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Abstract
The nature of fluid flows in pipes is highly relevant to planning and construct-
ing cooling systems. Although general, conventional computational fluid dynamics
solutions such as ANSYS FLUENT, OpenFOAM or similar software exists, these
solutions are computationally expensive and require hours, if not days, to give re-
sults. This study aims to explore and compare implicit solutions for complex pipe
networks that can be generated in a much quicker fashion. In this context, implicit
solutions refer to 1D-implementations which solve the entire pipe network as a set
of simultaneous equations, or in other words, a matrix.

In order to evaluate the accuracy of any such implicit solver, the results that the
solver produces are validated against a simulation run in ANSYS FLUENT using,
to the extent that it is possible, identical settings. A set of different cases are run
through this validation procedure in order to observe how the implicit flow rate
solver compares across a number of cases. The results show that while the implicit
flow rate solver manages to mimic the fluid flow of the ANSYS FLUENT simula-
tions with only small errors that arise primarily from observed asymmetries in the
ANSYS FLUENT simulation. The implicit flow rate solver does however produce
significant errors in temperature prediction when cooling systems that have heat
sources approximating 2 · 105 W/m3 applied at smaller regions. Additionally, the
results show an extreme benefit in terms of run-time, on the order of 103 compared
to ANSYS FLUENT.

These results suggest that the implicit solver fails to capture a variety of phenomena,
particularly related to cases applying larger additional heat sources. These phenom-
ena would need to be captured if it is to act as a predictor of the behavior of such
cases. For cases without the previously mentioned large heat source however, the
results suggest that the implicit solver can serve as a semi-accurate run-time efficient
predictor. Additionally, the results suggest that the usage of minor loss coefficients
or length-equivalents for estimating the pressure drop over a pipe bend, T-junction
or similar structures is insufficient to capture combined effects of said structures in
more complex pipe networks. Finally, observation of the errors in temperature pre-
diction suggest an approximately linear behavior. On this basis, the implicit solver
or a variant of it could very well serve as an early predictor when iterating through
system design in order to quickly find designs that will fail to fulfill certain criteria.

Keywords: CFD, Pipe flow, fluid dynamics, ventilation, MATLAB, ANSYS FLU-
ENT

v





Acknowledgements
I would first like to thank my supervisor, Ulf Sand at Hitachi Energy, Hitatchi En-
ergy Research. He has been available whenever there has been a lack of clarity
and direction in my work, my research and my writing. He has consistently served
as a guide when I needed one, while letting this paper to be my own work in entirety.

I would also like to acknowledge Lars Davidson of the department of fluid dynamics
at Chalmers University of Technology as the second reader of this thesis.

Finally, I wish to express my gratitude to my parents for continued support, en-
couragement and occasional spur throughout the process of writing this thesis as
well as during my years of study leading up to it. This thesis would not have been
possible without them.

Thank you.

Carl Andersson, Västerås, 09 2021

vii





Nomenclature

Below is the nomenclature of indices, sets, parameters, and variables that have been
used throughout this thesis.

Sets

Set symbol Set Descriptor Set element symbol
N Set of nodes n

C Set of connections between nodes c

P Set of paths p

D Set of path differentials δp

Parameters

Parameter symbol Parameter descriptor Parameter unit
ρ Density kg

m3

t Time s

∆t Size of time-step s

u Velocity vector field m
s

V Volume m3

S Surface area of an associated volume V m2

A A discrete surface area m2

Q Volumetric flow rate m3

s

p Pressure Pa
(
kg
ms2

)
∆p Pressure drop Pa

fD Darcy Friction Factor none
L Length of pipe m

D Diameter of pipe m

K Minor loss coefficient none

ix



v Cross-section average of velocity m
s

g Gravitational constant m
s2

δh Height difference of pipe m

Ju Unsteady friction term. Pa

k3 Unsteady friction coefficient none
a Wave propagation velocity m

s

Re Reynolds number none
µ Dynamic viscosity Pas

Z Compressibility none
h Specific Enthalpy J

kg

cp Specific heat capacity J
kgK

cv Specific volumetric heat capacity J
kgK

T Temperature K

k Thermal conductivity W
mK

Sh Thermal heat source W
m3

β Heat interface interpolation factor none
h∗ Heat transfer coefficient W

m2K

NuL Nusselt number none
Pr Prandtl number none
RaL Rayleigh number none
Gr Grashof number none

Matrices

Matrix symbol Matrix descriptor Matrix size
A Adjacency matrix |N |x|N |
F Flow matrix (|N | − 1)x|C|
D Pressure drop matrix (|C| − |N |+ 1)x|C|
Θ Pressure drop coefficient matrix (|C| − |N |+ 1)x|C|
P Pressure sum matrix |N |x|C|
H Heat matrix |N |x|N |
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1
Introduction

The ventilation of high energy systems is of vital importance to maintaining the safe
operation of any electric grid, hence modeling and understanding it is an essential
part of any project to construct infrastructure for such systems. Although there
exists a variety of tools and software to conduct such modeling today, most such
software require hours, if not days of dedicated simulation time for each model. As
such, it is of great interest to have tools and algorithms that can quickly provide at
least an approximate overview of a system or many, such that designs can be iterated
over and those that fail to fulfill necessary criteria can quickly be discarded and only
those who managed to fulfill said criteria are actually invested with a more full-scale
simulation. This paper lays out the construction of a flow rate based solver that aims
to do just that, provide quick and approximate solutions to large scale complex pip-
ing systems for the air-based ventilation of, among other things, electrical enclosures.

The aim of the flow rate solver is to provide predictions for the air volumetric flow
rate, pressure and temperature in both steady and transient conditions. The target
of this construction is to find systems that provide even flow division to multiple
cooling locations for equal cooling effect. Additionally, a fast run time is considered
a vital part of the flow rate solver.

The flow rate solver does not aim to capture local flow field phenomena, such as
eddies or in-pipe radial distributions of flow or temperature. The chosen framework
for the implementation of the flow rate solver is MATLAB.

1
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2
Theory

In the following sections, the mathematical basis upon which the flow and thermal
solver is built is explained.

2.1 Continuity Equation
In order to provide a basis upon which a flow rate solver is built, we start with
the continuity equation for fluid dynamics, which in its differential form is listed as
follows [13]:

∂ρ

∂t
+∇ · (ρu) = 0

[
kg

sm3

]
(2.1)

where ρ is the density field of the fluid in question, t is time and u is the velocity
field. Transforming this into it’s integral form over a control volume V yields:

∂

∂t

˚

V

ρdV +
˚

V

∇ · (ρu) dV = 0
[
kg

s

]
(2.2)

Gauss theorem [11][12] can then be applied to the second term of the equation,
forming the more familiar variant:

∂

∂t

˚

V

ρdV +
‹

S(V )

(ρu · n̂) dS = 0
[
kg

s

]
(2.3)

where S(V ) is the surface of the control volume V . Then, it is assumed that within
the confines of the control volume V , the density field ρ is constant inside of the
volume, although not necessarily so across the surface of the volume. Leading to
the simplified form:

∂

∂t
ρV +

‹

S(V )

(ρu · n̂) dS = 0
[
kg

s

]
(2.4)

since
˝
V

dV is simply V .

Then, the surface S is replaced by a set of discrete surfaces A = {A1, A2, . . . , An}
with the set of subscripts i = {1, 2, . . . , n} and the surface integral is replaced by
the sum of discrete surfaces‹

S

x(s)dS =
∑
i

‹

Ai

x(Ai)dAi
∑
i

Ai =
‹

S

dS (2.5)
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2. Theory

since u is not guaranteed to be constant over any of these discrete areas however, as
it is by definition a continuous field, it is replaced by the mean velocity across that
area times the area, also know as the flow rate.

Qi =
‹

Ai

(u · n̂) dAi (2.6)

similarly to the simplification done to achieve equation 2.4, it is then assumed that
the density field ρ remains constant over each Ai. This transforms equation 2.4 into:

∂

∂t
ρV +

∑
i

ρiQi = 0
[
kg

s

]
(2.7)

which, finally, when concerning oneself with only steady-state solutions, can be
further reduced to:

∑
i

ρiQi = 0
[
kg

s

]
(2.8)

which can then be used to produce one equation per control volume in the system of
interest. For an example of such a control volume, see figure 2.1. Alternatively, if a
transient implementation is desired, the time derivative is retained and discretized
according to:

∂ρV
∂t

V +
∑
i

ρiQi = 0
[
kg

s

]
(2.9)

Figure 2.1: Example of a control volume with three different flow rates: Q1, Q2
and Q3 on which equation 2.8 can be applied

2.2 Pressure Drop
With the continuity equation providing one equation per control volume, it, together
with a single velocity boundary condition, would only be sufficient to describe the
flow rate throughout a system if there were an equal number of control volumes

4



2. Theory

as there were interfaces between them. This would be the case with a singular,
straight pipe with the surfaces over which the balance is established defined as a
set of planes in normal directions of the pipe. For any system that includes any
form of split in the pipes however, there is a need for additional equations in order
to sufficiently describe the flow rate throughout the system. The number of these
equations is equal to the number of surfaces minus the number of control volumes.
In order to find these equations, the state variable Pressure is utilized, as its value
and by extension its change in value is independent of the path taken. Hence, for
any two paths 1 and 2 that begin at some identical point a and end at some other
identical point b it can be stated that the total pressure drop along those paths must
be equal: ∑

Path 1
∂p−

∑
Path 2

∂p = 0 (2.10)

for an example of these paths, see figure 2.2.

Figure 2.2: Example of two different paths: 1 and 2 from point a to b in a pipe
network on which equation 2.10 can be applied

Using this, an additional equation can be generated for every possible ’path’ through
control volumes from one point to another. When a pipe splits in two, meaning there
exists one incoming surface and two outgoing ones from some choice of direction,
this will generate one additional equation. If the pipe splits into more than two at
any point, such as having one incoming pipe and three outgoing, there exists ∑n−1

i i
possible selections of two paths for an n-split pipe. However, many of these will be
redundant, as for the threefold split, the equations are as follows:∑

Path 1
∂p−

∑
Path 2

∂p = 0 (2.11)∑
Path 1

∂p−
∑

Path 3
∂p = 0 (2.12)∑

Path 2
∂p−

∑
Path 3

∂p = 0 (2.13)

however, equation 2.11 and 2.12 together imply equation 2.13, hence it is redundant
and not needed. Similarly for n = 4 there exists a total of 6 equations, out of which
3 are redundant, and so on. Hence, for a pipe split of degree n we have n− 1 non-
redundant equations. This is exactly sufficient to account for the equations needed
to sufficiently describe the pipe system when combined with equation 2.8.
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2. Theory

2.2.1 Darcy-Weisbach and Minor Losses
Since the objective of this system of equations is to solve the volumetric flow rates
Q, there is a need to establish the relationship between ∂p and Q. To do this, the
Darcy-Weisbach equation is utilized. With two additions however, one for minor
losses that arise from pipe bends, T-junctions and the like is utilized, and one for
height differences. [2]:

∂p = ρ
(
fD

L

D
+K

)
v2

2 + ρg∂h (2.14)

where fD is known as the Darcy Friction Factor, L is the length of the pipe, D is
the diameter of the pipe, K is the effective minor loss coefficient for the pipe (if any)
which will be explained in section 2.2.3. v is the average velocity, equal to the flow Q
divided by the area A. In order to attain a transient version of the Darcy-Weisbach
formula, the momentum inertia needs to be accounted for, which can be represented
by adding an unsteady friction term Ju [9]

∂p = ρ
(
fD

L

D
+K

)
v2

2 + ρg∂h+ Ju (2.15)

where Ju and it’s significant components are descriped in equations 2.16 and equa-
tions 2.17

Ju = ρk3

(
∂u
∂t
− a∇ · u

)
(2.16)

k3 = 2
√
C∗ C∗ = 7.41

Reκ κ = log10

( 14.3
Re0.05

)
(2.17)

where a is the wave propagation velocity, which for air is roughly 330 meters per
second and Re is the Reynolds number. In order to implement this equation into
the larger system, we also need values for K and an expression for the Darcy friction
factor fD.

2.2.2 Darcy Friction Factor
In order to determine fD, it is assumed that the pipes through which the fluid flows
are mostly smooth. This then gives an expression for fD for laminar flows that
follows from Poiseuille’s law:

fD = 64
Re = 64µA

ρQD
(2.18)

for the turbulent, due to the assumed smoothness of the pipe, the Kármán–Prandtl
resistance equation can be used to model the friction factor [14]:

1√
fD

= 1.930 log
(
Re
√
fD

)
− 0.537 ≈ 0.838W (0.629Re) (2.19)

or, isolating fD:

fD =
(

1
0.838W (0.629Re)

)2

(2.20)

where W is the Lambert W function.
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2. Theory

2.2.3 Minor Loss Coefficient
For determining the minor loss coefficient K in equation 2.14, the system in question
concerns itself primarily with three types of minor losses. These three types are
Minor losses in bends, minor losses in t-junctions and minor losses of an unknown
’box’. The bends in the system are assumed to be of the flanged variant, thus having
an associated minor loss coefficient of 0.3. The unknown box was estimated using a
comparison to ANSYS FLUENT (see methodology) to have a value somewhere in
the range of 200, see table 2.1 for a summary of these coefficients. For the minor loss
coefficient in t-junctions, formulas from Andrew Vazsonyi’s work is used as follows
[15].

K0,1 = λ1 + (2λ2 − λ1)
(
v1

v0

)2
− 2λ2

(
v1

v0

)
cosα′ (2.21)

for t-junctions where there is one incoming flow and two outgoing, also known as
dividing flows. Where K0,1 represents the minor loss coefficient for the incoming
flow 0 to the outgoing flow 1. v0 is the velocity of the incoming fluid and v1 is the
velocity of the outgoing fluid in the chosen direction. For the factors λ1 and λ2 as
well as α′, they are calculated as follows:

λ1 = 0.0712α0.7141 + 0.37 α <
π

8 (2.22)

λ1 = 1 α ≥ π

8 (2.23)

λ2 = 0.0592α0.7029 + 0.37 α <
π

8 (2.24)

λ2 = 0.9 α ≥ π

8 (2.25)

α′ = 1.41α− 0.00594α2 (2.26)

where α is the angle by which the t-junction diverts. For combining flows, where
there are two incoming flows and one outgoing, equation 2.27 is utilized:

K0,1 = λ3

(
v1

v0

)2
+ 1− 2

((
v1

v0

)(
Q1

Q0

)
cos β′ +

(
v2

v0

)(
Q2

Q0

)
cosα′

)
(2.27)

where λ3 is dependent on β, the angle of of the opposite flow (2), with important
values being λ3 (0) ≈ 1 and λ3

(
pi
2

)
≈ 0.6. Qi is the volumetric flow rate across

the respective junction and β′ is calculated as per equation 2.26, although using β
rather than α.

Table 2.1: Gathered reference table for minor loss coefficients

Minor loss type Minor loss coefficient K
Threaded Bend 1.5

T-junction Equation 2.21 & 2.27
Unknown box 200
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2. Theory

2.3 Material Properties
Since we are dealing with a compressible fluid in the form of air, it’s density will
vary based on both pressure and temperature according to:

ρ = PM

RTZ(P, T )

[
kg

m3

]
(2.28)

where P is the pressure, M is the molar mass, T is the temperature, R is the gas
constant and Z is the compressibility, which varies by both P and T respectively.
An approximation for how this compressibility varies is given below [10]:

Z(P, T ) ≈ 1 +



5.56e− 11
−2.07e− 8
2.71e− 6
−6.37e− 8
1.26e− 6
−5.88e− 4
2.49e− 9
−3.33e− 7



T 

P 2T 2

P 2T
P 2

PT 2

PT
P
T 2

T


(2.29)

where P is given in Atmospheres and T in Kelvin. Likewise, viscosity will not
remain constant with varying temperature either. The equation used to describe its
temperature dependence is given below [3]:

µT = µ273.15

(
T

273.15

)3/2 273.15 + Sair
T + Sair

(2.30)

where Sair is determined to be roughly 109.7 and µ273.15 = 1.7231 · 10−5

2.3.1 Heat Balance
In order to calculate the temperature in the system, begin with the equation for
Conservation of Energy [13].

ρ

[
∂h

∂t
+∇ · (hu)

]
= −∂p

∂t
+∇ · (k∇T ) + Φ + Sh (2.31)

where Φ is the dissipation term, see equation 2.32, and Sh is a source term:

Φ =
∑
i

∑
j

ηeff

(
ε̇ij ε̇ij −

1
3 ε̇

2
ii

)
(2.32)

where ε̇ is the strain rate tensor [7]:

ε̇ =


∂ux

∂x
1
2

(
∂uy

∂x
+ ∂ux

∂y

)
1
2

(
∂uz

∂x
+ ∂ux

∂z

)
1
2

(
∂uy

∂x
+ ∂ux

∂y

)
∂uy

∂y
1
2

(
∂uz

∂y
+ ∂uy

∂z

)
1
2

(
∂uz

∂x
+ ∂ux

∂z

)
1
2

(
∂uz

∂y
+ ∂uy

∂z

)
∂uz

∂z

 (2.33)
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Φ = ηeff

1
2

(
∂uy
∂x

+ ∂ux
∂y

)2

+ 1
2

(
∂uz
∂x

+ ∂ux
∂z

)2

+ 1
2

(
∂uz
∂y

+ ∂uy
∂z

)2
 (2.34)

where ηeff is the effective viscosity due to strain, currently assumed to be negligible
due to only looking at a 1-D case. h is the specific enthalpy of the system, defined
as [8]:

h = cpT + p

ρ
(2.35)

which when returned to the energy equation expands it to :

ρ

[
cp
∂T

∂t
+ cp∇ · (Tu) + 1

ρ

∂p

∂t
+ 1
ρ
∇ · (pu)

]
= −∂p

∂t
+∇ · (k∇T ) + Φ + Sh

[
J

sm3

]
(2.36)

multiplying in ρ where convenient and separating the pressure and temperature
terms yield:

ρ

[
cp
∂T

∂t
+ cp∇ · (Tu)

]
−∇ · (k∇T )− Φ = −2∂p

∂t
−∇ · (pu) + Sh

[
J

sm3

]
(2.37)

which, when integrated over a control volume V yields:˚

V

ρcp
∂T

∂t
dV +

˚

V

ρcp∇ · (Tu) dV −
˚

V

∇ · (k∇T ) dV −
˚

V

ΦdV (2.38)

= −2
˚

V

∂p

∂t
dV −

˚

V

∇ · (pu) dV +
˚

V

ShdV
[
J

s

]
(2.39)

after that, Gauss theorem is applied to relevant terms:˚

V

ρcp
∂T

∂t
+
‹

S

ρcp (Tu) dS −
‹

S

(k∇T ) dS −
˚

V

ΦdV (2.40)

= −2
˚

V

∂p

∂t
dV −

‹

S

(pu) dS +
˚

V

ShdV
[
J

s

]
(2.41)

V is then assumed to be small enough that values within are effectively constant.

ρcp
∂T

∂t
V + ρcp

‹

S

TudS − k
‹

S

∇TdS − ΦV (2.42)

= −2∂p
∂t
V −

‹

S

(pu) dS + ShV
[
J

s

]
(2.43)

similarly to the handling of the continuity equations, replace surface integral with
sum of discrete surfaces as per equation 2.5: Utilize equation 2.6 and assume all
other variables act as local constants carried by the volumetric flow rate:

ρcp
∂T

∂t
V +

∑
i

(ρcpTQ)i −
∑
i

(k∇TA)i − ΦV (2.44)

= −2∂p
∂t
V −

∑
i

(pQ)i + ShV
[
J

s

]
(2.45)
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assuming there exists more than one constant cell, and that they are adjacent, ∇T
can be approximated using these two cells a and b as:

∇T ≈ Ta − Tb
La→b

= ∂Ti
Li

(2.46)

Figure 2.3: Demonstration of the geometry behind the approximation of ∇T

Where Li := La→b for i ∈ {0, . . . ,M} where M is the number of interfaces in a
given geometry, is the distance between the center of the cells, see figure 2.3 for an
example, gives:

ρcp
∂T

∂t
V +

∑
i

(ρcpTQ)i −
∑
i

(
kA

∂T

L

)
i

− ΦV = −2∂p
∂t
V −

∑
i

(pQ)i + ShV
[
J

s

]
(2.47)

ignoring Φ which was previously presumed negligible and looking at the steady-state
variant of the equation yields, when combining the sums.

∑
i

(
ρcpTQ− kA

∂T

L
+ pQ

)
i

= ShV
[
J

s

]
(2.48)

In order to formulate a transient solution, instead approximate ∂T
∂t
≈ Tt−Tt−∂t

∂t
and

∂p
∂t
≈ pt−pt−∂t

∂t
and assume all cross-wall transport utilizes the temperature in the

prior time step Tt−∂t:

ρcp
Tt − Tt−∂t

∂t
V +

∑
i

(
ρcpTQ− kA

∂T

L
+ pQ

)
i,t−∂t

= −2pt − pt−∂t
∂t

V + ShV
[
J

s

]
(2.49)

which yields an equation for Tt when shifted around:

Tt = Tt−∂t − 2(pt − pt−∂t)
ρcp

− ∂t

V ρcp

∑
i

(
ρcpTQ− kA

∂T

L
+ pQ

)
i,t−∂t

+ ShV

 [K]

(2.50)
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2.3.2 Thermal properties
The coefficients k and cp calculated as [3]:

k = 9γ − 5
4 cvµ cv = R

γ − 1
1
M

cp = γR

γ − 1
1
M

(2.51)

where µ is the temperature-dependent viscosity as per equation 2.30 and γ ≈ 1.4 is
the heat capacity ratio for air [16].

2.3.3 Interpolation of temperature at flow-faces
For determining the value of Ta→b, the temperature being carried by the flow rate
Qis, it is approximated as a linear combination of Ta and Tb based on the analytical
solution of the 1-D isobaric steady-state heat equation for a normalized distance
x ∈ (0, 1). This is done instead of standard linear interpolation in order to attempt
to combat the potential error cause by the large cell sizes:

T (x) = −T1 − T0 e−α
e−α − 1 − e−αx (T0 − T1)

e−α − 1 (2.52)

where α is defined by equation 2.53:

α = ρcpQ

kA
L

(2.53)

which, when using the scaled temperatures T1 = 1 and T0 = 0 has the expected
value:

E[T (x)] = − 1
α
− 1

e−α − 1 = β (2.54)

For a visualization of what this expected value evaluates to at differing values of α,
see figure 2.4.

Figure 2.4: The average interface temperature scaling as per equation 2.54
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thus, let:
Ta→b = (1− β)Ta + βTb (2.55)

Assuming a set of volumetric flow ratesQi and pressure pi exists from a prior solution
to the momentum equation, there are a number of unknowns T equal to the number
of control volumes, since interface-values can be extrapolated from control-volume
values.

2.3.4 Heat Transfer over wall
There exists additional sources of heat in each control volume however, as heat may
transfer through solid walls that exist within the volume as per the heat transfer
equation [5]:

q̇ = UA (To − Ti)
[
J

s

]
(2.56)

where Ti is the temperature in the control volume, To is the temperature on the
other side of the wall, A is the area over which the heat is transferred and U is the
overall heat transfer coefficient, calculated as follows [5]:

UA = 1
1

hiAi
+ dw

kwAw
+ 1

hoAo

(2.57)

where hi, ho is the heat transfer coefficient for the internal fluid and external fluid
respectively, kw is the thermal conductivity of the wall material, dw is the wall thick-
ness, and Ai, Ao & Aw is the respective areas over which the heat is transferred.

In order to determine the heat transfer coefficients for the fluids, the default as-
sumption is that the outside heat transfer coefficient arises from free convection and
that the internal flow Q is known. As such, for the internal heat transfer coefficient
hi, the Gnielinski correlation for forced convection is utilized [6]:

NuL = hL

k
=

(
f
8

)
(ReL − 1000) Pr

1 + 12.7
√(

f
8

) (
Pr 2

3 − 1
) (2.58)

which is valid for:

0.5 ≤ Pr ≤ 2000 3000 ≤ ReL ≤ 5 · 106 (2.59)

where L is the characteristic length, here meaning V
S
, f is the Darcy Friction Factor

as per equation 2.20 ReL is the Reynolds number for the same characteristic length
and Pr is the Prandtl number.

Pr = cpµ

k
ReL = ρuL

µ
(2.60)

If the Gnielinski correlation is invalid, most likely due to the velocity u being low
enough to cause the Reynolds number to drop below 3000, the Nusselt number for
for circular tubes with uniform heat flux is utilized instead:

NuL = 4.36 (2.61)
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The inner heat transfer coefficient can then be approximated as:

hi = NuLk
L

(2.62)

When looking at the external heat transfer coefficient, a different correlation is
needed to approximate the value from what is assumed to be free convection. Here,
the Churchill and Chu correlation is used[4]:

¯NuL = 0.68 + 0.663Ra
1
4
L[

1 +
(

0.492
Pr

) 9
16
] 4

9
(2.63)

which is valid for:
RaL ≤ 108 (2.64)

where RaL is the Rayleigh number, usually written as the product of the Grashof
number and the Prandtl number:

RaL = GrPr = ρβ̂∆T l3g
µα̂

(2.65)

where β̂ (K−1) is the thermal expansion coefficient, ∆T is the temperature differ-
ence between the wall and the outside fluid and α̂ = k

ρcp
is the thermal diffusivity .

Like for the internal heat transfer coefficient, the external heat transfer coefficient
is calculated in the same manner ho = ¯NuLk

L
. In order to determine the wall tem-

perature Tw for ∆T , it is assumed that kW all

dW all
>> hi, ho, hence the wall temperature

reaches steady state much faster than the fluid and can be approximated using the
steady state approximation:

∂T = Tw − To Tw = hiAiTi + hoAoTo
hiAi + hoAo

(2.66)

2.3.5 Shell Conduction
Even though Tw is, for the most part, uniform in the normal direction through
the wall, it is not necessarily so along the length of the wall interior. Hence, an
alternative approach to determining Tw is to treat the wall as an additional control
volume. This approach allows for inclusion of conduction factors in directions along
the wall interior. Assuming that the wall is solid, and as such no convection occurs
in the wall volume, the equation for the wall volume becomes:

˚

V

ρw

[
cp,w

∂Tw
∂t

]
dV =

‹

A−{Ai,Ao}

(kw∇T ) dA+
‹

Ao

U (To − Tw) dAo+
‹

Ai

U (Ti − Tw) dAi

(2.67)
There the terms on the right hand side can be labeled as the internal conduction,
the outside heat and the inside heat respectively. For a visual reference of these
different terms, see figure 2.5.
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Figure 2.5: Visual reference for heat transfer in the wall of a pipe, terminology
originates from equation 2.67

Assuming sufficiently small areas and volumes that internal values can be considered
constant.

Vwρwcp,w
∂Tw
∂t

=
∑
j

(kw∇T )Sj + UAo (To − Tw) + UAi (Ti − Tw) (2.68)

This can then be further simplified by approximating ∇T as a difference between
the current node Tw,n and the adjacent wall segment on the other side of the surface
Sj, Tw,j divided by the distance between them Ln→j:

∇T ≈ Tw,n − Tw,j
Ln→j

(2.69)

leading to the following equation for a transient wall volume:

Vw,nρwcp,w
∂Tw,n
∂t

=
∑
j

kwSj
Tw,n − Tw,j
Ln→j

+ UAo (To,n − Tw,n) + UAi (Ti,n − Tw,n)

(2.70)
or it’s steady-state equivalent:

0 =
∑
j

kwSj
Tw,n − Tw,j
Ln→j

+ UAo (To,n − Tw,n) + UAi (Ti,n − Tw,n) (2.71)
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3.1 Geometry
In order to apply the derived equations for a flow rate solver, such as equation 2.8,
equation 2.10 and equation 2.48, a set of control volumes and surfaces is needed
in order to achieve a FVM-style discretization. Due to the need to validate any
such solution for any geometry against prior sources, the geometries constructed
for this solver are based on equivalent geometries constructed for a commercial
solver, namely ANSYS FLUENT. The basis for the geometries constructed in the
implementation can be seen in figures 3.1 and figure 3.3

(a) Side View (b) Isotropic View

(c) Front View (d) "Black box" cylinders

Figure 3.1: Multi-layer geometry overview

The cylinders observed on top of each layer and arm are otherwise empty volumes
that serve to bridge the interior and the exterior and are not representative of any
real design, but rather a hypothetical "black box" that contains some manner of
heat producing equipment to be cooled. Therefore, these cylinders are henceforth
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referred to as ’boxes’. The MATLAB representation of the same geometry can be
seen in figure 3.2.

Figure 3.2: MATLAB visualization of the multi layer layer simulation geometry,
colored by velocity of a test run
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3.1.1 Single layer geometry

In order to isolate the effects of a single arm of the geometry presented in figure
3.1, a secondary geometry was constructed in ANSYS FLUENT, pertaining only
to a single layer of the full geometry and without an inflow trunk, but otherwise
identical. This geometry is henceforth referred to as the single layer geometry.

(a) Side View (b) Isotropic View

(c) Front View (d) "Black box" cylinders

Figure 3.3: Single geometry overview

Similarly to the multi-layer geometry, the MATLAB equivalent can be seen in figure
3.4.
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Figure 3.4: MATLAB visualization of the single layer simulation geometry, colored
by velocity

3.1.2 Flow rate Solver Implementation
For the purposes of the flow rate solver, it is necessary to define a set of control
volumes, or hereafter referenced as nodes N and a set of surfaces or interfaces
between the nodes, hereafter referenced as connections C. It is suitable to think of a
node as the connection point between otherwise straight pipes, such as the example
in figure 2.1 and connections as the straight pipes that go between them. In order
to create these sets, a set of points in 3D space is generated that closely follows the
points at which the geometrical basis turns or otherwise splits, which, due to the
nature of the geometry, may very well overlap in space.

3.1.2.1 Adjacency Matrix

These points form the basis for the nodes, which are then connected to one another
through an adjacency matrix A. Let Ai,j = 1 mean that there exists an interface
running from node i to node j and Ai,j = 0 means that there is no interface between
the nodes i and j. A is intentionally kept unidirectional, flowing from the inlet node
to the outlet node as one traverses the adjacency matrix, but the omni-directional
adjacency matrix AO can easily be constructed as per:

AO = A + AT (3.1)

From A the set of connections can then be defined, holding an equivalent number
of elements to the number of non-zero entries in A, where each entry c ∈ C has a
source Sc and a target Tc such that, for the entry into the adjacency matrix Ai,j = 1
there exists an unique c ∈ C such that Sc = i and Tc = j. For a visual reference
on how the adjacency matrix appears, with zeroes colored blue and ones colored
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yellow, see figure 3.5. When referencing interpolated geometries, the figure refers to
a single node inserted in every previously existing connection.

(a) Multi-layer geometry (b) Single-layer geometry

(c) Multi-layer, interpolated (d) Single-layer, interpolated

Figure 3.5: Visualizations of the adjacency matrix A with size |N |x|N | for different
geometries

3.1.2.2 Lengths, diameters, areas and volumes

However, in order to properly define the geometry, it is not sufficient to simply
concern oneself with connected points in space. Additionally, information about the
area through which the flow traverses must also be available, as well as the length
through which it travels over each interface. Length is simple enough to determine,
for each connection c, the length is calculated as follows:

Lc =
∣∣∣[x, y, z]Tc

− [x, y, z]Sc

∣∣∣
2

(3.2)

Meaning simply the distance in 3D space between the source node Sc and the target
node Tc. In order to calculate the area of the surface however, information about the
radius or diameter is necessary. These cannot be calculated from any existing data
however, and thus have to be manually entered, with each connection possessing a
diameter or diameter equivalent in the case of non-cylindrical pipes Dc. The area
of the connection Ac can then be calculated as follows:

Ac =
(
Dc

2

)2
π (3.3)

With this information, calculating the volume of the connection Vc is trivial, since
Vc = AcLc. The volume of a node is also needed. In order to determine that, let
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the volume of a node n ∈ N , Vn be equal to half the volume of all incoming and
outgoing connections to n in order to ensure ∑n Vn = ∑

c Vc:

Vn =

∑
Sc=n

Vc + ∑
Tc=n

Vc

2 (3.4)

Additionally, the inner surface area Ai of a connection and a node is of interest for
the purpose of solving equation 2.71. Similarly to the volume, these are calculated
relatively trivially for the connections as the circumference times the length Ac,i =
DcπLc and interpolated as the half sum of all incoming and outgoing connections
for the nodes.

An,i =

∑
Sc=n

Ac,i + ∑
Tc=n

Ac,i

2 (3.5)

Finally, it is also of interest to calculate the outer surface area Ao of the connections
and nodes for the purposes of equation 2.71. Similarly as for the inner surface area,
it is trivial for connections and interpolated for the nodes.

Ac,o = (Dc + dw)πLc An,o =

∑
Sc=n

Ac,o + ∑
Tc=n

Ac,o

2 (3.6)

Where dw is the thickness of the wall as previously stated in equation 2.57.

3.2 Matrix System
This section aims to explain the different matrices used in the solver. Now that
the set of connections C and nodes N along with their respective set of properties
and the adjacency matrix has been established, these nodes and connections can be
used to establish matrices that allow solutions to equations 2.8, 2.10 and 2.48 to be
generated.

3.2.1 Flow Matrix Generation
To begin with, equation 2.8 is considered. Given that the sought after variable Q,
the volumetric flow rate, is a property of the connections between nodes and that
equation 2.8 is specified for a node, the flow matrix F is generated as per algorithm
1:

Algorithm 1 Generation of flow matrix F
1: initialize F as [|N |, |C|] size zero matrix
2: for i = 1, . . . , |C| do
3: a← SCi

4: b← TCi

5: Fa,i = −1
6: Fb,i = 1
7: end for
8: Remove row Fno,. where no is the outlet node.
9: Return F
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The outlet row is removed because it is not necessary, since it is covered by the
boundary condition that appears at row ni, the inlet row. Once established, F can
be used to solve equation 2.8 as follows:

F
(
~ρQ
)

= ~b (3.7)

Where ~ρQ is the vector of all mass flows in the system and ~b is the solution vector
that is 0 in all elements except for row ni, where ~bni = ~ρQin is the velocity inlet
boundary condition. For a visualization of the flow matrix for the four different
cases displayed in figure 3.5, see figure 3.6. −1 is colored blue in the figure, 1 is
colored yellow and 0 is colored green.

(a) Multi-layer geometry (b) Single-layer geometry

(c) Multi-layer, interpolated (d) Single-layer, interpolated

Figure 3.6: Visualizations of the flow matrix F of size (|N | − 1)x|C| where green
is 0, blue is −1 and yellow is +1

3.2.2 Pressure Drop Matrix Generation
As previously stated, equation 3.7 is insufficient to describe the system by itself. To
this end, equation 2.10 needs to be implemented. In order to do this, consider the
set of paths P where Pi is the set of connections that make up path i, and the set
of path differentials D, since |C| − |N | − 1 = |D|. Where D is defined as follows:

D =

δPi
− δPj

∣∣∣∣∣∣∣∣∣
i = 1, . . . , |P|

i 6= j
Pi,Pj ∈ P

δPj
− δPi

6∈ D

 (3.8)

22



3. Methods

Where δPi
means 0 if c 6∈ Pi and 1 if c ∈ Pi. The exclusion of the reverse loop

δPj
−δPi

is included in the set definition to remove the redundant equations otherwise
generated, such as with equation 2.13 in the theory section. There exists a variety
of ways to generate D, or more accurately its matrix representation D. One such
way that works for simple, binary tree pipe systems is provided in algorithm 2.

Algorithm 2 Generation of pressure drop matrix D
1: Initialize list of start nodes ~ns
2: for i = 1, . . . , |N | do
3: x = 0
4: for j = 1, . . . , |N | do
5: x = x+ Ai,j

6: end for
7: if x ≥ 2 then
8: Append i to ~ns
9: end if

10: end for
11: Initialize D as [| ~ns|, |C|] zero matrix
12: for i = 1, . . . , | ~ns| do
13: Get connections ~c = {c ∈ C|Sc = ~ns(i)}
14: Initialize node vector ~n =

{
T~c(1), T~c(2)

}
15: Initialize path 1 list ~P1 = ~c1
16: Initialize path 2 list ~P2 = ~c2
17: while @~P1 ∈ ~P2 do
18: for i = 1, 2 do
19: Get connection c = {c ∈ C|Sc = ~ni}
20: Append c(1) to ~Pi.
21: ~ni = Tc(1)
22: end for
23: end while
24: c =

{
c ∈ C|c ∈ ~P1 & c ∈ ~P2

}
25: Get a, the index of c in ~P1.
26: ~P1 = ~P1(1, . . . , a)
27: Get b, the index of c in ~P2.
28: ~P2 = ~P2(1, . . . , b)
29: Di,. = δ~P1

− δ~P2
30: end for
31: Return D

An equivalent, but less efficient way to generate D would for example be to traverse
all the paths from the inlet node ni to the outlet node no and then calculate D
as Di,. = ~Pi − ~P1 for i ∈ {2, . . . , |P|}. Whichever way is utilized, D may then be
combined with equation 3.7 to produce the full mass flow rate equation:[

F ~ρQ

D ~∆p

]
= ~b′ (3.9)
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Where ~∆p is the vector of pressure drops from equation 2.14 and ~b′ is the solution
vector similar to it’s construction in equation 3.7, except being of size |C| rather
than size |N | − 1. In order to actually solve for the mass flow rate however, all
independent terms need to be moved to the right hand side. Thus, separate ~∆p into
the flow dependent pressure drop ~∆pQ and the height dependent pressure drop ~∆ph
and move the latter to the left hand:

η =


01
. . .

0|N |−1

D ~∆ph

 (3.10)

Where 01 to 0|N |−1 means |N | − 1 leading 0 value rows.

[
F ~ρQ

D ~∆pQ

]
= ~b′ − η (3.11)

However, ρQ is currently not presented as a singular vector. In order to resolve
this, replace ~∆pQ with the variable θ = ~∆pQ

ρQ
and form the pressure drop coefficient

matrix Θ such that Θi,j = Di,jθj:

[
F
Θ

]
~ρQ = ~b′ − η (3.12)

Which allows for the generation of full solution for ~ρQ. Since Θ is not independant
on ~ρQ, the equations must be solved iteratively. A basic algorithm for this iterative
solution is presented in algorithm 3:

Algorithm 3 Iterative solution of ~ρQ

1: initialize initial guess ~ρQ0
2: initialize new value ~ρQ1

3: while ∑(
~ρQ1 − ~ρQ0

)2
≥ some threshold t do

4: ~ρQ0 = ~ρQ1
5: Calculate Θ using ~ρQ0
6: Solve equation 3.12 using Θ and store result in ~ρQ1
7: end while
8: Return ~ρQ0

For a visualization of the pressure drop matrix for the four different cases displayed
in figure 3.5, see figure 3.7. −1 is colored blue in the figure, 1 is colored yellow and
0 is colored green.
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(a) Multi-layer geometry (b) Single-layer geometry

(c) Multi-layer, interpolated (d) Single-layer, interpolated

Figure 3.7: Visualizations of the pressure drop matrix D of size (|C|− |N |+1)x|C|
where green is 0, blue is −1 and yellow is +1
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3.2.3 Pressure Sum Matrix

For the purposes of solving the density ρ and the temperature T fields, it is of
interest to know the actual pressure at the nodes n ∈ N and connections c ∈ C. In
order to determine this, the pressure drop vector ~∆p is summed over a specific set
of nodes running from the inlet node ni to the node of interest. Additionally, due to
the assumed straight-pipe nature of the connections, it is assumed that the pressure
drop ∆pc∈C is linear. Hence, it is assumed that pc = pSc+pTc

2 . For a demonstration of
how to implement the summation from inlet to node of interest that uses a pressure
sum matrix, see algorithm 4.

Algorithm 4 Generation of pressure sum matrix P
1: initialize P as [|N |, |C|] zero matrix
2: for i = 1, . . . , |N | do
3: initialize current node n = i
4: initialize next node nn as the index of the first nonzero element in AT

i

5: Get connection c1 = {c ∈ C|Sc = nn & Tc = n}
6: Pi,c1 = 1
7: while n 6= ni do
8: n = nn
9: Get nn as the index of the first nonzero element in AT

n

10: Get connection c1 = {c ∈ C|Sc = nn & Tc = n}
11: Pi,c1 = 1
12: end while
13: end for
14: Return P

Once the pressure sum matrix P has been generated, the vector of node pressures
~pn can be calculated as per equation 3.13

~pn = P ~∆p (3.13)

For a visualization of the pressure sum matrix for the four different cases displayed
in figure 3.5, see figure 3.8. 0 is colored blue in the figure and 1 is colored yellow.
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(a) Multi-layer geometry (b) Single-layer geometry

(c) Multi-layer, interpolated (d) Single-layer, interpolated

Figure 3.8: Visualizations of the pressure sum matrix P of size |N |x|C|
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3.2.4 Heat Matrix Generation
Finally, for the purposes of determining the temperature T in the nodes N and
connections C, the heat matrix H of size [|N |, |N |] is constructed by means of
algorithm 5.

Algorithm 5 Generation of heat matrix H
1: initialize H as [|N |, |N |] zero matrix
2: initialize heat boundary ~bH as |N | zero vector
3: ~bH = − ~UA

(
To − ~T

)
4: ———–CONVECTION & CONDUCTION
5: for i = 1, . . . , |C| do
6: HSi,Ti

= − (1− βi) (ρcpQ)i +
(
kA
L

)
i
, where β comes from equation 2.54

7: HTi,Si
= βi (ρcpQ)i +

(
kA
L

)
i

8: ~bHSi
= ~bHSi

+ ~pi
9: ~bHTi

= ~bHTi
− ~pi

10: end for
11: ———WALL HEAT TRANSFER
12: if There exists nodes that have a cross-wall connection with another node then
13: Let J be the set of nodes that cross-wall connect to an arbitrary node kj.
14: for j ∈ J do
15: Hj,k = (UA)j,k
16: where UAj,k is the effective heat transfer as per equation 2.57
17: Hk,j = (UA)j,k
18: end for
19: end if
20: ———TRANSPORTIVE PROPERTY ASSURANCE
21: for i = 1, . . . , |N | do
22: Hi,i = ∑

j Hi,j

23: end for
24: ———INLET BOUNDARY CONDITION
25: Hni,ni

= Hni,ni
− (ρcpQ)ni

26: ~bHni
= ~bHni

− (ρcpQ)ni
Tni

27: ———HEAT SOURCES
28: for i = 1, . . . , |N | do
29: ~bHi = ~bHi − Sh,iVi
30: end for
31: Return H & ~bH

Once H is constructed, ~Tn can be solved as per equation 3.14. Since both H and ~bH

is dependent on ~Tn, the equation needs to be solved iteratively in a similar manner
to algorithm 3.

H~Tn = ~bH (3.14)
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For a visualization of the Heat matrix for the four different cases displayed in figure
3.5, see figure 3.9. 0 is colored blue as per other images presented in similar style,
while coefficients are colored according to a colorbar.

(a) Multi-layer geometry (b) Single-layer geometry

(c) Multi-layer, interpolated (d) Single-layer, interpolated

Figure 3.9: Visualizations of the heat matrix H of size |N |x|N |
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3.3 Relaxation
This section covers the usage of relaxation in the solver in order to avoid non-
terminating ’vibrating’ solutions. Whenever an iteratively solved variable, such as
~ρQ, ~T and ~pn is updated, the assignment

xold ← xnew (3.15)

is replaced by the relaxed assignment

xold ← r · xnew + (1− r) · xold (3.16)

where r is the iteration dependent relaxation factor, given partially in equation 3.17.

rc(i) = rcy
iz (3.17)

As the temperature is looped internally, it’s relaxation factor depends on the internal
loop over j rather than the main loop over i. For an example of what this relaxation
coefficient looks like when y = 1− 10−6 and z = 2, see figure 3.10

Figure 3.10: Relaxation coefficient for y = 1− 10−6 and z = 2

However, this alone does not prevent the possibility of the solution exploding, an-
other issue which the solver might face. In order to regard this, the relaxation factor
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is upwards limited by the pre-update error:

ep =
√

max
(
(xnew − xold)2

)
. (3.18)

Such that

r = min
(
rc (i) , 1

ep

)
(3.19)

Meaning that in any one iteration, the maximum change max (xnew − xold) can be
no greater than 1.
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3.4 Solver Implementation

This section aims to give an overview of how the solver is constructed. The general
structure of the solver follows algorithm 6

3.4.1 Settings
A number of settings is available to the solver, as follows:

3.4.1.1 Solver Settings

• Number of iterations I
• Number of internal iterations J
• Tolerance level t
• Initial relaxation coefficient rc
• Relaxation coefficient update rate y
• Relaxation coefficient update exponent z
• Number of iterations inbetween output message ∆Iprint
• Number of iterations inbetween visualization ∆Idraw

3.4.1.2 Physics Settings

• Inlet Velocity Vin (ms−1)
• Inlet Temperature Tin (K)
• Ambient Temperature Tam (K)
• Heat Source value S (W )

3.4.1.3 Override Settings

• Override outer heat transfer coefficient ho (Js−1m−2K−1)
• Override density field ρ (kgm−3)
• Override flow field ρQ using Fluent data
• Override thermal conductivity k (Js−1m−1K−1)
• Override viscosity µ (kgs−1m−1)
• Override specific heat capacity cp (JK−1)
• Override inner heat transfer coefficient hi (Js−1m−2K−1)

3.4.1.4 Display Settings

• Boolean: Write node values on graph
• Boolean: Write connection values on graph
• Boolean: Save data to file
• String: Value-path to color visuals by
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3.4.2 Algorithm

Algorithm 6 Flow rate solver
1: Read material and solver settings
2: Read or Create Geometry G
3: Use G to form Adjacency Matrix A
4: Calculate F, D and P from A, settings and G
5: Initialize values for all variables, such as ~ρQ, ~T and ~pn
6:
7: for i = 1, . . . , I where I is the number of iterations to run do
8:
9: Update relaxation coefficient

10: Update density ρ using latest information on ~pn and ~T
11: Update Mass flow ~ρQ by iterating once as per algorithm 3
12: Update pressure ~pn and ~pc as per algorithm 4
13:
14: if Pressure, Mass flow and density error below tolerance value then
15: for j = 1, . . . , J where J is the number of internal iterations do
16: Update ~T as per algorithm 5
17: if Temperature Error below tolerance then
18: Break
19: end if
20: end for
21: end if
22:
23: if All errors below tolerance then
24: Break
25: end if
26:
27: end for
28: Draw Visuals
29: Save data
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3.5 Test cases
This section covers the test cases used for validating the flow rate solver. In each test
case, four variables are varied, these being the inlet temperature Tin, the ambient
temperature TA, the inlet velocity vin and the heat sources ShV .

3.5.1 Multiple layer geometry
This section presents the test cases used for the multiple layer geometry as seen in
figure 3.1. These test cases were chosen to fulfill certain criteria, such as ’cooling’ or
’warm-up from cold start’ rather than any sort of full experimental design. This is
partially motivated by a time limit on how many full scale fluent simulations could
reliably be performed, since a full, 3-value experimental design for each variable
would require 81 test cases.

Table 3.1: Test cases for the multiple layer geometry

Case Tin [K] TA [K] vin [ms−1] ShV [W ]
1 20 50 20 0
2 20 50 10 0
3 20 50 10 200
4 20 50 5 0
5 30 0 20 0
6 30 0 10 0
7 30 0 10 200
8 30 0 5 0
9 40 -20 20 0
10 40 -20 10 0
11 40 -20 10 200
12 40 -20 5 0

3.5.2 Single layer geometry
This section presents the test cases used for the single layer geometry as seen in
figure 3.3. Similarly to the full scale geometry, these were chosen to fulfill specific
criteria rather than to embody a full scale experimental design.

Table 3.2: Test cases for the single layer geometry

Case Tin [C] TA [C] vin [ms−1] ShV [W ]
1 20 50 2.5 0
2 30 0 2.5 0
3 30 0 5 0
4 30 0 2.5 200
5 40 -20 2.5 0
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3.6 Fluent Comparison
This section covers the settings used in the fluent model for validation of the flow
rate solver. All the models described within are taken from ANSYS FLUENT’s
theory guide [1]. The basis for the fluid flow models utilized in ANSYS is the
mass conservation equation and the momentum conservation equation, as ANSYS
presents them in equation 3.20 and equation 3.21. A velocity inlet condition with
velocity dependent on the test case was assigned to the inlet of the interior at the
lower end of the trunk and a pressure outlet condition assigned to the outlet of the
exterior at the lower end of the trunk. All surfaces other than the inlet and outlet
are regarded as no-slip walls for the purposes of the continuity and viscous transport
equation.

∂ρ

∂t
+∇ · (ρ~v) = Sm (3.20)

Where Sm is a source term for mass added from non-continuous phases.

∂

∂t
(ρ~v) +∇ · (ρ~v~v) = −∇p+∇ ·

(
¯̄τ
)

+ ρ~g + ~F (3.21)

Where ¯̄τ is the stress tensor given by equation 3.22, ~F is the external body forces
and other source terms and ~g is the gravitational vector.

¯̄τ = µ
[(
∇~v +∇~vT

)
− 2

3∇ · ~vI
]

(3.22)

Where µ is the molecular viscosity and I is the unit tensor.

3.6.1 SST k − ω
For capturing possible turbulent effects of the system, the Shear-Stress Transport
(SST) k − ω model which includes transport of turbulence kinetic energy k and
specific dissipation rate ω as seen in equation 3.28 and equation 3.39. The model
acts as a blend between the k−ω model and the k− ε model by the use of blending
functions F1 and F2 described in equations 3.23 and 3.26 respectively.

F1 = tanh
(
Φ4

1

)
(3.23)

Φ1 = min
[
max

( √
k

0.09ωy ,
500µ
ρy2ω

)
,

4ρk
σω,2D+

ω y
2

]
(3.24)

D+
ω = max

[
2ρ 1
σω,2

1
ω

∂k

∂xj

∂ω

∂xj
, 10−10

]
(3.25)

F2 = tanh
(
Φ2

2

)
(3.26)

Φ2 = max
[
2
√
k

0.09ωy ,
500µ
ρy2ω

]
(3.27)

Where y is the distance to the next surface and D+
ω is the positive component of

the cross-diffusion term.
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3.6.1.1 k transport equation

∂

∂t
(ρk) + ∂

∂xi
(ρkui) = ∂

∂xj

(
Γk

∂k

∂xj

)
+ Ḡk − Yk + Sk (3.28)

Where Γk is the effective diffusivity of k given by equation 3.29, Gk is the production
of turbulence kinetic energy defined by equation 3.30, Yk is the dissipation of k
defined by equation 3.32 and Sk is any user defined source term.

Γk = µ+ µt
σk

(3.29)

Ḡk = min (Gk, 10ρβ∗kω) (3.30)

Gk = −ρu′iu
′
j

∂uj
∂xi

(3.31)

Yk = ρβ∗kω (3.32)

Where σk is the turbulent Prandtl number for k as per equation 3.33 and µt is the
turbulent viscosity as per equation 3.54 and β∗ is given by equation 3.34

σk = 1
F1/σk,1 + (1− F1) /σk,2

(3.33)

Where σk,1 = 1.176 and σk,2 = 1.

β∗ = β∗i [1 + ζ∗F (Mt)] (3.34)

β∗i = β∗∞

(
4/15 + (Ret/Rβ)4

1 + (Ret/Rβ)4

)
(3.35)

Where β∗∞ = 0.09, Rβ = 8, ζ∗ = 1.5 and F (Mt) is the compressibility function given
by equation 3.36

F (Mt) =
{

0 Mt ≤ Mt0
M2
t −M2

t0 Mt > Mt0
(3.36)

Where M2
t = 2k

a2 , Mt0 = 0.25 and a =
√
γRT

fβ∗ =

 1 χk ≤ 0
1+680χ2

k

1+400χ2
k

χk > 0 (3.37)

Where χk is given by equation 3.38

χk = 1
ω3

∂k

∂xj

∂ω

∂xj
(3.38)
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3.6.1.2 ω transport equation

∂

∂t
(ρω) + ∂

∂xi
(ρωui) = ∂

∂xj

(
Γω

∂ω

∂xj

)
+ Ḡω − Yω +Dω + Sω (3.39)

Where Γω is the effective diffusivity of k given by equation 3.40, Gω is the production
of ω given by equation 3.41, Yω is the dissipation of the specific dissipation rate given
by equation 3.42, Dω is the cross diffusion term calculated as per equation 3.43 and
Sω is a user defined source term.

Γω = µ+ µt
σω

(3.40)

Gω = ρα

µt
Ḡk (3.41)

Yω = ρβω2 (3.42)

Dω = 2 (1− F1) ρσω,2
1
ω

∂k

∂xj

∂ω

∂xj
(3.43)

Where σω is the Prandtl number for ω as per equation 3.44, α is a relaxation factor
given by equation 3.45 and β is given by equation 3.49.

σω = 1
F1/σω,1 + (1− F1) /σω,2

(3.44)

Where σω,1 = 2 and σω,2 = 1.168

α = α∞
α∗

(
α0 + Ret/Rk

1 + Ret/Rk

)
(3.45)

Where α∞ is defined in equation 3.46 and α0 = 1
9

α∞ = F1α∞,1 + (1− F1)α∞,2 (3.46)

α∞,1 = βi,1
β∗∞
− κ2

σω,1
√
β∗∞

(3.47)

α∞,2 = βi,2
β∗∞
− κ2

σω,2
√
β∗∞

(3.48)

β = βi

[
1− β∗i

βi
ζ∗F (Mt)

]
(3.49)

βi = F1βi,1 + (1− F1) βi,2 (3.50)
Where βi,1 = 0.075 and βi,2 = 0.0828.

fβ = 1 + 70χω
1 + 80χω

(3.51)

Where χω is given by equation 3.52

χω =
∣∣∣∣∣ΩijΩjkSki

(β∗∞ω)3

∣∣∣∣∣ (3.52)

Ωij = 1
2

(
∂ui
∂xj
− ∂uj
∂xi

)
(3.53)
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3.6.1.3 Turbulent viscosity

The turbulent viscosity is calculated as follows:

µt = ρk

ω

1
max

[
1
α∗
, SF2
a1ω

] (3.54)

Where α∗ is a dampening coefficient given by equation 3.55, S is the strain rate
magnitude and a1 = 0.31

α∗ = α∗∞

(
α∗0 + Ret/Rk

1 + Ret/Rk

)
(3.55)

Ret = ρk

µω
Rk = 6 α∗0 = βi

3 βi = 0.072 (3.56)

Where α∗∞ = 1.

3.6.2 Energy equation
The standard energy equation provided by ANSYS FLUENT as seen in equation
3.57 served as the basis for validating the temperature of the flow, utilizing coupled
boundary conditions for the interior walls and convective boundary conditions for
the exterior walls with a fixed free-stream heat transfer coefficient of 5 W

m2·K , a wall
thickness of 2 mm, no shell conduction and varied inlet and ambient temperature as
per the previously mentioned test cases. Heat sources were assigned to the interior
fluid volumes of the cylinders that served as the interfaces between the interior pipes
and the exterior pipes, given in Wm−3 such that the total energy added in each box
was 200 W .

∂

∂t
(ρE) +∇ · (~v (ρE + p)) = ∇ ·

keff∇T −∑
j

hj ~Jj +
(

¯̄τeff · ~v
)+ Sh (3.57)

Where E is the energy, defined here as per equation 3.58

E = h− p

ρ
+ v2

2 (3.58)

Where h is the sensible enthalpy defined for ideal gases as per equation 3.59

h =
∑
j

Yjhj (3.59)

Where Yj is the mass fraction of j and hj is defined as per equation 3.60

hj =
ˆ T

Tref

cp,jdT (3.60)

Where Tref = 298.15 K
Sh = Si

Vc
(3.61)

Where Si is the relevant heat source for the test case and Vc is the volume of the
box in question.
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3.7 Data sampling for validation
This section covers the method used to perform validation given the results from
the flow solver and the fluent data. The main object of comparison between the two
solvers being the mass flow into each separate box, the average temperature in the
box and the pressure drop over the box. In order to acquire this data, it needs to
be extracted from ANSYS FLUENT and MATLAB respectively.

From ANSYS FLUENT, the mass flow was extracted using the mass flow result
calculation tool on the internal surface that served as the inlet into the box. The
outlet from the box was found to have the same value, as was expected, and as such
it was deemed valid. The temperature was extracted as a volume average of the
total temperature field in the internal box fluid volume, the same one to which the
heat source is applied. The pressure was extracted as two surface averages over the
inlet and outlet to the box respectively, which was then subtracted on a per box
basis in post processing.

From MATLAB, mass flow data was extracted per box as the mass flow of the
inlet connection for that specific box (which is likewise equivalent to the mass flow
of the outlet connection for that specific box). The temperature was taken as sim-
ply the temperature value of the box node, which is like the ANSYS FLUENT case,
where the heat source is applied. The pressure was taken as the difference between
the pressure in the inlet connection and the outlet connection for each respective box.

Additionally, in order to ensure the validation is relevant, the flow solvers settings
were set such that they mirrored the ANSYS FLUENT settings to the greatest
available extent. These settings can be seen in table 3.3

Table 3.3: Validation constants

Constant Value (Air) Value (Aluminum) Unit
Density ρ 1.225 2719 kg/m3

Specific heat capacity cp 1006.43 871 J/kgK
Thermal conductivity k 0.0242 202.4 /mK

Outer heat transfer coefficient ho 5 5 W/m2K
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Results

4.1 Fluent Results
Herein, an overview of selected results produced through ANSYS fluent is presented.
With an overview of how a typical velocity, temperature and pressure field was
found to behave for both the multiple layer geometry and the single layer geometry
presented.

4.1.1 Velocity
This section presents the typical velocity field for a test case, with the images in
question produced from post processing of case 6 of the multiple layer geometry
and case 4 of the single layer geometry respectively. Figure 4.1 presents a contour
overview of the velocity magnitude through the system, seen from two different axis
in order to provide a better overview.

(a) Front View (b) Side View

Figure 4.1: Contour plot of fluent velocity field

Figure 4.2-4.4 presents a number of vector plots generated from from different parts
of the trunk and the initial split from which the fluid runs to and from the different

41



4. Results

layers where the differing behavior between the trunk curve, T-junctions and bends
are visible.

Figure 4.2: Vector plot of the trunk bend

Figure 4.3: Vector plot of divider T-junction

Figure 4.4: Vector plot of divider bend

Figure 4.5-4.6 presents vector plots generated from observation of a singular arm of
the full-scale geometry, specifically observing the part of the arm where the fluid
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diverges from the straight pipe to enter a box, either through a t-junction or through
a bend, as the fluid does once it reaches the very last box on the arm.

Figure 4.5: Vector plot of arm T-junction

Figure 4.6: Vector plot of arm bend

In order to demonstrate the helical nature of the flow that was found during the
fluent simulation, figure 4.7 presents two path-line traces observed at the point where
the trunk splits into the different layers, and at the later arm split. Sub-figure (a)
presents only the incoming flow, while sub-figure (b) also includes the returning
flow.
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(a) Ingoing Trace (b) Returning Trace

Figure 4.7: Path-line plot of fluent velocity field
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4.1.1.1 Single Layer

For the single-layer geometry, the velocity field has a more visible symmetry, as
observed in figure 4.8, which presents a top and side view of the contour of the
velocity magnitude for single layer test case 4.

(a) Top View

(b) Side View

Figure 4.8: Contour plot of fluent velocity field for the single layer geometry

Figure 4.9 shows a path-line trace of the velocity field for the single layer geometry.
Visible, although not to a greater extent, is the lack of helical structures in the
incoming (primarily green) flow, although the helical structures reappear in the
returning (primarily blue) flow.
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Figure 4.9: Path-line plot of fluent velocity field for single layer geometry
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4.1.2 Temperature

The follow sections contains observed results regarding the temperature fields in
a selected case for the multiple layer geometry and single geometry respectively,
produced using ANSYS FLUENT. Figure 4.10 presents a contour of the temperature
field for the multiple layer geometry seen from two different views. Of note is the
visibly lower temperature in the third layer compared to the second from the bottom.
Additionally, several asymmetries can be noted in the front view, particularly in the
z-direction within each layer in the returning flows.

(a) Front View

(b) Side View

Figure 4.10: Contour plot of fluent temperature field
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4.1.2.1 Single Layer

Figure 4.11 presents a single layer geometry temperature contour, similarly to the
velocity field, it appears on visual inspection as entirely symmetrical.

(a) Top View

(b) Side View

Figure 4.11: Contour plot of fluent temperature field for single layer geometry

4.1.3 Pressure

The follow sections contains observed results regarding the pressure fields in a se-
lected case for the multiple layer geometry and single layer geometry respectively,
produced using ANSYS FLUENT. Figure 4.12 shows a contour of the pressure field
for the multiple layer geometry, with the different layers differing in pressure primar-
ily due to the presence of gravity. Otherwise the field remains predictably analogous
to the velocity field.
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(a) Front View

(b) Side View

Figure 4.12: Contour plot of fluent pressure field

4.1.3.1 Single Layer

Figure 4.13 shows a contour of the pressure field for the single layer geometry, the
only gravitational difference that can be reliably observed here is the ascent into the
boxes, otherwise displaying a dropping pressure in the x-directions with a significant
pressure drop upon the entering enlarging pipe area of the box.
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(a) Top View

(b) Side View

Figure 4.13: Contour plot of fluent pressure field for single layer geometry

4.2 Validation Error Comparision
This section presents the comparisons calculated between the ANSYS FLUENT
simulations and the flow solver created in MATLAB. When layers and boxes are
referenced in the graphs in this section, refer to figure 4.14 for information on what
the different layers and indexes or boxes in said layers entail.

(a) Layer Structure (b) Box Structure

Figure 4.14: Indication of layer and box structure
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Additionally, the table of test cases is repeated here for ease of access for multiple
layer geometries. Not all of the cases here are presented in the following sections,
instead, a selected few are presented, having been chosen to demonstrate particular
findings. Similar results for all cases are available in the appendix.

Table 4.1: Reference table for full-scale test cases

Case Tin [K] TA [K] vin [ms−1] ShV [W ]
1 20 50 20 0
2 20 50 10 0
3 20 50 10 200
4 20 50 5 0
5 30 0 20 0
6 30 0 10 0
7 30 0 10 200
8 30 0 5 0
9 40 -20 20 0
10 40 -20 10 0
11 40 -20 10 200
12 40 -20 5 0

Finally, when Total Pressure Drop is referenced in figures 4.17 it is calculated in as
per equation 4.1.

∆ptotal = ~pInlet − ~pOutlet (4.1)

Where ~p is the vector of pressures in the flow solver. Additionally, mass flow is
expressed in kg/s. Temperature is expressed in K and pressure drop in Pa in all
following graphs.

4.2.1 Case 1

Figure 4.15-4.17 presents the error calculations for mass flow, temperature and pres-
sure for case one, a high velocity cooling case with no active heat sources. Tem-
perature error is consistently negative, indicating that the flow rate solver predicts
a less effective cooling than ANSYS FLUENT for this specific case. The pressure
error behaves erratically, and is thus omitted from any further cases, as it provides
no interesting information for discussion.
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Figure 4.15: Mass Flow Error Plots for case 1
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Figure 4.16: Temperature Error Plots for case 1
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Figure 4.17: Pressure Error Plots for case 1

4.2.2 Case 2
Figure 4.18-4.19 presents the error calculations for mass flow, temperature and pres-
sure for case two, a medium velocity cooling case with no active heat sources. Tem-
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perature error is not consistently positive or negative like in case 1.

Figure 4.18: Mass Flow Error Plots for case 2
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Figure 4.19: Temperature Error Plots for case 2

4.2.3 Case 3
Figure 4.20-4.21 presents the error calculations for mass flow, temperature and pres-
sure for case three, a medium velocity cooling case with active heat sources. Tem-
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perature error here is notably larger than in prior cases.

Figure 4.20: Mass Flow Error Plots for case 3
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Figure 4.21: Temperature Error Plots for case 3

4.2.4 Case 4
Figure 4.22-4.23 presents the error calculations for mass flow, temperature and pres-
sure for case 4, a low velocity cooling case with no active heat sources. Temperature

58



4. Results

error rises here compared to medium and high velocity cases while flow error linearly
decreases with inlet velocity.

Figure 4.22: Mass Flow Error Plots for case 4
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Figure 4.23: Temperature Error Plots for case 4

4.2.5 Case 7
Figure 4.24-4.25 presents the error calculations for mass flow and temperature for
case 7, a medium velocity heating case with active heat sources. The temperature
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error remains high even with lower flow error compared to case 3, points to an
asymmetry arising in ANSYS FLUENT, as the MATLAB flow rate solver produced,
with constant density, symmetrical values.

Figure 4.24: Mass Flow Error Plots for case 7
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Figure 4.25: Temperature Error Plots for case 7

4.2.6 Case 11
Figure 4.26-4.27 presents the error calculations for mass flow, temperature and pres-
sure for case 11, a medium velocity heating case with high heat differential and active
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heat sources. Like in case 7, the temperature error remains centered around layer
2 without clear visual indication from the flow error to indicate the source of this
behavior.

Figure 4.26: Mass Flow Error Plots for case 11
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Figure 4.27: Temperature Error Plots for case 11
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4.2.7 Single Layer

For the single layer geometry, the results are presented as split into two arms, with
arm one representing boxes 1−4 in ascending order and arm 2 representing box 5−8
in descending order. The choice to present the result in this manner is to give an
overview of the systems symmetrical nature. Like for the multiple layer geometry,
the the case table is again presented here for convenience. Like for the multi layer
validation results, most of these allocated to the appendix.

Table 4.2: Reference table for single layer test cases

Case Tin [C] TA [C] vin [ms−1] ShV [W ]
1 20 50 2.5 0
2 30 0 2.5 0
3 30 0 5 0
4 30 0 2.5 200
5 40 -20 2.5 0

4.2.7.1 Case 4

Figure 4.28-4.29 presents the error calculations for mass flow, temperature and pres-
sure for case 4 for the single layer geometry, a medium velocity heating case with
active heat sources. Although the magnitude of the temperature error increases, it’s
shape remains roughly consistent with case 1 for the single layer, a cooling case.

65



4. Results

Figure 4.28: Mass Flow Error Plots for case 4
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Figure 4.29: Temperature Error Plots for case 4

67



4. Results

4.3 Error correlation estimates

This section presents a number of graphical error correlation estimates for the dif-
fering input variables present in the test cases. Figure 4.30 presents the behavior
of the temperature error in response to the different temperature inputs available
in the test cases while figure 4.31 presents the behavior of the temperature error in
response to the different velocity inputs. Of note is that the cases with heat sources
active all occur at Vin = 10, hence that serves to limit the information that can be
gained from the velocity plot.

Figure 4.30: The temperature errors correlation with input temperature
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Figure 4.31: The temperature errors correlation with input velocity

Figure 4.32 presents the behavior of the flow error in response to the different velocity
inputs available. The flow error has some manner of probably correlation, although
it is not as easily observable.

Figure 4.32: Velocity error correlation with input velocity

Figure 4.33 presents the behavior of the temperature error in response to the inclu-
sion of a 200 W heat source as an adjusted temperature in each of the cylinders.
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Figure 4.33: The temperature errors correlation with adjusted temperature

Figure 4.34 presents an alternate way of creating an adjusted temperature that is
included to shine further light on the interactions between the heat source and the
temperature error.

Figure 4.34: The temperature errors correlation with adjusted temperature
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4.4 Minor loss coefficient approximations
This section describes the result of varying the minor loss coefficients on the mass
flow error. Figure 4.35 presents the variation of the mass flow error as the minor
loss coefficient of the unknown box is varied. Since there is no precedent for this
value, it is taken as the local optimum found at 150.

Figure 4.35: Mass flow error correlation with Box coefficient

Using this value of 150, figure 4.36 presents the variation of the mass flow error as
the minor loss coefficient for the t-junctions found in equation 2.21 and equation
2.27 is multiplied by a factor. As there is a precedent for the value of the minor loss
coefficient for T-junctions, this is not used to produce other results.

Figure 4.36: Mass flow error correlation with T-junction coefficient multiplier

71



4. Results

Similarly, figure 4.37 presents the variation of the mass flow error as the minor
loss coefficient for the bend is varied. All three figures presented so far have been
observed to the approximately convex on the band that was investigated. Although
there is significant reason to believe that these minor loss coefficients optima would
be interlinked, running the variation of the box coefficient with the respective optima
for both the bend and t-junction coefficients yielded no new optima.

Figure 4.37: Mass flow error correlation with bend coefficient
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4.5 Transient implementation

Figure 4.38 shows the progression of the transient version of the flow rate solver
for case 2 for the single layer geometry without density overrides, with the values
measured in the same manner as for the validation. The time-step used in gener-
ating this figure was 0.01. This implementation is not validated, as repeated issued
occurred with the usage of ANSYS FLUENT to create a transient validation. The
transient solution had a run-time of roughly five minutes for 2000 time-steps in the
MATLAB Flow rate solver. An attempted transient ANSYS FLUENT with similar
paraments calculation took an excess of 10 hours but did not produce any conclusive
results.

Figure 4.38: Showcase of transient flow rate solver for case 2

Figure 4.39 shows the progression of the transient version of the flow rate solver for
case 4 for the single layer geometry without density overrides. Similarly to figure
4.38, it is not validated and uses a time-step of 0.01. The run-time was roughly four
minutes.
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Figure 4.39: Showcase of transient flow rate solver for case 4

Figure 4.40 shows the progression of the transient version of the flow rate solver
for case 3 for the multi-layer geometry without density overrides. The run-time for
producing this simulation was roughly 15 minutes.

Figure 4.40: Showcase of transient flow rate solver for multi-layer case 3
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4.6 Run time Comparison
Table 4.3 contains an overview of the differing run times of the MATLAB flow solver
and the ANSYS FLUENT simulations. Due to the vast difference in scale and due
to only having single runs to base the measurement off for the ANSYS FLUENT
run times, the accuracy of the measurements is kept low and maintained simply for
demonstrative purposes.

Table 4.3: Approximate run time for ANSYS FLUENT and MATLAB

Case Run time (Fluent) Run time (MATLAB)
1 >1 hours 3.6 s
2 >1 hours 1.7 s
3 >2 hours 1.8 s
4 >1 hours 1.2 s
5 >1 hours 3.8 s
6 >1 hours 1.6 s
7 >2 hours 1.8 s
8 >1 hours 1.3s
9 >1 hours 4.0 s
10 >1 hours 1.7 s
11 >2 hours 1.8 s
12 >1 hours 1.3 s

Single Layer Run time (Fluent) Run time (MATLAB)
1 >1 hours 0.4 s
2 >1 hours 0.3 s
3 >1 hours 0.4 s
4 >1 hours 0.4 s
5 >1 hours 0.6 s
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5.1 Validation

This section discusses the results of the validations attempts of the model and the
resulting findings regarding it’s accuracy.

5.1.1 Temperature Error

For the purposes of evaluating the accuracy of the model, it is worth considering
several factors. To begin with, the maximum error observed in any of the valida-
tion runs for temperature ranged around 20 to 25 K in the cases that had a 200W
heat sources, corresponding to roughly 5% of the total temperature, 30 − 50% of
the temperature differential or 16 − 20% of the adjusted temperature differential.
Meanwhile the largest temperature error ranges around 4 to 5 K for the validation
cases without heat sources, corresponding to roughly 1% of the total temperature
or 8% of the temperature differential. This maximum error directly correlates with
the cases that had the greatest temperature differential, that being the ones with
an inlet temperature of 40 C◦ and an ambient temperature of -20 C◦.

A way to simplify this error description would be to regard the heat sources as
contributors to the temperature differential. Since both the ambient and inlet tem-
perature are, in effect, volumetric heat sources, the contribution to the temperature
differential could be approximated as Sh

ρcp
, which, for the values used in the valida-

tion setting, would contribute to roughly 90 C◦ worth of temperature differential.
Viewed this way, the temperature errors dependence on the adjusted temperature
can be determined to have a somewhat complex interaction best observed in figure
4.34.

If one adopts this view of the temperature error, it is possible one can estimate
an a priori temperature error compared to an ANSYS FLUENT simulation using
the same settings from the flow rate solver based on the temperature differential
recalculated to include any heat source. It is also obvious that the flow rate solver
would need corrections to be able to accurately estimate the results of any high-
energy simulations.
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5.1.2 Flow Error

In regards to the predicted volumetric flow rate throughout the validated models,
the results provide evidence that a volumetric flow rate model works relatively well
as a predictor of the mass flow throughout the system, with the errors being small.
There are however, a few noted consistencies in the error that fall squarely on the
side of ’failure to model’ which will be further discussed in the later parts of this
chapter. Also of note is that the way the flow divides itself is heavily dependent
on the assumed minor loss coefficient of the ’boxes’ that were used to replace some
unknown components. This indicates that what actually happens to the flow in-
between leaving the inner pipe structure and returning to the outer one plays a key
part in how the flow will operate in any actual structure, and thus great care should
be taken to model it in any actual system.

5.1.3 Pressure error

Predicting the pressure drop over the unknown boxes can perhaps be seen as the
greatest failure of the flow rate solver, as it is indivisibly linked to the volumetric
flow rate division, and the actual pressure drop dependence on the frankly massive
minor loss coefficient that was estimated for the unknown boxes. As such, the flow
rate solver cannot be said to accurately predict the pressure field.

5.1.4 Faults in methodology

One of the obvious downside to the way the validation was done is the usage of con-
stants for the material properties of air. This, rather than accounting for the fact
that, in reality, it is a compressible gas with viscosity and other thermal properties
that are dependent on the field variables of the solution. While methods for estimat-
ing these properties are presented in this paper and included in the flow rate solver,
they are not validated. The lack of validation for these methods comes down to a
lack of available simulation time for ANSYS FLUENT combined with a decision to
prioritize validating an easier case, that being the one with constant material prop-
erties. It is however, a likely source of error, although test runs with compressibility
active in the flow rate solver hints that this error source is less extreme than, for
example, the temperature differential.

5.1.4.1 Lack of transient validation

Likewise, the transient implementation of the flow rate solver is not validated either.
This also stems from a lack of available simulation time with ANSYS FLUENT,
combined with early test runs of such simulations providing vastly different results
dependent on the chosen time-step size that ranged between 10−3 and 5 s, hinting
at a faulty setup for conducting transient simulations.
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5.2 3D and resolution effects
This section discusses the observed effects of the ANSYS FLUENT simulations that
for one reason or another could not be conceivably modeled in the flow rate solver.

5.2.1 Helical flows
As can be observed in figure 4.7 as well as partially in figure 4.2 the multi-layer
ANSYS FLUENT simulation gave rise to a number of helical flows following the
various bends and junctions in the structure. This helical flow may contribute
to the asymmetry observed between the layers and arms in the ANSYS FLUENT
simulation compared to the MATLAB one, but that is conjecture at best. What can
be observed however is that the asymmetry between arms seemingly disappear in the
single-layer structure where the internal pipe structure lacks any visible helical flow,
as per figure 4.9. As the flow rate solver does not concern itself with the velocity
field itself, merely the cross-section average over the entire pipe, it is by definition
unable to model or capture any such behavior and presents a source of error as it is
a 1D model.

5.2.2 Asymmetry
As previously mentioned when discussing the helical flows, the ANSYS FLUENT
simulations produces an asymmetry along the z-axis that cannot be reasonably re-
produced in the flow rate solver. It is guessed that this asymmetry arises as an
aftereffect carried on the flow from the entrance trunk, as it is the only asymmet-
rical part of the system. Additionally, the asymmetry observed between the arms
cannot be modeled in the flow rate solver, and may perhaps arise similarly from the
asymmetrical trunk, and be carried forwards as turbulent energy.

By extension, this observed asymmetry indicates the possibility that a model uti-
lizing minor loss coefficients in order to calculate the flow through complex pipe
systems may not be sufficient for more complex pipe networks. This is due to each
bend and twist having possible down-chain effects carried by the velocity field be-
yond just a simple pressure drop which could not be captured by a minor loss model.
One could imagine studying implementations of various combined effect models that
extend the minor loss effects, although such is regarded as beyond the scope of this
paper.

5.2.3 Other outliers
Other noteworthy outliers from the ANSYS FLUENT simulations include case 9,
where the aforementioned temperature and flow error seemed to suddenly shift over
to layer 3 without any notable explanation. The case is otherwise identical in setup
to case 1 and 5 except for the different heat differential. The volumetric flow rate
in the MATLAB flow rate solver is identical for the three cases when using constant
material properties (hence preventing the energy equation from influencing the flow
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equation). Thus, this may arise as some manner of turbulent occurrence from the
ANSYS FLUENT models, but cannot be easily explained.

5.3 Runtime
This section discusses the run-time differences between the ANSYS FLUENT so-
lutions and the flow rate solver. Being perhaps the most beneficial component of
the flow rate solver, it can be clearly observed in table 4.3 that the flow-rate solver
presented in this thesis has a significant run-time advantage over ANSYS FLUENT.
As such, it could be a valuable tool if one wants a variety of systems approximated in
quick succession without needing to spend the hours of cluster-time required to per-
form accurate FLUENT simulations. This assumes that the approximate accuracy
is good enough to judge whether or not a system is worthy of full simulation.

5.4 Observations
This section discusses other observations found from the results.

5.4.1 Design for equivalent cooling of multiple electrical en-
closures

While, as previously mentioned, the flow division depends heavily on the actual pres-
sure drop within the boxes and any actual system has to be designed around them,
one observation of note is that a multi-pronged pipe of singular radius with several
serial t-junctions will inherently not equally divide the flow to those t-junctions un-
der any circumstances. In order to achieve an equal division, and thus equal cooling
potential, the design would need to vary the pipe diameter in-between each of these
junctions in a somewhat complex manner.

5.5 Future improvements
This section discusses how the flow rate solver could be improved in future iterations
to better capture other properties of interest.

5.5.1 Error correction
The first, and most obvious improvements that could be made to the flow rate solver
is to find and include further effects. To try and model the asymmetry found in the
FLUENT simulations by some manner of down-chain minor loss linking for bends,
such that the minor loss coefficient for the connection c has an effect on pipes
n links away from c depending on their relative direction compared to c. Other
improvements include adjustments to the energy equation to try and capture the
runaway temperature error that occurs in the cases with high heat sources active.
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5.5.2 Moisture transport
Another imaginable improvement would be the inclusion of moisture transport and
accumulation as it is highly relevant in these kinds of systems. Attempts would have
to be made to attempt and model the multi-phase interactions in a 1D environment.
Such and attempt would also necessitate complex methods of calculating the density
fields and thermal properties, but it is otherwise one of the simpler improvements
that could be imagined.

5.5.3 Pipe size recommendations
A post-processing algorithm that uses the matrices, specifically the pressure drop
matrix presented in this paper along with the flow matrix, could theoretically be
constructed. Such an algorithm could provide recommended adjustments for pipe
diameters in order to achieve an equivalent or near equal temperature in all venti-
lated enclosures.
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Appendix

A.1 Supplemental case results

A.1.1 Multi layer geometry

A.1.1.1 Case 5

Figure A.1-A.2 presents the error calculations for mass flow, temperature and pres-
sure for case 5, a high velocity heating case with no active heat sources. The
temperature error is lower here than in the matching cooling case, case 1, and is
not consistently positive or negative. Pressure error and flow error remain otherwise
consistent in nature with case 1.

I
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Figure A.1: Mass Flow Error Plots for case 5

II
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Figure A.2: Temperature Error Plots for case 5

A.1.1.2 Case 6

Figure A.3-A.4 presents the error calculations for mass flow, temperature and pres-
sure for case 6, a medium velocity heating case with no active heat sources. The
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temperature error is consistently negative here, in contrast to case 5 and case 2.
Pressure error and flow error remain otherwise consistent in nature with case 2.

Figure A.3: Mass Flow Error Plots for case 6
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Figure A.4: Temperature Error Plots for case 6

A.1.1.3 Case 8

Figure A.5-A.6 presents the error calculations for mass flow, temperature and pres-
sure for case 8, a low velocity heating case with no active heat sources. In contrast to
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case 4, the temperature error is almost consistently negative, indicating the existence
of some sort of error based on Tin − Tambient rather than |Tin − Tambient|

Figure A.5: Mass Flow Error Plots for case 8
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Figure A.6: Temperature Error Plots for case 8

A.1.1.4 Case 9

Figure A.7-A.8 presents the error calculations for mass flow, temperature and pres-
sure for case 9, a high velocity heating case with high heat differential and no active
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heat sources. The flow error is notably more present in layer 3 and layer 4 and
notably larger than in case 1 and 5, which again hints at some asymmetry existing
in the ANSYS FLUENT solution. The temperature error is also higher than in both
case 1 and case 5 by roughly a factor two, indicating a linear scaling with the heat
differential.

Figure A.7: Mass Flow Error Plots for case 9
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Figure A.8: Temperature Error Plots for case 9

A.1.1.5 Case 10

Figure A.9-A.10 presents the error calculations for mass flow, temperature and pres-
sure for case 10, a medium velocity heating case with high heat differential and no
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active heat sources. The flow error is no longer focused on layer 3 and 4 like in case
9, and roughly equivalent to that of case 2 and 6. The temperature error remains
consistently negative and twice as large as case 2 and 6.

Figure A.9: Mass Flow Error Plots for case 10
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Figure A.10: Temperature Error Plots for case 10

A.1.1.6 Case 12

Finally, for the multiple layer geometry, figure A.11-A.12 presents the error calcula-
tions for mass flow, temperature and pressure for case 12, a low velocity heating case
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with high heat differential and active heat sources. Like in case 8, the temperature
error remains almost consistently negative, minimizing around layer 2.

Figure A.11: Mass Flow Error Plots for case 12
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Figure A.12: Temperature Error Plots for case 12
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A.1.2 Single layer geometry

A.1.2.1 Case 1

Figure A.13-A.15 presents the error calculations for mass flow, temperature and
pressure for case 1 for the single layer geometry, a medium velocity cooling case
without active heat sources. The flow error is noted as being present primarily at
the first and third box in each arm, indicating a differing flow distribution, albeit a
small one. A small asymmetry is also noted between the two arms, arising from the
ANSYS FLUENT solution. The temperature error for this case mirrors roughly a
negative flow error, suggesting a correlation. The pressure error is likewise omitted
following this figure.
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Figure A.13: Mass Flow Error Plots for case 1
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Figure A.14: Temperature Error Plots for case 1
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Figure A.15: Pressure Error Plots for case 1

A.1.2.2 Case 2

Figure A.16-A.17 presents the error calculations for mass flow, temperature and
pressure for case 2 for the single layer geometry, a medium velocity heating case

XVII



A. Appendix

without active heat sources. The temperature error is here instead positively corre-
lated with the flow error, albeit with notable exceptions at the end of each arm.

Figure A.16: Mass Flow Error Plots for case 2
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Figure A.17: Temperature Error Plots for case 2

A.1.2.3 Case 3

Figure A.18-A.19 presents the error calculations for mass flow, temperature and
pressure for case 3 for the single layer geometry, a high velocity heating case without

XIX



A. Appendix

active heat sources. Compared to case 2, the temperature error at the last box of
each arm correlates more notably with the flow error, suggesting multiple sources of
error. Pressure error, like in the multiple layer cases, rises by a factor 4 compared
to case 1 and 2 when the velocity doubles.

Figure A.18: Mass Flow Error Plots for case 3
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Figure A.19: Temperature Error Plots for case 3

A.1.2.4 Case 5

Figure A.20-A.21 presents the error calculations for mass flow, temperature and
pressure for case 5 for the single layer geometry, a medium velocity heating case
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with higher heat differential and without active heat sources. Although similar in
structure to case 2 for the single layer except doubling in magnitude in response to
doubled heat differential, it displays a notable asymmetry between the two arms.

Figure A.20: Mass Flow Error Plots for case 5
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Figure A.21: Temperature Error Plots for case 5
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