
Extraction of Streaming Audio Data
Development of a MOST analysing software application

Master of Science Thesis

JAKOB VALINDER

Department of Signals and Systems
Division of Communication Systems and Information Theory
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden, 2011
Report no. EX065/2011

Extraction of Streaming Audio Data
Development of a MOST analysing software application
JAKOB VALINDER

c© JAKOB VALINDER, 2011

Master’s Thesis no. EX065/2011

Department of Signals and Systems
Division of Communication Systems and Information Theory
Chalmers University of Technology
SE-41296 Göteborg
Sweden

Tel. +46-(0)31 772 1000

Reproservice / Department of Signals and Systems
Göteborg, Sweden, 2011

MASTER’S THESIS no. EX065/2011

Extraction of Streaming Audio Data

Development of a MOST analysing software application

JAKOB VALINDER

Department of Signals and Systems
Division of Communication Systems and Information Theory

CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden, 2011

Abstract

Media Oriented System Transport (MOST) is a high-speed bus system that is able

to transport multimedia data between the different multimedia components within

a vehicle. The communication over the network can consist of both control mes-

sages, data packets and streaming data simultaneously. Streaming data is trans-

ported in the so called synchronous part of the protocol, and could for example be

audio sent from audio source devices to the amplifier with its connected speakers

and headphones. MCBuster is a MOST hardware device from FYI Communica-

tions that monitors the data sent over the network. It can forward messages, packets

and streams over USB to a computer or send messages over a CAN network.

The possibilities and requirements for a streaming MOST data software ap-

plication are discussed in this thesis. This thesis is also focused around the devel-

opment of such application to the MCBuster hardware. The application must be

able to read streaming audio data and present it on a computer, either by speakers

or as an audio file. Software for the MCbuster to monitor packet data and control

messages was already available for use in the project, which then could be focused

on creating the audio streaming parts.

To distinguish valid audio channels from others, allocation table is read. There

are various ways to do this, but for a passive node, the best option is to monitor the

control channel where the allocation table is sent once every 64 frames. Validating

audio is also needed to be able to process the audio properly, possibly with the

right codecs, such as Dolby digital. The developed software is able to play PCM

audio or make a wave file at the computer. Filtering and post-processing is done to

the audio samples to obtain audio in the right format.

i

Preface

This document is a report of a Master of Science thesis work in the programme of

Communication Engineering at Chalmers University of Technology, 2011. It was ini-

tiated by Björn Bergholm at Broccoli Engineering and was executed at their facilities

under supervision by the Department of Signals and Systems at Chalmers University

of Technology. Examiner is Alexandre Graell i Amat, and advisor at Chalmers is Lot-

follah Beygi, both within the Department of Signals and Systems.

Special thanks to all of the above mentioned, all of which made this thesis possible in

their own way. Also thanks to anyone else that has contributed to the making of this

thesis, including Tomas Forslund at FYI Communication, the supporting co-workers

at Broccoli, and the opposing David and Matthieu. Final thanks to my wife Anna for

proof-reading and support.

ii

Contents
Abstract i

Preface ii

Contents iii

Abbreviations iv

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 1
1.3 Objective and Scope . 1

2 Method 3

3 Theory 4
3.1 Media Oriented Systems Transport (MOST) 4

3.1.1 MOST Cooperation . 4
3.1.2 MCBuster . 4

3.2 DirectX . 5
3.2.1 DirectSound . 5

3.3 Audio formats . 6
3.3.1 Dolby Digital . 6

4 System description 7
4.1 Overview . 7
4.2 MOST hardware . 7
4.3 User Interface . 8
4.4 Functional software . 9

4.4.1 Playback . 9
4.4.2 Save file . 9

5 Results 10
5.1 Prototype development . 10
5.2 Digital processing . 10

6 Discussion 11
6.1 Audio formats . 11
6.2 Validating data . 11

6.2.1 Network functions . 11
6.2.2 Data analysis . 12

6.3 File sizes . 13
6.4 Further development . 13

7 Conclusion 14

References 15

iii

Abbreviations
CAN — Controller area network

DD — Dolby Digital

DLL — Dynamic-link library

GiB — Gibibyte

GPL — GNU General Public License

GUI — Graphical User Interface

LFE — Low-frequency effects

LPCM — Linear PCM

MiB — Mebibyte

MOST — Media Oriented Systems Transport

TDMA — Time division multiple access

PCM — Pulse Code Modulation

iv

1 Introduction

1.1 Background

Modern cars have an increasing demand of internal data communication. Vehicle sys-

tems are designed to involve interaction between an increasing number of subsystems.

Along with the increase of throughput data rate demands, traditional communication

protocols, such as CAN (Controller area network), must be exchanged or complemen-

ted with protocols that can handle the high load demands of today.

One such system that is designed to enable cross-device communication is MOST

(Media Oriented Systems Transport). It is a high-speed bus system, developed espe-

cially with the multimedia and infotainment areas in mind.

1.2 Purpose

The purpose of this master thesis is to develop a software program for extracting

streaming audio from a MOST bus in a vehicle. Data extracted should be able to

be played through a connected computer’s speakers or be saved into an audio file on

the hard drive.

The streaming data properties should not need to be known in advance, but rather

be extracted from the streaming and the control data. The software might use filtering

algorithms for detecting valid audio data channels, but must be able to select any of

several audio data streams from different sources on the bus.

The solution should be written to use the MCBuster hardware and the software

should be tested on an existing MOST set-up.

1.3 Objective and Scope

The objective of this thesis is a working piece of software with suggestions for further

developments. The prototype should be able to be used for demonstrations of features

and general ideas and give a "proof of concept" to streaming audio reception. Future

hardware development projects should be able to use the program as a base.

This thesis is trying to figure out what is needed in terms of software communic-

ation in order to extract streaming MOST data onto a computer. Other issues it tries

to address are the amount of audio format properties that needs to be known in ad-

vance, and how valid audio source data channels can be distinguished from non-valid

channels.

The scope of this thesis includes software design, implementation and testing. It

is not intended to include hardware design or implementation. The algorithm was

1

not intended to be fixed to one audio setting, but consider different audio formats, for

example multi-channel PCM or AC3.

2

2 Method

This Master of Science thesis work consisted of three phases: research, implementation

and test.

The research phase was about performing a pre-study to get some basic knowledge

about the system properties. Reading of the official MOST specifications was of vast

importance, as well as reading other sources that deals with the subjects of MOST or

audio streaming. Also investigation of the MCBuster hardware functionality was a

requirement for the implementation phase.

The main focus of the thesis project was the actual software development in the im-

plementation phase, which therefore took most of the project’s time. It was executed

iteratively in the form of prototyping methodology. Prototyping is the concept of con-

struction of prototypes; early working versions of the final result (Lichter, 1994). It

is used to show some of the wanted features of the final product, which can be tested,

evaluated and developed early in the process. The way Lichter describes the various

kinds of this method, this development project could be said to be a presentation proto-

type as the final version of this project does not necessarily lead to a finalised product.

In the process, existing code snippets taken from other sources were regarded as

useful reference material, without actually contribute to the software in the project.

Such assistance were mainly accessed within the scope of code with free or some kind

of open license, such as GNU General Public License (GPL) or similar (Free Soft-

ware Foundation, Inc., 2007).

In the testing phase, use case tests for the software prototypes were performed in

the existing test set-up to confirm certain functionality, such as connectivity and the

playing of PCM audio. Test failure did occasionally send back the prototype to the

implementation phase, as part of the iterative work flow.

3

3 Theory

This chapter gives a basic introduction to MOST, the protocol over which the audio

data is obtained. There are also some sections about DirectX from Microsoft, which is

the software platform used for playing audio on the computer. Finally, some different

audio formats used for audio data are presented. See Section 4.1 for a system overview.

3.1 Media Oriented Systems Transport (MOST)

MOST is a high-speed, synchronous vehicle transport protocol, developed mainly with

multimedia demands in mind (MOST Cooperation, 2010). It is usually implemented as

a fibre optics based ring topology network, and has built-in plug-and-play functionality.

Data is multiplexed using TDMA (Time division multiple access), which allows MOST

communication to have dedicated channels for streaming data, packet data and control

data.

The MOST technology currently exists in several versions: MOST25, MOST50

and MOST150. They mainly differ in their data transfer rates, but also in their config-

uration and functionality. MOST25 is preferred by the European and Korean markets,

while US and Japanese markets use the copper-wire based MOST50. The most re-

cent version, MOST150, is not so frequently used due to its novelty, but is favourable

because of the 150 Mbps data rate and the built-in Ethernet support.

3.1.1 MOST Cooperation

The MOST standard is developed by the MOST Cooperation; an assembly of car-

makers, suppliers and other companies in the business (MOST Cooperation, 2010).

It was established in Germany in 1998. The resulting MOST protocol has become a

de-facto standard for in-vehicle infotainment and is used in over a hundred car models.

3.1.2 MCBuster

The company FYI Communication has developed a product named MCBuster, which

is a MOST25 analysis tool (See Figure 1). The hardware is passing MOST data on to a

host using USB, RS232 or CAN, and can be configured to filter out the data that you are

interested in. Software for the MCBuster to monitor packet data and control messages

was already from the beginning available for use in the project, which allowed the focus

of the project to be the creation of the audio streaming parts.

4

Figure 1: The MCBuster hardware used for MOST analysis. FYI communication www.fyi.se

3.2 DirectX

DirectX was chosen as the interface for the playback feature of the developed applica-

tion. It was chosen since it had good code reference material available from Microsoft,

as well as the vast range of possibilities it exhibits.

DirectX is a programmer interface included in windows, initially developed for

game development. It consists of a series of developing components for different ap-

plications such as 3D rendering (Direct3D), input device handling (DirectInput) or font

display (DirectWrite). It is intended for Microsoft Windows (included as standard since

Windows 95 OEM SR2), but is also used as the foundation for Xbox.

3.2.1 DirectSound

The playback and recording device for wave format audio data in DirectX is called

DirectSound. Is has a tight connection to the sound card, which at the time of its

introduction in 1995 was a quite revolutionary feature. DirectSound is used to create

sound buffers, in which audio samples are piped to an output sink. There exists an

addition for 3D sound called DirectSound3D, and since DirectX 8, both of them have

been merged into DirectX Audio. DirectSound was developed mainly with games in

5

mind, and any sound could therefore be filtered, altered or otherwise processed to create

special effects, such as 3D-positioned sounds or Doppler-effects.

3.3 Audio formats

Audio data has several ways to be expressed technically. For sending in an audio

network, such as the MOST network, the audio data samples are most conveniently

presented as raw, uncompressed data samples.

One such encoding method is Linear Pulse Code Modulation (LPCM), which is

a linearly quantized representation of the amplitude of the audio waveform at evenly

spaced discrete time instances. The method is the most commonly used method when

the wave file format is used to save data as an audio file on a computer, and could be

used both for mono, stereo or multichannel audio data. One advantage of the simplicity

of the LPCM format is the possibility to easily get the output as an analogue audio

signal, just by sending the data through a simple linear D/A converter. Even though

other quantization methods exist, PCM is often implied to use the linear one, and hence

have become somewhat synonymous with LPCM. The notation of PCM will be used

in this document, implying linear PCM.

More difficult to handle, but also very common, are digital formats such as Dolby

Digital or DTS. Here all audio channels are blended together and sent as an encoded

data stream, to be decoded near the speakers. These formats are most used when send-

ing multichannel data, such as 5.1 surround sound, but has also the ability to be used

for stereo or mono sound.

There also exist many other different encoding formats, including mp3 and various

manufacturer-specific formats.

3.3.1 Dolby Digital

The Dolby Digital format is a digital encoding technology from Dolby Laboratories

which follows the ATSC A/52 standard (Dolby Laboratories, 2010). The format is

used as one of the standards for audio on DVD-Video discs as it encapsulates up to 5

discrete audio channels and one LFE audio channel into a digital bit stream.

The A/52 standard is also known as AC-3. It sends data in blocks, each representing

256 samples of data per channel, compressed and administered. There also exists a file

format with the file extension .ac3 which is the bit stream saved in a file. The bit stream

is identified as an AC-3 digital audio stream as it, like many other data streams, has an

identifier "sync word" in the beginning of each block, in this case with the value of

0x0B77. (ATSC, 2010).

6

4 System description

This section describes the system that has been the result of this project, including the

hardware set-up used and the software components that have been developed.

4.1 Overview

The setting is based on an MCBuster hardware unit. It is connected to a MOST net-

work, as well as to a USB interface of a standard PC. The USB interface has multiple

uses; configuration of the MCBuster hardware, sending instructions e.g. start or stop,

as well as receiving control messages and audio data. On the software side, an existing

library with controlling functions for the hardware was used to communicate with the

MCBuster and receive data. What was developed was the functions to collect audio

data from the existing library, process and present that audio, and also an example of

user interface. For a graphical overview, see Figure 2 which shows the connections

between the developed software and the existing system.

Figure 2: The system overview flow chart.

The MOST network in the test environment consists among other things of a dis-

play unit, an amplifier including speakers, DVD player/FM radio media unit and a

controlling unit. The normal data flow over the network is that audio data is sent over

the network’s synchronous channels. When an audio source has been initiated to play,

audio data is from the source to the amplifier with its attached headphones or speak-

ers. These audio information are intercepted by the MCBuster and sent to the PC for

processing.

4.2 MOST hardware

The actual audio data in the MOST network is intercepted by the MCBuster (See Sec-

tion 3.1.2). The hardware-near functions initialises the MCBuster, opens a connection

and selects the data channels that are in use for audio transfer. The received audio data

7

bits are sent over USB to the computer for playing and, if needed, saving as a sound

file.

4.3 User Interface

For the purpose of using user input for controlling the system, a simple graphical user

interface (GUI) application was created; see Figure 3. The functionality lies however

not in the GUI per se, but in stand-alone software, which makes it possible to use

different interfaces according to taste or level of functionality needed. This particular

implementation is based on a Microsoft .NET 4 Windows form but other solutions,

including hardware interfaces, are possible to use with the controlling software.

Figure 3: The simple graphical user interface (GUI) for controlling the connection.

8

4.4 Functional software

The software for controlling the connection with the hardware is presented as a dy-

namic link library (DLL). Functions exist for starting and initialising the device, and of

course for changing channels. The software also presents an audio playback device as

well as a mechanism to save a sound file on the computer.

4.4.1 Playback

The software that is used for playing the sound on the windows computer is based on

the DirectSound part of the DirectX interface, see Section 3.2.1.

4.4.2 Save file

As a complement to playing the audio data through the computer speakers, the user

also has the option to save the data as an audio file on the computer. The save file

option asks for a file name through a save file dialogue, and the received data will be

written into a file using a file stream writer. The file format for saving is wav, which

basically contains the raw data samples, preferably in stereo. These files can, if needed,

be converted into other file formats, such as mp3, by external third-party software.

9

5 Results

5.1 Prototype development

Audio data from the MOST network has in test settings successfully been transferred

to a computer via the system. The sources have been both stereo PCM from the FM re-

ceiver, as well as Dolby Digital 5.1 audio from a DVD player. As no AC-3 decoder has

been included in the software design, no tests could be performed on the Dolby Digital

compressed data. This was somewhat compensated for by the transport protocol of the

DVD audio, as it transferred 2 channels stereo PCM along with the compressed sur-

round sound. The PCM audio was successfully played in the speakers of the computer,

and at the press of a button also saved to the hard drive as a wave audio file.

5.2 Digital processing

The received audio samples is not in a format which can be presented right away

without having any processing applied. First of all, the byte order is big-endian, which

means that the bits with the highest significance (greatest impact on the total value)

are sent first. The problem is that this is opposite to the little-endian format that the

wave audio files and the play algorithm use, so every low-significance byte and high-

significance byte had to exchange place. Second, there was a problem of extreme-

valued noise that sometimes was added to the sound data. Raw data analysis showed

eventually that it was caused by some semi-regular bit-shift of audio data in the hard-

ware. As the bit-shift does not lie in the software, it could not be fixed. The only thing

is to some extent compensate for it by a detection algorithm. This works partly due to

the regularity, but it also uses the fact that waveform audio at high sample rates is con-

tinuous whilst bit-shifted samples might have sudden differences in sign and amplitude

if the sign bit happens to change.

10

6 Discussion

6.1 Audio formats

The algorithm has a lot to live up to if it should be completely generic. Audio formats

such as Dolby ProLogic II, DolbyDigital, 2 channels stereo PCM or manufacturer-

specific proprietary formats puts special needs to the software. Other issues like Intel

or Motorola byte order, or little or big endianness also has to be addressed. What the

algorithm can detect in its current state is the presence of bit-shifted samples, while the

rest of the bytes from allocated channels is assumed to contain valid PCM data samples.

As digital bit stream audio usually has unique identifiers, the inclusion of other codecs

along with stream identifications could be done relatively easy. This is even more so

if the syntax of each format is parsed for consistency, but such functionality is not

included in this version.

In case of a wrongly configured system, channels that are read might be channels

that are unused by the system, or used in another way than you think. An example of

this was when audio data samples were 16 bits words and the channel configuration

offset happened to be one byte wrong. In such cases, the low byte is mistaken as a

high byte and the resulting sound was nothing but white noise. It is fairly possible to

introduce a check for white noise channels and thus detect such alignment errors, of

course with an exception if the audio data itself resembles white noise.

6.2 Validating data

The received data is supposed to be audio data, but can that be verified? To know

whether the data received really is playable audio or not, you must validate the data.

There are two ways of finding which of the MOST channels that are in use for audio

data; either active queries to the network or data analysis.

6.2.1 Network functions

The first method uses the fact that the procedures of allocating and maintaining syn-

chronous channels in MOST are utilising control data messages. In case you have an

active MOST node, the approach is easy and straightforward. You can yourself send

control messages and receive information about which node is sending what, to whom

and on which channels. For this purpose every network has a connection master that

stores allocation information that every node in the network at any time can obtain by

sending a request message. This is however not possible with passive Most spy nodes

such as the MCBuster, which has to rely only on extracting data from the network.

Control messages could however be useful even if your node is passive and thus

11

cannot send messages of its own. By just listening to the traffic over the network, the

passive node could intercept information about the streaming data channels. All alloc-

ation initiations could be recorded, as well as any other node’s information requests

and corresponding answers. This approach depends however on full data perception

and luck with control requests.

The last, but not least important, MOST25 network feature is the regular transmis-

sion of the allocation table. Within the designated bytes for control messages, 2 out of

64 are reserved for the allocation table, which means that the network sees an updated

allocation table nearly a hundred times per second. This method does however not tell

you anything about the source or the contents of each channel, just the usage status of

each channel and the affinity amongst them.

6.2.2 Data analysis

To really know if a bit stream is valid, you must analyse it somehow. Some encoding

formats have special markers as indicators of their respective formats, which must be

found in order to engage the appropriate decoder. If no such markers is to be found, it

could be an idea to assume that the data at hand is uncompressed audio data. Such a

case does not give the audio data properties automatically, but there are certain things

that you nevertheless know about the data, or at least can find out.

One indication is the amount of channels used for the connection. A group of 4

bytes is probably not a 32 bit mono PCM, but rather 16 bit stereo or at least dual mono

data stream. If more than 4 channels are allocated, that probably means that the data is

digital audio, for instance 5.1 surround sound from DVD player. The test set-up I have

been using, transmits PCM alongside the digital stream. If the sound is in stereo, left

first - then right is the convention.

The PCM values themselves could also yield information about the configuration.

As previously mentioned, the least significant bits are statistically random for audio

data, and could be used as an indicator of channel allocation. One can also use the fact

that audio typically is continuous if sampled fast enough, or that stereo audio channel

typically are highly correlated from time to time.

Although the synchronous part MOST is capable of streaming all kinds of data, it is

mainly used for audio purposes. The data transfer rate per streaming channel is approx.

0,35 Mbps, and the number of used channels for an application should be limited to

ensure network reliability. This means that communication with higher rate demands,

such as DVD video, must be achieved using external communication links, while the

MOST25 protocol still is used.

12

6.3 File sizes

When saving data to a file one might consider to use a limitation on file sizes to prevent

memory flooding. Raw PCM audio from a CD player over MOST yields 2 ∗ 2 ∗ 48000
bytes per second, or about 11 MiB per minute. This can be compared to the 2 GiB limit

to wav files, which corresponds to approximately 3 hours. If there is a need to record

further, one possible solution is to record multiple sequential files, possibly with a limit

to the number of files.

6.4 Further development

Not included in this realisation are decoders for other audio formats, such as mp3,

DTS or the mentioned Dolby Digital. The digital bit-stream is able to be received, but

not yet identified correctly or further processed. To include such decoders would be

a grand improvement to the generality of the system. Bit stream identification would

be needed, either as general analysing or matching of pre-defined audio characteristics

and transmission patterns. A related improvement is the option to save the file in other

formats than the wave file format.

Hardware development was not part of this thesis, since this is a software devel-

opment project. The methods developed here, however, could be used as the software

base in hardware projects if needed. The communication and filtering developed for the

available MCBuster hardware is the same that is required in a future hardware project,

and could hence be reused.

The MCBuster hardware in its current configuration has been introducing artefact

errors in the bit stream, and has thus not been optimal as hardware. This could possibly

be improved by reconfiguring the system with streaming correctness in mind. Another

thing to improve is to change the transmission protocol for synchronous data, for ex-

ample with a sync header. This will be useful in distinguishing streaming data from

other data, as well as getting clearer information about channel positions over the bus

for each byte.

13

7 Conclusion

The software application is prototyped along with a user interface to present the func-

tionality and results. Audio data is in the developed application successfully transferred

from the MOST network to the computer. The software is showing results by being

able to play the received samples through the speakers, as well as producing wave au-

dio files. The filtering mechanisms are producing audio samples that are playable by

analysing samples and reduce deterministic artefacts introduced by hardware.

Using the MCBuster in its current configuration has been seen to introduce artefacts

in the stream, which makes the system suboptimal. Later configurations might solve

this and use the capabilities of the hardware better.

The validity of MOST audio channels is monitored by the network, and is available

at the control channel. To monitor this allocation in a passive MOST node, the alloca-

tion table that is periodically sent has to be read, as stated before. In case of an active

node, queries could be sent to obtain the information.

It was stated that there is relatively little effort needed to identify various audio

format streams as well as some of their properties, for example identify data streams by

the unique keyword identifier in the header. Also PCM data with unknown properties

could in most cases be characterised by signal analysis.

14

References

ATSC. 2010. Digital Audio Compression Standard (AC-3, E-AC-3). Advanced

Television Systems Committee (ATSC). Retrieved June 20, 2011.

URL: http://atsc.org/cms/index.php/standards/published-standards/48-atsc-a52-

standard

Dolby Laboratories. 2010. Frequently Asked Questions about Dolby Digital. Dolby

Laboratories. Retrieved June 20, 2011.

URL: http://www.dolby.com/uploadedFiles/Assets/US/Doc/Professional/42_DDFAQ.pdf

Free Software Foundation, Inc. 2007. “GNU gpl.”. Retrieved March 30, 2011.

URL: http://www.gnu.org/licenses/gpl.html

Lichter, H. et al. 1994. “Prototyping in industrial software projects-bridging the

gap between theory and practice.” Software Engineering, IEEE Transactions on

20(11):825–832.

MOST Cooperation. 2010. “Vehicle Count Hits 100 MOST Car Models.” MOST In-

formative 6:6–7.

15

	Abstract
	Preface
	Contents
	Abbreviations
	Introduction
	Background
	Purpose
	Objective and Scope

	Method
	Theory
	Media Oriented Systems Transport (MOST)
	MOST Cooperation
	MCBuster

	DirectX
	DirectSound

	Audio formats
	Dolby Digital

	System description
	Overview
	MOST hardware
	User Interface
	Functional software
	Playback
	Save file

	Results
	Prototype development
	Digital processing

	Discussion
	Audio formats
	Validating data
	Network functions
	Data analysis

	File sizes
	Further development

	Conclusion
	References

