
-

Feasibility Study of Implementing
"Reconfigurable Computing" in

AUTOSAR Environment
Master’s thesis in Embedded Electronic System Design

VINODH RAJKUMAR GANESAN

Department of computer science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2016

The Author grants to Chalmers University of Technology and University of Gothen-
burg, the non-exclusive right to publish the Work electronically and in a non-
commercial purpose, make it accessible on the Internet. The Author warrants that
he/she is the author to the Work, and warrants that the Work does not contain
text, pictures or other material that violates copyright law. The Author shall, when
transferring the rights of the Work to a third party (for example a publisher or a
company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third
party to let Chalmers University of Technology and University of Gothenburg store
the Work electronically and make it accessible on the Internet.

Feasibility Study of Implementing
Reconfigurable Computing in AUTOSAR Environment

© VINODH RAJKUMAR GANESAN, 2016.

Examiner: PER LARSSON-EDEFORS

Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Department of Computer Science and Engineering
Gothenburg, Sweden 2016

ii

Abstract

Technological advancements have always been a driving factor for growth in many
domains. Competitive market and changing customer needs are a common scenario
in the automotive sector. Many advancements in the recent past like the drive by
wire system or the anti-lock braking system have become reality due to electronic
control systems. With the increase in number of electronic control units within
a vehicle, the standardization of vehicle’s electrical architecture has gained signifi-
cance. A standard that has been gaining recognition in the automotive sector over
the years and that looks to be the future way ahead is the Automotive Open System
Architecture (AUTOSAR).

We can expect future vehicles to have more electronics inside them and the elec-
tronic control units to be developed based on AUTOSAR standards. Advancements
in communication technology have made it feasible to have data exchange between
vehicles and by doing so, they have also increased the concerns on safety and secu-
rity in vehicles. Further, development of various modern concepts like autonomous
driving, etc., has pushed the automotive industry to gather lot of data and look
for faster processing solutions. General purpose processors, which were previously
used, alone are not competent enough to support the processing demands of these
embedded applications and thus, wherever possible, hardware acceleration is be-
ing tried to aid the processor. But in doing so, the power usage and silicon area
of the circuits increase, which is not viable. One way to solve this problem could
be to introduce reconfigurable computing. Reconfigurable Computing is a form of
computing in which the hardware configurations are modified during program exe-
cution. With this technique, the system becomes more flexible for the designers and
by smartly selecting the hardware to be reconfigured, high throughput, less power
usage and other system specific requirements can be attained. Another advantage
could be after sale bug fixes like those which are possible on software today can also
be extended to hardware.

Thus, if reconfigurable computing can be implemented within AUTOSAR, it will
showcase the possibility to use this technology in vehicles. To understand the fea-
sibility, a system that can dynamically and partially reconfigure an Advanced En-
cryption Standard (AES) encryption and decryption module in hardware according
to diagnostic requests from the user was implemented using Arctic Core (an open
source AUTOSAR software) for a Zynq® System On Chip (SOC). Results show the
possibility of implementing such a system with few limitations. Further it could also
be seen that a partially reconfigurable design would be more preferable than a fully
reconfigurable solution as it could minimize the down time during reconfiguration
of the system.

Keywords: AUTOSAR, Complex Device Driver, Reconfigurable Computing

iii

Acknowledgements

I would foremost thank Mr. Johan Ekberg from Arccore AB for showing interest in
the thesis idea without whom this work would not have been possible. I would like to
express my sincere gratitude to Mr. Michael Lundell, my supervisor at Arccore AB
and Mr. Mårtan Hilden for their guidance throughout this project. I am thankful
to all the Arccore AB staffs for giving me a friendly environment and insights into
various topics related to the thesis work, especially to Mr. Tomas Selldén and Mr.
Staffan Johansson for sharing their expertise on the hardware.

My special thanks to professor Per Larsson-Edefors and my supervisor Mr. Sven
Knutsson for their continuous support and patient reviews.

Vinodh Rajkumar Ganesan, Gothenburg, August 2016

Contents

List of Figures vi

Acronyms vii

1 Introduction 1
1.1 Background . 1
1.2 Aim . 2
1.3 Limitation . 2

2 Theory 3
2.1 Open Systems Interconnection . 3
2.2 Automotive Open System Architecture 4

2.2.1 AUTOSAR Methodology . 5
2.2.2 AUTOSAR Software Architecture 6

2.2.2.1 Application layer . 6
2.2.2.2 Basic Software . 7
2.2.2.3 Runtime Environment 7

2.3 Diagnostics . 7
2.4 Controller Area Network . 8
2.5 AES . 8
2.6 Reconfigurable Computing . 8
2.7 Zynq® . 9

2.7.1 Processing System . 10
2.7.2 Programmable Logic . 10

3 Methods 11
3.1 Software and Hardware Selection . 11

3.1.1 AUTOSAR Software . 11
3.1.2 Hardware . 11

3.2 Intended System . 12

4 Software 15
4.1 Development method . 15

4.1.1 Design Strategy . 15
4.1.1.1 Simple Example . 16
4.1.1.2 Configuring Arctic Core for diagnostic requests . . . 16

v

Contents

4.1.1.3 Choice of a Complex Device Driver 16
4.2 Design . 17

4.2.1 Location of CDD . 17
4.2.2 Control of reconfiguration . 19

4.3 Tools Used . 19
4.3.1 Arctic Studio . 19
4.3.2 winIDEA . 20

4.4 Implementation . 21
4.4.1 Hello World . 21
4.4.2 Diagnostic Control Module . 21
4.4.3 Complex Device Driver . 23

4.4.3.1 Software Component Description 23
4.4.3.2 Instantiate the newly added Software Component

(SWC) and generating RTE 24
4.4.3.3 Algorithm within CDD 24
4.4.3.4 Partial Reconfiguration 25

5 Hardware 27
5.1 Design . 27
5.2 Encryption and Decryption . 28
5.3 Integrating with present design . 28
5.4 Generating Partial Reconfiguration bitstreams 30

6 Booting 37
6.1 Zynq®Boot Process . 37
6.2 FSBL . 37

6.2.1 Xilinx SDK . 37
6.3 Boot Image . 38

7 Test 41
7.1 Test Setup . 41
7.2 Test Procedure . 42

8 Discussion and Conclusion 43
8.1 Discussion . 43
8.2 Conclusion . 44

Bibliography 45

vi

List of Figures

2.1 The OSI model . 3
2.2 AUTOSAR Methodology . 5
2.3 Basic structure of AUTOSAR . 6
2.4 Reconfigurable Hardware types . 8
2.5 Block Diagram of Zynq® . 9

3.1 Intended Design Flow . 13

4.1 Possible locations for CDD . 18
4.2 Arctic Studio work flow . 19
4.3 Programming Zynq®with winIDEA 20
4.4 DCM configuration in BSW editor 22
4.5 Software component Description CDD 23
4.6 Instantiation of CDD . 24
4.7 Algorithm for CDD . 26

5.1 AES core . 27
5.2 Encryption and Decryption design with same top module Aes_coding_128 28
5.3 Static and Dynamic modules . 29
5.4 View of AES module connected to AXI interconnect in Vivado® . . 29
5.5 Placed design as viewed in Xilinx Design view 31
5.6 Routed design as viewed in Xilinx Design view 32
5.7 Design after resetting reconfigurable module as viewed in Xilinx De-

sign view . 33
5.8 Design after writing the second reconfigurable module 34
5.9 Second Routed design as viewed in Xilinx Design view 34

6.1 Boot image creation . 38
6.2 Boot image structure . 39
6.3 Reference location of PR bit files as seen in Xilinx "Create Boot Im-

age" tool . 40

7.1 Test Setup . 41
7.2 Test result . 42

vii

List of Figures

viii

List of Acronyms

AES Advanced Encryption Standard
API Application Program Interfaces
APU Application Processor Unit
ARM Advanced RISC Machine
AUTOSAR Automotive Open System Architecture
Artop AUTOSAR Tool Platform
ARXML AUTOSAR XML
ASIC Application Specific Integrated Circuit
AXI Advanced eXtended Interface
BSW Basic Software
CAN Controller Area Network
CDD Complex Device Driver
CPU Central Processing unit
DCM Diagnostic Control Module
DDR Double Data Rate
DID Data Identifier
DMA Direct Memory Access
DMAC Direct Memory Access Controller
DRC Design Rule Check
E/E Electrical/Electronic
ECU Electronic Control Unit
EMIO Extended Multiplexed Input-Output
FPGA Field Programmable Gate Array
FSBL First Stage Boot Loader
GIC General Interrupt Controller
GPIO General Purpose input/output
GSM Global System for Mobile communication
GUI Graphical User Interface
hdf Hardware Description File
ICAP Internal Configuration Access Port
IDE Integrated Development Environment
IO Input Output
IP Intellectual Property
ISO International Organization for Standardization
JTAG Joint Test Action Group

ix

List of Acronyms

L1 Level 1
L2 Level 2
LED Light Emitting Diode
LUT Look Up Table
MIO Multiplexed Input-Output
OBD On-Board Diagnostics
OCM On-chip Memory
OEM Original Equipment Manufacturers
OSI Open Systems Interconnection
PC Personal Computer
PCAP Processor Configuration Access Port
PDU Protocol Data Unit
PL Programmable Logic
PS Processing System
RTE Runtime Environment
RISC Reduced Instruction Set Computing
SD Secure Digital
SDK Software Development Kit
SOC System On Chip
SWC Software Component
TCL Tool Command Language
UDS Unified Diagnostic Services
USB Universal Serial Bus
VFB Virtual Functional Bus
VHSIC Very High Speed Integrated Circuit
VHDL VHSIC Hardware Description Language
XADC Xilinx ADC

x

1
Introduction

Automotive is a fast growing sector where the demands of customers are ever increas-
ing and so is the need to adopt new technologies. A few decades ago, automobiles had
simple electrical components but today most of the vehicles have advanced micro-
controllers that run real time software[1] which can communicate within themselves
and work collectively to improve the drive environment for the users. Several latest
advancements like driver assistance systems, autonomous driving, vehicle to vehicle
communication, etc., depend heavily on electronics and software. Also the amount of
data stored and transferred within vehicles have increased in recent times. Modern
day vehicles need advanced Electrical and Electronics (E/E) architectures suitable
not only for handling technical challenges but that can also look into factors like
passenger convenience, fulfill legal requirements, etc.[2]. A standardized environ-
ment for development of these E/E is thus inevitable in such a scenario to manage
modifications with better quality. This leads the manufacturers to adopt an open
software architecture called AUTomotive Open System ARchitecture (AUTOSAR)
[3].

In-order to improve security and safety, it is expected that the Electronic Con-
trol Unit (ECU) inside vehicles have some reconfiguration capability [4]. It is well
known that Field Programmable Gate Array (FPGA) have the special characteris-
tic that they can be configured and reconfigured after being manufactured. Modern
FPGAs have significantly more options like partial reconfiguration, which means
that some connections inside the FPGA can be partly changed. Moreover partial
reconfiguration can be done without switching the power off. Thus when FPGAs
of automotive quality are coupled with AUTOSAR, such that the software in the
system is capable of controlling the reconfiguration of hardware, there can emerge a
wide range of benefits like hardware re-usability, after-sales modification of circuits
and many more.

1.1 Background
AUTOSAR is a union formed by leading Original Equipment Manufacturers (OEMs)
and the tier 1 suppliers in the automotive sector. Their objective was to define
an open standard upon which automotive E/E can be built. AUTOSAR makes it
mandatory that the software is developed in a layered architecture with standardized
Application Program Interface (API) and thus ensuring portability and hardware
independence for the OEM’s software [5].

Reconfigurable computing is a widely researched topic in the high performance

1

1. Introduction

computing field. The significance of this approach is that it can combine the bene-
fits of both general purpose processors and Application Specific Integrated Circuit
(ASIC) [6]. When there is a computationally intensive task like signal processing or
encryption/ decryption, it would be a good option to execute them in specialized
hardware units rather than on general purpose processors. In doing so, not only the
output is obtained faster but the processor is also allowed to execute other tasks
thereby increasing the overall throughput of a system.

Modern System On Chip (SOC) have, within them, processor cores and config-
urable logic blocks and these even support partial reconfiguration [7]. The fact that
these SOCs are available in automotive grades opens up the possibility to exploit the
benefits of reconfigurable computing within automotive domain. As more vehicle
manufacturers are leaning towards AUTOSAR, if reconfiguration of the hardware
could be controlled through AUTOSAR software, it would be suffice to show that
reconfigurable computing is feasible wherever needed in the automotive domain.

1.2 Aim
The goal of this thesis would be to show the possibility of implementing an ECU
which can partially reconfigure an AES encryption and decryption hardware accord-
ing to requirements, without affecting its other functionalities. The ECU’s partial
reconfiguration should be controlled by AUTOSAR software running on the same
chip based on diagnostic requests from the user.

1.3 Limitation
The diagnostics implementation in AUTOSAR is broad. The standard supports a
wide range of communication protocols and there are diagnostic services supported
for each of them. To maintain simplicity, only requests of the below mentioned
services through Controller Area Network (CAN) will be considered. The numbers
refer to a service identifier and service here represents a request to the ECU from
the user (or tester) in CAN message with these identifiers in specific locations.

• 0x23 Read memory by address
• 0x3D Write memory by address
• 0x27 Security Access

Although the implementation for the thesis is limited to these few services,
the concept can easily be extended to other services and protocols supported by
AUTOSAR.

2

2
Theory

This chapter gives a small introduction about different software concepts and the
hardware used in the thesis.

2.1 Open Systems Interconnection
When computing systems need to be connected in a network, there must be a set
of rules defined. The International Organization for Standardization (ISO) - Open
Systems Interconnection (OSI) is a reference model based on which interconnection
standards can be developed [8]. It consists of seven layers namely application,
presentation, session, transport, network, data-link and physical as shown in Figure
2.1.

Application

Presentation

Session

Transport

Network

Data-link

Physical

Figure 2.1: The OSI model

According to Mohammed M. Alani each layer handles data differently [9]. He
further explains that if Protocol Data Unit (PDU) is considered the unit of data in a
layer, then PDU for the physical layer is raw bits and the functionality of this layer

3

2. Theory

will be to aid in the data transmission between data-link layers of the sender and
receiver. The PDU in the data-link layer would be frames and the data link layer
will have a wide range of tasks to perform like flow control, error detection, etc. The
network layer’s PDU is packet. This layer is useful in maintaining communication
within a network and controls the routing of messages between networks. The next
level is the transport layer with PDU as segment which is helpful in segmenting big
data for transmission according to the bus or decoding several packets of data into
segments for the above layers. Neither the session layer nor the presentation layer,
which are the next two in hierarchy manipulates the data any further. While the
former is involved in establishing communication sessions between different units,
the latter manages the method in which the data is given to the application. Finally
the application layer helps the user communicate with the network.

2.2 Automotive Open System Architecture
AUTOSAR is a union of OEMs and other E/E suppliers within the automotive
industry [10]. The members of AUTOSAR are brought into a three tier structure
namely the Premium partners, the Development partners and the Associate
partners sharing different rights and responsibilities [11]. The union works on three
major tasks [12],

• Defining the standardized work flow model called the AUTOSAR methodology
that can aid in sharing of tasks during the development period

• Defining Software architecture
• Defining the different interfaces between the basic software and the application

layer

The standard has been continuously evolving since the AUTOSAR release 1.0
in 2005. Such a standardized architecture is supported by OEMs in a view that in the
future, their application softwares can be developed independent of the hardware.
Also, because of this approach, software module(s) developed for one vehicle model
can easily be reused in other models and application software designed to run on a
particular ECU can be shifted without much difficulties to another.

AUTOSAR prescribes a layered software architecture. A piece of code with
some functionality is called a module and there can be several modules within a
layer. The architecture defines the limitations and extent of accessibility for different
modules. In doing so, the impact of changes in the code is limited and new software
modules can henceforth be added easily without affecting the quality of the other
software. This directly reduces the need to test the already existing modules and
in-turn can reduce the time to market and the cost of development for a new ECU.

Looking at the benefits, many of the automobile manufacturers have already
started to develop their software based on AUTOSAR [13] and the standard is gain-
ing acceptance world wide. The number of ECUs based on AUTOSAR is estimated
to rise from 25 million in 2011 to 300 million in 2016 [14] and this figure directly
explains the standard’s significance.

4

2. Theory

2.2.1 AUTOSAR Methodology
In-order to achieve a model where software development can be done without the
knowledge of underlying hardware, few procedures in the system development are to
be followed and these are known as the "AUTOSAR Methodology" [15]. According
to this, development begins by defining the overall functionality of the software in a
vehicle. Then from these functionalities, requirements specific to the system, ECUs
and different components of basic software are derived. The derived information is
exchanged between different levels in a standard file format called AUTOSAR XML
(ARXML). Since the flow is standardized, each part of the system can be developed
separately and when adopted properly, different parts of the same software can be
developed by various vendors. At some point when individually developed softwares
are to be integrated, these ARXML will remain as the reference.

ARXML
(system)

ARXML
(system)

Input System
Configuration

System Configuration
Description

ARXML
(ECU)

ARXML

(ECU)

ECU extract ECU Configuration
Description

Configure
System

Extract
ECU

specific
data

Configure
ECU

Generate
Executable

Executable

Figure 2.2: AUTOSAR Methodology

An overview of AUTOSAR methodology according to the standard [15] is
shown in Figure 2.2. All the yellow boxes are either input or output of the system
in ARXML format and the gray boxes are the tasks performed. As shown, the
work flow begins with an ARXML file consisting of the system configuration details
such as overall software component requirements in the system, ECU resources, bus
topology, etc. Based on this input the configure system task allocates the application
to ECUs, selects the bus topology and performs similar system level mappings and
generates another ARXML files consisting all these details. This file now becomes
the input to the next task in the work flow, Extract ECU Specific Data task, where
details specific to individual ECUs are generated. An ARXML output named ECU
extract gets generated and this serves as the input to the next task Configure ECU.
During this task, based on the details from the ECU extract, finer details like BSW
configuration, etc., needed for the development of software at the ECU level are
derived and the output for this stage is the ECU configuration Description which
serves as the base for the software development. The next process is the Generate
executable task which generates the executable for a particular ECU.

5

2. Theory

2.2.2 AUTOSAR Software Architecture
The AUTOSAR software architecture mainly focuses on vehicle ECUs which use
16/32 bit micro-controllers and perform tasks at real time based on sensor inputs and
other similar ECUs connected in networks [16]. Use of multi-core Central Processing
unit (CPU)s is on the rise and the present AUTOSAR software architecture can be
extended to support them.

As shown in Figure 2.3, for an ECU with single core, the software primarily
consists of three layers namely

• Basic software (BSW)
• Application layer
• Runtime Environment (RTE) also referred as Virtual Functional Bus

(VFB)

Run Time Environment (RTE)

Microcontroller

MCAL

Application

CDD

Service Layer

ECU Abstraction Layer

Basic
Software

Figure 2.3: Basic structure of AUTOSAR

2.2.2.1 Application layer

During requirement analysis, all the basic tasks a system should perform are called
functional requirements [17]. In the application layer modules performing algorithms
to accomplish these functional requirements are placed. The code in this section
does not need to know how the system is configured to achieve this. For example,
a requirement for the system could be, on a particular condition it should switch
on a lamp (indicators) and blink at a particular rate. The code in this section will
only control the algorithm for switching on and off the lamp, but details like how
this lamp is connected or which port in the micro-controller needs to be switched
on and off to achieve this and how the time is calculated are all abstracted.

6

2. Theory

2.2.2.2 Basic Software

The BSW layer is made up of the service layer, ECU Abstraction layer and the micro-
controller abstraction layer. These sections handle the requests from the application
layer. As mentioned in the above example, the switching on and off of a lamp could
be the request. The basic software layer has in it those finer details like how the
lights are connected, which port(s) in the micro-controller needs to be switched,
what is that value when assigned to the port will switch the light on/off, calculation
of time according to the hardware oscillators that is used, etc., and thus help in
achieving the functional requirements of the system.

2.2.2.3 Runtime Environment

The RTE links BSW with the application layer. The common references could be
variables in memory. In events like hardware modifications, now it becomes sufficient
to modify only the RTE and the application layer code can largely be maintained
unaffected.

2.3 Diagnostics

Software inside a car has multiple functions. One among them is to monitor the
functioning of various units in the vehicles. This feature is called diagnostics and
they help the technicians, manufacturers and vehicle owners to know crucial details
of various sub-systems [18]. The ECUs inside a vehicle are interconnected for data
exchange. They could be connected in the same or different networks. AUTOSAR
describes two major diagnostic standards namely

• Unified Diagnostic Services (UDS) [19]
• On-Board Diagnostics (OBD) [20]

The former is based on ISO standard ISO14229-1 while the later is based on
ISO standard ISO15031-6. They lie in the application layer of the OSI model.

To read/write information from ECUs, software allows users to send messages
in a pre-defined format. These predefined messages are called diagnostic requests
and are characterized by a unique number called Service Identifiers (SID). This
distinguishes which service is being requested by the user from the ECU. The infor-
mation sent back by the software is called a diagnostic response and will also posses
a corresponding number. If the request message was supported by the ECU and if
the software was able to collect the required information then the ECU sends back
the read data with a valid response code to the user. In-case the request is not valid
or if the ECU had not been able to process the request within a given time, it sends
back a negative response.

7

2. Theory

2.4 Controller Area Network
The Controller Area Network (CAN) is a serial communication protocol within a
bus network [21]. It is a widely used protocol in automotive industry for commu-
nications between ECUs because of its cost effectiveness in comparison with other
protocols for a bit rate of 1 Mbs−1.

2.5 AES
Cryptography is widely used for data security during transmission and storage. Var-
ious algorithms exist to do this. The National Institute of Standards and Technology
(NIST) [22] is a federal agency within the U.S. Department of Commerce involved
in defining standards. In the year 2011, they announced the Rijndael algorithm [23]
as the Advanced Encryption Standard (AES) [24].

2.6 Reconfigurable Computing
The process of using or creating an algorithm to get a desired output is called
computing [25]. In electronics, computing is achieved with the help of circuits. If
these fundamental circuit configurations are changed within the architecture during
run-time, for various reasons like speeding-up the computation, etc., then we obtain
reconfigurable computing. Thus this form of computing is heavily dependent on the
underlying hardware. Reconfigurable computing is a widely researched topic in the
high performance computing domain [26].

Reconfigurable
computing

Reconfiguration

Coarse
grain

Fine
grain

Partial Full

Architecture

Figure 2.4: Reconfigurable Hardware types

8

2. Theory

Based on the extent of reconfiguration on circuits, a system can be classified as
fully or partially reconfigurable system. During computation, if the whole hardware
is to be reconfigured, then the system is called a fully reconfigurable system and on
the other hand, if the system has the capability to reconfigure only a few parts of
its whole circuitry, then it is called a partially reconfigurable system. Another way
of classifying these systems is the smallest level of reconfiguration attainable called
granularity. A system where the reconfiguration could be extended to the smallest
unit available, like those in FPGAs, are called fine grain systems and those, in which
a big circuitry using few basic units is replaced by another big circuit, are called
coarse-grained reconfigurable systems [27].

2.7 Zynq®
The growth in computing requirements within embedded systems has opened up
the need for using high performance computing techniques. Zynq® is a SOC from
Xilinx with a general purpose processor cores and a FPGA. Further, Zynq® SOCs
are marketed as different variants like 7z010, 7z020, etc., and in this thesis work
7z020 variant is used.

Figure 2.5: Block Diagram of Zynq®

Source: Zynq-7000 All Programmable SoC Technical Reference Manual UG585 (v1.10)

9

2. Theory

The section holding processing cores and supporting circuits is called a pro-
cessing system (PS) and the section with FPGA and reconfiguration supporting
circuits is called a programmable logic (PL). The block diagram of the SOC can be
seen in Figure 2.5. Based on the technical reference manual for Zynq® from Xilinx
[28], only those units which are of interest to this thesis, are mentioned below.

2.7.1 Processing System
The PS is divided into four major sections namely the Application Processor
Unit (APU), memory interfaces, input-output peripherals and intercon-
nects. The APU comprises of two ARM Cortex™ A9 processing cores with 32 KB
instruction and data Level 1 (L1) caches. It also has a 512 KB sharable Level 2
(L2) cache with snoop control units to maintain coherency between the L1 and L2
caches. In addition to these the PS also contains 256KB of on-chip memory. The
Direct Memory Access (DMA) controller that controls the data transfer between
memory and PL/PS independent of processor interventions, the General Interrupt
Controller (GIC) that triggers or masks ARM defined interrupts and the watch dog
timers are all part of the APU.

The memory interfaces supports Double Data Rate (DDR), quad-SPI, NAND
technologies with special controllers. The input-output peripherals within PS con-
sists of configurable General Purpose input/output (GPIO)s, a Secure Digital (SD)
controller, CAN controllers, etc., In the interconnects section, there are central in-
terconnects that can connect PL to the external peripherals, OCM interconnect
that can connect PL and central interconnect to the OCM and PS-PL interfaces
with Processor Configuration Access Port (PCAP) that support CPU controlled
reconfiguration of PL and Extended Multiplexed Input-Output (EMIO).

2.7.2 Programmable Logic
The PL section within a 7z020 device is based on Xilinx’s Artix®-7 FPGA logic.
It comprises of the device configuration module (devc) that helps configuring or re-
configuring the FPGA from the PS logic. It also has the Xilinx ADC (XADC) that
helps in monitoring voltage and temperature inside the device are present also avail-
able in addition to the FPGA logic within the PL section. Interconnections between
the PL and the PS is supported through the Advanced eXtended Interface (AXI).
The major resources available in the 7z020 FPGA logic can be seen in Table2.1.

Table 2.1: Composition of FPGA in 7z020 device

Sl No. Resource Size
1 Logic Slices 13300
2 Look-up Tables 53200
3 Memory Resources 560 KB

Block RAM 140
4 I/O bank count 4

10

3
Methods

In this chapter, the software and hardware selection criteria and the intended feature
addition as of the thesis work are discussed.

3.1 Software and Hardware Selection

The initial work in the thesis was to find a platform to start the work. It involved
selection of the hardware and software to be used. The software to be used should
be in compliance with AUTOSAR and the hardware to be chosen needs to have
capability for both running an AUTOSAR software and supporting reconfigurable
computing.

3.1.1 AUTOSAR Software

The AUTOSAR consortium works only on defining standards for the software and
does not force the implementors to develop their solutions using any particular
method. This strategy is followed in-order to encourage competition and innovation
[2]. As a result, there are 76 vendors (as of April 08, 2016) who can deliver AU-
TOSAR based products [29]. It is also important to note that these products are
mostly proprietary.

Arccore AB [30], a Swedish company is one of the leading vendors in the auto-
motive software market. Their product Arctic core comprises a complete embedded
platform based on AUTOSAR. Further Arctic core is released under both GNU
General Public license v2 and a commercial license making it best suitable for the
thesis work.

3.1.2 Hardware

As explained in section 2.7, Zynq® is a System On Chip (SOC) from Xilinx with a
unique design. It has a PS with two ARM® processing cores and a PL that can be
used to implement hardware designs. Zynq®has hardware that can support partial
reconfiguration of the PL. Arctic core already supports Zynq® and thus it became
the natural choice for this work.

11

3. Methods

3.2 Intended System

As mentioned earlier arctic core supports Zynq® architecture, but only to the extent
that AUTOSAR software can be run on its PS. There is no option to control partial
or complete reconfiguration of PL with PS.

With the focus to showcase the capability of AUTOSAR software controlled
reconfigurable computing, a simple system whose hardware configuration in PL can
be modified between 128 bit AES encryption or decryption algorithm according to
diagnostic requests from the user that will allow users to write into or read from a
limited range of memory addresses after establishing a secured session is intended.
The AES will be memory mapped and the software will know this address. The
logic of the system is shown in Figure 3.1.

• The AUTOSAR software must know the initial hardware settings in the PL
and it should keep monitoring for the diagnostic requests from the user.

• When there is a diagnostic request from the user requesting security access
(service 0x27), there will be a number sent to the user as response known as
Seed.

• If the user replies to that Seed with a matching predefined number called Key,
the software will enable access to the previously inaccessible memory regions.
This access will be available to user only for a fixed amount of time and the
ECU identifies this as a secured session.

• If needed the secured session can be extended for a predefined time by a tester
using tester present requests.

• When the secured session is established and if a correct memory read request
(service 0x23) for a particular address in the memory is sent, the software
will check for the configuration available in PL. If the present circuit is for
AES encryption, then the software should reconfigure the hardware to AES
decryption first and then try to read the data from it. Otherwise the software
should directly read the value from AES. The AES unit, in-turn should read
the corresponding memory location. When the memory address requested is
accessible, the software should respond to the tester with a positive response
along with the read data (in decrypted format). In all other cases there should
be a negative response.

• Similarly, when the secured session is established and if a correct memory write
request (service 0x3D) for a particular address in the memory is requested, the
software will check for the configuration available in PL. If the present circuit
is for AES decryption, then the software should reconfigure the hardware to
AES encryption initially and then try to write into it. Otherwise the software
should directly try to write into AES. The AES ciruit will then write the data
into the corresponding memory location. When the address requested is ac-
cessible and write is performed, the software should respond with a positive
response to the tester confirming that the write was successful. In all other
cases there should be a negative response.

12

3. Methods

Diagnostic Request for configuration
(From PC)

Correct
Request ?

Hardware configuration / reconfiguration
(in ECU)

Memory
Accessible?

Start

Stop

Yes

 No

Yes

Yes

 No

Send error code to PC
(from ECU)

Send error code to PC
(from ECU)

Positive Response
(Read or write

memory)

Figure 3.1: Intended Design Flow

Implementation of the above idea can be separated into hardware and software
development. While the software part involves configuring an AUTOSAR ECU with
necessary functionalities, the hardware part involves designing 128-bit AES encryp-
tion and decryption units. The procedures followed are described in detail in the
following chapters.

13

3. Methods

14

4
Software

The software design started with understanding the basics of the AUTOSAR archi-
tecture, learning how arctic core implements this and usage of arctic studio. It also
involved exploring AUTOSAR methodology and understanding the usage of tools
for this purpose. As a part of the software development two major points were to
be considered.

• Firstly, the software should be capable of supporting CAN diagnostics and it
should respond to only specified requests.

• Secondly, there should be a logic within the software that can verify the present
hardware configuration in the Zynq®’s PL and perform a reconfiguration if
needed.

The chosen AUTOSAR software (arctic core) is capable of running on different
hardware and it can also support CAN diagnostics. But it has to be configured ac-
cording to the project requirements. Further to bring in reconfiguration of hardware,
the software needed a Complex Device Driver (CDD). In this chapter the details
of tools used in software designing, the need for a CDD, various considerations and
strategies adopted in CDD development along with the reasons for adopting such a
flow are explained in detail.

4.1 Development method
AUTOSAR defines a standardized way of defining and sharing tasks during soft-
ware development. As a result of such a methodology, simultaneous development
of various software components becomes possible. Further multiple vendors can be
involved in the development of these components. In this section, an introduction
to the AUTOSAR development method and the application of it from the thesis
perspective is presented.

4.1.1 Design Strategy
In the case of this thesis work, the focus is at the ECU level and the objective is quite
straight forward that the designed software must respond to selected diagnostic re-
quests from the tester and then if needed control dynamic reconfiguration of Zynq®
hardware. Arccore AB’s Arctic Core software is used as the basic software. Arctic
Core is compliant to AUTOSAR 4.0 and has in it all the basic components of an AU-

15

4. Software

TOSAR software. Further, Arctic Core provides basic support for the Zynq® SOC.
However at present, the software does not have the capability to exploit Zynq®’s
reconfigurable computing feature. Thus for the proposed system, software design
should involve

1. Configuation of Arctic Core such that it responds to needed diagnostic re-
quests.

2. Additional code in Arctic Core that allows it to support reconfiguration of
Zynq®’s PL.

4.1.1.1 Simple Example

According to AUTOSAR standards, to begin ECU development, an ECU extract
that contains information regarding all the basic configurations required at the ECU
level is needed. When Arctic Core software is downloaded, it contains a set of ex-
ample configurations. The Hello World is one such simple example for a basic
ECU and it consists of a configuration ARXML file (HelloWorld_Generic.arxml),
resembling an ECU’s requirement derived from a full system. It also has an appli-
cation module that can control the blinking of one or more Light Emitting Diodes
(LEDs). In-order to simplify things, except for a few features most of the others
are disabled using the configuration file. The Hello World example can be run on
various boards after generating executables with corresponding configuration files
for different hardware. So, the example configured for Zynq® hardware was chosen
to be the base for this thesis work.

4.1.1.2 Configuring Arctic Core for diagnostic requests

The Diagnostic Control Module (DCM) exists in the communication layer of the
AUTOSAR architecture and is responsible for monitoring diagnostic requests and
permitting the ECU to service these requests based on the present session and diag-
nostic states [31]. Analysis showed that, within the present software configuration,
it would be suffice to configure only the DCM to achieve services for all the intended
diagnostic requests.

4.1.1.3 Choice of a Complex Device Driver

When there is a need to introduce new concepts in AUTOSAR, a non standardized
software entity called Complex Device Driver (CDD) can be used. The CDD, as
any other software component can interact with basic software modules of the AU-
TOSAR with few restrictions as mentioned in [32]. The concept of reconfigurable
computing requires quick access to hardware and further it is not standardized by
AUTOSAR. Thus a CDD that can monitor and control reconfiguration was added
to the design.

16

4. Software

4.2 Design
The requirement to configure the DCM module was straight forward. But the design
of a CDD is not standardized by AUTOSAR and the Zynq® architecture supports
hardware reconfiguration in different ways. As a result, several solutions were found
feasible to achieve the intended system. During the design of the CDD, two major
questions were to be answered.

1. Where should the CDD be placed in the design?
2. How should the CDD control the hardware reconfiguration?

4.2.1 Location of CDD
Based on requirement, the CDD should control reconfiguration of hardware based
on diagnostics which is handled by DCM. This means there should be a way to
establish communication between CDD and DCM. To achieve this, three different
configurations were considered and these are shown in Figure 4.1. The Arrows in-
dicate the flow of information or requests.

Option (a) shows the possibility of implementing the CDD within Basic Software
(BSW). Under this design the communication between CDD and DCM is direct.

Option (b) shows a design to implement the CDD as a BSW and design a software
component for both CDD and DCM. The communication between CDD and DCM
will in this case be through Runtime Environment (RTE) with the aid of imple-
mented Software Component (SWC)s .

Option (c) shows a design with CDD as a single SWC. There is also a DCM
software component to be implemented. The communication between CDD and
DCM here will also be through the RTE.

Under the given designs, option (a) will only allow BSW modules to commu-
nicate with CDD. The software components have no direct access to the CDD and
this can limit those software components willing to control reconfiguration and thus
was not chosen for implementation. Options (b) and (c) can be designed to allow
both BSW modules and SWC to control reconfiguration. With simplicity in focus,
option (c) was chosen for implementation.

17

4. Software

C

D

D

Comm

I/O hardware
abstraction

ECU abstraction layer

RTE

Hardware

I/O abstraction layer

DCM
Memory
Services

System Service

(a) CDD entirely in BSW

Comm

RTE

Hardware

C

D

D

I/O abstraction layer

ECU abstraction layer

I/O hardware
abstraction

DCM
Memory
Services

DCM
SWC

System Service

CDD
SWC

(b) CDD as two modules, one in BSW and the
other as a software component

Comm

RTE

Hardware

C

D

D

I/O abstraction layer

ECU abstraction layer

I/O hardware
abstraction

DCM
Memory
Services

DCM
SWC

System Service

(c) CDD entirely as a software component

Figure 4.1: Possible locations for CDD

18

4. Software

4.2.2 Control of reconfiguration
As mentioned before Zynq® architecture has two Cortex-A9 CPUs, Direct Memory
Access (DMA), etc., and there are various ways to control the PL reconfigura-
tion. According to [28], reconfiguration can be controlled through either ICAP or
PCAP, but for the reconfiguration to be controlled by the processor, PCAP must be
used.There are other ways of doing this, like establishing a reconfigurable port in the
hardware which on receiving interrupts from processor can begin reconfiguration.

4.3 Tools Used
During software design, arctic studio from Arccore AB and winIDEA from iSYSTEM
were widely used. These tools are proprietary. Details regarding version and their
usage are discussed in this section.

4.3.1 Arctic Studio
Arctic studio [33] is a collection of different tools presented as a single package by
Arccore AB. To define it in simple words, it is an Integrated Development Environ-
ment (IDE). Software development, integration, etc., can be performed in the same
tool. The version of Arctic Studio used in the project was 10.0.0. Functioning of
this tool from the perspective of project is shown in Figure 4.2.

other ARXMLs

ECU
Descriptions

Binaries
Compilers

 and
linkers

Arctic Studio

Arxml
Arxml

Arxml
Arxml

'n'

C file
C fileC / h

file

SWC
Description

ARXML
generation

RTE
Generation

Arctic
core

SWC
ARXML

C file
C fileC / h

file

User Added

Generated RTE

C file
C fileC / h

file

Generated BSW

BSW
Generation

Make files

Figure 4.2: Arctic Studio work flow

19

4. Software

The user’s primary objective is to supply the tool with all the configuration
details in the form of ARXMLs. To populate the information about SWC, each
SWC is briefed using ARText. ARText is a framework defined by AUTOSAR Tool
Platform (Artop) for modeling Software Component (SWC)s [34]. The external
ports of a SWC and the connections between the considered module and other
SWCs are listed out during this modeling. After individually defining all the software
components, the descriptions are converted into ARXML files. The functionalities
of SWC are coded separately with the help of text editors within arctic studio. The
defined SWCs are instantiated into the design with help of another tool called RTE
editor.

The next step is to configure the BSW. The functionalities of the BSW are
coded in Arctic Core , but are very generic. Thus they must be configured with
respect to the design needs. ECU configurations are made available to the tool in
ARXML format and are referenced by another tool within the arctic studio envi-
ronment called the BSW editor. Once all the configurations are present, the files for
both BSW and RTE are generated with a single button click. The files are generated
in *.c and *.h format.

Finally, the tool also contains a build system specific to all supported hardwares
with reference to required compilers and linkers. With the help of build system
executables (binaries) can be easily generated.

4.3.2 winIDEA
WinIDEA is an IDE from iSYSTEM [35]. The build used in the thesis work was
9.12.125. It was used extensively along with iC3000 HS, a debugger unit [36] and
the connection setup is shown in Figure 4.3. As explained in the previous section
arctic studio was used to develop required software, but it cannot be used to run
programs on the hardware. Thus winIDEA along with iC3000 HS were useful in
understanding the software flow and also for on-board debugging.

Figure 4.3: Programming Zynq® with winIDEA

Zc702 development board has two Joint Test Action Group (JTAG) connectors

20

4. Software

that allows programming Zynq®’s PS (through pins J58) and PL (through pins J41)
separately. Thus iC3000 HS with a USB port and a Joint Test Action Group (JTAG)
port was used to bridge the connection between the Personal Computer (PC) and
J58 of zc702.

4.4 Implementation
The implementation started with analyzing the Hello World example. The various
components present and the configuration of DCM module were studied. The CDD
was then added to the design.

4.4.1 Hello World
The Hello World example with the Arctic core release contained a simple ECU con-
figurations necessary to run a software on the hardware with the communication
ports enabled. The example could support different boards and thus the configura-
tion available for the Zynq® hardware was selected. The executable was generated
with the help of Arctic studio and it was loaded on to the hardware with then help
of winIDEA. The executable could periodically blink the LEDs in the zc702 board.
Further when it was connected to CAN simulation tool (Busmaster) [37] and if ran-
dom messages were sent with CAN id 0x01 , the loop back program available with
it responded by sending back the same sent data in another message with CAN id
0x02.

4.4.2 Diagnostic Control Module
The next step was to configure the Hello World so that it responds to the necessary
diagnostics. To achieve this analysis showed that only the DCM module’s config-
uration needed change. So the corresponding ARXML was opened in BSW editor
within arctic studio. The configuration was done at four levels.

1. DcmGeneral: Basic configurations like the support for error detection, max-
imum dynamic identifiers to be supported can be configured here.

2. DcmDsd: The list of services supported by the DCM, for e.g service 0x22:
Read Data Identifier (DID) can be configured.

3. DcmDsl: The parameters controlling the session layer of DCM, like the list
of protocols to be supported, etc., are listed here

4. DcmDsp: The finer details of the services supported by the DCM, for exam-
ple if the module supports memory read services, then details like the memory
range accessible, the security session in which the ECU should remain to ac-
cess these memory addresses can be configured here.

To achieve the desired functionality, the DCM must support services 0x27, 0x23
and 0x3D; Further it should be capable of establishing a secured session in which a
limited range of memory is accessible for read and write. The configurations required
with respect to individual services are listed in table 4.1.

21

4. Software

Table 4.1: Intended services and needed changes

Diagnostic Service ID Needed Changes
SecurityAccess 0x27 a. Add service to supported list

b. Additional security session support
ReadMemorybyAddress 0x23 a. Add service to supported list

b. choose accessible memory range
b. choose accessible security session

WriteMemorybyAddress 0x3D a. Add service to supported list
b. choose accessible memory range
b. choose accessible security session

By default only one security level "SecurityLevel_0" was supported by the
Hello World example. This means that the ECU is always in that security level.
In addition to this another level SecurityLevel_1 was added in the DcmDsp
section. Services 0x23, 0x27, 0x3D were added to the DcmDsdServiceTable_UDS
of the DcmDsd section. The security level needed to access the services 0x23 and
0x3D were set to SecurityLevel_1. With the services and security sessions defined,
the next step is to configure the memory range accessible using services 0x23 and
0x3D. A new DcmDspMemory entry was added in the DcmDsd section where
memory read and write range information were set. The security level required to
access these memory addresses were also set to SecurityLevel_1. The screen shot
of the BSW editor in arctic studio after configuration is shown in Figure 4.4.

Figure 4.4: DCM configuration in BSW editor

22

4. Software

4.4.3 Complex Device Driver
The next stage in software implementation is to design and integrate a CDD module
within the existing project. As decided earlier the design needs this module to be
implemented as a SWC in such a way that it can communicate with other SWCs
and control the hardware reconfiguration. The steps involved are

• Create a software component description
• Instantiating the newly added SWC.
• Generate RTE
• Add logic for the SWC.

4.4.3.1 Software Component Description

To add a software component to the present design, the tool must be made aware
of the SWC design. This is done with the help of a file format called Software Com-
ponent Description, in which the SWC’s name and its interface to other SWCs are
defined. This file is taken as a reference during RTE generation. The software com-
ponents are maintained in a separate project (Hello World -artext). The software
component description of the CDD can be visualized as in Figure 4.5. The CDD
was given the name Reconfigurable Hardware. The design needs the CDD to know
the present state of the ECU and initialize a secured session. For the former, the
CDD must get the data from EcuM and for the latter it should communicate with
DCM. In case the data from one SWC to the other is sent and if the module needs
an acknowledgment such ports are implemented as a server - client port. In our
design, the DCM module requires a secured session to be established and thus it is
expected to send a request and wait for CDD to respond. Therefore this interface
was described as a client-server where CDD is the server and DCM is a client. This
can be seen in the diagram as a circled port at the CDD and a semi-circled port
at DCM. For a normal data exchange from one port to another asynchronously, a
sender - receiver port is used. Thus in the case of transfer of data between EcuM
and CDD a sender (at EcuM) - receiver (at CDD) port was defined and they can
be seen as ports with arrows showing the direction of data transfer.

EcuM

Recon-figurable
Hardware

 (CDD)
DCM

RTE

Figure 4.5: Software component Description CDD

23

4. Software

4.4.3.2 Instantiate the newly added Software Component (SWC) and
generating RTE

With the new SWC added for CDD, the ARXML needs to be regenerated and
exported to the present project. When the new ARXML is viewed in arctic studio,
the newly added component will be found uninitialized. The instantiation is done
with the help of RTE editor as shown in Figure 4.6 and RTE was regenerated.

 Figure 4.6: Instantiation of CDD

4.4.3.3 Algorithm within CDD

The algorithm can be seen in Figure 4.7. The CDD is designed such that it con-
tinuously waits for a diagnostic seed request (from service 0x27). If such a request
is received, a seed will be sent and a key will be expected from the user. In case
of a correct response, the user will be allowed to access the read and write memory
by address services (0x23 and 0x31) otherwise a negative response is sent. When a
write memory by address service is requested with memory address value between
0x01 to 0x03, the data from the user is taken as input. The reconfigurable module
is checked for encryption block. If it is not available, then it is partially reconfigured
and then the input data is considered the input data to the AES module and the
encrypted cipher data is stored in some secret location in memory. On the read data
by memory service, if this data is requested by the user the CDD will copy this data
from the secret location and feed to the decryption module (after reconfiguration if
needed) and the decrypted data is sent as response to the user.

24

4. Software

4.4.3.4 Partial Reconfiguration

To perform partial reconfiguration on Zynq® through PCAP the following steps
were followed. This is in accordance with the step of procedure prescribed in tech-
nical reference manual.

1. Unlock the SLCR register

2. Disable the AXI interface

3. Disabling PS-PL level shifts

4. Poll the PCAP0INIT status for Reset

5. Disable the AES engine

6. Enable the pcap clock

7. Disable PS-PL level shifts

8. Initialize DMA transaction with proper source address, destination address
and size of data to be transfered and the starting location of the data

9. Wait for the programming to complete

10. Check FPGA configuration

11. Wait for reconfiguration to complete

12. Check FPGA configuration

13. Enable the AXI interface

14. Enabling PS-PL level shifts

15. Lock the SLCR again

25

4. Software

Start

Seed
Request?

State of ECU
from EcuM

Wait for Seed
Request from

DCM

Send Seed

Correct Key
Received ?

Negative Response

Wait for Memory
read/write Request

Read
Request ?

Valid
Address
range ?

AES decryption
configured?

Yes

Yes

Copy Data to AES
decryptor

Send decrypted
data and

 Positive Response

Yes

No

Partial Re-
configuration

No

Valid
Address
range ?

AES ecryption
configured?

Copy Data to AES
Encryptor and store

encrypted value

Send Positive
Response

Yes

Partial Re-
configuration

No

Stop

 No

Negative Response Negative Response

Stop

Figure 4.7: Algorithm for CDD

26

5
Hardware

As a part of hardware design an AES encryption and decryption module that can
communicate with the CPU through an AXI bus was designed. There were already
some hardware implemented in the company and interfaced to the processor on the
AXI bus. This was kept unchanged and the new hardware was designed to be a
second slave in the same bus. As per plan the system should be partially and dy-
namically reconfigured. Due to time constraints decision to use open source AES
core was taken. The designing process involved

• Adopting an open source AES core.
• Modifying the core’s design for reconfigurable computing
• Adding logic in the design to indicate the hardware configuration.
• Adding AXI interface.
• Packing the designed modules as IP cores and add them to the present design.
• Generate Partial reconfiguration binaries.

5.1 Design
"Open source IP core library" [38] released under Creative Commons Attribution-Non
Commercial-ShareAlike 3.0 Unported License [39] was used. This core was chosen
because the description was in VHDL, a familiar description language.

Figure 5.1: AES core

(source: http://www.rachiddafali.com/en/IPcorelibrary.html)

27

5. Hardware

The core top design consisted of both the AES encryption and decryption logic
and it was available in three versions corresponding to 128, 192 and 256 bits key.
For the thesis, as the intended design is for a 128-bit AES, the core with 128 bit
length key was used. The block diagram of the core is shown in Figure 5.1.

5.2 Encryption and Decryption
The first step was to separate the encryption and decryption logic and create two
configurations. As the design is for a reconfigurable partition, the reconfigurable
sections should have the same name and port configurations[40]. The components
relating to encryption and decryption were separated and two projects were created.
Both the projects had the top module with name "aes_cipher_block_128" and a
component "aes_coding_128". But the logic inside them was encryption on one and
decryption on the other. A two bit output was added to the design and configured
as 00 for decoder and 11 for encoder (A two bit output was chosen to support more
reconfigurable logic in the future). This will give out the details of the inner existing
configuration to the processor. The 128 bit cipher key value was embedded inside
hardware as 0xFEDCBA9876543210FEDCBA9876543210.

AES Decryption Logic

Aes_coding_128

Cipher_key_expansion_128

In_clk

In_reset

In_cipher_key_valid

\128
In_data

In_data_valid

Out_data_valid

/128 Out_data_cb

Out_module_ready

/2
Out_module_
configuration

Aes_cipher_block

(a) Design with decoding logic

AES Encryption Logic

Aes_coding_128

Cipher_key_expansion_128

In_clk

In_reset

In_cipher_key_valid

\128
In_data

In_data_valid

Out_data_valid

/128 Out_data_cb

Out_module_ready

/2
Out_module_
configuration

Aes_cipher_block

(b) Design with encoding logic

Figure 5.2: Encryption and Decryption design with same top module
Aes_coding_128

5.3 Integrating with present design
Zynq® supports interconnection between user designed hardware logic and the pro-
cessor with AXI peripherals. So with the help of Xilinx Vivado® [41], AXI interfaces
were generated considering that the device will be a slave when interconnected. Thus
the design was updated with 10 32-bit slave registers. The input and output of the
design were mapped to these registers and the clock will have to be connected to the
AXI’s clock. Each register can in turn be mapped to the processor with the help of
memory. From the software perspective the hardware will just be a black box with

28

5. Hardware

inputs and outputs mapped to these registers. Again with the help of Vivado® ’s IP
packaging option both designs were packed and saved in different folders with the
same name. It is to be noted here, if the designs are saved in the same folder it can
cause duplication of Intellectual Property (IP) and Xilinx recommends the use of a
rebuilt algorithm during this process (this can be chosen under the tool’s synthesis
settings).

Existing
Design
(Static)

Aes_coding_
block

(reconfig)

AES_cipher_block

Cipher_key_ex
pansion_128

(Static)

Figure 5.3: Static and Dynamic modules

Analysing the design, it was found that, only the Aes_coding_128 module was
different in the encryption and decryption design. So the designs were synthesized
after Aes_coding_128 block was set as an "out of contex module" in each design.
On doing this Xilinx tools ensure there are no Input Output (IO) buffers added to
these modules during synthesis [41] and only input and output ports will be taken
as reference.

Figure 5.4: View of AES module connected to AXI interconnect in Vivado®

Two copies of the default already existing design were created. This design
also had an AXI slave interfaced to the controller. With the help of the IP integrator
option in Vivado® , the newly packed IP with a different configuration was added
to the design through AXI interconnect block. This can be seen in Figure 5.4. In
both the designs, memory address 0x43C10000 was set as the interfacing location.

29

5. Hardware

This means the base register’s address of the newly designed module will be visible
to the processor at this memory location.

5.4 Generating Partial Reconfiguration bitstreams
The next step is to generate partial binary files that can be used to reconfigure
the PL section. For this step, Xilinx’s Partial Reconfiguration tool was used. This
tool currently does not support the Graphical User Interface (GUI) and thus Tool
Command Language (TCL) scripts were used to control the work flow. The steps
involved performing a bottom-up synthesis and during this process, reference to [42]
and [43] proved handy.

1. During the previous process, the design "aes_cipher_block_128" was synthe-
sized after declaring the modules planned to be the reconfigurable as out of
context. This is vital and the resultant synthesized design having only ports
to reconfigurable blocks without any logic for them will be the base and the
process at this point is saved as a check point. Let us refer this as base check
point. The design had the constraint file to map the pin outputs.

2. Next, the reconfigurable module "aes_coding_128" with encryption and de-
cryption logic were separately synthesized and the resultant two check points
were also saved. Let us refer to these as reconfig-encrypt check point and
reconfig-decrypt check point.

It is to be noted here that, Vivado® uses different components to synthesize
an efficient design. But all these components do not posses the reconfigurable
capacity. One such is BUFG and this must not be present in the reconfig-
urable blocks. To avoid this component being used , the tool must be notified
of this limitation in the beginning. This can be done by setting the number
of BUFG limit to zero in the synthesis setting.

3. Then, the base check point was loaded into memory and the tool was then
conveyed that the module "aes_coding_128" in the design is reconfigurable by
setting the variable HD.RECONFIGURABLE to true for this module.

4. The next step in the process is to set area constraint for the reconfigurable
region. Before this the base check point which is static only, has to be
loaded with one reconfigurable module. It was recommended that if there
are many reconfigurable modules, then the most complex among them should
be loaded into the static design first. Among the reconfigurable modules in
this work, the decryption module had more logic than the encryption mod-
ule and thus reconfig-decrypt check point was loaded first and the design
was saved as a check point. Let this be referred as reconfig-init check point.

Though the implementation size of the reconfigurable designs are different, the
work flow requires a common shared region. Thus it is always better to start

30

5. Hardware

with the bigger modules.

5. Now, when the "aes_coding_128" is checked, it can be observed to have circuit
nets. This block is to be confined within a given area and the process is called
floor planning. A region in hardware must be chosen where the reconfigurable
module can be implemented and in Xilinx’s terminology this is called a pblock.
While choosing the size of the pblock, it should be ensured that the number
of components available like Look Up Table (LUT), etc., is sufficient enough
to implement the required circuit. The PL has different clock regions and the
pblock selection though can share different clock regions, for better results the
least clock boundry sharing should be looked for. After size selection, there is
Design Rule Check (DRC) utility within Vivado® . This can be used to check
the validity of the design so far specific to partial reconfiguration. This can
be seen as a pink box in Figure 5.5. In the design, the pblock shares 4 clock
regions.

Figure 5.5: Placed design as viewed in Xilinx Design view

6. After the successful validation from DRC, the pblock region will be an area
constraint and thus it is saved as FloorPlan.xdc file and is stored in a folder
along with other constraints.

7. There is an option in the tool to enable a reset after partial reconfiguration
on the reconfigurable region. When this is enabled, the circuits involving
partial reconfiguration are reset once after the completion of reconfiguration

31

5. Hardware

process. To enable this feature, variable RESET_AFTER_RECONFIG was
set as true.

8. Next process in the flow is to place the design. After placement the resultant
design can be seen in Figure 5.5. Timing constraints were not considered dur-
ing the design. Some highlighted regions visible in the figure show the buffers
that share the reconfigurable design.

9. After placement, it is time for routing. The output can be seen in Figure 5.6.
The green part of the design show the wires. It can be seen they are concen-
trated on the left top of the design. This is because the processor interface is
located over there. The resulting design completes the first iteration and the
results are stored as a design check point.

Figure 5.6: Routed design as viewed in Xilinx Design view

10. The next step is to implement the reconfig-encrypt check point into the circuit.
But before doing this, the implemented circuit corresponding to the reconfig-
decrypt check point should be removed. This is done by the tool when the
design is asked to be updated by a black box in the place of a reconfig-decrypt
check point. This can be seen in Figure 5.7. The routing for the reconfigurable
block is taken off by the tool. This state of connections is saved by locking
the design.

32

5. Hardware

Figure 5.7: Design after resetting reconfigurable module as viewed in Xilinx

Design view

11. As described earlier, a reconfig-encrypt check point configuration was
loaded into the design. The resulting design is stored as a checkpoint for
future use. The tool finds the reconfigurable connections and the connection
is shown in yellow color.

33

5. Hardware

Figure 5.8: Design after writing the second reconfigurable module

Figure 5.9: Second Routed design as viewed in Xilinx Design view

12. The new design is placed and routed as in the first design.

34

5. Hardware

13. The final step is to generate the bit files As a result of these procedures 4
different bit files are generated; two that is for the whole design and two that
represent partial reconfiguration. The bit files generated according to the re-
quirement should use PCAP in the hardware to reconfigure PL. But the bit
files now generated cannot do that. To enable this the "write_cfgmem" com-
mand must be run with the "-disablebitswap" option.

14. It is worth mentioning that if there is a need for a complete reconfiguration of
the hardware through PCAP, then the generated bit file using the above said
utility should change format.

The resource needed to be reconfigured can be inferred from the Table 5.1.

Table 5.1: Resource utilization between partial and full configuration

Sl No. Resource Partial Configuration(%) Full Configuration (%)
1 Slice Registers 51 26.17
2 Look-up Tables 4.36 4.36
3 F7 Muxes 35.73 20.21
4 F8 Muxes 34.59 19.55

35

5. Hardware

36

6
Booting

With both hardware and software developed, the next process is to port them on the
hardware (SOC). The binaries generated using Arctic Studio and Vivado® can be
ported to the ZC702 board in different ways. One easy way is to store the generated
binaries for a specific configuration in a Secure Digital (SD) card and allow the
board to automatically load the configuration during power up. To do this, the
binaries must be stored in a format called Boot image and Xilinx Software
Development Kit (SDK) was used for this purpose.

6.1 Zynq® Boot Process
The power-on sequence inside Zynq® is designed in a way that every time when the
device is powered on, the PS section gets power first and one core, out of the two,
starts executing the code stored within the boot ROM available.

• Carry on intialization of basic hardware and software parameters
• Initialize JTAG
• Look for boot strap pins (In this case it is configured for SD card)
• Look for the First Stage Boot Loader (FSBL). In case FSBL is present, start

executing it

6.2 FSBL
The function of the FSBL is to initialize the board and to generate the FSBL, Xilinx
SDK was used. The development of hardware using Vivado® is overwhelmingly
dependent on the Zynq® architecture. The interaction of hardware to the processor
and other basic parameter values are generated or are to be chosen by the designer.
All these parameters are exported to Xilinx SDK as a Hardware Description File
(HDF). When a boot loader project is chosen (available for easy FSBL generation
inside the SDK), the configuration details are collected from HDF and an FSBL is
generated.

6.2.1 Xilinx SDK
Xilinx SDK is an IDE from Xilinx which has many tools embedded inside, that
aids software development for FPGAs. The release version used during the software
development was 2015.4. Under the Xilinx Tools menu exists the Create Boot

37

6. Booting

Image tool. During the PL design, the memory mappings of the designed hardware
with respect to the Zynq® CPU is generated and this file is called the hardware
definition file. The hardware definition file (stored as boot loader), the software
binary from Arctic Studio (in *.elf format) and the PL binary from Vivado® (in
*.bit format) are placed in a list as input and the boot image (in *.bin format) file
was generated as output.

The FSBL is a simple C program and has initializing values for various reg-
isters. After initializing, in the case of an SD card, the generated FSBL has a file
system probing algorithm, using which it probes through the card. If it finds any
(*.bit) file located then the PL is configured with it. It then probes for other (*.bin)
files within the SD card. If found they are loaded on to the memory.

Figure 6.1: Boot image creation

6.3 Boot Image
A Boot image is required on the SD card to execute FSBL. This is created with
the help of "Create Boot Image", a tool present within the Xilinx SDK. The order
for the files to be present in the SD card can be defined in a file format (*.bif)
and the tool uses this as reference to generate the boot image. As shown in Figure
6.2, the FSBL is placed first, followed by PL configuring bit file and then the two
partial reconfiguring binary files with load address reference, stating where within
the memory these files should be loaded were placed. If needed a fail safe image can
be designed. This section also called the golden image, is the program section to be
executed when the primary region has a problem. In this work, the golden image
was not created. It is a must that the FSBL is available at the first place, followed
by the PL configuring bit file. The other files can have their sequence changed.

38

6. Booting

Primary

Golden
Image

File location on SD card

Figure 6.2: Boot image structure

There are many ways the partial binary files can be stored into memory. A
simple way is to define the memory address into which the file should be loaded
within the "Create Boot Image" tool as shown in Figure 6.3. The first PR image
was loaded at 0x30A00000 and the second PR image at 0x30F00000.

39

6. Booting

Figure 6.3: Reference location of PR bit files as seen in Xilinx "Create Boot
Image" tool

40

7
Test

The system after design should respond to diagnostic messages. In order to verify
the functionality, a small test program was executed.

7.1 Test Setup
The test setup for the system is shown in Figure 7.1. The development board
was connected to the computer through a CAN- USB converting tool. PS JTAG
was connected and the memory location 0x43C10000 was monitored periodically by
stopping the code execution. This was done because the tool was not able to get
the real time memory values. Once stopped, the tool updates it with newer value
in the memory.

CAN <=> USB
(e.g,. Vector
CANcaseXL)

 CAN
messages

ECU
(AUTOSAR

 software and
Reconfigurable

Hardware)CAN Interface

Xilinx ZC702

A

Diagnostic Application

I USB

Personal Computer

Diagnostics
Messages

Figure 7.1: Test Setup

At the start of the program, encoder logic was present and this was ensured
by reading memory location 0x43c10020, the register mapped to the configuration
pins inside the designed AES module. The value was 0x0F, where the final 2 bits
were of concern and it was 11 corresponding to the encoder.

41

7. Test

7.2 Test Procedure
The diagnostic messages in the CAN format were sent from the computer through
the diagnostic tools and correct response from the ECU and memory read/write
were tested. The test sequence was as follows.

1. Seed requested through diagnostic command (0x27).
2. Obtained Seed from CDD as 0x09010203.
3. Had a hard coded logic to check for key to be 0x0A020304 and therefore it

was sent as key. Obtained positive response indicating a security level check
is over.

4. Diagnostic memory write by address was chosen for memory address 0x0001
and value 0x01 was written.

5. Positive response obtained indicating write was successful.
6. Diagnostic memory read by address was chosen for memory address 0x0001.
7. Positive response obtained with value 0x01 as response, indicating 0x01 was

the decoded value.
Applying break point on the program, the memory address was checked and
the screen shot in Figure 7.2 shows that.

Encrypted
Data

Decrypted
data

Memory
Addre

Configuration

Figure 7.2: Test result

The figure shows memory location 0x43c10020 to have configuration 0x0C in-
dicating it now has a decryption logic inside it. Thus we can infer successful recon-
figuration has taken place. Decrypted data 0x01 was in the slave register0 mapped
to memory location 0x43c1000C. Thus decryption had also succesfully happened.

42

8
Discussion and Conclusion

During the thesis various possibilities for implementing reconfigurable computing
were investigated and a system was designed. Some of the system’s characteristics
are worth of discussion.

8.1 Discussion
1. Possibility of Partial Reconfiguration:

As per the design and the results obtained partial reconfiguration in AU-
TOSAR is very much possible.

2. Timing:

The timing of reconfiguration depends on the size of the partial bit files. On
observation it is fast as it uses DMA. But, in the design during the reconfig-
uration, interrupts are to be masked. This can result in long wait times for
tasks of same priority as of the CDD. This can be a potential problem when
safety critical tasks are stalled.

3. Advantages of partial reconfiguration:

The resources that need to be reconfigured are reduced. This will in turn make
the circuit quickly reconfigure and is thus preferable over fully reconfigurable
solutions . But the effort needed for development of partial reconfigurable
solutions is higher compared to the conventional solution and it requires ad-
ditional tools.

43

8. Discussion and Conclusion

8.2 Conclusion
With growing computing needs like image processing, hardware acceleration will be
a major solution in the automotive domain in the future. Also there are security
features which are enhanced if they are implemented on hardware. But implementing
more hardware circuits make the system less flexible. Bug fixes in the hardware are
not as easy to handle in software.

For all these problems reconfigurable computing can be a solution. It is proved
from the thesis that reconfigurable computing is possible in AUTOSAR, but with
few limitations and high dependency on hardware. Also if there is a possibility to
choose between partial and complete reconfiguration, partial reconfiguration though
needing a little more development time, is better.

44

Bibliography

[1] N. Zaman, Automotive Electronics Design Fundamentals, v1.0 ed. Springer,
2015.

[2] AUTOSAR. (2014) Basics. (Date last accessed: 16-May-2016). [Online].
Available: http://www.autosar.org/about/basics

[3] ——. (2014) Background. (Date last accessed: 16-May-2016). [Online].
Available: https://www.autosar.org/about/basics/motivation-goals

[4] F. SIT. (2008) E-safety vehicle intrusion protected applications. (Date last
accessed: 04-Feb-2016). [Online]. Available: http://evita-project.org/index.
html

[5] AUTOSAR. (2014) Key features. (Date last accessed: 04-Apr-2016). [Online].
Available: http://www.autosar.org/about/basics/key-features/

[6] M. Gokhale and P. Graham, Reconfigurable Computing : Accelerating Compu-
tation with Field Programmable Gate Arrays. Dordrecht: Springer, 2005.

[7] Xilinx. (2016) All programmable soc. (Date last accessed: 16-June-
2016). [Online]. Available: http://www.xilinx.com/products/silicon-devices/
soc/zynq-7000.html#productTable

[8] ISO/IEC 7498-1:1994(E), Information Technology – Open Systems Interconnec-
tion – Basic Reference model: The Basic Model. International Organization
for Standardization, Geneva, CH, 1994.

[9] M. M. Alani, Guide to OSI and TCP/IP Models. Springer, 2014.
[10] AUTOSAR. (2014) Background. (Date last accessed: 16-May-2016). [Online].

Available: https://www.autosar.org/about/basics/background
[11] AUTOSAR. (2014) Current partners. (Date last accessed: 25-May-2016).

[Online]. Available: http://www.autosar.org/partners/current-partners
[12] F. Helmut et al., Achievements and Explotation of the AUTOSAR development

Partnership, v4.2.0 ed. SAE convergence Congress, 2006.
[13] C. Hammerschmidt. (2011) Autosar core partners reveal roll-out plans.

(Date last accessed: 25-May-2016). [Online]. Available: http://www.
electronics-eetimes.com/news/autosar-core-partners-reveal-roll-out-plans

[14] AUTOSAR. (2014) Brochure. (Date last accessed: 25-May-2016).
[Online]. Available: http://www.autosar.org/fileadmin/files/presentations/
AUTOSAR_Brochure_EN.pdf

[15] AUTOSAR., AUTOSAR-TR-Methodology, v2.1.0 ed. AUTOSAR, 2014.
[16] AUTOSAR, Layered Software Architecturep, v3.2.0 ed. AUTOSAR, 2014.
[17] S. 4-A, Systems Engineering Fundamentals. Fort Belvoir, Virginia: Defense

Acquisition University Press, 2001.

45

http://www.autosar.org/about/basics
https://www.autosar.org/about/basics/motivation-goals
http://evita-project.org/index.html
http://evita-project.org/index.html
http://www.autosar.org/about/basics/key-features/
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html#productTable
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html#productTable
https://www.autosar.org/about/basics/background
http://www.autosar.org/partners/current-partners
http://www.electronics-eetimes.com/news/autosar-core-partners-reveal-roll-out-plans
http://www.electronics-eetimes.com/news/autosar-core-partners-reveal-roll-out-plans
http://www.autosar.org/fileadmin/files/presentations/AUTOSAR_Brochure_EN.pdf
http://www.autosar.org/fileadmin/files/presentations/AUTOSAR_Brochure_EN.pdf

Bibliography

[18] OTAQ. (2015, March) On-board diagnostics. (Date last accessed: 03-Feb-2016).
[Online]. Available: http://www.epa.gov/obd/

[19] ISO 14229-1:2013(E), Road vehicles — Unified diagnostic services (UDS) —
Part 1: Specification and requirements. Case postale 56 • CH-1211 Geneva
20: International Organization for Standardization, Geneva, CH, 2013.

[20] ISO/DIS 15765-2, Road vehicles — Diagnostic communication over Controller
Area Network (DoCAN) — Part 2: Transport protocol and network layer ser-
vices. Case postale 56 • CH-1211 Geneva 20: International Organization for
Standardization, Geneva, CH, 2013.

[21] R. B. Gmbh, CAN Specification, 2nd ed., Postfach 50, D-7000 Stuttgart 1, 1991.
[22] NIST. (2013) Nist general information. (Date last accessed: 11-Feb-2016).

[Online]. Available: http://www.nist.gov/public_affairs/general_information.
cfm

[23] J. Daemen and V. Rijmen, Aes proposal: Rijndael, 1999.
[24] FIPS197. (2001) Advanced encryption standard (aes). (Date last accessed: 11-

Feb-2016). [Online]. Available: http://csrc.nist.gov/publications/fips/fips197/
fips-197.pdf

[25] Wikipedia. (2016) Computing. (Date last accessed: 16-May-2016). [Online].
Available: https://en.wikipedia.org/wiki/Computing

[26] ——. (2016) Reconfigurable computing. (Date last accessed: 16-May-2016).
[Online]. Available: https://en.wikipedia.org/wiki/Reconfigurable_computing

[27] C. Bobda, Introduction to Reconfigurable Computing: Architectures, Algo-
rithms and Applications. P.O. Box 17, 3300 AA Dordrecht, The Netherlands:
Springer, 2007.

[28] Xilinx, Zynq-7000 All Programmable SoC Technical Reference Manual UG585,
v1.10 ed. Xilinx ®, 2015.

[29] AUTOSAR. (2014) Autosar vendor id list. (Date last accessed: 08-Apr-2016).
[Online]. Available: http://www.autosar.org/documents/vendor-id

[30] A. AB. (2016) Home. (Date last accessed: 09-May-2016). [Online]. Available:
http://https://www.arccore.com

[31] AUTOSAR., Specification of Diagnostic Communication Manager, v4.2.0 ed.
AUTOSAR, 2014.

[32] AUTOSAR, Complex Driver design and integration guideline, v1.1.0 ed. AU-
TOSAR, 2014.

[33] Arc-core. (2016) Arctic studio – the development tools. (Date last
accessed: 09-Feb-2016). [Online]. Available: http://www.arccore.com/
products/arctic-studio

[34] Artop. Artext - an autosar textual language framework. (Date last accessed:
10-Apr-2016). [Online]. Available: https://www.artop.org/artext/swcd

[35] iSYSTEM AG. winidea. (Date last accessed: 8-Apr-2016). [Online]. Available:
http://www.isystem.com/products/software/winidea

[36] iSYSTEM. AG. Ic3000. (Date last accessed: 8-Apr-2016). [Online]. Available:
http://www.isystem.com/products/software/winidea

[37] RBEI and E. GmbH. Busmaster. (Date last accessed: 8-May-2016). [Online].
Available: https://rbei-etas.github.io/busmaster/

46

http://www.epa.gov/obd/
http://www.nist.gov/public_affairs/general_information.cfm
http://www.nist.gov/public_affairs/general_information.cfm
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Reconfigurable_computing
http://www.autosar.org/documents/vendor-id
http://https://www.arccore.com
http://www.arccore.com/products/arctic-studio
http://www.arccore.com/products/arctic-studio
https://www.artop.org/artext/swcd
http://www.isystem.com/products/software/winidea
http://www.isystem.com/products/software/winidea
https://rbei-etas.github.io/busmaster/

Bibliography

[38] R. DAFALI. Open source ip core library. (Date last accessed: 30-May-2016).
[Online]. Available: http://www.rachiddafali.com/en/IP_core_library.html

[39] C. Commons. Attribution-noncommercial-sharealike 3.0 unported. (Date last
accessed: 30-May-2016). [Online]. Available: http://creativecommons.org/
licenses/by-nc-sa/3.0/legalcode

[40] Xilinx, Vivado Design Suite User Guide - Partial Reconfiguration (UG909),
v2016.1 ed. Xilinx ®, 2016.

[41] xilinx, Vivado Design Suite User Guide - Synthesis (UG901), v2013.1 ed. Xil-
inx ®, 2013.

[42] Xilinx, Vivado Design Suite User Guide - Partial Reconfiguration (UG909),
v2016.1 ed. Xilinx ®, 2016.

[43] xilinx, Vivado Design Suite Tutorial - Partial Reconfiguration (UG947),
v2015.4 ed. Xilinx ®, 2015.

47

http://www.rachiddafali.com/en/IP_core_library.html
http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode
http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode

Bibliography

48

	List of Figures
	Acronyms
	Introduction
	Background
	Aim
	Limitation

	Theory
	Open Systems Interconnection
	Automotive Open System Architecture
	AUTOSAR2 Methodology
	AUTOSAR2 Software Architecture
	Application layer
	Basic Software
	Runtime Environment

	Diagnostics
	Controller Area Network
	AES
	Reconfigurable Computing
	Zynq®
	Processing System
	Programmable Logic

	Methods
	Software and Hardware Selection
	AUTOSAR Software
	Hardware

	Intended System

	Software
	Development method
	Design Strategy
	Simple Example
	Configuring Arctic Core for diagnostic requests
	Choice of a Complex Device Driver

	Design
	Location of CDD
	Control of reconfiguration

	Tools Used
	Arctic Studio
	winIDEA

	Implementation
	Hello World
	Diagnostic Control Module
	Complex Device Driver
	Software Component Description
	Instantiate the newly added SWC1 and generating RTE
	Algorithm within CDD
	Partial Reconfiguration

	Hardware
	Design
	Encryption and Decryption
	Integrating with present design
	Generating Partial Reconfiguration bitstreams

	Booting
	Zynq® Boot Process
	FSBL
	Xilinx SDK

	Boot Image

	Test
	Test Setup
	Test Procedure

	Discussion and Conclusion
	Discussion
	Conclusion

	Bibliography

