
Deep-learning-accelerated Bayesian in-
ference for FRAP experiments
Master’s thesis in Engineering mathematics and computational science

Harald Westling

DEPARTMENT OF MATHEMATICS

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2021
www.chalmers.se

www.chalmers.se

Master’s thesis 2021

Deep-learning-accelerated Bayesian inference for
FRAP experiments

Harald Westling

Department of Mathematical Sciences
Chalmers University of Technology

Gothenburg, Sweden 2021

Deep-learning-accelerated Bayesian inference for FRAP experiments Harald West-
ling

© Harald Westling, 2021.

Supervisor: Magnus Röding, Research Institute of Sweden, RISE
Examiner: Aila Särkkä, Department of Mathematics

Master’s Thesis 2021
Department of Mathematics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX, template by Magnus Gustaver
Gothenburg, Sweden 2021

iv

Deep-learning-accelerated Bayesian inference for FRAP experiments
Harald Westling
Department of Mathematics
Chalmers University of Technology

Abstract
Fluorescence recovery after photobleaching (FRAP) is an experimental method for
determining properties such as the diffusion coefficient and binding rate of molecules
in solutions, and is used extensively in areas such as food science and biology. By
utilizing a high intensity laser the fluorescent molecules in a region of interest are
bleached. The mean fluorescence intensity in the region, and its development over
time, can be modeled as a function of the mobility parameters. Bayesian infer-
ence with regards to the model parameters, using the likelihood function, can then
be performed. This likelihood function is very computationally heavy to evaluate.
In this work a neural network has been implemented to approximate the likeli-
hood function with regards to the four most central parameters in the model. The
method is promising since three of the four marginal posterior distributions of the
parameters were well approximated, with the result being comparable to traditional
methods for posterior sampling. We demonstrated that the method is much more
computationally efficient than traditional methods.

Keywords: Fluorescence recovery after photobleaching, Diffusion, Neural network,
Bayesian inference, MCMC, Metropolis-Hastings.

v

Acknowledgements
First of all I would like to thank my supervisor Magnus Röding at RISE Agrifood
Bioscience who gave me a great deal of support and advice during the course of the
project.
I would also like to thank my examiner Aila Särkkä from Chalmers University of
Technology, for her support and guidance during the thesis work.

Harald Westling, Gothenburg, June 2021

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Background 3
2.1 FRAP . 3

2.1.1 Diffusion . 3
2.1.2 Fluorescence recovery after photobleaching 3
2.1.3 The FRAP Model . 4
2.1.4 Parameter estimation . 5

2.2 Numerical solution to the diffusion equation 6
2.3 Bayesian inference . 8

2.3.1 Bayesian framework . 8
2.3.2 Metropolis-Hastings . 10
2.3.3 Metropolis-Hastings in Bayesian inference 11

2.4 Artificial Neural Networks . 12
2.4.1 Feedforward Neural Network 12
2.4.2 Optimization . 13

3 Results and Discussion 15
3.1 Training environment . 15
3.2 Pre-processing and generation of the data 15
3.3 Neural Network . 17

3.3.1 Training the neural network 17
3.3.2 Hyperparameter Optimization 17

3.4 Accelerated Metropolis-Hastings . 18
3.5 Performance metrics . 19
3.6 Results . 21

3.6.1 Results from training . 21
3.6.2 Results from the algorithms 22
3.6.3 Comparing the algorithms . 25
3.6.4 Estimating the parameter a 28

4 Conclusion 31

ix

Contents

Bibliography 33

A Appendix 1 I
A.1 Convergence plots and histograms from AHM and classical MH algo-

rithms . I

x

List of Figures

2.1 Images showcasing a typical FRAP measurement. Image (a) depicts
the prebleach phase; the second image (b) is taken directly after the
bleaching; the following images are recorded (c) 5 s, (d) 20 s, (e) 50
s, and (f) 100 s after bleaching [12]. 4

2.2 A typical recovery curve form a FRAP experiment. The curve is
constant in the pre-bleach period. After the bleaching, where the
flourophores are photobleached, the particles diffuse in and out of the
area, leading to a recovery in the intensity in the ROI. 6

2.3 Simulated data from a FRAP experiment. The leftmost image being
in before any bleaching has occurred, in first frame of the pre-bleach
time. The middle image illustrating the simulated sample directly
after the bleach has occurred, the first frame of the post-bleach time.
The rightmost image illustrating the final frame of the post-bleach
time. 7

2.4 Illustration of how the posterior distribution is related to the prior
and likelihood. Here, the prior u ∼ N(1, 0.42) and with 20 samples
simulated from N(2.5, 0.5). The posterior then becomes Normal dis-
tributed with mean 2.34 and variance 0.12. 10

3.1 The validation and training loss of the network with the hyperparam-
eters defined in Table 3.3. 21

3.2 The convergence plots of the parameters D (a), C0 (b), α (c) and a
(d). These are the results from the first run of the AMH algorithm
with the parameters defined in Table 3.7. 23

3.3 The convergence plots of the parameters D (a), C0 (b), α (c) and a
(d). These are the results from the second run of the AMH algorithm
with the parameters defined in Table 3.8. 25

3.4 Histograms of the marginal posterior distributions resulting from the
two algorithms AMH and classical MH for the parameters D (a), C0
(b), α (c) and a (d). These are the results from the first run of the
AMH and the classical MH algorithm with the parameters defined in
Table 3.7. 26

xi

List of Figures

3.5 Histograms of the marginal posterior distributions resulting from the
two algorithms AMH and classical MH for the parameters D (a), C0
(b), α (c) and a (d). These are the results from the second run of the
AMH and the classical MH algorithm with the parameters defined in
Table 3.8. 27

A.1 The samples after the burn-in time of the parameters D (a), C0 (b),
α (c) and a (d). These are the result from the first run of the AMH
algorithm with the parameters defined in table 3.7. II

A.2 The histograms of the parameters D (a), C0 (b), α (c) and a (d).
These are the result from the first run of the AMH algorithm with
the parameters defined in table 3.7. III

A.3 The histograms of the parameters D (a), C0 (b), α (c) and a (d).
These are the result from the first run of the classical MH algorithm
with the parameters defined in table 3.7. IV

A.4 The samples after the burn-in time of the parameters D (a), C0 (b),
α (c) and a (d). These are the result from the second run of the AMH
algorithm with the parameters defined in table 3.8. V

xii

List of Tables

3.1 The distribution that the parameters used for generating the FRAP
data are simulated from. The distributions are chosen to accurately
represent the parameter values encountered in FRAP experiments. . . 16

3.2 The fixed experimental parameters used in the simulation of the
FRAP data. 16

3.3 The hyperparameters used for the training of the neural network. . . 18
3.4 The resulting JSD values for each parameter by comparing the marginal

posterior distributions of the AMH and the classical MH algorithms.
From the first run of the algorithm with parameters defined in Table
3.7. 23

3.5 The resulting JSD values for each parameter by comparing the marginal
posterior distributions of the AMH and the classical MH algorithms.
From the second run of the algorithm with parameters defined in
Table 3.8. 24

3.6 Resulting metrics for the parameters from the second run of the AMH
and classical MH algorithm. The true parameters for the data can be
found in Table 3.8. 28

3.7 The true parameters used for simulating the underlying recovery
curve for the first run of the AMH algorithm. 28

3.8 The true parameters used for simulating the underlying recovery
curve for the second run of the AMH algorithm. 29

3.9 Resulting metrics for the parameters from the first run of the AMH
and classical MH algorithm. The true parameters for the data can be
found in Table 3.7. 29

xiii

List of Tables

xiv

1
Introduction

Correctly understanding the microscopic properties of materials and products is
something of high importance in both industry and science, with new discoveries
potentially leading to improvements in areas such as medicine and soft matter re-
search. By studying the manner of particle movement, when dissolved in a solvent,
new insights could be obtained in these areas. One experimental method for observ-
ing the properties related to particle movement in a solvent is fluorescence recovery
after photobleaching (FRAP). When utilizing the FRAP method fluorescent parti-
cles in a region of interest are bleached using a laser. The change of fluorescence
concentration over time, in the region, can then be used to estimate the different
properties. One of these properties is the diffusion coefficient which is the rate of
random particle movement in a solvent.

When performing experiments, Bayesian posterior inference is often used in ana-
lyzing the results, and assessing uncertainties in the model. By first expressing
ones prior belief of the distribution of an unknown parameter, θ, one can use the
likelihood function L(θ|y), which encodes the probability of the parameters θ gen-
erating the data y, in order to update the prior knowledge. By the use of Bayes’
theorem the updated prior then becomes the posterior distribution of the unknown
parameters, conditioned on the observed data and the likelihood of observing the
data. The posterior distribution is often the distribution of interest, but it can be
difficult to obtain. It could require a normalizing constant, that is unknown, or
computationally hard to approximate. One solution is to use Markov chain Monte
Carlo sampling methods to approximate the distribution by iteratively constructing
a Markov chain, which converges towards the target posterior distribution. One such
method is the Metropolis-Hastings algorithm. This algorithm needs to compute the
likelihood function at each step, and if the likelihood is complex then the compu-
tation might be challenging. One proposed solution to this is to approximate the
likelihood function using a neural network, which can approximate the likelihood
and requires much less computational power.

In this report the aim is to approximate the likelihood function of the data orig-
inated from the FRAP method. The data resulting from a FRAP experiment is
a sequence of images which is typically reduced to a curve, known as the recov-
ery curve, expressing the mean intensity of the bleached region. From the recovery
curve a likelihood function can be calculated. The implementation of this model is
computationally heavy. In order to alleviate this problem a new algorithm for doing
Bayesian inference for this model is proposed, based on utilizing deep learning and

1

1. Introduction

training an artificial neural network to approximate the likelihood function. In this
report a fully connected feedforward neural network was used.

This thesis aims to explore if deep learning can be used to accelerate the Metropolis-
Hastings algorithm without sacrificing the performance, with regards to accuracy
and efficiency. The project is limited in scope with regards to the parameters of the
model and network architecture, as well as time constraints.

The outline of the report is as follows. Chapter 2 contains the background covering
the basics of the FRAP method, the tool for numerical solutions for the diffusion
equation, and simulating the FRAP data, the basics of Bayesian statistics and in-
ference and a brief introduction to neural networks. Chapter 3 contains the training
setup, the pre-processing done on the data, a description of the training of the neural
network as well as a description of the implemented accelerated Metropolis-Hastings
algorithm. This chapter also presents and discusses the results from the accelerated
Metropolis-Hastings algorithm. In Chapter 4, some conclusions are drawn from the
results and some further work on the topic is suggested.

2

2
Background

2.1 FRAP
In this section a basic theoretical framework of diffusion and the fluorescence recov-
ery after photobleaching method is introduced.

2.1.1 Diffusion
Diffusion is a term for the random movement of atoms, or molecules driven by
fluctuations in the thermal energy. This process can be described, on a macroscopic
level, with Ficks first law

J(x, t) = −D∇c(x, t) (2.1)

where D > 0 is the diffusion coefficient and c(x, t) is the concentration at position
x and time t. The flux, J , is proportional to the negative concentration gradient.
Ficks second law, also known as the diffusion equation, is expressed as

∂c

∂t
= D∇2c(x, t), (2.2)

which describes how the concentration of particles is affected by diffusion [6].

2.1.2 Fluorescence recovery after photobleaching
Fluorescence recovery after photobleaching (FRAP) is a method used for estimating
the diffusion coefficient of molecules dissolved in a liquid. By using an intense laser
light on a region of interest (ROI) the fluorescent molecules, called fluorophores,
inside the area are bleached, meaning that they are unable to fluoresce.

The photobleaching results in a bleached region which the unbleached fluorophores
from the surrounding areas will diffuse into, while the bleached fluorophores will
move out of, the area. The result of this process is that the bleached area both
broadens and fades at the same time, in a manner that depends on the diffusion
coefficient.

When performing FRAP it is typically assumed that the fluorophore concentra-
tion is linearly proportional to the fluorescence intensity. This intensity profile can
then be used in order to estimate D [9].

3

2. Background

The FRAP method utilizes a fluorescence microscope together with lasers as light
source, along with photo-multipliers as detectors. One usually talks about the
prebleach-time as the period of time before any bleaching of the molecules has oc-
curred and the postbleach-time as the period of time after the molecules have been
bleached. Figure 2.1 illustrates an example of the bleaching process of a typical
sample measured using the FRAP method.

Figure 2.1: Images showcasing a typical FRAP measurement. Image (a) depicts
the prebleach phase; the second image (b) is taken directly after the bleaching; the
following images are recorded (c) 5 s, (d) 20 s, (e) 50 s, and (f) 100 s after bleaching
[12].

2.1.3 The FRAP Model
In the FRAP model, see [9], the fluorescence decay from photobleaching is often
assumed to be an irreversible first order reaction

flourophore + photon→ bleach product (2.3)

It is assumed that the bleaching occurs instantaneously, and the proportion of

4

2. Background

bleached flourophores are used as the initial condition for Ficks second law in Equa-
tion 2.2. It is usually assumed that the size of the liquid suspension is infinite in
the 2D plane, meaning that the diffusing molecules should not reach any stopping
boundaries. Another common assumption made is that that there is no net diffusion
in the z direction, so only the 2D plane needs to be considered.

Let c(x, y, z, t) be the concentration of flourophores, and Ib(x, y, z) be the photo-
bleaching illumination intensity in the sample. This intensity is often modeled as a
Gaussian distribution. Then the decay of fluorescence is described by

dc(x, y, z, t)
d(t) = c0Ib(x, y, z)c(x, y, z) (2.4)

which leads to the solution
c(x, y, z, t) = c0e

−αIb(x,y,z)t (2.5)
with c0 being the initial proportion of flourphore molecules before bleaching and α
being a flourophore-depended parameter impacting the bleaching [9].

2.1.4 Parameter estimation
In order to estimate the parameters from the frames resulting from the FRAP ex-
periment one can either estimate them by fitting a model to the pixels of the data
or to a recovery curve.

The general noise model that is assumed for most methods is that each pixel is
viewed as independent from another. The experimental noise is assumed to follow
a normal distribution with zero mean and the variance σ2(c(x, y, t)) defined as

σ2(c(x, y, t)) = a+ bc(x, y, t) (2.6)
for the concentration c(x, y, t) and where a represents a constant noise factor and b
a noise factor proportional to the concentration.

The recovery curve method calculates a curve related to the fluorescence intensity
of the sample. An example of a recovery curve, and how it relates to the bleach-
ing process, is shown in Figure 2.2. From experimental data a simple model for
describing the recovery curve has been found. It is defined as

F (t) = F0(1− exp(−w
2

4Dt) + b), (2.7)

where F0 is the initial fluorescence intensity, F (t) the fluorescence in the area of
interest at time t, after the photobleaching has occurred, w the radius of the area
of interest, b the fraction of the fluorophores that are bleached in the beginning and
D being the diffusion coefficient [7]. This, however, is not the model used in this
project. Instead the recovery curve will be extracted using a numerical solution for
the diffusion equation.

5

2. Background

Figure 2.2: A typical recovery curve form a FRAP experiment. The curve is
constant in the pre-bleach period. After the bleaching, where the flourophores are
photobleached, the particles diffuse in and out of the area, leading to a recovery in
the intensity in the ROI.

2.2 Numerical solution to the diffusion equation
The software for simulating FRAP experiments was implemented in MATLAB [11]
by solving Ficks second equation of diffusion, Equation 2.2, numerically.
The initial concentration is assumed to be c(x, y) = co. After the first bleach frame
the concentration becomes

c(x, y) =
{
c0α, (x, y) ∈ Q
c0, (x, y) 6∈ Q (2.8)

where Q is the bleached region of interest, typically of circular shape and with radius
r, and α is a flourophore-dependent photobleaching parameter.

The numerical solution for the diffusion equation is solved by using periodic bound-
ary conditions on a (N+2M)(N+2M) grid, whereN = 256 represents the resolution
of the simulated frames, and M = 128 represents padding added in order to avoid
periodicity artifacts from the diffusion.

6

2. Background

The concentration c(x, y, t), is represented as a (N + 2M)(N + 2M)(t) matrix with
the bleach concentration for each grid in each frame corresponding to the frame
associated with each value t. The bleaching is represented by a multiplication with
a mask consisting of the value 1 outside Q and α inside Q, with some intermediate
value on the edges. Smooth edges of the ROI are ensured by supersampling, which
is a technique used for reducing the jaggedness of the pixels in an image. An illustra-
tion of the simulated FRAP experiments is shown in Figure 2.3 with leftmost image
being taken before the bleaching occurred, the middle just after bleaching, and the
rightmost being the final simulated image in the series. The matrix c(x, y, t) is then

Figure 2.3: Simulated data from a FRAP experiment. The leftmost image being in
before any bleaching has occurred, in first frame of the pre-bleach time. The middle
image illustrating the simulated sample directly after the bleach has occurred, the
first frame of the post-bleach time. The rightmost image illustrating the final frame
of the post-bleach time.

transformed into a spectral representation ĉ(ξ, η, t) using the fast Fourier Transform.
This transform yields a set of independent ordinary differential equation on the form

∂ĉ(ξ, η, t)
∂t

= −(ξ2 + η2)Dĉ(ξ, η, t) (2.9)

for each grid point (ξ, η). Their solutions are available explicitly on the form

ĉ(ξ, η, t+ ∆t) = e−(ξ2+η2)D∆tĉ(ξ, η), (2.10)

where ∆t is the time between two frames. The solution in the spatial domain is
obtained by performing an inverse Fourier transform for each t.

In order to extract the recovery curve the mean intensity from the simulated frames
the equation

F (t) =
∑
x,y

w(x, y, t)c(x, y, t) (2.11)

7

2. Background

was used. Where w(x, y, t) is a normalization matrix and c(x,y,t) the concentration
of the sample. The noise variance of the recovery curves is also i.i.d and follows a
normal distribution with zero mean and variance

σ2(F (θ, t)) =
∑
x,y

w(x, y)2(a+ bc(x, y, t)). (2.12)

The log likelihood function of the residuals between the measured experimental
recover curve versus the recovery curve for a given set of parameters then becomes

l(θ) = −1
2
∑
t

log(2πσ2(F (θ, t)))− 1
2
∑
t

(Fexp(t)− F (θ, t))2

σ2F (θ, t) , (2.13)

where F (θ, t)) is the recovery curve given the parameter vector θ = [D,α,C0, a] and
the time t. Fexp is the experimental recovery curve calculated from the measured
data. When simulating the data the noise parameter proportional to the concentra-
tion was set to zero, b = 0, we are making the assumption that the noise variance
is constant. The log likelihood function then simplifies to the negative sum of the
residuals squared and the likelihood parameters, [D,C0, α], can be estimated using
least squares.

The recovery curve Fexp(t) was simulated to be as close to experimental data as
possible, given the true parameters θ, while the recovery curve F (θ, t) was simu-
lated as noise free data.

2.3 Bayesian inference
In this section the theory for Bayesian inference will be presented. Firstly, a brief
introduction of the Bayesian framework will be presented followed by the Metropolis-
Hastings algorithm for posterior sampling.

2.3.1 Bayesian framework
The core principle of the Bayesian framework is Bayes’ theorem, stated as

P(A|B) = P(B|A)P(A)
P (B) , (2.14)

where A and B are events and P(B) 6= 0. The theorem relates the conditional
probability P(A|B) of observing the event A after observing the event B, to the
conditional probability P(B|A) and the probabilities P(A) and P(B).
Equation 2.14 has an analogous form for probability densities,

fX|Y (x|y) = fX,Y (x, y)fX(x)
fY (y) , (2.15)

where X and Y are random variables and fX(x),fX,Y (x, y) and fX|Y (x) are the
marginal, joint and conditional distributions.

8

2. Background

The way the Bayesian framework differs, for inference, from a frequentist framework
is in the way a parameter vector for a model, θ ∈ Rd, is viewed. In the Bayesian
framework the parameters in θ are considered to be random variables, while in the
frequentist framework, they are considered to be constant.
In general, in the Bayesian framework, we are interested in the distribution of the
of the parameter θ conditionally on the observed data, y. This can be expressed,
using Bayes’ theorem as

p(θ|y) = p(y|θ)p(θ)
p(y) . (2.16)

.
Here, p(θ) is called the prior distribution which represents the prior belief of the pa-
rameter values and should be decided before any measurements take place. p(θ|y)
is known as the posterior distribution and represents the change in prior distribution
after observing the data, y, in accordance with Bayes’ theorem. The distribution
p(y|θ) is known as the likelihood function and is commonly denoted as L(θ|y), which
expresses the likelihood of observing the data given a fixed set of parameter values.
More commonly, it is used as a probability of how likely the parameter values are,
given the fixed observed data, which explains the switch in the conditional variables
in the L(θ|y) notation. The density p(y) is in the Bayesian framework sometimes
called evidence and can be expressed as the integral

∫
L(θ|y)p(θ)dθ which is often

analytically intractable. In figure 2.4 the relationship between the prior distribu-
tion, the likelihood function and the posterior distribution is illustrated, with 30
measured samples.

Since Equation 2.16 is a probability density function which by definition needs to
integrate to 1, the evidence can then be regarded as a normalising constant. We can
then omit the evidence and express Equation 2.16 as

p(θ|y) ∝ L(θ|y)p(θ), (2.17)

meaning that we in practice only need the prior and likelihood distributions. In
most cases the posterior distribution will not be analytically tractable. This might
happen if p(y) is impossible or computationally heavy to calculate or if it is not
possible to generate samples from the resulting posterior, p(θ|y), from Equation
2.16.

One way of solving these problems is by approximating the distributions using sam-
pling methods. One possibility is to use the Markov Chain Monte Carlo (MCMC)
methods, and one example of this is the Metropolis-Hastings algorithm.

The Bayesian framework does not only provide methods for estimating the posterior
distribution but, similarly to the frequentist framework, there are also methods for
point estimation. Multiple choices exist, but the most common onew are maximum a
posteriori (MAP), posterior mean and posterior median. All of these three minimize
the posterior expected value with regards to different loss functions.

9

2. Background

Figure 2.4: Illustration of how the posterior distribution is related to the prior
and likelihood. Here, the prior u ∼ N(1, 0.42) and with 20 samples simulated from
N(2.5, 0.5). The posterior then becomes Normal distributed with mean 2.34 and
variance 0.12.

2.3.2 Metropolis-Hastings
As mentioned above the posterior distribution might often lack a simple analytical
expression making it hard to sample from it. An MCMC algorithm is an algorithm
used for sampling from probability distributions. This works as long as we know of
some function, f(x), that is proportional to the probability density that we want to
estimate, p(x),

f(x) ∝ p(x). (2.18)

Since p(x) is a probability density it must integrate to 1, with the proportionality
constant being

∫
f(x)dx over the entire domain of f(x). The Markov chain will,

under certain assumptions, asymptotically converge towards the target distribution
p(x).

The Metropolis-Hastings algorithm utilizes a candidate distribution g(x′|x) which
proposes a new candidate for the next sample value, x′, conditioned on the previous
sample value x. A common choice of a candidate distribution is a Gaussian centered
around the previous proposed value, x, which increases the likelihood of values close

10

2. Background

to the previous one of being selected. It should be noted that if g(x′|x) is chosen as
a symmetric function then the part of the ratio involving it will always equal 1.
Then an acceptance ratio A is computed where A is defined as

A := min
(

1, f(x′)g(xt|x′)
f(xt)g(x′|xt)

)
, (2.19)

with xt being the candidate value at time step t. The acceptance ratio is used in
order to decide if the proposed candidate value is to be accepted or not. A value
u ∼ U(0, 1) is simulated and if u ≤ Aa the proposed value is accepted and xt+1 = x′.
If not then the proposed value will be rejected and the previous value is kept, i.e.
xt+1 = xt. If a proposed move is more probable than the previous one it will always
be accepted while a proposed move that is less probable might get rejected, with
a larger drop in probability increasing the likelihood of rejection of the proposed
move. This will result in the algorithm exploring more values in high density areas
and fewer in low density areas. Doing this will allow the distribution of the state xt
to converge towards the target distribution, p(x), as t→∞.

The convergence rate of the Metropolis-Hastings algorithm depends on both the
initial guess of x0, and how similar the f(x) is to the target distribution. It can
vary greatly and is not always guaranteed. The time that it takes for the chain
to converge is called the burn-in period. When all the states from the burn-in pe-
riod are removed the remaining states in the chain are then considered as samples
from the target distribution. It should be noted that this does require independent
samples, which is something that the chain does not generate. One solution to this
issue is to sample every jth state for some j. This will result in an approximately
independent set of states. The optimal acceptance rate of the Metropolis-Hastings
algorithm when applied to certain target distributions is 0.234, which indicates that
an acceptance ratio of between 20− 25% is reasonable to aim for [3].

2.3.3 Metropolis-Hastings in Bayesian inference
Using the Metropolis-Hastings algorithm, outline in algorithm 1, for Bayesian in-
ference then the target distribution is the posterior distribution p(θ|y). Since, as
seen in Equation 2.17, the posterior is proportional to the likelihood function multi-
plied with the prior, the Metropolis-Hastings algorithm can then be used to generate
samples from the posterior distribution, without need to compute the normalization
constant.

Often computations are done on the log likelihood l(θ|y) = Log L(θ|y). This trans-
formation is done since the likelihood function is often represented as a product of
multiple probability distributions. This function is called the Log Likelihood. This
transform is also beneficial since the range of the value in the likelihood function
is often large, which could lead to numerical issues. By reducing this range a more
stable algorithm can be achieved. After a log transform the acceptance ratio, step
4.2 in algorithm 1, becomes

log A := min(0, log f(x′) + log g(xt|x′)− log f(xt)− log g(x′|xt)) (2.20)

11

2. Background

Algorithm 1 Metropolis-Hastings
1: Input: x0, f(x), g(x′|x), Tend
2: Output: (xt)Tend

t=1
3: Initialize

1. Set an initial starting point x0.
2. Set t := 0.

4: Proposal:
1. Sample a value x′ from g(x′|xt).
2. Compute acceptance ratio A := min(1, f(x′)g(xt|x′)

f(xt)g(x′|xt)).
5: Accept or Reject

1. Sample value u ∼ U(0, 1).
2. If u ≤ A, then xt+1 = x′.
3. If u > A, then xt+1 = xt.

6: End Condition
1. Set t := t+ 1
2. If t < Tend then continue to step 4.
3. If t = Tend then break.

and the check performed to see if the proposed state is accepted becomes log u ≤
log A. With the corresponding change for the rejection case.

2.4 Artificial Neural Networks

An artificial neural network (ANN) is a model used for both supervised classification
and regression problems. By constructing a network of nodes, inspired by biological
neurons, with one or more layers, each one containing nodes that are interconnected
with the all the other nodes in the adjacent layers. One of the simpler forms of an
artificial neural network is a feedforward neural network.

2.4.1 Feedforward Neural Network
The simplest feedforward neural network consists of a single layer of output nodes
with weights connecting the input nodes to the output nodes. Each layer in the net-
work is only able to learn linearly separable patterns, but by increasing the number
of layers more complex mappings can be represented.

For a network with layers L ≥ 1 with the number of nodes in each layer, li, be-
ing N1, ..., NL. The layers are connected with a weight matrix Wj,k ∈ RNi × RNi+1 ,
with j being the index for the nodes in layer li and k for the nodes in layer li+1.
The layers also have a corresponding bias vector bi ∈ Rni . Each layer also has an
activation function, g, associated with it. These are often nonlinear since it allows
for the network to approximate nonlinear functions [5]. This results in the equation

V i+1
j = g(

∑
k

W i
j,kx

i
k − bij) (2.21)

12

2. Background

with V i+1
j being node j in layer li+1 and with xik. The superscript represents the

layer, l, while the subscript represents the nodes of the layer. The network, F ,
represents a mapping which is the combination of function composition and matrix
multiplication of all the earlier layers, such as F := g(WL) ◦ ... ◦ g(W 1x).

If the activation function is chosen to be a linear, identity, function then the network
will perform a simple linear regression. For regression problems the most common
activation functions are the ReLu, tanh and Elu.

ReLu(x) = max(0, x) ∈ [0,∞] (2.22)

tanh(x) = ex + e−x

ex − e−x
∈ [−1, 1] (2.23)

Elu(x) =
{
x, x ≥ 0
α(ex − 1), x < 0 ∈ [−α,∞] (2.24)

Most of these activation functions are differentiable everywhere, or at least almost
everywhere. This function enables the differentiation of the whole network with
respect to the weights and bias using the backpropagation algorithm which utilises
gradient descent in order to minimize the loss function.

2.4.2 Optimization
In an optimization problem a loss function, denoted here as C, is a function that
is utilized in optimization problems. A loss function, C : Rn → R, has as input
a vector of size n, and returns a scalar that is proportionate to the algorithms
prediction. For regression problems the most common loss functions is the mean
square error (MSE).

C = MSE = 1
n

n∑
i=1

(yi −F(yi))2, (2.25)

with yi being the target and ŷi the predicted value.

The goal of optimization problems is to minimize the loss function. In neural net-
works one common algorithm used for this is the gradient descent algorithm. The
loss function is minimized with respect to the weights and biases in the network.
This process is done by propagating backwards through the feedforward network
and updating the values such that the loss function is minimized. Since the param-
eters of each layer l depends on the value of weights and biases of previous layers.
This results in a recursive process where the partial derivative of each weight and
bias is determined through the chain rule, propagating backwards from the output
layer until the weight/bias has been reached.

Consider the set of all weights and bias

w := (WL, ...,W 1, bL, ..., b1). (2.26)

Using gradient descent the weights/biases are updated according to

wi = wi − η
∂C

∂wi
, (2.27)

13

2. Background

where η > 0 is referred to as the learning rate and wi ith element of w.

In the context of neural networks it is a common choice to use the Stochastic Gradi-
ent Descent (SGD) algorithm instead of the ordinary gradient descent. By avoiding
to calculate the whole, true gradient, as in Equation 2.27, the SGD algorithm es-
timates the whole gradient based on multiple, random, smaller subset of the data
called mini-batch at each step. This speeds up the computation, especially if the
number of samples in the data set is large. It has been suggested that the solution
obtained by the SGD algorithm generalizes better than other adaptive gradient de-
scent methods [13].

Sometimes a momentum, ν, is added to the SGD algorithm in order to acceler-
ate it. This is done by adding a fraction of the previous estimated gradient and thus
reducing the oscillation of the algorithm in the non descent directions. By adding
momentum the update rule in Equation 2.27 becomes

vt = νvt−1 + η ∂C
∂wi

wi = wi − vt
. (2.28)

A typical value for the momentum is ν = 0.9 [10].

14

3
Results and Discussion

3.1 Training environment

The neural network was implemented using Tensorflow [1] and was trained using
NVIDIA T4 GPUs. In each simulated recovery curve from the FRAP sample the
first 10 points correspond to the pre-bleach frames and the final 100 to the post-
bleach frames. The simulation was performed using, ∆t = 0.265 s between frames,
and with a pixel size of 7.6× 10−7 m/pixels.

The four parameters are sampled as Ddata ∼ Log U(Dlow, Dhigh), the diffusion
constant, C0data ∼ U(C0low, C0high), the original flourescence intensity, αdata ∼
U(αlow, αhigh), the bleach factor, and adata ∼ Log U(alow, ahigh), the additive noise
defined in Equation 2.6. Where U is the uniform distribution, and Log U is a log-
uniform distribution, with the Dlow and Dhigh being the lower and upper bounds
for the distributions. And likewise for the other parameters. The lower and upper
boundaries for Ds distribution are [10−12,10−9] in the units m2/s. While the bound-
ary values for C0 are [0.50,1], for α, [0.45,0.95], and for a, [1× 10−4, 1× 10−2], with
C0 and a being defined in arbitrary units, a.u, and α being a dimensionless quan-
tity. By converting the boundaries of D into the more appropriate unit pixels2/s
one changes the boundary values to [1.7, 1.7× 103]. All values and distributions for
the parameters can be found in Table 3.1. The model outlined in section 2.2 allows
for a broader choice of parameters, but it was decided to focus on the four most
central ones.

The network was trained to minimize the mean square error loss function, defined
as

MSE(y,F(y)) = 1
N

N∑
i=1

(yi −F(yi))2, (3.1)

with ŷ being the predicted value and y the corresponding target value.

3.2 Pre-processing and generation of the data
The data, Ξ, was generated using the method outlined in section 2.2 along with the
experimental parameters found in Table 3.2. The data generation was implemented
using Matlab [11]. From Table 3.1 a region of allowed parameter values can be
extracted, call this region of accepted values in the parameter space Ω.

15

3. Results and Discussion

Table 3.1: The distribution that the parameters used for generating the FRAP
data are simulated from. The distributions are chosen to accurately represent the
parameter values encountered in FRAP experiments.

Parameter Distribution
D Log U(1.7 pixels2/s, 1.7× 103 pixels2/s)
C0 U(0.5, 1)
α U(0.45, 0.95)
a Log U(10−4, 10−2

Table 3.2: The fixed experimental parameters used in the simulation of the FRAP
data.

Parameter Value
∆t 0.265 s

Pre-bleach frames 10
Post-bleach frames 100

Pixel size 7.6× 10−7 m/pixels
Number of pixels 256

Padding 128

Along with fixed experimental parameters found in Table 3.2, the generated data
parameter vector, θ = [Ddata, C0data, αdata, adata], was used to simulate 110 frames
showcasing the diffusion. These frames were then the basis of the generated, ex-
perimental, recovery curve Fexp(t). Then, four new parameters were generated,
θ̂ = [D̂, Ĉ0, α̂, â], and the process was repeated resulting in the recovery curve
F (θ̂, t). Using this, the log likelihood function was then calculated in accordance
with Equation 2.13. Each data sample consists of 110 data points of Fexp(t), the
four parameters in the vector θ̂, as well as the target l(θ̂).

A total of Ndata = 1, 200, 000 data points were generated, since the data was simu-
lated there were never any shortage of data which is something that neural networks
benefits immensely from. The simulated data was split into a training, validation
and a test set, where Ntrain = 0.6Ndata, Nval = 0.3Ndata and Ntest = 0.1Ndata.

Since the log likelihood values differ substantially in scale, between [−108, 102], and
is skewed towards very low values since the probability of generated parameters θ̂
being the true parameters θ in all dimensions is low, thus leading to a majority of
the simulated data points having a large negative log likelihood value associated
with it. To combat this a transform of the values was performed in order to both
speed up the convergence and reduce the risk of exploding gradients.

First, an affine transform was applied to ensure that all simulated log likelihood
values had the same sign. Afterwards a logarithmic transform was applied on the

16

3. Results and Discussion

data set, Ξ, resulting in the total transform

Ξ′ = log(−(Ξ− 1000)), (3.2)

with Ξ′ being the new transformed data set. This transform resulted in approxi-
mately Ξ′ ∈ [10, 20].

The feature vectors of the parameters D and a were standardized to values in be-
tween [0,1] using a minmax-scaler

xscaled = x−min(x)
max(x)−min(x) , (3.3)

with x being a feature vector. A transform of the input feature is associated with a
better performance of the neural network [8] since the features are of the same order
of magnitude. The transform was not applied to the features C0 and α since they
are bounded between [0, 1], nor was the generated recovery curve rescaled since the
values were also already bounded between [0, 1].

The rescaling was calculated based on the training data. The transform was then
applied on the entire data set Ξ′.

3.3 Neural Network

3.3.1 Training the neural network
When it comes to the design of neural networks it often comes down to intuition and
guidelines, since no foolproof method for finding the best hyperparameters exists.
There exists a trade off between the design of a network and time. A deep and wide
network might be able to learn the data better, but will take longer time before
being sufficiently trained.

Since we are performing regression with a fully connected feedforward network the
initial idea was that a shallow, and wide, network might be ideal [2]. Often times
when using neural networks for regression a shallow network is preferable, compared
to networks for classification were a deeper network might be more advantageous.

3.3.2 Hyperparameter Optimization
The hyperparameters in the fully connected feedforward network was optimized with
respect to the MAE metric. The hyperparameters were batch size NB, learning rate
η, momentum ν, amount of layers L and amount of neurons per layer N , and this
was done using a grid search. It was found that the best values were NB = 128,
η = 1× 10−4, ν = 0.95, L = 5 and N = 256. In order to decrease the complexity of
the network it was decided that each layer should have the same activation function
and consist of the same amount of neurons per layer.

17

3. Results and Discussion

Table 3.3: The hyperparameters used for the training of the neural network.

Parameter Value
NB 128
η 10−4

ν 0.95
L 5
N 256

It was found that the network generalized better the starting learning rate was
chosen a bit larger and then allowed to decay after a fixed amount of epochs [14].
These hyperparameters were optimized through a grid search and it was found that
a learning rate decay of 50% every 5000 epochs performed the best. All hyperpa-
rameters were optimized with respect to the loss metric mean absolute error (MAE),
defined as

MAE = 1
n

n∑
i

|yi −F(yi)|, (3.4)

on the validation set.

The activation function was chosen as the Elu function, previously defined in Equa-
tion 2.24, since it performs equally well compared, with optimal hyperparameters
selection, to the ReLu activation function, with respect to the MAE value, and it is
also associated with a faster learning speed, [4] with the added bonus of also being
differentiable everywhere.

The final network then becomes a fully connected feedforward network with 4 layers,
each having 256 neurons in each layer, with the ELU activation function and with
the final layer as a linear function with one neuron.

3.4 Accelerated Metropolis-Hastings
In this section the accelerated Metropolis-Hastings (AMH) algorithm will be pre-
sented. The algorithm is similar to the one presented in Algorithm 1. The AMH
utilizes the neural network, F , to approximate the shifted log log likelihood function.

The proposal function was specified as a multivariate Gaussian with covariance
Σ centered around the latest accepted proposal, xt,

x′ ∼ g(x′|xt) = N(xt,Σ). (3.5)

Since this function is symmetric it can be removed from the computation of the ac-
ceptance ratio defined in Equation 2.19, and the acceptance ratio becomes log A :=
min(0, F̂(x′)− F̂(xt)). Where F̂ is the inverse transformed output from the neural
network.

The accelerated likelihood function is only defined on a bounded parametric space,

18

3. Results and Discussion

Ω, that covers the data set and since the new proposed values from the Metropolis-
Hastings algorithm might cross this region there needs to be method of dealing with
this issue. One solution is to only accept proposed values that are inside the region
Ω, and reject it otherwise. In implementation of this algorithm, described in algo-
rithm 2. If a state outside the region Ω is proposed by the proposal function it will
automatically get rejected and the algorithm continues to the next step.

The likelihood value for each proposed state was transformed from Ξ′ back into
Ξ after being estimated, meaning that the normal log likelihood was sampled in
the algorithm. The covariance matrix Σ was chosen with the aim of allowing for
approximately 20 to 25% of all proposed states to be accepted.

Algorithm 2 Accelerated Metropolis-Hastings Algorithm (AMH)

1: Input: x0, F̂(x), g(x′|x,Σ), Tend,,Σ
2: Output: (xt)Tend

t=1
3: Initialize

1. Set an initial starting point x0.
2. Set t := 0.

4: Proposal:
1. Sample a value x′ from g(x′|xt,Σ).
2. Compute acceptance ratio log A := min(0, F̂(x′)− F̂(xt)).

5: Accept or Reject
1. Sample value u ∼ U(0, 1).
2. If log u ≤ log α, then xt+1 = x′.
3. If log u > log α, then then xt+1 = xt.

6: End Condition
1. Set t := t+ 1
2. If t < Tend then continue to step 4.
3. If t = Tend then break.

The burn-in period for algorithm 2 was visually deduced by finding the point were
the algorithm had seemingly converged to a somewhat narrow stripe. Call that
point tburn. All states with t ≤ tburn, x1, .., xtburn , are discarded and the marginal
distributions are then obtained using the remaining states.

3.5 Performance metrics
To ensure that the AMH algorithm performs well compared to the classical imple-
mentation of the MH algorithm three evaluation metrics will be used. Firstly, since
the AMH is an accelerated algorithm it should be faster at proposing and accept-
ing/rejecting a state than the corresponding classical MH algorithm.

Secondly, the posterior mean estimation and the posterior variance of the two den-
sities should agree with each other. The posterior mean should ideally also agree
with the original parameters used for generating the underlying data. And lastly

19

3. Results and Discussion

the estimated marginal posterior distributions using the two algorithms should be
as similar as possible. To quantify this distribution similarity the Jensen-Shannon
distance was used.

The Jensen-Shannon divergence is defined as

JSD(P ||Q) = 1
2(DKL(P ||M) +DKL(Q||M), (3.6)

with the probability measure M = 1
2(P + Q) and DKL being the Kullback-Leibler

divergence defined as

DKL(P ||Q) =
∫ ∞
−∞

p(x)log p(x)
q(x) , (3.7)

where P and Q are continuous random variable with p and q denoting the corre-
sponding probability density functions. When using the base 2 logarithm then the
Jensen-Shannon divergence is bounded between 0 and 1. By taking the square root
of the Jensen-Shannon divergence one gets the Jensen-Shannon distance (JSD). A
JSD value of 0 indicates that the two probability density are equal while a value of
1 indicates that the densities have very few, or zero, similarities.

20

3. Results and Discussion

3.6 Results

In this section the results of the Accelerated Metropolis-Hastings algorithm as well
as the results related to the neural network is presented. The section starts by
introducing the convergence of the neural network and continue by presenting the
results of the AMH algorithm.

3.6.1 Results from training

The neural network was trained with the hyperparameters defined in Table 3.3. The
network was trained for a total of 14000 epochs. Then the best performing model,
with respect to the validation metric MAE, was chosen.

In Figure 3.1 the logarithmic loss of the MSE for both the training and valida-
tion set of the neural network are shown. It is clear where the learning rate decay
occurred, and that it also had a positive impact on the final achieved loss. One of
the reasons why the loss curve appears to be so noisy can be that we used the SGD
algorithm for the minimization of the loss function.

Figure 3.1: The validation and training loss of the network with the hyperparam-
eters defined in Table 3.3.

21

3. Results and Discussion

3.6.2 Results from the algorithms
In this section the resulting marginal distributions for the parameters D, C0, α and
a from two different sets of true parameter values will be presented. The resulting
marginal distributions from both the AMH algorithm and the classic MH algorithm
will be compared, both through a histogram where the marginal densities are show-
cased, the posterior mean estimate, the posterior variance, a comparison through
the JSD metric and in regards to the time per sample. Where the time per sample
is defined as the time that it takes to propose a state, calculate the associated ac-
ceptance ratio, and update the state for all four parameters, measured in seconds.

The first set of true parameters are defined in Table 3.7, the parameters where
generated from their respective distribution, defined in Table 3.1, and then rounded
to two significant digits. The second set of parameter values were generated in the
same fashion, and then rounded, and can be found in Table 3.8. The priors for
the parameters θ = [D,C0, α, a] were chosen to be uniform, with the boundaries
defined in section 3.1, this choice was made in order to simplify the implementa-
tion. Since the aim was to compare the resulting marginal posterior distributions
estimated from the AMH algorithm compared with the classical MH, the choice of
prior should not have an impact, as long as it is the same in both implementations.

There are quite a few metrics mentioned in this report that are used for evalu-
ating the results of the algorithms, but they are not equally important. The metrics
of main importance in the context of this report are the posterior mean estimates
and the time per sample metric. The posterior mean since we are interested in
estimating the true parameter values and the time per sample metric since the al-
gorithm is supposed to be accelerated, compared to the classical MH.

In Figure 3.2 the convergence for all parameters for the AMH algorithm, outlined
in algorithm 2 for the first set of generated parameters, is shown. The initial value
x0 ∈ Ω was chosen at random. In order to guarantee convergence the algorithm ran
for a total of 2× 105 iterations. The corresponding convergence plots are shown in
Figure A.4, where a generous burn-in cutoff was chosen at 1.6× 105.

While in the Figure 3.3 the convergence for the second set of parameters, found
in Table 3.8, are shown. Similarly to the first case the initial value was chosen at
random, and the algorithm ran for a total of 1.8 × 105 iterations, with the burn-in
cutoff chosen at 1.5× 105 iterations.

In Figure A.2 the marginal posterior distribution, generated from the AMH al-
gorithm, for the parameters D,C0, α and a are shown, with the true parameter
values found in Table 3.7. In Figure A.3 the empirical marginal posterior distribu-
tions, that are generated using the classical Metropolis-Hastings algorithm defined
in Algorithm 1, are shown, and in Figure 3.4 the marginal posterior distributions
from both the AMH algorithm and the classical MH algorithm are overlayed on
top of each other, and in the Table 3.9 the posterior mean estimates for both al-
gorithms are displayed, along with acceptance rate and time needed per sample.

22

3. Results and Discussion

Since there exists fewer samples from the marginal distributions, generated from

Table 3.4: The resulting JSD values for each parameter by comparing the marginal
posterior distributions of the AMH and the classical MH algorithms. From the first
run of the algorithm with parameters defined in Table 3.7.

Parameters D C0 α a
JDS metric 0.27 0.28 0.53 0.96

the classical algorithm, the distributions generated from the AMH algorithm were
randomly subsampled so that the amount of samples in the corresponding distribu-
tion would be equal. In order to ease the convergence for the classical MH algorithm
the initial starting point was chosen as the true parameter values. By comparing

(a) D (b) C0

(c) α (d) a

Figure 3.2: The convergence plots of the parameters D (a), C0 (b), α (c) and a (d).
These are the results from the first run of the AMH algorithm with the parameters defined
in Table 3.7.

posterior mean values from Table 3.9 with the parameter values used for generating
the experimental recovery curve, F (θ, t)exp, found in Table 3.7, it is clear that both
algorithms works well with regards to the parameters D, C0 and α but that the
AMH algorithm underperforms in the a dimension while the classical algorithm, as
expected, performs well in that dimension. It is also clear from comparing the two
posterior marginal distributions in Figure 3.4d that they do not match. Estimating

23

3. Results and Discussion

Table 3.5: The resulting JSD values for each parameter by comparing the marginal
posterior distributions of the AMH and the classical MH algorithms. From the
second run of the algorithm with parameters defined in Table 3.8.

Parameters D C0 α a
JDS metric 0.58 0.97 0.81 1

the noise parameter, a, is seemingly not as simple as the other parameters D, C0
and α, when using a fully connected neural network. There seems to be a bias for
the neural network in predicting the likelihood with respect to the noise, a. This is
apparent from both the posterior mean estimation, from Table 3.9, and the posterior
distributions themselves, from Figure 3.4d.

It is unsurprising that the AMH algorithm managed to estimate the marginal poste-
rior distribution for the parameter C0 well since a lot of information about the initial
concentration parameter, C0, is contained in the pre-bleached frames. This argu-
ment is also strengthened by studying the speed of convergence of the C0 parameter
in Figure 3.2b, where it converges quickly to the correct value, indicating that it is
a relatively easy parameter to estimate. The marginal posterior distribution for the
parameter α is quite similar to the one obtained from the classic MH. Similarly to
the parameter C0, information about the bleach parameter α is also contained in
the pre-bleach frames, meaning that it is probably one of the two easier marginal
posterior distributions to estimate, along with C0. This is clear from studying the
estimated marginal posterior distribution in Figure 3.4b for C0 and Figure 3.4c for
α. By comparing the estimated posterior mean values for α and C0 from Table 3.9
with the parameters used to generate the data, from Table 3.7 it is clear that the
posterior mean estimates are consistent with the values used for the simulation of
the data.
The situation for the second case, with the true parameters found in Table 3.8, is
similar to the one mentioned above. The true data was generated using the param-
eters found in Table 3.8, and the corresponding convergence plots for all parameters
are shown in Figure 3.3. The resulting metric values can be found in Table 3.6.
Again, the marginal posterior distribution for the parameters D, C0 and α seems to
be relativity easy to estimate with the posterior mean being very similar between
both the two algorithms as well the parameters used to generate the data. By study-
ing the convergence plots the AMH algorithms seems to converge relatively quickly
for the true values of the parameters D, C0 and α. The comparison of the marginal
posterior distributions for the second set of generative parameters are shown in Fig-
ure 3.5 The marginal variance for these parameters differ more, with the variance
of the marginal distributions estimated by the AMH algorithm being, in general,
an order of magnitude larger than the distributions estimated by the classic MH
algorithm.

Similarly to the situation in the first case the AMH algorithm fails to converge
to the true value of the noise parameter a, as seen in Figure 3.5d. The difference
in the posterior mean estimate, between the two algorithms, is larger for the second

24

3. Results and Discussion

(a) D (b) C0

(c) α (d) a

Figure 3.3: The convergence plots of the parameters D (a), C0 (b), α (c) and a (d).
These are the results from the second run of the AMH algorithm with the parameters
defined in Table 3.8.

set of parameters than the first. One partial explanation for this is the fact that the
true noise parameter is much lower in the second case, and that the neural network
seems to find a minimum where the a parameter value is relatively large, no matter
what the true value of the other parameters are.

3.6.3 Comparing the algorithms
At first glance it is clear that the results from the two algorithms differ quite a bit,
and that the neural network used in this project was not able to perfectly approx-
imate the posterior density for any of the parameters. This is clear from the JSD
metric, found in Table 3.4 for the first set of true parameter values and in Table 3.5
for the second set. It is clear from this metric that it, in general, agrees with the
previous assessment that the marginal posterior distribution for the three parame-
ters D, C0 and α are somewhat well approximated, but the one for a parameter is
not.

But the difference between the two algorithms is the time per sample metric. With
regards to that metric it is clear that the AMH algorithm performs well, being
able to propose samples 38 times faster than the classical implementation is a clear

25

3. Results and Discussion

(a) Comparison of the marginal posterior
distribution between the algorithms of the
parameter D

(b) Comparison of the marginal posterior
distribution between the algorithms of the
parameter C0

(c) Comparison of the marginal posterior
distribution between the algorithms of the
parameter α

(d) Comparison of the marginal posterior
distribution between the algorithms of the
parameter a

Figure 3.4: Histograms of the marginal posterior distributions resulting from the two
algorithms AMH and classical MH for the parameters D (a), C0 (b), α (c) and a (d).
These are the results from the first run of the AMH and the classical MH algorithm with
the parameters defined in Table 3.7.

26

3. Results and Discussion

(a) Comparison of the marginal posterior
distribution between the algorithms of the
parameter D

(b) Comparison of the marginal posterior
distribution between the algorithms of the
parameter C0

(c) Comparison of the marginal posterior
distribution between the algorithms of the
parameter α

(d) Comparison of the marginal posterior
distribution between the algorithms of the
parameter a

Figure 3.5: Histograms of the marginal posterior distributions resulting from the two
algorithms AMH and classical MH for the parameters D (a), C0 (b), α (c) and a (d).
These are the results from the second run of the AMH and the classical MH algorithm
with the parameters defined in Table 3.8.

27

3. Results and Discussion

Table 3.6: Resulting metrics for the parameters from the second run of the AMH
and classical MH algorithm. The true parameters for the data can be found in Table
3.8.

Metric Classic MH AMH
Posterior Mean D 3.5 3.46

Posterior Variance D 3× 10−5 1× 10−3

Posterior Mean C0 0.69 0.69
Posterior Variance C0 2.8× 10−8 2× 10−7

Posterior Mean α 0.8 0.8
Posterior Variance α 1.8× 10−8 1.2× 10−7

Posterior Mean a 2.4× 10−4 2.8× 10−3

Posterior Variance a 1× 10−10 3.4× 10−9

Time per sample 7.5s 0.2s
Acceptance rate 26 % 21 %

Table 3.7: The true parameters used for simulating the underlying recovery curve
for the first run of the AMH algorithm.

Parameters D C0 α a
Value 50 0.7 0.6 3.3×10−3

improvement.

3.6.4 Estimating the parameter a
The network performs worse at estimating the marginal posterior density for the
parameter a than the other parameters is clear. However the exact reason for this
is hard to pinpoint. One possible reason for could be a bias in the networks ap-
proximation of the log likelihood function, with this bias mainly being visible in
the estimation of the marginal posterior density of a. When the approximated log
likelihood function is studied near the set of true parameter values the function
appears to be very ’flat’ in the a-dimension while the approximated log likelihood
had a very optima with regards to the other three parameters. This ’flatness’ of
the approximated log likelihood function might results in the fact that even if the
AMH algorithm manages to converge to the correct true a value, it might still drift
in the a dimension and get ’stuck’ in an optima that might be a residue from the
approximation done by the network. This flatness is also something found in the
true log likelihood function.

28

3. Results and Discussion

Table 3.8: The true parameters used for simulating the underlying recovery curve
for the second run of the AMH algorithm.

Parameters D C0 α a
Value 3.5 0.7 0.8 2.5×10−4

Table 3.9: Resulting metrics for the parameters from the first run of the AMH and
classical MH algorithm. The true parameters for the data can be found in Table
3.7.

Metric Classic MH AMH
Posterior Mean D 50.13 50.32

Posterior Variance D 9.5× 10−2 9.5× 10−2

Posterior Mean C0 0.7 0.7
Posterior Variance C0 1.1× 10−7 9× 10−8

Posterior Mean α 0.6 0.59
Posterior Variance α 3.4× 10−6 3× 10−6

Posterior Mean a 3.2× 10−3 7× 10−3

Posterior Variance a 1.4× 10−8 3× 10−8

Time per sample 7.4s 0.2s
Acceptance rate 23 % 27 %

29

3. Results and Discussion

30

4
Conclusion

The goal with this project was to develop a deep learning-accelerated Metropolis-
Hastings algorithm which works for Bayesian inference on the simulated FRAP data.
The purpose was to decrease the computational time needed for Bayesian inference
on the recovery curve model. A fully connected feedforward neural network was
trained with regards to the four most central parameters of the model. Numerically
simulated FRAP data has served as the training, validation and test data for the
network.

The results indicate that it is possible to preserve the shape of the marginal pos-
terior densities, of the chosen parameters, compared to the traditional Metropolis-
Hastings. The results show that the posterior mean estimates for three out of four
parameters are consistent with the estimates from the traditional algorithm, as well
as the true values used for generating the data. Importantly, the implemented algo-
rithm is much more computationally efficient than the traditional method.

Future work on the topic of this thesis should aim to improve the estimation of
the noise parameter, a. Either by utilizing different types of network architecture
that might be better suited for this type of problem, or by not approximating the
log likelihood and instead focusing on the negative sum of the residuals squared to
estimate the parameters D,C0 and α and estimating a either through an additional
neural network, or using some other method. Another idea is to perform a different
transform in the preprocessing step and thus perhaps simplifying the estimation of
the parameters. It is also possible that the noise parameter a is hard to estimate
in general, and that no method performs well. This is also something can can be
examined. Lastly, future work could also be done by extending the framework by
including more FRAP parameters.

31

4. Conclusion

32

Bibliography

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G.
Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-scale
machine learning. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), pages 265–283, 2016.

[2] Lei Jimmy Ba and Rich Caruana. Do deep nets really need to be deep?, 2014.
[3] Mylène Bédard. Optimal acceptance rates for metropolis algorithms: Moving

beyond 0.234. Stochastic Processes and their Applications, 118(12):2198–2222,
2008.

[4] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and ac-
curate deep network learning by exponential linear units (elus), 2016.

[5] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathe-
matics of Control, Signals, and Systems (MCSS), 2(4):303–314, December 1989.

[6] Adolf Fick. Ueber diffusion. Annalen der Physik, 170(1):59–86, 1855.
[7] McGregor G. Jacobson K. A. Kapitza, H. G. Direct measurement of lateral

transport in membranes by using time-resolved spatial photometry. Proceed-
ings of the National Academy of Sciences of the United States of America,
82(12):4122–4126, 1985.

[8] Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Ef-
ficient backprop. In Neural Networks: Tricks of the Trade, This Book is an
Outgrowth of a 1996 NIPS Workshop, page 9–50, Berlin, Heidelberg, 1998.
Springer-Verlag.

[9] Niklas Lorén, Joel Hagman, Jenny K. Jonasson, Hendrik Deschout, Diana
Bernin, Francesca Cella-Zanacchi, Alberto Diaspro, James G. McNally, Marcel
Ameloot, Nick Smisdom, and et al. Fluorescence recovery after photobleaching
in material and life sciences: putting theory into practice. Quarterly Reviews
of Biophysics, 48(3):323–387, 2015.

[10] Sebastian Ruder. An overview of gradient descent optimization algorithms,
2017.

[11] Magnus Röding, Leander Lacroix, Annika Krona, Tobias Gebäck, and Niklas
Lorén. A highly accurate pixel-based frap model based on spectral-domain
numerical methods. Biophysical Journal, 116(7):1348–1361, 2019.

[12] Hermansson A. M. Ohgren C. Rudemo M. Lorén N. Schuster, E. Interac-
tions and diffusion in fine-stranded -lactoglobulin gels determined via frap and
binding. Biophysical journal, 106(1):253–262, 2014.

33

Bibliography

[13] Ashia C. Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Ben-
jamin Recht. The marginal value of adaptive gradient methods in machine
learning, 2018.

[14] Kaichao You, Mingsheng Long, Jianmin Wang, and Michael I. Jordan. How
does learning rate decay help modern neural networks?, 2019.

34

A
Appendix 1

A.1 Convergence plots and histograms from AHM
and classical MH algorithms

I

A. Appendix 1

(a) D (b) C0

(c) α (d) a

Figure A.1: The samples after the burn-in time of the parameters D (a), C0 (b), α
(c) and a (d). These are the result from the first run of the AMH algorithm with the
parameters defined in table 3.7.

II

A. Appendix 1

(a) D (b) C0

(c) α (d) a

Figure A.2: The histograms of the parameters D (a), C0 (b), α (c) and a (d). These
are the result from the first run of the AMH algorithm with the parameters defined in
table 3.7.

III

A. Appendix 1

(a) D (b) C0

(c) α (d) a

Figure A.3: The histograms of the parameters D (a), C0 (b), α (c) and a (d). These
are the result from the first run of the classical MH algorithm with the parameters defined
in table 3.7.

IV

A. Appendix 1

(a) D (b) C0

(c) α (d) a

Figure A.4: The samples after the burn-in time of the parameters D (a), C0 (b), α
(c) and a (d). These are the result from the second run of the AMH algorithm with the
parameters defined in table 3.8.

V

DEPARTMENT OF SOME SUBJECT OR TECHNOLOGY
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	List of Figures
	List of Tables
	Introduction
	Background
	FRAP
	Diffusion
	Fluorescence recovery after photobleaching
	The FRAP Model
	Parameter estimation

	Numerical solution to the diffusion equation
	Bayesian inference
	Bayesian framework
	Metropolis-Hastings
	Metropolis-Hastings in Bayesian inference

	Artificial Neural Networks
	Feedforward Neural Network
	Optimization

	Results and Discussion
	Training environment
	Pre-processing and generation of the data
	Neural Network
	Training the neural network
	Hyperparameter Optimization

	Accelerated Metropolis-Hastings
	Performance metrics
	Results
	Results from training
	Results from the algorithms
	Comparing the algorithms
	Estimating the parameter a

	Conclusion
	Bibliography
	Appendix 1
	Convergence plots and histograms from AHM and classical MH algorithms

