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Populärvetenskaplig presentation
Inom matematiken försöker man ofta bryta ned komplexa koncept till dess kärna för att
lättare kunna förstå dem och för att se vad som faktiskt spelar roll. På samma sätt försöker
man ofta hitta mönster för att kunna förena saker som ser annorlunda ut men som i grunden
beter sig på samma sätt.

Ett exempel på ett koncept som uppkom efter att man noterade att det fanns många objekt
som hade samma fundamentala struktur är det matematiska begreppet grupp. I matematiken
är en grupp en samling saker och något sätt att kombinera dem. Detta är ett mycket abstrakt
begrepp – vilken typ av saker, och vad menas med att kombinera dem? Det kan faktiskt vara
nästan vilka saker som helst så länge det finns ett “vettigt” sätt att kombinera dem. Till
exempel kräver man att samma operation alltid ska ge samma resultat.

Ett exempel på en grupp som alla har stött på (även om du troligtvis inte har tänkt på
det som en grupp) är de positiva och negativa heltalen

. . . , −3, −2, −1, 0, 1, 2, 3, . . .

tillsammans med addition som sättet att kombinera tal. Till exempel har vi att −2 + 1 = −1
vilket alltid är sant oavsett vilken tid på dygnet man utför additionen. Ytterligare ett krav
på sättet att kombinera saker är att om man kombinerar tre saker ska det inte spela någon
roll i vilken ordning man gör det. Till exempel är (2 + 3) + 5 = 5 + 5 = 10 samma sak som
2 + (3 + 5) = 2 + 8 = 10, d.v.s. parenteserna spelar ingen roll. Utan detta krav kan det bli
väldigt märkligt och svårt att räkna på, vilket motiverar kravet.

Grupper dyker upp på väldigt många ställen, särskilt inom matematik men också inom fysik
och kemi. Till exempel förklarar teorin kring grupper många symmetrier i fysiken och hur
vissa elementarpartiklar beter sig. 1963 fick den ungersk-amerikanska fysikern Eugene Wig-
ner nobelpriset i fysik för sina upptäcker kring symmetrier som kom tack vare tillämpningen
av matematiska grupper. Att studera grupper grundar sig alltså inte bara i matematisk ny-
fikenhet utan har också praktiska tillämpningar även om de också är abstrakta.

Ett mer fysikaliskt exempel på en grupp skulle kunna vara en samling partiklar som tillåts
interagera genom att kollidera med varann. Sättet att kombinera dem är då att de krockar
med varandra och bildar en ny partikel. Det viktiga är att när två partiklar krockar så blir
det alltid samma partikel på samma sätt som att 2 + 3 alltid är lika med 5.

En hypergrupp utvidgar gruppbegreppet genom att ta bort det kravet. Det behöver allt-
så i någon mening inte vara bestämt exakt vad som händer när två saker kombineras, utan
vi nöjer oss med att tilldela sannolikheter för olika utfall. Om vi försökte tänka oss heltalen
som en hypergrupp skulle det kunna innebära att 2 + 3 = 5 med 50% sannolikhet, men med
50% sannolikhet blir det 2 + 3 = −5 istället!

Låt oss återgå till det fysikaliska (men orealistiska) exemplet om partiklar. Hypergruppen
innehåller en samling partiklar som kan kombineras. Den beskriver då vilken typ av partikel
kollisionen bildar på så sätt att den anger sannolikheter för vad som händer. Det handlar allt-
så inte om ett system där vi vet precis vad som händer, utan det är snarare slumpen som styr.



Som tidigare nämnts försöker vi inom matematiken ofta tänka på saker på olika sätt för
att därigenom försöka få en djupare förståelse. Ett verktyg som är mycket välanvänt inom
gruppteori är representationer vilket, precis som det låter, är ett annat sätt att represente-
ra grupper. En grupp har flera olika representationer som alla har olika för- och nackdelar.
Denna möjlighet att representera grupper är mycket användbar då det kan ge upphov till
enklare metoder att behandla grupper med.

Med denna bakgrund kan vi tala om vad detta arbete handlar om. Vi vill ta den repre-
sentationsteori som redan är välkänd och välstuderad för grupper och se om vi kan få den att
fungera även för hypergrupper. Vår frågeställning skulle alltså kunna formuleras som: Kan vi
representera hypergrupper på samma sätt som grupper, och är den representationen givan-
de? Om det är möjligt så skulle det kunna utgöra ett kraftfullt verktyg för att förstå denna
abstrakta struktur bättre, men också andra områden i matematiken. Kanske kan teorin till
och med göra att vi får en bättre förståelse för den huvudsakliga gruppteorin.

Osäkerheten i utfall för hypergrupper leder till en rad svårigheter som inte uppkommer i
gruppfallet. Detta då delar av representationsteorin för grupper har stor användning av att
vi vet vad som kommer hända när två saker kombineras. Detta gäller ju som bekant inte
längre för hypergrupper vilket gör att vi måste försöka hitta på nya sätt att angripa proble-
met.

Dessa svårigheter till trots har vi lyckats med det vi gav oss på och konstruerat en repre-
sentationsteori för hypergrupper vilket detaljeras i vår rapport. Det vi funnit är att samma
saker som gäller för grupper även gäller för hypergrupper i stor utsträckning, och i andra
fall kan man utnyttja särskilda strukturer i hypergruppen för att komma runt det. Resulta-
tet är en representationsteori för hypergrupper som är bekant för alla som har sysslat med
representationsteorin för ändliga grupper.



Sammanfattning

En hypergrupp är en algebraisk struktur som generaliserar gruppbegreppet genom att, i
någon mening, ge operationen en probabilistisk tolkning där multiplikationen inte alltid
ger samma resultat. Istället ger multiplikationen en linjärkombination av element från
hypergruppen där koefficienterna summerar till 1. För två hypergruppelement ci och cj
definieras multiplikationen alltså

cicj =
∑
k

nkijck,

där vi summerar över alla element ck i hypergruppen. De icke-negativa talen nkij kal-
las strukturkonstanter och för hypergrupper måste det gälla att

∑
k n

k
ij = 1, vilket ger

upphov till den probabilistiska tolkningen.

I motsats till gruppfallet där en unik invers alltid finns så leder detta till en svagare
form av invers. Det gäller fortfarande att varje element har en unik motsvarighet till
invers – involution – men kravet är bara att identiteten ska ingå med nollskild koefficient
i linjärkombinationen. Specialfall av hypergrupper är välstuderade, men den nuvarande
generella teorin bygger på abstrakt harmonisk analys, och det ändliga fallet har i stort
sett förbisetts.

I denna rapport ämnas det ändliga fallet utredas närmare med speciellt fokus på utveck-
lingen av representationsteorin. Vi inleder med grundläggande definitioner och använd-
bara begrepp såsom viktfunktionen då den är nödvändig för att kringgå de svårigheter
som uppstår som följd av det försvagade kravet på inverterbarhet. Viktfunktionen defi-
nieras som

w(cz) =
1

n0
z∗z

,

alltså ungefär ett mått på “hur mycket identitet fås” vid multiplikationen av cz med
dess involution. Den talar alltså om hur pass inverterbar cz är. Viktfunktionen visar sig
vara användbar därför att den är en så kallad Haarfunktion som flitigt används i den
mer generella teorin. Vi visar här att viktfunktionen är lika med sin involution. Värt att
notera är att detta inte gäller i det generella fallet och är ett av de resultat som gör de
ändliga hypergrupperna mer lätthanterliga.

Genom att sedan utgå från den redan välkända representationsteorin för ändliga grup-
per utvecklar vi representationsteorin för ändliga hypergrupper. Flera av bevisteknikerna
som traditionellt sett används i gruppfallet är inte längre tillämpbara vilket tvingar oss
att utnyttja hypergruppens speciella struktur. I representationsteorin representerar vi
element i hypergruppen som linjära avbildningar på ett ändligdimensionellt vektorrum.
Detta gör att vi kan utnyttja metoder från linjär algebra för undersöka hypergruppens
egenskaper.

Vi kommer fram till att alla representationer är nedbrytbara och kan skrivas som en
direkt summa av irreducibla representationer. Irreducibla representationer kan liknas
vid primtal i den mening att de bygger upp alla andra representationer och i sig inte kan
brytas ned ytterligare. Kapitlet om representationsteori kulminerar i Schurs ortogonali-
tetsrelationer vilka talar om skalärprodukten mellan irreducibla representationer vilket
vi formulerar i termer av hyperdimensionen av representationen. Relationerna säger att
för två inekvivalenta irreducibla representationer ϕ och ρ av samma hypergrupp gäller

(i) 〈ϕij , ρkl〉 = 0,

(ii) 〈ϕij , ϕkl〉 =

{
1

k(ϕ)
om (i, j) = (k, l)

0 annars,

där k(ϕ) är hyperdimensionen av representationen ϕ. Hyperdimensionen definieras som
inversen av en skalärprodukt mellan en representation och sig själv. I gruppfallet är hy-
perdimensionen lika med det associerade vektorrummets dimension, vilket rättfärdigar
namnet.

Vi introducerar sedan konceptet karaktär av en representation som spåret av den mot-
svarande matrisen. Det visar sig att matrisens spår kodar mycket information om den



underliggande representationen. Detta leder till ett av rapportens huvudresultat vilket
är ortogonaliteten mellan karaktärer vilken lyder

〈χϕ, χρ〉 =

{
degϕ
k(ϕ)

om ϕ ∼ ρ
0 annars.

Vi definierar även den reguljära representationen, som visar sig vara mycket användbar
för att finna information om hypergruppen, och undersöker dess nedbrytning.

Därefter begränsar vi oss till att betrakta kommutativa hypergrupper och bevisar bland
annat att alla hypergrupper av ordning strikt mindre än fem är kommutativa. Det är
värt att notera att detta är ett så starkt resultat som möjligt eftersom att det finns
exempel på icke-kommutativa hypergroupper av ordning fem. Vi utvecklar även Fourie-
ranalys på kommutativa hypergrupper vilket resulterar i att en kommutativ hypergrupp
helt bestäms av sin karaktärstabell upp till isomorfi.

Teoretiska tillämpningar presenteras i ett appendix. Ett återkommande tema är minsk-
ning av antal element via identifiering av symmetrier. Först härleds klasshypergruppen
av en ändlig grupp, vilken är den största kommutativa delstrukturen av den associe-
rade gruppalgebran. Några exempel på aritmetik ges. Karaktärshypergruppen härleds
därefter, vilket är hypergruppen som kan genereras utifrån karaktärerna hos en finit
grupp. Det visar sig att även karaktärerna från en kommutativ hypergrupp under vissa
förutsättningar kan generera en kommutativ hypergrupp, som då kallas den duala hy-
pergruppen.

Slutligen härleds hypergruppen av en distanstransitiv graf. Distanstransitivitet är ett
starkt krav på symmetri och det visar sig att man med hänsyn till denna symmetri kan
konstruera en hypergrupp som har färre element än antalet noder i grafen. En natur-
lig fråga är huruvida en distanstransitiv graf bestäms entydigt av sin hypergrupp, och
svaret är negativt.

Abstract

A hypergroup is an algebraic structure generalizing the concept of a group. This is
done by adding a sense in which the multiplication can be interpreted as probabilistic
by letting the operation range over an algebra. This leads to weakening the requirement
of invertibility that we have for ordinary groups. While hypergroups have been studied
in full generality, finite hypergroups are an interesting special case which can be dealt
with by more elementary methods.

In this report we restrict ourselves to finite hypergroups and develop the representa-
tion theory of hypergroups by trying to generalize the well-known representation theory
of finite groups. While many proofs transfer immediately, some proofs that depend on
the invertibility of group elements must be modified. We prove the Schur orthogonality
relations for hypergroup representations, and establish character orthogonality. Finally,
we restrict ourselves to commutative finite hypergroups and prove some interesting re-
sults about such objects. This naturally leads to the development of Fourier analysis on
finite hypergroups, using similar techniques as in the finite group case.

In the appendices we consider several examples of hypergroups coming from finite groups
and distance-transitive graphs. All of these hypergroups are commutative, and therefore
the entire body of results apply to them.
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1 Introduction
A group is an algebraic structure that has been studied for several centuries. The history
of group theory is riddled with household names such as Lagrange, Cauchy, and Galois. To-
day, finite groups are well-understood and ubiquitous in both mathematics and applications.
However, the classification of finite simple groups was finished only recently (in the 21th cen-
tury) and is considered one of the greatest mathematical accomplishments of the last century.

The classification of finite simple groups was made possible by the development of represen-
tation theory, in which group elements are represented by matrices or linear transformations.
This effectively allows us to transform hard problems in group theory to well-known linear
algebra. While Gauss studied concepts later encompassed in representation theory, it was
Frobenius who first formulated the representation theory of finite groups at the end of the
19th century. Practically as a result of our deep familiarity with linear algebra, representa-
tion theory is of great importance with countless applications in mathematics and the natural
sciences.

A hypergroup is an algebraic structure that has been studied by many mathematicians under
different names and definitions. Hypergroups generalize the concept of groups by weakening
the requirement of invertibility in addition to giving the structure a probabilistic taste. While
the operation on a group always results in another element in the group, the operation on
a hypergroup leads to a linear combination of elements of the hypergroup. As hypergroups
generalize groups, all groups can be viewed as hypergroups, but the converse obviously does
not hold, resulting in “less” structure and a more general object.

To try to make sense of this somewhat abstract structure, we can make a physical (un-
realistic but useful) analogy. Imagine a collection of particles that interact by colliding with
each other. In the group case, each collision would result in another group element. However,
in the case of hypergroups this is not the case – each collision returns in a combination of
particles. This could instead be probabilistically interpreted – we get a probability distribu-
tion over the set of particles. Assume that we have some particle, call it “photon”, which is
always absorbed in collisions. Now consider that there might be “anti-particles” in the set;
these anti-particles would in collision with their respective particle produce a photon with
some probability. If this were a group, we would view the photon as the identity and the
anti-particle as the inverse, and the collision would guarantee the identity. This is not the
case for hypergroups and we only produce the identity with some probability.

The purpose of the present report is to develop and present a theory of finite hypergroups
and their representation theory, accessible to interested undergraduate students with a solid
background in linear algebra. Our method has been to study the representation theory of
finite groups and to attempt a generalization. Aside from the abstract theory, concrete exam-
ples of hypergroups will be given, but only so far as to demonstrate the theory. Theoretical
applications of hypergroups to the study of groups and graphs, which might otherwise over-
whelm the reader, are presented in an appendix.

In Section 2 we present the basic definitions pertaining to the theory of hypergroups and
prove some useful results about their structure. In Section 3 we translate the representation
theory of finite groups to hypergroups leading up to the Schur orthogonality relations and
the decomposition of the regular representation. A short detour into the character theory
of hypergroups is then conducted, leading to the orthogonality of characters. In Section 4
we constrain ourselves to the study of commutative hypergroups, proving some interesting
theorems that this extra constraint leads to. Furthermore, we develop Fourier analysis on
commutative hypergroups which ultimately leads to a method of characterizing any commu-
tative hypergroup by its character table up to isomorphism.
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2 Hypergroups
This section will supply us with the basic definitions and terminology of finite hypergroups.
We will also develop some results about the structure of hypergroups which are of crucial
importance for the rest of the text. Many of the basic definitions are largely inspired by [1].

The reader is advised to look over the definition of a ∗-algebra in Appendix C or, alterna-
tively, to overlook the details and treat hypergroup elements by the laws of matrix addition,
multiplication, and transposition.1

Definition 2.1. A finite hypergroup is a finite set K = {c0, c1, . . . , cm−1} of basis vectors
spanning a ∗-algebra AK over C with neutral element c0 satisfying

• K is a basis of AK .

• K∗ = K.

• The structure constants nkij ∈ C defined by

cicj =
∑
k

nkijck

have unique involutions

c∗i = cj ⇐⇒ n0ij > 0,

c∗i 6= cj ⇐⇒ n0ij = 0,

and are positive and normalized

nkij ≥ 0,
∑
k

nkij = 1

for all indices i, j, and k.

The definition tells us that for each element ci in a hypergroup, there must exist an involution
c∗i which, when multiplied by ci, may “take us” to the neutral element. Thus c∗i can be
interpreted as some sort of inverse of ci. In general, multiplying an element by its involution
will only result in a linear combination containing c0. If K is a group, the structure constants
satisfy that for all i, j, k, nkij =1 if cicj = ck, otherwise 0. In this case all elements will have
an inverse, namely their involution.

We use |K| := m to denote the number of basis vectors, and when writing a basis vector
ci ∈ K it will be implicit that the index is in range, 0 ≤ i < |K|.

Remark. We will drop the finite in finite hypergroup for brevity and refer to it
only as hypergroup. Note that this is at odds with most of the literature that
uses hypergroup to denote a more general case.

Definition 2.2 (Commutative). Let K be a hypergroup. We say that K is commutative if
cicj = cjci for all indices i and j.

Note that in the case where K is a group the term abelian is usually used instead of
commutative.

Definition 2.3 (Cayley table). Let K be a hypergroup. By the Cayley table of K we
mean the table describing the multiplication acting on all pairs of elements in K, thus fully
describing the hypergroup. Note that the order of the operation will matter unless K is
commutative, thus the convention is to take the vertical elements first.

For example, if K = {c0, . . . , cm−1}, the Cayley table will look like Table 1.
1For example, the involution works like conjugate transposition, i.e. it holds that (cicj)∗ = c∗j c

∗
i , (c∗)∗ =

c, (a+ b)∗ = a∗ + b∗.

2



Table 1: The Cayley table of a hypergroup K.

· c0 . . . cj . . .
c0 c0 . . . cj . . .
...

...
. . .

...
. . .

ci ci . . .
∑
k n

k
ijck . . .

...
...

. . .
...

. . .

Table 2: Cayley table of a hypergroup K = {c0, c1, c2}.

c0 c1 c2
c0 c0 c1 c2
c1 c1

1
3c0 + 2

3c2 c1
c2 c2 c1

1
2c0 + 1

2c2

Example 2.4. Table 2 displays the Cayley table of a commutative hypergroupK = {c0, c1, c2}.
Note that the coefficients of all products sum to one as required for it to be a hypergroup.

Actually, K comes from a family of hypergroups called the class hypergroups, which are
described in detail in Appendix A.1. This specific hypergroup is the so called class hypergroup
of S3. We will return to this example later in the text.

Definition 2.5. Let K be a hypergroup and ci ∈ K. By the involution i∗ of the index i, we
mean the unique index solving ci∗ = ci

∗.

The somewhat abstract definition of a hypergroup is illuminated by the following theorem
which constitutes an alternative, perhaps more concrete, definition [2]. In the main part of
the present text, we only use the first part of the theorem; the converse is used in Appendix B
to construct examples of hypergroups.

Theorem 2.6. Let K be a hypergroup with structure constants nkij and index involution
i 7→ i∗. Then the following holds∑

k

nkij = 1 ∀i, j (1)

nkij ≥ 0 ∀i, j (2)∑
t

ntijn
l
tk =

∑
t

nlitn
t
jk ∀i, j, k, l (3)

nki0 = nk0i =

{
1, if i = k ∀i, k
0 otherwise ∀i, k

(4)

n0ij > 0 ⇐⇒ j = i∗ ∀i, j (5)

nkij = nk
∗

j∗i∗ ∀i, j, k. (6)

Conversely, for any (nkij)0≤i,j,k<m and ∗ satisfying these equations, define AK := Cm, K :=
{ei | 0 ≤ i < m} with operations multiplication and involution given for a, b ∈ AK and
0 ≤ k < m by

(ab)k :=
∑
i,j

aibjn
k
ij (7)

(a∗)i := ai∗ . (8)

Then K is a hypergroup.

3



Proof.
(1) and (2) follow from the hypergroup being normalized (

∑
k n

k
ij = 1) and positive (nkij ≥ 0)

respectively.
(3):

∑
t,l n

t
ijn

l
tkcl = (

∑
t n

t
ijct)ck = (cicj)ck = ci(cjck) = ci(

∑
t n

t
jkct) =

∑
t,l n

l
itn

t
jkcl

(4): nki0 = nk0i as it is the structure constant that describes the “chance” that the multiplica-
tion c0ci = cic0 = ci is equal to ck which only occurs when ci = ck i.e when i = k.
(5) is one of the axioms reformulated in terms of Definition 2.5.

(6): (cicj)
∗ =

{∑
k n

k
ijc
∗
k =

∑
k n

k
ijc
∗
k

c∗jc
∗
i =

∑
k n

k
j∗i∗ck =

∑
k n

k∗

j∗i∗c
∗
k

It now remains to prove that if (1)-(6) are satisfied and K and AK are defined as above,
then K is a hypergroup. We require that K satisfy the conditions of a hypergroup.
Being positive and normalized follows from (2) and (1) respectively.
K is obviously a basis of AK . c∗i = cj ⇐⇒ n0ij > 0 and c∗i 6= cj ⇐⇒ n0ij = 0 follow
from (5).
K = K∗ follow from the definition of K.

Remark. When we write Ck where k is a non-negative integer we mean the vector space of
k-tuples of complex numbers.

Lemma 2.7. The structure constants of any hypergroup satisfy

nkijn
0
kk∗ = n0ii∗n

i∗

jk∗ and
nkji
n0i∗i

=
nij∗k
n0k∗k

,

for any indices i, j, and k.

Proof. To prove this, we use associativity, uniqueness of the involution and the fact that K
is a basis. Look at the coefficient of c0 in (cicj)c

∗
k = ci(cjc

∗
k) and (c∗i c

∗
j )ck = c∗i (c

∗
jck).

Definition 2.8 (Weight, stationary element). Let K be a hypergroup with structure con-
stants (nkij). By the weight function w : K → C we mean w(ci) := 1/n0i∗i. By the weight of the
hypergroup we mean w(K) :=

∑
i w(ci). By the stationary element we mean ω :=

∑
i w(ci)ci.

Observe that the weight function gives some measure of “how invertible” an element is. If K
is a group then all weights are unity since it implies that all elements have an inverse.

As might be expected, the lack of invertibility prevents us from using the same proof tech-
niques as in the group case. The next theorem however often works as a substitute when
rearranging terms. It is based on a discussion of Haar functions by Lasser [3].

Theorem 2.9. Let K be a hypergroup spanning an algebra AK and let cj ∈ K. For any
linear map f : AK → V ∑

i

f(cjci)w(ci) =
∑
i

f(ci)w(ci),∑
i

f(cicj)w(c∗i ) =
∑
i

f(ci)w(c∗i ).

For any bilinear or sesquilinear map g : AK ×AK → V∑
i

g(cjci, ci)w(ci) =
∑
i

g(ci, c
∗
jci)w(ci),∑

i

g(cicj , ci)w(c∗i ) =
∑
i

g(ci, cic
∗
j )w(c∗i ).

Proof.∑
i

f(cjci)w(ci) =
∑
i,k

nkji
n0i∗i

f(ck) =
∑
i,k

nij∗k
n0k∗k

f(ck) =
∑
k

1

n0k∗k
f(ck) =

∑
k

f(ck)w(ck)
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∑
i

g(cjci, ci)w(ci) =
∑
i,k

nkji
n0i∗i

g(ck, ci) =
∑
i,k

nij∗k
n0k∗k

g(ck, ci) =
∑
k

g(ck, c
∗
jck)w(ck).

We used the hypergroup multiplication rule and linearity of the maps three times, and the
second identity of Lemma 2.7, to prove the first and third identities. The third identity also
relies on all nkij being real in the case where g is sesquilinear. The second and fourth identities
are similar.

The following proposition tells us that the weight of an element is equal to the weight of
its involution, and we will be using it implicitly and frequently in the coming chapters. It
also justifies the term “stationary element”.

Proposition 2.10. Let K be a hypergroup. If ci ∈ K then w(ci) = w(c∗i ) and ciω = ω = ωci.

Proof. Define ω∗ :=
∑
j cjw(c∗j ). Use the identity mapping f(x) := x in Theorem 2.9 to get

ciω = ω and ω∗ci = ω∗. By distributivity and using that cj 7→ c∗j is an involution it then
follows that

w(K)ω = ω∗ω = ω∗w(K),

and since 0 < w(K) < ∞ it follows by cancellation that ω = ω∗. Compare the coefficients
in front of ci on both sides of ω = ω∗ to get w(ci) = w(c∗i ). Finally ciω = ω = ω∗ = ω∗ci =
ωci.

This concludes the definitions and results we need from the theory of hypergroups to proceed
to develop its representation theory.

3 Representation Theory
In this section we develop a representation theory of hypergroups. It is largely a generaliza-
tion of the representation theory of finite groups, based on Steinberg’s textbook [4]. Much of
the theory survives this generalization with only minor changes. Proofs that required little
or no change are presented in the appendix for brevity.

We begin by developing some basic concepts and results of representation theory. Among
the most basic and important concepts are the so called irreducible representations, which
we will show are orthogonal with respect to a certain inner product. This is called the Shur
orthogonality relations, and is among our most important results. Using this we show that
the representations of a hypergroups are in a sense made of, or decomposed as, the irreducible
representations. Then we proceed to introduce the character of a representation, and prove
an orthogonality of characters. At the end of this section we prove that the decomposition
of representations is unique, and show how the the degrees of the irreducible representations
relate to the order of the hypergroup.

We begin by defining representations as a concept, and other related concepts and termi-
nology.

Definition 3.1 (Representation). LetK be a hypergroup with structure constants (nkij), and
let V be a finite-dimensional vector space. We say that ϕ : K → End(V ) is a representation
if

• ϕ(c0) = I (the identity mapping)

• ϕ(ci)ϕ(cj) =
∑
k n

k
ijϕ(ck) (a simple multiplication rule).

To avoid trivialities we also require that V is non-trivial.

Definition 3.2 (Degree). Let K be a hypergroup and ϕ : K → End(V ) a representation.
By the degree of ϕ we mean the dimension of the vector space V , i.e. degϕ = dimV .

Proposition 3.3. Let K be a hypergroup spanning an algebra AK . If ϕ : K → End(V ) is a
representation of K then its linear extension ϕ̃ : AK → End(V ) satisfies ϕ̃(ab) = ϕ̃(a)ϕ̃(b).
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Proof. Linear extension is possible because K is a basis for AK . If a, b ∈ AK decompose
a =

∑
aici and b =

∑
bici.

ab =
∑
i

aici
∑
j

bjcj =
∑
i,j

aicibjcj =
∑
i,j

aibjcicj =
∑
i,j,k

aibjn
k
ijck

ϕ̃(ab) =
∑
i,j,k

aibjn
k
ijϕ(ck)

∗
=
∑
i,j

aibjϕ(ci)ϕ(cj) =
∑
i,j

aiϕ(ci)bjϕ(cj)

=
∑
i

aiϕ(ci)
∑
j

bjϕ(cj) = ϕ̃(a)ϕ̃(b).

We used the simple multiplication rule of the representation in step ∗=.

Henceforth we make no distinction between a representation ϕ and its linear extension ϕ̃.
We now move on to the notion of equivalent representations, which in some sense can be
thought of as being the same. We also need the notion of a morphism between representa-
tions, which may seem daunting, but can be thought of as a generalized “change-of-basis”
map – generalized since it is not required to be invertible.

Definition 3.4 (Morphism). Let ϕ : K → End(V ) and ρ : K → End(W ) be representations.
We say that T : V →W is a morphism if it is linear and Tϕ(ci) = ρ(ci)T for all ci ∈ K. We
denote this by T ∈ Hom(ϕ, ρ).

Definition 3.5 (Equivalence). Let ϕ : K → End(V ) and ρ : K → End(W ) be representa-
tions. We say that ϕ and ρ are equivalent if there exists an invertible T ∈ Hom(ϕ, ρ), i.e.
ϕ = T−1ρT . We denote this by ϕ T∼ ρ or simply ϕ ∼ ρ.

Proposition 3.6. Let K be a hypergroup. Then ∼ is an equivalence relation of representa-
tions of K.

Proof. See appendix D.

Theorem 3.7. Let ϕ : K → End(V ) be a representation. Then there is an inner product
(·, ·) : V × V → C such that if ci ∈ K and u, v ∈ V then (ϕ(ci)u, v) = (u, ϕ(c∗i )v).

The theorem is proved for groups by what is called an “averaging trick” construction in
[4]. For hypergroups, this average needs to be weighted – by the weight function.
Proof. Because V is finite-dimensional, there is at least one inner product [·, ·] on V . Define

(u, v) :=
∑
i

[ϕ(ci)u, ϕ(ci)v]w(ci).

(·, ·) is obviously symmetric and bilinear, and it is indeed positive definite; dropping most
terms gives the estimate (u, u) ≥ [ϕ(c0)u, ϕ(c0)u]w(c0) = [u, u]. The identity follows as
stated, from Theorem 2.9 by choosing g(x, y) := [ϕ(x)u, ϕ(y)v]:

(ϕ(cj)u, v) =
∑
i

g(cicj , ci)w(ci) =
∑
i

g(ci, cic
∗
j )w(ci) = (u, ϕ(c∗j )v).

Corollary 3.8. Let ϕ : K → End(V ) be a representation, and let (·, ·) : V ×V → C be as in
Theorem 3.7. Then there exists an orthonormal basis of V with respect to (·, ·). For cz ∈ K,
the matrix of ϕ(c∗z) with respect to this basis is given by ϕ(c∗z)ij = ϕ(cz)ji.

Proof. To find an orthonormal basis one needs a vector space with an inner product.
Then there exists a basis on that space to which we can apply Gram-Schmidt to make it
orthonormal. Call the orthonormal basis (ei). For the second identity we we use Theorem 3.7
to show that

ϕ(c∗z)ij = 〈ei, ϕ(c∗z)ej〉 = 〈ϕ(cz)ei, ej〉 = 〈ej , ϕ(cz)ei〉 = ϕ(cz)ji.
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Definition 3.9 (Direct sum). By the (external) direct sum ϕ⊕ρ : K → End(V ⊕W ) of two
representations ϕ : K → End(V ) and ρ : K → End(W ) we mean

(ϕ⊕ ρ)(ci) := ϕ(ci)⊕ ρ(ci)

((A⊕B)(v, w) := (Av,Bw) as in linear algebra.)

Note that in this definition (ϕ(ci)v, ρ(ci)w) is just a pair and has nothing to do with the
inner product mentioned in Theorem 3.7 and Corollary 3.8.

Example 3.10. In the matrix sense the direct sum of two matrices A and B works as follows.

A⊕B =

(
A 0
0 B

)
Proposition 3.11. If ϕ and ρ are representations then ϕ⊕ ρ is a representation.

Proof. See appendix D.
Now we wish to introduce irreducibility, which is a central concept of representation

theory. An irreducible representation can be likened to the prime numbers, as we will later
see that all representations are equivalent to a direct sum of irreducible representations.
Before we can define irreducibility, we need to introduce the notion of invariance.

Definition 3.12 (Invariant subspace). Let ϕ : K → End(V ) be a representation, and let U
be a subspace of V . We say that U is an invariant subspace of V if for all ci ∈ K

u ∈ U =⇒ ϕ(ci)u ∈ U.

Definition 3.13 (Irreducibility, Reducibility). Let ϕ : K → End(V ) be a representation.
We say that ϕ is irreducible if the only invariant subspaces of V are {0} and V . If ϕ is not
irreducible, we call it reducible.

Now that we have defined irreducibility, we will provide an example, and some simple
results about irreducible representations.

Proposition 3.14. Let ϕ : K → End(V ) be a representation. If deg(ϕ) = 1, then ϕ is
irreducible.

Proof. If deg(ϕ) = 1, then dim(V ) = 1. Thus the only subspaces of V are {0} and V itself,
thus ϕ is irreducible.

Example 3.15. Recall K = {c0, c1, c2} from Example 2.4. We will now determine all
irreducible representations of K.

By the definition of a representation, the representations ϕ : K → C must satisfy
ϕ(ci)ϕ(cj) =

∑
k n

k
ijϕ(ck) where nkij are the structure constants. Using this together with the

structure constants from Table 3a, and letting ϕi := ϕ(ci) temporarily, we see that ϕ0 = 1
always, and we end up with the system of equations

ϕ2
1 =

1

3
+

2

3
ϕ2

ϕ2ϕ1 = ϕ1

ϕ2
2 =

1

2
+

1

2
ϕ2.

Assuming ϕ1 6= 0, the second equation forces ϕ2 = 1, and then we have ϕ2
1 = 1, thus ϕ1 = −1

or ϕ1 = 1. On the other hand, if ϕ1 = 0, we get ϕ2 = − 1
2 .

We end up with three solutions, and since these are all the solutions, they are all the
irreducible representations of this hypergroup.

Proposition 3.16. Let ϕ : K → End(V ) be a mapping such that ϕ(ci) = I for all ci ∈ K.
Then ϕ is a representation. It is irreducible if and only if deg(ϕ) = 1.
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Proof. The mapping trivially satisfies the requirement that ϕ(c0) = I. For the other
requirement, note that ϕ(ci)ϕ(cj) = 1 =

∑
k n

k
ij =

∑
k n

k
ij · 1 =

∑
k n

k
ijϕ(ck), and so ϕ is a

representation. By Proposition 3.14 it is irreducible if deg(ϕ) = 1.
Now assume that deg(ϕ) > 1. Then dim(V ) > 1, and so there exists a subspace U

of V such that dim({0}) < dim(U) < dim(V ). Now note that for any u ∈ U and ci ∈ K,
ϕ(ci)u = u ∈ U . Thus U is an invariant subspace, and so ϕ isn’t an irreducible representation
if deg(ϕ) > 1.

Definition 3.17 (Trivial representation). Let K be a hypergroup with elements (ci)0≤i<|K|.
If ϕ is a representation of K such that ϕ(ci) = 1 for all i, then ϕ is called the trivial
representation of K.

Remark. In cases where we have a list of numbered irreducible representations, then a
representation numbered with a zero is always assumed to be the trivial representation. For
example, given a list of irreducible representations (ϕ(i)), then ϕ(i) is the trivial representation
if and only if i = 0.

We now introduce the notion of decomposabillity, which can be seen as way in which a
representation is made of other representations. This can be compared to the factorization
of integers by primes. And just as the integers have their primes, a representation can be
decomposed into irreducible representations.

Definition 3.18 (Decomposability). Let ϕ : K → End(V ) be a representation. We say that
ϕ is decomposable if there are non-trivial invariant subspaces V1 and V2 such that V = V1⊕V2.

We now formulate a theorem which shows that equivalent representations share many
important features, which justifies why one might think of them as being the same.

Theorem 3.19 (Theorem of Equivalent Representations). Let ϕ : K → End(V ) and ρ :

K → End(W ) be equivalent representations, i.e. ϕ T∼ ρ. Then:

(i) If U is an invariant subspace of V , then TU is an invariant subspace of W.

(ii) If ρ is irreducible, then ϕ is irreducible.

(iii) If ρ is decomposable, then ϕ is decomposable.

(iv) If ρ is completely reducible, then ϕ is completely reducible.

Proof. See appendix D.

Proposition 3.20. Hom(ϕ, ρ) is a linear subspace of Hom(V,W ).

Proof. See appendix D.

Note that I, the identity mapping, is a morphism from any ϕ to itself, i.e ϕ ∈ Hom(ϕ,ϕ).
The following lemma is used to prove Schur’s lemma, and although neither of them is proved
in the main text, they are both interesting results. Schur’s lemma will eventually be used to
prove Schur’s orthogonality relations.

Lemma 3.21. If T ∈ Hom(ϕ, ρ), then kerT and imT are invariant.

Proof. See appendix D.

Theorem 3.22 (Schur’s lemma). Let ϕ : K → End(V ) and ρ : K → End(W ) be irreducible
representations.

(i) If T ∈ Hom(ϕ, ρ) is nonzero, then T is invertible.

(ii) If T ∈ Hom(ϕ,ϕ), then T = λI for some scalar λ ∈ C.

Proof. See appendix D.

We now aim to show that every representation decomposes into a direct sum of irreducible
representations. A representation which is decomposed in this way is called completely
decomposable, which is an important concept in representation theory.
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Definition 3.23 (Completely reducible/decomposable). Let ϕ : K → End(V ) be a repre-
sentation. We say that ϕ is completely reducible if V =

⊕
0≤i<n Vi where Vi are invariant

subspaces and each restriction ϕ : K → End(Vi) is irreducible. Similarly, we say that ϕ is
completely decomposable if ϕ ∼

⊕
0≤i<n ϕ

(i) where ϕ(i) are irreducible representations.

Lemma 3.24. Every representation is either irreducible or decomposable.

Proof. It should suffice2 to prove that every reducible representation is decomposable.
Therefore, suppose ϕ : K → End(V ) is reducible: U is an invariant subspace and 0 < U < V .
Pick an inner product (·, ·) : V × V → C as in Theorem 3.7. The orthogonal complement

U⊥ := {v ∈ V | ∀u ∈ U : (v, u) = 0}

is an invariant subspace: if v ∈ U⊥, ci ∈ K, u ∈ U then (ϕ(ci)v, u) = (v, ϕ(c∗i )u) = 0
according to Theorem 3.7 and since U is invariant; so ϕ(ci)v ∈ U⊥. Finally V = U ⊕ U⊥ in
the internal sense, by elementary linear algebra.

Armed with the above, the proof of complete reducibility and decomposability falls out
naturally as in the group case [4]. In the group case, the following theorem is calledMaschke’s
theorem.

Theorem 3.25. Every representation is completely reducible and completely decomposable.

Proof. See appendix D.

Definition 3.26. Let K be a hypergroup. Define CK to be the vector space

CK := {f : K → C}

with point-wise addition and scalar multiplication.

We now proceed to define another inner product 〈·, ·〉 and a linear map P which will be
used to acquire the final pieces to prove the Schur orthogonality relations. P is defined using
the “averaging trick” of Theorem 3.7. The name P comes from it being a projection in the
group case.

Proposition 3.27. Let K be a hypergroup. Define 〈·, ·〉 on the linear space CK by

〈a, b〉 :=
1

w(K)

∑
z

b(cz)a(cz)w(cz).

Then 〈·, ·〉 is an inner product.

Proof. See appendix D.

Definition 3.28. Let ϕ : K → End(V ) and ρ : K → End(W ) be representations. Define
P : Hom(V,W )→ Hom(ϕ, ρ) by

P (T ) :=
1

w(K)

∑
i

ρ(ci)Tϕ(c∗i )w(ci).

It is not immediately obvious from the definition that P maps all elements in Hom(V,W )
to elements in Hom(ϕ, ρ), but the following proposition verifies that this indeed is the case.
This property of P is crucial to the way it is used in the proof of the Schur orthogonality
relations.

Proposition 3.29. Let ϕ : K → End(V ) and ρ : K → End(W ) be representations. Then
P : Hom(V,W )→ Hom(ϕ, ρ) is a linear map.

2We use the principle of excluded middle, according to which “any statement is true or false.” In particular
any given representation should be irreducible or reducible. Thus, if every reducible representation is decom-
posable, the theorem follows. However, when it comes to computations, this principle is flawed, and this is
sometimes discussed among mathematicians. For more information, read about constructive mathematics.
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Proof. If T ∈ Hom(V,W ) and cj ∈ K define g(x, y) := ρ(x)Tϕ(y∗). Theorem 2.9 gives

P (T )ϕ(cj) =
1

w(K)

∑
i

g(ci, c
∗
jci)w(ci) =

1

w(K)

∑
i

g(cjci, ci)w(ci) = ρ(cj)P (T ).

The proof of linearity is obvious.
The property of P stated above is not its only interesting property. It is also connected

to the irreducible representations through the inner product. To be prove this, we first need
the following Lemma.

Lemma 3.30. Let A ∈ Mrm(C), B ∈ Mns(C), and Elj ∈ Mmn(C), where Elj is a matrix
with a 1 in position (l, j), and 0 elsewhere. Then

(AEljB)ki = aklbji,

where A = (aij) and B = (bij).

Proof. See appendix D.

We can now move on to the following proposition, which shows that the inner product
of the representations is encoded in the “projection matrix”.

Proposition 3.31. Let ϕ : K → End(V ) and ρ : K → End(W ) be representations, where
deg V = n, and degW = m. Let Elj ∈ Mmn(C) be a matrix with a 1 in position lj and 0
elsewhere. Then 〈ϕij , ρkl〉 = P (Elj)ki.

Proof. By Corollary 3.8, we have ϕij(cz) = ϕji(c
∗
z). Using this and Lemma 3.30, we compute

〈ϕij , ρkl〉 =
1

w(K)

∑
z

ρkl(cz)ϕij(cz)w(cz) =
1

w(K)

∑
z

(ρ(cz)Eljϕ(c∗z))kiw(cz) = P (Elj)ki.

In order to formulate the Schur orthogonality relations, we need a concept which is not
needed in the group case; namely that of a hyperdimension. In the group case the hyperdi-
mension of a representation is just the dimension of its associated vector space, which justifies
the name.

Definition 3.32 (Hyperdimension). Let ϕ : K → End(V ) be an irreducible representation,
and choose a basis for V as in Corollary 3.8. By the hyperdimension of ϕ we mean

k(ϕ) :=
1

〈ϕts, ϕts〉
,

for any indices t and s.

The Schur orthogonality relations show in particular that the hyperdimension is well-
defined, i.e. the value of k(ϕ) is independent of the choice of t and s.

Theorem 3.33 (Schur Orthogonality Relations). Let ϕ : K → End(V ) and ρ : K → End(W )
be inequivalent irreducible representations. Then:

(i) 〈ϕij , ρkl〉 = 0,

(ii) 〈ϕij , ϕkl〉 =

{
1

k(ϕ) if (i, j) = (k, l)

0 otherwise,

and k(ϕ) is well-defined.

Proof. (i) By Proposition 3.31, 〈ϕij , ρkl〉 = P (Elj)ki, and by Proposition 3.29, P (Elj) ∈
Hom(ϕ, ρ). As Theorem 3.22 states that all T ∈ Hom(ϕ, ρ) are either zero or invertible, and
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as the existence of such an invertible T would imply ϕ ∼ ρ, we conclude that P (Elj) = 0, so
that 〈ϕij , ρkl〉 = 0.

(ii) Using the same theorems again, we see that

〈ϕij , ϕkl〉 = P (Elj)ki and P (Elj) = λI.

From this, we can easily see that 〈ϕij , ρkl〉 = 0 when i 6= k, and also that as long as i = k,
the value of 〈ϕij , ρkl〉 is independent of the value of i and k.

We may now show the following

〈ϕij , ϕkl〉 =
1

w(K)

∑
z

ϕij(cz)ϕkl(cz)w(c∗z) =
1

w(K)

∑
z

ϕji(c
∗
z)ϕkl(cz)w(c∗z)

=
1

w(K)

∑
z

ϕji(cz)ϕkl(c
∗
z)w(cz) =

1

w(K)

∑
z

ϕji(cz)ϕlk(cz)w(c∗z) = 〈ϕlk, ϕji〉

which proves that 〈ϕij , ϕkl〉 = 0 when j 6= l as well, and also that as long as j = l, 〈ϕij , ϕkl〉
is independent of the value of j and l. From this we may state

〈ϕij , ϕkl〉 =

{
1

k(ϕ) if (i, j) = (k, l)

0 otherwise.

Using this orthogonality we can now demonstrate that there are only a finite number of
inequivalent irreducible representations.

Corollary 3.34. Let K be a hypergroup. Then the number of inequivalent irreducible repre-
sentations of K is finite, and if (ϕ(i)) is a complete list of inequivalent irreducible represen-
tations, then 1 ≤

∑
i deg(ϕ(i))2 ≤ K.

Proof. The first inequality follows from that ϕ(0)(cj) := 1 for all cj ∈ K is an irreducible
representation of K by Proposition 3.16. For the second, note that {ϕ(k)

ij , 0 ≤ i, j, k < |K|}
is an orthogonal set by Theorem 3.33. And since this set has

∑
i deg(ϕ(i))2 elements, and all

elements are in CK , we know that
∑
i deg(ϕ(i))2 ≤ dim(CK) = |K|.

Later we will see that this final inequality is actually an equality.
As we now know that k(ϕ) is well-defined we derive an upper limit to its value.

Proposition 3.35. Let K be a hypergroup and ϕ : K → End(V ) an irreducible representa-
tion. Then w(K) ≥ k(ϕ).

Proof. Using the definition of hyperdimension, we compute

1

k(ϕ)
= 〈ϕii, ϕii〉 =

1

w(K)

∑
z

ϕii(cz)ϕii(cz)w(cz)

=
1

w(K)

∑
z

|ϕii(cz)|2w(cz) ≥
1

w(K)
|ϕii(c0)|2w(c0) =

1

w(K)

and thus w(K) ≥ k(ϕ).
We have now introduced and derived the most fundamental parts of the representation

theory of finite hypergroups. Among the chief results we have the Schur orthogonality,
and the fact that all representations can be decomposed into a direct sum of irreducible
representations. To show that this decomposition is unique we will need to first introduce
the concept of the character of a representation, which is also interesting in and of itself.
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3.1 Character Theory
In this section, we will be looking at the characters of representations. We will see that
a lot of information about the hypergroup is encoded in the characters of the irreducible
representations. The main results in this section will be the orthogonality of characters, the
regular representation, and the uniqueness of decomposition.

We begin by defining the character of a representation.

Definition 3.36 (Character). Let ϕ : K → End(V ) be a representation. The character
χϕ : K → C is defined as

χϕ(ck) = tr(ϕ(ck)).

By an irreducible character, we mean the character of an irreducible representation.

We will now proceed to prove some basic properties of characters.

Proposition 3.37. Let ϕ : K → End(V ) be a representation. Then χϕ(c0) = degϕ.

Proof. By the definition of character, χϕ(c0) = tr(ϕ(c0)) = tr(I) = degϕ.

Proposition 3.38. Let K be a hypergroup. If ϕ and ρ are representations of K, then
χ(ϕ⊕ρ) = χϕ + χρ.

Proof. This follows from the definition of character and direct sum.
Although the following theorem is not very hard to show, it is important as it shows that

equivalent representations have the same character which is a coveted propery.

Theorem 3.39. Let ϕ : K → End(V ) and ρ : K → End(W ) be representations. If ϕ T∼ ρ,
then χϕ(ck) = χρ(ck) for all ck ∈ K.

Proof. By equivalence, ϕ(ck) = T−1ρ(ck)T holds for all ck ∈ K. Recall that always
tr(AB) = tr(BA). Therefore,

χϕ(ck) = tr(ϕ(ck)) = tr(T−1ρ(ck)T ) = tr(TT−1ρ(ck)) = tr(ρ(ck)) = χρ(ck).

Now that we have established some of the basic properties of characters we move on to
their orthogonality relations, which is an important result.

Theorem 3.40 (Orthogonality of characters). Let ϕ : K → End(V ) and ρ : K → End(W )
be irreducible representations. Then

〈χϕ, χρ〉 =

{
degϕ
k(ϕ) if ϕ ∼ ρ
0 otherwise.

In particular, if ϕ ∼ ρ then k(ϕ) = k(ρ).

Proof. Observe that χϕ =
∑
i ϕii and χρ =

∑
i ρii. The terms internal to these sums are

pairwise orthogonal by Theorem 3.33, and the sums are orthogonal to each other unless ϕ ∼ ρ
by Theorem 3.33, in which case by Theorem 3.39 and the Pythagorean theorem for inner
product spaces we get

〈χϕ, χρ〉 = 〈χϕ, χϕ〉 = 〈
∑
i

ϕii,
∑
i

ϕii〉 =
∑
i

〈ϕii, ϕii〉 =
∑

0≤i<deg(ϕ)

1

k(ϕ)
=

deg(ϕ)

k(ϕ)
.

Following this theorem we now define a useful construction called the regular represen-
tation, which we will see later, “contains” all irreducible representations in some sense, and
will aid us in several ways in other theorems.

Definition 3.41 (Regular representation). Let K be a hypergroup. By its regular represen-
tation L : K → End(C|K|) we mean the k-indexed family of transformations given in matrix
form by

L(ck)ij := nikj .

12



Despite its name, it is not obvious that L is a representation at all. The next proposition
proves that it is a representation.

Proposition 3.42. Let K be a hypergroup. Then the regular representation L : K →
End(C|K|) is a representation.

Proof. L(c0) = I since L(c0)ij = ni0j =

{
1 if i = j,

0 otherwise,
by Theorem 2.6 (4).

For the second requirement, use Theorem 2.6 (3):

(L(cg)L(ck))ij =
∑
x

L(cg)ixL(ck)xj =
∑
x

nigxn
x
kj =

∑
y

nygkn
i
yj =

∑
y

nygkL(cy)ij .

Example 3.43. We now want to continue to use Example 2.4 to contextualise the regular
representation. We therefore calculate the regular representation of all the elements of K
which gives us the following matrices.

L(c0) =

1 0 0
0 1 0
0 0 1

 L(c1) =

0 1/3 0
1 0 1
0 2/3 0

 L(c2) =

0 0 1/2
0 1 0
1 0 1/2



We now define the notion of multiplicity in order to show in what sense the decomposition
of a representation is unique. As a special case of this the decomposition of L will be studied,
which will be used to derive an interesting result. When talking about multiplicities, mϕ is
to be understood as the direct sum mϕ :=

⊕
0≤k<m ϕ = ϕ⊕ · · · ⊕ ϕ.

Definition 3.44 (Multiplicity). If ϕ ∼
⊕

0≤i<smiϕ
(i) = m0ϕ

(0) ⊕ · · · ⊕ms−1ϕ
(s−1), where

ϕ(i) are inequivalent irreducible representations, then mi is called the multiplicity of ϕ(i) for
ϕ.

Using this notion of multiplicity, the next proposition shows what is meant by the de-
composition being unique, and proves that it is unique.

Proposition 3.45. If ϕ ∼
⊕
miϕ

(i) and ρ ∼
⊕
rjρ

(j), where (ϕ(i)) is a list of inequivalent
irreducible representations, and (ρ(j)) is another list of inequivalent irreducible representa-
tions, and ϕ ∼ ρ, then mi = rj whenever ϕ(i) ∼ ρ(j). Thus the multiplicity of a representation
is well-defined and respects equivalence.

Proof. Using the orthogonality of characters we get

〈χϕ(i) , χϕ〉 =
∑
k

mk 〈χϕ(i) , χϕ(k)〉 = mi 〈χϕ(i) , χϕ(i)〉

〈χρ(j) , χρ〉 =
∑
k

rk 〈χρ(j) , χρ(k)〉 = rj 〈χρ(j) , χρ(j)〉 .

Since the characters in both equations are equal by Theorem 3.39, we get mi = rj .
Now that we have demonstrated the uniqueness of the decomposition, we return to the

regular representation.

Theorem 3.46. If K is a hypergroup, then the regular representation is decomposed as

L ∼
⊕

0≤i<s

deg(ϕ(i))ϕ(i) = deg(ϕ(0))ϕ(0) ⊕ · · · ⊕ deg(ϕ(s−1))ϕ(s−1)

where (ϕ(i))0≤i<s is a complete list of inequivalent irreducible representations of K.

13



Proof. Let di := deg(ϕ(i)) and ki := k(ϕ(i)). By Theorem 3.25 we can decompose L ∼⊕
imiϕ

(i). Taking the trace of this we get χL =
∑
imiχϕ(i) so that by Theorem 3.40

〈χϕ(i) , χL〉 = midi/ki. On the other hand, by definition,

〈χϕ(i) , χL〉 =
1

w(K)

∑
z

χL(cz)χϕ(i)(cz)w(cz).

Expanding χL(cz) =
∑
u n

u
zu by definition, rewriting nuzuw(cz) = nz

∗

uu∗w(cu) by Lemma 2.7
and rewriting χϕ(i)(cz) = χϕ(i)(c∗z) by algebraic manipulation, we continue

〈χϕ(i) , χL〉 =
1

w(K)

∑
z,u

nz
∗

uu∗χϕ(i)(c∗z)w(cu),

where
∑
z n

z∗

uu∗χϕ(i)(c∗z) = χϕ(i)(cuc
∗
u) = tr(ϕ(i)(cu)ϕ(i)(cu)∗) =

∑
x,y ϕ

(i)
xy(cu)ϕ

(i)
xy(cu) so that

〈χϕ(i) , χL〉 =
∑
x,y

〈ϕ(i)
xy , ϕ

(i)
xy〉 =

d2i
ki
.

Equating these formulas for 〈χϕ(i) , χL〉 we get midi/ki = d2i /ki and thus mi = di.
Using the decomposition of L, we are able to prove an equality which we previously stated

without proof.

Corollary 3.47. Let K be a hypergroup, and let (ϕ(i)) be a complete list of irreducible
representations of K. Then |K| =

∑
i deg(ϕ(i))2.

Proof. By Theorem 3.46, L ∼
⊕

0≤i<s deg(ϕ(i))ϕ(i). Using this together with the basic
properties of characters, we have

|K| = degL = χL(c0) =
∑
i

deg(ϕ(i))χϕ(i)(c0) =
∑
i

deg(ϕ(i))2.

Armed with this equality, we can prove that the irreducible representations can be used
as a basis for CK , which is shown in the following theorem.

Theorem 3.48. Let K be a hypergroup. If (ϕ(i)) is a complete list of inequivalent irreducible
representations, then the set {ϕ(k)

ij , 0 ≤ i, j, k < |K|} is a basis of CK .

Proof. By Corollary 3.34 there are finitely many irreducible representations, and thus there
is such a thing as a complete list. The set {ϕ(k)

ij , 0 ≤ i, j, k < |K|} has
∑

deg(ϕ(i)) elements,
and by the Schur orthogonality (Theorem 3.33) the set is orthogonal. Note that all the el-
ements in this set are functions in CK . And as |K| =

∑
deg(ϕ(i))2 by Corollary 3.47, and

dim(CK) = |K|, the theorem follows.

We have now constructed the framework for a representation theory of hypergroups com-
plete with a consideration of the character theory as well. We will now proceed to consider
the more restricted category of commutative hypergroups which will allow us to define a
notion of Fourier analysis on hypergroups.

4 Commutative Hypergroups
In this section we first consider theorems which implies commutativity of a hypergroup. We
then restrict ourselves to the study of commutative hypergroups, and of their representation
theory. This restriction is imposed as it leads to further tools and theorems that one might
find useful. Furthermore, a portion of the hypergroups that may be of particular interest
are commutative. After this we proceed to develop a notion of Fourier analysis on hyper-
groups, which is then used to develop a method for computing the structure constants of a
commutative hypergroup from its characters.

14



Proposition 4.1. Let K be a hypergroup. If all its irreducible representations have degree
one, the hypergroup is commutative.

Proof. Let (ϕ(i)) be a complete list of irreducible representations. Let di := deg(ϕ(i))
and ki := k(ϕ(i)). Having degree one, those representations commute. By Theorem 3.46,
L ∼

⊕
i diϕ

(i). Then

ϕ(i)(csct) = ϕ(i)(cs)ϕ
(i)(ct) = ϕ(i)(ct)ϕ

(i)(cs) = ϕ(i)(ctcs)

L(csct) =
⊕
i

diϕ
(i)(csct) =

⊕
i

diϕ
(i)(ctcs) = L(ctcs).

It is readily verified that L(csct)u0 =
∑
v n

v
stL(cv)u0 =

∑
v n

v
stn

u
v0 = nust. Thus we have

that
csct =

∑
u

nustcu =
∑
u

L(csct)u0cu =
∑
u

L(ctcs)u0cu =
∑
u

nutscu = ctcs.

Using this, we may prove the following proposition, which shows that all hypergroups of
order strictly less than five must be commutative. This proposition is as general as possible,
in the sense that a non-commutative hypergroup of order five is given in [5].

Proposition 4.2. All hypergroups of order strictly less than five are commutative.

Proof. Let K be a hypergroup of order strictly less than 5, with a complete list of irreducible
representations (ϕ(i)). Let di := deg(ϕ(i)) and ki := k(ϕ(i)). We have shown in Corollary 3.47
that

|K| =
∑
i

d2i .

Since the mapping ϕ(ck) = 1 for all ck is an irreducible representation for any hypergroup,
it must be one of the ϕ(i). We may assume that we have numbered the irreducible represen-
tations so that ϕ(0)(ck) = 1 for all ck. We now have

|K| = 1 +
∑
i6=0

d2i .

Now we see that all di must be 1, because if we assume that at least one of them is strictly
greater than one we get

1 +
∑
i 6=0

d2i ≥ 1 + 22 = 5 > |K|

which is a contradiction. And so di = 1 for all i, which by Proposition 4.1 gives us that K
is commutative.

The previous results show conditions that imply commutativity. From this point on we
will instead restrict ourselves to the study of commutative hypergroups. We start with an
important result for commutative hypergroups, which will be used frequently thoughout the
rest of the text.

Proposition 4.3. Let K be a hypergroup. If K is commutative and ϕ is an irreducible
representation of K, then ϕ has degree 1.

Proof. Since all ϕ(ci)ϕ(cj) = ϕ(cj)ϕ(ci), every ϕ(ci) is an endomorphism of ϕ, and so is
equal to some λiI by Theorem 3.22. Choose a nonzero vector v ∈ V . From ϕ(ci)v = λiv and
irreducibility it follows that Cv = V .

Corollary 4.4. If K is a commutative hypergroup, then there are exactly |K| irreducible
representations of K.

Proof. This follows from Proposition 4.3 and Corollary 3.47.
Since deg(ϕ) = 1 for all irreducible representations of commutative hypergroups, the

irreducible representations are equal to the irreducible characters. We will therefore not
make any distinction between these in the text about commutative hypergroups. Using this,
we may now show that the irreducible characters form a basis for CK .
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Theorem 4.5. Let K be a commutative hypergroup. Then the irreducible characters form a
basis for CK .

Proof. As stated above, the irreducible characters are equal to the irreducible representa-
tions. Theorem 3.48 now implies that the irreducible characters are a basis for CK .

We have now exemplified conditions which imply commutativity, and have then conversely
derived some facts that are implied by commutativity. We will now proceed to study Fourier
analysis on commutative hypergroups.

4.1 Fourier Analysis on Hypergroups
In this section we explore the theory of Fourier analysis on hypergroups which will culminate
in a method for computing the structure constants of a commutative hypergroup from its
character table. The section is largely based on Steinberg [4]. Note that the only differences
from the group case is that k(ϕ) is not necessarily equal to 1, the exchange of the order of
the group with the weight of the hypergroup, and the addition of the weight function to the
Fourier transform.

We begin by defining the dual space of a hypergroup.

Definition 4.6 (Dual space). Let K be a hypergroup. By the dual space of K, denoted by
K̂, we mean the set of all irreducible characters ϕ : K → C.

Note that these are equal to the representations themselves as long as K is commutative,
and so one can speak of the hyperdimension of a character. We will now introduce the Fourier
transform, which is a function on the dual space.

Definition 4.7 (Fourier transform). Let K be a commutative hypergroup, and let f : K →
C. We define the Fourier transform f̂ : K̂ → C for ϕ ∈ K̂ as

f̂(ϕ) := w(K) 〈ϕ, f〉 =
∑
cz∈K

f(cz)ϕ(cz)w(cz).

Example 4.8. If ϕ(i), ϕ(j) ∈ K̂, then

ϕ̂(j)(ϕ(i)) = w(K) 〈ϕ(i), ϕ(j)〉 =

{
w(K)
k(ϕ(i))

if i = j

0 otherwise.

Example 4.9. The regular representation satisfies

L̂ij(ϕ) =
∑
cz

Lij(cz)ϕ(cz)w(cz) =
∑
cz

nizjϕ(cz)w(cz) =
∑
cz

nz
∗

ji∗ϕ(cz)w(ci)

= w(ci)
∑
cz

nzji∗ϕ(cz) = w(ci)ϕ(ci)ϕ(cj).

Just as one might expect from Fourier analysis on R, there is not only a Fourier transform,
but also an inverse Fourier transform.

Theorem 4.10 (Fourier inversion). Let K be a commutative hypergroup and f : K → C,
then

f =
1

w(K)

∑
ϕ∈K̂

k(ϕ)f̂(ϕ)ϕ.

Proof. Recall, from linear algebra, that the orthogonal projection of a vector v into the
span of a list of pairwise orthogonal vectors (u)0≤i<n is given by

∑
0≤i<n

〈u,v〉
〈u,u〉u. Also, the

projection of a vector u already spanned by (v) is u. Thus, since the characters are an
orthogonal basis for CK by Theorem 3.40 and Theorem 4.5, so we have

f =
∑
ϕ∈K̂

〈ϕ, f〉
〈ϕ,ϕ〉

ϕ =
∑
ϕ∈K̂

k(ϕ) 〈ϕ, f〉ϕ =
1

w(K)

∑
ϕ∈K̂

w(K)k(ϕ) 〈ϕ, f〉ϕ

=
1

w(K)

∑
ϕ∈K̂

k(ϕ)f̂(ϕ)ϕ
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Proposition 4.11. The map from f to f̂ is an invertible and linear transformation.

Proof. The invertibility follows from Theorem 4.10. The linearity follows from computing

̂(nf1 +mf2)(ϕ) = w(K) 〈ϕ, nf1 +mf2〉 = nw(K) 〈ϕ, f1〉+mw(K) 〈ϕ, f2〉 =

= nf̂1 +mf̂2,

and so the map is linear.
Now that we have a Fourier transform, we define a product on the space of functions from

K to C, i.e. CK , which we will later see corresponds to pointwise multiplication under the
Fourier transform.

Definition 4.12 (Convolution product). Let K be a commutative hypergroup. Then we
define

(a ∗ b) (cz) :=
∑
cx∈K

a(czc
∗
x)b(cx)w(cx),

for functions a, b ∈ CK .

Proposition 4.13. Let K be a commutative hypergroup. The convolution product is com-
mutative, i.e.

(a ∗ b) (cz) = (b ∗ a) (cz) (cz ∈ K)

for all functions a, b ∈ CK .

Proof. We compute

(a ∗ b) (cz) =
∑
cx∈K

a(czc
∗
x)b(cx)w(cx) =

∑
cs,cx∈K

a(cs)b(cx)nszx∗w(cx) =
∑

cs,cx∈K
a(cs)b(cx)nxs∗zw(cs)

=
∑
cs∈K

a(cs)b(c
∗
scz)w(cs) =

∑
cs∈K

a(cs)b(czc
∗
s)w(cs) = (b ∗ a) (cz),

where we have used Theorem 2.9 and the fact that K is commutative.
Now we are ready to demonstrate the earlier claim that the convolution product corre-

sponds to pointwise multiplication under the Fourier transform.

Theorem 4.14. Let K be a commutative hypergroup. Then the Fourier transform and con-
volution product satisfy

(̂a ∗ b)(ϕ) = â(ϕ) · b̂(ϕ) (ϕ ∈ K̂)

Proof. Use Theorem 2.9 with g(x, y) := ϕ(x)a(y), and note that ϕ(czcx) = ϕ(cz)ϕ(cx).

â ∗ b(ϕ) =
∑
z,x

ϕ(cz)a(czc
∗
x)b(cx)w(cx)w(cz) =

∑
z,x

ϕ(czcx)a(cz)b(cx)w(cx)w(cz)

=
∑
z

ϕ(cz)a(cz)w(cz)
∑
x

ϕ(cx)b(cx)w(cx) = â(ϕ) · b̂(ϕ).

We have now developed a basic theory of Fourier analysis on commutative hypergroups.
In the rest of this section we will use this theory to derive a method for obtaining the structure
constants of a hypergroup from its characters.

To achieve this we first need to derive a number of results, starting with the following.

Lemma 4.15. Let K be a commutative hypergroup. Then the structure constants satisfy

nsij =
w(cs)

w(K)

∑
ϕ∈K̂

k(ϕ)ϕ(cs)ϕ(ci)ϕ(cj).
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Proof. By the definition of the regular representation, we know that nsij = Lsj(ci), and
from Example 4.9 we know that L̂sj(ϕ) = w(cs)ϕ(cs)ϕ(cj). By using fourier inversion we
now obtain the desired result:

nsij = Lsj(ci) =
1

w(K)

∑
ϕ∈K̂

k(ϕ)L̂sj(ϕ)ϕ(ci) =
w(cs)

w(K)

∑
ϕ∈K̂

k(ϕ)ϕ(cs)ϕ(cj)ϕ(ci)

The preceding Lemma is already in itself a way to compute the structure constants, but
requires that not only characters are known, but also the weight functions and hyperdimen-
sions. We will soon show that these can be computed given the characters.

We now proceed to define the character table, and prove that it is invertible. This will
be used in the method for acquiring the structure constants, but is also interesting in itself,
and will also be used on several different occasions in the appendices.

Definition 4.16 (Character table). Let K be a commutative hypergroup, and (ϕ(i))0≤i<|K|
a complete list of irreducible characters of the hypergroup. By the character table of K, we
mean a |K| × |K| matrix X with (i,j)-th coefficient

Xij := ϕ(i)(cj).

Theorem 4.17. The matrix X ′ defined by X ′ij := Xij

√
w(cj)ki
w(K) , where ki := k(ϕ(i)), has

orthonormal rows and columns. As a result of this, the character table is invertible.

Proof. By Theorem 3.40 we see that the rows of X ′ are orthonormal. Thus the columns of
X ′ are also orthonormal.

Using this, we can derive a result which will come in handy in the appendix.

Corollary 4.18. Let K be a commutative hypergroup, and (ϕ(i))0≤i<|K| a complete list of
irreducible representations of the hypergroup. Then

w(K) =
∑

0≤i<s

k(ϕ(i)).

Proof. Let ki := k(ϕ(i)). By Theorem 4.17 we know that the columns of X ′ij := Xij

√
w(cj)ki
w(K)

are orthonormal, and thus

1 =
∑
i

ϕ(i)(ck)ϕ(i)(ck)
w(ck)ki
w(K)

.

By setting k = 0 we get

w(K) =
∑
i

ϕ(i)(c0)ϕ(i)(c0)w(c0)ki =
∑
i

ki.

Now that we have introduced the character table, and proved that it is invertible, we
return to the task of computing the structure constants. We have already shown how it can
be computed given the characters, weight functions, and hyperdimensions. Now we wish to
show that the weight functions and hyperdimensions can be computed from the character
table, so that the structure constants can be computed given only the character table.

The following proposition will be used to define a system of equations which will be used
to compute the weight functions and hyperdimensions.

Proposition 4.19. Let K be a commutative hypergroup. Then

1

w(K)

∑
ϕ∈K̂

ϕ(ci)k(ϕ) =

{
1 if i = 0,

0 otherwise,
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Proof. Since c0 is the identity element, n0i0 is 1 if i = 0, and 0 otherwise. By Lemma 4.15
we therefore have

n0i0 =
1

w(K)

∑
ϕ∈K̂

ϕ(ci)k(ϕ) =

{
1 if i = 0,

0 otherwise,

Using this proposition, we are now able to compute the weight functions and hyperdi-
mensions from the character table.

Proposition 4.20. Let K be a hypergroup with irreducible representations (ϕ(i)), where ϕ(0)

is the trivial representation, and character table X. Then we can calculate w(ci), k(ϕ(i)),
and w(K) for all i as

w(K) =
1

(X−1)00
, w(ci) =

(
X−1

)
i0

(X−1)00
, k(ϕ(i)) =

(
X−1

)
0i

(X−1)00

Proof. By Theorem 3.33 we have that

∑
cz∈K

ϕ(i)(cz)w(cz) = 〈ϕ(0), ϕ(i)〉 =

{
w(K) if i = 0

0 otherwise

and by 4.19, we have

∑
ϕ(z)∈K̂

ϕ(z)(ci)k(ϕ(z)) =

{
w(K) if i = 0

0 otherwise

These expressions can be written as a linear system of equations on the form

XW = B and XTH = B

where X is the character table, and W , H, and B are vectors such that Wi := w(ci),
Hi := k(ϕ(i)), B0 = 1, and Bi = 0 when i 6= 0. Since the character table is invertible by
Theorem 4.17, we have that

W = X−1B and H =
(
X−1

)T
B

and thus

w(ci) := Wi =
∑
v

(
X−1

)
iv
Bv =

(
X−1

)
i0
w(K)

k(ϕ(i)) := Hi =
∑
v

((
X−1

)T)
iv
Bv =

(
X−1

)
0i
w(K)

Since we know that both w(ci) and k(ϕ(i)) are nonzero for all i, both
(
X−1

)
i0

and
(
X−1

)
0i

must also be nonzero for all i. Using this, together with the fact that w(c0) = k(ϕ(0)) = 1,
the result follows.

We now have the final result we need to compute the structure constants from the char-
acter table.

Theorem 4.21. Let K be a commutative hypergroup with structure constants nsij and char-
acter table X. Then the structure constants can be computed as follows:

nsij =

(
X−1

)
s0

(X−1)00

∑
t

(
X−1

)
0t
XtsXtiXtj
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Proof. This follows from using Proposition 4.20 together with Lemma 4.15.

We have now shown that all of the information of a commutative hypergroup is encoded
in its character table, and how to compute the structure constants. In the following example,
we return to the first and only example in the main text, wrapping it up by calculating its
character table.

Example 4.22. Since the characters are the same as the irreducible representations we
simply recall from Example 3.15 the irreducible representations of K. We input these into a
table which results in Table 3b.

Table 3: Tables for K = {c0, c1, c2}.

(a) Cayley table

c0 c1 c2
c0 c0 c1 c2
c1 c1

1
3c0 + 2

3c2 c1
c2 c2 c1

1
2c0 + 1

2c2

(b) Character table

c0 c1 c2
ϕ(0) 1 1 1
ϕ(1) 1 0 − 1

2

ϕ(2) 1 -1 1

For completeness, we calculate the inner product of the characters.

〈ϕ(0), ϕ(0)〉 = 1, 〈ϕ(0), ϕ(1)〉 = 0, 〈ϕ(0), ϕ(2)〉 = 0,

〈ϕ(1), ϕ(1)〉 =
1

4
, 〈ϕ(2), ϕ(1)〉 = 0, 〈ϕ(2), ϕ(2)〉 = 1.

Thus by Theorem 3.33, the hyperdimensions are k(ϕ(0)) = 1, k(ϕ(1)) = 4, and k(ϕ(2)) = 1.

This marks the end of the main text. We hope to have conveyed the general story of finite
hypergroups and their representation theory. The interested reader can go on to read the
appendix to see some more examples of hypergroups coming from groups and graphs, as well
as how to construct them and the theory behind this.
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Appendix

A Hypergroups from Groups
In this appendix, we present two distinct ways to construct commutative hypergroups from
an arbitrary finite group – the class hypergroup and the character hypergroup. The class
hypergroup is constructed from the conjugacy classes of the group, and the character hy-
pergroup is constructed from the irreducible characters of the group. We will also see that
the irreducible characters of a commutative hypergroup generate a hypergroup under certain
conditions. Finally, we show some examples.

A.1 Class Hypergroup
In this section we will demonstrate a way to generate a commutative hypergroup from the
conjugacy classes of a finite group. But first we will need to introduce some notation, and
derive some useful results. We shall find convenient the notion of a multiset from a finite
group. This notion generalizes the notion of a subset, by allowing duplicates and even nega-
tive, fractional or complex multiplicities of elements. A multiset with fractional multiplicities
summing to 1 is often interpreted as a probability distribution. For a recent and careful ex-
position of multiset theory, we refer to [6], but we also develop a minimal theory here, with
[2] as a primary reference.

Definition A.1 (Multiset, Singleton, Product, Involution). Let G be a finite group. By a
multiset from G we mean a function a : G → C. We associate to each subset S ⊂ G the
multiset S : G→ C given by S(g) := (1 if g ∈ S else 0). The singletons [g] := {g} : G→ C,
thus given by [g](h) := (1 if g = h else 0) where g, h ∈ G. Obviously the set of singletons is
a linear basis for multisets. The product of two singletons is defined as [g][h] := [gh] and by
linearity this multiplication is extended to arbitrary multisets from G. The involution of a
singleton is defined as [g]∗ := [g−1] and by linearity involution is also extended to arbitrary
multisets from G.

Proposition A.2. Let G be a finite group. Then the singletons from G form a hypergroup.
This hypergroup is also a group, and as a group it is isomorphic to G.

Proof. By trivial manipulations.
What follows are the fundamental notions underlying the class hypergroup of a finite

group. We aim to prove that the class hypergroup is indeed a hypergroup. We continue to
follow [2] closely, but with more proofs.

Definition A.3 (Central, 1-class, Class hypergroup). Let G be a finite group. A multiset
a : G → C is said to be central if [x]a[x−1] = a for all x ∈ G. By the 1-class cg : G → C
of an element g ∈ G we mean the multiset cg := 1

|G|
∑
x∈G[xgx−1]. By the class hypergroup

K(G) we mean the set of 1-classes from G.

Remark. It is possible for two different elements g, h ∈ G to give the same 1-class cg = ch :
G → C. In fact, the “more non-commutative” the group is, at least generally and relatively
speaking, the fewer are the elements of K(G). For instance the non-commutative monster
group M has roughly 8×1053 elements, but its class hypergroupK(M) has only 194 elements.
Contrast this to the commutative case where the identity cg = [g] implies that |K(G)| = |G|.

Proposition A.4. Let G be a finite group. The 1-classes of G are central.

Proof. If g, y ∈ G then

[y]cg[y
−1] = [y]

1

|G|
∑
x∈G

[xgx−1][y−1] =
1

|G|
∑
x∈G

[yxgx−1y−1] =
1

|G|
∑
z∈G

[zgz−1] = cg

by definition and then the permutation x 7→ yx.
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Definition A.5 (Conjugacy). Let G be a finite group. Two elements g, h ∈ G are said to be
conjugate, denoted g ∼ h, if there is an element t ∈ G such that g = tht−1. By the conjugacy
class Cl(g) ⊂ G of an element g ∈ G we mean the set Cl(g) := {h ∈ G : g ∼ h}. The set of
conjugacy classes of G is denoted G/∼ or Cl(G).

Proposition A.6. Let G be a finite group. Conjugacy is an equivalence relation. Further-
more, if g, h ∈ G and g ∼ h, then g−1 ∼ h−1.

Proof. If g ∈ G then g = ege−1, where e is the neutral element of the group, and thus g ∼ g.
If g ∼ h, say g = xhx−1, then h = x−1g(x−1)−1 and thus h ∼ g. If g ∼ h, say g = xhx−1,
and h ∼ z, say h = yzy−1, then g = xyzy−1x−1 = (xy)z(xy)−1 and thus g ∼ z. If g ∼ h, say
g = xhx−1, then g−1 = (xhx−1)−1 = xh−1x−1 and thus g−1 ∼ h−1.

Proposition A.7. Let G be a finite group. Elements g, h ∈ G are conjugate precisely when
cg = ch.

Proof. If g ∼ h, say g = tht−1, then

cg =
1

|G|
∑
x∈G

[xtht−1x−1] =
1

|G|
∑
y∈G

[yhy−1] = ch

by the permutation x 7→ xt. Conversely, if cg = ch then in particular

1

|G|
∑
x∈G

[xhx−1](g) = ch(g) = cg(g) =
1

|G|
∑
x∈G

[xgx−1](g) ≥ 1

|G|
[ege−1](g) =

1

|G|
> 0,

so xhx−1 = g for at least one x, showing that g ∼ h.

Proposition A.8. Let G be a finite group. If g ∈ G then c∗g = cg−1 .

Proof. Expand the definitions and use that [xgx−1]∗ = [(xgx−1)−1] = [xg−1x−1].

c∗g =

(
1

|G|
∑
x∈G

[xgx−1]

)∗
=

1

|G|
∑
x∈G

[xgx−1]∗ =
1

|G|
∑
x∈G

[xg−1x−1] = cg−1 .

Proposition A.9. Let a : G → C be a multiset. If x, y ∈ G then (a[x])(y) = a(yx−1) and
([x]a)(y) = a(x−1y). If furthermore a is central and x ∼ y then a(x) = a(y).

Proof. Use that the singletons form a basis, and the definition of multiplication, to obtain

a[x] =
∑
z

a(z)[z][x] =
∑
z

a(z)[zx] and [x]a = [x]
∑
z

a(z)[z] =
∑
z

a(z)[xz].

Hence to get (a[x])(y) you solve the equation zx = y and get (a[x])(y) = a(z) = a(yx−1).
Similarly to get ([x]a)(y) you solve the equation xz = y and get ([x]a)(y) = a(z) = a(x−1y).
If a is central and x ∼ y, say x = tyt−1, then by applying both of these results we derive

a(x) = a(tyt−1) = (a[t])(ty) = ([t−1]a[t])(y) = a(y).

Definition A.10 (Multiplicity, Total multiplicity). Let a : G → C be a multiset. By the
multiplicity of an element g ∈ G we mean a(g). By the total multiplicity Σ(a) ∈ C of the
multiset we mean Σ(a) :=

∑
g∈G a(g).

Proposition A.11. Let G be a finite group. Then the total multiplicity function Σ is linear
and satisfies Σ(ab) = Σ(a)Σ(b). Furthermore, the total multiplicity of any singleton or 1-class
is 1.
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Proof. If a, b : G→ C are multisets and α, β ∈ C are complex numbers then

Σ(αa+ βb) =
∑
g∈G

αa(g) + βb(g) = α
∑
g∈G

a(g) +
∑
g∈G

βb(g) = αΣ(a) + βΣ(b).

This shows linearity. The total multiplicity of any singleton [g] : G→ C is

Σ([g]) =
∑
h∈G

[g](h) = 1

since most terms are 0. Thus, for any g, h ∈ G,

Σ([g])Σ([h]) = 1× 1 = 1 = Σ([gh]) = Σ([g][h])

and by linearity the second statement follows. Finally, for any g ∈ G,

Σ(cg) =
1

|G|
∑
x∈G

Σ([xgx−1]) =
1

|G|
∑
x∈G

1 = 1.

Proposition A.12. Let G be a finite group. Then the 1-classes of G have nonnegative
multiplicities, they have pairwise disjoint support, and they are constant on their support.
Furthermore, all 1-classes cg : G→ C of G satisfy

cg =
1

|Cl(g)|
∑

x∈Cl(g)

[x].

Proof. If cg : G → C is a 1-class then its multiplicities are nonnegative by linearity and
the fact that the multiplicities of any singleton are 0 and 1. If cg(z) 6= 0 and ch(z) 6= 0 for
some g, h, z ∈ G then g ∼ z ∼ h so that cg = ch by Proposition A.7. The support of any
cg : G→ C is precisely Cl(g) since if cg(h) 6= 0 then g = xhx−1 for some x ∈ G so that g ∼ h
and conversely if h ∈ Cl(g), say h = xgx−1, then the term [xgx−1](h) of cg(h) is nonzero.
cg is constant on Cl(g) by Proposition A.4 and Proposition A.9. Finally, since both cg and

1
|Cl(g)|

∑
x∈Cl(g)[x] have the same support, are constant on it, and have total multiplicity 1,

they are equal: If cg(z) 6= 0 then replacing cg(z) with the average nonzero value we get

cg(z) =
1

|Cl(g)|
∑

x∈Cl(g)

cg(x) =
1

|Cl(g)|
Σ(cg) =

1

|Cl(g)|
=

1

|Cl(g)|
∑

x∈Cl(g)

[x](z).

Theorem A.13. Let G be a finite group. Then the set K(G) of 1-classes from G is a
commutative hypergroup spanning precisely the central multisets from G.

Proof. The space of all multisets from G, with multiplication as defined above, is a ring.
For example associativity of multiplication follows by linearity from the derivation

([x][y])[z] = [xy][z] = [(xy)z] = [x(yz)] = [x][yz] = [x]([y][z]),

and the multiplicative neutral element is c0 := ce = [e], where e is the neutral element of G.
To deal with involution, we expand the definitions:

cgch =
1

|G|
∑
x∈G

[xgx−1]
1

|G|
∑
y∈G

[yhy−1] =
1

|G|2
∑
x,y∈G

[xgx−1yhy−1]. (9)

If cg is a 1-class then, by (9) and Proposition A.8, cgc∗g contains the term
1
|G|2 [ege−1eg−1e−1] =

1
|G|2 c0. Conversely, if cgch contains a positive multiple of c0 then xgx−1yhy−1 = e for some
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x, y ∈ G, so that g−1 ∼ h and thus c∗g = ch by Proposition A.7. Furthermore by (9) and
Proposition A.8

(cgch)∗ =
1

|G|2
∑
x,y∈G

[xgx−1yhy−1]∗ =
1

|G|2
∑
x,y∈G

[yh−1y−1xg−1x−1] = c∗hc
∗
g.

Last of all, clearly ∗ is an involution, because applied to any singleton, ([x]∗)∗ = [(x−1)−1] =
[x]. Thus K(G) generates a ∗-algebra.

To deal with the central multisets from G, first recall that every 1-class cg is central by
Proposition A.4. Next, conversely, show that every central multiset a : G → C is a linear
combination of 1-classes

a =
∑
x∈G

a(x)[x] =
∑

Cl(x)∈G/∼
y∈Cl(x)

a(y)[y] =
∑

Cl(x)∈G/∼
y∈Cl(x)]

a(x)[y] =
∑

Cl(x)∈G/∼

a(x)|Cl(x)]|cx

by dividing the group into conjugacy classes Cl(x) ∈ G/∼, using Proposition A.9 and in the
last step using the identity from Proposition A.12.

To show that K(G) is a basis for its span, show that if a family (cg)g∈S is linearly
dependent, where S is some subset of G, then S contains two different but conjugate elements
of G. If a family (cg)g∈S is linearly dependent, where S is some subset of G, then there is
an element h ∈ S and scalars (αg)g∈S,g 6=h such that ch =

∑
g∈S,g 6=h αgcg, so since ch(h) 6= 0,

some term αgcg(h) 6= 0 with g ∈ S, g 6= h. But then cg(h) 6= 0 and g ∼ h while still g 6= h.
To evidence structure constants, it now suffices to show that the product of each couple

of central multisets a, b : G→ C is central. If a, b : G→ C are central and z ∈ G, then

[z]ab[z−1] = [z]a[z−1][z]b[z−1] = ab.

This proves closure in the subring of multisets spanned byK(G). Since we have already shown
that K(G) is a basis for its span, structure constants exist and are uniquely determined.

Positivity of the structure constants follows from (9) since the different cg all have nonneg-
ative multiplicities and pairwise disjoint support by Proposition A.12. Normalization of the
structure constants follows from Proposition A.11 since that proposition tells that 1-classes
have total multiplicity 1 and Σ(ab) = Σ(a)Σ(b) = 1 × 1 = 1. Thus K(G) is a hypergroup
spanning precisely the central multisets from G.

To deal with commutativity, note that if a : G→ C is central and g ∈ G then

a[g] = [g]a[g−1][g] = [g]a.

From this it follows by linearity that a commutes with every multiset from G. In particular,
any two 1-classes – central by Proposition A.4 – commute. Thus K(G) is commutative.

Having derived the class hypergroup of a general finite group, we now turn to an example.
This should give the reader more concrete insight and an ability to do arithmetic in the class
hypergroup.

In order to work out examples, it is important to have an efficient notation. For this
reason, we extend the singleton notation [g] : G→ C as follows. Group elements enclosed in
square brackets, are used to denote the multiset which counts the number of occurrences of its
argument. For example a multiset like [0 0 0 1 6 7 7 0] : G→ C, where 0,1,6,7 are elements
of some group G, satisfies by definition [0 0 0 1 6 7 7 0](0) = 4 and [0 0 0 1 6 7 7 0](6) = 1.

Example A.14. Let A4 be the alternating group on 4 elements. Table 4 displays a multipli-
cation table for this group, with rows and columns sorted by conjugacy class, in order to to
also feature the hypergroup multiplication. Boxes containing group elements are multisets.
To read it as a Cayley table for A4, ignore the 1-classes ci. The elements {0, . . . ,11} of A4

were named in lexicographic order, so that 0 is the identity. Group elements are written in
a bold font to distinguish them from multiset multiplicities.

Table 4 encodes the 1-classes which constitute the class hypergroup K(A4):

c0 = [0], c1 =
1

4
[1 5 6 10], c2 =

1

4
[2 4 7 9], c3 =

1

3
[3 8 11]
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Table 4: Group multiplication table for the alternating group A4 = {0, . . . ,11}, with rows
and columns sorted by conjugacy class, in order to to also feature the hypergroup multipli-
cation.

× c0 4c1 4c2 3c3
0 1 5 6 10 2 4 7 9 3 8 11

c0 0 0 1 5 6 10 2 4 7 9 3 8 11

4c1

1 1 2 7 9 4 0 8 11 3 6 10 5
5 5 4 9 7 2 3 11 8 0 10 6 1
6 6 7 2 4 9 8 0 3 11 1 5 10
10 10 9 4 2 7 11 3 0 8 5 1 6

4c2

2 2 0 11 3 8 1 10 5 6 9 4 7
4 4 3 8 0 11 5 6 1 10 7 2 9
7 7 8 3 11 0 6 5 10 1 4 9 2
9 9 11 0 8 3 10 1 6 5 2 7 4

3c3
3 3 5 1 10 6 4 2 9 7 0 11 8
8 8 6 10 1 5 7 9 2 4 11 0 3
11 11 10 6 5 1 9 7 4 2 8 3 0

and lets us find structure constants, for example

3c34c1 =

 5 1 10 6
6 10 1 5
10 6 5 1

 (multiset copied from table)

c3c1 =
1

3 · 4
[5 1 10 6 6 10 1 5 10 6 5 1] =

1

4
[1 5 6 10] = c1

n031 = 0, n1
31 = 1, n2

31 = 0, n3
31 = 0

c3c3 =
1

3 · 3
[0 11 8 11 0 3 8 3 0] =

1

3
[0] +

2

9
[3 8 11] =

1

3
c0 +

2

3
c3

n033 =
1

3
, n1

33 = 0, n2
33 = 0, n3

33 =
2

3
.

We can also find the structure constants nkij by looking at the proportion of the elements of
ck in the multiset at the position for cicj in the table. For example, we see that one quarter
of the elements of

4c14c2 =


0 8 11 3
3 11 8 0
8 0 3 11
11 3 0 8

 (multiset copied from table)

belong to c0, and the remaining three quarters belong to c3. Thus simply,

n012 =
1

4
, n1

12 = 0, n2
12 = 0, n3

12 =
3

4
.

Continuing in this way, we produce a much more succinct hypergroup multiplication table,
namely Table 5.

We finish the section with a simple but pleasant result.

Proposition A.15. Let G be a finite group. If cx ∈ K(G), then w(cx) = |Cl(x)|.

Proof. Let cx and cy be 1-classes of G, and let e be the identity of G. By Proposition A.12,
we know that the 1-classes have disjoint support, and that any 1-class cx of G can be written
as cx = 1

|Cl(x)|
∑
y∈Cl(x)[y]. As c0 := [e] is the identity ofK(G), and the 1-classes have disjoint

support, we have that 1
w(cx)

= (cxc
∗
x)(e). Now define y := x−1. By Proposition A.6 we have
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Table 5: Cayley table for the class hypergroup K(A4).

· c0 c1 c2 c3
c0 c0 c1 c2 c3
c1 c1 c2

1
4c0 + 3

4c3 c1
c2 c2

1
4c0 + 3

4c3 c1 c2
c3 c3 c1 c2

1
3c0 + 2

3c3

that each element in Cl(x) has its inverse in Cl(y), which also implies |Cl(x)| = |Cl(y)|. We
now use this to compute

1

w(cx)
= (cxc

∗
x)(e) = (cxcx−1)(e) =

1

|Cl(x)|2
∑

s∈Cl(x)
t∈Cl(y)

[st](e) =
1

|Cl(x)|

and thus w(cx) = |Cl(x)|.

Now that we have shown how to generate a commutative hypergroup from the conjugacy
classes of finite groups we move on to hypergroups generated from characters of groups and
commutative hypergroups.

A.2 Character Hypergroup
In this section we introduce ways to generate commutative hypergroups from characters of
hypergroups. From a commutative hypergroup K we will generate its dual K̂, which in
certain cases will be a hypergroup, which we then call the dual hypergroup of K. Then we
will, from a not necessarily abelian group G, generate a commutative hypergroup which we
call the character hypergroup of G, and denote by K(Ĝ). Finally, we define isomorphism
between hypergroups, and study how certain hypergroups relate to each other. We will see
that the dual is related by a transposition of the character table to K.

We begin by studying K̂. Remember that if K is a hypergroup, K̂ is the set of all
irreducible characters ofK. But first we introduce an operator on sets of functions f : K → C.

Definition A.16 (Pointwise multiplication). Let K be a hypergroup, and let F be a set of
functions f : K → C. Then we define an operator on F by pointwise multiplication, so that
∀f1, f2 ∈ F the product is a function (f1 · f2) : K → C defined by

(f1 · f2)(cg) := f1(cg) · f2(cg), ∀cg ∈ K

Theorem A.17 (Dual hypergroup). Let K be a commutative hypergroup, and K̂ the set of
all its irreducible characters. Let (ci)

|K|−1
i=0 and (ϕ(i))

|K̂|−1
i=0 be complete lists of elements in K

and K̂ respectively. Then pointwise multiplication of the elements in K̂ satisfy

ϕ(i) · ϕ(j) =

s∑
t=0

mt
ijϕ

(t),

where mt
ij = 〈ϕ(t), ϕ(i) · ϕ(j)〉 k(ϕ(t)) ∈ C. Furthermore, if and only if 0 ≤ mt

ij ∀i, j, t, then
K̂ is a commutative hypergroup such that

w(ϕk) = k(ϕk), w(K̂) = w(K), and |K| = |K̂|.

The identity element is then ϕ(0), and involution is given by ϕ(i)∗ = ϕ(i) ∀i. When K̂ is a
hypergroup, we call it the dual hypergroup of K.

Proof. As K is commutative, all irreducible representations are of degree 1 by Proposi-
tion 4.3, and are equal to their characters. And since the characters span CK by Theorem 4.5,
we have
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ϕ(i)ϕ(j) =
∑
k

〈ϕ(k), ϕ(i)ϕ(j)〉
〈ϕ(k), ϕ(k)〉

ϕ(k) =
∑
k

〈ϕ(k), ϕ(i)ϕ(j)〉 k(ϕ(k))ϕ(k) (10)

Now define mk
ij := 〈ϕ(k), ϕ(i) · ϕ(j)〉 k(ϕ(k)). These are the structure constants of K̂. We

first show the normalisation of K̂ by using that ϕ(i)(c0) = 1 ∀ϕ(i) ∈ K̂. By inserting this
into equation (10) we get 1 =

∑
k n

k
ij , thus confirming the normalisation. The associativity

and commutativity follow from the definition of the operation, and that ϕ(i)(cj) is a scalar
for all i, j. We easily see that ϕ(0) satisfies the role of an identity.

Before we consider the existence of an involution, note that if ρ is an irreducible repre-
sentation of K, then so is ρ. Thus ϕ(i) ∈ K̂ =⇒ ϕ(i) ∈ K̂ With this in mind we study
m0
ij = 〈ϕ(0), ϕ(i) · ϕ(j)〉 = 〈ϕ(j), ϕ(i)〉. By the orthogonality of characters (Theorem 3.40), we

see that ϕ(j) = ϕ(i)⇔m0
ij 6= 0, demonstrating the existence and uniqueness of the involution,

and that it is given by ϕ(i)∗ = ϕ(i).
We have now shown that K̂ satisfies all the requirements of a hypergroup, except for

0 ≤ mk
ij . Thus 0 ≤ mk

ij implies that K̂ is a hypergroup.
Furthermore, assuming that K̂ is a hypergroup, we have that w(ϕ(k)) = 1

n0
k∗k

= 1
〈ϕ(k),ϕ(k)〉 =

k(ϕ(k)). And as w(K̂) =
∑
w(ϕ(i)) by definition, and w(K) =

∑
k(ϕ(i)) for commutative

hypergroups by Corollary 4.18, we have that w(K) = w(K̂). Finally, the fact that |K̂| = |K|
follows from the fact that a commutative hypergroup has |K| irreducible representations by
Corollary 4.4.

The things we have stated about K̂ coming from a commutative hypergroupK especially hold
for a finite abelian group G. However, we will later see that we will also be able to generate a
commutative hypergroup from the characters of a finite group that isn’t necessarily abelian.
For a group G, this hypergroup group will be denoted by K(Ĝ). But before we introduce
K(Ĝ), we first need to introduce a tensor product, as it will be needed to demonstrate that
K(Ĝ) is a hypergroup.

Definition A.18. A tensor (Kronecker) product between two matrices A and B is defined
by

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB


Proposition A.19. The tensor product has the following properties

tr(A⊗B) = tr(A) tr(B)

(A⊗B)(C ⊗D) = (AC)⊗ (BD)

Proof. See Graham [7] for details.

Proposition A.20. Assume that ϕ and ρ are representations of the group. Then ϕ ⊗ ρ,
defined by (ϕ⊗ ρ)(g) = ϕ(g)⊗ ρ(g), is also a representation of G.

Proof. We need to show that ϕ⊗ ρ maps the identity e ∈ G onto the identity matrix, and
that ϕ⊗ ρ is a homomorphism from G.

(ϕ⊗ ρ)(e) = ϕ(e)⊗ ρ(e) = I ⊗ I = I,

confirming the first property. We now look at

(ϕ⊗ ρ)(g)(ϕ⊗ ρ)(k) = (ϕ(g)⊗ ρ(g))(ϕ(k)⊗ ρ(k)) = (ϕ(g)ϕ(k))⊗ (ρ(g)ρ(k)) = ϕ(gk)⊗ ρ(gk)

= (ϕ⊗ ρ)(gk),

which verifies that ϕ⊗ ρ is a representation of G.

Now we are ready to define K(Ĝ), which we will later see is equal to K̂(G), in the sense
that they are isomorphic. What this means will be explained later.

28



Definition A.21 (Character hypergroup). Let G be a finite group, and (ρ(i))s−1i=0 be a com-
plete set of irreducible representations of G. For each ρ(i), define a function ψi :=

χ
ρ(i)

deg ρ(i)
.

The character hypergroup of G, denoted by K(Ĝ), is the set of all such ψi. The operation on
K(Ĝ) is pointwise multiplication.

Note that if G is abelian, then Ĝ and K(Ĝ) are the same sets. The following theorem
verifies that K(Ĝ) actually is a hypergroup.

Theorem A.22. If G is a finite group, then K(Ĝ) is a finite commutative hypergroup.

Proof. Let (ρ(i))s−1i=0 be a complete set of irreducible representations of G. By Proposi-
tion A.20 ρ(i) ⊗ ρ(j) is also a representation, and thus by Theorem 3.25 decomposes as

ρ(i) ⊗ ρ(j) ∼
⊕
t

M t
ijρ

(t)

where M t
ij are non-negative integers. By Proposition A.19 we have

χρ(i)χρ(j) =
∑
t

M t
ijχρ(t)

where M t
ij = 〈χρ(t) , χρ(i)χρ(j)〉 by the orthogonality of characters (Theorem 3.40).

By the definition of the elements ψi ∈ K(Ĝ), we have

deg(ρ(i))ψi deg(ρ(j))ψj =
∑
t

M t
ij deg(ρ(t))ψt

Now define mt
ij :=

Mt
ij deg(ρ

(t))

deg(ρ(i)) deg(ρ(j))
. These are the structure constants of K(Ĝ), so that

ψiψj =
∑
t

mt
ijψt

As ψi maps elements of G onto scalars, and the operation on K(Ĝ) is given by pointwise
multiplication, K(Ĝ) is commutative and associative. The positivity of the strucutre con-
stants follow from thatMk

ij is positive for all i, j, k. The identity is given by ψ0. Let the iden-
tity of G be denoted e. Then the normalisation is verified by 1 = (ψiψj)(e) =

∑
tm

t
ijψt(e) =∑

tm
t
ij . Finally, since the conjugate of an irreducible character is an irreducible character,

we have by the orthagonality of characters (Theorem 3.40) that m0
ij 6= 0 ⇔ ψi = ψj . This

verifies the existence and uniqueness of the involution, and that it is given by ψ∗i = ψi. We
have now verified that K(Ĝ) satisfies all the requirements of a hypergroup.

We will now move on to study how certain hypergroups relate to each other. For this we will
need the concept of isomorphism between hypergroups.

Definition A.23 (Hypergroup isomorphism). Let K1 and K2 be two hypergroups. Let
(ci)

s−1
0≤i and (nkij)

s−1
0≤i,j,k be the elements and structure constants of K1. We say that K1 is

isomorphic toK2 if and only if there is a bijective mapping θ : K1 → K2 such that θ preserves
the operation, by which we mean that

θ(ci)θ(cj) =
∑
k

nkijθ(ck) ∀ci, cj .

If K1 and K2 are isomorphic, we denote this K1
∼= K2.

Note that in the group case hypergroup isomorphism is the same as regular group iso-
morphism. It is convenient to think of isomorphic hypergroups as being the same as each
other. This is essentially true, since they in some sense share the same structure constants.
What is meant by this is made explicit in the following Proposition.
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Proposition A.24. Let K1 and K2 be two hypergroups of order s with structure constants
(nkij)

s−1
0≤i,j,k and (mk

ij)
s−1
0≤i,j,k respectively. If K1 is isomorphic to K2, then the elements in K1

and K2 can be renumbered so that nkij = mk
ij for all i, j, k.

Proof. Let (ci)
s−1
0≤i and (di)

s−1
0≤i be the elements in K1 and K2 respectively. As K1 and

K2 are isomorphic there is a bijective mapping θ : K1 → K2 such that θ(ci)θ(cj) =∑
k n

k
ijθ(ck) ∀ci, cj . Since the mapping is bijective, we can without loss of generality renumber

the elements in K1 and K2 so that θ(ci) = di for all i. Now look at

∑
mk
ijdk = didj = θ(ci)θ(cj) =

∑
nkijθ(ck) =

∑
nkijdk

which shows that nkij = mk
ij for all i, j, k.

Just as in the group case, isomorphism is an equivalence relation, which is proved in the
following Proposition.

Proposition A.25. Hypergroup isomorphism is an equivalence relation.

Proof. Define the hypergroups K1,K2 and K3 with elements and structure constants
(ci, n

k
ij), (di,m

k
ij) and (ei, l

k
ij) respectively. We need to show that isomorphism is reflexive(K1

∼=
K1), transitive(K1

∼= K2 & K2
∼= K3 =⇒ K1

∼= K3) and symmmetric(K1
∼= K2 =⇒ K2

∼=
K1).

Isomorphism is symmetric as the map θ : K1 → K2 is bijective which implies that it is
invertible which in turn implies that K2

∼= K1.

It is transitive as there exists θ such that θ(ci)θ(cj) =
∑
k n

k
ijθ(ck) and there exists ψ

such that ψ(di)ψ(dj) =
∑
km

k
ijψ(dk). Since θ(cm) ∈ K2 then we can construct the map

ψ ◦ θ : K1 → K3 which is bijective and preserves the operation.

Proof of reflexiveness is obvious.
That isomorphism is an equivalence relation will be useful later, together with the follow-

ing Proposition.

Proposition A.26. Let K1 and K2 be two commutative hypergroups such that K1
∼= K2. If

K̂1 is a hypergroup, then K̂2 is a hypergroup, and K̂1
∼= K̂2.

Proof. Let (ci)
s−1
0≤i and (di)

s−1
0≤i be the elements in K1 and K2 respectively. By Propo-

sition A.24, we may assume without loss of generality that these elements can be num-
bered so that both hypergroups have the same structure constants (nkij)

s−1
0≤i,j,k. By Corol-

lary 4.4 there are |K| = |K̂| for commutative hypergroups, and so we may denote (ϕ(i))s−10≤i
to be a complete set of irreducible representations of K1. Now for each ϕ(i), define ρ(i) :
K2 → C by ρ(i)(dj) = ϕ(i)(cj) for all j. Each ρ(i) is an irreducible representation of K2,
since ρ(i)(dk)ρ(i)(dg) = ϕ(i)(ck)ϕ(i)(cg) =

∑
ntkgϕ

(i)(ct) =
∑
ntkgρ

(i)(dt), and ρ(i) satisfies
ρ(i)(d0) = ϕ(i)(c0) = 1. We know that |K̂2| = |K̂1| as both K1 and K2 are commutative
hypergroups of the same order. And since ρ(i) = ρ(j) =⇒ ϕ(i) = ϕ(j) =⇒ i = j, we have
that (ρ(i))s−10≤i is a complete set of irreducible representations of K2.

Let (µkij)
s−1
0≤i,j,k and (mk

ij)
s−1
0≤i,j,k be the structure constants of K̂1 and K̂2 respectively. We

now define θ : K̂1 → K̂2 by θ(ϕ(i)) = ρ(i) for all i. The mapping θ preserves the operation
since, for all ds, we have

(θ(ϕ(i))θ(ϕ(j)))(ds) = (ρ(i)ρ(j))(ds) = (ϕ(i)ϕ(j))(cs) =
∑

µkijϕ
(k)(cs)

=
∑

µkijρ
(k)(ds) =

∑
µkijθ(ϕ

(k))(ds).

And since this holds for all ds ∈ K2 and 0 ≤ i, j ≤ s− 1, (θ(ϕ(i)))θ(ϕ(j)) =
∑
µkijθ(ϕ

(k)) for
all i, j. Furthermore,

∑
mk
ijρ

(k) = ρ(i)ρ(j) = θ(ϕ(i))θ(ϕ(j)) =
∑
µkijθ(ϕ

(k)) =
∑
µkijρ

(k), so
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that mk
ij = µkij for all i, j, k. Thus 0 ≤ mk

ij so that K̂2 is a hypergroup by Theorem A.17.
And since both K̂1 and K̂2 are hypergroups, and there is a bijective mapping between them
which preserves the operation, they are by definition isomorphic.

We now wish to show that if K̂ is a hypergroup, then ̂̂K ∼= K. But before we do that, we
will need the following proposition.

Proposition A.27. Let K be a finite commutative hypergroup. Let (ci)
s−1
i=0 and (ϕ(i))s−1i=0 be

the elements of K and K̂ respectively. If K̂ is a hypergroup, then the functions φcg : K̂ → C
defined by

φcg (ϕ(i)) := ϕ(i)(cg)

are irreducible representation of K̂. Furthermore, the mapping θ : K → ̂̂
K defined by θ(cg) :=

φcg is bijective.

Proof. Denote the structure constants of K̂ by mk
ij so that ϕ(i)ϕ(j) =

∑
mk
ijϕ

(k). φcg
trivially satisfies φcg (ϕ(0)) = ϕ(0)(cg) = 1. Now we compute

φcg (ϕ(i))φcg (ϕ(j)) = ϕ(i)(cg)ϕ
(j)(cg) = (ϕ(i)ϕ(j))(cg) =

∑
mk
ijϕ

(k)(cg) =
∑

mk
ijφcg (ϕ(k))

and thus φcg is a representation of K̂, and as it is of degree 1, it is irreducible.
We now show that the mapping θ is bijective by contradiction. Assume that θcg = θck for

some cg, ck ∈ K such that cg 6= ck. This implies that ϕi(cg) = ϕi(ck) ∀i, which would mean
that the character table had two identical columns. But as the character table is invertible
by Theorem 4.17 this is a contradiction, and so the mapping is one-to-one. And as |K| = | ̂̂K|
by Theorem A.17, the mapping is bijective.

Corollary A.28. Let K be a commutative hypergroup with character table X. If K̂ is a
hypergroup, then the representations of K̂ can be numbered so that XT is the character table
of K̂.

Proof. Let (ci)0≤i<|K| and (ϕ)0≤i<|K| be the elements in K and K̂ respectively. For all
i, define ρ(i) : K̂ → C by ρ(i)(ϕ(j)) = ϕ(j)(ci) for all j. By Proposition A.27, the mapping

defined by θ(ci) := ρ(i) for all i is a bijective mapping from K to ̂̂K. Thus the character table
of K̂, let it be denoted by Y , can be defined for all i, j as Yij := ρ(i)(ϕ(j)) = ϕ(j)(ci) = Xji.
And thus Y = XT .

We are now ready to prove the following.

Proposition A.29. Let K be a commutative hypergroup. If K̂ is a hypergroup, then ̂̂
K is

also a hypergroup, and ̂̂K ∼= K.

Proof. By Theorem A.17 we know that |K| = |K̂|. Now assume that (ci)
s−1
i=0 and (ϕi)

s−1
i=0 are

the elements of K and K̂ respectively. For each element in K, define a function φcg : K̂ → C
by φcg (ϕi) := ϕi(cg). By Proposition A.27, a mapping θ from K defined by θ(cg) := φcg is a

bijective mapping from K to ̂̂K. Now we only need to show that θ preserves the operation.
Let (nkij)

s−1
0≤i,j,k be the structure constants of K and compute

(θ(ci)θ(cj)) (ϕt) = ϕt(ci)ϕt(cj) =
∑
k

nkijϕt(ck) =
∑
k

nkijθ(ck)(ϕt)

and since this is true for any ci, cj ∈ K and ϕt ∈ K̂, we have θ(ci)θ(cj) =
∑
k n

k
ijθ(ck) for all

ci, cj . Thus
̂̂
K is isomorphic to K.

We previously stated that K(Ĝ) in some sense was the same as K̂(G). They are in fact
isomorphic. To show this, we first need a classical result from the representation theory of
groups.
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Lemma A.30. If G is a finite group, then the number of irreducible representations of G is
equal to the number of conjugacy classes of G. As a consequence, the number of irreducible
representations of G is equal to |K̂(G)|.

Proof. That the number of irreducible representations is equal to the number of conjugacy
classes is a classic result of the representation theory of finite groups. A proof can for example
be found in [4].

The final statement follows from that |K(G)| is equal to the number of conjugacy classes
of G, and that since K(G) is a commutative hypergroup, it has |K(G)| irreducible represen-
tations by Corollary 4.4.

Theorem A.31. If G is a finite group, then K̂(G) is a hypergroup, and is isomorphic to
K(Ĝ).

Proof. Let the structure constants of K(G) be (nkij). By Lemma A.30, the number of

irreducible representations of G is equal to |K̂(G)|. Thus we may denote the irreducible
representations of G and K(G) by(ρ(i))

0≤i<|K̂(G)| and (ϕ(i))
0≤i<|K̂(G)| respectively. Define

for each ρ(i) the function ρ̃(i) : {[g], g ∈ G} → C by ρ̃(i)([g]) := ρ(i)(g) ∀g ∈ G. Now extend
ρ̃(i) linearly so that ρ̃(i) (

∑
[x]) =

∑
ρ̃(i) ([x]). Now ρ̃(i) is a representation of K(G). To

see this, first note that ρ̃(i)(ce) = 1
|G|
∑
x ρ

(i)(xex−1) = I. For the second requirement of a
representation we compute

ρ̃(i)(cg)ρ̃
(i)(ck) =

1

|G|2
∑
x,y

ρ(i)(xgx−1)ρ(i)(yky−1) =
1

|G|2
∑
x,y

ρ(i)(xgx−1yky−1)

= ρ̃(i)

(
1

|G|2
∑
x,y

{xgx−1yky−1}

)
= ρ̃(i) (cgck)

= ρ̃(i)

(∑
s

nsgkcs

)
=
∑
s

nsgkρ̃
(i) (cs)

and thus ρ̃(i) is a representation of K(G). The character of this representation satisfies
χρ̃(i)(cg) = 1

|G|
∑
x χρ(i)(xgx

−1) = χρ(i)(g). Note that if t ∈ G is in the same conjugacy
class as g, then χρ(i)(t) = χρ̃(i)(ct) = χρ̃(i)(cg) since ct = cg. Let us now look at two
inequivalent representations of G ρ(i), ρ(j). Since ρ̃(i) and ρ̃(j) are representations of K(G),
they decompose as ρ̃(i) ∼

⊕
nkϕ

(k) and ρ̃(j) ∼
⊕
mkϕ

(k) for some non-negative integers
nk,mk by Theorem 3.25. Thus we have

χρ(i)(g) = χρ̃(i)(cg) =
∑
k

nkϕ
(k)(cg)

χρ(j)(g) = χρ̃(j)(cg) =
∑
k

mkϕ
(k)(cg).

With this in mind, we use that by the orthogonality of characters on G (see Theorem 3.40)

0 = 〈χρ(i) , χρ(j)〉 =
1

|G|
∑
g∈G

χρ(i)(g)χρ(j)(g) =
1

|G|
∑
s,t

nsmt

∑
g∈G

ϕ(s)(cg)ϕ
(t)(cg)

=
1

|G|
∑
s,t

nsmt

∑
cg∈K(G)

ϕ(s)(cg)ϕ
(t)(cg)|Cl(g)| =

∑
s

nsms
1

k(ϕ(s))

Where in the final step we used that for all g ∈ G, |Cl(g)| is equal to the weight of cg ∈ K(G)
by Proposition A.15, together with the Schur Orthogonality Relations (Theorem 3.33). Now
we see that for this expression to be nonzero, ni and mi cannot both be nonzero at the
same time. By comparing all represntations of G in this way, and using that the number of
irreducible representations of G is equal to |K̂(G)|, we see that for each ρ(i), there is exactly
one ϕ(j) such that ρ̃(i) ∼ njϕ

(j). And since the degrees of equivalent representations must
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be equal, nj = deg ρ̃(i) = deg ρ(i). And conversely, for each ϕ(j) ∈ K̂(G), there exists exactly
one ρ(i) such that ρ̃(i) ∼ deg(ρ(i))ϕ(j). Since we have this bijection, we can assume without
loss of generality that we have numbered the irreducible representations of G and K(G) so
that ρ̃(i) ∼ deg(ρ(i))ϕ(i) for all i. We now have

ϕ(i)(cg) =
χρ̃(i)(cg)

deg(ρ(i))
=

χρ(i)(g)

deg(ρ(i))

where ψi :=
χ
ρ(i)

deg(ρ(i))
are the elements in K(Ĝ) by definition. Define a mapping θ : K(Ĝ)→

K̂(G) by θ(ψi) = ϕ(i). We know that this mapping is bijective. We now wish to show that
it preserves the operation as well. Let (mk

ij) and (µkij) be the structure constants of K(Ĝ)

and K̂(G) respectively. We compute

(θ(ψi)θ(ψj)) (cg) = ϕ(i)(cg)ϕ
(j)(cg) = ψi(g)ψj(g) = (ψiψj) (g) =

∑
k

mk
ijψk(g)

=
∑
k

mk
ijϕ

(k)(cg) =
∑
k

mk
ijθ(ψk)(cg)

and since this is true for any cg ∈ K(G), we have θ(ψi)θ(ψj) =
∑
km

k
ijθ(ψk), and so θ

preserves the operation. We now need to show that K̂(G) is a hypergroup. For this we
use that

∑
mk
ijϕ

(k) =
∑
mk
ijθ(ψk) = θ(ψi)θ(ψj) = ϕiϕj =

∑
µkijϕk, which implies that

mk
ij = µkij for all i, j, k. This in turn implies that 0 ≤ mk

ij for all i, j, k, which by A.17 shows

that K̂(G) is a hypergroup . Thus K̂(G) is isomorphic to K(Ĝ).

We have now showed that K(Ĝ) and K̂(G) essentially are the same hypergroup. We will
now proceed to show that the dual of the character hypergroup is isomorphic to the class
hypergroup.

Theorem A.32. If G is a finite group, then K̂(Ĝ) is a hypergroup isomorphic to K(G).

Proof. By Theorem A.31 K(Ĝ) ∼= K̂(G). And since we know that K̂(G) is a hypergroup,

we know by Proposition A.29 that
̂̂
K(G) is a hypergroup, and

̂̂
K(G) ∼= K(G). By using

Proposition A.26, and that isomorphism is an equivalence relation, we now get that K̂(Ĝ) is
a hypergroup isomorphic to K(G).

We have now seen how pointwise multiplication on the dual of a hypergroup works, and
when the dual is a hypergroup as well. We have also learned a way to generate hypergroups
from the characters of any finite group. Then hypergroup isomorphism was introduced, and
was used to show how certain hypergroups relate to each other. We now move on to examples
of class and character hypergroups os S3.

A.3 Class and Character Hypergroup of S3

In this section, the class and character hypergroups of S3 are presented as examples.
We denote the elements in K(S3) by (ci)0≤i<3, and compute its Cayley table, see table

Table 6, using the same method as the one used in Example A.14. The representations of
K(S3) are denoted by (ϕ)0≤i<3, and the character table of K(S3) is shown in Table 7. The
elements in K(Ŝ3) are denoted by (ψi)0≤i<3 and its Cayley table, see Table 8, is computed

by using that its structure constants are given by mt
ij :=

〈χ
ρ(t)

,χ
ρ(i)

χ
ρ(j)
〉 deg(ρ(t))

deg(ρ(i)) deg(ρ(j))
, where

(ρ(i))0≤i<3 are the irreducible representations of G, see the proof of Theorem A.22.
Alternatively, since K̂(S3) ∼= K(Ŝ3) and therefore they have the same structure constants,

the Cayley table of K(Ŝ3) can instead be computed as mt
ij = 〈ϕ(t), ϕ(i) · ϕ(j)〉 k(ϕ(t)) accord-

ing to Theorem A.17. Note that the first of these inner products are inner products on G,
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whereas the second is an inner product on K(S3). The representations of K(Ŝ3) are denoted
by (ρ(i))0≤i<3, and the character table of K(Ŝ3) is shown in Table 9.

Finally, at the end of this section we present the regular representation, and its character,
the weight functions, and the hyperdimensions, of K(S3).

Table 6: Cayley table for K(S3).

c0 c1 c2
c0 c0 c1 c2
c1 c1

1
3c0 + 2

3c2 c1
c2 c2 c1

1
2c0 + 1

2c2

Table 7: Character table for K(S3).

c0 c1 c2
ϕ(0) 1 1 1
ϕ(1) 1 0 − 1

2

ϕ(2) 1 -1 1

Table 8: Cayley table for K(Ŝ3).

ψ0 ψ1 ψ2

ψ0 ψ0 ψ1 ψ2

ψ1 ψ1
1
4ψ0 + 1

2ψ1 + 1
4ψ2 ψ1

ψ2 ψ2 ψ1 ψ0

Table 9: Character table for K(Ŝ3).

ψ0 ψ1 ψ2

ρ(0) 1 1 1
ρ(1) 1 0 -1
ρ(2) 1 − 1

2 1

L(c0) =

1 0 0
0 1 0
0 0 1

 , L(c1) =

0 1/3 0
1 0 1
0 2/3 0

 , L(c2) =

0 0 1/2
0 1 0
1 0 1/2


χL(c0) = 3, χL(c1) = 0, χL(c2) =

3

2

w(c0) = 1, w(c1) = 3, w(c2) = 2, w(K) = 6

k(ϕ0) = 1, k(ϕ1) = 4, k(ϕ2) = 1
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B Hypergroups from Graphs

B.1 Graph Hypergroup
The goal of this section is to construct and investigate hypergroups from distance-transitive
graphs. We will begin by recalling some elementary definitions of graph theory. See [8] for a
more thorough treatment.

Definition B.1 (Elementary definitions).

• An undirected graph G is a finite set of vertices V and a set of edges E, where each
edge is an unordered pair of distinct vertices. We denote the vertices of G by V (G) and
similarly its edges by E(G).

• A pair of vertices x0 and x1 are adjacent if there is an edge x0x1 ∈ E connecting them,
and we denote this by x0 ∼ x1.

• A path from u to v in a graph is a sequence of vertices (wi)0≤i≤n, where w0 = u and
wn = v, satisfying wi ∼ wi+1 for 0 ≤ i < n. We say the path has length n.

• The distance d(u, v) between two vertices u and v in a graph is the length of the shortest
path between them.

• The diameter diamG of the graph is the maximum distance between any two vertices,
that is, diamG := maxx0,x1∈V (G) d(x0, x1).

• The degree of a vertex v in a graph G is |v| := |{e ∈ E(G) | v ∈ e}|.

• A graph is connected if there is a path between every pair of vertices.

Definition B.2 (Isomorphism). ϕ : V (G0)→ V (G1) is a graph isomorphism if it is bijective
and it holds that x ∼ y if and only if ϕ(x) ∼ ϕ(y).

Proposition B.3. Let G be a connected, undirected graph. Then the distance function d :
V (G)× V (G)→ N is a metric; that is, for x0, x1, x2 ∈ V (G),

(i) d(x0, x1) = 0 ⇐⇒ x0 = x1

(ii) d(x0, x2) ≤ d(x0, x1) + d(x1, x2)

(iii) d(x0, x1) = d(x1, x0).

Furthermore, the distance function respects isomorphism; that is, for x0, x∞ ∈ V (G) and any
graph isomorphism φ : V (G)→ V (G′),

d(x0, x∞) = d(φ(x0), φ(x∞)).

Proof. (i) If d(x0, x1) = 0 then there is a path p0 of length 0 between x0 and x1, so
(x0) = p0 = (x1) and x0 = x1. If x0 = x1 then the path p0 := (x0) = (x1) goes between x0
and x1 and has length 0.
(ii) Since the graph is connected, there is a path p0 of length d(x0, x1) from x0 to x1, and
similarly there is a path p1 of length d(x1, x2) from x1 to x2. Thus there is a path of length
d(x0, x1) + d(x1, x2), namely the composed path p0p1, from x0 to x2.
(iii) Path reversion is a bijection between paths from x0 to x1 and paths from x1 to x0, and
preserves length.

As for isomorphisms, given a path (xi)0≤i≤n in G, the length of (xi)0≤i≤n equals the
length of (φ(xi))0≤i≤n, so φ in an extended sense is a length-preserving bijection between
paths from x0 to x∞ and paths from φ(x0) to φ(x∞). Therefore, applying d and then min,
we get d(x0, x∞) = d(φ(x0), φ(x∞)).

Definition B.4 (Distance-transitive graph). A connected undirected graph G is distance-
transitive if, given any two ordered pairs of vertices (u, v) and (u′, v′) satisfying d(u, v) =
d(u′, v′), there is an isomorphism g : V (G)→ V (G) such that g(u) = u′ and g(v) = v′.
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Using this basic group theory, we wish to demonstrate a way to generate a hypergroup
from a distance-transitive graphs. With this goal in mind, we begin with the following
definition.

Definition B.5 (Unnormalized structure constants). Let G be a distance-transitive graph.
Define the unnormalized structure constants (Nk

ij)0≤i,j,k≤diamG by choosing some x0, x1 ∈
V (G) with d(x0, x1) = i and setting

P kij := {x2 ∈ V (G) : d(x1, x2) = j, d(x0, x2) = k}
Nk
ij := |P kij |.

As may be expected, these unnormalized structure constants will later be normalized,
and will then be the structure constants of a hypergroup. But first we need to demonstrate
that they are well defined.

Proposition B.6. Let G be a distance-transitive graph. Then the unnormalized structure
constants are well-defined. That is, they are independent of the choice of x0 and x1.

Proof. If 0 ≤ i, j, k ≤ diamG are fixed and Nk
ij , P

k
ij , Ñ

k
ij , P̃

k
ij are defined in terms of some

x0, x1, x̃0, x̃1 ∈ V (G) then some isomorphism φ : V (G) → V (G) takes x0 7→ x̃0 and x1 7→ x̃1
since d(x0, x1) = i = d(x̃0, x̃1). φ can be restricted to a bijection f : P kij → P̃ kij since if
x2 ∈ P kij then

d(x0, x1) = i

d(x1, x2) = j

d(x0, x2) = k

=⇒


d(φ(x0), φ(x1)) = i

d(φ(x1), φ(x2)) = j

d(φ(x0), φ(x2)) = k

=⇒


d(x̃0, x̃1) = i

d(x̃1, φ(x2)) = j

d(x̃0, φ(x2)) = k

so that f(x2) = φ(x2) ∈ P̃ kij ; similarly f is surjective; and finally f is injective since φ is
injective. A bijection between P kij and P̃ kij has been established, and thus Nk

ij = Ñk
ij .

Corollary B.7. Let G be a distance-transitive graph. Then all vertices of G have the same
degree.

Proof. The degree of any x0 ∈ V (G) is N1
01.

Definition B.8 (Graph hypergroup). Let G be a finite distance-transitive graph. Define the
structure constants (nkij)0≤i,j,k≤diamG by normalizing the unnormalized structure constants:

nkij :=
Nk
ij

N j
0j

.

By the graph hypergroup K(G), we mean the standard basis {ei | 0 ≤ i ≤ diamV (G)} of the
complex vector space CdiamG+1 equipped with with operations multiplication and involution
given according to the structure constants, for a, b ∈ CdiamG+1 and 0 ≤ k ≤ diamG by

(ab)k :=
∑

0≤i,j≤diamG

aibjn
k
ij

(a∗)k := ai.

Remark. The denominator N j
0j is always nonzero since we assume 0 ≤ j ≤ diamG.

Remark. Any ∗ was consciously omitted from ai.

One may interpret nkij as the probability to end up at distance k from one’s starting point
x0 by choosing at random a point x1 on the circle with radius i centered at x0 and then
choosing at random a point x2 on the circle with radius j centered at x1.

It is our present task to show that the graph hypergroup is indeed a hypergroup, and that it
is both commutative and hermitian.
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Definition B.9. (Hermitian) A hypergroup with elements (ci) is said to be hermitian if all
c∗i = ci.

Theorem B.10. Let G be a distance-transitive graph. Then the graph hypergroup K(G) is a
hypergroup, and it is both commutative and hermitian.

Proof. To show that K(G) is a hypergroup, it suffices to verify equations (1, 2, 3, 4, 5, 6) of
Theorem 2.6.

(1) Normalization follows from the fact that if 0 ≤ i, j ≤ diamG, then (P kij)0≤k≤diamG

is a partition of P j0j , provided we use the same x0, x1 in the definition of all (P kij)0≤k≤diamG

and use x1, x1 correspondingly in the definition of P j0j , as allowed by Proposition B.6.

(2) Nonnegativity follows from Nk
ij being natural numbers.

(4) Neutrality of e0 follows from the fact that if Nk
0j 6= 0 then there are points x0, x1, x2 ∈

V (G) such that d(x0, x1) = 0, d(x1, x2) = j, d(x0, x2) = k, but then x0 = x1 and j = k.

(5) Uniqueness of the involution will be shown in the proof of hermitianness.

(6) The involution identity will follow from commutativity and hermitianness. Thus K(G)
is a hypergroup, if we can also verify associativity (3), which is the most difficult identity to
prove.

The proof of commutativity is based on reversing paths. If 0 ≤ i, j, k ≤ diamG then there
are in total |V (G)|N i

0iN
k
ij triples (x0, x1, x2) with d(x0, x1) = i, d(x1, x2) = j, d(x0, x2) = k,

since the choice of x0, x1 does not affect Nk
ij by Proposition B.6 and for each x0 – of which

there are |V (G)| – there are N i
0i permitted choices of x1.

Similarly there are in total |V (G)|N j
0jN

k
ji triples (x0, x1, x2) with d(x0, x1) = j, d(x1, x2) =

i, d(x0, x2) = k. A bijection between these sets of triples is given by (x0, x1, x2) 7→
(x2, x1, x0). Thus

|V (G)|N i
0iN

k
ij = |V (G)|N j

0jN
k
ji

nkij =
Nk
ij

N j
0j

=
Nk
ji

N i
0i

= nkji.

The proof of hermitianness is based on the graph being undirected. If 0 ≤ i ≤ diamG
then by definition of the diameter there are points x0, x2 ∈ G such that d(x0, x2) = diamG.
Along a shortest path from x0 to x2 choose x1 so that d(x0, x1) = i.

Since the structure constants are independent of x0 and x1 by Proposition B.6 we may use
these ones. Thus x0 ∈ P 0

ii and x1 ∈ P i0i, proving that N0
ii > 0, N i

0i > 0 and n0ii > 0.
Conversely, if n0ij > 0 then N0

ij > 0 and there is some point x2 ∈ P 0
ij , meaning that

d(x0, x1) = i, d(x1, x2) = j, d(x0, x2) = 0 so in particular x0 = x2 and

i = d(x0, x1) = d(x2, x1) = d(x1, x2) = j.

Finally, we turn to prove associativity (3). Use commutativity to reduce (3) to∑
j

N j
i1i0

Nk
ji2 =

∑
j

N j
i1i2

Nk
ji0 .

To this end, for fixed i0, i1, i2, k, x0, x1 with d(x0, x1) = i1, define sets whose cardinality is
the left or right-hand side respectively:

SL := {(x2, x3) : d(x1, x2) = i0, d(x2, x3) = i2, d(x0, x3) = k}
SR := {(x1, x3) : d(x1, x2) = i2, d(x2, x3) = i0, d(x0, x3) = k}.

To see that these sets have the same size, fix x3 with d(x0, x3) = k. Choose some isomor-
phism φ : V (G)→ V (G) that sends x1 7→ x3 and x3 7→ x1, according to distance-transitivity.
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To each x2 such that (x2, x3) ∈ SL, φ arranges a point φ(x2) such that (φ(x2), x3) ∈ SR, in
a bijective manner. Thus |SL| = |SR|, and we have associativity.

Our task to derive the commutative hermitian graph hypergroup K(G) has been completed,
and we now turn to efficient computation of its structure constants nkij . We will make use of
the regular representation as given in Definition 3.41, along with matrix multiplication and
the metric properties of the distance function. Some central concepts will now be defined.

Definition B.11 (Tridiagonal matrix, Diagonals). An (n+1)×(n+1) matrixM is said to be
tridiagonal ifMij 6= 0 implies |i−j| ≤ 1. The lists (Mi(i−1))0<i≤n, (Mii)0≤i≤n, (Mi(i+1))0≤i<n
are called the diagonals of M .

Definition B.12 (Intersection array, Intersection matrix). Let G be a distance-transitive
graph. For fixed x0, x1 ∈ V (G) define the intersection array ι by

ι := ((ai)0≤i≤diamG , (bi)0≤i<diamG)

ai := N i
i1, bi := N i+1

i1 , fi := N i−1
i1 .

Define the intersection matrix B to be the (diamG + 1) × (diamG + 1) tridiagonal matrix
with diagonals (fi)0<i≤diamG, (ai)0≤i≤diamG, (bi)0≤i<diamG. In pictures,

B :=



a0 b0 0 · · · 0 0
f1 a1 b1 · · · 0 0
0 f2 a2 · · · 0 0
...

...
...

...
...

0 0 0 · · · adiamG−1 bdiamG−1
0 0 0 · · · fdiamG adiamG


.

The intersection array ι actually gives sufficient information to characterize the graph
hypergroup. That is, we can compute the structure constants from it. Furthermore, it
turns out that the computation is pretty cheap. However, the intersection array does not
characterize the entire distance-transitive graph, as for instance ι = ((6, 4, 4), (1, 1, 3)) belongs
to two different distance-transitive graphs [9], and therefore we briefly conclude that a graph
hypergroup does not in general characterize its distance-transitive graph.

To support these claims, we need the following lemma.

Lemma B.13 (The reverse triangle inequality). Let G be a distance-transitive graph. If
x0, x1, x2 ∈ V (G) then |d(x0, x1)− d(x1, x2)| ≤ d(x0, x2).

Proof. Use the metric properties of Proposition B.3 a few times to get

d(x0, x1) ≤ d(x1, x2) + d(x0, x2)

d(x1, x2) ≤ d(x0, x1) + d(x0, x2).

From here the result follows, as a ≤ b,−a ≤ b implies |a| ≤ b.

Theorem B.14. Let G be a distance-transitive graph. Then K(G) is characterized by the
intersection array ι = (a, b); via the regular representation L(cz)ij := nizj and the following
recurrence relations, where the intersection matrix B is computed via fi = b0 − ai − bi.

L(c0) = I (11)

L(c1) = BT /b0 (12)
L(ci+2) = (−fi+1L(ci)− ai+1L(ci+1) + L(c1)L(ci+1)b0)/bi+1. (13)

Proof. (11) is immediate since L is a representation by Proposition 3.42.
To show (12), start by showing that L(c1) is tridiagonal. If L(c1)ij 6= 0 then by def-

inition ni1j 6= 0 and there is some x2 ∈ P j1i, meaning we have d(x0, x1) = 1, d(x1, x2) =
i, d(x0, x2) = j for some x0, x1 ∈ V (G). From the reverse triangle inequality we derive that
|i− j| = |d(x1, x2)− d(x0, x2)| ≤ d(x0, x1) = 1.
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Now since both L(c1) and B are tridiagonal, it suffices to compare their entries along the
three diagonals. By commutativity we have L(c1)ij = ni1j = nij1 = N1

j1/N
1
01 and thus

L(c1)ii = N i
i1/N

1
01 = ai/N

1
01 = BTii/N

1
01

L(c1)i(i+1) = N i+1
i1 /N1

01 = bi/N
1
01 = BTi(i+1)/N

1
01

L(c1)i(i−1) = N i−1
i1 /N1

01 = fi/N
1
01 = BTi(i−1)/N

1
01.

This shows (12), since by definition b0 = N1
01.

The equation fi = b0 − ai − bi is another consequence of tridiagonality.
We finally turn to (13). By tridiagonality, for 0 ≤ i ≤ diamG − 2, we have

c1ci+1 =
∑
k

nk1(i+1)ck = (fi+1ci + ai+1ci+1 + bi+1ci+2)/b0

L(c1)L(ci+1) = L(c1ci+1) = (fi+1L(ci) + ai+1L(ci+1) + bi+1L(ci+2))/b0.

If we can show that bi+1 6= 0, then rearrangement gives (13). There are points x0, x2 ∈ V (G)
with d(x0, x2) = i + 2 since i + 2 ≤ diamG. Define x1 to be a point along a shortest path
from x0 to x2 with d(x0, x1) = i + 1 and d(x1, x2) = 1. By Proposition B.6 we then have
x2 ∈ P i+2

(i+1)1 and thus bi+1 = N i+2
(i+1)1 > 0.

As suggested earlier, this characterization of K(G) by ι is computationally efficient. This
is because L(c1) is tridiagonal, as stated in the form (12), from which it follows that a single
evaluation of (13) can be performed in O((diamG)2) time, provided that the intersection
array ι has already been stored. The intersection array can be computed by first running the
well-known Dijkstra’s algorithm; or it can be looked up on the Internet for common graphs.

We end this theory section with a simple but pleasant result, which is analogous to the
last proposition of the section about the class hypergroup, and then move on to some trivial
and non-trivial examples of graph hypergroups.

Proposition B.15. Let G be a distance-transitive graph. Then the weight of any element
ci = ei ∈ K(G) is w(ci) = N i

0i, the number of points at distance i from any fixed x0 ∈ V (G).

Proof. If 0 ≤ i ≤ diamG then N0
ii = 1, since at distance i from any given x0 ∈ V (G) there

is a point x1 ∈ V (G), and there is only one point x2 ∈ V (G) with d(x0, x2) = 0. Thus we
argue that

w(ci) = 1/n0ii∗ = 1/n0ii = 1/(N0
ii/N

i
0i) = N i

0i.

N i
0i is almost by definition the number of points at distance i from any x0 ∈ V (G).

We have now defined the graph hypergroup of a finite distance-transitive graph, and shown
that it actually is a hypergroup. We have also demonstrated a method for computing the
structure constants of this hypergroup. Most of the rest of this appendix will be devoted to
presenting the graph hypergroups from certain graphs and families of graphs. But first we
present a link to the source code used to generate some of the examples.

B.2 Source Code
Some procedures have been written to automate arithmetic with hypergroups. Available at

https://github.com/Breitholtz/Slutrapport-kandidat/tree/master/procedures

they allow computation of structure constants from distance-transitive graphs, and they
also include a rudimentary ability to compute character tables of commutative hypergroups.
Furthermore, Cayley tables of hypergroups are easily typeset in the LATEX format.

This was done in Python 3 using the libraries sympy for equation solving and networkx for
computing intersection arrays. Due to limitations of equation solving in sympy, the character
tables can typically only be computed for small hypergroups.
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B.3 Complete Graph
In this section we present the graph hypergroup of a complete graph. A complete graph is a
graph such that there is an edge connecting every pair of vertices. A graph hypergroup from
a complete graph with n vertices has 2 elements. The Cayley table is shown in Table 10, and
the character table in Table 11.

Table 10: Cayley table of a hypergroup from a complete graph n vertices.

c0 c1
c0 c0 c1
c1 c1

1
nc0 + n−1

n c1

Table 11: Character table of a hypergroup from a complete graph with n vertices.

c0 c1
ϕ(0) 1 1
ϕ(1) 1 n−1+

√
n2−n+1
n

w(c0) = 1, w(c1) = n, w(K) = n+ 1, k(ϕ(0)) = 1, k(ϕ(1)) =
n+ 1

2
(
n2 − n+ 1 +

√
n3 − 2n2 + 2n− 1

)
B.4 (k,n)-graph
In this section, we consider a family of graphs which we call (k,n)-graphs.

Definition B.16 ((k,n)-graph). By a (k,n)-graph we mean a graph in which we can colour
the vertices using k > 1 colours, so that each colour is used on n > 1 vertices, and so that
each pair of vertices has an edge connecting them if and only if they have different colours.
The hypergroup generated from a (k,n)-graph is called a (k,n)-hypergroup.

Example B.17. The (3,4)-graph is shown in Figure 1. Note that 3 different vertex colours
have been used, that there are 4 vertices of each colour, and that two vertices are connected
if and only if they are of different colours.
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Figure 1: A (3,4)-graph where the vertices have been coloured black, blue, and green.

It can be shown that the (k,n)-graph is distance-transitive for all k, n > 1. Thus we
can compute its graph hypergroup. The Cayley table of the hypergroup from a (k,n)-graph
is shown in Table 12. The character table is shown in Table 13. The Cayley table of the
dual hypergroup is shown in Table 14. Note that the dual hypergroup is generated by an
(n,k)-graph. Thus the dual hypergroup of a (k,n)-hypergroup is an (n,k)-hypergroup.

Note also that if k = 2 and n = 3 the (k,n)-hypergroup is isomorphic to K(S3), which
can easily be seen by comparing the Cayley tables in Table 6 and Table 12.

Table 12: Cayley table for the hypergroup generated from a (k, n)-graph

c0 c1 c2
c0 c0 c1 c2
c1 c1

1
(k−1)nc0 + k−2

k−1c1 + n−1
(k−1)k c2 c1

c2 c2 c1
1

n−1c0 + n−2
n−1c2

Table 13: Character table for the hypergroup generated from a (k, n)-graph

c0 c1 c2
ϕ(0) 1 1 1
ϕ(1) 1 0 − 1

n−1
ϕ(2) 1 − 1

k−1 1

w(c0) = 1, w(c1) = (k − 1)n, w(c2) = n− 1, w(K) = nk,

k(ϕ0) = 1, k(ϕ1) = (n− 1)k, k(ϕ2) = k − 1
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Table 14: Cayley table for the dual hypergroup of a (k,n)-hypergroup.

ϕ(0) ϕ(1) ϕ(2)

ϕ(0) ϕ(0) ϕ(1) ϕ(2)

ϕ(1) ϕ(1) 1
(n−1)kϕ

(0) + n−2
n−1ϕ

(1) + k−1
(n−1)kϕ

(2) ϕ(1)

ϕ(2) ϕ(2) ϕ(1) 1
k−1ϕ

(0) + k−2
k−1ϕ

(2)

B.5 Platonic Solids
This section contains two examples of hypergroups constructed from the graphs of platonic
solids, the octahedron and the dodecahedron. Attached are the Cayley tables, as well as
some curious data about the hypergroup. ι contains the intersection numbers, w the weights
of the hypergroup elements, and k the corresponding hyperdimensions. X is the character
table.

The reader is invited to verify that the Cayley tables are symmetric; the rows of the
character table are orthogonal, with respect to the inner product 〈·, ·〉 given in the main
text; and that in these commutative cases the sum of the weights equals the sum of the
hyperdimensions.

We thank User:Cyp at Wikipedia for drawing platonic solids for anyone to use under the
Creative Commons license CC BY-SA 3.0.

Table 15: Cayley table for the octahedral graph.

· c0 c1 c2
c0 c0 c1 c2
c1 c1

1
4c0 + 1

2c1 + 1
4c2 c1

c2 c2 c1 c0

ι = [4, 1; 1, 4], w = [1, 4, 1], k = [1, 2, 3]

X =

1 1 1
1 − 1

2 1
1 0 −1


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Table 16: Cayley table for the dodecahedral graph.

· c0 c1 c2 c3 c4 c5
c0 c0 c1 c2 c3 c4 c5
c1 c1

1
3c0 + 2

3c2
1
3c1 + 1

3c2 + 1
3c3

1
3c2 + 1

3c3 + 1
3c4

2
3c3 + 1

3c5 c4
c2 c2

1
3c1 + 1

3c2 + 1
3c3

1
6c0 + 1

6c1 + 1
6c2 + 1

3c3 + 1
6c4

1
6c1 + 1

3c2 + 1
6c3 + 1

6c4 + 1
6c5

1
3c2 + 1

3c3 + 1
3c4 c3

c3 c3
1
3c2 + 1

3c3 + 1
3c4

1
6c1 + 1

3c2 + 1
6c3 + 1

6c4 + 1
6c5

1
6c0 + 1

6c1 + 1
6c2 + 1

3c3 + 1
6c4

1
3c1 + 1

3c2 + 1
3c3 c2

c4 c4
2
3c3 + 1

3c5
1
3c2 + 1

3c3 + 1
3c4

1
3c1 + 1

3c2 + 1
3c3

1
3c0 + 2

3c2 c1
c5 c5 c4 c3 c2 c1 c0

ι = [3, 2, 1, 1, 1; 1, 1, 1, 2, 3], w = [1, 3, 6, 6, 3, 1], k = [1, 3, 3, 4, 4, 5]

X =



1 1 1 1 1 1

1 −
√
5
3

1
3 − 1

3

√
5
3 −1

1
√
5
3

1
3 − 1

3 −
√
5
3 −1

1 − 2
3

1
6

1
6 − 2

3 1
1 0 − 1

2
1
2 0 −1

1 1
3 − 1

3 − 1
3

1
3 1


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C Algebra
Some basic knowledge of algebra group theory is practically necessary to understand and set
our article in context. For example, the representation theory we build for hypergroups is
originally a way to study and represent groups. This section will therefore contain some of
the basics in group theory, as well as some basic definitions related to rings. The focus will
primarily lie on what is necessary to understand our paper, and this section does in no way
give a comprehensive view of group theory or algebra. Instead we suggest picking up a book
in abstract algebra for further study, e.g. [10].

C.1 Group Theory
Definition C.1 (Group). A group is a set G and a binary operation · satisfying:

(i) Closure: For all a, b ∈ G, the product a · b ∈ G.

(ii) Associativity: For all a, b, c ∈ G, (a · b) · c = a · (b · c).

(iii) Identity: There exists an element e ∈ G such that a · e = e · a = e for all a ∈ G.

(iv) Inverse: For all a ∈ G, there exists an element a−1 ∈ G such that a · a−1 = a−1 · a = e.

All readers will have encountered several groups in their mathematical careers, although not
necessarily aware of it. Let us look at a few examples to solidify this somewhat abstract
definition.

Example C.2. The set of integers Z with addition (+) is a group. This can readily be
verified by going through the requirements in the definition. Clearly the sum of two integers
is an integer. Associativity is obvious. The identity is 0 and each element a ∈ Z has an
inverse −a for which a+ (−a) = 0.

On the other hand, Z with multiplication (·) is not a group, since only 1 and −1 have
inverses.

Example C.3. The set S = Q \ {0} (the rational numbers excluding zero) together with
multiplication is a group. For all pq ,

s
t ∈ S,

p
q ·

s
t = ps

qt ∈ S, thus it is closed. Associativity

follows from the associativity of regular multiplication, 1 is the identity element, and
(
p
q

)−1
=

q
p ∈ S so we have inverses.

Example C.4. The set of all rotations of a plane about a point p is a group. Closure holds,
as two rotations by θ and φ degrees respectively corresponds to one rotation by θ+φ degrees.
Associativity holds as rotation is associative. The identity is simply rotation by zero degrees,
and the inverse of a rotation by θ degrees is a rotation by −θ degrees.

Example C.5. The set GLn(C) consisting of all square matrices of order n with nonzero
determinant is a group with matrix multiplication. Associativity follows from the associa-
tivity of matrix multiplication, the identity matrix is the identity of the group, all elements
have an inverse since their determinant is nonzero, and finally closure is confirmed through
det(AB) = det(A)det(B) 6= 0 for all A,B ∈ GLn(C).

One important difference between the last example compared to the previous three is that
matrix multiplication isn’t commutative. The group operation is not commutative in general,
but there are enough important special cases that we will make the following definition.

Definition C.6 (Abelian group). A group G with operation · is called abelian if and only if

a · b = b · a for all a, b ∈ G

Definition C.7 (Cayley table). Let G be a finite group with operation ·. By the Cayley
table of G we mean the table describing the binary operation · acting on all pairs of elements
in G, thus fully describing the group. Note that the order of the operation will matter if G
is not abelian, thus the convention is to take the vertical elements first.
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For example, if G = {a, b, c}, the Cayley table will look like Table 17.

Table 17: The Cayley table of G.

· a b c
a a · a a · b a · c
b b · a b · b b · c
c c · a c · b c · c

Definition C.8 (Order). Let G be a group. By the order of G we mean the cardinality |G|
of the underlying set, i.e. the number of elements in the group.

Definition C.9 (Symmetric group). Assume X is a finite set. Denote by S(X) the set of all
bijections from X to itself, i.e. the permutations of its elements. It is then not hard to verify
that S(X) is a group under composition. We call this the symmetric group on X. When
X = {1, 2, . . . , n}, we write Sn and call it the symmetric group of degree n. It can be shown
that |Sn| = n!.

In all groups we have seen so far, the identity element has been unique, and all elements
have only had one unique inverse. It turns out that these are not just special cases, but it is
true of groups in general.

Theorem C.10. Let G be a group. Then

(i) The identity element of G is unique, i.e. if e, h ∈ G satifies

eg = ge = g for all g ∈ G

and
hg = gh = g for all g ∈ G

then
e = f.

(ii) The inverse of an element in G is unique, i.e if a, b, c ∈ G satisfy

ab = ba = e

and
ac = ca = e

then
b = c.

Proof.

(i) Assume that eg = g for all g ∈ G. Then, as special case of this, eh = h. Now assume
that gh = g for all g ∈ G. Then eh = e. From this it follows that e = h, which proves
the uniqueness of the identity.

(ii) With a, b, c, e defined as above we have

b = b · e = b · (a · c) = (b · a) · c = e · c = c,

which proves the uniqueness of the inverse.

We can now speak about the identity of a group and the inverse of an element, which is
important in our discussion of representations. Another concept we will need in our discussion
of representations is that of the equivalence relation.
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Definition C.11. A binary relation ∼ on a set S is an equivalence relation if it is

(i) Reflexive: if a ∈ S then a ∼ a

(ii) Symmetric: I a, b ∈ S and a ∼ b, then b ∼ a.

(iii) Transitive: If a, b, c ∈ S, a ∼ b, and b ∼ c, then a ∼ c.

Equivalence relations are an important concept with interesting properties, which we will
discuss, but let us first look at a few examples.

Example C.12. Equality is an equivalence relation on R. The reflexive property is easily
verified, as every number is equal to itself. The symmetric propoerty also holds, as a = b if
and only if b = a. Finally, the transitive property holds, since a = b and b = c implies a = c.

Example C.13. Assume that G is a group, and define a relation ∼ on G by

a ∼ b if and only if there is g ∈ G such that a = gbg−1.

Then ∼ is an equivalence relation. Let us verify this by going through the different require-
ments of the definition.

Reflexive The identity e is in G, and eae−1 = a. Thus a∼a.

Symmetric Assume a ∼ b. Then there is a g ∈ G such that a = gbg−1. Multiplication by
g from the right and g−1 from the left results in b = g−1ag =

(
g−1

)
a
(
g−1

)−1 Thus
b ∼ a.

Transitive Assume a, b, c ∈ G, a ∼ b, and b ∼ c. Then there exist g1, g2 ∈ G such that
a = g1bg

−1
1 and b = g2cg

−1
2 . This implies that a = g1bg

−1
1 = g1g2cg

−1
2 g−11 . As g1g2 ∈ G

and (g1g2)
−1

= g−12 g−11 we conclude that a ∼ c.

The equivalence relation in this last example is important, and will be used in the discussion
of representations. If ∼ is as in this example, and a ∼ b, we say that b is the conjugate of a,
or that a and b are in the same conjugacy class.

An important property of equivalence relations is that partition sets into equivalence
classes.

Definition C.14 (Partition). Let S be a nonempty set. Then the collection of sets S1, . . . , Sk
forms a partition of S if

(i) Si ⊆ S for all i = 1, . . . , k,

(ii) S =
⋃k
i=1 Si, and

(iii) if Si 6= Sj , then Si ∩ Sj = ∅.

Definition C.15. Let ∼ be an equivalence relation on a set S. Assume a ∈ S. By the
equivalence class [a] of a we mean

[a] = {x ∈ S : a ∼ x}

Theorem C.16. Let ∼ be an equivalence relation on a set S. Then the equivalence classes
of ∼ form a partition of S.

Proof.From the definition of equivalence classes, we know that they only contain elements
from S, and thus are subsets of S. Assume that a ∈ S. We know that a belongs to at least
one equivalence class, [a]. As this is true for every element in S, it follows that S is the union
of the equivalence classes.

It remains to prove that two equivalence classes are either equal or disjoint. Assume that
[a] ∩ [b] 6= ∅. Then ∃c such that c ∈ [a] and c ∈ [b]. Let x denote any element in [b], then we
both have b ∼ c and b ∼ x, which implies c ∼ x, because ∼ is both symmetric and transitive.
But we also have that c ∈ [a] =⇒ a ∼ c. Using the transitive property again we get a ∼ x,
which implies [b] ⊆ [a]. In the same way it can be shown that [a] ⊆ [b], which implies that
[a] = [b].

Knowing this, let us return to the equivalence relation from Example C.13.
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Definition C.17. Let G be a group. The equivalence classes defined by

[a] = {x ∈ G | ∃g ∈ G : a = gxg−1}

are called the conjugacy classes of G.

This concludes our treatment of group theory.

C.2 Rings and Fields
We will now proceed to define algebraic structures with even more structure than the group,
starting with rings and ending with the ∗-algebra which is used in the definition of a hyper-
group.

Definition C.18 (Ring). A ring is a set R with two binary operations + and ·, sometimes
denoted (R,+, ·), for which

(i) R is an abelian group under addition.

(ii) Multiplication is associative and there is a multiplicative identity, i.e. there is 1 ∈ R
such that

a · 1 = 1 · a = a for all a ∈ R.

(iii) Multiplication is distributive over addition, i.e.

a · (b+ c) = a · b+ a · c for all a, b, c ∈ R
(a+ b) · c = a · c+ b · c for all a, b, c ∈ R.

Definition C.19 (∗-ring). A ∗-ring or an involutive ring is a ring R with a map ∗ : R→ R
such that x 7→ x∗:

(i) is distributive over addition
(x+ y)∗ = x∗ + y∗.

(ii) is an anti-homomorphism
(xy)∗ = y∗x∗.

(iii) is an involution
(x∗)∗ = x.

(iv) takes 1 to 1
1∗ = 1.

Definition C.20 (Field). A field is a ring (F,+, ·) where we, in addition, demand that:

(i) The multiplication · is commutative.

(ii) All nonzero elements have multiplicative inverses, i.e. for all a ∈ F \ {0} there is an
a−1 ∈ F such that a · a−1 = 1.

Example C.21. All readers will have encountered fields in the past, for example the rational
numbers Q with ordinary addition and multiplication is a field with a−1 = 1

a . In fact, R and
C are also fields.

Definition C.22 (Module). Let R be a ring, and 1R its multiplicative identity. Then a left
R-module consists of an abelian group (M,+) and an operation

[
· | R×M →M

]
such that

for all r, s ∈ R and u, v ∈M the following holds:

(i) 1R · u = u

(ii) (r + s) · u = r · u+ s · u

(iii) (rs) · u = r · (s · u)
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(iv) r · (u+ v) = r · u+ r · v.

Definition C.23 (Associative algebra). Let R be a commutative ring. By an associative
R-algebra we mean an additive abelian group A which has the structure of both a ring and
an R-module in such a way that the scalar multiplication satisfies the following:

• r · (u · v) = (r · u) · v = u · (r · v) for all r ∈ R and u, v ∈ A

In addition, A should have the following properties:

• Existence of identity: There exists 1 ∈ A such that 1 · u = u = u · 1 for all u ∈ A.

• Associativity: u · (v · w) = (u · v) · w for all u, v, w ∈ A

Definition C.24 (∗-algebra). A ∗-algebra is a ∗-ring with involution ∗ that is an associative
algebra over a ∗-ring R with involution ′ such that

(rx)∗ = r′x∗ ∀ r ∈ R, x ∈ B

In this text, the ∗-ring R will be C with complex conjugation as the involution ′.

C.3 Linear Algebra
While we assume that the reader is familiar with basic linear algebra, this section covers
some of the more advanced notions used. It also repeats some concepts that are of higher
importance for our text. For a more thorough treatment, we recommend turning to a book
on linear algebra such as [11].

Definition C.25 (Vector space). A vector space V over a field F is a set of objects called
vectors which can be added together and multiplied by elements of F . In addition, the
following properties must be satisfied:

(i) Closed under addition: If u, v ∈ V , then u+ v ∈ V .

(ii) Closed under multiplication by scalar: If c ∈ F and u ∈ V , then c · u ∈ V .

(iii) Associativity: If u, v, w ∈ V , then (u+ v) + w = u+ (v + w).

(iv) Zero vector: There is 0 ∈ V such that for any u ∈ V , u+ 0 = 0 + u = u.

(v) Additive inverse: If u ∈ V , there is −u ∈ V such that u+ (−u) = 0.

(vi) Commutativity: If u, v ∈ V , then u+ v = v + u.

(vii) Distributivity w.r.t. vector addition: If c ∈ F and u, v ∈ V , then c(u+ v) = cu+ cv.

(viii) Distributivity w.r.t. field addition: If a, b ∈ F and u ∈ V , then (a+ b)u = au+ bu.

(ix) Field identity: If u ∈ V and 1 ∈ F is the multiplicative identity, then 1 · u = u · 1 = u.

This definition looks overwhelming, but hopefully you have seen it before. We call the
elements of F scalars and thus the multiplication is by a scalar. We will only be working
with vector spaces over the familiar field C.

Definition C.26 (Subspace). Let V be a vector space over a field F , and W a subset of V .
We say that W is a linear subspace of V if the following holds:

(i) Zero vector: 0 ∈ V is also in W , i.e. 0 ∈ V .

(ii) Closed under addition: If u, v ∈W , then u+ v ∈W .

(iii) Closed under multiplication by scalar: If c ∈ F and w ∈W , then cv ∈W .
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Definition C.27 (Homomorphism). Let V and W be vector spaces over some field F . If
f : V →W is a linear map, i.e. for any u, v ∈ V and c ∈ F it holds that

f(u+ v) = f(u) + f(v) and f(cu) = af(u),

we say that f is a homomorphism. Let Hom(V,W ) denote the set of all homomorphisms
from V to W .

Definition C.28 (Endomorphism). An endomorphism is a linear map from a vector space
to itself, i.e. the endomorphisms of V are the homomorphisms from V to V . We denote the
set of all these by End(V ), so End(V ) = Hom(V, V ).

Definition C.29 (General linear group). The set of all invertible linear maps from a vector
space V to itself forms a group, and we call it the general linear group of V , denoted GL(V ).

Definition C.30 (Kernel and image). Let V and W be vector spaces over a field F , and let
f ∈ Hom(V,W ). By the kernel of f we mean

ker(f) = {v ∈ V | f(v) = 0},

and by the image of f we mean

im(f) = {f(v) | v ∈ V }.

Note that ker(f) ⊆ V and im(f) ⊆W .
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D Proofs Omitted from the Main Text
Due to space considerations, we have chosen to free the main text of proofs that are trivial
but space-consuming, and proofs virtually identical to the proofs in [4]. The investigative
reader can find these in this section.

Proof of Proposition 3.6. If ϕ is a representation then ϕ ∼ ϕ by I. If ϕ ∼ ρ by T
then ρ ∼ ϕ by T−1. If ϕi ∼ ϕj by Ti and ϕj ∼ ϕk by Tj then ϕi ∼ ϕk by the composition
Tj ◦ Ti.

Proof of Proposition 3.11.

(ϕ⊕ ρ)(c0) = ϕ(c0)⊕ ρ(c0) = I ⊕ I = I

(ϕ⊕ ρ)(ci)(ϕ⊕ ρ)(cj) = (ϕ(ci)⊕ ρ(ci))(ϕ(cj)⊕ ρ(cj))

= ϕ(ci)ϕ(cj)⊕ ρ(ci)ρ(cj)

=
∑
k

nkijϕ(ck)⊕
∑
k

nkijρ(ck)

=
∑
k

nkij(ϕ(ck)⊕ ρ(ck)) =
∑
k

nkij(ϕ⊕ ρ)(ck).

Proof of Theorem 3.19.

(i) For any v ∈ U , and ∀ci ∈ K, we have ϕ(ci)v ∈ U because U is invariant. The
equivalence implies that ρ(ci)Tv = Tϕ(ci)v ∈ TU , which proves that TU is invariant.

(ii) If U ≤ V is invariant then we wish to show that either U = {0} or U = V . If U 6= {0}
then there is a nonzero u ∈ U , and then TU is nontrivial because T is invertible. But
TU is invariant by (i), so TU = W and therefore U = V .

(iii) If ϕ and ρ are two equivalent representations then

∃ T : V →W s.t ϕ = T−1ρT

Suppose that W1,W2 < W invariant e.g W = W1 ⊕W2. We then have that Tϕ = ρT .
Now let V1 = T−1(W1), V2 = T−1(W2). We now claim that V = V1 ⊕ V2. Take

v ∈ V1 ∩ V2 =⇒ Tv ∈W1 ∩W2 = {0} =⇒ Tv = 0 =⇒ v = 0

since T is injective. If we now take v ∈ V =⇒ Tv = w1 + w2 for some w1 ∈ W1,
w2 ∈W2 which in turn implies

v = T−1w1 + T−1w2 ∈ V1 ⊕ V2 =⇒ v ∈ V1 ⊕ V2 = V

It only remains to show V1, V2 invariant. Take

v ∈ Vi =⇒ ϕv = T−1ρTv, but Tv ∈Wi =⇒ ρTv ∈Wi

as Wi invariant which in turn gives us ϕv ∈ T−1(wi) ∈ Vi for some wi ∈Wi

(iv) According to (i) we have that ∃Ti s.t TiVi ≤ W ∀i. Since ϕ decomposible this implies
by (iii) that ρ is decomposible into the same amount of parts as ϕ. If we now assume
that ρi is decomposible then it follows that ϕi is decomposible as well. However since ϕi
is an irreducible representation this is impossible. Therefore ρ is completely reducible.
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Proof of Proposition 3.20. 0 is a morphism because 0ϕ(ci) = 0 = ρ(ci)0. If λ1, λ2 ∈ C
and T1, T2 ∈ Hom(ϕ, ρ) and ci ∈ K then

(λ1T1 + λ2T2)ϕ(ci) = λ1T1ϕ(ci) + λ2T2ϕ(ci)

= λ1ρ(ci)T1 + λ2ρ(ci)T2 = ρ(ci)(λ1T1 + λ2T2).

Linearity of ρ(ci) was used in the last step.

Proof of Lemma 3.21. If Tv = 0 and ci ∈ K then Tϕ(ci)v = ρ(ci)Tv = ρ(ci)0 = 0. If
Tv = w and ci ∈ K then ρ(ci)w = ρ(ci)Tv = Tϕ(ci)v.

Proof of Theorem 3.22. (i) Since T is nonzero, Tv 6= 0 for some v, which is then nonzero
because T is linear. As kerT is invariant and not V , kerT = {0}. As imT is invariant and
not {0}, imT = W . Being linear, this makes T injective and surjective, respectively, and
thus invertible. (ii) By the fundamental theorem of algebra, T −λI has determinant zero for
some λ ∈ C. By linearity, T − λI is a morphism. By part (i), being non-invertible, T − λI
must be zero.

Proof of Theorem 3.25. For the first part, proceed recursively using Lemma 3.24:
Given a representation ϕ : K → End(V ), reduce V as a sum V1⊕V2 of invariant subspaces if
possible, and then treat ϕ : K → End(V1) and ϕ : K → End(V2) by the same procedure. This
process will halt eventually because dimV1 < dimV and dimV2 < dimV . Thus invariant
subspaces Vi are constructed, such that and each restriction ϕ : K → End(Vi) is irreducible
and V =

⊕
Vi.

For the second part: given ϕ : K → End(V ), decompose V =
⊕
Vi (internal sum) accord-

ing to the first part. The bijection T : V →
⊕
Vi (external sum) is given by (T

∑
i vi)j = vj ,

where vi ∈ Vi. Then ϕ ∼
⊕
ϕi (external sum) where by ϕi : K → End(Vi) we mean the

restriction of ϕ to Vi. Every ϕi is irreducible by the first part.

Proof of Proposition 3.27. We want an inner product to follow the following axioms

• 〈a, b〉 = 〈b, a〉

• 〈Aa, b〉 = A 〈a, b〉

• Suppose c : K → C then 〈a+ c, b〉 = 〈a, b〉+ 〈c, b〉

• 〈a, a〉 ≥ 0 with equality only when a = 0

We first check conjugate symmetry

〈a, b〉 =
1

w(K)

∑
z

b(cz)a(cz)w(cz) =
1

w(K)

∑
z

b(cz)a(cz)w(cz) =
1

w(K)

∑
z

b(cz)a(cz)w(cz) = 〈b, a〉

We now show that it is linear in its first argument

〈Aa+Bc, b〉 =
1

w(K)

∑
z

b(cz)(Aa(cz) +Bc(cz))w(cz) =
1

w(K)

∑
z

b(cz)Aa(cz)w(cz)+

1

w(K)

∑
z

b(cz)Bc(cz)w(cz) = A
1

w(K)

∑
z

b(cz)a(cz)w(cz) +B
1

w(K)

∑
z

b(cz)c(cz)w(cz)

Finally we show that the scalar product is positive definite

〈a, a〉 =
1

w(K)

∑
z

a(cz)a(cz)w(cz) =
1

w(K)

∑
z

|a(cz)|2︸ ︷︷ ︸
≥0

w(cz)︸ ︷︷ ︸
>0

≥ 0

We note that equality only occurs when a(cz) = 0.
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Proof of Lemma 3.30. By definition

(AEljB)ki =
∑
x,y

akx(Elj)xybyi,

but all terms are zero, except when x = l, y = j, which gives us the desired formula.
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