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SEBASTIAN NILSSON
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Abstract
During the last decade, the application of deep learning in de novo drug design
has increased. By employing generative models, in combination with suitable opti-
mization algorithms, the chemical space can be explored to generate new and useful
molecular compounds. Multiple models have been published for this purpose. While
they all report promising results on various optimization tasks, there is a lack of con-
tinuity regarding what tasks on which the models are demonstrated. This makes
a comparison of the models unfeasible. In this thesis, we provide a comprehensive
evaluation and comparison of five state-of-the-art algorithms for de novo drug de-
sign. To this end, the selected models have been submitted to two experiments that
evaluate their ability to generate and optimize molecules on a variety of different
optimization tasks. The reported results show that a generative language model dis-
plays the best performance, both in terms of exploring and exploiting the chemical
space. An application of particle swarm optimization on a continuous representation
of the chemical space also shows promise, and we suggest further research on more
elaborate usages of this method.

Keywords: Drug design, deep learning, generative model, optimization, variational
autoencoder, language modelling, comparison.
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1
Introduction

In the field of drug discovery, one of the challenges biochemists face is the task
of finding novel molecules with specific desired properties. Various approximations
have been made regarding the number of potentially drug-like compounds, span-
ning from 1023 to 10160. Out of these, only 108 have been successfully synthesised
[1][2]. Given that the search space for this endeavour is enormous, multiple meth-
ods for screening the virtual molecular space have been developed in recent years
to streamline the process [3][4]. The application of different Neural Network (NN)
architectures and a plethora of Machine Learning (ML) training techniques have
been employed in the race to find more efficient methods for generating and finding
meaningful, novel, drug candidates.

In this introductory chapter we start by motivating the project by providing an
overview of the drug development process. In Section 1.2, we give a brief review
of deep learning in de novo drug design. Section 1.3 explains how molecular data
can be represented as one-dimensional strings. In Sections 1.4 and 1.5 we define the
objective and what the thesis aims to contribute to the field of drug design. The
chapter is concluded with a description of the thesis outline.

1.1 Drug discovery and design
The development of new drugs is a complex, time consuming and expensive enter-
prise [5][6]. The process begins with identifying a target, commonly a protein, on
which the new drug will act. Next, one must identify molecular compounds that
bind to the selected target. Finding such a compound is referred to as discovering
a hit. In addition to being able to interact with a target, a hit should also demon-
strate other crucial properties such as synthesizability. Molecules that satisfy these
requisites are named leads and are submitted to lead optimization, where one aims
to maximise properties such as potency and affinity while minimizing toxicity. This
can be achieved by various techniques where the lead is manipulated, for example,
by removing certain substructures or imposing a scaffold known to interact with the
designated target. This process is done iteratively and is often referred to as de novo
drug design. These first steps in the drug development pipeline usually span over
4-5 years and assuming good results there are still clinical trials to be conducted
before a drug is allowed to be distributed to the market.

A study by Paul et al.[6] approximates that one successfully commercialised drug

1
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Target
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Hit
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Lead

Identification

Lead
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Clinical Trials New Drug

Figure 1.1: The different phases of drug development. The blue boxes correspond to
the pre-clinical stage.

has been developed for 13.5 years, on average. They also report that only 4% of the
compounds identified as hits in the first stage of the process get clinically approved
in the end. For leads that are submitted to clinical trials, the corresponding success
rate is 8%. When accounting for the whole pipeline from multiple research projects
being conducted to a single new drug reaching the market, the total cost amounts
to approximately $1.8 billion, whereas 33% is attributed to the steps before clinical
trials. This poses a challenge, and opportunity, for the industry to find new, more
efficient, methods for finding (and discarding) potential drug candidates early in the
process.

1.2 Deep Learning in de novo Drug Design
During the last decade, deep learning (DL), a subclass of ML, has been successfully
applied in disciplines such as image recognition, natural language processing, and
self-driving cars [7]. Following the emergence of huge virtual libraries of molecular
data, there has in recent years also been a surge of DL applications in the field of drug
discovery. These libraries, containing huge numbers of known chemical compounds,
make it possible to train DL architectures to learn some internal representation of
the chemical space. This space, in turn, enables purpose-driven exploration and op-
timization where novel compounds of interest can be identified as hits and optimized
given some predefined criteria. By finding efficient and sophisticated strategies for
discovery and optimization using DL, one can potentially not only cut time and
costs in the drug design process but also decrease the percentage of hits and leads
that fail further down the pipeline.

Today there is a wide variation of DL architectures being employed in de novo
drug design and discovery. The models often vary in multiple aspects, for example,
what molecular representation format they operate on, optimization strategy and
NN architecture. By surveying the literature, one finds that most methods report
promising results on some selected task. However, comparing different models is
non-trivial since these tasks are not necessarily the same or performed under the
same premises. Assuming two separate models report some results given the same

2



1. Introduction

optimization objective, one cannot merely rely on the results by themselves. One
also has to take into account parameters such as what prior knowledge the models
had (what data they had been trained on) or, if time efficiency is crucial, what
hardware has been used. Therefore, in order to draw informed conclusions when
comparing various models, one has to submit them to evaluations conducted under
the same conditions. Such a survey could be valuable for the field by providing
reliable and comparative data given a selection of promising models. This data can
be used, for example, in decision-making processes when selecting a DL technique
for a drug design task or as a stepping stone and baseline for future research.

1.3 Molecular Data Representations

There are multiple ways to represent a molecule. In a non-data science context,
the most common one is perhaps the molecular formula. A molecular formula is a
text representation where every atom in the molecule is represented by its atomic
symbol along with a subscript, denoting the count of that particular atom. An ex-
ample is the molecular formula for water, H2O, containing two hydrogen atoms and
one oxygen atom. In order to provide structural information, one can also represent
molecules with their structural formula, a graphical representation where the bonds
are shown between the atoms.

To make molecular data more suitable for machine learning, one has to represent it
in a way such that a program can easily read the data. Simplified molecular-input
line-entry system (SMILES) [8] is a common notation for chemical compounds that
represent 2-dimensional molecular graphs in one dimension. A SMILES is an ASCII
string containing characters such as atom types (e.g. ’Br’, ’C’), double bonds
(’=’), ring openings (’(’) and closings (’)’), conformed to a predefined grammar.
Benzene, as an example, has the chemical formula C6H6 and the corresponding
SMILES is denoted C1=CC=CC=C1 (hydrogen atoms can often be omitted [9]). A
molecule may be represented using multiple SMILES, which in some cases might be
suboptimal, for example, when one wants to guarantee uniqueness of entries in a
dataset. On such occasions, one can use canonical SMILES, where every molecular
compound is represented by a unique SMILES.

An extension of SMILES is the more flexible SMARTS notation1. While SMILES
mainly uses symbols corresponding to atoms and bonds, SMARTS also provides
symbols for specifying additional properties such as atom charge, ring size and chi-
rality (a property related to molecule asymmetry). Furthermore, it allows for more
general molecular representations in the sense that one may express a position in a
molecule using, for example, ’[C,N]’, indicating that either a ’C’ or an ’N’ can be
used. This flexibility makes SMARTS strings suitable when searching for substruc-
tures in compounds.

1https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html

3
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CC(=O)OC1=CC=CC=C1C(=O)O

Figure 1.2: A molecular graph of Aspirin together with its SMILES string representa-
tion.

1.4 Objective

In this thesis work, we will evaluate and compare five state-of-the-art optimization
algorithms for de novo drug design. The selected algorithms make use of different
representations of the chemical space and utilize different strategies to optimize the
generated molecules. This variation of methods indicates that there is yet no clear
consensus as to which approach is the optimal one. By putting the algorithms side-
by-side in a collection of benchmark tests, we aim to provide comprehensive data
on their performances in relevant metrics such as their ability to generate molecules
with high objective value, novelty, and uniqueness. The presented results may be
used as guidance and a stepping stone for future research.

1.5 New contributions

This work aims to provide the field of de novo drug design with a rigorous evaluation
and comparison of different strategies for molecular generation and optimization.
Today there are numerous publications of tools and algorithms designed for this
purpose. While these often include extensive benchmark and test results of relevant
objectives, there is a noticeable lack of continuity and unanimity regarding the se-
lection of benchmarks.

The main contribution of this work is the integration of five state-of-the art algo-
rithms with a standardized benchmarking framework. By evaluating the algorithms
on the same series of optimization task we enable a comparative analysis using a
common denominator. We also hope this will encourage the field to use available
frameworks for benchmarking in future publications, to facilitate easy and fair com-
parisons between algorithms.

The second contribution is a comparison of the algorithms on a test case that emu-
lates an industry-like optimization task. This complements the results of the bench-
marking evaluations with data of concrete, practical, value for the industry.

4



1. Introduction

1.6 Thesis outline
This introductory chapter has provided an overview of the drug development process,
and by highlighting the complexity of the enterprise, the advantages of employing
deep learning to streamline the process have been established. We have also moti-
vated the need for a comparative study on existing optimization methods.

In Chapter 2, we review deep learning architectures that are employed by the models
covered in this work. Chapter 3 introduces three optimization methods that are
utilized by the models to guide the generative process towards desirable areas of the
chemical space. The five selected models are introduced in Chapter 4. In Chapter
5, we present a benchmarking framework and a multi-property function that is used
in two experiments, in which the models are evaluated. In the subsequent Chapter
6 we provide details regarding these experiments followed by the results, in Chapter
7. Based on the reported results, the thesis concludes with a discussion and some
final words in Chapter 8 and 9.

5



1. Introduction

6



2
Generative Deep Learning

The state-of-the-art deep learning models evaluated in this report make use of gen-
erative models to find novel molecules. Generative modelling is a branch of deep
learning, where models are trained to estimate a probability distribution [10]. This
distribution can be sampled to find new data points, not previously seen in the
training dataset. The models described in this report make use of three types of
neural network architectures for data generation: recurrent neural networks, vari-
ational autoencoders and generative adversarial networks. Before we review these
architectures we will introduce key concepts from deep learning in general.

2.1 Introduction to Artificial Neural Networks
Artificial Neural Networks (ANN) are computational systems that learn to perform
tasks without being explicitly programmed with task-specific rules. In practice, they
are used as universal function approximators, aiming to approximate an unknown
function f . For example, they can be used to approximate a classifier y = f(x) that
maps input x to a category y.

The ANN, similar to the neural networks found in the brains of animals, is a col-
lection of connected units called neurons. It can be represented as a graph, where
the nodes are neurons, and the edges are the connections between them. Similar
to biological neural networks, the artificial neurons transmit signals between each
other. In the ANN, the signals are represented by scalar values.

The nodes in the graph are connected by directed edges, where each edge has a
weight assigned to it. The signal sent from one neuron to another is multiplied with
the weight of their shared edge. The receiving neuron processes the input signal by
passing it through a nonlinear activation function and then sends it forward in the
network. The neurons of a network are typically arranged in layers. The neurons
in a layer are connected only to the neurons in the preceding and the immediately
following layers. An ANN with this arrangement is called a Feedforward Neural
Network (FFNN). We present a simple graph of an ANN in figure 2.1.

2.1.1 Training a Feedforward Neural Network
A loss function, L, measures the performance of a neural network. For example,
let X = {x(1), ...,x(m)} be a set of m inputs that a FFNN should map to one of

7
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x1
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Figure 2.1: Computational graph of an artificial neural network. The circles represent
neurons, and the edges between them represent a signal in the form of a scalar value. Each
neuron has input to its left and produces an output to its right. The output is calculated
by passing the sum of the input signals through an activation function. The edges are
weighted, meaning that the signal from a neuron to another is multiplied with the weight
of their connecting edge.

two classes y ∈ {0, 1}. Let y be the correct class of input x and let ŷ be the class
predicted by the network. For this task, the squared number misclassifications can
be used as a loss function:

L =
m∑
i=1

(ŷi − yi)2 (2.1)

Training the neural networks means finding the weights of the edges in the graph
such that the loss function is minimized. Using the chain rule from calculus, each
weight in the network can be updated according to its contribution to the error. Let
wij be the weight of the ith edge in layer j, the change of a weight can be computed
by:

∆wij = − ∂L
∂wij

(2.2)

The partial derivative is negative to ensure that the weights are always changed such
that L decreases. The weight is then updated by:

wij = wij + η∆wij (2.3)

where η > 0 is the learning rate, a scalar commonly in the range from 1e−5 to 1e−3.
The process of minimizing the loss in this way is called gradient descent. By thinking
of the loss as a function that depends on the weights of the network, we are moving

8



2. Generative Deep Learning

the value of the loss function in the direction of its negative gradient. The learning
rate adjusts how big a step it takes.

In short, training the network means showing it samples from a training dataset and
then updating its weights such that the loss function is minimized. In practice, the
training data is divided into batches of size n. The loss is calculated and the weights
updated for each batch. The reason for this is similar to the learning rate; the
batch size adjusts the step size of our minimization. In addition to using training
examples, it is common to use a validation dataset for which the validation loss is
calculated to measure how well the network performs on unseen data.

The number of layers, the number of neurons in each layer, activation function, loss
function, learning rate and batch size are all examples of hyperparameters of a neural
network.

2.2 Recurrent Neural Networks

Recurrent Neural Networks [11] (RNNs) are a class of neural networks specialized
for processing sequential data, such as text, audio, stock market data, or other data
sources in which the ordering carries essential information. By learning to recognize
patterns in sequences, RNNs have shown to be a proficient tool for tasks such as
machine translation [12], speech recognition [13] and e-commerce product recom-
mendation [14], amongst others.

What differentiates an RNN from other neural networks, is that an RNN assumes
dependency between inputs. Keeping track of previous input is essential when ap-
plying machine learning to sequential data. An example can be found in machine
translation, where words at the end of a sentence may have a different meaning
depending on preceding words.

A typical example of an RNN produces an output for each element in an input
sequence X = {x(0),x(1), . . . ,x(T )}. We denote the input at time step t as x(t).
The RNN has an internal memory called the hidden state, h(t), which is updated at
each time step using the current input x(t) and the hidden state from the previous
time step, h(t−1). The hidden state is then used to calculate the output o(t). Two
functions express the update of the hidden state and the output calculations:

h(t) = f(x(t),h(t−1)) (2.4)
o(t) = g(h(t)) (2.5)

Since the RNN is a neural network, both f and g are functions that are learned by
the network during training. The functions are parameterized by weight matrices
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2. Generative Deep Learning

and an activation function in the following way:

a(t) = b + Wh(t−1) + Ux(t) (2.6)
h(t) = σ(a(t)) (2.7)
o(t) = c + Vh(t) (2.8)

where U, V and W are weight matrices, b and c are biases and σ is a nonlinear
activation function. A computational graph of the RNN is illustrated in figure 2.2.
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O
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……
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( t+1)

h
( t )

h
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Figure 2.2: Computational Graph of the recurrent neural network, represented in a
compact (left) and in a unrolled version (right). The black box in the left figure represents
a delay of one timestep. The hidden state at time t, h(t), is used to produce the output
at time t, o(t). The hidden state a(t) is produced by a combination of the hidden state in
the previous time step and the current input, xt.

In the context of generative models, RNNs can be trained for sequence generation[15]
by processing real data sequences one step at a time and predicting what comes next.
As a result, the network outputs a distribution that can be sampled in order to create
sequences not previously seen in the training data. In addition, the sampled data
can be fed back into the network as a base for its next prediction.

2.3 The Variational Autoencoder

An autoencoder [16] is an artificial neural network that attempts to copy its input to
its output. Internally, an encoder learns to transform a dataset, X = {x1, ...,xn},
into an encoded space Z, also called latent space. From this encoding, which is
typically a lower-dimensional representation of the original data, a decoder tries to
reconstruct the input, and produces the network’s output: x̂. The network is trained
to compress and reconstruct the data such that the difference between input and
output is as small as possible. The difference between input and output is called
the reconstruction loss, L, defined as:

L = ||x− x̂||2 (2.9)

10



2. Generative Deep Learning

ENCODER DECODER

x z x̂

Figure 2.3: Overview of an autoencoder neural network architecture.

The generative aspect of the autoencoder is found in latent space Z. The en-
coded vector z can be thought of as a coordinate in the latent space. In theory,
by traversing the latent space and decoding the coordinates, new data points can
be discovered, similar to the ones found in the training dataset. However, this puts
several demands on the structure of the latent space. Using the autoencoder net-
work described above does not guarantee that interpolation between latent points
will produce meaningful output when decoded. In order to enforce a continuous
structure, a probabilistic variant of the autoencoder can be used.

The variational autoencoder contains the same components found in a regular au-
toencoder and is also trained to minimize the reconstruction loss. However, instead
of encoding an input x to a point z in the latent space, x is encoded as a distribution
p(z|x). The distribution is sampled to attain a point in the latent space z ∼ p(z|x),
which is passed to the decoder. In practice the input is encoded to a multivariate
normal distribution, meaning that the decoder outputs a mean and covariance ma-
trix for each x.

The goal is for the latent space to represent the dataset continuously, making it
possible to interpolate between data points. Furthermore, similar inputs should
be found close together in the latent space. To achieve this, a regularization term
is added to the loss to enforce that encoded distributions have a shape similar to
standard normal distribution:

L = ||x− x̂||2 + KL[N (µx, σx) || N (0, I)] (2.10)

Where KL is the Kullback-Leibler divergence [17], measuring the difference between
two distributions.

The variational autoencoder has been used as a tool for molecular design in sev-
eral applications [18][19]. The latent space enables a continuous representation of
molecules, which can be traversed to optimize both structure and chemical proper-
ties.
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2. Generative Deep Learning

2.4 Generative Adversarial Networks
Generative Adversarial Networks [20] is an algorithm that uses two competing neural
networks to generate new, previously unseen data. One neural network, the gener-
ator, creates new instances of data, while the discriminator neural network decides
whether the data comes from the actual training dataset or not. The generator is
trained to fool the discriminator by generating data that look increasingly similar
to the training dataset. Simultaneously, the discriminator is trained to distinguish
between the real data and the fake data from the generator.

GENERATORp(z)

G(z)

fake / real 

probability

DATASET

x

DISCRIMINATOR

Figure 2.4: Overview of a generative adversarial network architecture

To create a new sample, the generator takes random noise as input. Let z ∼ pz
be a random noise vector and let G be the generator neural network which maps
noise vectors to the training data space. Let D be the discriminator neural network,
which takes in a sample x and outputs the probability (a scalar between 0 and 1)
indicating if the sample is real. The following minimax game [21] describes the
objective function of the network as a whole:

min
G

max
D

V (D,G) = Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z)))] (2.11)

The discriminator is rewarded for making correct predictions, while the generator is
rewarded for wrong predictions made by the discriminator.

In drug discovery, GANs have been used for generation of novel anti-cancer molecules
[22], drug-target binding predictions [23] and for optimization of molecular proper-
ties [24].
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3
Optimization

In a mathematical setting, optimization is the pursuit of an optimal element x∗
such that a given objective function is minimised or maximised. In the case of
maximisation, given a set X , one can formulate this as the task of solving

x∗ = arg max
x∈X

f(x) (3.1)

There exist a multitude of various strategies to choose from when solving optimiza-
tion problems, which one is preferable depends on the nature of the problem and
the desired level of precision. However, a common problem for any method is to find
a suitable trade-off between exploration and exploitation in the solution space. An
optimization strategy that searches in an exploratory manner tends to query points
in X with high uncertainty, while an exploitative strategy moves in the direction of
areas in the search space that have already shown promise. A possible side-effect in
the former case is that an optimum is not found within a reasonable time while the
latter approach increases the risk of getting stuck in local optima.

In this chapter, we introduce three different optimization algorithms. In Section
3.1, we describe Bayesian Optimization where informed sampling approximates the
underlying objective function in the search space. Section 3.2 describes the Particle
Swarm Optimization algorithm that mimics the behaviour seen in insect swarms as
a means to find an optimum. Lastly, in Section 3.3, we introduce Reinforcement
Learning, a machine learning algorithm that aims to teach an agent a policy that
will guide it in the search space such that a cumulative reward is maximized.

3.1 Bayesian Optimization
In cases where an unknown objective function f has multiple local optima and/or
is computationally expensive to calculate, one might not be able to rely on local
information, such as gradients, in an iterative manner and a large number of steps.
In such cases a possible strategy is to perform less but more costly evaluations, and
compensate by making use of the full optimization history to make as educated
subsequent choices as possible as to where the global optimum is.

Bayesian Optimization (BO) is a technique based on Bayes’ Theorem, where sam-
pling is driven by accumulated observations throughout the optimization process.
In a sequential manner, a prior probability distribution, that approximates the ob-
jective function, is updated as more observations are performed, enabling more
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informed sampling decisions in the future steps. After some termination criteria
are met, the output is the algorithm’s final recommendation on where to find the
optimum of f .

3.1.1 Bayes’ Theorem
Bayes’ theorem constitutes the foundation of the Bayesian optimization algorithm.
Given events A and B along with the conditional events of A given B and vice versa,
Bayes’ theorem is summarised in the formula

P (A|B) = P (B|A)P (A)
P (B) (3.2)

The theorem tells us that the posterior probability of some event A, given that
we have observed event B, is conditioned under our prior knowledge of (possibly)
related events. As an example, let A denote that a person has lung cancer and B
that a person is a smoker. In this particular case, the prior probability, P (A), of
a person having lung cancer is known. The posterior probability, P (A|B), is the
probability of a person having lung cancer given that we know that the same person
is a smoker. This can be calculated using our existing knowledge and observations.

By fixing B, one can highlight the proportionality of the posterior probability of
an event A given event B to the probability of B given the prior likelihood of A
multiplied with the probability of A.

P (A|B) ∝ P (B|A)P (A) (3.3)

This relation can be applied in the context of BO to describe how a prior distribu-
tion and an observation is used to create a posterior distribution over the space of
objective functions.

3.1.2 Surrogate model
Any Bayesian scheme requires a prior distribution. This distribution represents the
current belief regarding the space of potential objective functions and is constructed
using a set of observations on f applied to a surrogate model. The purpose of a
surrogate model is to approximate properties of the real objective function in order
to guide the optimization process in either an exploratory or exploitative manner.
There are numerous options when selecting a surrogate model. A common one is
the Gaussian processes which also is the selected one in the BO algorithm evaluated
in this thesis.

A Gaussian process (GP) is a modelling technique, and a generalization of a Gaussian
distribution, that can be used in the context of BO to approximate the underlying
objective function f(x). While a Gaussian distribution is a distribution over a
random variable, defined by its mean and variance, a GP is a distribution over
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the space of possible functions, defined by its mean function m(x) and covariance
function k(x,x′), also known as the kernel function [25].

f(x) ∼ GP(m(x), k(x,x′)) (3.4)

That is, when queried for x, the GP will return the mean and variance of a nor-
mal distribution over the potential values at x rather than an actual scalar. The
behaviour of the GP is determined by the choice of mean and covariance function.
A common pair is the zero function and the squared exponential function as mean
and covariance function respectively [26][27].

m(x) = 0 (3.5)

k(x,x′) = exp(−1
2 ||x− x′||2) (3.6)

Here we see that by investigating points close to each other, k will move towards 1,
and towards 0 for points far away from each other. This indicates that neighbouring
points influence each other to a greater extent than points far away from each other.
Now, assuming D1:n is a set of n observations on f such that

D1:n = {f(x1:n),x1:n} (3.7)

we can define the kernel matrix K as

K =


k(x1,x1) k(x1,x2) . . . k(x1,xn)
k(x2,x1) k(x2,x2) . . . k(x2,xn)

... ... . . . ...
k(xn,x1) k(xn,x2) . . . k(xn,xn)

 (3.8)

In order to produce a posterior distribution, we assume that the next, arbitrary,
point to sample is xn+1. Thus, given that any linear combination of dimensions is
Gaussian, we have that f(x1:n) and f(xn+1) are jointly Gaussian such that[

f(x1:n)
f(xn+1)

]
∼ N

(
0,
[
K kT
k k(xn+1,xn+1)

])
(3.9)

with k defined as
k =

[
k(xn+1,x1) . . . k(xn+1,xn)

]
(3.10)

The conditional probability P (f(xn+1)|f(x1:n)) can now be expressed as the Gaus-
sian distribution

P (f(xn+1)|f(x1:n)) ∼ N (µn(xn+1), σ2
n(xn+1)) (3.11)

where
µn(xn+1) = kTK−1f(x1:n) (3.12)

σ2
n(xn+1) = k(xn+1,xn+1)− kTK−1k (3.13)
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3.1.3 Acquisition function
In order to determine which point in the search space that should be sampled next,
BO utilizes an acquisition function. Based on the current distribution of the surro-
gate model, the acquisition function is used to guide the optimization in either an
exploratory or exploitative manner. The former strategy is carried out by sampling
in areas of high uncertainty (high variance) while the latter by focusing on areas
with high predictive values. To this end, the acquisition function has high objective
values in such areas, and the selection of the next point to sample is decided by
finding the point that maximizes the generic acquisition function α(.) as defined by
equation 3.14.

xn+1 = argmax
x

α(x|f1:n) (3.14)

In figure 3.1, we provide a simple illustration of how an acquisition function is
utilized in order to find the next point to sample, and how the underlying Gaussian
distribution is updated.
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Figure 3.1: One-dimensional illustration of a single step in Bayesian Optimization. To
the left is a GP distribution with three observations. Underneath the acquisition function
is shown with a red line, indicating the location of optimum. This point is where the next
observation is made. To the right, the updated GP distribution, and how the acquisition
also has updated accordingly, is displayed.

There are multiple functions to choose from when selecting a suitable acquisition
function. However, they should all be significantly computationally cheaper to evalu-
ate than the actual objective function f . A common acquisition function is expected
improvement (EI), which aims to find the point that is expected to increase the
objective value of f as much as possible. The function is defined as

EI(x) = E[ max{0, fn+1(x)− f(x+)} ] (3.15)
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where f(x+) represents the best sampled value so far. Assuming a GP surrogate
model one can evaluate the function analytically as [28][29]

EI(x) =

(µ(x)− f(x+))Φ(Z) + σ(x)φ(Z) if σ(x) > 0
0 if σ(x) = 0

(3.16)

where Φ represent the cumulative distribution function, φ the probability density
function and Z is defined as

Z = µ(x)− f(x+)
σ(x) (3.17)

As alternatives to EI one can employ upper confidence bound [26], probability of
improvement [30] or entropy search [31] as acquisition functions.

3.2 Particle Swarm Optimization
Particle Swarm Optimization (PSO) is a stochastic algorithm that emulates flock
behaviour seen in birds and insects. It is an iterative method where the search for a
global optimum is conducted using a population of solution candidates that traverse
the search space in a swarm-like manner. The employed paradigm is inspired by
the social sharing of information between members of flocks or swarms, that allow
a seemingly choreographed behaviour regardless of the chaotic movement of each
individual. This social sharing is one of the cornerstones of the algorithm where, in
the same way birds flock to food, solution candidates converge to an optimum.

A PSO instance consists of a set of particles that together make up a swarm. A
particle represents a possible solution to the optimization problem at hand, that
is; a particle is a point in the search space. Given a D-dimensional search space a
particle i is defined by three D-dimensional vectors; its position xi, its velocity vi
and its best position so far xbesti . Assuming an optimization has run for k iterations,
the particle’s best position yet is defined as

xbesti = argmax f(xki ) (3.18)

In addition to storing every separate particle’s best position, a PSO instance keeps
track of the best overall position of the swarm. There are two strategies one can
employ for this cause; storing the best particle historically or the best particle at
the current iteration. For the continuation of this thesis, the former will be assumed
and the definition is expressed as

xbestswarm = argmax f(xbesti ) i = 1, ..., n (3.19)

The behaviour of a particle is dictated by both its individual history and the perfor-
mance of the swarm as a whole. Furthermore, its movement is guided by a trade-off
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between exploration and exploitation. These three components are summarised in
the update step of the velocity of a particle i after k iterations

vk+1
i ← wvki + ϕ1r1(xbesti − xki )︸ ︷︷ ︸

cognitive component

+ϕ2r2(xbestswarm − xki )︸ ︷︷ ︸
social component

(3.20)

The first term on the right-hand side is the component controlling the trade-off be-
tween exploration and exploitation. The constant w is called the inertia weight
and is a scalar in between 0 and 1. It is multiplied with the current velocity of the
particle and therefore low values will result in the particle "slowing down" while high
values instruct the particle to maintain an exploratory behaviour.

The second term is often referred to as the cognitive component and can be inter-
preted as the particle’s trust in its own performance. The difference between the
particle’s best position so far and the current position is multiplied with a uniformly
distributed random variable r1 ∈ [0, 1] and an acceleration coefficient ϕ1 that scales
the magnitude of the cognitive component. This coefficient may vary or be set to a
specific value throughout a run.

The third term is commonly called the social component and describes the parti-
cle’s inclination to drift towards the best overall position of the swarm. Here the
distance between the swarm’s best position and the particle’s current position is
multiplied with uniformly distributed random variable r2 ∈ [0, 1] and coefficient ϕ2
that has the same purpose, and may be manipulated under the same principle as ϕ1.

After having updated the velocity of a particle, the final step is to update its position.
This operation is performed by adding the velocity vk+1

i to the current position xi
such that

xk+1
i ← xki + vk+1

i (3.21)

An optimization run is over when a predefined number of iterations has been reached
or when some end condition has been satisfied. The algorithm should ideally be run
multiple times due to the stochastic nature of it and the lack of certainty that the
found optimum is the global optimum and not just a local one.

3.2.1 Hyperparameter settings
There are multiple possible hyperparameters to adjust when using PSO. The number
of particles, the inertia weight and the two coefficients ϕ1 and ϕ2 all influence both
the individual particles and the swarm as a unit. The optimal set of hyperparameter
settings can vary depending on the objective function, the nature of the domain
or the required precision. There is no consensus as to which single selection of
hyperparameters is the best in a general sense, but rather there is a variation of
proposed approaches to be found in the literature. In the following paragraphs we
present a selection of examples on such approaches.
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The inertia weight, dictating the momentum of a particle, is usually initiated around
0.9 to encourage exploration in the early stages of the optimization [32]. A typical
utilization of the inertia weight is to let it decrease over time to promote exploitation
of promising areas in the later stages of a run. This decaying process can be carried
out using both linear and non-linear functions that decrease the inertia weight from
0.9 to 0.4 [33][34][35]. There has also been a study on scenarios where the applica-
tion of a randomized inertia weight has been successfully applied [36].

The cognitive and social acceleration coefficients ϕ1 and ϕ2 may be adjusted to
promote a certain "mindset" of the particles. With ϕ1 > ϕ2 the particles are more
self-confident and weigh their personal history more than the swarm history. With
ϕ1 < ϕ2 the opposite holds; the particles drift towards the best point found by
the swarm rather than exploiting their own best observations. As with the inertia
weight, there are a variation of different approaches to selecting these parameters.
Setting the coefficients such that ϕ1+ϕ2 ≈ 4 is one of the more common combination.
In line with the gradual change towards an exploitative behaviour often implemented
in the inertia weight, approaches with dynamic values have been proposed for the
acceleration coefficients. In a method called PSO-TVAC (PSO with Time-Varying
Acceleration Coefficients), the cognitive coefficient is decreased from 2.5 to 0.5 during
optimization, while the opposite holds for the social coefficient [37].

3.3 Reinforcement learning

Reinforcement learning (RL) [38] is a learning paradigm describing the control of a
system such that a long-term objective is optimized. On a high level, a reinforce-
ment learning system is comprised of five main subelements: An agent, a policy, a
reward signal, a value function and a model of the environment. The agent is the
learner and decision-maker that interacts with the environment. The environment
has a state which the agent can alter by performing an action. A policy defines
what action an agent will take at a particular state. It represents the core of the
algorithm since it decides the behaviour of the agent. A policy can be straightfor-
ward, mapping a state to an action from a lookup-table, or it can require extensive
computation. In general, a policy is stochastic and returns a probability for each
available action.

The reward signal is the immediate feedback an agent receives after selecting an
action. It is a signal that may alter the policy to choose one action over another.
The reward received from an action is unknown to the agent but can be learned over
time by trial and error. The value function is the total accumulated reward, and it
is the overall goal for the algorithm to maximize this value function. The challenge
for the algorithm is to find a balance between choosing what is most beneficial now,
to what will yield the highest reward in the long run.
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3.3.1 Reinforcement learning as a finite Markov decision
process

AGENT

ENVIRONMENT

S t A t

S t+1

R t+1

R t

Reward ActionState

Figure 3.2: Interaction between agent and environment in a Markov decision process.

Formally, RL can be defined as a finite Markov decision process (MDP). MDP is a
formalization of sequential decision making, in which an action influences current
and future states. In the MDP framework, the system being controlled can be de-
scribed by three sets: a set of states S, a set of actions A and a set of numerical
rewards R ⊂ R. The finiteness of the MDP comes from the assumption that the
sets S,A and R have a finite number of elements.

The interactions between the agent and the environment, visualized in figure 3.2,
are carried out in discrete time steps t = 0, 1, 2, . . . , T . At each time step, the agent
reads the current state, St ∈ S, from the environment, which it uses to select its
next action At ∈ A(s). In the next time step, the agent receives a new state St+1
and a reward Rt+1 ∈ R based on the previous action. Repeating this process for
each time step creates a trajectory, τ , starting from an initial state S0:

τ = S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . (3.22)

The length of the trajectory depends on what type of task is being optimized. If the
task does not have a definite ending, it is called a continuing task. If the task has a
subset of states which terminates the algorithm, it is called episodic. For instance,
when an agent is playing a game that ends when a player wins or loses. A finite
trajectory is called an episode.

The states, actions and rewards are all random variables from the discrete prob-
ability distributions S,A and R respectively. The dynamics of the MDP can be
described by a probabilistic transition function, p:

p(s|s′, a) = Pr{St = s′|St−1 = s, At−1 = a} (3.23)
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for all s, s′ ∈ S and a ∈ A(s). The transition function p returns a probability of
ending up in state s given that action a was carried out in the previous state s′. The
reward received for carrying out action a in state s can be express as a function:
R(a, s) ∈ R

3.3.2 Optimal Policy Approximation
In the MDP framework, a policy, π, is defined as a function returning the probability
of selecting action a given the state s:

π(At = a|St = s) (3.24)
Since the policy is probabilistic, the trajectory τ of length T created by a policy is
a random variable defined as:

π(τ) = π(s0, a0, . . . , sT , aT ) = p(s0)
T∏
t=1

π(at, st)p(st+1|st, at) (3.25)

As mentioned previously, the overall goal is for the agent to accumulate as much
reward as possible. To achieve this, the agent will need to learn a policy that on av-
erage generates the trajectories with the greatest reward. In the context of artificial
neural networks, learning a function means parameterizing it using the connection
weights of the network. Thus, the agent will learn a parameterized policy, πθ, where
θ represents the network weights.

Let r(τ) be the total accumulated reward given a trajectory τ . The cost function
for a policy parameterized by θ is given by

J(θ) = Eτ∼πθ [r(τ)] =
∫
πθ(τ)r(τ)dτ (3.26)

The gradient of the cost function is thus given by

∇θJ(θ) =
∫
∇θπθ(τ)r(τ)dτ

=
∫
πθ(τ)∇θ log πθ(τ)r(τ)dτ

= Eτ∼πθ [∇θ log πθ(τ)r(τ)]

(3.27)

Since the gradient of the cost function is an expected value, it can be approximated
using random sampling:

∇θJ(θ) ≈ 1
N

N∑
i=1

( T∑
t=1

log πθ(si,t, ai,t)
)( T∑

t=1
r(si,t, ai,t)

)
(3.28)

With the weights of the network being updated with learning rate α:
θ ← θ + α∇θJ(θ) (3.29)

This concludes the chapter about the optimization methods used by the evalu-
ated models. Next, we introduce how these optimization methods can be combined
with the neural network architectures from Chapter 2 to generate novel and useful
molecules.
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4
State-of-the-art Models for de

novo Drug Discovery

In this section, we take a closer look at the five state-of-the-art generative models
that we compare in this work. The models are based on combinations of the deep
learning architectures and optimization algorithms described in Chapters 2 and 3.
Together they represent a range of techniques that are considered to be of particular
interest in the field of de novo drug design.

Although the models differ, they share the same core function: they generate
molecules. By training their deep learning architectures on large amounts of molecules,
the models learn an internal representation of the chemical space. This internal rep-
resentation can in turn be traversed to find new, previously unseen molecules.

Although a model can find novel molecules, the challenge lies in generating some-
thing useful and realistic from a biochemical perspective. To this end, different
optimization strategies can be used. A model must not only create molecules but
also have the capability of changing the generation strategy based on outside feed-
back. In our project, this feedback comes from objective functions that score the
molecules based on their structural and chemical properties. A model with a rich
understanding of the chemical space will know how to alter the generation to max-
imize the objective function. It is this generative capability that the models will be
evaluated on in our experiments.

4.1 Bayesian and Molecular Swarm Optimization

In their 2017 paper [18], Bombarelli et al. developed a variational autoencoder
(VAE) trained to represent SMILES strings as distributions in a continuous latent
space. This is made possible by training an encoder to encode the SMILES into
multinomial distributions. Each SMILES string is encoded into two vectors, one
where the elements represent a mean and another where the elements represent a
standard deviation. The distributions are rewarded for having a shape similar to the
standard normal distribution (with mean 0 and standard deviation 1). As a result,
the encoded SMILES are forced together, creating overlaps between molecules in the
latent space, illustrated in figure 4.1. This makes it possible to interpolate between
molecules, which opens up the possibility of finding novel molecular structures.
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b)

ENCODER DECODER

SMILES SMILES
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Figure 4.1: A variational autoencoder (VAE) trained to encode SMILES string as
multinomial distributions. The encoded distributions are rewarded for having a mean of
0 with a standard deviation of 1. As a result, the distributions overlap as seen in a).
Above the latent space is a landscape, b), representing the connection between the latent
space and the value of a score function that scores molecules generated from this latent
position. By traversing the latent space, the score is either increased or decreased. This is
of interest when applying optimization algorithms to maximize the score of the generated
molecules.

The variational autoencoder (Section 2.3) creates a latent space, possible to traverse
in order to interpolate between and find novel molecules. By introducing an objective
function that scores the generated molecules based on chemical properties, further
meaning to the space can be added. In a sense, a score adds an additional dimension
to the latent space, where moving in any direction results in an increase or decrease
of the score. This opens up for the use of optimization algorithms to traverse
the latent space in order to maximize the score. An illustration of the landscape
that an objective function provides can be seen in figure 4.1. In the following
subsections, we present two optimization algorithms that use different strategies to
traverse the latent space to generate molecules that maximize a given score function.
The algorithms are run on the latent space of a VAE architecture called Continuous
and Data-Driven Descriptors (CDDD) [39], developed by a research group at Bayer
pharmaceuticals.

4.1.1 Bayesian Optimization
With a latent representation of the chemical space, Bayesian Optimization (Section
3.1) can be applied to find new and useful molecules. Given a score function which
returns how well a molecule fulfils a specific property, the latent space is sampled to
find the highest scoring molecules. In this context, Bayesian Optimization is used
to estimate the true objective function of the score over the latent space by repeated
sampling. An acquisition function is used to guide the sampling to regions of the
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latent space where it is most probable to find high scoring molecules.

In general, the latent space will have some regions that are considered holes, where
the points do not decode into valid SMILES strings. To avoid sampling from these
areas, a nudging function is used to guide the sampling into valid regions. Although
this method requires no retraining of neural networks, it has been shown that the
run-time increases exponentially as the dimensions of the latent space grow [40].

4.1.2 Molecule Swarm Optimization
Another optimization method on the latent space of CDDD created by Winter et al.
makes use of particle swarm optimization (Section 3.2) to traverse the latent space
in pursuit of high scoring molecules. The algorithm is illustrated and explained in
figure 4.2.

Figure 4.2: Three iterations of the Molecule swarm optimization algorithm on the
latent space. The white circles, or particles, represent positions in the latent space that
are decoded to SMILES strings. The landscape they are on represents the score of a
decoded molecule from that latent position. In the first iteration, a), the molecules are in
their starting position, randomly spread out throughout the latent space. In a subsequent
iteration, b), the particles move in their own current direction (exploration) while being
influenced to move toward the best molecule (exploitation) found by the swarm so far. By
the end of the optimization, c), the particles have converged in the vicinity of an optimum.

In addition to the typical hyperparameters for PSO algorithms (inertia weight, ϕ1
and ϕ2), MSO make use of an additional acceleration coefficient, ϕ3. While a par-
ticle’s exploratory and exploitative inclinations are scaled by ϕ1 and ϕ2, this new
scalar is used to manage a particles tendency to drift towards positions that have
been the swarm’s best at previous iterations, but not necessarily the current one.
This behaviour is implemented by randomly selecting a point from the swarm’s his-
torically best particles and multiplying it with a uniformly random value r3 ∈ [0, 1]
and ϕ3. This term is thereafter included in the update step of a particle, as shown
in equation 4.1.

vk+1
i ← wvki + ϕ1r1(xbesti − xki ) + ϕ2r2(xbestswarm − xki ) + ϕ3r3(xhistswarm − xki )︸ ︷︷ ︸

MSO component

(4.1)

Where xhistswarm denotes a randomly selected point from the swarm’s previously best
positions.
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4.2 REINVENT
REINVENT [41] is a generative model developed at AstraZeneca in Mölndal, Swe-
den, which consists of two separate RNN components with the same architecture
but different policies in its generative process. The first component is referred to
as the prior and is trained on SMILES strings to acquire general knowledge about
the chemical space. The second component, the agent, is based on the prior but
is trained using reinforcement learning (RL) to "focus" on some area of interest in
the chemical space. REINVENT aims to generate not only high scoring compounds
according to some objective function, but also to generate compounds with high
diversity. To this end, policy-based RL is employed to guide the agent towards
areas of high scoring molecules, exploit these areas, and then move on to other
promising regions. The following sections will provide an overview of the prior and
agent network architectures as well as present the underlying principles of the RL
algorithm.

4.2.1 Prior Network
The prior network is an RNN where, during training, a probability distribution
is created over the set of possible SMILES characters. The distribution depends
on the previously sampled tokens, and the objective is to maximize the likelihood
estimation linked to the next, correct, token as described in Section 2.2. A cen-
tral component in the training of the prior is the randomization of the SMILES
strings in the training dataset. Before each epoch, the order of the atoms in the
SMILES strings is shuffled randomly. The order of which the atoms are written in
the SMILES string makes no difference to the molecular graph it represents. This
means that the network is trained on different string representations of the training
molecules every epoch. Learning multiple representations of molecules is known to
give a generative model deeper knowledge about molecular syntax [42].

When the network has completed its training, it can be sampled for new molecules.
This procedure is carried out as a partially observable Markov decision process
(POMDP), a generalisation of an MDP. The procedure is episodic, and we define
A = a1a2...aT as the sequence of actions resulting in the sampled SMILES. An
action corresponds to a one-hot encoding being sampled from the vocabulary, and
the probability of A being generated is defined as P (A) = ∏T

t=1 π(at|st) where π is
the policy. The sampling process is illustrated in figure 4.3.

4.2.2 Agent Network
Starting from the policy learned by the prior, the objective of the agent is to refine
this policy such that it becomes biased towards some specific objective. We define
this objective as an arbitrary function Score(A) ∈ [0, 1] that takes a SMILES as
input and returns a scalar. The Score function can be a single objective function or
a composition of multiple objectives.
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Figure 4.3: Generation of a new molecule. On the y-axis, we see the vocabulary and the
conditional probability to sample each character at every generative step. On the x-axis,
the sampled character at every step is shown. The graph of the generated molecules is
displayed to the right.

The idea is to produce a probability distribution that makes use of the prior’s general
knowledge of the chemical space while also maximizing the expected output given
the Score function. To this end, an augmented likelihood is defined as:

logP (S)Aug = logP (S)Prior + σ ∗ Score(S) (4.2)

where σ is a scalar coefficient making sure that the log probabilities and the score
are of similar magnitude. Using policy based RL, the agent tries to minimise the
loss defined as:

loss = [logP (S)Aug − logP (S)Agent]2 (4.3)

To encourage the agent to generate molecules of high diversity, a diversity filter
(DF) is introduced. The DF keeps track of the scaffolds present in molecules with
an objective score above a predefined threshold. When enough such molecules have
been generated, the RL algorithm will start penalising further exploitation of the
area and thus force the agent to find promising compounds elsewhere.

4.3 GENTRL
Generative Tensorial Reinforcement Learning (GENTRL) [19] is a machine learning
strategy developed at Insilico Medicine, Hong Kong. GENTRL was presented in
the context of a scenario in which the full de novo drug design pipeline is taken
into account with the ultimate goal of finding molecules that are proved to be ac-
tive towards a specific target. This process included extensive preprocessing of
data, generating novel molecules using GENTRL, filtering of the output and actual
synthesizing of a small number of selected candidate compounds. The published
experiment highlighted how the usage of generative models could be optimized by
taking the whole drug design process into account by prioritizing synthesizability
and activeness towards a predefined target. In this paper, GENTRL will be ana-
lyzed as a generative model in a more limited scope, where not as much emphasis
is put on the full pipeline. The following sections will provide an overview of the
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key aspects of the generative tool, consisting of an autoencoder and reinforcement
learning.

4.3.1 Chemical Space Representation
GENTRL use a variational autoencoder (VAE) (Section 2.3) to model the chemical
space. In the experiment reported by Zhavoronkov et al. the VAE was trained on
three separate datasets. The first dataset was used to provide general knowledge
of the chemical space while the two other sets aimed to bias the distribution given
the specific objective. The VAE accepts input in the form of SMILES strings but
also allow the user to provide a selection of values corresponding to some chemical
properties. As a result, the VAE can learn a mapping that takes both chemical struc-
tures and associated properties into account. To encode the relationship between a
molecular conformation and its properties a technique called tensor decomposition
[43][44] was applied.

4.3.2 Generation Strategy
In order to further exploit an already objective focused chemical space, reinforcement
learning is applied. The decoder component of the VAE is trained to update its
distribution according to a user-defined objective function. When the training using
the reinforce algorithm is completed, the decoder can be sampled for high scoring
compounds.

4.4 LatentGAN

LatentGAN [45] was developed at AstraZeneca and utilizes a heteroencoder along-
side a GAN, consisting of a generator and discriminator component. The idea is
to teach the discriminator a distribution corresponding to an area of the chemi-
cal space that contains desirable compounds, according to some objective function.
The generator tries to learn the same distribution such that its generated compounds
are considered "true" by the discriminator. When the generator is able to produce
data satisfactory to the discriminator, it can be sampled for novel compounds. The
following sections aim to provide an overview of the relevant components and prin-
ciples of LatentGAN. We give a brief description of the heteroencoder, followed by
an explanation of the workflow and dynamics of the GAN.

4.4.1 Heteroencoder
A heteroencoder is a generalized autoencoder in the sense that it allows translation
between different representations of the same entity. In contrast, an autoencoder
promotes the recreation of the original representation of an object. In the case of
LatentGAN [45], the heteroencoder is trained on pairs of SMILES strings represent-
ing the same molecular compound. The encoder translates the SMILES into a latent
vector representation whereas the decoder tries to reconstruct it as a non-canonical
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SMILES of the same molecule. The implementation is a modified version of an
architecture reported by Bjerrum and Sattorov [42].

4.4.2 GAN workflow
Using the encoder component of the heteroencoder, data from a training set is trans-
lated to latent vectors h which in turn are fed to the discriminator as the true data.
The generator is provided with uniformly randomized latent vectors as input and
attempts to output vectors h′ similar to h. When the generator has learned the
distribution defined by the discriminator, it can be sampled for new, latent, vectors.
Using the decoder component of the heteroencoder, these vectors are in turn trans-
lated into SMILES.

In order to generate optimal molecules according to some specific objective, the
distribution of the discriminator can be focused on any area of the chemical space.
By feeding it data from a specialized dataset, containing compounds with some
desired properties, its scope can be narrowed down to the sub-space in question. As
a result, the generator is forced to learn this more objective-oriented distribution,
and upon completion may be sampled for high scoring molecules.
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5
Evaluation Methods

To evaluate the generative capability of the models and their ability to optimize, we
carry out two experiments. The first experiment, described in Section 5.1, involves
evaluating the models using a benchmarking tool called GuacaMol [46]. GuacaMol
provides a set of optimization tasks where generated molecules are scored using
different multi-objective functions for chemical properties. The second experiment
evaluates the models’ ability to generate molecules that are likely to bind to a specific
biological target while avoiding undesired substructure patterns. More details are
provided in Section 5.2. All code used for the experiments is available on GitHub1.

5.1 GuacaMol Benchmarking Framework
GuacaMol is an evaluation framework for generative de novo design models. It
consists of a set of single- and multi-property benchmarks that maps a molecular
structure to a real-valued score between 0 and 1. The score reflects how well a
generated molecule fits a chemical property profile, which is a set of desired molec-
ular features such as structural features, physiochemical properties, similarity to a
target molecule or presence of substructures, functional groups or atoms types. A
benchmark consists of one or more scoring functions that define such features, and
the objective of a model is to maximize the score of the generated molecules. Out
of the 27 benchmarks included in the experiment, seven are considered trivial, while
the others are considered non-trivial. The trivial benchmarks were deemed too easy
by the authors of GuacaMol since the training dataset already contained molecules
that solved the tasks almost perfectly. We still included them in this experiment as
a means to expose poorly performing models.

Using GuacaMol as a tool to evaluate the models has multiple advantages. By using
a standardized and publicly available framework, we allow future research to use our
results as baselines. Furthermore, the large number of varying benchmarks enables
a fair and comprehensive evaluation of the models, and since the framework was
released along with a peer-reviewed paper, we can also be confident that the results
we present will be relevant from a drug design perspective.

In the following sections, we provide details regarding the framework. In Section
5.1.1, we describe the various scoring functions that are used in the benchmark
objectives. The benchmarks are introduced in Section 5.1.2 and how they are inte-

1https://github.com/sebastiandro/de-novo-evaluation
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grated in the experiments can be read in Section 5.1.3. In Section 5.1.4 we briefly
introduce the concept of measuring the quality of generated molecules.

5.1.1 Scoring Functions
Here we present the scoring functions that are used in combinations to define the
GuacaMol benchmarks. Where applicable we also include a brief explanation to
why particular functions might be of interest in the context of drug design.

Similarity: Compound similarity is one of the core concepts of chemoinformatics
because of its usage in virtual screening [47]; the process of finding structures that
bind to a particular target. Given a molecule that is known to interact with a target,
odds are that if we find a similar molecule, this will also bind. The function sim
accepts a target and a query molecule and returns a value between 0 (query not
similar to target) and 1 (query similar to target).

Isomers: Isomers are molecules that share the same chemical formula, but that
differ in structure (structural isomers) or spatial orientation (stereoisomers). The
scoring function isomer accepts a SMILES string corresponding to a chemical for-
mula and a query molecule. The function returns a score of 1 if the query has the
same chemical formula as the target, but penalizes deviations.

TPSA: TPSA, or topological polar surface area, is a measurement of a compound’s
ability to penetrate the membrane of a cell [48]. It is, therefore, a suitable met-
ric when predicting a drug’s transportability, that is; how well it disperses in the
body [49]. The function TPSA returns a positive real-numbered value for any query
molecule.

logP: logP is a measurement that indicates a compounds dissolvability in water
versus lipids (fats, oils, etc.) [50]. It is therefore often used when predicting the
transportability of molecules. The function logP accepts a query molecule and re-
turns a real-numbered value. A negative value indicates that the compound is more
likely to dissolve in water while a positive value indicates higher dissolvability in
lipids.

Number of fluorine atoms: The function number of fluorine atoms returns
a positive integer indicating the number of fluorine (’F’) atoms present in a query
molecule. Adding fluorine to a drug candidate can potentially enhance crucial prop-
erties and decrease the probability of failure in the design process [51].

Number of aromatic rings: The number of aromatic rings in a molecule can be
of particular interest in drug design. Aromatic rings are well-documented and often
easy to synthesize and therefore, a potential means to reduce attrition rates in drug
development. However, too many rings can have the opposite effect and instead
decrease the developability of a drug [52]. The function number aromatic rings
returns a positive integer corresponding to the number of aromatic rings in a query
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molecule.

Number of rings: The number of rings, in general, is also an important aspect of
drug design. Approximately 74% of all drugs include one or two rings fragments.
The function number rings returns an integer according to the number of rings
present in a query molecule.

SMARTS: The SMARTS function is used to locate a specific substructure pattern
in a query molecule. It can be used to reward such structures or to penalize them.
In the former case, the presence of a target substructure is rewarded the score of
1 while its absence returns a 0. The opposite holds for the case where we want to
avoid the specific pattern. The function accepts a SMARTS string (see Section 1.3)
that denotes the substructure, a boolean to signal if the substructure is desired or
not and a query molecule.

Bertz: Bertz is a topological index that quantifies the complexity of molecules [53].
The function Bertz accepts a query molecule and returns a real numbered value
where high values indicate complex molecules.

Number of hydrogen bond donors: When evaluating a compounds ability to
interact with a target, hydrogen bonds are of particular interest [54]. A hydro-
gen bond consists of a donor, an acceptor and a hydrogen atom. The function num
hydrogen bond donors returns the number of hydrogen bond donors given a query.

Molecular weight: Molecular weight can have an impact on a drug’s oral bioactiv-
ity and is preferably kept below 500 [55]. The function molecular weight returns
the weight of a molecule.

QED: Quantitative estimation of drug-likeness, or QED, is a common metric used
in drug design. The QED value of a molecule is a mean of various desirability func-
tions, based on molecular properties such as logP, molecular weight and number of
aromatic rings [56]. The QED function accepts a query molecule as input and returns
a value in the range 0 to 1, depending on the molecule’s drug-likeness

Number rotatable bonds: The number of rotatable of bonds in a molecular
compound has been shown to influence the oral bioactivity of drugs [57]. The more
rotatable bonds, the less bioactivity. The function number of rotatable bonds
accepts a query molecule and returns the number of rotatable bonds in it.

5.1.2 Benchmarks
Here we introduce the benchmarks that are used to evaluate the models. In table
5.1 we include the 20 non-trivial benchmarks while the 7 trivial benchmarks are
found in table 5.2.

A benchmark consists of a selection of scoring functions. These scoring functions
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may be subject to a scoring modifier (see Modifier column) that, for example, nor-
malises the score to a value in the range 0 to 1. There are four different types of
modifiers which we introduce in appendix A.2. Furthermore, for the multi-function
benchmarks, the score is calculated as either a geometric or an arithmetic mean, as
indicated in the Mean column. The final output for a benchmark is a weighted av-
erage of the top scoring molecules in certain ranges. For example, most benchmarks
are calculated using the top-1, top-10 and top-100 molecules. The average score for
every range is summed and the final output is the mean of that sum, as defined in
equation 5.1.

S = 1
3

(
s1 + 1

10

10∑
i=1

si + 1
100

100∑
i=1

si

)
(5.1)

Here, the score si denotes the generated molecule scores sorted in decreasing order,
si ≥ sj for i < j.

5.1.3 Integration

The benchmarks are employed in two phases; optimization and evaluation. In the
optimization phase, a benchmark is used as a scoring function that guides the gener-
ation process of a model. A benchmarking function accepts a single SMILES string
as input and returns a value between 0 and 1 that is fed back to the model, which
in turn tries to find a better molecule in the next iteration. Here we stress that
we are only concerned with scoring one molecule in isolation, and not calculating a
weighted score based on multiple molecules.

In the evaluation phase the models are evaluated based on their highest scoring
molecules from the optimization. Which of the best molecules the final score on a
benchmark is based on is indicated in the Scoring column of tables 5.1 and 5.2. The
score on a benchmark is a value in the range 0 to 1, thus a model can as best receive
a score of 27 in total for this experiment.

5.1.4 Quality Measures

Although a model scores high on a benchmark function, the generated molecules
may be unstable, hard to synthesize or simply unpleasant for a medicinal chemist to
look at. If a model is used in a drug discovery pipeline, it is vital that the molecules
that it generates hold a certain level of quality. To assess the quality of the molecules
generated for the 27 benchmarks, we employ a number of quality filters [58], included
in the GuacaMol benchmarking suite. The filters look for structural patterns in the
molecules that are deemed as undesired from a medical chemistry standpoint. The
top 100 scoring molecules from each benchmark are run through the filters, and the
proportion of molecules that pass the filters is compared between models.
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Benchmark name Scoring Mean Scoring functions Modifier
Celecoxib rediscovery top-1 sim(celecoxib)
Troglitazone rediscovery top-1 sim(troglitazone)
Thiothixene rediscovery top-1 sim(thiothixene)
Aripiprazole similarity top-1/10/100 sim(aripiprazole) Thresh(0.75)
Albuterol similarity top-1/10/100 sim(albuterol) Thresh(0.75)
Mestranol similarity top-1/10/100 sim(mestranol) Thresh(0.75)
C11H24 top-159 isomer(C11H24)
C9H10N2O2PF2Cl top-250 isomer(C9H10N2O2PF2Cl)
Median molecules 1 top-1/10/100 geom sim(camphor)

sim(menthol)
Median molecules 2 top-1/10/100 geom sim(tadalafi)

sim(sildenafi)
Osimertinib MPO top-1/10/100 geom sim(osimertinib)

sim(osimertinib)
TPSA
logP

Thresh(0.8)
MinGauss(0.85, 2)
MaxGauss(100, 2)
MinGauss(1, 2)

Fexofenadine MPO top-1/10/100 geom sim(fexofenadine)
TPSA
logP

Thresh(0.8)
MaxGauss(90, 2)
MinGauss(4, 2)

Ranolazine MPO top-1/10/100 geom sim(ranolazine)
logP
TPSA
number fluorine atoms

Thresh(0.7)
MaxGauss(7, 1)
MaxGauss(95, 20)
Gauss(1, 1)

Perindopril MPO top-1/10/100 geom sim(perindopril)
number aromatic rings Gauss(2, 0.5)

Amlodipine MPO top-1/10/100 geom sim(amlodipine)
number rings Gauss(3, 0.5)

Sitagliptin MPO top-1/10/100 geom sim(sitagliptin)
logP
TPSA
isomer(C16H15F6N5O)

Gauss(0, 0.1)
Gauss(2.0165, 0.2)
Gauss(77.04, 5)

Zaleplon MPO top-1/10/100 geom sim(zaleplon)
isomer(C19H17N3O2)

Valsartan SMARTS top-1/10/100 geom SMARTS(s2, true)
logP
TPSA
Bertz

Gauss(2.0165, 0.2)
Gauss(77.04, 5)
Gauss(896.38, 30)

Scaffold Hop top-1/10/100 arithm SMARTS(s2, true)
SMARTS(s3, false)
SMARTS(s4, false)
sim(s5) Thresh(0.85)

Deco Hop top-1/10/100 arithm SMARTS(s2, false)
SMARTS(s6, true)
sim(s5) Thresh(0.75)

Table 5.1: GuacaMol non-trivial benchmarks specification. SMARTS and SMILES
strings abbreviated as sx are specified in appendix A.1. This table was adopted from the
GuacaMol paper [46].

Benchmark name Scoring Mean Scoring functions Modifier
logP(target: -1.0) top-1/10/100 logP Gauss(-1, 2)
logP(target: 8.0) top-1/10/100 logP Gauss(8, 2)
TPSA(target: 150.0) top-1/10/100 TPSA Gauss(150, 2)
CNS MPO top-1/10/100 arithm TPSA

TPSA
num hydrogen bond donors
logP
molecular weight

MinGauss(90, 2)
MaxGaus(40, 2)
MinGauss(0, 2)
MinGauss(5, 2)
MinGauss(360, 2)

QED top-1/10/100 QED
C7H8N2O2 top-159 isomer(C11H24)
Pioglitazone MPO top-100 geom sim(pioglitazone)

molecular weight
number rotatable bonds

Gauss(0, 0.1)
Gauss(356.447, 10)
Gauss(2, 0.5)

Table 5.2: GuacaMol trivial benchmarks specification. This table was adopted from the
GuacaMol paper [46].
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5.2 Activity Towards Dopamine Receptor D2
While GuacaMol evaluates the models’ generative capabilities on a range of chemical
optimization tasks, the framework does not provide any benchmark that includes
generating compounds predicted to interact with a biological target. In the devel-
opment of a new drug, a generative model is used to find novel molecular structures
that bind to a specific target in the body. To assess how well the models perform in
a more industry-like scenario, they are evaluated on the task of generating molecules
which bind to the Dopamine Receptor D2 (DRD2).

Receptors are proteins, often found in the cell membrane, that transfers signals be-
tween a cell’s outside environment, and its core. The signals are, usually, chemical
messengers in the form of ligands that bind to the receptor, which in turn activates
a response from the cell. As suggested by the name, the DRD2 dopamine receptor
binds to the neurotransmitter dopamine. The receptor is involved in several neu-
rological processes, including motivation, pleasure, cognition and memory, amongst
others [59]. Problems with the dopamine receptor signalling can cause a number of
disorders, which makes it a common target for neurological drugs.

In the following sections, we give an overview of the experiment involving DRD2.
In Section 5.2.1, we define a multi-property function that will be used to guide the
models in their generation. The experiment is arranged into three sub-experiments
where the models try to include certain scaffolds in the generated compounds. These
scaffolds are introduced in Section 5.2.2. The chapter is concluded with Section
5.2.3, where we describe the parameters that will be analyzed when evaluating and
comparing the models.

5.2.1 Scoring Function
Finding a molecule that binds to a target is usually not enough when developing a
new drug. The compound needs to have certain properties which make it suitable
as a drug. In addition to not being toxic or too reactive, it should also be possible
to synthesize it. For this purpose, a set of constraints on the molecular structure
is added. The molecule needs to have drug-like properties, while also containing
substructures that are interesting for a medicinal chemist. As a result, the task can
be described as the maximization of a multi-objective scoring function:

f(m, s,U) = CA(m,U)×MS(m, s)
(
QED(m) +Binding(m)

2

)
(5.2)

comprised by four objectives:

• CA(m,U) ∈ {0, 1}. Custom Alerts, returns 0 if the molecule contains one of
the undesired substructures in U and 1 otherwise.

• MS(m, s) ∈ {0.5, 1}. Matching Substructure, returns 1 if the molecule contains
the substructure s and 0.5 otherwise.
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• QED(m) ∈ (0, 1). Measure of drug-likeness [56], returns a scalar between 0
and 1.

• Binding(m) ∈ {0, 1}. A scikit-learn Random Forest classifier [60] trained on
data from molecules synthesized in a lab that were measured for DRD2 bioac-
tivity. [61]. Returns the probability, a number between 0 and 1, that this
molecule bind to DRD2.

The function rewards molecules that bind toward DRD2 while having a drug-like
structure. Custom alerts can be thought of as a hard penalization since any oc-
currence of unwanted substructures returns in a score of 0. This could steer the
optimization algorithms away from the regions of undesirable structures. Matching
substructures is a softer penalty by allowing the optimization to sample molecules
which do not contain the target substructure. This opens up for exploration and
could guide the algorithms to intermediate steps before finding both substructure,
drug-likeness and binding.

5.2.2 Scaffolds

The DRD2 experiment is performed in three sub-experiments where three different
scaffolds will act as targets in the MS(m, s) function. A scaffold is a core structure
of a small molecule. In the context of drug design, scaffolds can be of particular
interest if they possess some documented, desirable, properties [62]. The scaffolds
for these experiments were selected by a senior chemist at AstraZeneca and have
been selected such that they all have varying frequencies in the training dataset.
That way, we can study the models’ generative capability under different levels of
difficulty by providing them with varying amount of exposure to the requested scaf-
folds. In table 5.3 we give the SMARTS representations of the scaffolds along with
their frequency in the training dataset. In figure 5.1 we include a visualization of
the scaffolds.

SMARTS Frequency Graph

Scaffold 1 c1ccc(cc1)C2CCNCC2 0.00768e−3 see Figure 5.1a

Scaffold 2 [c,n]1[c,n][c,n]c([c,n][c,n]1)[C,N]2CCNCC2 0.03532e−2 see Figure 5.1b

Scaffold 3 c1ccc(cc1)N2CCC3C2CNC3 1.64252e−5 see Figure 5.1c

Table 5.3: DRD2 experiment scaffolds

As can be seen in the Frequency column the second scaffold is a more general and
flexible target structure than the other two, while the third scaffold should be the
most difficult for the models to find, due to their minimal exposure to it during
training.
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(a) scaffold 1 (b) scaffold 2 (c) scaffold 3

Figure 5.1: DRD2 experiment scaffolds

5.2.3 Evaluation
To evaluate the models, we analyze and compare the distribution of the generated
molecules for each sub-experiment. By looking at the distributions, we get insight
into how well the models manage to find and exploit areas of high scoring com-
pounds. Additionally, we take a closer look at the top-scoring molecules for each
model. This can be of particular interest in cases where a model has a distribution
centred around a relatively low value but still manages to find a small set of high
scoring compounds. To further enrich the analysis, we also provide a breakdown of
the generated molecules’ scores in terms of the multi-objective function’s separate
components. This way, an in-depth analysis can be made for the models to draw
conclusions regarding their performance. For example, if a model is performing
poorly compared to the others, a breakdown of the scores can be useful to see if
the problem is a general one or if the model is struggling with any of the scoring
functions in particular.
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In this chapter, we describe how the experiments are carried out in practice to ensure
a qualitative and fair evaluation of the models. The chapter is split into four sections
that each describes a part of the procedure. Section 6.1 describes the different
datasets that were used in this work. In Section 6.2 we give a brief description
of our approach to hyperparameter tuning. The execution of the experiments is
presented, model by model, in Section 6.3. The chapter is concluded with Section
6.4 where we give describe how the stochasticity of the models is handled to ensure
verifiable results.

6.1 Datasets
In order to make a fair comparison between the five models, they need to have
access to the same prior knowledge. That is; they should be trained on the same
data. This is to ensure that no model gets an unfair advantage, for example, by
training it on data containing the molecules to be found in the different similarity
tasks. With this in mind, we retrained the models on two separate datasets, one in
preparation for the GuacaMol benchmarks, and one for the DRD2 experiments. In
the two following sections, we describe in detail the nature of the datasets and how
they have been preprocessed to fit the design of the experiments.

6.1.1 GuacaMol Training Dataset
The authors of GuacaMol provide users with a prepared dataset [63] to use for
retraining of any model that will be benchmarked. The dataset is a filtered version
of the ChEMBL dataset [64], a dataset containing 2 million bioactive compounds
that have already been synthesized, making it suitable in this particular context.
The final dataset provided by the authors of GuacaMol is derived from the 24:th
release of ChEMBL and has been post-processed in the following five steps:

• Removal of salts: Whether or not a molecule will form a salt in a solution can
be inferred from its SMILES string. Hence it is not something necessary for
the model to learn to generate.

• Charge neutralization: Some molecules may be charged positively or negatively
in the dataset. As with the salts, charge can be added later on and is not
interesting to generate. The charged molecules are run through software that
neutralizes charges.
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• Removal of molecules containing atoms other than H, B, C, N, O, F, Si, P, S,
Cl, Se, Br and I: This is done to limit the vocabulary of the models to atoms
relevant to the benchmarking suite.

• Removal of molecules that are too similar to the similarity and rediscovery
tests (Section 5.1.1): This makes sure that the models must create molecules
it has not seen before.

• Removal of molecules with SMILES string length over 100 characters: For the
functions in the benchmarking suite we are not interested in molecules with
more than 100 atoms.

6.1.2 GuacaMol Top-1000 Datasets
Using the scoring functions from the benchmarking tasks, the 1000 best molecules
for all objectives were found in the aforementioned dataset. These compounds were
extracted and put into 27 separate subsets, one for every benchmark. These subsets
were later used as the true data input for the discriminator in LatentGAN. We
also ran experiments with BO and MSO where we investigated the impact of a high
scoring prior and initiating swarms at high scoring molecules. The top-1000 datasets
were used in these cases.

6.1.3 DRD2 Inactives dataset
To facilitate fair comparisons of the models when assessed on the DRD2 experiments,
we created a filtered subset of ChEMBL where all molecules with a probability of be-
ing active of 0.5 or higher were removed. This was done to force the models to create
DRD2 active molecules through optimization rather than replicating molecules seen
in the training dataset. This dataset was used to retrain the models as well as pro-
viding MSO and BO with randomly selected molecules to initiate the optimization
runs.

6.2 Hyperparameter Search
Another important aspect of making a fair comparison is to assure that each model
performs as well as possible for each test. The results produced by a machine learn-
ing model depend heavily on what hyperparameters were used during training [65].
However, finding the near-optimal hyperparameters for each model and benchmark
requires a large number of runs. As this project is limited by time, a constrained
approach to hyperparameter optimization is used.

The constrained approach used is to start by running the benchmarks using the
default hyperparameters provided with the code for each model. The results are
then compared to the dataset max scores, which are used as a baseline. If the model
cannot generate molecules that score better than what its prior was trained on, the
hyperparameters are adjusted around the vicinity of the default values. If a manual
hyperparameter optimization also failed, the authors of the model were contacted to
get guidelines on how to improve the results. If the default hyperparameters lead to
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results that on average score higher than the dataset max, a hyperparameter search
is carried out with the aim to further improve the performance of the model by
varying the hyperparameters around the default values.

6.3 Experiment Execution
The following sections aim to give the reader an overview of the execution of the
experiments. Model by model, we provide a chronological account of how the models
were submitted to the various optimization tasks, evaluated and adjusted, in terms
of hyperparameters. Here we also provide the configurations and hyperparameters
that were used to generate the results reported in Chapter 7.

6.3.1 REINVENT
The neural network is trained using an adaptive learning rate, meaning that the
learning rate change according to the changes in the validation loss. Initially, the
learning rate will start relatively high and decrease as the validation loss plateaus.
When the learning rate is at a minimum, it will be kept there as long as the val-
idation loss decreases. If no change in the loss has been seen for a set number of
training batches, called patience, the learning rate starts to increase again until a
maximum learning rate is reached.

During reinforcement learning, the generated molecules that score above a certain
threshold will be stored in memory. The agent is penalized for generating molecules
that look too similar to the ones in memory. This ensures diversity amongst the
generated molecules. At the end of the training, the 10,000 highest scoring molecules
in memory are returned as the model’s output.

To train the prior, we are using the default hyperparameters (table 6.1) found in
the code repository. Due to time restrictions, we will assume that this architecture
is sufficient for the experiments.

hyperparameter value
num_epochs 5
batch_size 128
randomize true

Table 6.1: Default configurations for training REINVENT

For the hyperparameters used during reinforcement learning, we also chose the de-
fault settings available in the code. Batch sizes of 128, 256 and 512 were evaluated
without any significant change in performance. The number of steps was evaluated
at 200, 500, 1000, 1500 and 2000 steps. The increase of performance reaches a max
around 1000 steps, with small or no improvement for a larger number of steps. The
final hyperparameters used during reinforcement learning for all steps are listed in
table 6.2.
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hyperparameter value
num_steps 1000

sigma 128
learning_rate 0.0001

batch_size 256
memory_size 10000

Table 6.2: Hyperparameters for reinforcement learning in REINVENT

6.3.2 LatentGAN
The LatentGAN model uses an autoencoder architecture from the Deep Drug De-
coder framework [66] as a base for its generator and discriminator. The autoencoder
is trained using a decaying learning rate, meaning that the learning rate is reduced
by a factor of 2 after no decrease in the loss has been seen for a set number of
batches. The reduction is repeated until a minimum learning rate is reached.

In the deep drug decoder code repository1, there is an autoencoder trained on an-
other version of the ChEMBL dataset. We used the same architecture when training
the two priors used for our experiments.

The LatentGAN differs from the other models in that it has no element of learning
from feedback. Instead, it uses what it has learned about the chemical space to
generate molecules that have a certain structure. To guide the generation, the
LatentGAN is shown top scoring molecules for each GuacaMol score function and
also the known actives of DRD2. The generator and discriminator networks in the
LatentGAN architecture are then trained using this dataset of top-scoring molecules.
The idea is for the GAN to learn to generate molecules that look similar to the top
scoring ones. The hyperparameters that have shown to produce the best results are
listed in table (6.3).

hyperparameter value
num_epochs 10000

learning_rate 0.001
n_critics 8

Table 6.3: Final configurations for training the LatentGAN

6.3.3 GENTRL
Unlike the other models, the GENTRL neural network architecture is trained on
both the SMILES string representation and a set of chemical properties for the
molecules in the training dataset. We used two approaches to augment the training
dataset with additional chemical properties. The first approach is to add general
chemical knowledge by adding eight physicochemical properties to each molecule
(see appendix B.2). The second approach is to add the score from an objective

1https://github.com/pcko1/Deep-Drug-Coder
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function as the only additional property. For instance, if the model were to optimize
the celecoxib similarity benchmark function from GuacaMol, that similarity score
would be added to each of the molecules in the dataset. As a result, the network is
retrained on SMILES and their corresponding score, before running reinforcement
learning to maximize the score functions from GuacaMol or DRD2.

As mentioned previously, the strategy for hyperparameter tuning included running
the experiments with the default hyperparameters as a starting point. GENTRL
showed poor performance in the GuacaMol benchmark when optimizing using the
default hyperparameters. In this context, performance is assessed by the model’s
ability to generate molecules that surpass the score of the molecules in the training
dataset.

To improve performance, the hyperparameters used during training were varied,
and the network architecture modified. The latent size was increased from 50 to
100 and 128. The number of epochs was increased, and the batch size used was
varied between 128, 256 and 512. The number of neurons per layer in the RNN used
in the encoder was changed from 256 to 512, and the number of layers increased
from 2 to 4. We implemented a decaying learning rate in addition to using fixed
learning rates of 1e-3, 1e-4 and 1e-5. The changes to the architecture showed no
improvement of the final scores; thus, the default architecture was used. In addition,
the authors of GENTRL were contacted in order to receive guidance on how to
improve performance. The authors recommended an increase in the number of
feature descriptors. The change had little to no effect on the final scores. The final
network architecture and training settings used for the variational autoencoder and
the learnable prior is presented in table 6.4.

hyperparameter value
latent_size 50
num_epochs 20

learning_rate 1e-4
batch_size 128

layer size RNN 256
latent descriptors 50
feature descriptors 8

Table 6.4: Hyperparameters for the variational autoencoder and learnable prior used
in GENTRL.

For reinforcement learning, the default number of steps was set to 100,000. This
would require days running for each objective function. The 100,000 steps were
evaluated on the celecoxib similarity benchmark in GuacaMol, which showed a small
improvement on the final score compared to running it for 2000 steps. However, it
was not large enough to validate using a number of steps of that magnitude for all
benchmarks. Batch sizes were varied between 128, 256 and 512 with no significant
difference in the final scores. Learning rate of the learnable prior achieved better
scores when it was set to 1e-4 and a decrease in performance when the values was set

43



6. Experimental Setup

below that. The final hyperparameters used for reinforcement learning are shown
in table 6.5.

hyperparameter range
num_steps 2000
batch_size 200

learning rate
learnable prior

1e-4

learning rate
decoder

1e-6

Table 6.5: Hyperparameter settings for optimizing GENTRL with reinforcement
learning

6.3.4 CDDD
The CDDD package, containing the VAE used to represent the chemical space used
in MSO and BO, provides the user with an interface for retraining the model. A
file containing all necessary configurations, such as hyperparameters and paths to
required files, is provided along with default values. When retraining, we used the
default settings with some exceptions. The selected non-default settings, listed in
table 6.6, were also used by Winter et al. when training the model for MSO.

argument value
input_sequence_key canonical_smiles

model NoisyGRUSeq2Seq
input_pipeline InputPipeline

infer_input canonical
emb_noise 0.05
cell_size [512, 1024, 2048]

input_dropout 0.15
emb_size 512

Table 6.6: Non-default configurations used for retraining CDDD VAE

6.3.5 Molecular Swarm Optimization
All experiments using MSO were executed using 40 swarms of 200 particles each, as
per the default settings. For the GuacaMol benchmarks, each swarm was initiated
at randomly selected molecules from the datasets described in Section 6.1.1. In the
DRD2 experiments, the swarms were initiated at randomly selected compounds from
the DRD2 inactives dataset presented in Section 6.1.3. During every optimization
run the 10,000 best molecules so far, aggregated from all 40 swarms, was tracked by
the optimizer. At the end of a run, these 10,000 molecules returned as the output
of the optimization.

As described in Section 3.2.1, there is a large variety of hyperparameter settings to
be found in the literature, when it comes to different applications of PSO algorithms.
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Not only are there variations in what fixed values to use for the various parameters,
but there are also versions of PSO that employs hyperparameters that vary over
time. For MSO, we decided to explore different usages of the latter approach. In
addition to the default, fixed, hyperparameters provided by the authors of MSO, we
implemented the possibility to let the inertia weight, w, ϕ1 and ϕ2 vary over time.
Thus, w could either be fixed or decrease linearly over time from 0.9 to 0.4 in order
to reduce momentum and promote exploitation in the later stages of a run. The
acceleration coefficients ϕ1 and ϕ2 could either be set to a fixed value or vary over
time. If the latter was selected, ϕ1 was linearly decreased from 2.0 to a minimum
of 0.5 throughout the optimization run while ϕ2 increased linearly from 0.5 to a
maximum of 2.0. ϕ3 were fixed in all scenarios. The hyperparameters were tested
in various combinations of settings, as presented in table 6.7, where the first setting
contains the default values. The number of particles was set to 200 for all runs.

MSO Hyperparameters
w ϕ1 ϕ2 ϕ3

Setting 1 0.9 2.0 2.0 2.0
Setting 2 0.9 2.5 2.5 2.5
Setting 3 lin(0.9, 0.4) 2.0 2.0 2.0
Setting 4 0.9 lin(2.0, 0.5) lin(0.5, 2.0) 2.0
Setting 5 lin(0.9, 0.4) lin(2.0, 0.5) lin(0.5, 2.0) 2.0

Table 6.7: Hyperparameter settings used with MSO

For the GuacaMol experiment, our initial goal was to reproduce the results as re-
ported by Winter et al.. To this end, the default parameters (see Setting 1 in table
6.7) were used. However, the resulting scores turned out to be significantly subpar
to the ones previously reported. To improve the scores, we submitted the model to
multiple optimization runs using the various hyperparameter settings. Even though
the utilization of varying hyperparameters showed some promise the model still
could not generate satisfying scores.

As a next step, the authors of MSO was contacted and a new set of hyperparameter
values were suggested by them (see Setting 2 ). Furthermore, it was also indicated
that the top molecules given a benchmark had been used as starting points, in order
to reach higher scores. The results showed significant improvements at this stage,
and by starting the optimization from the 40 best molecules for any given bench-
mark, we managed to match the results reported by Winter et al. with some minor
deviations in both directions. For the DRD2 experiments, there were no previously
reported baselines. Here our approach was simply to use all hyperparameter settings
and use the results from the top-performing one in the evaluation. We give the hy-
perparameters that performed best for each experiment in table 6.8. For the DRD2
experiments the best results were produced when using a linearly decreasing inertia
weight. However we stress that these results were not better by a significant margin
compared to using the same hyperparameter values as in the GuacaMol experiment.
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hyperparameter value (GuacaMol) value (DRD2)
w 0.9 lin(0.9, 0.4)
ϕ1 2.5 2.0
ϕ2 2.5 2.0
ϕ3 2.5 2.0

Table 6.8: Final hyperparameter settings for MSO

6.3.6 Bayesian Optimization
The Bayesian Optimization (BO) algorithm used in this project is not based on
published work, but was put together for this thesis. To this end, we used surro-
gate models, acquisition functions and optimizers provided in the python libraries
GPFlow [67] and GPFlowOpt [68]. We used a Gaussian process as a surrogate
model. The prior distribution was created using 1000 randomly selected molecules
from the training dataset. A modified version (see appendix B.1 for details) of a
Matern522 kernel was used as kernel function and expected improvement (EI) was
selected as acquisition function.

In order to optimize the acquisition function, a Monte Carlo optimizer3 and scipy’s
[69] minimize4 functions were used in succession. The Monte Carlo optimizer sam-
ples and evaluates 3000 randomly selected points and the optimization is thereafter
focused by applying minimize on the most promising point.

The experiments were conducted in 2000 steps or until 1000 novel molecules had
been sampled from the latent space. The output from the GuacaMol evaluations
showed that BO struggled to find compounds that surpassed the dataset max and
to improve its performance, we tried tuning the likelihood variance used in the
surrogate model. We used values in the range of 0.02 to 0.1 but with little to no
obvious effect. Experiments were also run using lower confidence bound and the
probability of feasibility as acquisition function in place of EI but again, without
any significant effect. Furthermore, we investigated the effect of using a linear and
a polynomial kernel function instead of Matern52, but the results did not improve
noticeably. In table 6.9 we give the final hyperparameters.

hyperparameter value
acquisition function expected improvement

variance 0.02
kernel Matern52

Table 6.9: Hyperparameter settings for Bayesian Optimization

To study the impact of the prior distribution, we decided to run the GuacaMol
experiments using the top-1000 molecule datasets to initiate the optimization. The

2https://gpflow.readthedocs.io/en/master/gpflow/kernels/#gpflow-kernels-matern52
3https://github.com/GPflow/GPflowOpt/blob/master/gpflowopt/optim.py#L131
4https://github.com/GPflow/GPflowOpt/blob/master/gpflowopt/optim.py#L201
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idea was that by providing the model with a set of high scoring molecules, the
optimization would become more focused towards those areas. While there was a
noticeable improvement, the model still had difficulties with finding molecules that
surpassed the dataset max.

6.4 Stochasticity of models
Since all models include some level of stochasticity, one has to ensure that any
sequence of random choices can be repeated on command. To this end, the mod-
els are initiated using a seed, specified by the user, upon starting an optimization
run. By setting a seed for the modules that perform stochastic actions for each
model, the same results can be guaranteed if running a task using the same seed
and hyperparameters multiple times. When starting an optimization run, all rele-
vant configurations are saved to enable reproducibility and verification of the results.
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Results

Here we report the results from the experiments described in Chapter 5. Section 7.1
contains the score output for all models when benchmarked using GuacaMol. Here
we also report the aggregated quality of the top-100 generated molecules for each
model, and the models’ ability to generate novel and unique compounds. Section
7.2 contains the outcome of the experiments aiming to optimize molecules toward
DRD2.

7.1 GuacaMol Benchmarks
As displayed in Table 7.1, REINVENT outperforms the other models by acquiring
the top scores for almost all benchmarks. MSO outputs the highest scores on five
of the benchmarks and the second-best on all others. GENTRL, LatentGAN and
BO all fail to beat the dataset max on the majority of the benchmarks, including
the trivial ones as shown in table 7.2.

GuacaMol non-trivial benchmarks
Benchmark name REINVENT GENTRL LatentGAN MSO MSO* BO BO* Dataset
Celecoxib rediscovery 1.000 0.439 0.318 0.753 1.000 0.369 0.543 0.506
Troglitazone rediscovery 1.000 0.261 0.304 0.451 0.827 0.349 0.317 0.419
Thiothixene rediscovery 1.000 0.387 0.292 0.590 1.000 0.398 0.352 0.456
Aripiprazole similarity 1.000 0.380 0.294 0.734 0.999 0.380 0.523 0.609
Albuterol similarity 1.000 0.908 0.564 0.985 1.000 0.637 0.645 0.765
Mestranol similarity 1.000 0.542 0.370 0.846 0.996 0.412 0.574 0.660
C11H24 0.960 0.874 0.005 0.982 0.999 0.020 0.156 1.000
C9H10N2O2PF2Cl 0.939 0.835 0.421 0.895 1.000 0.372 0.390 0.869
Median molecules 1 0.453 0.346 0.194 0.349 0.394 0.279 0.264 0.400
Median molecules 2 0.395 0.166 0.170 0.276 0.373 0.209 0.159 0.362
Osimertinib MPO 0.954 0.797 0.771 0.881 0.917 0.823 0.843 0.856
Fexofenadine MPO 0.998 0.732 0.639 0.882 0.965 0.787 0.813 0.856
Ranolazine MPO 0.907 0.760 0.512 0.863 0.900 0.290 0.793 0.794
Perindopril MPO 0.832 0.452 0.402 0.633 0.742 0.348 0.443 0.625
Amlodipine MPO 0.905 0.573 0.516 0.668 0.874 0.531 0.557 0.716
Sitagliptin MPO 0.553 0.429 0.258 0.618 0.719 0.115 0.146 0.598
Zaleplon MPO 0.677 0.540 0.470 0.576 0.708 0.367 0.503 0.585
Valsartan SMARTS 0.869 0.000 0.000 0.915 0.994 0.000 0.000 0.603
Scaffold Hop 1.000 0.578 0.564 0.903 1.000 0.802 0.932 0.965
Deco Hop 1.000 0.452 0.443 0.607 0.980 0.522 0.400 0.808
Total score 17.442 10.451 7.506 14.407 17.387 8.011 9.354 12.144

Table 7.1: Scores for the five models assessed on non-trivial benchmarks from GuacaMol.
MSO and BO are initiated using randomly selected molecules from the training dataset.
The highest score for every benchmark is indicated with bold digits. The MSO* and
BO* columns display results when the models are initiated using top-scoring molecules as
described in Section 7.1.1. If the highest score of a benchmark is matched or improved
this is indicated with an underline.
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GuacaMol trivial benchmarks
Benchmark name REINVENT GENTRL LatentGAN MSO MSO* BO BO* Dataset
logP (target: -1.0) 1.000 1.000 0.972 1.000 1.000 0.899 0.999 1.000
logP (target: 8.0) 1.000 1.000 0.886 1.000 1.000 0.455 0.999 1.000
TPSA (target: 150.0) 1.000 1.000 0.938 1.000 1.000 0.757 0.980 1.000
CNS MPO 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
QED 0.948 0.939 0.932 0.948 0.948 0.946 0.947 0.948
C7H8N2O2 0.996 1.000 0.607 1.000 1.000 0.649 0.601 1.000
Pioglitazone MPO 0.986 0.887 0.732 0.995 1.000 0.344 0.668 0.986
Total score 6.930 6.826 6.067 6.943 6.948 5.049 6.194 6.902

Table 7.2: Scores for the five models assessed on trivial benchmarks from GuacaMol.
MSO and BO are initiated using randomly selected molecules from the training dataset.
The highest score for every benchmark is indicated with bold digits. The MSO* and
BO* columns display results when the models are initiated using top-scoring molecules as
described in Section 7.1.1. If the highest score of a benchmark is matched or improved
this is indicated with an underline.

7.1.1 Lead Optimization
To investigate the impact of initiating the swarms of MSO and the prior distribution
of BO at high scoring molecules, we ran the benchmarks as a lead-optimization task
for both models. The swarms of MSO were initiated at the 40 best molecules for
each benchmark, and the prior distribution of BO was created using the top-1000
molecules. We present the results in table 7.1 and 7.2 in the columns titled MSO*
and BO*.

While BO only manages to match or surpass the dataset max for two benchmarks,
MSO shows a distinct improvement. By starting from a collection of already rela-
tively high scoring molecules, the swarms managed to exploit areas of the chemical
space not reached before. In figure 7.1, we compare the swarms’ performance on
three benchmarks with respect to their starting conditions.

(a) Amlodipine MPO (b) Albuterol similarity (c) Aripiprazole similarity

Figure 7.1: Scatter plot of the initial best score of swarms in relation to the final
best score. A swarms position at the x-axis represents its best score at initialization,
and its position on the y-axis represents the score of the best particle found during the
optimization. The blue dots represent swarms initiated at randomly selected points. The
orange dots represent swarms initiated at the 40 best molecules in the training dataset for
the respective benchmark. The further up to the left a swarm is positioned, the better it
performed since this indicates a low starting score but a high final score.

LatentGAN, GENTRL and REINVENT were not submitted to lead-optimization
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experiments. REINVENT were left out due to it already outperforming the other
models with a margin. GENTRL, while utilizing reinforcement learning, lack a
mechanism that enables lead optimization in the same explicit manner as MSO and
BO. LatentGAN has already been exposed to the top-scoring molecules and has no
way of modifying its own distribution further.

7.1.2 Quality of Generated Molecules

After evaluating each model on the 27 benchmarks, the top 100 compounds from
each benchmark were extracted and assessed using the quality measurements de-
scribed in Section 5.1.4. That is, each model is evaluated based on its 2700 best
molecules. The results are shown in table 7.2 where REINVENT reports an 85%
ratio of molecules passing the quality filters. LatentGAN reports 70% while the
other models all report ratios around 60%. While REINVENT and MSO produced
the best results using the 27 benchmarks, this indicates that REINVENT generated
higher-quality compounds.

Figure 7.2: Quality measurements of the top-100 molecules generated for each bench-
mark

We also conducted a separate analysis of the validity, uniqueness and novelty of
the generated molecules. This analysis was based on the top 10,000 best molecules
for every model, with the exception of BO that generated 1000 molecules (or less
if the optimization reached 2000 steps). As seen in table 7.3, all models report a
high percentage of valid molecules with low variance. LatentGAN and MSO excel in
terms of generating unique molecules. The low ration of unique molecules generated
by REINVENT might seem contradictory to its performance on the benchmarks.
However, it should once again be noted that these figures are based on the best
10,000 molecules for every model, while the benchmark scores take no more than
250 molecules into account. We see that the novelty ratios match the uniqueness
ratios, both in terms of mean value and variance.
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Properties of the generated molecules
Model Validity µ ± σ Uniqueness µ ± σ Novelty µ ± σ

BO 0.996 ± 0.002 0.876 ± 0.164 0.857 ± 0.163
BO (Lead optimization) 0.997 ± 0.002 0.860 ± 0.199 0.840 ± 0.201
GENTRL 0.967 ± 0.170 0.578 ± 0.262 0.577 ± 0.263
LatentGAN 1.000 ± 0.000 0.941 ± 0.074 0.933 ± 0.077
MSO 0.999 ± 0.001 0.999 ± 0.001 0.998 ± 0.002
MSO (Lead optimization) 1.000 ± 0.000 1.000 ± 0.000 0.997 ± 0.003
REINVENT 0.998 ± 0.009 0.446 ± 0.340 0.444 ± 0.337

Table 7.3: The validity, uniqueness and novelty of the 10,000 SMILES generated for each
of the objective functions (with the exception for Bayesian Optimization). LatentGAN
has functionality in place which prevents it from sampling invalid molecules, hence the
validity of 1.

7.2 DRD2 Activity Experiments

Here we present the results from the experiments using the multi-objective function
described in Section 5.2. The experiments were conducted using three different
scaffolds as substructure target. We present the results in three subsections, one for
each scaffold. The results are based on the 10,000 best molecules obtained when
optimizing using REINVENT and MSO. BO is assessed using all samples of an
optimization run conducted in 2000 steps or until 1000 unique molecules have been
sampled.

7.2.1 Scaffold 1

The first experiment aimed to find active compounds with the scaffold seen in fig-
ure 7.3 present. As the distribution plot in figure 7.4 shows, REINVENT manages
to generate high-quality compounds with small deviations. MSO also manages to
generate several high scoring molecules but fail to exploit the high scoring areas to
the same extent as REINVENT. GENTRL, LatentGAN and BO produce mainly
low scoring molecules. While LatentGAN does this exclusively, GENTRL and BO
do generate a small number of relatively high scoring compounds.

By looking at the score breakdown in table 7.4 we see that GENTRL, on average,
generates molecules with higher probability of binding to DRD2 and that have a
better QED score than MSO. However, since it struggles to generate compounds
containing the requested scaffold, the mean score in total is heavily penalized.
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c1ccc(cc1)C2CCNCC2

Scaffold 1Bayesian Optimization

GENTRL LatentGAN Molecular Swarm Optimization

Reinvent

Figure 7.3: The top four molecules from each model optimizing the DRD2 benchmark
using scaffold 1. The number under each molecule represents its score. If the substructure
is present, it is highlighted with red in the 2D molecular graph.

Figure 7.4: Score distributions of the models when optimizing DRD2 with scaffold 1 as
target substructure
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Score Breakdown for DRD2 MPO for Scaffold 1
Model Max Score Score µ ± σ CA MS DRD2 µ ± σ QED µ ± σ

BO 0.670 0.166 ± 0.124 0.671 0.501 0.349 ± 0.076 0.616 ± 0.183
GENTRL 0.726 0.345 ± 0.049 1.000 0.515 0.467 ± 0.074 0.878 ± 0.052
LatentGAN 0.322 0.106 ± 0.087 0.641 0.500 0.279 ± 0.041 0.370 ± 0.164
MSO 0.801 0.575 ± 0.089 1.000 0.991 0.428 ± 0.091 0.736 ± 0.140
REINVENT 0.867 0.820 ± 0.011 1.000 1.000 0.722 ± 0.027 0.918 ± 0.019
ChEMBL 0.721 0.444 ± 0.111 1.000 0.805 0.428 ± 0.062 0.728 ± 0.203

Table 7.4: Score breakdown of generated molecules when optimizing DRD2 with scaffold
1 as target substructure. The score is a combination of custom alerts (CA), matching
substructure (MS), DRD2 binding and drug-likeness (QED). If CA equals 1 none of the
generated molecules contained unwanted substructures.

7.2.2 Scaffold 2
In this experiment the substructure target was the more generic scaffold displayed
in figure 7.5, easing the constraints for the models, such that high scoring molecules
can be found in a larger subspace of the chemical space. However, the resulting
distributions, shown in figure 7.6, do not change notably and REINVENT still
outperforms the other models with a margin. MSO does find a higher percentage of
high scoring molecules compared to when queried for the first scaffold, but lack in its
ability to generate compounds that score high on the DRD2 and QED components,
as seen in table 7.5. GENTRL is once again penalized for not generating the target
scaffold to a large enough extent, which also seem to be the most challenging task
for BO and LatentGAN.

[c,n]1[c,n][c,n]c([c,n][c,n]1)[C,N]2CCNCC2

Scaffold 2Bayesian Optimization

GENTRL LatentGAN Molecular Swarm Optimization

Reinvent

Figure 7.5: The top four molecules from each model optimizing the DRD2 benchmark
using scaffold 2. The number under each molecule represents its score. If the substructure
is present, it is highlighted with red in the 2D molecular graph.
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Figure 7.6: Score distributions of the models when optimizing DRD2 with scaffold 2 as
target substructure

Score Breakdown for DRD2 MPO for Scaffold 2
Model Max Score Score µ ± σ CA MS DRD2 µ ± σ QED µ ± σ

BO 0.692 0.168 ± 0.131 0.663 0.508 0.348 ± 0.079 0.625 ± 0.185
GENTRL 0.797 0.382 ± 0.107 1.000 0.573 0.471 ± 0.075 0.874 ± 0.064
LatentGAN 0.338 0.097 ± 0.089 0.579 0.500 0.286 ± 0.039 0.365 ± 0.153
MSO 0.842 0.649 ± 0.048 1.000 1.000 0.484 ± 0.091 0.815 ± 0.078
REINVENT 0.898 0.866 ± 0.010 1.000 1.000 0.814 ± 0.027 0.919 ± 0.023
ChEMBL 0.721 0.605 ± 0.038 1.000 1.000 0.413 ± 0.058 0.796 ± 0.076

Table 7.5: Score breakdown of generated molecules when optimizing DRD2 with scaffold
2 as target substructure. The score is a combination of custom alerts (CA), matching
substructure (MS), DRD2 binding and drug-likeness (QED). If CA equals 1 none of the
generated molecules contained unwanted substructures.

7.2.3 Scaffold 3

In the final experiment, the models attempt to generate compounds with the scaffold
shown in figure 7.7 present. This task proved to be more challenging for REINVENT,
generating a distribution centred at 0.432, as seen in figure 7.8. MSO generates
top scoring molecules that match REINVENT, but with a distribution centred at a
slightly lower value, 0.366. REINVENT and MSO are the only models that manages
to generate a small number of molecules containing the target scaffold. The full score
breakdown is presented in table 7.6.
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c1ccc(cc1)N2CCC3C2CNC3

Scaffold 3Bayesian Optimization

GENTRL LatentGAN Molecular Swarm Optimization

Reinvent

Figure 7.7: The top four molecules from each model optimizing the DRD2 benchmark
using scaffold 3. The number under each molecule represents its score. If the substructure
is present, it is highlighted with red in the 2D molecular graph.

Figure 7.8: Score distributions of the models when optimizing DRD2 with scaffold 3 as
target substructure
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Score Breakdown for DRD2 MPO for Scaffold 3
Model Max Score Score µ ± σ CA MS DRD2 µ ± σ QED µ ± σ

BO 0.350 0.165 ± 0.121 0.677 0.500 0.346 ± 0.074 0.616 ± 0.182
GENTRL 0.400 0.334 ± 0.017 1.000 0.500 0.453 ± 0.071 0.882 ± 0.047
LatentGAN 0.305 0.102 ± 0.087 0.625 0.500 0.279 ± 0.040 0.364 ± 0.164
MSO 0.731 0.366 ± 0.035 1.000 0.506 0.557 ± 0.058 0.892 ± 0.042
REINVENT 0.750 0.432 ± 0.009 1.000 0.500 0.814 ± 0.029 0.911 ± 0.028
ChEMBL 0.677 0.338 ± 0.014 1.000 0.501 0.455 ± 0.031 0.894 ± 0.032

Table 7.6: Score breakdown of generated molecules when optimizing DRD2 with scaffold
3 as target substructure. The score is a combination of custom alerts (CA), matching
substructure (MS), DRD2 binding and drug-likeness (QED). If CA equals 1 none of the
generated molecules contained unwanted substructures.
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Discussion

8.1 Performance of models

The combined results from the GuacaMol and DRD2 experiments show that REIN-
VENT outperformed the other models with distinction. We think the model’s pri-
mary strength is its ability to adapt its generative strategy. While MSO shows
promise in its ability to traverse a continuous representation of the chemical space
to find desirable compounds, it does not match the performance of REINVENT
when it comes to exploiting these high scoring areas efficiently. This restriction can
be seen in the DRD2 experiments where MSO is able to find relatively high scor-
ing molecules but fails to converge its particles in those areas. However, we think
that there is reason to believe that further research into more sophisticated applica-
tions of MSO would be fruitful. We also hypothesize that MSO, BO and GENTRL
are constrained by their underlying generative model, the variational autoencoder.
While REINVENT manipulates the probability distribution during optimization,
the distribution of the autoencoder is fixed throughout the whole process. So while
the algorithms move in the chemical space in a direction of improved scores, the
highest scores might be unreachable due to the decoder having a distribution that
has a very small chance of sampling the very best compounds.

The poor performance of Bayesian Optimization was evident throughout the whole
project. Regardless of thorough experimentation with different kernels, acquisi-
tion functions and likelihood variance, the results showed no significant improve-
ments. The model showed some promise on the trivial GuacaMol benchmarks,
especially when used in a lead optimization context. This is in line with previ-
ously reported results where Bayesian Optimization has been successfully applied to
sample molecules using simple, single-property, functions. However, to the best of
our knowledge, there are no reported results using Bayesian Optimization on more
complicated, multi-objective, optimization tasks. This, in combination with our re-
stricted approach to hyperparameter tuning, makes the reported results on Bayesian
Optimization harder to interpret with confidence. We suggest that the results of
Bayesian Optimization are used as a baseline for future research on the method,
rather than as an absolute truth of its capabilities.

GENTRL was another model that performed below expectation, given the results
the authors got in the original paper. It is important to note that the datasets and
reward functions mentioned in the paper are not available in the code published on
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GitHub. By not being able to reproduce their results, we could not confirm that
our implementation was done correctly and that the code did not contain bugs. In
addition, it is possible that the more advanced reward function described in the
paper could have yielded better results on the benchmarks.

Finally, LatentGAN could not generate molecules that scored higher than the maxi-
mum scores found in the datasets. This was expected since it is the only model that
lacks an optimization mechanism. In the original paper, LatentGAN found several
molecules that were predicted to bind to DRD2, while in our evaluation none were
found. This could be explained by the fact that we removed all molecules that had
a probability of binding greater than 0.5, while in the original paper, only a set
of known actives were removed. This suggests that a generative model without an
optimization algorithm must be trained on data containing the desired properties.
Though its results lacked high scores, it showed an ability to generate diverse sets
of valid molecules.

8.2 Future research
MSO showed promise as a lightweight, easy to use, lead optimization strategy. In
this work, we experimented with time-varying hyperparameters, as explained in
Section 6.3.5, which slightly increased the performance of the model on the DRD2
experiments. This indicates that further research into more sophisticated usages
of the hyperparameters could improve the performance of the model. The DRD2
experiments showed that MSO indeed found high scoring molecules but failed to
properly exploit the areas containing them. We hypothesise that one could, for ex-
ample, implement a mechanism in the algorithm such that the particles of a swarm
more efficiently converge at the most promising areas towards the end of an opti-
mization run.

One of the features of REINVENT is its usage of data augmentation by randomizing
SMILES when training the prior state of the generative model. We believe it would
be interesting to evaluate how the same approach would impact the performance of
the other models. The results of such experiments could be used to shed light on our
hypothesis of MSO and BO being constrained by the underlying generative model.
Furthermore, the DRD2 experiments showed that there could be benefits of using
two or more of the models in tandem, to properly explore the chemical space. The
models generated potentially active compounds that were unique for each generative
model, and were not produced by the other models. This indicates that the models
can be used in a complementary manner to cover a more substantial portion of the
space.
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9
Conclusion

In this thesis, a comparative study of five different optimization algorithms for de
novo drug design is presented. The investigated models, REINVENT, LatentGAN,
Molecule Swarm Optimization, GENTRL and Bayesian Optimization, have been
evaluated using a standardized benchmark framework, GuacaMol, and a multi-
property function that encourages the models to generate molecules likely to bind
to the dopamine receptor D2.

The results clearly highlight the merits of a model called REINVENT, which em-
ploys a recurrent neural network and reinforcement learning to sample high-scoring
molecular data from a probability distribution. The approach excels both in terms
of its ability to generate high-scoring molecules but also efficiently exploring promis-
ing regions of the chemical space.

An application of particle swarm optimization, on a latent representation of the
chemical space, Molecule Swarm Optimization, also report good results. While it
produces high-scoring molecules, it is not with the same diversity nor in the same
numbers as REINVENT. The model had an increased performance when initiated
at high-scoring molecules, indicating applicability in lead-optimization tasks. Based
on this, suggestions on possible directions of future research are provided.

The three other models in this study report subpar results, when compared to the
two aforementioned models. In the case of LatentGAN, a model employing a gen-
erative adversarial network in latent chemical space, this might be due to the strict
training setup that was imposed on the underlying autoencoder, which excluded
all high-scoring compounds from the training dataset. Bayesian Optimization ap-
plied to a latent chemical space displays results on par with results reported in the
literature on simpler, single-property, tasks but underperforms on more complex
objectives.

The last model, GENTRL, uses a variational autoencoder combined with reinforce-
ment learning. While the model’s authors report promising data in their paper, it
has not been possible to reproduce the reported results since not all of the relevant
data is publicly available. As a result, the correctness of the used implementation
has not been verified. We hypothesize that Bayesian Optimization and GENTRL
have the potential to perform better on the tasks in this work than what is reported.

All code can be found in the GitHub repository: https://github.com/sebastiandro/
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de-novo-evaluation.

62

https://github.com/sebastiandro/de-novo-evaluation
https://github.com/sebastiandro/de-novo-evaluation
https://github.com/sebastiandro/de-novo-evaluation


Bibliography

[1] Gisbert Schneider and Uli Fechner. “Computer-based de novo design of drug-
like molecules”. In: Nature Reviews Drug Discovery 4.8 (2005), pp. 649–663.
issn: 14741776. doi: 10.1038/nrd1799.

[2] P. G. Polishchuk, T. I. Madzhidov, and A. Varnek. “Estimation of the size of
drug-like chemical space based on GDB-17 data”. In: Journal of Computer-
Aided Molecular Design 27.8 (2013), pp. 675–679. issn: 0920654X. doi: 10.
1007/s10822-013-9672-4.

[3] Lucas G. Viviani et al. “Virtual Screening Approach for the Identification
of Hydroxamic Acids as Novel Human Ecto-5-Nucleotidase Inhibitors”. In:
Journal of Chemical Information and Modeling 60.2 (2020), pp. 621–630. issn:
15205142. doi: 10.1021/acs.jcim.9b00884.

[4] Thomas Scior et al. “Recognizing pitfalls in virtual screening: A critical re-
view”. In: Journal of Chemical Information and Modeling 52.4 (2012), pp. 867–
881. issn: 15499596. doi: 10.1021/ci200528d.

[5] J. P. Hughes et al. “Principles of early drug discovery”. In: British Journal of
Pharmacology 162.6 (2011), pp. 1239–1249. issn: 00071188. doi: 10.1111/j.
1476-5381.2010.01127.x.

[6] Steven M. Paul et al. “How to improve RD productivity: The pharmaceutical
industry’s grand challenge”. In: Nature Reviews Drug Discovery 9.3 (2010),
pp. 203–214. issn: 14741776. doi: 10.1038/nrd3078.

[7] Hongming Chen et al. The rise of deep learning in drug discovery. 2018. doi:
10.1016/j.drudis.2018.01.039.

[8] David Weininger. “SMILES, a Chemical Language and Information System:
1: Introduction to Methodology and Encoding Rules”. In: Journal of Chemical
Information and Computer Sciences 28.1 (1988), pp. 31–36. issn: 00952338.
doi: 10.1021/ci00057a005.

[9] OpenSMILES specification. url: http : / / opensmiles . org / opensmiles .
html.

[10] Tony Jebara. “Discriminative , Generative and Imitative Learning”. In: Me-
dia (2002), pp. 1–212. url: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.8.2731&amp;rep=rep1&amp;type=pdf.

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016, pp. 367–415.

[12] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. “Sequence to sequence learning
with neural networks”. In: Advances in Neural Information Processing Systems
4.January (2014), pp. 3104–3112. issn: 10495258.

63

https://doi.org/10.1038/nrd1799
https://doi.org/10.1007/s10822-013-9672-4
https://doi.org/10.1007/s10822-013-9672-4
https://doi.org/10.1021/acs.jcim.9b00884
https://doi.org/10.1021/ci200528d
https://doi.org/10.1111/j.1476-5381.2010.01127.x
https://doi.org/10.1111/j.1476-5381.2010.01127.x
https://doi.org/10.1038/nrd3078
https://doi.org/10.1016/j.drudis.2018.01.039
https://doi.org/10.1021/ci00057a005
http://opensmiles.org/opensmiles.html
http://opensmiles.org/opensmiles.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.8.2731&amp;rep=rep1&amp;type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.8.2731&amp;rep=rep1&amp;type=pdf


Bibliography

[13] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. “Speech Recog-
nition With Deep Recurrent Neural Networks”. In: 3 ().

[14] B Hidasi et al. “Session-based Recommendations With Recurrent Neural Net-
works”. In: (2016), pp. 1–10.

[15] Alex Graves. Generating Sequences With Recurrent Neural Networks. Tech.
rep.

[16] Mark A. Kramer. “Nonlinear principal component analysis using autoasso-
ciative neural networks”. In: AIChE Journal 37.2 (1991), pp. 233–243. issn:
15475905. doi: 10.1002/aic.690370209.

[17] James M Joyce. “Kullback-Leibler Divergence”. In: International Encyclopedia
of Statistical Science. Ed. by Miodrag Lovric. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 720–722. isbn: 978-3-642-04898-2. doi: 10.1007/
978-3-642-04898-2{\_}327. url: https://doi.org/10.1007/978-3-642-
04898-2_327.

[18] Rafael Gómez-Bombarelli et al. “Automatic Chemical Design Using a Data-
Driven Continuous Representation of Molecules”. In: ACS Central Science
4.2 (Feb. 2018), pp. 268–276. issn: 23747951. doi: 10.1021/acscentsci.
7b00572.

[19] Alex Zhavoronkov et al. “Deep learning enables rapid identification of potent
DDR1 kinase inhibitors”. In: Nature Biotechnology 37.9 (Sept. 2019), pp. 1038–
1040. issn: 15461696. doi: 10.1038/s41587-019-0224-x.

[20] Ian J. Goodfellow et al. “Generative adversarial nets”. In: Advances in Neu-
ral Information Processing Systems 3.January (2014), pp. 2672–2680. issn:
10495258. doi: 10.3156/jsoft.29.5{\_}177{\_}2.

[21] Morton D. Davis and Steven J. Brams. Game theory. 2016. url: https :
//www.britannica.com/science/game-theory/Two-person-constant-
sum-games#ref22617.

[22] Artur Kadurin et al. “druGAN: An Advanced Generative Adversarial Autoen-
coder Model for de Novo Generation of New Molecules with Desired Molecular
Properties in Silico”. In: Molecular Pharmaceutics 14.9 (Sept. 2017), pp. 3098–
3104. issn: 1543-8384. doi: 10.1021/acs.molpharmaceut.7b00346. url:
https://doi.org/10.1021/acs.molpharmaceut.7b00346.

[23] Lingling Zhao et al. “GANsDTA: Predicting Drug-Target Binding Affinity
Using GANs”. In: Frontiers in Genetics 10.January (2020), pp. 1–8. issn:
16648021. doi: 10.3389/fgene.2019.01243.

[24] Łukasz Maziarka et al. “Mol-CycleGAN: A generative model for molecular
optimization”. In: Journal of Cheminformatics 12.1 (2020), pp. 1–18. issn:
17582946. doi: 10.1186/s13321-019-0404-1. url: https://doi.org/10.
1186/s13321-019-0404-1.

[25] Carl Edward Rasmussen. “Gaussian Processes in Machine Learning”. In: Ad-
vanced Lectures on machine Learning. Vol. 3176. 2004, pp. 69–71. isbn: 978-
3-540-28650-9. doi: 10.1007/978-3-540-28650-9{\_}8.

[26] Eric Brochu, Vlad M. Cora, and Nando de Freitas. “A Tutorial on Bayesian
Optimization of Expensive Cost Functions, with Application to Active User
Modeling and Hierarchical Reinforcement Learning”. In: (2010). url: http:
//arxiv.org/abs/1012.2599.

64

https://doi.org/10.1002/aic.690370209
https://doi.org/10.1007/978-3-642-04898-2{\_}327
https://doi.org/10.1007/978-3-642-04898-2{\_}327
https://doi.org/10.1007/978-3-642-04898-2_327
https://doi.org/10.1007/978-3-642-04898-2_327
https://doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1038/s41587-019-0224-x
https://doi.org/10.3156/jsoft.29.5{\_}177{\_}2
https://www.britannica.com/science/game-theory/Two-person-constant-sum-games#ref22617
https://www.britannica.com/science/game-theory/Two-person-constant-sum-games#ref22617
https://www.britannica.com/science/game-theory/Two-person-constant-sum-games#ref22617
https://doi.org/10.1021/acs.molpharmaceut.7b00346
https://doi.org/10.1021/acs.molpharmaceut.7b00346
https://doi.org/10.3389/fgene.2019.01243
https://doi.org/10.1186/s13321-019-0404-1
https://doi.org/10.1186/s13321-019-0404-1
https://doi.org/10.1186/s13321-019-0404-1
https://doi.org/10.1007/978-3-540-28650-9{\_}8
http://arxiv.org/abs/1012.2599
http://arxiv.org/abs/1012.2599


Bibliography

[27] Mark Ebden. “Gaussian Processes: A Quick Introduction”. In: August (2015).
url: http://arxiv.org/abs/1505.02965.

[28] A. Candelieri, R. Perego, and F. Archetti. “Bayesian optimization of pump
operations in water distribution systems”. In: Journal of Global Optimization
71.1 (2018), pp. 213–235. issn: 15732916. doi: 10.1007/s10898-018-0641-2.
url: https://doi.org/10.1007/s10898-018-0641-2.

[29] Donald R Jones, Matthias Schonlau, and W. J. Welch. “Efficient Global Op-
timization of Expensive Black-Box Functions," , vol. 13, no. 4, pp. 455-492,
1998.” In: Journal of Global Optimization 13 (1998), pp. 455–492. url: https:
//link.springer.com/content/pdf/10.1023%2FA%3A1008306431147.pdf.

[30] H. J. Kushner. “A new method of locating the maximum point of an arbitrary
multipeak curve in the presence of noise”. In: Journal of Fluids Engineering,
Transactions of the ASME 86.1 (1964), pp. 97–106. issn: 1528901X. doi: 10.
1115/1.3653121.

[31] Philipp Hennig and Christian J. Schuler. “Entropy search for information-
efficient global optimization”. In: Journal of Machine Learning Research 13
(2012), pp. 1809–1837. issn: 15324435.

[32] Riccardo Poli, James Kennedy, and Tim Blackwell. “Particle swarm optimiza-
tion: An overview”. In: Swarm Intelligence 1.1 (2007), pp. 33–57. issn: 1935-
3812. doi: 10.1007/s11721-007-0002-0.

[33] Shigenori Naka et al. “Practical distribution state estimation using hybrid
particle swarm optimization”. In: Proceedings of the IEEE Power Engineer-
ing Society Transmission and Distribution Conference 2.WINTER MEETING
(2001), pp. 815–820. doi: 10.1109/pesw.2001.916969.

[34] Y. Shi Eberhart and R. C. “Empirical study of particle swarm optimization,
“in Proc”. In: Evolutionary Comput (1995), pp. 1942–1948.

[35] Saptarshi Sengupta, Sanchita Basak, and Richard Peters. “Particle Swarm Op-
timization: A Survey of Historical and Recent Developments with Hybridiza-
tion Perspectives”. In:Machine Learning and Knowledge Extraction 1.1 (2018),
pp. 157–191. doi: 10.3390/make1010010.

[36] R. C. Eberhart and Y. Shi. “Tracking and optimizing dynamic systems with
particle swarms”. In: Proceedings of the IEEE Conference on Evolutionary
Computation, ICEC 1 (2001), pp. 94–100. doi: 10.1109/cec.2001.934376.

[37] Asanga Ratnaweera, Saman K. Halgamuge, and Harry C. Watson. “Self-organizing
hierarchical particle swarm optimizer with time-varying acceleration coeffi-
cients”. In: IEEE Transactions on Evolutionary Computation 8.3 (2004), pp. 240–
255. issn: 1089778X. doi: 10.1109/TEVC.2004.826071.

[38] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. 2nd ed. Westchester Publishing Services, 2018. isbn: 9780262039246.

[39] Robin Winter et al. “Learning continuous and data-driven molecular descrip-
tors by translating equivalent chemical representations”. In: Chemical Science
10.6 (2019), pp. 1692–1701. issn: 20416539. doi: 10.1039/c8sc04175j.

[40] Ziyu Wang et al. “Bayesian Optimization in High Dimensions via Random
Embeddings”. In: Twenty-Third International Joint Conference on Artificial
Intelligence Bayesian (2012), pp. 1778–1784. url: https://www.aaai.org/
ocs/index.php/IJCAI/IJCAI13/paper/download/6971/6964.

65

http://arxiv.org/abs/1505.02965
https://doi.org/10.1007/s10898-018-0641-2
https://doi.org/10.1007/s10898-018-0641-2
https://link.springer.com/content/pdf/10.1023%2FA%3A1008306431147.pdf
https://link.springer.com/content/pdf/10.1023%2FA%3A1008306431147.pdf
https://doi.org/10.1115/1.3653121
https://doi.org/10.1115/1.3653121
https://doi.org/10.1007/s11721-007-0002-0
https://doi.org/10.1109/pesw.2001.916969
https://doi.org/10.3390/make1010010
https://doi.org/10.1109/cec.2001.934376
https://doi.org/10.1109/TEVC.2004.826071
https://doi.org/10.1039/c8sc04175j
https://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/download/6971/6964
https://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/download/6971/6964


Bibliography

[41] Marcus Olivecrona et al. “Molecular de-novo design through deep reinforce-
ment learning”. In: Journal of Cheminformatics 9.1 (Sept. 2017). issn: 17582946.
doi: 10.1186/s13321-017-0235-x.

[42] Esben Jannik Bjerrum and Boris Sattarov. “Improving chemical autoencoder
latent space and molecular de novo generation diversity with heteroencoders”.
In: Biomolecules 8.4 (2018), pp. 1–17. issn: 2218273X. doi: 10.3390/biom8040131.

[43] I. V. Oseledets. “Tensor-train decomposition”. In: SIAM Journal on Scien-
tific Computing 33.5 (2011), pp. 2295–2317. issn: 10648275. doi: 10.1137/
090752286.

[44] Stephan Rabanser, Oleksandr Shchur, and Stephan Günnemann. “Introduc-
tion to Tensor Decompositions and their Applications in Machine Learning”.
In: (2017), pp. 1–13. url: http://arxiv.org/abs/1711.10781.

[45] Oleksii Prykhodko et al. “A de novo molecular generation method using latent
vector based generative adversarial network”. In: Journal of Cheminformatics
11.1 (Dec. 2019). issn: 17582946. doi: 10.1186/s13321-019-0397-9.

[46] Nathan Brown et al. “GuacaMol: Benchmarking Models for de Novo Molecular
Design”. In: Journal of Chemical Information and Modeling 59.3 (Mar. 2019),
pp. 1096–1108. issn: 15205142. doi: 10.1021/acs.jcim.8b00839.

[47] Camille Wermuth et al. Practice of Medicinal Chemistry (4th Edition). Second
edi. Elsevier, 2015, p. 94. url: https://app.knovel.com/hotlink/pdf/id:
kt00UCXH02/practice-medicinal-chemistry/virtual-screening.

[48] P. Ertl, B. Rohde, and P. Selzer. “Fast calculation of molecular polar sur-
face area as a sum of fragment-based contributions and its application to the
prediction of drug transport properties”. In: Journal of Medicinal Chemistry
43.20 (2000), pp. 3714–3717. issn: 00222623. doi: 10.1021/jm000942e.

[49] V. J. Gillet and A. R. Leach. “Chemoinformatics”. In: Comprehensive Medic-
inal Chemistry II 3 (2006), pp. 235–264. issn: 0040-1706. doi: 10.1081/e-
elis3-120043664.

[50] Sanjivanjit Bhal. “Log P — Making Sense of the Value”. In: Advanced Chem-
istry Development (2007), pp. 1–4. url: https://www.acdlabs.com/download/
app/physchem/making_sense.pdf.

[51] Eric P. Gillis et al. “Applications of Fluorine in Medicinal Chemistry”. In:
Journal of Medicinal Chemistry 58.21 (2015), pp. 8315–8359. issn: 15204804.
doi: 10.1021/acs.jmedchem.5b00258.

[52] Simon E Ward et al. “Expert Opinion on Drug Discovery What does the
aromatic ring number mean for drug design ? What does the aromatic ring
number mean for drug design ?” In: 0441 (2014). doi: 10.1517/17460441.
2014.932346.

[53] Steven H. Bertz. “The First General Index of Molecular Complexity”. In:
Journal of the American Chemical Society 103.12 (1981), pp. 3599–3601. issn:
15205126. doi: 10.1021/ja00402a071.

[54] Suqing Zheng et al. “Proposed Hydrogen-Bonding Index of Donor or Accep-
tor Reflecting Its Intrinsic Contribution to Hydrogen-Bonding Strength”. In:
Journal of Chemical Information and Modeling 57.7 (2017), pp. 1535–1547.
issn: 15205142. doi: 10.1021/acs.jcim.7b00022.

66

https://doi.org/10.1186/s13321-017-0235-x
https://doi.org/10.3390/biom8040131
https://doi.org/10.1137/090752286
https://doi.org/10.1137/090752286
http://arxiv.org/abs/1711.10781
https://doi.org/10.1186/s13321-019-0397-9
https://doi.org/10.1021/acs.jcim.8b00839
https://app.knovel.com/hotlink/pdf/id:kt00UCXH02/practice-medicinal-chemistry/virtual-screening
https://app.knovel.com/hotlink/pdf/id:kt00UCXH02/practice-medicinal-chemistry/virtual-screening
https://doi.org/10.1021/jm000942e
https://doi.org/10.1081/e-elis3-120043664
https://doi.org/10.1081/e-elis3-120043664
https://www.acdlabs.com/download/app/physchem/making_sense.pdf
https://www.acdlabs.com/download/app/physchem/making_sense.pdf
https://doi.org/10.1021/acs.jmedchem.5b00258
https://doi.org/10.1517/17460441.2014.932346
https://doi.org/10.1517/17460441.2014.932346
https://doi.org/10.1021/ja00402a071
https://doi.org/10.1021/acs.jcim.7b00022


Bibliography

[55] Adam Todd, Roz Anderson, and Paul W. Groundwater. “Rational drug design
- Designing a molecule that binds to a target”. In: Pharmaceutical Journal
283.7563 (2009), pp. 131–132. issn: 00316873.

[56] G Richard Bickerton et al. “Quantifying the chemical beauty of drugs”. In:
Nat Chem 4.2 (2012), pp. 90–98. doi: 10.1038/nchem.1243. url: https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC3524573/pdf/emss-50746.pdf.

[57] Daniel F. Veber et al. “Molecular properties that influence the oral bioavail-
ability of drug candidates”. In: Journal of Medicinal Chemistry 45.12 (2002),
pp. 2615–2623. issn: 00222623. doi: 10.1021/jm020017n.

[58] Pat Walters. rd_filters. 2019. url: https://github.com/PatWalters/rd_
filters.

[59] Edoardo R. de Natale and Marios Politis. “Imaging in Movement Disorders:
Imaging Methodology and Applications in Parkinson’s Disease”. In: Interna-
tional Review of Neurobiology, (2018).

[60] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”. In: Jour-
nal of Machine Learning Research 12.January (2011), pp. 2825–2830. issn:
15324435.

[61] Jiangming Sun et al. “ExCAPE-DB: An integrated large scale dataset facili-
tating Big Data analysis in chemogenomics”. In: Journal of Cheminformatics
9.1 (2017), pp. 1–9. issn: 17582946. doi: 10.1186/s13321-017-0203-5.

[62] Ansgar Schuffenhauer et al. “The scaffold tree - Visualization of the scaf-
fold universe by hierarchical scaffold classification”. In: Journal of Chemi-
cal Information and Modeling 47.1 (2007), pp. 47–58. issn: 15499596. doi:
10.1021/ci600338x.

[63] GitHub - BenevolentAI/guacamol: Benchmarks for generative chemistry. url:
https://github.com/BenevolentAI/guacamol.

[64] David Mendez et al. “ChEMBL: Towards direct deposition of bioassay data”.
In: Nucleic Acids Research 47.D1 (2019), pp. D930–D940. issn: 13624962. doi:
10.1093/nar/gky1075.

[65] Philipp Probst, Anne Laure Boulesteix, and Bernd Bischl. “Tunability: Im-
portance of hyperparameters of machine learning algorithms”. In: Journal of
Machine Learning Research 20 (2019), pp. 1–32. issn: 15337928.

[66] Panagiotis-Christos Kotsias et al. “Direct Steering of de novo Molecular Gen-
eration using Descriptor Conditional Recurrent Neural Networks (cRNNs)”.
In: 1 (2019). doi: 10.26434/CHEMRXIV.9860906.V1.

[67] Alexander G De et al. “GPflow: A Gaussian Process Library using TensorFlow
Mark van der Wilk”. In: Journal of Machine Learning Research 18 (2017),
pp. 1–6. url: http://jmlr.org/papers/v18/16-537.html..

[68] Nicolas Knudde et al. “GPflowOpt: A Bayesian Optimization Library using
TensorFlow”. In: (2017), pp. 0–1. url: http://arxiv.org/abs/1711.03845.

[69] Pauli Virtanen et al. “SciPy 1.0: fundamental algorithms for scientific comput-
ing in Python”. In: Nature Methods 17.3 (2020), pp. 261–272. issn: 15487105.
doi: 10.1038/s41592-019-0686-2.

[70] Stacey S. Cherny. “Cholesky Decomposition”. In: Wiley StatsRef: Statistics
Reference Online (2014). doi: 10.1002/9781118445112.stat06454.

67

https://doi.org/10.1038/nchem.1243
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3524573/pdf/emss-50746.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3524573/pdf/emss-50746.pdf
https://doi.org/10.1021/jm020017n
https://github.com/PatWalters/rd_filters
https://github.com/PatWalters/rd_filters
https://doi.org/10.1186/s13321-017-0203-5
https://doi.org/10.1021/ci600338x
https://github.com/BenevolentAI/guacamol
https://doi.org/10.1093/nar/gky1075
https://doi.org/10.26434/CHEMRXIV.9860906.V1
http://jmlr.org/papers/v18/16-537.html.
http://arxiv.org/abs/1711.03845
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1002/9781118445112.stat06454


Bibliography

[71] Ruth Brenk et al. “Lessons learnt from assembling screening libraries for drug
discovery for neglected diseases”. In: ChemMedChem 3.3 (2008), pp. 435–444.
issn: 18607179. doi: 10.1002/cmdc.200700139.

68

https://doi.org/10.1002/cmdc.200700139


A
Appendix - GuacaMol

A.1 SMILES and SMARTS abbreviations
• s1 = CN(C=O)Cc1ccc(c2ccccc2)cc1
• s2 = [#7]-c1n[c;h1]nc2[c;h1]c(-[#8])[c;h0][c;h1]-c12
• s3 = [#7]-c1ccc2ncsc2c1
• s4 = CS([#6])(=O)=O
• s5 = CCCOc1cc2ncnc(Nc3ccc4ncsc4c3)c2cc1S(=O)(=O)C-(C)(C)C
• s6 = [#6]-[#6]-[#6]-[#8]-[#6][#6][#6][#6][#6]-[#7]-c1ccc2ncsc2c1

A.2 GuacaMol score modifiers
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Figure A.1: Score modifiers used in GuacaMol framework. Figures are adopted from
GuacaMol paper [46].
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B
Appendix - Experimental Setup

B.1 Modification of Matern52 kernel
Initially, when running Bayesian Optimization for some of the optimization tasks,
the runs failed due to numerical exceptions being raised in TensorFlow. These errors
were reported as failures when trying to perform Cholesky decomposition [70] on
the kernel matrix. The issue was patched by overriding the euclid_dist-method
defined in the Matern52 kernel. By adding a small amount of jitter (10−6) to the
euclidean distance, the stability of the matrix operations was improved.

B.2 Physicochemical properties used in GENTRL
pretraining

• Molecular Weight (see Section 5.1.1 for more details)
• logP (see Section 5.1.1 for more details)
• Hydrogen Bond Donors and Acceptors (see Section 5.1.1 for more details)
• The number of aromatic rings (see Section 5.1.1 for more details)
• Number of unwanted substructures in the context of drug development [71]
• Number of rotatable bonds (see Section 5.1.1 for more details)
• The polar surface area (TPSA) of molecule (see Section 5.1.1 for more details)
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