
Predicting physical properties of NMCM
cathode materials using machine
learning guided DFT simulations
Master’s thesis in Applied Physics

ALFRED STENSEKE

DEPARTMENT OF PHYSICS
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2021





Master’s thesis 2021

Predicting physical properties of NMCM cathode
materials using machine learning guided DFT

simulations

ALFRED STENSEKE

Department of Physics
Chalmers University of Technology

Gothenburg, Sweden 2021



Predicting physical properties of NMCM cathode materials using machine learning
guided DFT simulations

ALFRED STENSEKE

© ALFRED STENSEKE, 2021.

Supervisors: Kazuki Higashi, Kunihiko Suzuki, Semiconductor Energy Laboratory
Co., Ltd.
Examiner: Patrik Johansson, Department of Physics

Master’s Thesis 2021
Department of Physics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Visualization of a NMCA molecule at 33% state of charge.

Typeset in LATEX, template by Kyriaki Antoniadou-Plytaria
Printed by Chalmers Reproservice
Gothenburg, Sweden 2021

iv



Predicting physical properties of NCMM cathode materials using
machine learning guided DFT simulations
ALFRED STENSEKE
Department of Physics
Chalmers University of Technology

Abstract
With the rapid increase in development of electric vehicles and energy storage sys-
tems, the demand for long lasting batteries with high energy density is higher than
ever before. A crucial aspect of the market-leading lithium battery is the longterm
cycling performance – to perform with high capacity even after thousands of charge-
discharge cycles with as small degradation as possible. One cause for this degrada-
tion is the occurrence of small micro cracks in the cathode material due to small
volume changes during charge-discharge cycles. To suppress this effect, state-of-
the-art batteries today use metallic dopants such as aluminum in the cells of the
cathode material. This project investigates other suitable dopants in NCM materials
by implementing regression and gradient based prediction models on data acquired
from supercomputer simulations using density functional theory (DFT). The results,
while not fully conclusive, gives indications on what atomic features of dopants are
interesting, as well as validates this relatively new machine learning approach in
material science.
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1
Introduction

Over the last decade there has been a high increase in development of electric ve-
hicles (EVs) and large scale energy storage systems, and this trend is expected to
continue (see figure 1.1) [1] [2]. EVs are perceived to be a more environmental
friendly alternative to fossil fuel based vehicles and is part of the solution for many
nation wide initiatives to lower carbon emissions. Central to the development and
prosperity of EVs is the capability and sustainability of the battery. The ideal car
battery would have a high energy density, rate capability, long cycle life and live up
to various safety and geopolitical standards. Although achieving this has been the
focus of many researchers in both academia and commercial industry, the complex
nature of the atomic-scale interactions is not yet fully understood, and while con-
temporary batteries can thrive in several aspects they often lack in others. As of
today, the lithium-ion battery (LIB) is the most used power source for such applica-
tions owing to its high energy density, longterm cycling performance and proficient
rate capability [1].

Figure 1.1: Expected trend for lithium-ion batteries in the coming decade.
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1. Introduction

1.1 Background
A lot of the focus in the development of new LIBs has been on the cathode mate-
rial – where the Li-Ni-Mn-Co-O2 (NMC or NCM) oxide, first developed by M. M
Thackeray et al. in 2001, has provided some of the most successful results [3]. Before
that, lithium cobalt oxide (LCO) cathodes dominated the market which caused a
high demand on the troublesome cobalt metal. The introduction of Ni and Mn in
the NMC battery cells shifted the cobalt dependency to a less troublesome nickel
dependency [4]. At first, the NMC cells had equal parts of the three metals (NMC
111) but as research progressed, the amount of Ni increased to NMC 622 and even
811 [5]. The increase of Ni improves the capacity of NMC cells, but the method
is limited by the decrease in long-term cycle performance and thermal stability for
higher Ni concentrations [6]. One approach to overcome this is to dope the cathode
with metallic atoms, with the most used dopant being Al – resulting in the state-
of-the-art NMCA battery [7] [8].

There is a large amount of other potential dopants, M, for a NMCM cathode mate-
rial, especially when considering varying the concentrations of the different elements.
It is not plausible to experimentally investigate all the various dopant configurations
due to time and cost. However, using first principle density functional theory (DFT)
simulations makes the search for promising configurations much more feasible. Such
simulations are computationally expensive and would benefit greatly from machine
learning algorithms aimed at effectively navigating the search space. [9]
Furthermore, while trivial tasks has been more and more automatized for a long
time, the concept of automatizing scientific research is still rather new. To what
extent can computer algorithms help scientists, not only when it comes to pure
computations, but also extracting and understanding information? Going in to this
project, the hypothesis is that machine learning can help reduce the amount of
simulations/calculations required to investigate certain aspects of a material, and in
doing so further increase the understanding of such materials.

1.2 Purpose
The purpose of this thesis is to propose battery material compounds with specific
properties using machine learning driven simulations. The produced results should
have predictive properties which can help increase the understanding of the under-
lying theory.

1.3 Aim
The aim of this thesis is to find a suitable dopant, M, for the lithium oxide cathode
compound NMCM to make the change in c-axis length as small as possible during
the charge-discharge cycle. A machine learning algorithm will be trained in order
to efficiently search the space of viable compound configurations.
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1. Introduction

1.4 Limitations
This thesis work will focus on finding a positive electrode material with a small
volume change during charge/discharge cycles. Of course, there are many more
aspects of what makes a proficient battery material, which will not be investigated.
The project will be purely theoretical/computational and so the results will not be
experimentally verified.
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2
Background & Methodology

The theory of the project can be divided into three different fields: lithium-ion
batteries, computational methods with focus on DFT, and machine learning and
neural network methods.

2.1 Lithium-ion Batteries
Lithium-ion (Li-ion) batteries exists in many different shapes, sizes and molecular
configurations. They are widely used due to their high energy density and longterm
cycle performance. The basic principle of all Li-on cell configurations is having
two electrodes, the anode and the cathode, separated by an electrolyte. During
discharge of the cell, Li-ions exits the cathode and flows toward the anode through
the electrolyte. The freed electrons, previously associated with the Li-ions, travels
toward the anode through the applied external circuit, where they perform the
desired work. The Li-ions and the electrons are then intercalated into the anode.
To charge the cell, an external voltage is applied which reverses the discharge process
and the Li-ions returns to the cathode [10] [11].

Figure 2.1: Simple overview of a battery.
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2. Background & Methodology

While there is much theory and research regarding all parts of the battery, this
project focuses exclusively on cathode materials. In the case of LIBs, the electricity
is generated through the electrochemical reactions of lithium. Lithium, however, is
not stable in the elemental form and is therefore combined with oxygen into lithium
oxide in the cathode. The chemically active components, like lithium oxide for LIBs,
are called the active material of the battery. A battery’s voltage and capacity are
dictated by the choice of active material: a larger difference in potential between
anode and cathode yields a higher voltage, and a higher amount of lithium increases
the capacity [12]. Present day LIB cells can deliver a voltage of 3.7 V and a battery
energy density of 100-265 Wh/kg [10].
The layered rhombohedral structure (R3m) of LiMO2 is what allows the repeated
insertion and removal of ions to the cathode oxide [13]. During charge/discharge cy-
cles the structure undergoes undesired distortions. Namely, the cell length along the
c-axis changes a considerable amount. This change has been shown to cause degra-
dation to the material in form of micro-cracks, which in turn lowers the performance
of the cell over time [14] [15]. The c-axis change as a function of Li concentration
can be seen in figure 2.2 for three different LiMO2 materials.

Figure 2.2: C-axis length as a function of lithium concentration in three different
cathode materials.

The figure shows the difference between shortest and longest c-axis length of these
three materials to be approximately 4%, where the longest point being close to x
= 0.6 before rapidly dropping to the shortest point. The reason for the rapid drop
starting at x ≈ 0.75 originates from the opposing electrostatic repulsion and Van
der Waals forces; for a lithiated state the electrostatic repulsion dominates whereas
around the breakpoint of x ≈ 0.75, the Van der Waals forces take over rapidly.
Doping the metal oxide with a quaternary atom has shown to repress the c-axis
change, as seen in the blue NCMA curve in figure 2.2 [14] [15].
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2. Background & Methodology

2.2 Density functional theory
In theory, the many-body Schrödinger equation as seen in equation 2.1 contains all
the information of a given quantum mechanical system:

ĤΨ =
[
T̂ + V̂ + Û

]
Ψ =

 N∑
i=1

(
− ℏ2

2mi

∇2
i

)
+

N∑
i=1

V (ri) +
N∑

i<j

U (ri, rj)
Ψ = EΨ,

(2.1)
where N is the number of electrons, T̂ is the kinetic energy, V̂ is the potential energy
and Û is the interaction energy between electrons [16].

While it is feasible to solve the equation for very small systems, the computational
power needed for larger systems is not realistically achievable. This is where DFT
works as a method to approximate a solution for a many-body system. DFT methods
are used to investigate electronic, magnetic and structural properties of molecules.

DFT reduces the dimensionality of the system through the Born-Oppenheimer ap-
proximation in which the nuclei of the molecules are seen as fixed compared to the
high velocities of the electrons, greatly reducing the number of computations needed.
Unlike methods like Hartree-Fock, DFT uses the density of the electrons as the fun-
damental property instead of dealing directly with the many-body wave function.
This reduces the number positional variables in the wave function from three per
atom in the system to a density function of only three variables. The Hohenburg-
Kohn theorems asserts that all ground state properties can be determined using the
electron density of the system. By using the electron density the system can be
studied through a set of one-electron Schrödinger-like equations called Kohn-Sham
equations. In addition, a so called Hubbard term, U, can be added to the total
energy of the system to further improve the prediction of electron localisation [16]
[17] [18].

2.3 Data analysis
Following the development of machine learning algorithms and its great success
within other domains, data driven informatics strategies is now a promising tool
in materials science. The approach enables predictions of a system based entirely
on already acquired data rather than through experiments or simulations which are
often costly and time-consuming. Indeed, the purely data-driven approach does not
require any prior knowledge of the underlying system structure but instead uses
statistical dependencies to distinguish interesting features.
Predictions normally involves extracting relevant features (also called descriptors)
from existing input data and mapping the correlation between these and the property
of interest. To validate the accuracy of the prediction, the data set is divided into
train/test sets, normally at about 0.8/0.2 ratio. The mean squared error (MSE)
between the predictions of the test data and the known output data is often used
to quantify the accuracy of the prediction. The MSE is calculated as follows:
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2. Background & Methodology

MSE = 1
n

n∑
i=1

(Yi − Ŷi)2, (2.2)

where n is the number of data points, Y is the known target values of the test set
and Ŷ is the model predictions of the test set [19].
Several different prediction models where tested in this project and the following
three yielded the most consistent results. They are all supervised learning models
which means they learn mapping from inputs to already labeled outputs rather than
extracting occurring patterns in input data, which is the case for unsupervised data.

2.3.1 Linear regression
Linear regression is one of the most basic prediction models. Given a set of data
points with target values Y (marked red in figure 2.3), it aims to find a regression
line (blue) that minimizes the sum of squared residuals.

Figure 2.3: Basic illustration of a one-dimensional linear regression line. The
model tries to find a line that minimizes the sum of squared distances between the
line and the target values, marked as red.

The above example is of a one dimensional regression on the form Y = a + bX but
it works the same way for higher dimensions as follows

Yi = a + b1Xi1 + · · · + bpXip, (2.3)

where i denotes the data point and p the number of included features.

Linear regression is straightforward, easy to understand and can be regularized to
prevent overfitting. It does however struggle with more complex, non-linear rela-
tionships [20].
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2. Background & Methodology

2.3.2 Random forest regression
Random forest regression is a ensemble learning method meaning it utilizes an en-
semble of learning algorithms combined. It builds a "forest" of decision trees where
the branch nodes are built up of subsets of parameter features. The ending nodes
of the trees are called "leaves" and contains the target value of the individual paths.
The average of many randomly picked decision trees is used to train the prediction
model in order to circumvent overfitting and data variation problems.

Figure 2.4: Overview of a random forest regression model. The average of many
randomly picked decision trees makes up the final random forest prediction.

Random forest regression is a diverse model, applicable in many situations. It
works well with both continuous and categorical data and does not require any
normalization of data. It is however rather computationally expensive due to the
combinations of many decision trees and offers little understanding of the importance
of variables [21].

2.3.3 Gradient boosting (LightGBM)
In gradient boosting the idea is to iteratively add a small estimator to the prediction
model to correct the MSE error. Given an initially weak model F to be trained in
1 < m < M stages, the algorithm adds a new estimator hm such that Fm+1(x) =
Fm + hm improves the estimate from the previous step. The algorithm will fit the
h-term to the predecessing stage y − Fm(x) residual.
Gradient boosting offers pros similar to random forest regression. It has the potential
to improve accuracy even further than RFR but is more susceptible to noise and
requires more hyperparameter tuning [22].
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3
Computational

The methodology of the project is divided into two main parts: the acquisition and
the analysis of the data.

3.1 Acquisition of data
Initial DFT simulations were done using the software openMX on supercomputers
provided by Semiconductor Energy Laboratory Co., Ltd. (SEL). During the these
simulations, various aspects such as spin, Hubbard term and different initial poten-
tials were investigated until adequately satisfactory results were reached compared
to literature. After that, more extensive and thorough simulations were done using
the software VASP. Eleven different doping elements were investigated with varia-
tions in dopant positions and concentrations. The target value of all simulations
was the difference in c-axis length between the compositions.

3.1.1 Cell structure
The original cell is a NCMA89 model and is shown in figure 3.1. The cell served
as a base for further simulations where the Al and up to two more Mn sites were
substituted with the dopant of interest, resulting in lithium cathode molecule on the
form LixNi0.89Co0.05MnyMz.

11



3. Computational

Figure 3.1: Overview of the baseline cell structure. Up to three of the six Mn/Al
sites gets substituted by the dopant of interest during simulations. In this case, the
cell is 33% lithiated.

All the positionally different permutations of a dopant were simulated to investigate
the variations in c-axis length depending on dopant position. As an example: in the
case of one Al atom, there are 6 different viable positions resulting in different c-axis
lengths. For two Al atoms there are 15 different combinations of positions, and 20
different combinations for three Al atoms. Examples of the positional combinations
can be seen in table 3.1

1 dopant 2 dopants 3 dopants

Pos. Combs. 1, 2, 3, 4, 5, 6
(6 total)

1-2, 1-3, 1-4, 1-5, 1-6,
2-3, 2-4... (15 total)

1-2-3, 1-2-4, 1-2-5,
1-2-6, 1-3-4... (20 total)

Table 3.1: Table over the positional combinations of 1, 2 and 3 dopants.

12



3. Computational

3.1.2 Elements
The ten elements investigated in the project can be seen in figure 3.2 together
with their place in the periodic table alongside the NCM atoms. As seen, the
elements include most of the period 4 elements (fourth row on the periodic stable).
These elements are all stable metals and many of them are very common in Earth’s
core/crust, making them suitable candidates for investigation [23]. While not period
4 elements, Mg and Al also fulfills these qualities.

Figure 3.2: A table of the elements investigated as well as their place on the
periodic table. Mn, Co and Ni are all included in NCM by default and are not
investigated explicitly.

3.1.3 State of charge (SOC)
All of the above simulations could be computed for a multitude of states of charge.
However, initial simulations as well as reference material indicated that the c-axis
length is at a maximum around 33% lithium for all elements as shown for Al in
figure 3.3. It also shows that the c-length minimum is at 0%. It would therefore
give a good indication of the maximum ∆c-length and save a lot of time/resources
to only simulate at these two points. Because of deterioration implications of a fully
discharged cell (high Ni batteries rarely goes under 20% SOC in real life applica-
tions), the minimum point was instead simulated at 16.7% Li (half of 33%) and ∆c
calculated as c33%Li − c16.7%Li.

13



3. Computational

Figure 3.3: c-axis length as a function of SOC for a Al doped cell. ∆c is calculated
as the difference between 33% and 16.7% Li.

3.2 Data analysis
The data analysis was mainly done in Python using various open source libraries
such as sklearn, seaborn, pandas and xenonpy.

3.2.1 Dataset
The simulations resulted in 410 different data points of ∆c. An example of the
structure of the data can be sin in figure 3.4a, where the ’No’ column denotes
the position of the dopants, ’delta_c’ the target value, ’Type’ the dopant element,
and the rest are different features which may or may not be included after feature
selection. The ’No’ column was converted into a set of positional dummies, as seen
in figure 3.4b, where 1/0 denotes if the position is occupied by a dopant or not.

14



3. Computational

(a) Three examples of simulated data points.

(b) Example of the converted positional dummies.
Note that the data points are not the same as in
figure 3.4a.

The xenonpy library was used to extract the rest of the features. Xenonpy takes a
molecular compound and returns 71 different element-level properties, resulting in
an abundance of features [24].
Histograms of the data was plotted to visually investigate deviations in the target
value distributions. Prediction models where trained both with and without the
deviated data to explore its effect on the model accuracy.

3.2.2 Feature selection
The following cross validation approach was used to find the set of features resulting
in the lowest prediction MSE while suppressing overfitting and susceptibility to data
bias.
Starting with only the positional data seen in figure 3.4b as feature parameters,
every parameter in the xenonpy library as well as the parameters in 3.4a was tried
one by one. For every parameter, the data set was split into a train/test set with
a 0.8/0.2 ratio using 20 different random seeds. The parameter resulting in the
lowest average MSE of the 20 seeds was then added to the starting features and the
process repeated itself until the MSE stopped improving by adding a feature. A
simple overview of the approach can be seen in figure 3.5.

Figure 3.5: Flow chart of the feature selection. This approach suppresses overfit-
ting and data bias.
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3. Computational

This approach was done for three prediction models: linear Regression, random
forest regression and lightGBM.

3.2.3 Prediction
In the last step, the three models were trained with features selected as above and
used to predict ∆c of an unknown data set. The unknown data set contained data
points similar to the simulated data set, but with four or five doping atoms instead
of up to three. The five unknown compounds with the lowest predicted ∆c was then
simulated to be compared to the models.

16



4
Results

The simulated data returned a Gaussian distribution of the target values ∆c with a
mean value of -0.4598 Å and standard deviation 0.0197 Å. A non-negligible amount
of incidents happened around -0.52 Å, as seen in figure 4.1a. Most of these came
from simulations using Sc as dopant. Further data analysis was therefore made
both including and excluding Sc. The distribution of the target values with all Sc
simulations removed can be seen in figure 4.1b.

Figure 4.1: Distributions of the target values with and without Sc.

The data including Sc was made up of 410 data points and without Sc 370 data
points.

4.1 Linear regression

The MSE resulting from the linear regression model after feature selection was
0.0002168 for the Sc data and 0.0001813 without Sc. The MSE progression after
adding a new parameter can be seen in table 4.1. The MSE stopped improving
after adding three parameters for the Sc data: Atomic number, Melting point and
polarizability. For the data without Sc, the feature selection picked two different
parameters than the Sc data: heat capacity and van der waals radius.

17



4. Results

Feature added Data with Sc Data without Sc
Only position 0.0003387 0.0001949
Atomic nmbr 0.0002517 -
Melting point 0.0002247 -
Polarizability 0.0002183 -
Heat capacity - 0.0001838
vdw Radius - 0.0001813

Table 4.1: The improvement in MSE after adding the next best feature for the
linear regression model.

A comparison of the distribution plots of predicted versus simulated values for an
arbitrary train/test set can be seen in figure 4.2.

Figure 4.2: Predictions plotted against simulated values with (left) and without
(right) the Sc values for the linear regression model. Note the difference in scale
between the graphs.

The tendencies in the distributions are in large part the same, with most predictions
between -0.46Å and -0.43Å. There is however a small but distinct cluster of under-
predicted values around -0.48Å for the Sc data. This is further visualized in figure
4.3.

Figure 4.3: Distributions of the predicted target values with (left) and without
(right) the Sc values using the linear regression model.
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4.2 Random forest regression (RFR)

The MSE resulting from the random forest regression after feature selection was
0.0001520 for the data with Sc and 0.0001106 without Sc. The feature selection
picked the same two features for both data sets: Boiling point and number of elec-
trons in d-shell, with Sc data improving marginally from adding DFT energy per
atom (gs_energy).

Feature added Data with Sc Data without Sc
Only position 0.0003387 0.0001573
Boiling point 0.0001628 0.0001120
# e− in d-shell 0.0001547 0.0001106
DFT energy/ atom 0.0001520 -

Table 4.2: The improvement in MSE after adding the next best feature for the
random forest regression model.

Figure 4.4 shows the prediction versus simulated values for the two data sets. While
the Sc data for RFR does not have as many under-predicting points as for linear
regression, some points under-predict to a larger extent. This trend is the same for
all the train/test sets used and is further visualized when comparing the Sc data
distributions between figures 4.3 and 4.5.

Figure 4.4: Predictions plotted against simulated values with (left) and without
(right) the Sc values for the RFR model. Note the difference in scale between the
graphs.
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Figure 4.5: Distributions of the predicted target values with (left) and without
(right) the Sc values using the RFR model.

4.3 LightGBM
The MSE resulting from the lightGBM model after feature selection was 0.0002484
for the data with Sc and 0.0001872 without Sc. The progression of the MSE with
new parameters added can be seen in table 4.3. Both sets improved by adding
valence electrons and the Sc set improved a bit further by adding Heat capacity.

Feature added Data with Sc Data without Sc
Only position 0.0003501 0.0001949
Val. electrons 0.0002523 0.0001872
Heat capacity 0.0002484 -

Table 4.3: The improvement in MSE after adding the next best feature for the
lightGBM model.

As for previous methods, figure 4.6 shows the prediction versus simulated values
for the two data sets, and figure 4.7 shows the distribution of the predicted target
values ∆c. Although requiring fewer features, the method does not seem to perform
better than linear regression or RFR.

20



4. Results

Figure 4.6: Predictions plotted against simulated values with (left) and without
(right) the Sc values for the lightGBM model. Note the difference in scale between
the graphs.

Figure 4.7: Distributions of the predicted target values with (left) and without
(right) the Sc values using the lightGBM model.

4.4 Predictions
Predicting the compound with the lowest ∆c from the unknown data set resulted
in as seen in figure 4.8. When computed, the compounds returned values as seen in
the last column.

Figure 4.8: Predicted lowest ∆c values from the unknown data set, as well as their
later computed values.

21



4. Results

22



5
Discussion

Out of the three models, random forest regression performed the best with an aver-
age prediction error of about 2.3% on the data set without Sc. It also selected the
same features for the sets with and without Sc which further validates the models
success. Worth noting is that, while not a big issue for a data set of this size, RFR
was considerably slower than the other models. Even though the RFR model had
some success predicting test blocks of the simulated data set, it had little to no suc-
cess predicting ∆c of the unknown data set. Due to time limitations, no extensive
investigation as to why the model performed poorly was made. There are however
some observations to be made about the performance of the approach.

It is of course possible that the simulations are not consistent with reality both
for the training set and the validations of the unknown set. Even if that is the case,
they are hereon assumed to be correct for the sake of project progression.

5.1 Feature selection
At face value, the features appears somewhat arbitrary selected given how they
vary not only between the models, but for the different data sets within the same
model as well. A lot of the investigated features are, however, heavily correlated as
indicated in figure 5.1. In the same sense boiling point, heat capacity or melting point
are selected in all models and are all closely related. Furthermore, investigating 70
features for ten different elements probably resulted in a few "false" positive features.
As an example, the Herfindahl-Hirschman Index (market competitiveness) improved
the MSE substantially for a model.
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Figure 5.1: A section of the investigated features, all describing the Van der Waals
radius in various ways.

Given more initial chemical knowledge, the number of investigated features could
be heavily reduced; both the obviously unimportant and heavily correlated features
could be removed. Even so, this purely data driven approach and its performance
provides insight into the problem at hand.

5.2 Sc or no Sc

It is undeniably not ideal to exclude "bad" data points to improve the model accu-
racy. In this case, however, there was a clearly defined subset of data with outlying
results and removing it improved the accuracy for all the models substantially. One
plausible reason for the large c-axis change in Sc doped molecules is the large ionic
radius of Sc. This causes the Sc atoms to move to the boundaries between the Li and
Ni sites at low SoC instead of staying at the Ni sites like the other dopants. While
the ionic radius of Sc is not much larger than other dopants, it appears to reach
a certain breakpoint where this phenomenon occurs. In such case, the prediction
models does not handle such discontinuities very well.

5.3 Models

It is inherently difficult for these three models to predict the very edge values from
data with such narrow standard deviation. They would probably find more success
trying to predict values well within the search space rather than on the very edges
or outside: the models were trained using no more than 3 dopants, whereas the
unknown data set had 4-6 dopants.
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5.4 Conclusion
Rather than presenting a concrete suggestion of a doped NCMM molecule with low
∆c as it set out to do, the project finds its place as a proof of concept for a data
driven approach to do so. Several interesting aspects were encountered during the
process and the average error of 2.3% for the RFR model definitely validates the
potential of the approach.

5.5 Future work
There is much more analysis to be done of the acquired data – both in tuning the
investigated prediction models and trying new models and tools. Beyond that, more
dopants from different periods of the periodic table can be explored and analysed.
Finally, experimental verification of the predicted materials would further validate
the approach and its results.

25



5. Discussion

26



Bibliography

[1] MarketsandMarkets. Lithium-ion battery market with covid-19 impact analysis,
by type (li-nmc, lfp, lco, lto, lmo, nca), capacity, voltage, industry (consumer
electronics, automotive, power, industrial), region (north america, europe, apac
row) - global forecast to 2030: https://www.marketsandmarkets.com/market-
reports/lithium-ion-battery-market-49714593.html, 2021.

[2] Nathaniel Bullard. This is the dawning of the age of the battery:
https://www.bloomberg.com/news/articles/2020-12-17/this-is-the-dawning-
of-the-age-of-the-battery?srnd=green, 12 2020.

[3] David Moore. Argonne lab’s breakthrough cath-
ode technology powers electric vehicles of today:
https://www.batteriesinternational.com/2015/04/28/michael-thackeray/.
U.S. Department of Energy, 2 2011.

[4] Bridget McCrea. Working to reduce cobalt dependency in battery manufac-
turing: https://www.sourcetoday.com/industries/article/21152018/working-
to-reduce-cobalt-dependency-in-battery-manufacturing, 1 2021.

[5] Xin Sun, Xiaoli Luo, Zhan Zhang, Fanran Meng, and Jianxin Yang. Life cycle
assessment of lithium nickel cobalt manganese oxide (ncm) batteries for electric
passenger vehicles. Journal of Cleaner Production, 273, 11 2020.

[6] Hyung-Joo Noh, Sungjune Youn, Chong Seung Yoon, and Yang-Kook Sun.
Comparison of the structural and electrochemical properties of layered
li[nixcoymnz]o2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for
lithium-ion batteries. Journal of Power Sources, 233, 7 2013.

[7] Fu Zhou, Xuemei Zhao, Zhonghua Lu, Junwei Jiang, and J.R. Dahn. The effect
of al substitution on the reactivity of delithiated lini1/3mn1/3co(1/3z)alzo2
with non-aqueous electrolyte. Electrochemistry Communications, 10, 8 2008.

[8] S.-W. Woo, S.-T. Myung, H. Bang, D.-W. Kim, and Y.-K. Sun. Improvement
of electrochemical and thermal properties of li[ni0.8co0.1mn0.1]o2 positive elec-
trode materials by multiple metal (al, mg) substitution. Electrochimica Acta,
54, 6 2009.

[9] Rampi Ramprasad, Rohit Batra, Ghanshyam Pilania, Arun Mannodi-
Kanakkithodi, and Chiho Kim. Machine learning in materials informatics:
recent applications and prospects. npj Computational Materials, 3, 12 2017.

[10] Clean energy institute. What is a lithium-ion battery and how does
it work? https://www.cei.washington.edu/education/science-of-solar/battery-
technology/.

27



Bibliography

[11] Li-ion lithium ion battery. https://www.electronics-
notes.com/articles/electronic_components/battery-technology/li-ion-lithium-
ion-technology.php.

[12] The four components of a li-ion battery.
https://www.samsungsdi.com/column/technology/detail/
55272.html?pageindex=1idx=55272brdcode=001listtype=listsearchkeyword=.

[13] Yufang Chen, Chunman Zheng, Zhongxue Chen, and Kai Xie. The significance
of the stable rhombohedral structure in li-rich cathodes for lithium-ion batteries.
Ionics, 23, 2 2017.

[14] Tomohiro Yoshida, Kenta Hongo, and Ryo Maezono. First-principles study of
structural transitions in linio <sub>2</sub> and high-throughput screening
for long life battery. The Journal of Physical Chemistry C, 123, 6 2019.

[15] Un-Hyuck Kim, Liang-Yin Kuo, Payam Kaghazchi, Chong S. Yoon, and Yang-
Kook Sun. Quaternary layered ni-rich ncma cathode for lithium-ion batteries.
ACS Energy Letters, 4, 2 2019.

[16] Paul Erhart. A very short introduction to density functional theory (dft):
http://physics.gu.se/ tfkhj/lecture_viii_dft-3.pdf.

[17] Theoretical Physics Group at University of Ex-
eter. Density functional theory for beginners:
http://newton.ex.ac.uk/research/qsystems/people/coomer/dft_intro.html.

[18] Elliott H. Lieb. The hubbard model: Some rigorous results and open problems:
https://arxiv.org/pdf/cond-mat/9311033.pdf, 2004.

[19] Andrew Murphy and Candace Moore. Mean squared error, 6 2019.
[20] Astrid Schneider, Gerhard Hommel, and Maria Blettner. Linear regression

analysis. Deutsches Aerzteblatt Online, 11 2010.
[21] Matthias Schonlau and Rosie Yuyan Zou. The random forest algorithm for

statistical learning. The Stata Journal: Promoting communications on statistics
and Stata, 20, 3 2020.

[22] Alexey Natekin and Alois Knoll. Gradient boosting machines, a tutorial. Fron-
tiers in Neurorobotics, 7, 2013.

[23] Period 4 elements: https://en.wikipedia.org/wiki/period_4_element.
[24] Xenonpy features: https://xenonpy.readthedocs.io/en/stable/features.html.

28



DEPARTMENT OF PHYSICS
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	List of Figures
	List of Tables
	Introduction
	Background
	Purpose
	Aim
	Limitations

	Background & Methodology
	Lithium-ion Batteries
	Density functional theory
	Data analysis
	Linear regression
	Random forest regression
	Gradient boosting (LightGBM)


	Computational
	Acquisition of data
	Cell structure
	Elements
	State of charge (SOC)

	Data analysis
	Dataset
	Feature selection
	Prediction


	Results
	Linear regression
	Random forest regression (RFR)
	LightGBM
	Predictions

	Discussion
	Feature selection
	Sc or no Sc
	Models
	Conclusion
	Future work

	Bibliography

