
Improving landfill monitoring programs
with the aid of geoelectrical - imaging techniques
and geographical information systems
Master’s Thesis in the Master Degree Programme, Civil Engineering

KEVIN HINE

Department of Civil and Environmental Engineering
Division of GeoEngineering
Engineering Geology Research Group
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2005
Master’s Thesis 2005:22

Implementation and Optimization of
High Speed Symbol Timing Recovery
Algorithms
Master’s Thesis in Integrated Electronic System Design

Tauseef Ahmad

Chalmers University of Technology

Department of Computer Science and Engineering
Gothenburg, Sweden, 2012

The Author grants to Chalmers University of Technology the non-exclusive right to pub-
lish the Work electronically and in a non-commercial purpose make it accessible on the
Internet. The Author warrants that he is the author to the Work, and warrants that
the Work does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he has obtained any necessary permission from this third
party to let Chalmers University of Technology store the Work electronically and make
it accessible on the Internet.

Implementation and Optimization of High Speed Symbol Timing Recovery Algorithms

Tauseef Ahmad

c© Tauseef Ahmad, June 2012

Examiner: Per Larsson-Edefors

Chalmers University of Technology
Department of Computer Science and Engineering
Gothenburg, Sweden, 2012
SE-412 96 Gothenburg Sweden
Telephone + 46 (0)31-772 1000

Abstract

Symbol synchronization has a cardinal role in high speed optical fiber communication
systems. Accurate symbol synchronization is essential for reliable reception of data,
whereas an erroneous synchronization mechanism can severely deteriorate the quality of
the received signals and thus increase the bit error rate of the communication system.

In this thesis work, two feedforward (Maximum Likelihood, Oerder & Meyer) and one
feedback (Gardner) symbol timing recovery algorithms are implemented on a 65-nm
ASIC technology. These algorithms are specifically designed for optical fiber communi-
cation systems and modified to fulfill the throughput requirement of 112 Gbit/s. Area
and power consumption are key parameters used as cost function. The analysis shows
that the OM algorithm is power efficient, but occupies more area than Gardner’s al-
gorithm. Some future work optimizations have been suggested that will make the OM
algorithm consume the least area and power. The ML algorithm is found to be the
least effective option and recommended not to be used in power critical communication
systems. Different orders of interpolation blocks are also implemented on hardware and
found to be overshadowing the resources occupied by the symbol timing recovery al-
gorithms. Comparisons are made for various clock frequencies; higher clock frequency
designs are found to be more area and power efficient than lower clock frequency designs.

This master thesis report is a result of the project carried out along with two other
Master thesis students, conducted in collaboration with the Computer Science and En-
gineering (CSE), Signals and Systems (S2) and Microtechnology and Nanoscience (MC2)
departments at Chalmers.

Acknowledgments

I am sincerely thankful to Prof. Per Larsson-Edefors (CSE), Dr. Henk Wymeersch (SS2)
and Dr. Pontus Johanisson (MC2) for their benevolent supervision, extensive guidance,
kind support, wise suggestions, informative discussion and precious comments. I am also
grateful to my family for their love, affection, patience and providing quality environ-
ment for studies.

Tauseef Ahmad

Göteborg, Sweden
June 2012

Contents

1 Introduction 1
1.1 Problem Description . 1
1.2 System Overview . 2

1.2.1 System Specifications and Channel Impairments 2
1.3 Hardware Considerations . 3

1.3.1 Choice of Hardware Platform . 3
1.3.2 Pipelining and Parallelization . 3

2 Method 5
2.1 Work Flow . 5

3 Hardware Implementation 7
3.1 Oerder & Meyr (OM) Algorithm . 7

3.1.1 Determination of number of trial symbols L0 8
3.1.2 Implementation details . 10

3.2 Maximum Likelihood (ML) Algorithm . 10
3.2.1 Implementation of complex conjugate 11
3.2.2 Implementation of convolution operation 12
3.2.3 Implementation of complex multiplication 13

3.3 Implementation of Gardner Algorithm . 13
3.4 Implementation of Cubic Interpolator . 14
3.5 Implementation of Linear Interpolator . 16

4 Results 18
4.1 Fixed Point Representation . 18
4.2 Area and Power Consumption for STR Algorithms 19

4.2.1 ML Algorithm’s Area and Power 19
4.2.2 OM Algorithm’s Area and Power 20
4.2.3 Area and Power of the Gardner Feedback Loop 20

4.3 Area and Power Consumption for Interpolation blocks 21

i

CONTENTS

4.4 Area and Power Consumption for STR Algorithms 22

5 Future Work 23
5.1 Serializing the OM Algorithm . 23
5.2 Serializing the ML Algorithm . 23
5.3 Non-Integer (Fractional) Sampling Rate 24

6 Conclusion 25

Bibliography 27

ii

List of Figures

1.1 Evaluation Setup . 2

2.1 Work Flow . 6

3.1 OM Block Diagram . 8
3.2 BER vs L0 . 9
3.3 Optimized OM Block Diagram . 9
3.4 ML Block Diagram . 11
3.5 Optimized ML Block Diagram . 12
3.6 Gardner Block Diagram . 14
3.7 Convergence with Different Values of λ . 15
3.8 Optimized Gardner Block Diagram . 15
3.9 Cubic Interpolation Block . 17
3.10 Linear Interpolation Block . 17

5.1 Serialized OM Block . 23
5.2 Serialized ML Block . 24

iii

List of Tables

4.1 Fixed Point Word Lengths for OM, ML and Gardner Algorithms 19
4.2 Fixed Point Word Length for Cubic/Linear Interpolator 19
4.3 Area, Power and Latency (Cycles) for the ML Algorithm 20
4.4 Area, Power and Latency (Cycles) for the OM Algorithm 20
4.5 Area and Power for Gardner Feedback Loop 21
4.6 Area and Power for Cubic Interpolator . 21
4.7 Area and Power for Linear Interpolator 21
4.8 Area and Power for STR Algorithms with Different Interpolators 22

iv

Nomenclature

ASICs Application Specific Integrated Circuits

ASIP Application-Specific Instruction-set Processor

BER Bit Error Rate

CD Chromatic Dispersion

CORDIC COordinate Rotation DIgital Computer

FB Feed Back

FF Feed Forward

FPGA Field Programmable Gate Array

GBaud Giga Baud

IFT Inverse Fourier Transform

IQ In-phase Quadrature-phase

LUT Look Up Table

MATLAB MATrix LABoratory

ML Maximum Likelihood

OM Oerder & Meyr

QAM Quadrature Amplitude Modulation

RTL Register Transfer Level

RZ Return to Zero

STR Symbol Timing Recovery

VHDL Very high speed integrated circuits Hardware Description Language

v

1
Introduction

Synchronization is an integral part of a communication system. Different kinds of syn-
chronization, including carrier frequency synchronization, phase synchronization and
symbol time synchronization, are done in a communication receiver for proper detection
of a transmitted signal. The quality of the received signals is greatly affected by these
synchronizers.

The role of the symbol synchronizer becomes even more critical in high speed fiber
optical communication system. Extra signal processing is needed to cope with optical
channel impairments like Polarization Mode Dispersion (PMD), Chromatic Dispersion
(CD) and non-linearities. Efforts are being made to push the boundaries of digital signal
processing further into the optical domain and replace the long and expensive optical
filters with cheaper and power efficient digital filters [1], [2], [3]. Previously, a feasibility
study was made on the implementation of an adaptive equalizer on an FPGA with a
16-QAM modulation scheme for optical communication systems [4].

A comparison of symbol timing recovery algorithms (OM and Gardner) was done
for underwater acoustic data communication receivers [5]. The Gardner algorithm was
also implemented and optimized for a DVB-S2 receiver on an Altera Stratix II EP2S180
FPGA [6]. As the previous projects do not address very high throughput demands,
there is still a need to make similar evaluations for symbol timing recovery algorithms
for optical fiber communication receivers.

1.1 Problem Description

In this thesis, focus is on symbol timing recovery (STR) for high speed fiber optical
communication system with a 112 Gbit/sec data rate. A symbol timing recovery mech-
anism is essential for proper working of the communication system. Failure to achieve

1

1.2. SYSTEM OVERVIEW

synchronization can severely deteriorate the bit error rate (BER).

The goal of this thesis is to compare different symbol timing recovery algorithms on
hardware in terms of power and area, and to give feedback to the algorithm developer [7]
who can further modify the algorithm on the system level for improved hardware im-
plementations. This thesis is intended to convey a feeling to a system developer how
algorithms are converted into hardware and what are the trade offs involved during this
process. This thesis will support the idea that direct conversions of algorithms are not
always hardware efficient; we may need to do some modifications like converting divi-
sions into multiplications, floating point calculations into fixed-point calculations, etc.
where ever possible.

1.2 System Overview

A simulation environment is developed in MATLAB to evaluate the performance of
different STR algorithms. This simulation setup also models the different channel im-
pairments of optical fiber communication system. Two feedforward (OM and ML) and
one feedback (Gardner) algorithms are developed and evaluated on this optical commu-
nication system simulator and then finally implemented on hardware.

The optical fiber simulation setup that was developed in MATLAB is outlined in
Figure 1.1 [8]. This setup was established to understand the various trade offs in the
system design. The yellow block in the simulation setup was replaced with different
STR algorithms, and their performances were assessed in the presence of various chan-
nel impairments. These algorithms were also implemented in hardware for making a
comparison of their area and power cost.

Symbols Pulse Shaper
Channel

impairments
Chromatic

dispersion filters

Pulse

Timing offset

Frequency offset
recovery

Phase noise
recovery

Decision
(Mapping to

constellation)
BER

Symbol timing
recovery

Anti aliasing
filter

Figure 1.1: Evaluation Setup

1.2.1 System Specifications and Channel Impairments

The BER and the timing estimation error e(n) = τ − τ̂ were the parameters used to
compare the performance of different algorithms. The algorithms were examined in the

2

1.3. HARDWARE CONSIDERATIONS

presence of channel disturbances like Additive White Gaussian Noise (AWGN), Chro-
matic Dispersion (CD), phase noise and frequency offset. The communication system
under study has the following specifications [8].

• Baud rate: 28 Gbaud

• Modulation scheme: QAM

• No. of polarizations: 2

• No. of bits per symbol: 2

The bit rate for our communication system is calculated below

Bitrate = Baudrate×No.ofPolarization×No.ofbitspersymbol. (1.1a)

= 28× 109 × 2× 2. (1.1b)

= 112 Gbit/sec (1.1c)

1.3 Hardware Considerations

1.3.1 Choice of Hardware Platform

There are different kinds of platforms available for hardware implementations, including
Application Specific Instruction-set Processors (ASIPs), Field Programmable Gate Ar-
rays (FPGAs), and Application Specific Integrated Circuits (ASICs). These platforms
have their own pros and cons, and the platform choice very much depends on the prob-
lem at hand.

FPGAs provide reconfigurability, high computational performance, limited develop-
ment cost and short time to market, but consume more power and has less clock speed
as compared to ASICs, which can deliver the highest performance and consume the least
energy as compared to any other hardware platform. The downsides of ASICs are that
they have high development costs and they require longest development time. Moreover,
an ASIC lacks the ability of reconfiguration, so a lot of caution is needed during design,
otherwise it will cost millions of dollars to fix bugs after an ASIC chip has been taped out.

Our initial plan was to implement all the three STR algorithms on an FPGA and
select the best out of three to implement on ASIC. However, due to the limited number
of I/O pins on the intended FPGA, the unavailability of latest models of Virtex 7 on
the ISE software platform and the unavailability of the license of Virtex 7 to implement
design, we chose a 65-nm ASIC platform for all our evaluations.

1.3.2 Pipelining and Parallelization

The concept of pipelining is very important for real time high speed hardware implemen-
tations. This concept enables designs to operate at a higher clock frequency, by splitting

3

1.3. HARDWARE CONSIDERATIONS

a big logic block into two or more smaller logic blocks, which are separated by registers
(flip-flops). It also means that the entire computational result is not available within
one clock cycle but only a part of result is computed. The auxiliary result is stored in
the flip-flops. With an increase in degree of pipelining, the latency of the design also
increases.

Parallelization is another way to increase the throughput of the system. In this
method, the received signals are demultiplexed and hardware is duplicated to pro-
cess more data in parallel [2]. Area increases linearly with an increase in parallel
streams/stages. Parallelization is an effective way to realize a high speed system on
a lower clock frequency. The number of parallel streams is inversely proportional to
clock the frequency.

As discussed in Section 1.2.1, the baud rate of the system under study is 28 Gbaud.
To reach this high throughput, we have employed both the above mentioned methods

4

2
Method

Initially a prestudy was carried out, in which the Master thesis ”Real-Time Signal Pro-
cessing Implementation for 100 Gb/s Fiber Communication” was evaluated because of
the similar nature of project [4]. The previous thesis involved the implementation of an
equalizer on FPGA. After the pre-study phase, an optical communication system setup
was developed in MATLAB. Different symbol timing recovery (STR) algorithms were
integrated in this setup. These algorithms were step by step modified into a hardware
amenable form, while keeping track of the resulting BER at the system’s output. Simul-
taneously, block diagrams for each algorithm were developed. In the block diagram, each
computation operation was mapped into a separate block for ease of testing. We started
the implementation of these blocks in VHDL for hardware implementations with an ap-
proximative word length. The written VHDL codes were generic, so the fixed-point word
lengths could be updated during any phase of the project. Logic simulations were made
using Incisive Simulator [9] and the output of each block was verified by comparing its
output with the golden reference from MATLAB. Once satisfied with the functionality,
designs were synthesized in Cadence RTL compiler [10] with different timing constraints.
Often VHDL codes were modified to fulfill the timing constraints set up during synthesis.

2.1 Work Flow

This project is carried out along with two other Master thesis students. The divided
work flow is shown in figure 2.1.

• Ai Yun converted algorithm equations to executable MATLAB code [7].

• Pavithra Muralidharan developed a simulation environment for optical communi-
cation system in MATLAB which takes different sources of noise/impairments into
consideration. The algorithms developed by Yun were inserted into this simulation

5

2.1. WORK FLOW

Developement of Clock
Recovery

Algorithm (Yun Ai)

Evaluation of Clock Recovery
Algorithms (Pavithra

Muralidharan)

Implementation and
Optimization of Clock

Recovery Algorithms(Tauseef
Ahmad)

Optimum L,λ,ϒ ?

 L,λ,ϒ

Algorithms Wordlength

Hardware limitations

Suggestions for optimized hardware
implementation

Approval/Rejection of the suggestions after
simulations

Updated
Wordlength

Figure 2.1: Work Flow

environment, and their performance were evaluated. Later, these algorithms were
changed from floating point to fixed point for hardware implementation [8].

• The task of this thesis was to take algorithms from Ai Yun, modify the MAT-
LAB code into more hardware friendly code, make block diagrams for hardware
implementation, take fixed-point information from Pavithra Muralidharan, and
implement the algorithm in VHDL. The next and final step was to analyze the
area and power consumptions by these algorithms and propose the best algorithm
to be used in the energy-efficient communication system.

6

3
Hardware Implementation

This chapter deals with implementation details of different symbol timing recovery (STR)
algorithms.

3.1 Oerder & Meyr (OM) Algorithm

Oerder & Meyr (OM) is a feedforward algorithm based on heuristic reasoning [11]. This
algorithm needs at least four samples per symbol for proper operation. The mathematical
expression is given in equation (3.1) and block diagram is shown in figure 3.1

τ̂ = − T

2π
arg

{
NL0−1∑
k=0

|x(kTs)|2 e−2πik/N

}
(3.1)

where

• τ̂ is the estimated timing error

• T is the symbol time

• N is the oversampling rate, which equals 4 for the sake of implementation simplicity

• L0 is the number of symbols used for estimation of τ̂

• Ts is the sampling time

• x(k) is the input to the STR block

As discussed in section 1.2.1, the baud rate of the system per polarization is 28
GSymbol/s. As the OM algorithm requires four samples per symbol, the throughput

7

3.1. OERDER & MEYR (OM) ALGORITHM

Angle x +
tau_hat

+1/(2*pi) +0.5

Parallel stage (P X Sampling Rate)

Parallel stage 2

+

Parallel stage 1

Abs2

+

Abs2

Multiplication by
complex

exponential
coefficient

Polarization X data

 Polarization Y data

Legend

Pipeline Registers

Accumulator

Figure 3.1: OM Block Diagram

requirement of the system becomes 28 GSymbol/s × 4 samples/symbol = 112 GSam-
ples/s, so the algorithm must process data in parallel. These parallel streams are shown
in the block diagram in figure 3.1 and expressed mathematically as

P × SamplingRate =
BaudRate× SamplingRate

Clock Frequency
=

112GSample/s

Clock Frequency
(3.2)

The number of parallel streams is inversely proportional to clock frequency and de-
creases by increasing clock frequency. This algorithm was implemented for 2 GHz and
500 MHz clock frequencies, which requires 56 and 224 parallel streams respectively.

3.1.1 Determination of number of trial symbols L0

The computation is based on a large number of symbols to increase the credibility of
estimations and to suppress the effects of noise. Using more symbols increases the sys-
tem complexity. This complexity translates into huge area and power consumption in
hardware implementation. Thus, simulations were made to find the optimal number
of trial symbols that could give acceptable accuracy with optimum hardware resource
utilization.

Figure 3.2 shows the dependence of BER on the trial symbol count, L0. It can be
observed that L0 has a negligible effect on BER. Although this graph is obtained for
the ML algorithm, it is also valid for the OM algorithm. It can be concluded that 10
symbols are enough for determination of τ̂ .

This result enables us to remove the dependence of parallel streams of STR algorithm
on clock frequency. With an oversampling rate of four and an L0 equal to 10, the OM

8

3.1. OERDER & MEYR (OM) ALGORITHM

Figure 3.2: BER vs L0

algorithm needs 40 (10 × 4) parallel streams for calculation of τ̂ . Now, the OM algorithm
implementation does not scale up with clock frequency and an accumulator for storing
previous samples is no longer needed. A modified block diagram of the OM algorithm
embracing the effects of the limited number of L0 is shown in figure 3.3.

Angle x +
tau_hat

+1/(2*pi) +0.5

Parallel stage 40

Parallel stage 2

+

Parallel stage 1

Abs2

+

Abs2

Multiplication by
complex

exponential
coefficient

Polarization X data

 Polarization Y data

Legend

Pipeline Registers

Figure 3.3: Optimized OM Block Diagram

9

3.2. MAXIMUM LIKELIHOOD (ML) ALGORITHM

3.1.2 Implementation details

A bottom-up approach is used for hardware implementation. The complete algorithm
is divided into different modules for ease of implementation and functional verification.
These modules are then written in VHDL, and their output is compared with output
from MATLAB testbench. The division of the algorithm into modules is shown below.

• Absolute Square Block

• Multiplication by complex exponential coefficients e−2πi k
N

• Cascaded Adder

• Angle Block

The absolute square block takes an I/Q input, which is complex in nature and com-
putes a square of absolute value. The output of the ’Absolute Square Block’ is fed into

the ’Multiplication by e−2πi k
N Block’ (figure 3.3). As N = 4 for the OM algorithm and

k varies from 0 to 39, e−2πi k
N reduces to 1, -1, i and -i. This block does not have any

multiplier. Later, outputs from all the parallel streams are added up, using a cascaded
adder, and given to angle block. The output of the angle block is the estimation error τ̂ ,
which is fed into interpolation blocks for symbol timing recovery of incoming samples.

Two different ways for implementation of angle block were considered.

• COordinate Rotation DIgital Computer (CORDIC) algorithm

• Look Up Table (LUT)

The CORDIC algorithm is iterative in nature, and mainly used for the calculation
of trigonometric functions [12]. Its accuracy increases with each iteration. Choice of
CORDIC algorithm for implementation of angle block would increase the latency (in
cycles), area and power dissipation. Therefore, the LUT technique was used. LUTs are

not only being used for determination of the angle but also for calculating angle(input)+π
2π .

As the input to the angle block is complex data, the LUT is two dimensional. The LUT
size, that is, 25 × 25 entries, was determined using MATLAB Fixed Point Tool Box.

3.2 Maximum Likelihood (ML) Algorithm

The Maximum Likelihood (ML) algorithm is a feedforward algorithm and needs at least
two samples per symbol for proper functioning. The mathematical expression for the
ML algorithm is written in equation (3.3) and the block diagram is shown in figure 3.4.

τ̂ = − T

2π
arg


N(L+D)−1∑
k=ND

x[(k −ND)Ts] e
− iπ(k−ND)

N z[(k −ND)Ts]

 (3.3)

10

3.2. MAXIMUM LIKELIHOOD (ML) ALGORITHM

where

z(kTs) =
[
x∗ (k2Ts) e

−πik2
N

]
⊗ q(kTs) (3.4)

and q(t) is the Inverse Fourier Transform (IFT) of

Q(f) = G

(
f − 1

2T

)
G∗
(
f +

1

2T

)
(3.5)

and G(f) is the Fourier transform of the used pulse g(t). L is the length of trial
signal (symbols), and N is the oversampling ratio (TTs). T and Ts are the symbol period
and sampling period, respectively.

Angle x tau_hat

+1/(2*pi)

Memory

 Polarization
 X data

Polarization
Y data

+

Multiplication
by Complex
exponential
coefficient

Conjugate
 Polarization

X data
Convolution Z1 x

Multiplication
by Complex
exponential
coefficient

Conjugate
 Polarization

Y data
Convolution

Qnew

Z2 x

+

Multiplication
by Complex
exponential
coefficient

Parallel Stage 1

Parallel Stage 2

Parallel Stage (P X Sampling Rate)

Polarization X
data

Polarization Y data
from memory

Qnew

Polarization X
data from
memory

Polarization Y
data

Legend

Pipeline Registers

Accumulator

Figure 3.4: ML Block Diagram

We need 10 symbols for τ̂ recovery. We can make a similar optimization to ML
algorithms that we made for the OM algorithm. An optimized block diagram for the
ML algorithm is shown in figure 3.5.

3.2.1 Implementation of complex conjugate

The conjugate operation on a complex number Z = a+ ib is defined as

Conj(Z) = Z̄ = a− ib (3.6)

In hardware, negative numbers are usually represented in two’s complement form. In
this format, any integer in range of −2n−1 to 2n−1 − 1 can be represented with n bits.

11

3.2. MAXIMUM LIKELIHOOD (ML) ALGORITHM

Angle x tau_hat

+1/(2*pi)

Memory

 Polarization
 X data

Polarization
Y data

+

Multiplication
by Complex
exponential
coefficient

Conjugate
 Polarization

X data
Convolution Z1 x

Multiplication
by Complex
exponential
coefficient

Conjugate
 Polarization

Y data
Convolution

Qnew

Z2 x

+

Multiplication
by Complex
exponential
coefficient

Parallel Stage 1

Parallel Stage 2

Parallel Stage 20

Polarization X
data

Polarization Y data
from memory

Qnew

Polarization X
data from
memory

Polarization Y
data

Legend

Pipeline Registers

Figure 3.5: Optimized ML Block Diagram

Negation of −2n−1 either requires saturation of the result to 2n−1 − 1 or costs an extra
bit. The saturation method is used in this block because, besides saving hardware, this
method has a negligible effect on the final result.

3.2.2 Implementation of convolution operation

The convolution block is an implementation of equation (3.4), rewritten below for con-
venience.

z(kTs) =
[
x∗ (k2Ts) e

−πik2
N

]
⊗ q(kTs)[

x∗ (k2Ts) e
−πik2

N

]
is output from ’Multiplication by complex exponential coefficient’

block. q(kTs) is a function of pulse shaping filter used in a communication system. We
chose Gaussian Return to Zero (RZ) pulse with 67% duty cycle. After selecting the pulse
shaping filter, q(t) reduces to a constant vector. We no longer need to calculate the IFT
of Q(f) defined in equation (3.5).

While converting MATLAB code to hardware implementation, the length of the q(t)
vector was reduced to 7 (from 15) and the word length used is 3 (determined using MAT-
LAB Fixed Point Toolbox). As q(t) is an even function, the number of multiplications
were reduced from 7 to 4 owing to symmetric nature of q(t). The implementation of the

12

3.3. IMPLEMENTATION OF GARDNER ALGORITHM

convolution operation is done by writing equations in VHDL for each stage.

3.2.3 Implementation of complex multiplication

Complex multiplication is an area and power consuming operator in the ML algorithm’s
implementation. One stream of the ML algorithm needs two complex multiplications.
The total number of parallel streams determines the total number of complex multipli-
cations in the ML algorithm. As this algorithm needs 20 parallel streams, a total of 40
complex multipliers are required. The input to the clock recovery block is In-phase and
Quadrature-phase (I/Q) data, represented by complex numbers. Two complex numbers
Z1 = a+ ib and Z2 = c+ id when multiplied yield the result:

Z1 × Z2 = (a+ ib)(c+ id) (3.7a)

= (ac− bd) + i(bc+ ad) (3.7b)

A straightforward implementation of equation (3.7) in hardware requires four mul-
tipliers and two adders. As multipliers are area and power hungry, performing less
multiplications in hardware implementation is desirable. Equation (3.7) can be changed
to use three multipliers and five adders / subtractors.

<(Z1 × Z2) = ac− bd (3.8a)

=(Z1 × Z2) = (a+ b)(c+ d)− ac− bd (3.8b)

3.3 Implementation of Gardner Algorithm

Gardner algorithm is a feedback algorithm. The mathematical expression for the Gard-
ner algorithm is shown in equation (3.9)[13] and the block diagram is presented in fig-
ure 3.6.

e(k) = Re

{
r(kT − T + τ̂k−1)− r(kT + τ̂k−1)× r∗(kT −

T

2
+ τk−1)

}
(3.9)

where e(k) is the output of the timing error detector. The spacing between r(kT − T +
τ̂k−1) and r(kT + τ̂k) is one symbol period and the spacing between r(kT − T + τ̂k−1)
and r(kT − T

2 + τ̂k−1) is T
2 .

This timing error is passed through a loop filter which is a 2nd-order low pass filter
expressed mathematically as

τ(n) = λ× τ(n−) + (1− λ)× e(n) (3.10)

λ in equation (3.10) is known as the loop bandwidth. The choice of λ is very impor-
tant because it determines the number of symbols required for convergence and error

13

3.4. IMPLEMENTATION OF CUBIC INTERPOLATOR

- x

Conj

Real x

1-lambda

x

+
timing_error

lambda

fDelay

D

1st,2nd Sample

x +

2*ri

Rem
of 1

floor +

1

fDelay

Mux

2nd , 3rd Sample

timing_error

D

+

D

x

2*gamma

+

2*ri

Rem
of 1

x

timing_error +

D

Output

fDelay

P

Mod
of 1

floor

x

Output

We will have 2P - 1 such parallel stages

+

Interpolation
Block

Mux

Interpolation
Block

Floor

Interpolation
Block

Mux

Incoming Signals

gamma

Figure 3.6: Gardner Block Diagram

variance. Figure 3.7 shows the trade off between convergence speed and stability of the
timing estimation detector for different values of λ. A value of λ = 0.92 was found to
be a good compromise between convergence speed and stability after convergence [7].

An optimized block diagram of the Gardner algorithm is presented in figure 3.8
utilizing the luxury of integer oversampling rate.

3.4 Implementation of Cubic Interpolator

Interpolation block takes the timing error information and the incoming samples, corrects
the timing error and down samples the incoming signals into one symbol. The coefficients
for cubic interpolation is given in equation (3.11) and the block diagram is shown in

14

3.4. IMPLEMENTATION OF CUBIC INTERPOLATOR

Figure 3.7: Convergence with Different Values of λ

- x Real x

1-lambda

x

+ timing_error

lambda

fDelay

D

2nd ,3rd stage samples

Rem
of 1

fDelay1

Rem
of 1

Output

We will have 2P-1 such stages

x

gamma

+

2*ri

timing_error

D

+

D

x

2*gamma

+

2*ri

timing_error +

D

Conj
Interpolation

Block

1st ,2nd stage samples

Interpolation
Block

fDelay1

Incoming Signals

OutputInterpolation
Block

Figure 3.8: Optimized Gardner Block Diagram

15

3.5. IMPLEMENTATION OF LINEAR INTERPOLATOR

figure 3.9.

C−2 =
u3 − u

6
(3.11a)

C−1 =
−u3 + u2

2
+ u (3.11b)

C0 =
u3 − u

2
− u2 + 1 (3.11c)

C1 =
−u3

6
+
u2

2
− u

3
(3.11d)

where u is rem(τ̂ ,1) from the STR algorithms. P in block diagram is defined as

P =
BaudRate

ClockFrequency
(3.12)

For hardware implementation, we have divided the computation of the coefficient’s
calculation into two blocks. One block calculates the square and cube of u. The sec-
ond block named ’Interpolation coefficient calculator’ block computes equations (3.11).
Once the coefficients are calculated, they are multiplied by the arriving samples. As
coefficients are real and incoming signals are complex, the cubic interpolation requires
eight multipliers per stage. As our design can operate at a top frequency of 2 GHz, the
interpolation block requires at least 14 parallel streams per polarization of interpolation
blocks. Thus, at a 2-GHz clock frequency, in total 112 multipliers are required for each
polarization. The number of parallel stages, thereby the number of multiplications, in-
creases with a decrease in clock frequency. The results of multiplications of each stage
are added and sent as a recovered symbol to the output.

3.5 Implementation of Linear Interpolator

The coefficients for the linear interpolator are given in equation (3.10) and the block
diagram is shown in figure 3.10.

C−1 = u (3.13a)

C0 = 1− u (3.13b)

Linear interpolation is much simpler than cubic interpolation and requires four mul-
tiplications per stage. Following the same reasoning as in the cubic interpolation block,
we require 56 multiplications for each polarization at an operating clock frequency of 2
GHz. The choice of either cubic or linear interpolators is a neat examples of a trade off
between performance and computational overhead.

16

3.5. IMPLEMENTATION OF LINEAR INTERPOLATOR

Y polarization

Parallel Stage 2

Polarization Y data

tau_hat

Parallel Stage 1

fDelay

 (.)3

(.)2

(.)

Interpolation
Coefficients
calculator

(c1,c2,c3,c4)

C1

C2

C3

x

x

x

x

+

Parallel Stage P

Symbols after clock recovery
from X-polarization

Y polarization

X polarization

Symbols after clock recovery
from Y-polarization

C4

Polarization X data
Legend

Pipeline Registers

Figure 3.9: Cubic Interpolation Block

Y polarization

Parallel Stage 2

Polarization Y data

tau_hat

Parallel Stage 1

fDelay

Interpolation
Coefficients
calculator

(C1,C2)

C1

C2

x

x

+

Parallel Stage P

Symbols after clock recovery
from X-polarization

Y polarization

X polarization

Symbols after clock recovery
from Y-polarization

Polarization X data
Legend

Pipeline Registers

Figure 3.10: Linear Interpolation Block

17

4
Results

These results are obtained after synthesizing algorithms that are described in VHDL on
a 65-nm CMOS technology (called the CORE65GPSVT cell library) with 0.9 volt power
supply. Encounter RTL Compiler v09.10-p104 1 was used for synthesizing the design
with nominal operating conditions.

4.1 Fixed Point Representation

This section deals with conversion of algorithms from floating point representation into
fixed point representation. Table 4.1 and 4.2 shows the fixed point word length used for
STR algorithms and interpolation blocks, respectively.

The method used for determination of fixed point word length is described below:

• An evaluation setup using a model of the system was established in MATLAB
that could determine the bit error rate (BER) at the output of the communication
system, for different channel impairments.

• Different STR algorithms were inserted in this evaluation setup and logically di-
vided into different modules.

• MATLAB Fixed Point Toolbox was used for conversion of floating point format in
a fixed point format. For each logical module, the word length was reduced from
64 bits to fewer bits until the BER value goes above the threshold of an acceptable
BER (which is a function of the error correction that is done downstream).

18

4.2. AREA AND POWER CONSUMPTION FOR STR ALGORITHMS

Table 4.1: Fixed Point Word Lengths for OM, ML and Gardner Algorithms

Algorithm Module Input Output Rounding Mode

Abs square 3 7 FULL PRECISION

Complex coeff 7 7 FULL PRECISION

OM Cascaded adder 7 5 MSB

Angle block 5 5 FULL PRECISION

Convolution block 3 3 MSB

Complex mul 3 7 FULL PRECISION

ML Cascaded adder 7 5 MSB

Angle block 5 5 FULL PRECISION

Gardner Feedback loop 6 6 MSB

Table 4.2: Fixed Point Word Length for Cubic/Linear Interpolator

Module Input Output Rounding Mode

Coefficient calculator 5 6 MSB

Complex multiplication and addition 6 7 MSB

4.2 Area and Power Consumption for STR Algorithms

We used a bottom-up approach for hardware design and implementation. Two different
timing constraints, corresponding to 2 GHz and 500 MHz, were set to see the effect
of higher and lower system clock frequencies on area and power consumption. Input
vectors used for the obtaining the power values were generated using the communication
system setup. As all the implemented STR algorithms include the interpolation block, a
separate section explains the area and power consumption for the interpolation blocks.

4.2.1 ML Algorithm’s Area and Power

Table 4.3 shows the area and power consumption for the ML algorithm. The design
synthesized for the 2-GHz clock frequency requires more pipeline stages and has more
latency cycles as compared to a design synthesized for 500 MHz to satisfy timing con-
straints. As the numbers of pipeline stages are fixed for the timing error estimation
block and do not scale with clock frequency, the area and power statistics improve for
500 MHz. The angle block is implemented using LUTs. Owing to the static nature of
LUTs, stricter timing constraints do not have much effect on power and area for angle
block. The complex multiplication block seems to be the most area and power hungry
module in the ML algorithm implementation.

19

4.2. AREA AND POWER CONSUMPTION FOR STR ALGORITHMS

Table 4.3: Area, Power and Latency (Cycles) for the ML Algorithm

Clock rate: 500 MHz Clock rate: 2 GHz

ML Algorithm Area Latency Power Area Latency Power

(µm2) (cycles) (mW) (µm2) (cycles) (mW)

Convolution 26850 1 4.55 39600 3 11.0

Complex multiplica-
tions

30600 1 10.7 56400 4 24.0

Cascaded adders 5519 1 0.75 7531 2 1.36

Angle 1364 1 0.18 1409 1 0.20

Memory 4186 1 0.7 13080 1 2.04

Total Area / Power 68519 - 16.88 118020 - 38.6

4.2.2 OM Algorithm’s Area and Power

Table 4.4 shows the area and power consumption for the OM algorithm. As the OM
algorithm is a simplification of the ML algorithm, it consumes 4.26 times less area at
2 GHz and 3.58 times less area at 500 MHz. We observe that power does not scale
in the same way as area for these two algorithms, because the ML algorithms involve
computationally-expensive operations (dynamic power) and need registers and standard
logic cells of high driving strength (static power) to fulfil timing constraints.

Table 4.4: Area, Power and Latency (Cycles) for the OM Algorithm

Clock rate: 500 MHz Clock rate: 2 GHz

OM Algorithm Area Latency Power Area Latency Power

(µm2) (cycles) (mW) (µm2) (cycles) (mW)

Absolute square 12160 1 1.93 18720 1 3.31

Cascaded adders 5519 1 0.75 7531 4 1.36

Angle 1421 1 0.18 1454 1 0.21

Total Area / Power 19100 - 2.86 27705 - 4.88

4.2.3 Area and Power of the Gardner Feedback Loop

Table 4.5 shows the area and power consumption for the Gardner algorithms’s feedback
loop. This feedback loop will take its input from two interpolators and give its output
to multiple interpolators depending on the operating clock frequency (see figure 3.6).
The area decreases 1.52 times and power decreases 1.85 times when clock frequency is
reduced from 2 GHz to 500 MHz.

20

4.3. AREA AND POWER CONSUMPTION FOR INTERPOLATION BLOCKS

Table 4.5: Area and Power for Gardner Feedback Loop

Clock rate: 500 MHz Clock rate: 2 GHz

Area(µm2) Power(mW) Area(µm2) Power(mW)

Feedback loop 4692 0.74 7143 1.37

4.3 Area and Power Consumption for Interpolation blocks

Table 4.6 shows the area and power values of the cubic interpolator. A comparison
between the interpolator block and the timing error estimation blocks shows that the
interpolator has a dominant role in STR algorithms. It can be observed from the ta-
ble that multiplications consume the majority of the area and power. The number of
multiplications is directly related to the number of coefficients. In order to balance dis-
tribution of resources between the interpolator and the timing error estimator, we went
for a less complex interpolator.

Table 4.7 shows the area and power values of the linear interpolator. Comparing the
cubic with the linear interpolator shows that the linear interpolator consumes half of the
area and power, because of the reduction of multiplications.

Table 4.6: Area and Power for Cubic Interpolator

Clock rate: 500 MHz Clock rate: 2 GHz

Cubic Interpolator Area Power Area Power

(µm2) (mW) (µm2) (mW)

Complex multiplication and addi-
tion

583968 93.1448 194880 49.981736

Power block and coeff calculator 1898 0.263757 1690 0.321225

Complete block 585866 93.40 196570 50.3

Table 4.7: Area and Power for Linear Interpolator

Clock rate: 500 MHz Clock rate: 2 GHz

Area Power Area Power

(µm2) (mW) (µm2) (mW)

Linear Interpolator 269360 45 88760 24

21

4.4. AREA AND POWER CONSUMPTION FOR STR ALGORITHMS

4.4 Area and Power Consumption for STR Algorithms

Table 4.8 shows the area and power consumptions for STR algorithms with different
cubic and linear interpolation block. An interpolation block with constant word length
was used while making these comparisons. It can be seen from the table that the least
power is being consumed by the OM algorithm with the linear interpolator at a 2-GHz
clock frequency. The ML algorithm is totally defeated by the other two algorithms and
is not suggested to be used in area and power critical systems.

The OM algorithm is superior to Gardner’s algorithm as it is power efficient and its
output stabilizes quickly. Gardner’s algorithm requires hundreds of cycles to lock the
timing estimation error, while OM algorithm can rapidly calculate its timing estimate
and provide a valid result.

Table 4.8: Area and Power for STR Algorithms with Different Interpolators

Clock rate: 500 MHz Clock rate: 2 GHz

Algorithm Interpolator Area Power Area Power

(µm2) (mW) (µm2) (mW)

OM Cubic 604966 96.27 224275 55.18

ML Cubic 654385 111.71 327670 88.97

Gardner Cubic 604478 102.75 210673 60.45

OM Linear 288460 47.90 116465 28.90

ML Linear 337879 61.98 206780 62.69

Gardner Linear 276502 50.38 99073 30.24

22

5
Future Work

There exist significant opportunities in bringing improvements to the current design.
Three suggestions for future work are presented in this chapter. The first two suggestions
were not carried out because the size of symbol timing recovery blocks were negligible in
comparison to the interpolation blocks. The third suggestion was not enforced to keep
things simple and realizable within time.

5.1 Serializing the OM Algorithm

As we know from previous chapters, the OM algorithm needs a limited numbers of
samples for calculating τ̂ . So, instead of using 40 parallel stages, we can use a single
stage, store its result in an accumulator and give its output to the angle block for
calculation of τ̂ . A block diagram to serialize the OM algorithm is shown in figure 5.1.

Angle x +
tau_hat

+1/(2*pi) +0.5

+

Abs2

+

Abs2

Multiplication by
complex

exponential
coefficient

Polarization X data

 Polarization Y data

Accumulator

Figure 5.1: Serialized OM Block

5.2 Serializing the ML Algorithm

Similar to the OM algorithm, the ML algorithm can also be serialized and reduce area
by 20 times. A block diagram to serialize ML algorithm is shown in figure 5.2.

23

5.3. NON-INTEGER (FRACTIONAL) SAMPLING RATE

Angle x tau_hat

+1/(2*pi)

Memory

 Polarization
 X data

Polarization
Y data

+

Multiplication
by Complex
exponential
coefficient

Conjugate
 Polarization

X data
Fir Filter Z1 x

Multiplication
by Complex
exponential
coefficient

Conjugate
 Polarization

Y data
Fir Filter

Qnew Coeff

Z2 x

+

Multiplication
by Complex
exponential
coefficient

Polarization X
data

Polarization Y data
from memory

Qnew Coeff

Polarization X
data from
memory

Polarization Y
data

Accumulator

Figure 5.2: Serialized ML Block

5.3 Non-Integer (Fractional) Sampling Rate

Our present hardware designs are for fixed integer sampling rate on which we have made
several simplification, for example, complex coefficient multiplications have been reduced
to 1,−1, i and −i and many simplifications have been made in the interpolation blocks.
Real world communication systems are not that simple. They may take any non-integer
sampling rate. So future work may include modifying the system for a generic sampling
rate.

24

6
Conclusion

Three algorithms were successfully converted from equations to MATLAB code and then
finally implemented in hardware. The BER and the timing estimation error were key
parameters used for determining their performance at system level. After hardware im-
plementation, area and power values were used as cost functions.

The Gardner algorithm occupies the least area, but the OM algorithm dissipates the
least power. The OM algorithm can easily overcome this shortcoming by an optimiza-
tion suggested in section 5.1. As the ML algorithm is proved to be needing the largest
area and consuming the most power of the STR algorithms, we suggest not to use it in
any power and area critical application. The OM algorithm is proved to be superior to
the Gardner’s algorithm in our evaluation setup as it is power efficient and its output
stabilizes quickly. The Gardner’s algorithm requires hundreds of clock cycles to lock the
timing estimation error, while the OM algorithm can rapidly calculate a timing estimate
and provide a valid result.

The interpolation blocks are found to dominate the hardware resources. Compared
to a cubic interpolator, a linear interpolator can provide reasonable performance with
approximately half the area and power consumption. It was also noted that interpolation
blocks operating at higher clock frequency require less number of parallel streams which
consequently results in less overall area and power consumption.

25

Bibliography

[1] S. J. Savory, G. Gavioli, R. I. Killey, P. Bayvel, Electronic compensation of chro-
matic dispersion using a digital coherent receiver, Opt. Express 15 (5) (2007) 2120–
2126.

[2] T. Pfau, S. Hoffmann, R. Noe, Hardware-efficient coherent digital receiver concept
with feedforward carrier recovery for M-QAM constellations, Journal of Lightwave
Technology 27 (8) (2009) 989–999.

[3] S. J. Savory, Digital filters for coherent optical receivers, Opt. Express 16 (2) (2008)
804–817.

[4] F. Toft, N. Rousk, Real-Time Signal Processing Implementation for 100 Gb/s Fiber
Communication, Master’s thesis (Jul. 2011).

[5] G. Eynard, C. Laot, Non data aided timing recovery algorithm for digital underwa-
ter communications, in: IEEE/OES OCEANS Conference, 2007.

[6] W. Xin, Z. Ni, Optimization of FPGA design and implementation of timing recovery
in DVB-S2, in: International Conference on Communications, Circuits and Systems,
2008, pp. 1265–1269.

[7] Y. Ai, Clock Recovery for High-Speed Fiber-Optic Communication Systems, Mas-
ter’s thesis (Jun. 2012).

[8] P. Muralidharan, Evaluation of Symbol Timing Recovery Algorithms in a High-
Speed Fiber-Optic Communication System, Master’s thesis (Jun. 2012).

[9] Cadence Design Systems, Inc. (Cadence), Incisive Enterprise Simulator Overview
(Jun. 2009).

[10] Cadence Design Systems, Inc. (Cadence), Quick Reference for Encounter RTL Com-
piler (Dec. 2010).

[11] M. Oerder, H. Meyr, Digital filter and square timing recovery, IEEE Transactions
on Communications 36 (5) (1988) 605–612.

26

BIBLIOGRAPHY

[12] R. Andraka, A survey of CORDIC algorithms for FPGA based computers, in:
ACM/SIGDA Sixth International Symposium on Field Programmable Gate Arrays,
FPGA ’98, 1998, pp. 191–200.

[13] F. M. Gardner, Phaselock techniques, 3rd Edition, John Wiley, Hoboken, NJ, 2005.

27

	Introduction
	Problem Description
	System Overview
	System Specifications and Channel Impairments

	Hardware Considerations
	Choice of Hardware Platform
	Pipelining and Parallelization

	Method
	Work Flow

	Hardware Implementation
	Oerder & Meyr (OM) Algorithm
	Determination of number of trial symbols L0
	Implementation details

	Maximum Likelihood (ML) Algorithm
	Implementation of complex conjugate
	Implementation of convolution operation
	Implementation of complex multiplication

	Implementation of Gardner Algorithm
	Implementation of Cubic Interpolator
	Implementation of Linear Interpolator

	Results
	Fixed Point Representation
	Area and Power Consumption for STR Algorithms
	ML Algorithm's Area and Power
	OM Algorithm's Area and Power
	Area and Power of the Gardner Feedback Loop

	Area and Power Consumption for Interpolation blocks
	Area and Power Consumption for STR Algorithms

	Future Work
	Serializing the OM Algorithm
	Serializing the ML Algorithm
	Non-Integer (Fractional) Sampling Rate

	Conclusion
	 Bibliography

