerical errors.

The SIFs from FRANC3D at the paths as specified above can be integrated in
NASGRO. A one dimensional crack case in NASGRO was used for case ID 27. The
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K values for a and c were thus integrated independently of each other. The number
of cycles was noted for aend and the corresponding growth in c was evaluated at
that number of cycles. The width became c = 2.183 mm which is a 10.8% more
narrow crack than the standard NASGRO prediction, but closer to test data. This
is anticipated since the SIF from FRANC3D was seen to be lower overall along c.
FRANC3D predicts cend = 2.9470 mm for the same SIF as used in NASGRO, this
difference between the programs is attributed to the respective crack propagation
method, i.e. crack front fitting, crack front propagation model and integration
method.

(a) (b)

Figure 4.3: SIF comparison between FRANC3D and NASGRO for test cases 27
and 35: (a) measured along a and (b) measured along c with an angle of three
degrees from the free surface

4.1.3.1 Effect of curve fit

The crack shape for test case 24 is seen in Figure 4.4. The crack from the test
has a more oval shape as compared to the shape predicted by FRANC3D. The
final crack width cend was 2.35 mm according to Table 4.2 whereas predicted width
was 2.95 mm. This is a difference of 25%. Different curve fitting settings were
investigated in section 3.4.2, where e.g. a moving polynomial was tested. Moving
polynomial was seen to capture the behaviour of the crack at the free ends. The
proposed curve fitting in FRANC3D for moving polynomial is different than the 3rd
order polynomial as illustrated in Figure 4.5. The problems arising with this curve
fitting make it not suitable for the automated simulations performed for the large
number of specimens as considered in this thesis work.
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(a) (b)

Figure 4.4: Comparison of final crack shape between (a) test and (b) FRANC3D,
for test case 24

Figure 4.5: Comparison of curve fit for the crack front between moving polynomial
and fixed polynomial

A change in settings was required when using moving polynomial, i.e. a smaller
template radius and increment size. This increased simulation times. Changes in
settings were also required after some crack growth steps to continue propagating
the crack. An example of a successful simulation, which used a combination of
both fixed and moving polynomial, was performed for test case 27. First using
fixed polynomial with the recommended settings then a moving polynomial with
smaller increment size and template radius. The corresponding crack growth in c-
and a-directions versus number of cycles is seen in Figure 4.6, where indices 1 and
8 correspond to the moving and fixed polynomial respectively. The crack width at
aend for the moving polynomial became 2.93 mm as compared to 2.89 mm for the
fixed polynomial curve fit. Hence the crack growth is not much affected in this case.
The crack was also predicted to grow faster for the moving polynomial, see Figure
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4.6, where the difference in cycles between the two curve fitting methods became
1.61% at aend.

Figure 4.6: Crack growth for moving- and fixed-polynomial with indices 1 and 8
respectively (crack case 27)
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4.2 Four-point Bending

4.2.1 Test results

All four-point bending tests were performed at room temperature. The R-ratio
used was R = 0 and pre-cracks were generated under tensile fatigue at stress levels
σmax = 400 MPa or σmax = 500 MPa. The testing consisted of two test sets for crack
propagation under bending fatigue. For test set 1, crack propagation was performed
until target final crack sizes were reached (8 tests in total). For test set 2, crack
propagation was performed until final failure (10 tests in total). All relevant test
data is tabulated in Table 4.3 for both test sets.

Table 4.3: Four-point bending test data for both test set 1 and 2. The table
includes the test case IDs, applied stress levels, initial crack sizes and the resulting
number of cycles. Final crack sizes are included for test set 1

Case ID σmax [MPa] astart [mm] cstart [mm] aend [mm] cend [mm] Ntest [-]
Test set 1

1 700 0.517 0.520 0.939 1.179 23 076
2 700 0.501 0.556 0.908 1.177 25 234
3 700 0.560 0.572 1.754 2.566 41 130
4 700 0.515 0.528 1.772 2.519 45 833
5 700 0.619 0.641 0.998 1.258 24 467
6 700 0.470 0.483 1.013 1.205 30 040
7 700 0.660 0.643 1.727 2.504 44 568
8 700 0.604 0.627 1.795 2.627 43 226

Test set 2
9 600 0.515 0.522 - - 96 981
10 600 0.523 0.564 - - 78 644
11 700 0.493 0.544 - - 54 121
12 700 0.512 0.487 - - 50 777
13 800 0.537 0.533 - - 36 574
14 800 0.504 0.553 - - 32 889
15 600 1.101 1.006 - - 43 930
16 700 1.031 0.981 - - 31 681
17 800 1.004 1.043 - - 19 505
18 900 1.993 2.099 - - 6 145

4.2.2 Comparison of cycles to final crack length

Figure 4.7 shows the quotient Ntest/Npred., illustrated as blue and yellow bars for
FRANC3D and NASGRO respectively. The analyses were performed according to
test set 1. NASGRO was slightly closer to the test results for all test specimens as
compared to FRANC3D, except of case ID 1, where they became almost exactly
the same. All analyses resulted in shorter lives as compared to test results. The
predicted life was therefore seen to be conservative.
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Figure 4.7: Test set 1, Four-point bending. Comparison of Ntest/Npred. between
FRANC3D, NASGRO and tests (cycles to target final crack sizes)

4.2.3 Comparison of cycles to failure
Figure 4.8 shows the quotient between the predicted number of cycles and the ones
from testing, illustrated as blue and yellow bars for FRANC3D and NASGRO re-
spectively. The analyses were performed according to test set 2. NASGRO is slightly
closer to the test results for all test specimens as compared to FRANC3D. Predicted
lives are conservative for all test cases.

Figure 4.8: Test set 2, four-point bending. Comparison of Ntest/Npred. between
FRANC3D, NASGRO and test (cycles to failure)
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4.3 Statistical evaluation
A large number of specimens were analysed for different loading, temperatures and
initial and final crack sizes. It is customary to use a log-normal distribution for the
comparison of the predicted and tested fatigue lives, since the error in prediction can
be written as the logarithm of the ratio Ntest/Npred. used in previous comparisons.
An error, e, in prediction, according to [19], can be defined in the log-space as follows

ln (Ntest)− ln (Npred.) = e (4.2)

and the expression can be re-written on the following form

ln(Ntest/Npred.) = e. (4.3)

Characteristics such as scatter in e and how well the predictions match with test
data on an average, i.e. how close the median (50%) value of Ntest/Npred. is to 1,
were used in the comparisons.

Figure 4.9 shows the log-normal probability plot for all tensile test cases. The
quotient between the tested and predicted fatigue lives follows the log-normal dis-
tribution well, and a low scatter is observed for both predictions. The median values
became 0.946 for FRANC3D and 0.954 for NASGRO. On average, the predictions
matched well with test data as the median values were close to 1. Both methods
are slightly over-predicting the fatigue life.

Figure 4.9: Log-normal probability plot for tensile test

The log-normal probability plots for test sets 1 and 2 for bending fatigue are shown
in Figure 4.10a and 4.10b respectively. For test set 1, the median (50%) values
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for FRANC3D and NASGRO were 1.297 and 1.232 respectively. Both FRANC3D
and NASGRO have similar results, but NASGRO is slightly more conservative than
FRANC3D for test set 1. For test set 2 more scatter was observed and the data
points are not following the log normal distribution as good as for test set 1. For one
test case, the two right most data points in Figure 4.10b, a large underestimation of
the predicted fatigue life is observed for both FRANC3D and NASGRO. This has a
large influence on the median value, since the data set is small. The median values
for FRANC3D and NASGRO respectively became 1.385 and 1.301. The reason for
the occurrence of these outlier data points is unknown.

(a)

(b)

Figure 4.10: Log-normal probability plots for four-point bending (a) test set 1—
cycles to final crack sizes and (b) test set 2—cycles to failure
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4.4 Embedded crack in circular specimen
Test specimens with rectangular cross sections are used for fatigue testing by GKN.
Another commonly used configuration in fatigue testing, e.g. according to ASTM
E466, is a circular test specimen. It is of interest to see how well FRANC3D predicts
the fatigue life in this case, as it allows for a more accurate modelling of the geometry
of the specimen and crack shape. A circular specimen, with a crack type where
handbook-type solutions were not available in NASGRO, was therefore considered.
This configuration was defined as a cylindrical specimen with an embedded circular
crack according to Figure 4.11. The analysis was carried out for tensile fatigue and
Material B. Other relevant information, such as specimen dimensions, location of
the embedded crack, load and boundary conditions are seen in Figure 4.11.

Figure 4.11: Initial mesh, load, boundary conditions and location of embedded
crack in a cylindrical specimen modelled in FRANC3D

For comparison two similar crack types were selected in NASGRO, the crack types
EC04 and SC07, EC04 features a square plate with an embedded crack and SC07
a cylinder with a surface crack as shown in Figure 4.12. For the analyses, the
diameter of the embedded crack was set to a constant value d = 0.4 mm while the
distance between the crack front and the outer free surface of the specimen varied
from l = 0.1 mm to l = 1.5 mm, see Figure 4.12. Note that SC07 is a surface crack,
so the crack length was assumed to be the diameter of the embedded crack plus the
distance from the free surface a = d+ l.
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Figure 4.12: Initial crack size and location in FRANC3D and two crack types in
NASGRO

The predicted number of cycles to failure and transition for the different crack sizes
are presented in Table 4.4. It was also of interest to investigate when the embedded
crack was predicted to transition to a surface crack. This was also included in the
comparison. In Table 4.4 N is the total number of cycles from the initial crack to
failure and Ntran. the number of cycles from the initial crack until the transition to
a surface crack.

Employing SC07 resulted in conservative predictions with predicted fatigue lives
significantly shorter than for FRANC3D and EC04. Both FRANC3D and EC04
resulted in approximately the same number of cycles until failure and transition.
Initially an embedded crack close to the surface was assumed to be the most critical
case. That seems to be true, if one only considers the total life. One interesting
thing is that the portion of cycles after the crack has transitioned to a surface crack
is very small as compared to the total life for larger l. This type of crack can be
difficult to detect during inspection as it grows inside the specimen almost the whole
life. Hence it might be more critical than the embedded crack located close to the
surface, which grows as a surface crack for a larger portion of the total life.

Table 4.4: Predicted total life and cycles to transition for FRANC3D and NASGRO

Distance FRANC3D EC04 SC07
from surface N Ntran. N Ntran. N
l = 0.1 mm 12 136 5 900 12 000 4 298 4 331
l = 0.4 mm 15 537 13 300 15 625 12 774 1 696
l = 0.8 mm 18 066 17 200 17 704 16 810 516
l = 1.5 mm 19 913 18 886 19 432 19 362 34

51



4. Results

52



5
Conclusions

Fatigue crack propagation in titanium and nickel based alloys has been studied for
two different types of loading. The main purpose has been to evaluate the crack
propagation tool FRANC3D in comparison to handbook-type solutions and tests.
To this end, the crack propagation of a surface crack in a Kb test specimen has
been evaluated through numerical analyses and handbook-type solutions. A study
of different settings in FRANC3D has been performed and a list of recommended
settings has been presented. Analyses have been validated against available test
data. Crack propagation predictions have also been performed for an embedded
crack in a circular specimen for which handbook-type solutions were not available.

Based on these investigations the following can be concluded:

• Appropriate settings for crack propagation analysis in FRANC3D have been
proposed and shown to give stable results for the simulated test specimens.

• It has been shown that FRANC3D, where the crack is explicitly modelled in
FEM, gave similar number of cycles as a more traditional handbook-type solu-
tion approach, such as NASGRO. This was the case both for propagation to a
specified crack length and to final failure. Both programs were shown to have
a statistical mean life prediction that was close to the mean life prediction of
the 55 Kb specimens in the tensile tests. The programs gave similar predic-
tions for the bending case but in addition to the tensile tests, the predictions
were conservative. That is, they predict a shorter mean life than the mean life
from tests.

• FRANC3D has been shown to have more freedom to capture the crack shape
than NASGRO through different types of curve fitting to approximate the
crack front.

• FRANC3D predicts a wider crack, than NASGRO and test results, for the
majority of the tensile tested Kb specimens.

• FRANC3D has been shown to be sensitive to user settings, i.e the program
demands more effort from the user than what is required for running cases
already defined in NASGRO.
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• FRANC3D was shown to be able to perform crack growth simulation for an
embedded crack in a circular specimen, where a corresponding NASGRO crack
type is not available.

5.1 Recommendation for future work
It has been shown that FRANC3D has capabilities to simulate crack growth in
configurations such as embedded cracks in a circular specimens. Aero-engine com-
ponents, such as struts used for guiding hot air and carry the weight of the engine,
are of interest to analyse for fatigue. Components like this are subjected to heat
which may vary with fatigue cycles. They also have more complex geometries which
might be possible to analyse in FRANC3D.

FRANC3D also includes possibilities to perform fatigue analysis for mixed mode
loading, where the crack can propagate in directions outside of the crack plane.
There are several settings available in order to specify the direction of crack propa-
gation. It would be of interest to investigate these setting more in detail.

Some aspects to investigate further could thus be:

• Investigate the capabilities of simulating thermal fatigue in FRANC3D, i.e;
temperature variation in space and time (cycles). Perform validation studies
for these tests.

• Perform fatigue analysis on aero-engine components and validate—if possible,
against test data.

• Perform crack propagation analysis for mixed mode loading.
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