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Abstract
When conducting meetings within a consortium of organizations, a method of record-
ing key aspects like participation and decisions so that they can be agreed upon by
all parties is needed. A decision log based on a distributed ledger; a data store
that is shared on equal terms between the organizations, would remove the need to
trust a central authority, and if the data structure of the ledger is a cryptograph-
ically chained log, the entries are immutable and secure against tampering. Using
a Byzantine fault tolerant (BFT) consensus algorithm when reaching agreement on
the state of the data store would further increase the security of the system by
making it tolerant against malicious behavior from some of the organizations.

The introduction of smart contracts has broadened the field of use cases where
distributed ledgers are considered. However, poor performance compared to other
systems due to the high complexity of their consensus algorithms is often a limiting
factor. While providing the desired functionality, the performance of a system such
as this has to be sufficient to be usable; users have to see the response of their actions
in near real-time and the meeting cannot be significantly delayed.

A prototype system based on these methods was designed and developed, and
evaluated in terms of usability. Two metrics were defined to quantify the usability,
response time and overhead. Response time was defined as the delay between a user
action and its response and overhead was defined as the time added to a meeting by
the system when recording the outcome of a decision. The results were measured
at different scales in terms of meeting participants, network delay and number of
nodes participating in the consensus method.

It was found that the performance impact of using a distributed ledger with
a BFT consensus algorithm is considerable. The response time remained at suffi-
ciently low levels, between 1.4 and 3.4 seconds. However, due to the high message
complexity of BFT consensus methods, the overhead of the system was too high
for the system to be considered practical; between 12 and 110 seconds for a single
decision. A high number of users especially affected the overhead negatively, but
the number of participating organizations and the amount of network delay also had
a significant effect.

In conclusion, distributed ledgers in combination with Byzantine fault tolerance
provides a high level of trust and security to a system, but performance is a big
issue that limits the reasonable uses of the technologies. If a system is designed
with these technologies, special care has to be taken to keep the rate of events low
so that the performance remains sufficient.
Keywords: distributed systems, distributed consensus, distributed ledger technology,
blockchain, Byzantine fault tolerance.
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1
Introduction

With increased digitalization, remote meetings become more popular and increas-
ingly viable as an alternative to traditional face-to-face meetings. Remote meetings
have several advantages; meetings can be scheduled without concern for the physical
location of the attendants and reduced travel leads to time and money saved and
a lower environmental impact. They also have the possibility of reducing disease
transmission which is a current issue due to the coronavirus outbreak that started
in late 2019.

However, there are also several problems and drawbacks with remote meetings
compared to meetings in person. Technical issues can cause problems and the ex-
change of information might not be as clear as in meetings in person. For example,
in a meeting between representatives of different organizations in a consortium in
the construction industry, the different organizations might not trust each other and
are not necessarily aligned in terms of economic interests or goals, so disagreements
can quickly lead to large costs or lawsuits. When decisions are taken in such a con-
text, knowing and agreeing on who was in attendance, what information they had
taken part of and whether or not they opposed a decision becomes important.

An aid to overcoming some of these problems would be a system in which binding
decisions can be taken and important information about these decisions can be
recorded in a way so that it can be trusted and relied on by all parties in the
consortium. This project proposes such a system, providing a shared and immutable
decision log based on a distributed ledger where information can be stored in strictly
defined ways agreed upon by all parties. Such a system would be able to serve as a
trusted source of truth in disputes because of its immutability and strictly defined
transactions and each member of the consortium would be able to own and run their
own equal replica of the data to increase trust and provide protection against data
tampering.

1.1 From Bitcoin to Smart Contracts
The idea of using distributed systems to securely decentralize and distribute data
and operations on that data is not unique. A current example of this is blockchains
and the increased use of smart contracts to solve more general problems than just
cryptocurrency exchange and mining.

The concept of blockchains was popularized in 2008 by the original Bitcoin
paper [21], released by an unknown person or group under the pseudonym Satoshi
Nakamoto. Bitcoin is based on previous research and ideas like b-money [9], which
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1. Introduction

in 1998 proposed a protocol for money exchange and contract enforcement without
the need for central authorities like government institutions, and Hashcash [2], which
proposes a proof-of-work algorithm as a denial-of-service counter measure.

In short, proof-of-work based consensus method is based on guessing values
that begins with a certain number zeros when hashed. Hash functions are one-way
functions, which means that they are easy to calculate but hard to invert. In proof-
of-work, this means that finding a value that, when hashed, ends with a certain
number of zeros can only be done by guessing while checking that the found hash
is valid is easy.

In Bitcoin, a coin is defined as a chain of digital signatures and the ledger consists
of cryptographically linked blocks of transactions. A proof-of-work based consensus
method is used to reach consensus about the state of the blockchain, while still
allowing anyone to participate in the network. If a node finds a value that begins
with the given number of zeros when hashed, it gets to insert the next block in the
chain. All blocks contains a pointer to the previous block, so to be able to change a
block, you would not only have to guess correctly once, but once for each previous
block as well, making the blocks cryptographically linked. This method works well,
but is extremely computationally expensive since a main premise is that it is hard
to guess the correct value and a lot of invalid guesses have to be made.

Since Bitcoin was released, many competing cryptocurrencies based on similar
blockchains have been developed, and some systems generalize the transactions to
handle any change of state in the data. One example is Ethereum, which in its white
paper describes Bitcoin more generally as a state transition system:

"From a technical standpoint, the ledger of a cryptocurrency such as
Bitcoin can be thought of as a state transition system, where there is
a "state" consisting of the ownership status of all existing bitcoins and
a "state transition function" that takes a state and a transaction and
output a new state which is the result" [6].

The idea of Ethereum as a more general blockchain, not purpose-built for a
cryptocurrency, is also described:

"What Ethereum intends to provide is a blockchain with a built-in fully
fledged Turing-complete programming language that can be used to cre-
ate "contracts" that can be used to encode arbitrary state transition
functions, allowing users to create any of the systems described above,
as well as many others that we have not yet imagined, simply by writing
up the logic in a few lines of code" [6].

Many other blockchain systems supporting arbitrary state transitions in the
form of smart contracts have been proposed and developed since Ethereum. The
advantages of a blockchain system in terms of the very high level of distribution and
decentralization are obvious, and many industries have realized the value it can add.
There are, however, some major drawbacks that come with the level of distribution
that blockchains provide, that seems to make them suitable only in a very limited
set of applications. Most importantly, the consensus methods needed to ensure
correctness between the replicas are often very complex and the time required to
reach consensus is often very high compared to less decentralized solutions [8].

2



1. Introduction

1.2 Context
This thesis was done at Yolean AB, and as a part of the research project KIDSAM:
Knowledge and information-sharing in digital collaborative projects. Yolean AB of-
fers software that supports lean management, mainly a visual planning application
that is used by, among others, several construction companies. KIDSAM aims to
create an increased understanding of how technology can support the connected in-
dustry to conduct collaborative projects where people still have a central role. Two
types of collaborative projects are defined:

• Long-term collaboration, where the process is characterized by preventive main-
tenance over the course of several years;

• Short-term collaboration, which is characterized by a shorter and more inten-
sive process where decisions need to be taken and where traceability, trans-
parency and clarity regarding these decisions can be valuable throughout the
lifetime of the product. [15]

The focus of this thesis is short-term collaboration as defined above. The collabo-
rative decision process in our case are meetings in consortiums of organizations and
the aim of traceability, transparency and clarity is directly applied to the decision
log of those meetings through distributed ledger technology.

1.3 Aim
This work aims to investigate the feasibility of a log of causally dependent events
which is distributed both in terms of data storage and in terms of ordering and
validating events, for the purpose of being used as a secure, trustworthy and usable
log of decisions taken during large meetings within a consortium of organizations who
do not necessarily trust each other. This is done by implementing and evaluating a
prototype system based on a distributed ledger. The events that should be decided
upon by the system and logged are decisions, votes and attendance. In this context:

• Security is provided by the log being immutable and tamper proof;
• Trust is provided by the distribution of the deployed software, the data and the

modification of data among the consortium’s organizations so that no central
authority has to be trusted;

• Usability is defined in terms of response time and delay; users should experience
a near real-time response to actions in the system and no significant delay
should be added to the meeting as a whole.

Decision propositions should be presented to hypothetical or simulated clients for
a certain amount of time before being logged along with attendance and votes. The
votes should reflect the attendants that have reservations against the decision, and
follow the model of silent accept; objections are explicit and acceptance is implicit.

Events relating to these decisions have to be agreed upon and ordered by the
distributed system and stored in a way so that the information is immutable and
shared between the organizations represented at the meeting. While providing these
features, the delay added to the meeting as a whole should be as low as possible and
response times for individual meeting attendants should be near real-time to ensure

3



1. Introduction

usability.
The number of intended meeting attendants is related to the intended use of the

system and a higher capacity of the system in terms of the number of attendants
or organizations would make it applicable in more situations. The system has to
support at least tens of meeting attendants to be usable at all, but the goal is for the
system to be much more scalable than that, and support hundreds of attendants.

1.4 Delimitations
This work is limited to the decision log itself; how events are created, agreed upon
and stored in a way that fulfills the requirements of trust and security. There are
several factors that would be part of a system based on this work, but falls outside
its scope:

• Authentication. There are many ways of handling client authentication in
centralized or distributed ways. In this work, meeting participants will be
assumed to be authenticated in some way, but the specifics are not relevant
to the study.

• User experience. This study will talk about usability in terms of performance,
not how participants would interface with the system.

• Human communication. When discussing remote meetings and meeting par-
ticipants, the focus will be the capacity and usability of the decision log itself,
not details regarding how the meetings themselves are conducted or scaled up.

1.5 Problem Specification
The evaluation and performance goals will have to do with the use case; memory
or computational performance are not likely to be issues while delay in the system
is critical, both for usability but also from a perspective of cost since meetings in
industry often cost a lot of work hours and therefore money. Long delay times
on transactions are also the typical drawback of distributed ledgers, and a high
throughput of causally ordered events is difficult in any distributed system since the
number of messages required in most sufficient consensus methods increases quickly
when the number of nodes is scaled up.

The key question that this work will attempt to answer is: how large is the cost
in time and usability for the proposed solution to the issues of trust and security,
and at which point does that cost become too large? To answer this, the following
metrics are defined:

• Response time.The response time describes the time between when a user
presses the button to vote against a decision and when confirmation is given
to the user that the vote is registered in the system. This metric tells us how
much the consensus requirements affect usability from the point of view of
the individual users. The users of the system would expect a near real-time
response to their actions and even though joins, leaves and disconnects are
causally unrelated, recording attendance for each decision implies that they
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are causally related to, and must be ordered in relation to, other events of a
decision.

• Overhead. The overhead describes the surplus time it takes for the system to
go through the process of recording a decision during a meeting, in addition to
the valuable time participants are given to cast their vote. This metric relates
to the cost of the prototype system in terms of time added to a meeting.

1.6 Outline
Chapter 1 introduces the thesis. The issue and the proposed solution are presented
along with relevant context. Finally, a concrete aim and the limitations of the thesis
are given and a problem specification describes how the results are defined so that
they relate to the aim.

Chapter 2 gives a background to the thesis by presenting theory relevant to
the prototype design and implementation and to the experiment. This includes
permissioned distributed ledgers in the context of the experiment and in particular
the relevant theory behind the distributed ledger framework selected for the proto-
type system, and also theory regarding distributed consensus methods which gives
context to the results.

In chapter 3, an abstract overview of the prototype system is presented where the
different high-level components of the system are described and justified in relation
to the experiment. Chapter 4 describes the implementation of the prototype system
in enough detail for the experiment to be recreatable and for the results to be
understood and related to specific implementation details.

Chapter 5 presents the experiment. Concrete definitions of the metrics, how
they relate to the aim and how they are measured in the prototype are given and
the results of the measurements are presented. Chapter 6 discusses the results in
detail in relation to the work as a whole, and in particular to the prototype system
and the expected results. Ethics and sustainability factors relating to the thesis are
also discussed.

Chapter 7 presents related works and how they compare to this thesis in terms
of aim, methodology and results. Finally, chapter 8 concludes the thesis and sum-
marizes the aim, methodology, and findings.
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2
Background and Choice of

Framework

This work’s application of distributed ledger technology to decision logs of meetings
in the form of a prototype system builds on top of existing theory in a few key ways,
all of which will be described below in this chapter.

First of all, a permissioned distributed ledger is chosen in favor of a permission-
less system like Bitcoin or Ethereum that are mentioned in section 1.1. Specifically,
Hyperledger Fabric is chosen. This choice aims to remedy the issue of the relatively
impractical proof-of-work consensus methods commonly used in permissionless sys-
tems, but is also a natural choice in general when considering that the purpose of
the decision log is to be shared among a consortium of organizations but not outside
that select group of organizations.

Secondly, the consensus methods that are relevant for permissioned distributed
ledgers in general and Hyperledger Fabric in particular are presented and discussed
in terms of their pros and cons for a system such as ours. Specifically, they are
compared in terms of guarantees and time complexity. Ideally, the consensus im-
plementation provides Byzantine fault tolerance while still being efficient enough
(defined in Section 1.5 and evaluated in Section 5.2) to work in our use case.

2.1 Permissioned Distributed Ledgers in General
A distributed ledger is a ledger, i.e., a database, that is replicated and distributed
among members of a network. The replicas are synchronized by some form of con-
sensus mechanism. The term is related to, but more general than, blockchain, which
also defines that the data is grouped into blocks and cryptographically linked to each
other to ensure immutability, as described in Section 1.1.

Blockchains and distributed ledgers are most often thought of as open networks
with the proof-of-work consensus method [2] ensuring consensus among the peers
while allowing anyone to participate, which is suitable for something like a currency.
The method works well enough for financial transactions, but it is very slow and ex-
tremely computationally expensive compared to other methods of consensus. When
all peers in the network are known and authenticated, we no longer have a need
for some consensus method that allows public participation and more conventional
consensus methods can be used, which would allow consensus to be reached much
faster.

A permissioned distributed ledger is simply a distributed ledger where, rather

7



2. Background and Choice of Framework

than allowing anyone to participate as in most cryptocurrency systems, only au-
thenticated clients can access the ledger, which completely changes the suitable use
cases. For this work, the ledger will contain information about closed meetings and
we explicitly want the ledger to be shared and available within the consortium of
organizations only, so a permissioned distributed ledger is suitable.

2.2 Hyperledger Fabric
Hyperledger is a project started by the Linux Foundation in 2016. As stated on the
Hyperledger website:

Hyperledger is an open source community focused on developing a suite
of stable frameworks, tools and libraries for enterprise-grade blockchain
deployments [14].

The largest codebase within Hyperledger is Hyperledger Fabric, or simply Fabric.
Fabric was chosen for the implementation of the prototype system used in this
work for a few different reasons, which will be presented in detail below. First,
the modular nature of Fabric makes disregarding components that are irrelevant
to this study, most importantly the specifics of the membership mechanism in the
permissioned system, possible. Secondly, and most importantly, the Execute, Order,
Validate paradigm of executing smart contract transactions used in Fabric allows the
consensus mechanism to be implemented as a separate modular component. This
greatly simplifies the process of comparing different methods of consensus, since no
other component relies on the specifics of the method but rather just the fact that
consensus eventually is reached.

2.2.1 Design Concepts and Motivations
The design choices of Fabric are in large motivated by drawbacks of existing com-
monly used permissioned distributed ledgers, in particular:

• Hard-coded consensus, limiting the possibility of using different consensus
methods for different implementations with different needs and making other
components of the system like transaction validation and access control di-
rectly dependent on the specific consensus method used.

• A domain-specific smart contract language is required due to the transaction
model where transactions are agreed on first and executed later, which means
that the transactions themselves have to be deterministic and always be exe-
cuted sequentially by all peers [1].

To overcome these limitations, a few design choices are made which also makes
Fabric very suitable for this work. The architecture is modular which means that
different functions of the system are separated and interchangeable. In practice,
Fabric is implemented as a set of Docker images performing different functions.
This allows focusing on the components that are relevant for this thesis such as the
smart contracts and the consensus implementation while easily disregarding what
falls outside the scope, like membership service providers and certificate authorities.

Smart contracts can also be written in standard programming languages due to
the unique way in which transactions are handled (see Section 2.2.2) which increases

8



2. Background and Choice of Framework

performance by allowing parts of the execution to be run concurrently and makes
the learning curve for development much less steep.

Below, some key concepts in the architecture of Fabric and how they relate to
concepts in the use case of this thesis are presented.

2.2.1.1 Organizations, Consortiums and Channnels

The concepts of organizations and consortiums in Fabric are directly analogous to
the concepts of the same names in this work.

An organization in Fabric is an entity in the network that through a membership
service provider provides identities and access to the network for all other parts of
the network. The network is made up of organizations and all modular components
belong to an organization. This means that in our case, actual organizations can
participate in the permissioned network on equal terms by deploying their own
components, including their own membership service provider for managing access.

A consortium in Fabric is simply a group of organizations that can communicate
with each other and share one or more ledgers. In our case, they will share ledgers
used for meeting decision logs. For each consortium, a channel is defined which, as
the name states, is the channel of communication for the consortium. Since there
is a one-to-one relationship between channels and ledgers, a channel will define a
meeting in our case. For each meeting, the consortium of organizations that will
participate creates a new channel and the channel’s ledger defines the decision log.

2.2.1.2 Smart Contracts and Chaincode

Smart contracts are implemented in Fabric as chaincode. The terms are used in-
terchangeably even though smart contracts formally defines the transactions and
chaincodes are specific Fabric implementations packaging smart contracts [30], but
for the purpose of this work, we will use the more general term smart contract.

First of all, assets are defined as the stateful targets of transactions in the ledger.
The assets can be implemented as any objects in the supported languages and are
saved in the ledger as key-value pairs. The ledger itself is a blockchain holding the
record of all state changes on assets. Secondly, transactions define how the state of
assets can change and are implemented as methods in the smart contract that can
be invoked by clients. Finally, each smart contract has a defined endorsement policy
that simply specifies the set of endorsing peers for the contract; the peers that have
to endorse a certain transaction for it to be considered valid by the network. Why
this is necessary and the process of how this is done is described in the following
section.

2.2.2 The Execute-Order-Validate Paradigm
When using the model of first ordering transactions and then executing them se-
quentially on all replicas of the distributed ledger, consensus about the order of
state-changing transactions is not sufficient to ensure that all replicas of a ledger
maintain the same state; if the transactions themselves are non-deterministic, the
replicas might still diverge. To remedy this, other distributed ledger systems that
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rely on the paradigm of ordering transactions first and and then executing them
sequentially uses a deterministic domain-specific language for smart contracts.

To allow the use of general-purpose languages in smart contracts, Fabric uses
another transaction model called execute-order-validate [1]. First of all, the trans-
action logic and the consensus mechanism that would otherwise both be part of the
ledger replicas to ensure that all replicas are in agreement about the ordering of
transactions are split into two different components; peers and orderers.

The peers implement most of the functionality of the system and are the end-
points of clients interacting with the ledger. They hold the actual ledger itself, a
state database keeping track of the current state of all assets, and the smart con-
tracts that define the assets and transactions. The orderers have the sole purpose
of reaching consensus about the order of transactions. They are completely decou-
pled from the specific ledger and contract implementations and simply use some
distributed consensus algorithms among themselves to decide and report back the
order of arbitrary transactions sent their way.

2.2.2.1 Execute

The first phase of the transaction paradigm, execute, is done by the peers. Recall
that the ledger data is in the format of key-value pairs. After some client invokes a
transaction of a smart contract kept by a peer, all peers defined as endorsing peers
in the endorsement policy simulate the transaction and creates two sets of key-value
pairs:

• The write-set contains all keys that are modified if the transaction is eventually
validated and added to the blockchain along with their new values.

• The read-set contains all keys that were read during the transaction simu-
lation when producing the write-set, along with their version number in the
blockchain so that other peers can look up their values.

The sets of key-value pairs produced are then signed, or endorsed, by the peer
and sent back to the client that initiated the transaction. The peers defined by
the endorsement policy must not only answer with a signed response, the response
must also be the same for all peers for the transaction to proceed to the next phase.
Requiring all peers defined in the endorsement policy to simulate the executing of the
contract and come up with the same hypothetical state changes and dependencies
(i.e., the write- and read-set) before ordering is the core of how non-deterministic
smart contracts are tolerated.

2.2.2.2 Order

Order, the second phase of the transaction paradigm, is done by the ordering ser-
vice consisting of several separate orderers and invoked by the client that initiated
the transaction after the transaction has been endorsed by all peers specified in the
endorsement policy. The ordering service consists of a set of nodes owned by sep-
arate organizations that run some distributed consensus algorithm to totally order
all transactions. The ordering service also groups transactions into blocks and cryp-
tographically chains those blocks to form the actual blockchain. When consensus is
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reached between the ordering nodes about the order of submitted transactions, the
finished block is sent to all peers in the channel for validation.

There is no dependence between the method used to order the transactions and
the endorsement or following validation of the transactions so any distributed con-
sensus algorithm that totally orders events could be implemented. This is the part
of Fabric that is called pluggable consensus [1]. In practice, officialy implemented al-
ternatives are still only crash fault tolerant at best [18]. A proof-of-concept wrapper
around the Byzantine fault tolerant library BFT-SMaRt that suffices in demonstrat-
ing the added time complexity of handling Byzantine faults also exists [3]. Further
background regarding distributed consensus is given in section 2.3, and regarding
Byzantine fault tolerance in particular in section 2.3.2.

2.2.2.3 Validate

Validate is the third and final step of the transactions paradigm and is done by each
peer after a block of executed and ordered transactions is received from the ordering
service. Since the ordering service cryptographically chains the blocks that make up
the blockchain stored by the peers, all transactions will be added to the blockchain
regardless if they are deemed valid or not, but the current state will only reflect
valid states. Each peer checks for validity in two ways and after that a bitmask
reflecting the result of these checks marks the transactions as valid or invalid in the
blockchain.

The first check is done in parallel for all transactions in the block and simply
checks for signatures from all endorsing peers in the same way the initiating client
checked for signatures in the execute phase.

The second check detects read-write conflicts and is therefore done sequentially
for all transactions in the block. Recall that each transaction is already simulated
by each peer in the execute phase, which produced a read-set and a write-set. Now,
for each transaction, its read-set is compared to the current ledger state and the
write-set is written if they match. If the read-set does not match the current state
of the ledger, it is marked as invalid and added to the log of transactions without
its write-set affecting the current state of the ledger so that race conditions due to
concurrency are prevented.

2.3 Distributed Consensus
There are many options to choose from when it comes to consensus methods without
the restrictions introduced by a permissionless system, and each has their advan-
tages and drawbacks. Simpler algorithms might be simpler to implement and more
efficient in terms of the number of messages needed to reach consensus, but might
not provide the same guarantees as more complex algorithms.

Consensus methods with a certain level of fault tolerance are usually similar in
theory and complexity but can vary significantly in implementation.

In this section, background relevant to consensus methods commonly used in
permissioned distributed ledgers in general and the methods used in this study in
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particular is given, with a focus on the differences between a crash fault tolerant
(CFT) and a Byzantine fault tolerant (BFT) method.

2.3.1 Crash Fault Tolerance
Crash fault tolerance, in terms of distributed consensus, is ensured by a protocol
where consensus is eventually reached even in the presence of faulty processes. Some
important assumptions made about the system for a CFT protocol to be applicable
and suitable are:

• All correct processes answer within some time frame or are timed out. In an
asynchronous system, consensus is proven to be impossible to solve even in the
presence of one faulty process [11]. When waiting for a process, it is impossible
to know if it has crashed or if the response is simply delayed, so the system has
to be made semi-synchronous in some way. A common way of handling this is
to define a process that takes too long to respond as faulty and disregard it,
even if it might answer eventually.

• All working processes follow the same protocol. To handle potentially ma-
licious processes, not just working or crashed ones, completely arbitrary be-
havior must be accounted for and the consensus mechanism becomes more
complex.

2.3.1.1 Paxos

One common way of solving consensus is algorithms based on Leslie Lamport’s Paxos
algorithm [16]. The Paxos algorithm solves fault tolerant asynchronous consensus,
so messages might be lost or arbitrarily delayed, but it is assumed that all agents
actually follow the protocol and that no messages are corrupted. Google uses a
Paxos-like algorithm in their distributed lock service Chubby and notes that "all
working protocols for asynchronous consensus we have so far encountered have Paxos
at their core" [5].

As Lamport notes himself in his 2001 paper, Paxos made Simple [17] (Paxos is
the name of a Greek island):

The Paxos algorithm for implementing a fault-tolerant distributed sys-
tem has been regarded as difficult to understand, perhaps because the
original presentation was Greek to many readers. In fact, it is among
the simplest and most obvious of distributed algorithms. [17].

Several attempts to explain the algorithms more clearly than in the original
paper exists, including Lamport’s own attempt. In short, the algorithms uses two
rounds of message passing for each value that should be agreed on, prepare and
accept. Processes acts as proposers, acceptors, and learners. In the first round,
proposers propose numbers and seek accepts from a majority of acceptors, which
only accepts numbers higher than any previous number. In the second round, the
actual value is decided by a quorum of acceptors and sent to learners. Leadership
election is used to select a distinguished proposer as the only one issuing proposals
to ensure progress [17].

The Paxos algorithm is often implemented as multi-Paxos, which works as Lam-
port’s original description of Paxos but with one important optimization. If a suc-
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cessful leader election has occurred and a distinguished proposer exists, it will always
propose increasing numbers and the first round becomes unnecessary as long as that
leader is still working [33].

2.3.1.2 Raft

Raft is a consensus algorithm that aims to offer the same guarantees and similar
performance of Paxos while being easier to understand and implement. The default
ordering service of Hyperledger Fabric since version 1.4.1 is based on Raft [18].

Ongaro et al. [23] highlights the perceived flaws with Paxos and how Raft
attempts to remedy them:

• Paxos was designed with was is called single-decree as its foundation, as op-
posed to multi-Paxos (described above), even though multi-Paxos is more prac-
tical in most cases. Indeed, reaching consensus on a single decision is the point
of view of Lamport’s description in Paxos Made Simple [17]. This is pointed
out as the reason for the lack of actual open-source implementations strictly
based on Lamport’s works and for the perceived difficulty to understand and
describe the algorithm. On the other hand, Raft was designed as a log repli-
cation system from the start, rather than a system where a set of entries are
agreed on that then must be melded into a log. Several full-specification open-
source implementations of raft exist [27] and a user study was conducted which
indicates that Raft is easier both to understand and implement than Paxos.

• Raft differentiates itself from Paxos by the use of a stronger leader node. It is
argued that in a real-world scenario where multiple decisions have to be made
(in contrast to the reasoning behind single-decree Paxos), and since a leader
election still has to be performed, it is more practical and efficient to first elect
a leader and then let that leader coordinate following decisions.

2.3.2 Byzantine Fault Tolerance
Another family of algorithms for solving consensus in distributed systems are ones
that are Byzantine fault tolerant (BFT). Similar assumptions about the system are
made as in the CFT case, but with one major difference; processes are not assumed
to be following the protocol correctly. Instead, BFT algorithms aim to continue
working correctly even when a subset of processes act completely arbitrarily. In the
1980 paper Reaching Agreement in the Presence of Faults by Lamport et al. [25], it
was shown that the problem stated in the title can be solved:

"for, and only for, n ≥ 3m+1, where m is the number of faulty processors
and n is the total number". [25]

2.3.2.1 Advantages and Disadvantages

Byzantine fault tolerance is especially relevant in the case of permissioned dis-
tributed ledgers since different nodes in the system are controlled by different or-
ganizations. In a distributed system where one party owns all nodes, the code
running on each node is controlled and the essential part of fault tolerance is to
handle the unknown factors of the system; network faults and crashes. In the case
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of distributed ledgers though, different parties control the code running on different
nodes and making sure that some nodes cannot maliciously control the outcome of
transactions or the state of the system is a much more relevant concern.

The downside of Byzantine fault tolerant algorithms is an increase in the number
of messages and message passing rounds required to reach consensus. While a CFT
algorithm assumes that all nodes actually try to reach consensus, a BFT algorithm
has to take into account nodes that actively try to prevent consensus from being
achieved. For example, they might try to manipulate the system by lying about
which messages they have received or by sending different responses to different
nodes. To be able to mask this broader range of faults, a more complex algorithm
is needed.

2.3.2.2 Practical Byzantine Fault Tolerance

A practical BFT algorithm was first proposed by Miguel Castro and Barbara Liskov
in 1999 [7]. The algorithm defines a view as the set of replicas in the system and
assigns a single primary replica based on the replica’s ids. Messages in the consensus
process between replicas are accepted based on a digest and sequence number of a
message and the current view visible to the replica. There is a protocol in place to
handle view changes that will not be discussed in detail here.

In short, during normal-case operation, the algorithm uses three rounds of mes-
sage passing between a request to the primary and a reply; pre-prepare, prepare, and
commit. When the primary receives a request, it sends pre-prepare messages with a
certain sequence number to all replicas. If the message is accepted by a replica, it
sends prepare messages to all other replicas, including the primary. When a replica
has received n ≥ 2mn valid prepare messages including its own, where m is the
maximum number of faulty nodes (see Section 2.3.2), it sends a commit message
to all other replicas. If a replica has received n ≥ 2m + 1 valid commit messages
including its own, it sends a reply to the client [7].

Essential to this work is that, as can be seen in Figure 2.1, messages are multi-
cast by all replicas except the primary in the prepare phase and all replicas in the
commit phase. This means that when increasing the number of nodes, the number
of exchanged messages will increase much faster for the pBFT algorithm than for
Paxos.
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Figure 2.1: The messages passed between replicas in normal-case operation with
four total replicas, capable of handling a single faulty replica.

2.3.2.3 Byzantine Fault Tolerance in Permissioned Distributed Ledgers

There are many algorithms that are based on pBFT, some of which are used in
permissioned distributed ledgers. One example is the Istanbul BFT consensus algo-
rithm [20] which is used in the permissioned blockchain platform Quorum. Another
example is an ordering service for Fabric implemented as a wrapper around BFT-
SMaRt [3], which is a Byzantine fault tolerant state machine replication protocol
implemented as a Java library.

Using a BFT algorithm in the prototype system of this thesis further increases
the guarantees that are provided by the system to include arbitrary or malicious
activity from some organizations in the consortium. However, it comes at the cost
of more message passing rounds needed to reach consensus and a higher message
complexity in terms of the number of nodes, which might present an obstacle when
scaling up the number of organizations and participants at the meetings.
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3
Prototype Design and Overview

This chapter describes the design choices made for the prototype system and gives
a high-level overview of its functionality and components.

3.1 Design Motivations
The design of the prototype system was decided on based on the aim of the system
as secure and trustworthy by implementation and with a quantifiable usability, along
with the context given by Yolean providing domain-specific information about meet-
ings in consortiums in terms of functionality and scale. The following four aspects
guided the prototype system design:

• Similarity to a production system
• Distribution
• Lightweight user client
• Scalability

The prototype system is intended to act as a proof of concept for actual produc-
tion systems, so it should be similar to a production system so that both perfor-
mance metrics and the system as a whole can be evaluated in the context of such
a system. There already exist several performance evaluations of permissioned dis-
tributed ledgers from a generic point of view [13, 32, 22]. In contrast, the perfor-
mance evaluation of our system is done in the context of a specific use and aim; a
distributed decision log and its usability.

To provide trust as security as defined in this work (Section 1.3), the system
should be completely distributed among the consortium’s member organizations.
Each organization should run a replica of the distributed ledger to have a stake in
the storage of and transactions on the data, and all other parts of the system should
be deployed separately for each organization and only get and modify the meeting
state through the ledger, so that no organization has to rely on software deployed
by another organization.

Each participating organization will run a replica of the system as described
above, but for the system to be usable and practical in actual meetings of different
scales, the user client should be lightweight and simple to use and deploy. The
individual users of the system during a meeting should be able to participate using
something as simple as a web interface or a smartphone application, and all business
logic should be handled by the distributed system and not rely on the participating
clients.

For the sake of functionality and ease of deployment and use in different con-
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sortiums of different sizes, the prototype system must be easily scalable in terms of
participating organizations. For the experiments and evaluation of the system, the
system also has to be easily deployed in a repeatable way at different scales in terms
of the number of ledger replicas, the network delay between the components and
the number of participating clients.

3.2 Decision Process Model
The prototype system represents a meeting as a log of decisions which are presented
to users sequentially according to a meeting protocol or similar. Following this,
decisions can be in three distinct phases; before, during or after they are handled
by the participants of the meeting. When a decision is voted on, the silent accept
model is followed, so attending users either implicitly accept a decision or explicitly
record their reservation.

To be able to keep a record of who took part of information during a meeting,
attendance must be asserted by the system every time new information about the
decision arrives, which is every time the decision enters a new phase. A user can be
said to have accepted a decision only if he was in attendance at the start and end
of the voting phase without explicitly objecting.

Figure 3.1: The decision process

The Smart Contract: A smart contract defines the stateful information stored
in the distributed ledger on which the system is based in terms of assets and trans-
actions. In our case, a ledger belonging to a consortium represents a meeting and
the assets logged in the ledger are decisions. Following the decision process model,
the state of these assets is defined by:

• the current phase of the decision
• a list of the current attendants
• their attendance and,
• their potential reservation

The transactions define the following state changes of assets:
• changing the phase of the decision
• adding and removing clients from the attendance list
• setting the attendance of clients
• setting the reservation of clients
These transactions also define under which conditions the state of an asset can

change in a certain way. The phase can only change after attendance is asserted and
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in the order outlined in Figure 3.1, clients can only be added to the attendance list
before the decision and clients can only set their reservation during the decision.

3.3 Adversary Model
To fulfill the trust requirement of the system and ensure that the backends can run
in parallel without giving any organization the possibility of changing the business
logic or lie about its clients in any meaningful way, it is important that all events
related to the meeting state result in transactions that are agreed on by the network
of ledger replicas. In particular, the backend of a malicious organization might lie
about:

• The amount of information received before voting
• The amount of time passed during the voting phase
Let us look at how to ensure the properties above. An organization might want to

claim that it received less information than it actually did. Logging the attendance
at the start of and end of the decision process prevents this. To participate in a
decision, a backend must assert the client’s attendance. If it acts unresponsive later
in the decision process, the initial attendance has still been immutably recorded and
it can be shown that the client stopped responding after receiving the information.

Asserting the time passed is a bigger issue due to the asynchronous nature of
networks. Each time one organization tries to end the voting phase of a decision,
another might claim the transaction to be invalid since not enough time has passed,
which might be true due to network delays or other factors. Malicious intent might
be assumed if these specific transactions are consistently delayed while others are
not, and if all transactions are delayed enough to give attendants significantly more
time to vote (in the order of seconds), that organization might be excluded due to
the high response time and cost added to the meeting. However, no ways of handling
these kinds of attacks are currently implemented in the prototype system.

3.4 Components
The prototype system consists of three main components; the distributed ledger, a
backend, and the clients. Each participating organization runs a system consisting
of two components; a backend and a ledger replica, and individuals participating in
a meeting connects a client to the backend component of their organization.

In this way, each organization can run the complete system in their own cluster
(or however else they wish) and their user clients only connect to their own backends,
so that they do not have to depend on other organization’s deployed software. All
events that change the state of a decision in any way result in a transaction to the
ledger, so all cross-organization communication is confined to the ledger replicas
reaching consensus.
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Figure 3.2: An overview of the system components

3.4.1 The Distributed Ledger
The distributed ledger component is made up of the ledger replicas of all partici-
pating organizations, and each organization’s ledger replica provides access to the
ledger to the organization’s backend component. The intended use of the system is
for each organization to run their own ledger replica so that both the validation and
ordering of events and the data storage itself are distributed across all parties.

All ledger replicas run a smart contract defining the assets and transactions. In
our case, the assets represent decisions during a meeting and the transactions define
all possible state changes that a decision can undergo. The transactions are invoked
by backends of the participating organizations and the distributed ledger decides
the validity of the proposed transactions and reaches consensus about their order as
described in Section 2.2.2.

3.4.2 The Backend
The backend is the endpoint for user clients to act on the system, so it interfaces with
clients on one end and with the distributed ledger on the other. The logic between
the clients and the ledger decides the decision process and abstracts the data stored
in the ledger and the possible state changes, defined by the smart contracts as started
above, into client actions.

Some actions, like clients joining a meeting or reserving their vote on a decision
are initiated explicitly by the clients and others, like a client timing out or silently
accepting a decision, must be inferred by the backend based on the state of the
ledger and the connected clients.

Many instances of the backend can work concurrently since the distributed con-
sensus regarding order is solved by the ledger, so ideally each organization would
run their own instance of a backend to remove any central point in the system and
provide the trust as specified in Section 1.2.
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3.4.3 The Client
The clients interface with a backend to provide the explicit actions and implicit
states mentioned above. For the purpose of this work, the client component could
hypothetically be omitted in favor of the backend simulating events directly, but
for the sake of separation of concern and also for the sake of making the proto-
type system as similar to a hypothetical production system as possible, clients are
implemented as a separate component.

3.5 Kubernetes for Deployment and Scaling
Kubernetes [4] is an open-source container-orchestration platform developed by
Google. Since the Hyperledger Fabric is implemented as a set of Docker images,
a suitable way of implementing and deploying the rest of the system was to con-
tainerize all parts and deploying them in a Kubernetes cluster. It is not strictly
necessary to run the prototype system in a Kubernetes cluster, the same results
could be achieved on a single host using Docker Compose, but Kubernetes has a few
advantages:

• Ease of deployment and scaling. There are many different ways of building
containers and deploying them to Kubernetes. Which ones that are used for
different components in the prototype system is discussed in detail later in this
chapter. When deploying the entire system to a Kubernetes cluster, scaling
components and parameters up and down is often as easy as changing a few
lines of markup, where more specific changes for individual containers would
be needed using Docker Compose.

• Jobs. The concept of jobs in Kubernetes makes it easy to create consistent
deployments and configurations. Setting up a complete Hyperledger Fabric
system requires a considerable amount of configuration and is usually done
using a number of bash scripts, as can be seen in Fabric’s sample Github
repository [10]. This would not be such a major issue in production systems
where, for example, a set of peers for an organization are set up once and
then used during the lifetime of the system. However, in our case, we want to
reproduce configurations with minor changes very frequently to run test cases
and collect metrics, which makes the initial setup much more tedious. The
setup process can be simplified immensely by using jobs and related open-
source tools.

• Realism and re-usability. In an actual production system, some container-
orchestration system would probably be much more likely than specific de-
ployments for individual hosts. In fact, Yolean uses Kubernetes and many of
the tools and procedures used in this work for their own software deployments.
For future works or implementations based on this work, using Kubernetes
makes it much more likely that code will be reused.

The nodes in a Kubernetes cluster are called pods, and they encapsulate one or
more containers into a single deployable unit. Pods deployed in a Kubernetes cluster
are logically separated from each other and assigned unique IP-addresses while the
containers running in a pod share some resources and communicate with each other
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over localhost. In our case, the pods each represent a distinct component in
the system. The orderer and backend pods run one container each while the peer
functionality is made up of four different containers. Each organization runs their
peers, orderers and backend in a Kubernetes cluster (Figure 3.3).

Figure 3.3: The components of the prototype system with the default (Raft)
ordering service.

Helm Charts: Helm charts provided by the open-source project PIVT [26] are
used for deploying all components of Fabric. Helm is a tool for managing applications
in Kubernetes; a chart defines the components of the application based on templates.
Each component template loops over a set of component definitions passed to it in
a markup file at deployment and substitutes specified values in the configuration
based on those definitions.

Official Hyperledger Fabric sample repositories rely heavily on complex shell
scripts and individual configuration files for each component, which makes reconfig-
uration complex, especially due to the separation that is introduced by running the
system in a Kubernetes cluster. Helm allows us to easily recreate similar compo-
nents with minor differences in configuration like peers and orderers and to easily
scale up the number of said components by using template files.

The Helm charts provided by PIVT deploys peers and orderers as pods in the
Kubernetes cluster. Argo Workflows, a workflow engine used to set up jobs in
Kubernetes, is then used to create jobs for setting up channels on consortiums and
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installing smart contracts on those channels according to a configuration file. The
charts also sets up membership service providers and certificate authorities for all
organizations and joins all components to the appropriate organizations. This is
very helpful when scaling up the number of peers and orderers but is not discussed
in detail as it falls outside the scope of this work.

The orderer pods simply run one container each; the orderer itself. The peer
pods run:

• A peer container which keeps the blockchain itself in local storage and handles
the logic of the peer as described in Section 2.2;

• A ledger state container running a database that, generated from the blockchain
kept by the peer, provides the current world state and (for performance as each
transaction validation looks up previous states) an indexed view of all trans-
actions;

• A chaincode container running the installed smart contracts;
• A Docker daemon container, running Docker-in-Docker. The peer container

needs an endpoint to a Docker daemon to set up the chaincode container on the
pod. Current versions of Kubernetes use containerd as the container runtime
rather than Docker, so a separate Docker daemon is needed.
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4
Implementation

This chapter describes specific choices made regarding the implementation of the
prototype system, and the implementation in detail in terms of components and
functionality. Since the essential part of the evaluation of the prototype system is the
distributed ledger component and its performance, the system has been implemented
with the intention of being easy to test and scale in ways relevant for the experiments.

4.1 The Ledger Component
The ledger component is implemented in Hyperledger Fabric as a number of organi-
zations. An organization in Fabric is defined by a membership service provider, and
the membership of an organization in a consortium along with its permission to cre-
ate channels is controlled by the consortium’s orderers. Since the orderers are also
members of organizations, and for the sake of separating the membership service
providers for these two purposes, each actual organization will in our case run two
organizations in Fabric; one for the orderers and another for all other components.

It is assumed that all participating organizations want to run at least one peer
and one orderer so that they can participate in both the validation and ordering of
transactions, but in theory some organizations could run peers but not orderers or
vice versa. An organization might want to run more peers for redundancy or, more
importantly for this work, more orderers to tolerate a higher number of faulty or
malicious orderers in other organizations.

It is also assumed that all peers are both committing and endorsing peers, each
executing the chaincode for all transactions and holding a replica of the ledger. It is
important that at least one peer from each organization endorses and validates each
transaction proposal, and since each organization is assumed to have at least one
peer, it is suitable for testing purposes to cover the worst-case scenario performance
wise and require all peers to validate all transactions. Following this, the organiza-
tion membership for peers is not essential when scaling up the number of peers for
testing. In a production deployment, the delay would most likely be longer between
the clusters of different organizations, but delay is already something we can add
between peers, and can just as well be added between peers within an organization.

4.1.1 The Smart Contract
Smart contracts in Hyperledger Fabric are defined by assets stored in the ledger and
transactions on those assets. The ledger has two components; the world state, which
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contains information about the current state of the assets, and the blockchain which
contains an immutable log of all transactions on said assets [30].

4.1.1.1 The Asset

As described in Section 2.2, smart contracts in Fabric are written in conventional
non-deterministic programming languages. Our smart contract is written in JavaScript
and defines an asset in JSON as follows:

1 decision_id : {
2 state: 'pending ' | 'ongoing ' | 'ended ',
3 attendance : [
4 {
5 client_id : uid,
6 hereAtStart : boolean ,
7 hereAtEnd : boolean ,
8 reservation : boolean
9 },

10 ...
11 ]
12 }

The decision_id key is the key to the asset (decision) in Fabric’s state database
and the following object is the value.

The state describes the status of the decision. A decision is initiated as
'pending', set to 'ongoing' during voting, and finally set as 'ended' when the
decision process is over.

The value of the attendance key is a list of all clients participating in the
decision. Each client is identified by a client_id and has three additional boolean
properties: hereAtStart indicating if the client acknowledged its attendance after
the decision process began (decision state set to 'ongoing'), hereAtEnd indicating
if the client acknowledged its attendance after the decision was ended (decision state
set to 'ended'), and reservation indicating if the user voted against the decision.

4.1.1.2 The Transactions

The transactions of the contract are defined as follows:
1 startDecision ( client_id ): decision_id
2 join( client_id , decision_id )
3 here( client_id , decision_id )
4 reserve ( client_id , decision_id )
5 setOngoing ( decision_id ): 'success ' | 'error '
6 setEnded ( decision_id ): 'success ' | 'error '

The startDecision transaction adds a new decision asset to the ledger state
with a unique id and returns that id to the caller.

The join and here transactions are invoked by a client with a unique client_id
to join a decision or announce its attendance. A decision can only be joined
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if its state is 'pending' and the attendance announcement sets hereAtStart or
hereAtEnd for the client with matching client_id to true depending on if the
state of the decision is 'ongoing' or 'ended'. The reserve transaction sets the
reservation boolean for the client with matching client_id to true.

The setOngoing and setEnded transactions changes the state of a decision and
returns the outcome of the transaction. Since the attendance announcements of
clients depend on the decision state, a confirmation of the transaction is returned
after which the clients can be asked to announce their attendance for the given state.

4.1.2 A Byzantine Fault Tolerant Ordering Service
The BFT ordering service implemented in this work, and currently the only available
BFT ordering service for Fabric, is a wrapper around BFT-SMaRt (Byzantine Fault
Tolerant State Machine Replication) by João Sousa et al. [31]. In the 2014 paper
State Machine Replication for the Masses with BFT-SMaRt by João Sousa et al.
[3], it is argued that even though a lot of academic work has been done about
Byzantine fault tolerance, practical use in real deployments is lacking due to the
lack of robust implementations. BFT-SMaRt aims to provide this by implementing
an understandable and simple yet high performance library. The method of reaching
consensus is roughly similar to practical Byzantine fault tolerance, as can be seen
in Figure 4.1. The three phases (propose, write, accept) correspond to the phases
as described by Castro and Liskov in 1999 (pre-prepare, prepare, commit) [7].

In the BFT-SMaRt Fabric ordering service, the architecture is similar to the
Kafka-based implementation that was the default ordering service of Fabric before
version 1.4.1 rather than the current Raft implementation. Rather than the service
being completely made up of the ordering service nodes spread out over different
organizations (Figure 3.3), organizations run frontends (Figure 4.2) that represent
the ordering service nodes, while the BFT consensus is solved by a separate cluster
of 3f +1 ordering nodes where f is the number of tolerated faulty or malicious nodes
(as described in section 2.3.2).

Figure 4.1: The message pattern of BFT-SMaRt [31] in normal-case operation.
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Figure 4.2: The components of the BFT-SMaRt [31] ordering service

This way of organizing the ordering service presents an issue in our case when
it comes to decentralization, since we would like each organization to have an equal
stake in the ordering without having to trust a separate network of ordering nodes
(further discussed in the article Demystifying Hyperledger Fabric ordering and decen-
tralization by Arnaud Le Hors [18]), and an official BFT ordering service is planned
that will be more similar to the current Raft implementation to address the issues
of decentralization (as stated in the Fabric documentation [24] and in this very in-
formative mail exchange including developers of both Fabric and BFT-SMaRt [28]).
However, the current BFT-SMaRt wrapper should be sufficient in highlighting the
added performance cost of solving BFT consensus.

4.2 The Backend Component
The backend component has three distinct responsibilities:

• Business logic. As described in Section 4.2.1 the smart contract defines an asset
representing a meeting and exposes several transactions that can be invoked
on assets. However, the application itself is exposed to clients as a system of
meetings and decision proposals. The business logic of our application is more
complex than can be fulfilled by simply having clients invoke transactions, and
this additional complexity is handled by the backend. This includes:
– The business logic of the decision itself. After a decision is initiated, each

client receives a certain time window from the backend during which it
can choose to act. No further actions can be accepted from a client after
its time window has passed and when the time window has passed for all
clients, the decision should be ended.

– Controlling client attendance, and most importantly deciding when clients
are timed out. This is important since each decision depends on all par-
ticipating clients, so an unresponsive client will add a cost to the meeting
as a whole. It is also important to note that the order of events during
decisions are causally related to the participation; no client leave should
be logged after an event that the client did not see. Therefore, the atten-
dance of all clients must be ensured at each related event.

• Fabric Gateway. The backend implements Fabric’s Gateway SDK [12], acting
as a gateway between the Fabric network and the business logic implemented
between the backend and the clients.

• Metrics. The backend collects the metrics for the experiment (Chapter 5).
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4.2.1 Implementation Details
The backend is developed in Node.js and deployed as a separate pod running a single
container in the same Kubernetes cluster as the Fabric pods (Figure 3.3). Along
with the backend pod, a Kubernetes Service resource is created, simply mapping
the internal cluster address of the backend to an externally accessible address for
communication with clients.

Using the official Fabric SDK for Node.js to communicate with the Fabric net-
work, a transaction of the smart contract is invoked in the following way:

1. A given connection profile containing information about the Fabric network is
read from the file system. The profile specifies the location of at least one peer
to be used as the endpoint and one orderer (the organization’s orderer frontend
in the case of BFT, see Section 4.2.3) for accessing the ordering service. It also
contains the location of and credentials for accessing the certificate authority
of the organization.

2. If not already done:
• Using the given credentials and certificate authority location, the backend

enrolls a user for itself to the certificate authority and is given a X.509
certificate used to authenticate itself within the organization.

• The X.509 certificate is saved in the file system to be reused for each
successive transaction.

3. A gateway to the Fabric network is opened using the connection profile and
X.509 certificate.

4. The channel and smart contract is specified and the transaction is invoked.
5. When a response to the transaction is received, the gateway is closed.

4.2.2 Client API
The following API is provided to the client:

• /here, announces its attendance.
• /startDecision, tells the backend to initiate the decision process.
• /reserve, votes against a given decision, rather than following silent accept.

The startDecision and reserve endpoints are called explicitly by a user while
the here endpoint is automatically called by the client at startup to announce its
existence to the backend. The backend keeps track of existing clients by keeping
their addresses in a list along with a unique client id. When a new client announces
its existence to the backend, it is added to the list and when it is unresponsive, it is
removed from the list.
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4.2.3 The Decision Process

Figure 4.3: The communication between the components during the decision pro-
cess.

The decision process (Figure 4.3) can be divided into three phases according to the
three states of a meeting represented in the ledger:

• Pending: This phase is initiated when some client calls the startDecision
endpoint on the backend, which:
– creates a new pending decision and adds it to the ledger state. The smart

contract responds with a unique id to identify the decision. The clients
are notified and respond to join the decision, or are timed out.

– invokes the join(client_id, decision_id) transaction to add the clients
to the decision’s attendance list.
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• Ongoing: When all clients have responded or been timed out, the backend sets
the decision state to 'ongoing'. When the ledger component responds, clients
are notified and again respond to affirm their attendance. The backend sets
the hereAtStart boolean on the ledger state for each responsive client. The
backend also starts a timer for each client when their attendance is affirmed,
and during its lifetime the clients are free to call reserve to vote against the
decision. The client should present its user with the same time frame, but
keeping a timer at the backend as well protects against malicious or faulty
clients delaying the meeting. Note that organizations might still run malicious
backends to delay the meeting, as described in Section 3.2.

• Ended: When the decided time has passed for all clients, the backend sets the
state of the decision to 'ended' in the same way that it was set to 'ongoing'
previously. Once again, clients are asked to affirm their attendance.

When the decision has been ended, a client can be considered to have par-
ticipated in the decision without reservation if the hereAtStart and hereAtEnd
booleans are true and the reservation boolean is false.

4.3 The Client
The client software is developed as a standalone Node.js application. The client
uses the widely used node-fetch and express libraries to communicate with the
backend over HTTP. When started, the address of the backend service is passed to
the client so that it can announce its existence to the backend.

Clients can receive three types of requests from the backend, corresponding to
the three different phases of a decision. For each request, the client will automatically
respond to affirm its attendance. The consequence of the affirmation depends on
the decision state:

• Decision started. The client is joined to the decision.
• Decision ongoing. The client presents its user with a timer and the option to

reserve against the decision.
• Decision ended. The decision is over and the outcome can be presented.
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5
Experiment

In this chapter, an experiment intended to evaluate the usability of the prototype
system is presented. Two metrics are defined to quantify usability, and the results
of these metrics at different system scales are presented.

5.1 Methods
Two metrics, overhead and response time, are defined and measured at different
scales in terms of meeting size and network conditions. The overhead metric quan-
tifies the added cost in time of the system to the meeting and the response time
metric quantifies the usability of the system from the point of view of a single user.
We can call the system usable, as defined in Section 1.3, at a given scale and a given
overhead cost if the response time is near real-time (defined here as less than three
seconds).

5.1.1 Scaling
The prototype system scale is determined by three aspects:

• Number of orderers. Increasing the number of orderers is analogous to in-
creasing the number of organizations represented at a meeting, since each
organization is expected to run at least one orderer. This increases the time
to reach consensus for all transactions.

• Number of clients. Increasing the number of clients is analogous to increas-
ing the number of participants of a meeting. This increases the number of
transactions for each decision.

• Network delay between Fabric components. Increasing the network delay be-
tween the components in the distributed ledger increases the time for ordering
and validating transactions.

Scaling up the number of orderers and clients is achieved by simply running
more instances of the components. All clients and orderers follow the same protocol
regardless of the organization to which they belong, so for performance evaluation
given a certain consensus algorithm and network delay, the number of clients and
orderers is the only relevant configuration factor. In the case of orderers, a change
to the system configuration is needed as well since the number of orderers is pre-
determined. Since all Docker containers in the system run Linux images, network
delay can be added for each container by using the tc (Traffic Control) program.
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5.1.2 The Overhead Metric
The purpose of the overhead metric is to quantify the cost in time that is introduced
by using the prototype system. The overhead of a decision introduced by the system
is defined as: total_decision_time - time_to_act

The total time is defined as the time between when a client initiates a deci-
sion (the startDecision call to the backend) and when the decision is ended (the
decisionEnded call from the backend). The time to act is given, but does not
matter for this experiment since we will subtract it from the total time to get the
overhead.

To get the economic cost added by the system during a meeting, the overhead
of a decision can be multiplied with the number of decisions and the number of
participants to get the paid man-hours added.

The overhead metric is measured from the point of view of a single client. For
this experiment, we will set the time to act at zero, so that the total time equals
the overhead for one client. The client starts a timer when initiating a decision,
responds to the backend according to the decision process and stops the timer when
the decision is over; the resulting time is the overhead at a given scale.

Figure 5.1: A simplified view of the decision process from the view of a single
client and the overhead metric.
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5.1.3 The Response Time Metric
During the decision process (Figure 4.3), since all organizations are synchronized by
relying on the ledger as the source of truth, all transactions resulting from clients
asserting their attendance in a given phase and all reserve votes from clients must
be resolved before moving on to the next phase. This means that during each
decision, some smart contract transactions depend on others rather than relying
on an eventual response as could be done if there was no dependency between
transactions. We need a near real-time response for the system to be usable from
the point of view of actual users. The purpose of the response time metric is to
quantify and evaluate this property.

The response time is defined as the time between a client action resulting in a
smart contract transaction and its response during a decision. Some transactions do
not have to return anything to the backend, but starting a decision and changing its
state have return values after which a response is expected by clients. This response
time will be experienced by the users as a delay between an action or event and its
effect, and should be near real-time. In our case, after consulting experts at Yolean,
we define near real-time as a delay less than 3 seconds.

Since the delay in communication between the backend and a client is simply
the network delay we set, not the response time of the system, the network delay
between the backend and a client is omitted from the results by measuring the
response time from the point of view of the backend. The backend measures the
response time by starting a timer when a transaction that will result in a response
from the ledger is invoked, and stopping it when the response arrives. The relevant
transactions are those that have return values; startDecision, setOngoing and
setEnded (Figure 4.3).

5.1.4 Procedure
All experiments were run on a 2018 Macbook Pro 15" with the following hardware
specifications:

Processor Name: 6-Core Intel Core i7
Processor Speed: 2,2 GHz
Number of Processors: 1
Total Number of Cores: 6
L2 Cache (per Core): 256 KB
L3 Cache: 9 MB
Hyper-Threading Technology: Enabled
Memory: 32 GB

The prototype system was deployed to a local Kubernetes cluster, itself contained
in a Docker container running on the machine using the tool Kubernetes-in-Docker
(kind). Docker was allowed to use 16 GB RAM and 6 CPUs.

To make the prototype system experimental deployment as simple as possible
while producing accurate results, it consisted of a single organizations running:

• A single backend
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• A single Fabric peer
• One of the following two ordering services:

– A single BFT-SMaRt frontend and a number of BFT-SMaRt ordering
nodes

– A single Raft ordering node
• A number of clients

In Fabric, following the Execute-Order-Validate paradigm (see Section 2.2.2), the
only part that is significantly affected by increasing the number of replicas is the
ordering. The execution and read-write conflict validation does not depend on any
other replica and the signature validation is done in parallel. Regardless, the ex-
ecution and validation are logged in the peer container and was observed to only
take a few milliseconds when running the experiments. The time it takes to order
events is vastly longer than both execution and validation, so increasing the number
of ordering nodes has the same effect on the experiments as increasing the number
of organizations with one ordering node each.

The tests were conducted by setting up Fabric with a certain number of ordering
nodes and network delay. The overhead was measured by iteratively initiating the
decision process with an increasing number of clients and the response time was
measured by invoking a single transaction. Since external circumstances like CPU
temperature and thermal throttling can affect the result, the tests were run multiple
times and the final results are the averages of those runs. Each overhead test was
run three times and each response time test was run ten times.

The scales used were:
• BFT Ordering nodes: 4, 7, 10
• Network delay: 0ms, 100ms, 200ms
• Clients: 20, 40, 60, 80, 100

Since 3m+1 ordering nodes solves BFT consensus in the presence of m faulty nodes
(see Section 2.3.2), the number of ordering nodes corresponds to allowing up to 1,
2 and 3 faulty nodes. The network delay of 0ms corresponds to running all nodes
in the same physical network while the delays of 100ms and 200ms are meant to
more accurately reflect the network delay between physically separate networks.
The number of clients are tied to the aim (section 1.3), where 20 clients would be
the lowest practical size and 100 clients would be a large meeting.

5.2 Results
In this section, the results of both metrics at the specified scales are presented. The
different scales in terms of BFT ordering nodes are presented in comparison to a
CFT baseline; results of the same system with the CFT ordering service, to quantify
the response time and overhead further added to the system by the BFT ordering
service.

5.2.1 Overhead
The overhead of the prototype system using the BFT ordering service is consistently
higher than the CFT baseline. Increasing the number of clients increases the over-
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head in a similar way for both ordering services, but an increased network delay
affects the BFT ordering service significantly more.

Overhead in seconds, 0ms network delay
#clients CFT baseline 4 BFT nodes 7 BFT nodes 10 BFT nodes
20 14 22 23 25
40 23 30 32 40
60 32 40 45 55
80 45 52 63 72
100 64 70 86 94

Table 5.1: The overhead in seconds with no network delay added. Each result is
the average of three runs.

Overhead in seconds, 100ms network delay
#clients CFT baseline 4 BFT nodes 7 BFT nodes 10 BFT nodes
20 15 24 26 27
40 25 32 38 41
60 34 42 53 57
80 46 55 66 73
100 65 75 89 96

Table 5.2: The overhead in seconds with 100ms network delay added. Each result
is the average of three runs.

Overhead in seconds, 200ms network delay
#clients CFT baseline 4 BFT nodes 7 BFT nodes 10 BFT nodes
20 18 26 28 31
40 26 36 42 44
60 35 50 62 65
80 47 65 83 87
100 65 86 106 110

Table 5.3: The overhead in seconds with 200ms network delay added. Each result
is the average of three runs.
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Figure 5.2: The overhead in seconds of 4, 7, and 10 BFT nodes at 0ms, 100ms
and 200ms of added network delay.
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5.2.2 Response Time
The response time using the BFT orderer is significantly higher than the baseline,
and increases faster when adding network delay. Adding more BFT nodes does not
affect the response time significantly.

Response time in seconds
Network delay CFT baseline 4 BFT nodes 7 BFT nodes 10 BFT nodes
0ms 1.2 2.2 2.3 2.3
100ms 1.5 2.7 2.8 2.8
200ms 1.8 3.3 3.4 3.4

Table 5.4: The response time in seconds. Each result is the average of ten runs.
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6
Discussion

In this chapter, the results of the experiment are analyzed and discussed in relation
to the aim of the thesis, and future work is suggested. The thesis is also discussed
in the context of ethics and sustainability.

6.1 Results
Overall, the results show that the prototype system adds a significant overhead
to meetings at larger scales, especially in terms of the number of clients. With
low levels of network delay between the organizations, the response time can be
considered near real-time, but the overhead would introduce a very high cost to
the meeting. For example, with 4 organizations and 40 attendants present and a
network delay of 100ms, the overhead is 32 seconds (see Figure 5.2) and 21 working
minutes (32 ∗ 40/60) are added for every decision during the meeting.

6.1.1 Overhead
As expected, due to the high complexity of BFT consensus, the overhead added by
the BFT ordering service is significant.

Increasing the number of clients increases the number of attendance events corre-
spondingly, but the transactions resulting from attendance assertions do not depend
on each other so an increase in overhead by a factor of less than one was expected.
However, the BFT ordering becomes much slower when concurrent events are in-
troduced and the chance that nodes disagree on the order increases, which explains
the significant increase in overhead at larger scales. For the same reason, increasing
the number of replicas had a greater significance with more clients in attendance.

When increasing the network delay, the overhead of the CFT baseline only
increased slightly, and the increase in overhead from increasing the number of clients
was not affected much. As can be seen in Tables 5.1, 5.2 and 5.3, the overhead for
the CFT baseline at 100 clients was within one second for all three levels of network
delay. In contrast, due to the increased message round trips of BFT consensus, the
overhead for the BFT ordering service at 100 clients is significantly increased by
network delay.

At smaller scales, corresponding to a conference room-sized meeting with a small
number of clients and only a few organizations in attendance, the overhead could
be considered acceptable. However, at larger scales than that, the overhead cost is
unreasonably high.
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6.1.2 Response Time
The response time remained sufficiently low for all cases except for when adding
200ms of network delay to the system using the BFT orderer, and in that case still
less than half a second over our specified near real-time limit of 3 seconds. Looking
at the results, a few observations can be made (see Figure 5.4):

• Using the BFT ordering service increased the response time by at least a
second compared to the baseline.

• Increasing the number of BFT nodes does not affect the response time signif-
icantly

• Increasing the network delay increases the response time approximately by a
factor of 3 in the baseline case and a factor of 5 in the BFT case.

The greater impact of network delay on the BFT ordering service can be ex-
plained by the higher amount of message round trips required. This also explains
why adding more BFT nodes does not affect the response time significantly; the
same amount of round trips are still required, and all ordering nodes will probably
agree on the order of a single transaction.

6.1.3 Factors
InA Byzantine Fault-Tolerant Ordering Service for the Hyperledger Fabric Blockchain
Platform by João Sousa et al. [31], the performance of the ordering service based
on BFT-SMaRt is evaluated and notably, block size (the number of transactions
that are grouped into a block to be appended to the blockchain) and envelope size
(the size of the transactions) play a big role when it comes to throughput. It is
concluded that for large envelopes, ordering becomes the dominant factor while for
small envelopes, the CPU-bound work related to creating blocks of transactions be-
comes dominant. When ordering is the dominant factor, the number of ordering
nodes significantly affects the result. When block creation is the dominant factor,
all transactions are ordered faster than blocks are created, so grouping more transac-
tions into a single block greatly increases performance while the number of ordering
nodes matters less.

Due to the following observations, the bottleneck in our experiments seems to
be the ordering of events:

• Increasing the number of ordering nodes significantly increased the overhead;
• Increasing the network delay significantly increased the overhead;
• Increasing the block size did not affect the overhead.
The result of increasing the network delay and number of orderers in our case

can be seen in Figure 5.2. Some experimentation was done with the block size but
it did not affect the results in any significant way. This might be due to a relatively
large envelope size (our envelope size was not explicitly evaluated, but the signature
generation time was only found to become dominant at envelope sizes of 40 and
200 bytes, compared to larger envelopes of 1 and 4 kbytes [31]), but might also be
affected by the fact that, rather than a constant stream of transactions, our system
produced short bursts of transactions during certain times of the decision process,
corresponding to the number of clients. It is noted that signatures are generated
drastically slower when the CPU is shared by both signature generation and BFT-
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SMaRt [31]. The impact of this might be mitigated by the fact that only a limited
number of signatures are generated during a short period of time at the start of a
burst of transactions, followed by longer periods with no new transactions.

Ordering time per message: As can be seen in Table 5.1, the difference
between 7 and 10 BFT nodes increases from 2 to 8 seconds when doubling the
number of clients from 20 to 40. After that, a further increase in the number
of clients does not seem to significantly increase the difference between 7 and 10
BFT nodes further. When looking at the five-fold increase of 20 to 100 clients and
comparing the 0ms network delay results (Figure 5.1 and the 200ms network delay
results (Figure 5.3, we see that the increase is roughly four-fold in the 0ms case, and
three-fold in the 200ms case.

This suggests that, when a batch of messages are received by an ordering node,
the later messages are processed faster than the earlier. The cause of this is not
investigated or made clear by the results of this thesis, but since the signature
generation time would be constant or increase under a high load on the node, it
further suggests that the limiting factor is the ordering of messages.

6.1.4 Possible Improvements
The major issue with the prototype system is the high overhead. However, there
are several ways in which the overhead of the system could be reduced.

6.1.4.1 Reduce the Number of Participating Clients

The vast majority of transactions are attendance assertions from the clients, and
these transactions are also all invoked simultaneously for all clients, so relaxing the
requirements here could drastically decrease the number of concurrent transactions.

One way to do this would be to only require attendance from a subset of clients
for each organization before changing the decision state and moving on with the
process. This would change the guarantees of the system so that instead of ensuring
that all clients have taken part of all information before moving on, we ensure that
some clients in each organization are up to date. The other clients could be expected
to answer shortly after if the system replica of the organization is working correctly
and if they do not, we can disregard them, note that we do not know exactly which
information they took part of before leaving, but still know that some clients in the
same organization received all information.

6.1.4.2 Reduce the Number of Concurrent Transactions

Concurrent transactions could also be reduced by reducing the dependency between
decision state changes and attendance. Instead of asserting the attendance of clients
after each phase, we could assert attendance gradually during the decision process
and require each client to respond with its current view of the meeting state. If
some client falls behind in this case, we know the last asserted state and can assume
that everything after that point might not have been seen.

The decision process would work fine under this decision process, but the amount
of information available in real-time for other clients would be reduced. Instead
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of being able to deliver an up-to-date view of the current state to any client at
any time, the view would reflect, and decisions would be started with, the clients
assumed to still be in attendance. This changes the adversary model and reduces
the guarantees of the system; rather than letting the system determine what each
client knows, clients could lie about their current view.

6.1.4.3 Use a Crash Fault Tolerant Consensus Algorithm

Finally, the BFT ordering service could be abandoned in favor of a CFT ordering
service like Raft. As seen in the results, this greatly decreases the overhead and
response time of the system, especially at larger scales. Due to the strong leader
node of Raft (see Section 2.3.1.2), the difference in performance would be especially
significant without the presence of faults.

Obviously, this also reduces the guarantees of the ordering service, but all other
advantages in security and trust of using a permissioned distributed ledger rather
than some centralized solution are still present. In the presence of arbitrary behavior
from some ordering nodes, transactions could be disregarded and the order of trans-
actions could be determined by malicious actors, but the validity of transactions
and the immutability of the log are still ensured by the system.

6.2 Ethics and Sustainability
The ability to enable trust between parties in different contexts regardless of physical
proximity can have several societal benefits. Remote meetings leads to reduced travel
which avoids emissions and disease transmission, and have the potential of reducing
the economic costs. However, as has been shown in this thesis, a system enabling
this can also come with a large cost in terms of time an energy, and the advantages
of reduced travel must outweigh these costs.

Distributed ledgers, and in particular cryptocurrency blockchains, are generally
known to have an extremely high power consumption due to their proof-of-work
consensus methods. In The Energy Consumption of Blockchain Technology: Beyond
Myth by Johannes Sedlmer et al. [29], the energy consumption of some proof-of-work
blockchains is analyzed and compared to other systems.

Some interesting observations are made. Specifically, the energy consumption of
proof-of-work blockchains do not directly depend on the rate of transactions. The
energy consumption of a system like Bitcoin does not necessarily increase when it
is used more, but rather when it is mined more, and the incentive to mine Bitcoin
blocks is not to increase the transaction rate but to increase the chance of finding
a block. It is the voting weight of a single node that correlates with processing
power and energy consumption, not the rate of transactions, and there are ways of
increasing the transaction rate without increasing the energy consumption. One way
is to increase the block size, meaning the number of transactions that are grouped
into a block. This is the idea behind Bitcoin cash, a widely used fork of bitcoin that
increased the block size from 4MB to 8MB.

Permissioned blockchains that do not rely on proof-of-work are discussed in
general, and both Hyperledger Fabric and the practical Byzantine fault tolerance
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algorithm are mentioned which is especially relevant to this thesis. Even though
the energy consumption of permissioned distributed ledgers increases due to higher
rates of transactions in a much more direct way, due to the high message complexity
of their consensus algorithms, the energy consumption is orders of magnitude lower
than their permissionless proof-of-work counterparts [29].

As mentioned in Section 1.1, the permissionless blockchain Ethereum popular-
ized the concept of smart contracts and the use of distributed ledgers to solve more
general problems than cryptocurrency transactions. If applications that do not nec-
essarily depend on the permissionless nature of such systems can be implemented in
permissioned systems instead, the energy consumption of those applications would
be drastically reduced.

Ethics: The ethical concerns most often raised about blockchain technology
has to do with its shared nature. All positive aspects in terms of privacy and decen-
tralization have the disadvantage of reducing the possibility of desirable oversight
and control. Some issues that permissionless systems have, like the possibility of
anonymous illegal trade, are not relevant in our case since a permissioned system is
made up of known and authenticated nodes. However, the lack of a central authority
in a permissioned system can still lead to problems due to its immutability.

For example, a poorly designed or insecure system can leak secret or personal
data. If that data ends up on a distributed ledger used by that system, it is very
hard to remove that data. In our case, some part of the consortium might acci-
dentally reveal sensitive customer information or information that give other parts
of the consortium an advantage in negotiations. After being immutably logged in
each ledger replica, there are several copies of this data that cannot be removed
without the cooperation of every other part of the consortium. Using technologies
like blockchain is in no way a guarantee that a system is secure in general, and if
other parts of the system are poorly designed, it can even reduce the security of the
system in many ways.

6.3 Future Work: Byzantine Fault Tolerant Con-
sensus in Permissioned Distributed Ledgers

Even though the possible contexts in which distributed ledgers can be used have
been greatly increased by the introduction of permissioned systems and smart con-
tracts, the technology still has some major drawbacks. In particular, throughput
remains an issue for distributed ledgers, even though the throughput of a permis-
sioned distributed ledger like Fabric is much higher than a public permissionless
ledger like Ethereum.

It is very possible that some other BFT algorithm implementations would per-
form significantly better under our specific circumstances. In State Machine Replica-
tion for the Masses with BFT-SMART by João Sousa et al. [3], it is noted that there
are not many practical and production-ready implementations of BFT algorithms
and in In Search of an Understandable Consensus Algorithm by Diego Ongaro et al.
[23], the same point is made about the crash fault tolerant Paxos and used as a mo-
tivation for Raft. When it comes to implementations for permissioned distributed
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ledgers, implementations are even more scarce. Hyperledger Fabric was intended
to get a BFT ordering service in release 1.0 [28], and will eventually get an official
BFT order based on the same decentralized design as Raft [28, 18].

The BFT-SMaRt-based ordering service [31] used in this work is as of now the
only BFT option for Fabric, and the need to rely on frontends and a separate ordering
service cluster (see Section 4.2.3) is a major drawback. Getting it running reliably
was also a challenge, especially with a higher number of ordering nodes. Often, one
or more ordering nodes would crash at startup and with certain combinations of
ordering nodes and block sizes, blocks would sometimes stop being created. Both
these issues would cause the system to stop processing transactions and require a
restart.

Before a system based on Fabric that provides Byzantine fault tolerance can
realistically be used in production, more work is needed in this area.
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Related Work

This thesis builds a lot on top of existing research relating to distributed ledgers
and consensus methods. The concept of blockchains is still relatively new and the
possible uses of different variants of blockchain technology is constantly evaluated.
Permissioned distributed ledgers is a new technology where the established technol-
ogy of BFT consensus found new uses. Miguel Castro and Barbra Liskov presented
pBFT in 1999 [7], but, as stated by João Sousa et al. [3], in 2014 there were still
not many practical implementations used in actual systems. Now, when talking
about distributed consensus in general and BFT consensus in particular, it is often
in the context of blockchains, and new consensus methods building on top of the
established work are often a direct result of the needs of blockchains. An example of
this is The Istanbul BFT Consensus Algorithm by Henrique Moniz [20], which was
publsihed in 2020 and is the consensus algorithm used in the Quorum blockchain.

One example of a work that solves a similar problem to the one described in this
work is A Smart Contract for Boardroom Voting with Maximum Voter Privacy by
Patrick McCorry et al [19]. The work aims to provide a boardroom voting system
based on the blockchain Ethereum, which guarantees voter privacy and calculates
the tally without relying on any trusted authority. This is very similar to our work
in terms of the problem and solution; voting during a meeting is solved by using
distributed ledgers and a smart contract. However, this work differs in terms of both
aim, design and implementation in important ways:

• Use case. Even though trusted boardroom voting seems very similar to a
trusted decision log, the intended use is fundamentally different. Privacy is not
a concern for the system presented in this thesis. Rather, we use a permissioned
distributed ledger where the identities of all participants are ensured and clear
to all. We also do not care about vote tallying or anything similar. Rather,
the model of decision making for this work is silent accept, which means that
rather than counting votes on decisions, the participants and whether or not
they oppose a given decision is logged. This implies that consensus has to
be reached much more often than just once for each decision and a greater
throughput is needed, which leads us to the next point.

• Scale. The referenced work states that they chose the scale of boardrooms
or a maximum of approximately 40 voters, rather than national scale voting,
because of the scaling limitations of Bitcoin and Ethereum. Since the intended
use of the work in this thesis is meetings within a consortium of organizations,
participants have to be authenticated beforehand. This fact removes the need
to rely on the proof of work-based consensus algorithms of systems mainly
intended for cryptocurrencies. Rather, a consensus method suitable for the
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specific needs of the system is used, which increases the throughput of the
system significantly.

The prototype system developed in this work is capable of, but also requires, a
much higher throughput of transactions than is possible in a public permissionless
distributed ledger like Ethereum. For problems similar to the one outlined in the
referenced work [19], the use of permissioned distributed ledgers might be able to
greatly increase the feasible scale.

Performance Evaluations of Hyperledger Fabric: There are a number of
papers that evaluate the performance of Hyperledger Fabric under different circum-
stances. The performance evaluation of this work is similar in some ways, but differs
in the fact that they evaluate performance from a generic point of view, rather than
the way in which performance is evaluated for a specific purpose in this work.

One example is Performance Benchmarking and Optimizing Hyperledger Fabric
Blockchain Platform by Parth Thakkar et al. [32], which among other things evalu-
ates transaction throughput and latency at different transaction arrival rates, which
roughly corresponds to overhead and response time for different numbers of clients
in this work. However, they only use a single ordering node backed by a Kafka
cluster (the default ordering service before the Raft-based ordering service was re-
leased in version 1.4.1), and find that ordering does not become a bottleneck until
an arrival rate of around 140K transactions per second, which is much later than
in our case where the ordering service is more complex and ordering very quickly
becomes the dominant factor. For future work they mention, among other things,
comparing different consensus algorithms at different scales, introducing network
delay between nodes and testing more realistic workloads rather than a constant
transaction arrival rate, which are all factors taken into account in the experiment
of this work.

Another example is Impact of network delays on Hyperledger Fabric by Thanh
Son Lam Nguyen et al. [22], which also uses the old Kafka-based ordering service.
Their methodology consists of hosting nodes in two separate clouds, adding a delay
between them in the same way in which delays are added between nodes in this
work, and observing the time between when a block is added in one cloud compared
to the other. They observe the time difference between blocks to increase in a linear
fashion when increasing the delay, which is expected unless conflicts or faults occur
that cause the number of messages required to reach consensus to increase and is
consistent with the results of the experiment of this work.
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Conclusion

In this thesis, a prototype system of a secure, trustworthy and usable decision log,
based on the permissioned distributed ledger Hyperledger Fabric and intended to be
used in large-scale meetings within consortiums of organizations was developed and
evaluated.

Security was provided by Fabric implementing a blockchain to log all smart
contract transactions, making the log immutable and tamper proof. Trust was pro-
vided by the system architecture; each organization runs their own software stack,
including a distributed ledger replica, and all information between organizations
is exchanged through the ledger replicas reaching consensus about proposed trans-
actions. Additionally, two different methods of consensus were implemented; one
providing crash fault tolerance and the other providing the stronger Byzantine fault
tolerance. Byzantine fault tolerance provides a higher level of trust by tolerating
arbitrary behavior from some replicas, but is slower and more complex than its crash
fault tolerant counterpart.

The usability of the system was evaluated in a series of experiments. Two met-
rics intended to quantify usability were defined; overhead and response time. The
overhead quantifies the amount of time added by the system to the meeting as
a whole and the response time quantifies the delay between user actions and the
corresponding response from the system.

The response time was found to be sufficiently low in all cases. However, the
overhead was found to be very high, especially when the number of participating
clients reached close to a hundred; reflecting a large meeting in the construction
industry, which makes the system very expensive to use. The Byzantine fault tol-
erant consensus method further increased the overhead of the system. To decrease
the overhead to reasonable levels, a drastic decrease of the number of concurrent
transactions or a drastic increase in transaction throughput is required.
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