
Velocity planning approach for
autonomous vehicles
An approach to address traffic negotiation for autonomous
vehicles
Master’s thesis in Systems, Control and Mechatronics

Abhiram Rahatgaonkar

Department of Signals and Systems
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2015

Master’s thesis 2016:NN

Velocity planning approach
for autonomous vehicles

An approach to address traffic negotiations for autonomous
vehicles

ABHIRAM RAHATGAONKAR

Department of Signals and Systems
Chalmers University of Technology

Gothenburg, Sweden 2016

Velocity planning approach for autonomous vehicles
An approach to address traffic negotiation for autonomous vehicles
ABHIRAM RAHATGAONKAR

© Abhiram Rahatgaonkar, 2016.

Supervisor: George Dibben, Scania AB
Examiner: Paolo Falcone, Signals and Systems, Chalmers University

Master’s Thesis 2015:NN
Signals and Systems
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: A traffic junction environment modelled in PreScan showing a typical traffic
situation.

Typeset in LATEX
Printed by [Name of printing company]
Gothenburg, Sweden 2015

iv

Velocity planning approach for autonomous vehicles
An approach to address traffic negotiation for autonomous vehicles
ABHIRAM RAHATGAONKAR
Department of Signals and Systems
Chalmers University of Technology

Abstract
Motion planning being one of the core functionalities of autonomous driving sys-
tem, has been studied and investigated with great interest by the developers across
industries and academia. Collision avoidance is one of the major challenges within
trajectory planning problem (TPP). This master thesis is inspired from the ‘concept
of decomposition of trajectory planning problem in to path planning and velocity
planning’ which results in great reduction in the computational complexity of the
TPP. The work in this project is focused on the velocity planning with the known
path so that the collision with the moving vehicles is avoided. Concept of space
time scheduling is used along with the A* (A star) search algorithm in a particular
fashion to achieve the time optimal speed profile. The approach developed in this
work is deterministic but has possibility to work with probabilistic motion model of
the vehicles in the traffic. It also has great potential to work with the different road
geometries and different vehicle maneuvers such as merging, yielding, intersection,
etc. Hence, it is very promising approach for velocity planning with possibilities to
work with variety of scenarios.

Keywords: Collision check, velocity planning, A* search, space-time

v

Acknowledgements
This masters thesis is a result of all the knowledge I have gained along with the
work experiences I have had until now. I am grateful to the Chalmers University of
Technology for the education in advanced engineering along with the well nourished
international study environment. Courses studied at Chalmers have been very useful
during the development work of the thesis. I would also like to acknowledge the
Indian Institute of Technology Guwahati for undergraduate education that made
me capable to study and work on the global level. I am very thankful to Scania AB
for the opportunity to work on the master thesis in the area of autonomous driving.

This work has been closely supervised by Mr. George Dibben (Scania AB) who has
not only given his valuable time for discussing ideas and issues but also provided all
the support for carrying out the thesis work. His experience in industry has been very
helpful while making wise choices at several important occasions during the thesis
work. Prof. Paolo Falcone from the Chalmers University of Technology has provided
valuable inputs time to time while critically examining the thesis work. This work
is also deeply influenced by the inputs from the experts working in the industry.
Expertise of Mr. Marcello Cirillo (Scania AB), Mr. Magnus Granström (Scania
AB) and Mr. Niclas Evestedt (Linköping University) in the ‘motion planning’ have
resulted in a technically strong approach.

ABHIRAM RAHATGAONKAR, Gothenburg, 09 2016

vii

Contents

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Background . 1
1.2 Related work . 2

2 Problem Definition 5
2.1 Problem Description . 5
2.2 Function requirements and desired attributes 6

2.2.1 Function Requirements . 6
2.2.2 Desired characteristics of the velocity planning approach . . . 6
2.2.3 Performance parameters . 6

2.3 Available information . 7
2.4 Introduction to basic terms . 7

2.4.1 Ego Vehicle . 7
2.4.2 Environment . 7
2.4.3 Reference Frames . 8
2.4.4 Guide point . 8
2.4.5 Path follower (Speed Controller) 9

2.5 System Overview . 9
2.6 Related theory . 10

2.6.1 Space time analysis . 10
2.6.1.1 Space time plot for a point moving along a path . . . 10
2.6.1.2 Space time map for a 2D object moving along a path 13
2.6.1.3 Space time map characteristics and constraints . . . 13

2.6.2 Motion model . 14
2.6.3 Collision detection . 15
2.6.4 Homogeneous Coordinate Transformation 16
2.6.5 A* search . 17

3 Approach 19
3.1 Assumptions . 19
3.2 Discretization of Space-time map . 19
3.3 Collision checking . 20

3.3.1 Inflation of the vehicle size . 21

ix

Contents

3.3.2 Vehicle footprints along time 21
3.3.3 Ego vehicle footprints along the space 22
3.3.4 Collision Matrix . 24
3.3.5 Space-time map using collision check 25
3.3.6 Collision checking: Scope of reduction in computation 27

3.3.6.1 Use of a Tree structure 28
3.3.6.2 Minimum distance threshold 33
3.3.6.3 Heading direction of the vehicle 33

3.3.7 Block diagram: Collision check implementation 34
3.4 Velocity planning using space and time analysis 35

3.4.1 Formation of optimization problem 35
3.4.2 A* search . 36
3.4.3 Discontinuity in speed and connectivity of nodes 38
3.4.4 Motion at the end of the path 40
3.4.5 Real time planning and Desired speed 41
3.4.6 Effect of finite acceleration . 42

3.5 Planning distance and planning frequency 45
3.6 Velocity planning function - System architecture 45

4 Results 47
4.1 Simulation platform - PreScan . 47

4.1.1 Ego vehicle Model . 48
4.1.2 Simulation parameters . 48

4.2 Simulation Results . 50
4.2.1 Experiment 1: Straight line motion at traffic junction 50
4.2.2 Experiment 2: Right hand turn at traffic junction 54
4.2.3 Experiment 3: Motion at traffic circle 57

5 Discussions 63
5.1 Limitations: Key issues . 63

5.1.1 Discretization of the search space 63
5.1.2 Flickering in optimal speed profile 63
5.1.3 Limited search space . 65
5.1.4 Inconsistent footprints . 66
5.1.5 Lack of feasible solution . 66
5.1.6 Limitations in motion predictions 68
5.1.7 Computational complexity . 69

5.2 Future work . 69
5.2.1 Discrete speed levels to continuous speed levels 69
5.2.2 Optimisation problem formulation 70
5.2.3 Variable speed limit along the path 70
5.2.4 Deterministic to probabilistic approach 70

6 Conclusion 71
6.1 Summary . 71
6.2 Key highlights . 72

6.2.1 Space-time map for the motion of 2 dimensional object 72

x

Contents

6.2.2 Reduction in computational cost for collision checking 73
6.2.3 Collision avoidance . 73
6.2.4 Generalised approach . 73
6.2.5 Real time planning . 73
6.2.6 Formulation of optimization problem 73
6.2.7 Grid connectivity . 74
6.2.8 Possibility of extension . 74

6.3 Final remarks . 74

References 77

A Appendix A I

xi

Contents

xii

List of Figures

2.1 Environment: Traffic junction in PreScan 8
2.2 Guide point is center of rear axle instead of center of mass or center

of geometry for a 4 wheel vehicle . 9
2.3 Path following controller: Input and output signals 9
2.4 Overview of the autonomous driving system with connections between

sub-blocks . 10
2.5 Intersection of the path of a point and path of a rectangular obstacle

during time interval [t1, t2] and space interval [s1, s2] 11
2.6 Shaded region representing the collision in space-time map for a point

moving along a fixed path . 11
2.7 Red color curve shows the path travelled by ego vehicle in the space

time domain in order to avoid the collision represented by shaded region 12
2.8 Interpretation of space-time plot . 12
2.9 Different types of collisions between two moving vehicles 13
2.10 Illustration: Separating axis theorem 15
2.11 Transformation of coordinate system of a point P from local frame

X1O1Y1 to global frame XOY . 16
2.12 Branching factor in the grid search 18

3.1 Discretized space-time map . 20
3.2 Collision checking . 20
3.3 Inflated bus footprints (Length = 16.5m, Width = 3.55m) at 1m

interval along the path covering actual bus footprints (Length = 14m,
Width = 2.55m) at 0.1m interval along the path 21

3.4 Prediction of vehicle footprints using CT model 22
3.5 Ego vehicle footprints along space . 23
3.6 Collision Checking: Car footprints Vs Bus footprints 23
3.7 Collision Check: M ×N computations 24
3.8 Space-time analysis in case of intersecting paths 25
3.9 Space-time map in case of merging 26
3.10 Space-time map showing collision of ego vehicle with a vehicle trav-

elling on opposite lane . 27
3.11 Bounding area of ego footprints along with the division of space within

it for efficient collision checking. Ego footprints in the black colour
lie in the same quadrant as the given vehicle footprint 28

3.12 Formation of a tree for the collision checking 30

xiii

List of Figures

3.13 Distance checking . 33
3.14 Optimization in collision checking operation using vehicle heading

direction . 34
3.15 Block diagram: Implementation of collision checking 34
3.16 Space-time map as a grid . 35
3.17 Search direction during A* algorithm 36
3.18 Calculating costs for different connections 37
3.19 Heuristic calculation for nodes with corresponding target nodes . . . 38
3.20 Optimal path with only two speed levels 38
3.21 Search direction based on the previous connection 39
3.22 Optimal path with gradual change in the speed levels 40
3.23 Illustration to show how the deceleration at the end of the path is

defined by not allowing ‘higher speed connections’ in the search at
the nodes closer to the destination . 40

3.24 Block diagram showing interface between the velocity planning func-
tion and the speed controller . 41

3.25 Time optimal speed profile generated by velocity planning function. . 41
3.26 Discrete set of speed levels in the A* search may cause switching

between two speed levels in certain cases due to lack of appropriate
speed level . 42

3.27 Velocity vs time plot for vehicle with finite acceleration. Area of
shaded region between two adjacent velocity levels is showing the lag
in the distance covered in actual motion from the distance covered in
desired motion . 43

3.28 Figure showing desired motion and actual motion of the ego vehicle in
space-time map. ∆si and ∆ti is distance lag and time lag respectively
from the desired motion plan caused by finite acceleration of the vehicle 43

3.29 Desired motion Vs actual motion in space-time map. Deviation from
the planned motion (desired motion) resulting in the potential colli-
sion in the future . 44

3.30 Adding safety margin can result in the velocity plan which is more
conservative than the one without safety margin while ensuring a
collision free motion for the vehicle with finite acceleration 45

3.31 System architecture: Velocity planning function 46

4.1 Different connections corresponding to different speed levels 49
4.2 Time interval for re-planning is T ≤ ∆t 49
4.3 First iteration, t = 0.5sec . 51
4.4 Intermediate iteration, t = 6.5sec . 51
4.5 Intermediate iteration, t = 14.5sec . 52
4.6 Last iteration, t = 35.5sec . 52
4.7 Matlab plot showing collision checking of vehicle and ego footprints

at t = 0sec (left plot) and t = 6.5sec(left plot) 53
4.8 Executed plan Vs initial plan at (t = 0.5sec) 53
4.9 Distance covered by the ego vehicle over time (s(t)) 54
4.10 First iteration, t = 0.5sec . 55

xiv

List of Figures

4.11 Intermediate iteration, t = 6.5sec . 55
4.12 Intermediate iteration, t = 12.5sec . 55
4.13 Intermediate iteration, t = 14sec . 56
4.14 Last iteration, t = 28sec . 56
4.15 Matlab plot showing collision checking of vehicle and ego footprints

at t = 0.5sec (left plot) and t = 6.5sec (right plot) 56
4.16 Executed plan Vs initial plan (at t = 0.5sec) 57
4.17 Distance travelled by ego vehicle over time (s(t)) 57
4.18 First iteration, t = 0.5sec . 58
4.19 Intermediate iteration, t = 3.5sec . 58
4.20 Intermediate iteration, t = 7.5sec . 59
4.21 Intermediate iteration, t = 13.5sec . 59
4.22 Intermediate iteration, t = 17.5sec . 59
4.23 Intermediate iteration, t = 25.5sec . 60
4.24 Last iteration, t = 40sec . 60
4.25 Matlab plot showing collision checking of vehicle and ego footprints

at t = 0.5sec (left plot) and t = 3.5sec (right plot). Bounding box of
ego footprints (black colour) and the corresponding partition shown
by dotted lines are used to form Kd tree (for optimization in collision
checking) at this planning instance 61

4.26 Executed plan (dotted line) Vs plan at t = 3.5sec (pink line) 61
4.27 Complete path with bigger search space at t = 3.5 sec 62
4.28 Distance travelled by ego vehicle over time (s(t)) 62

5.1 Four consecutive iterations (clockwise from top left) showing how
different optimal solutions are generated due to little changes in the
space time grid . 64

5.2 Left figure showing the flickering in the desired speed and right figure
showing filtering using moving average of desired speed 64

5.3 Optimal solution for a given traffic scenario with different search space
sizes. No feasible solution exist for the example in figure (b) 65

5.4 Ego vehicle following footprints with precision 66
5.5 Ego vehicle travelling with deviation from the footprints 66
5.6 Concepts like stop line can be used to plan speed for short distance

if long term planning is not possible 67
5.7 In case of only feasible solution, conservative velocity plan should be

preferred . 68
5.8 Space-time map with the nodes having lesser probability of collisions

(lighter colours). Collisions represented by the red colour represent
the nodes with highest probability of the collision 70

xv

List of Figures

xvi

List of Tables

3.1 List of ego footprint sets stored at different nodes in the Kd tree
shown in the figure 3.11 . 29

4.1 Sizes of the vehicles used in the simulation along with the correspond-
ing inflated footprint dimensions . 48

4.2 List of the speed levels associated with the different connections de-
fined in the A* search algorithm . 49

4.3 Simulation parameters . 50

A.1 Model parameters used for the simulation: Scania Omni Bus I

xvii

List of Tables

xviii

1
Introduction

Autonomous driving is one of the advanced engineering areas where most of the
automotive industries are paying attention today. Even though there exists several
working prototypes already, there are many critical situations and problems that
are to be solved to have a truly autonomous vehicle. Even though commercial
autonomous vehicles are yet to come on the street, driver’s assisting systems for
special scenarios are being introduced in vehicles today. This can be seen as the
first step towards automation. Automatic cruise control is one such example. Since
such system cannot be realized without accurate sensor readings, lot of efforts are
also put into the sensor technology and sensor fusion to get best out of the control
algorithms.

A fully autonomous driving vehicle must be capable of making its own decision about
its motion. This requirement highlights many critical challenges in the development
of autonomous driving system. One of these challenges is autonomous trajectory
planning which is essential for autonomous driving systems. Trajectory planning
of an object consists of path planning and velocity planning. Hence, trajectory
planning problem for autonomous vehicles becomes complex due to continuously
changing environment. Another important problem that goes hand in hand with
motion planning is the negotiation with other vehicles at busy intersections. Traffic
negotiation is also dependant on traffic rules that provide priority to some vehicles
over others in particular traffic scenario.

This project shall investigate motion of a bus at a typical traffic junction in order
to generate a speed profile to achieve collision free motion with moving vehicles.
Approach for the velocity planning of the bus moving along a known path (or
pre-calculated path) is developed in this work. Functionality of the approach is
simulated on the software called PreScan during the development process. Motion
planning also needs to address negotiation with other vehicles in the traffic. Even
though this work focuses on traffic junction, approach presented here has possibility
of modification to different traffic scenarios and road geometries. Having a generalised
approach with possibility to extend and modify it to complex situations is one of
the motivations behind this work.

1.1 Background
A vehicle that can carry out all the real time driving tasks without any real time
input from a human operator can be considered as a fully autonomous vehicle.

1

1. Introduction

Even though autonomous driving is emerging today as an advanced engineering
concept, it has been an active area of research for considerable amount of time.
The Carnegie Mellon University Navigation Laboratory (NavLab) has been working
in autonomous navigation area since 1984 [8]. In order to improve the safety,
comfort and environmental friendliness of transportation, various semi-autonomous
driving functions have been introduced in the vehicles by automotive industries and
innovation giants [10, 13].

Fully autonomous vehicle implies a self governed vehicle without any human operator
in all possible driving scenarios. In order to achieve this, vehicle must acquire all the
abilities in terms of sensing and decision making. Hence, every single sensing and
controlling function is being investigated and developed in dedicated research groups
across academia and industries [11, 13, 12]. Inter-vehicle communication capabilities
are also being developed for integrated transport systems for higher efficiency and
driving performance [9]. As far as scope of this project is concerned, only single
vehicle control is considered. Inter-vehicle communication is out of the scope of this
project.

1.2 Related work
A fully autonomous vehicle must be able to perceive, predict and react appropriately
to environment in similar or even better way than a normal human driver does. This
results in a need of a system architecture for autonomous driving system that will
incorporate various aspects of human abilities that play key role in driving. Needless
to say that trajectory planning is just one of sub-blocks of the autonomous driving
system. As the level of automation increases, complexity of system also increases.

In an attempt to explore and highlight the variety of challenges in autonomous
driving, a fully autonomous approach was proposed in [2]. This paper also provides
a basic system architecture consisting of various system blocks and corresponding
functionalists. Similar planning framework is presented in the [3]. It focuses more on
behaviours planning level for perceiving and avoiding static and dynamic obstacles.
Based on these two works, one can identify important key system blocks in autonomous
driving system:

• Sensors and digital maps
• Sensor fusion and environment Perception
• Localization
• Trajectory planning
• Motion control

Merging of two vehicles at a highway ramp is presented in [1] by applying concept
of cooperative driving. It also includes acceleration and deceleration of the merging
vehicle in decision making process. In [2], path generation is formulated as a non
linear optimization problem with objective function penalising rapid changes in
speed, acceleration and yaw rate.
In [7], an entire overview of autonomous driving systems is described. This work
is very useful to understand concepts and challenges involved in each subsystem

2

1. Introduction

of the autonomous driving system. Trajectory planning is achieved by generating
thousands of candidate trajectories and an optimal trajectory is dynamically calculated.
Controller then selects throttle, brake and steering actuation by minimising the
deviation from the planned trajectory and maximizing the comfort. This work also
shows that the optimization can play a key role in trajectory planning problems.

One particular approach that is appealing in terms of computational complexity
and generalization aspect is given by Kant and Zucker in [5]. Trajectory planning
approach for a point object is proposed in this paper. This paper provides a
systematic procedure of decomposing trajectory planning problem into two parts:
path planning and velocity planning. It assumes that the trajectory of moving
obstacles known. Based on static obstacles, an optimized (shortest) path is computed.
Once the path is available, velocity is planned in a way to avoid the dynamically
moving obstacles. This is achieved by an innovative approach of spacetime plot
which enables us to generate a velocity profile along given path to avoid all the
potential collisions in various future instances. Furthermore, the velocity profile can
be adjusted to the speed, acceleration and yaw rate limitations along the path while
reaching the destination in the fastest possible way.

The path planning between two points is dependent on two important factors:
Static obstacles and dynamic obstacles. Through decomposition approach, it is
possible to make a path using static obstacles and then generate a velocity profile
that avoids the dynamically moving obstacles. Employing such trajectory planning
scheme in real time will be able to address collision avoidance in real time. This
kind of decomposition of problem results in the great reduction in computation
and complexity of the problem [5]. Path planning problem itself has complexity of
exponential order in terms of degrees of freedom of an autonomous vehicle. This
complexity becomes huge for the practical scenarios with the variable shape and
number of obstacles. Hence to make it computationally less demanding, approach
of decomposition of trajectory planning problem is worth investigating for motion
planning of autonomous vehicles on the streets.

3

1. Introduction

4

2
Problem Definition

This chapter provides overall background for understanding the detailed approach
presented in the next chapter. It consists of problem description and requirements
of velocity planning function. Introduction to various terms and concepts used for
developing this approach are also presented in this chapter.

2.1 Problem Description
Considering the idea of the decomposition of the trajectory planning problem discussed
in previous chapter, this project will address the second subproblem of velocity
planning. Path planning is the first step which depends on the static obstacles.
However, velocity planning is the second step that deals with the collision avoidance
with moving obstacles. Traffic junction or circles are usually quite constrained road
geometries for heavy vehicles such as buses and trucks. Because of the long lengths,
these vehicles usually do not have much of a room to change their path along the
motion at such geometries. Hence, path is usually planned in the beginning of such
maneuvers based on geometry of the road and static obstacles. This is also the
reason why most of the times, these vehicles end up following a similar path at
a particular road geometry. Therefore, this project focuses on velocity planing of
vehicle with the preplanned path.

Objective Developing on-line velocity planning approach for a bus moving along
a known (pre-calculated) path to avoid the collisions with the moving obstacles.
Following points provide better idea about the problem statement:

• Single vehicle control: Only controllable vehicle is Bus which is called as ‘Ego
vehicle’

• Random Traffic situations Other objects such as other vehicles, pedestrians,
cyclists are not controllable and their trajectories are unknown to the bus
throughout the maneuver

• Full autonomous driving: Inter vehicle communication or communication with
outside station does not exist as far as Ego vehicle is concerned.

5

2. Problem Definition

2.2 Function requirements and desired attributes
Following requirements are needed to be fulfilled through the approach proposed in
work.

2.2.1 Function Requirements
1. Collisions occurring at all the sides of ego vehicle are avoided during entire

motion
2. Ego vehicle always eventually reaches the destination
3. Velocity is planned to reach the destination at earliest possible time by allowing

ego vehicle to travel as fast as possible
4. Non-negative velocity (Motion in forward direction)
5. Real time re-planning in order to incorporate continuously changing traffic

scenario
6. Ego vehicle always keeps a safe distance from the moving vehicles

Characteristics and attributes of this velocity planning approach are given below.
It is important for any approach to have possibilities of expansion and modification
in the future to become very strong candidate in the long development process.

2.2.2 Desired characteristics of the velocity planning approach
1. Computations in the process should be realisable on actual hardware platforms
2. Ego vehicle avoids collision with all the vehicles present on the street with the

planned velocity
3. Ego vehicle identifies the possible opportunity to enter the traffic junction
4. The approach should be general so that it can be adapted to work with different

traffic scenarios and road geometries
• Merging
• Yielding
• Intersection
• Avoiding collision with obstacles of different sizes
• Road geometries such as traffic junction, traffic circle, lane entrance, etc.

5. Scope of extension of the same approach to the more complex traffic scenarios
and road geometries

2.2.3 Performance parameters
This thesis is a concept development of a velocity planning approach for collision
avoidance. Simulation results in the chapter 4 provide a proof of concept of the
fact that this approach is able to fulfill requirements mentioned above along with
illustration of various performance characteristics. Therefore analysis of the values
of performance parameters such as safety distance from obstacles and travel time is
out of the scope at this stage of development.

6

2. Problem Definition

2.3 Available information
Following information is assumed to be known for velocity planning of the vehicle.

• Path of Ego vehicle (Bus): Pre-calculated using on-line path planning or a
fixed path for the entire motion

• State of Ego vehicle (Bus)
1. Speed
2. Position
3. Heading direction
4. yaw rate

• States of all other vehicles present in the environment
1. Speed
2. Position
3. Heading direction
4. yaw rate

2.4 Introduction to basic terms
This section will go through basic terms that are used in this work.

2.4.1 Ego Vehicle
Vehicle under investigation and the one that is being controlled is called as an
‘Ego Vehicle’. A Scania Omni bus is the only Ego vehicle in this project for which
the velocity is to be planned for collision avoidance. Therefore, this is also the
only vehicle on the street for which entire path is known (or pre-calculated before
velocity planning). The ego vehicle is assumed to be equipped with radar and other
sensors that provide information required for velocity planning. Relevant physical
parameters of the bus are stated in the table A.1 in the appendix.

2.4.2 Environment
Environment around ego vehicle include road, footpath, lanes, road dividers, traffic
lights, fellow vehicles, pedestrians, cyclists, buildings, road markings, etc. Motion
planning depends on the environment to a great extent as trajectories of the vehicles
are constrained by the objects and the attributes of the environment. Figure 2.1
shows a typical scenario in the traffic junction environment. In the scope of this
thesis, moving obstacles in the environment include cars. The approach proposed
here can be extended for other moving obstacles such as pedestrians, cyclists and
stationary objects, etc.

7

2. Problem Definition

Figure 2.1: Environment: Traffic junction in PreScan

2.4.3 Reference Frames
In this work, approach is built in the moving frame of reference of the ego vehicle
(s, t). In this reference frame, s (space) denotes the distance travelled along the
path and t denotes the time. Co-ordinate transformation is needed to represent
data from one frame of reference in to other.

2.4.4 Guide point
In 4 wheel vehicles like a car, bus or truck (with 2 axles), rotation of the vehicle
happens around the center of the rear axle (figure 2.2). If this point is set as the guide
point, then the motion of this point along a smooth curve ensures smooth lateral
acceleration and steering action. Curvature of the path (or a road) changes linearly
along its length. Locus of a points traced by the rotation center of a moving vehicle
has a linear change in curvature along its length. Therefore, rotation center is the
best choice to set up as a guide point as it will ensure smooth change in curvature
and corresponding steering action [4]. Setting up the rear axle centre as a guide
point can reduce a lot of computation and analysis of vehicle dynamics in order
to avoid any discontinuity in the critical parameters such as lateral acceleration,
steering angles and yaw rate.

8

2. Problem Definition

Figure 2.2: Guide point is center of rear axle instead of center of mass or center
of geometry for a 4 wheel vehicle

2.4.5 Path follower (Speed Controller)
Path follower is a controller that generates the control inputs such as acceleration,
steering angle, deceleration in order to achieve the desired path with desired speed.
In this project, an in-built path following controller (from modelling software PreScan)
is used for execution of planned motion which is acting as a separate entity from
the motion planner. This controller is referred as a ‘path follower’ in PreScan GUI.
A schematic diagram of the path follower is given below in the figure 2.3. It takes
in the desired speed and current speed of the ego vehicle as inputs along with the
path to be followed and generates control signal for actuators. Desired speed input
in the figure 2.3 is generated by ‘Velocity planning function’ which is developed in
this thesis.

Figure 2.3: Path following controller: Input and output signals

2.5 System Overview
This section provides an abstract overview of the system architecture of the entire
autonomous driving system with its key component blocks and flow of signals.

9

2. Problem Definition

Figure 2.4: Overview of the autonomous driving system with connections between
sub-blocks

Trajectory planning requires inputs from localization, sensor fusion and strategic
planning to plan the trajectory (path and speed). This calculated path and speed
are inputs to the controller that generates the control inputs for the actuators of the
ego vehicle. In this work, velocity planning is the focus of this work. As explained
earlier in section 2.3 limited amount of information is assumed to be known for
velocity planning. Hence, no additional information is assumed to be known in
terms of localisation, perception and strategic planning.

2.6 Related theory
In this section, basic theory behind the velocity planning approach is presented along
with the concepts that are applied for developing this approach.

2.6.1 Space time analysis
Space time analysis uses the representation of the motion of an object along its
path (space) as a function of time (t) i.e. s(t). So, it is a two dimensional plot (or
map) that can represent where ego vehicle is allowed or forbidden to be present at
a given time. This kind of representation helps in visualising complex motion of
multidimensional objects in just two dimensions of distance and time.

2.6.1.1 Space time plot for a point moving along a path

Space time approach for a point moving along a fixed path is presented in [5].
Following figure 2.5 shows a point moving along a fixed path and a rectangular
object that intersects this point during time interval [t1, t2]. [s1, s2] is the path

10

2. Problem Definition

segment where intersection is taking place. It is important to note that the space
coordinate i.e. ‘s’ is nothing but the distance along the path of a point. Hence, s
starts from zero at the beginning of the path and increases monotonically along the
length of path.

Figure 2.5: Intersection of the path of a point and path of a rectangular obstacle
during time interval [t1, t2] and space interval [s1, s2]

Following space-time map (plot) in the figure 2.6 represents above information of
intersection in a graphical way.

Figure 2.6: Shaded region representing the collision in space-time map for a point
moving along a fixed path

In figure 2.6, the shaded region represents a collision in space and time. Since our
goal is to avoid the collision, the space time curve for the desired motion of a point

11

2. Problem Definition

must not pass through this shaded region. Figure 2.7 shows two possible profiles
that can lead to a collision free motion without putting a brake along the path.
Theoretically, it is possible to have infinite number of curves in the space-time plot
that do not intersect with the shaded region.

Figure 2.7: Red color curve shows the path travelled by ego vehicle in the space
time domain in order to avoid the collision represented by shaded region

Interpretation of collision region in the space time map: Figure 2.8 shows
two space time plots with a collision point and a collision region respectively. Any
collision point P (si, ti) (figure 2.8a) on the space time map for the ego object moving
along a desired path implies that there will be a collision with a moving obstacle if
the ego object is present at position si at time ti.

Similarly, a closed (bounded) collision region R (figure 2.8b) in the space time map
for the ego object moving along a desired path implies that during a time interval
(ti, tj) there will be collision with a moving obstacle if ego object is present at
position si along its path.

(a) Collision point on the
space-time plot

(b) Collision region on
space-time plot

Figure 2.8: Interpretation of space-time plot

12

2. Problem Definition

Understanding this interpretation is very important in order to extend this concept
of space time scheduling for 2D objects. This interpretation will be useful in
designing collision check method to generate space-time map.

2.6.1.2 Space time map for a 2D object moving along a path

It should be possible to find out the space time map for any 2D object moving along
any path and with interaction with moving obstacles. However, because of the sizes
and geometries of the objects, collisions can happen even when the obstacle is not
completely crossing the path of the ego vehicle. Hence, it is important to identify
the types of collisions that can happen when a rectangular objects are moving on a
plane along a their respective paths.

Figure 2.9 shows three types of potential collisions of a rectangular object moving
along a path. In the figure 2.9, Car 1 has a path that is intersecting with the bus.
Car 2 has the path that is merging with the bus and hence leading to the collision
in some future instance. However, Car 3 does not have any intersection with the
path of the bus, but because of the path of the bus and its long size, part of the bus
will intersect with the part of the car at some future instance.

Figure 2.9: Different types of collisions between two moving vehicles

Based on the interpretations that we develop in the section 2.6.1.1, it is possible to
create a space time map using collision checking. Collision checking is effective in
detecting collisions for all 3 cases discussed above. This method will be discussed
further in the section 3.3 in the next chapter.

2.6.1.3 Space time map characteristics and constraints

In order to generate a feasible velocity profile in space-time map, it is important
to consider following constraints that come naturally with the formulation of this

13

2. Problem Definition

problem. So, any curve defining motion of the object in space-time map must obey
following constraints in order to have a realistic motion (s(t)).

• Monotonicity of time
• Non-negative velocity
• Maximum velocity limits along the path points
• Maximum acceleration constraint

Maximum allowable speed on the path is dependent on the curvature of the path in
order to avoid skidding and rolling over. Furthermore, there is a traffic speed limit
on the road. These speed limits should be considered while planning speed of the
vehicle. In the current work, speed limit is kept constant for the entire motion of the
ego vehicle (bus). Non-negative speed is considered to avoid reverse direction motion
in the scope of velocity planning problem. Maximum acceleration constraint and the
variable speed limits along path are not considered in current work. However, the
current approach can be modified to in the future work to include these constraints.

2.6.2 Motion model
Motion of surrounding vehicles is predicted using coordinated turn (CT) model. In
CT model, the rate of change of heading angle ω(t) is constant, i.e. ω̇ is zero. A
discrete time state space expression of the CT model is given in equation 2.1.

In order to improve the motion prediction, an alternative motion model would be
to use perceptive elements into the motion prediction, such as lane information and
indicators of the vehicle predicting the future part of the vehicle (Discussion in
section 5.2.4). Non-zero linear and angular acceleration in the motion model can
also improve motion prediction of the vehicles.

ẋ(t)
ẏ(t)
v̇(t)
φ̇(t)
ω̇(t)

︸ ︷︷ ︸

Ẋ(t)

=

v(t)cos(φ(t))
v(t)sin(φ(t))

0
ω(t)

0

︸ ︷︷ ︸

A(X(t))

+

0 0
0 0
1 0
0 0
0 1

[
qv

c (t)
qω

c (t)

]
︸ ︷︷ ︸

qc(t)

(2.1)

Where, (x, y) is the position of the vehicle and v is the velocity. φ is heading angle
and its rate of change is ω. Here, qv

c and qω
c are the noise in the linear and angular

speed terms. Noise is not considered in the motion model used in this work at this
stage of development. After the successful proof of concept, it should be possible to
introduce uncertainty in the motion prediction model in later stages of development
as discussed in the section 5.2.4. Hence, this work is based on deterministic motion
model of vehicles. Noise terms will vanish from the expression (qc(t) = [0 0]T) and
pure deterministic model will remain. This continuous time model is converted to
discrete time model using Euler’s method (refer equation 2.2) which can be directly
used for the prediction of vehicle’s position in the future instances.

X(k + 1) = ∆TA(X(k)) +X(k) (2.2)
∆T is a regular time interval at which future position is predicted. Section 3.3.2
contains detailed discussion about selection of ∆T .

14

2. Problem Definition

2.6.3 Collision detection
Top view of a vehicle can be considered as a rectangle. There are various ways to
detect collisions between the rectangles. In this work, ‘Separating Axis Theorem’
is applied for checking collision between two rectangles. This theorem is a special
case of the ‘Hyper plane separation theorem’ [19, chapter 2, p. 46]. This theorem is
valid for the collision check of two convex polygons.

Separating axis theorem for rectangles: If there exists a line separating two
rectangles, then the rectangles are not intersecting. Also, for two non-intersecting
rectangles, there exists a line parallel to at least one of the edges of any one of the
rectangles that separates two rectangles from each other.

Figure 2.10: Illustration: Separating axis theorem

Refer to the figure 2.10 where two rectangles are separated a by line L which is
parallel to the edge PS of the rectangle PQRS. Line N is normal to the line
L. Since line L is separating two rectangles, their projections on line N will also
be separated. Projection of each rectangle on line N is a line segment (P ′R′ and
A′C ′). Since the rectangles are separated, the segments are also separated i.e. non
overlapping. This way, collision detection can be implemented for any position and
orientation of two vehicle footprints. By checking for any two adjacent sides of each

15

2. Problem Definition

rectangle for non-overlapping projections, presence or absence of collision can be
detected.

2.6.4 Homogeneous Coordinate Transformation
In order to generate the footprints of vehicles in the space, coordinates of each
vertex of footprint need to be transformed according to translation and rotation of
the vehicle. Homogeneous coordinate transformation is used for this purpose. Since
the geometries involved in this work are rigid bodies, phenomena such as shearing,
scaling are not considered here. Translation in XY plane and rotation around
Z-axis are the only two phenomena that are to be considered during coordinate
transformation in this work. Consider following example in the figure 2.11. Point P
is located in the local frame at a fixed position.

Figure 2.11: Transformation of coordinate system of a point P from local frame
X1O1Y1 to global frame XOY

Homogeneous transformation matrix for translation in XY plane and rotation in θ.

T =

cos(θ) −sin(θ) rx

sin(θ) cos(θ) ry

0 0 1

 (2.3)

As the local frame moves and rotates in the plane, position of the point P with
respect to the global frame (−→OP) is given by equation 2.4. Local frame is having
translation ~r and rotation θ with respect to the stationary frame (global frame).

−→
OP = T ×

−−→
O1P (2.4)

16

2. Problem Definition

2.6.5 A* search
Time optimal speed profile in the space-time map is generated using A* algorithm
and it will be explained in details in the section 3.4.2. A* is a path search algorithm
for finding the shortest path between two points (or nodes) in the grid space [6].
Hence, it can also be used to find the shortest obstacle free path between two points.
A* is the best-first search meaning that search is directed along the best estimated
direction.

In the first step of algorithm, nodes around the start node are explored in the search
for the potential successor. Node with the minimum function value (f) is selected
as a successor node. In the next step, nodes around the successor node are explored
for its successor. This goes on until the target node is reached. Function value is
calculated using equation 2.5. f(n) for each node(n) is evaluated as the sum of cost
to reach the node (g(n)) and heuristic (h(n)) for node n.

f(n) = g(n) + h(n) (2.5)

g(n) is the actual cost to reach current node ‘n’ from the start node. Heuristic
h(n) is an estimated cost to reach the target node from current node (n). Since
it is an estimated cost to reach the end node, there is no specific value. One way
to calculate heuristic is to calculate distance between current node (n) and target
node. However, heuristic cost must be admissible in order to ensure the optimality
(shortest path). This is explained further in the section 2.6.5.

During the search, algorithm maintains two lists: Open list and Closed list. Closed
list contains the list of all the nodes that have already been explored and open list
contains list of all the successors (of already explored nodes in closed list) that are
yet to be explored. Nodes in the closed list are not explored. All the nodes that
represent obstacle (or collision) are put into the closed list in the beginning of the
search so that collision free shortest path is generated. During the search for the
shortest path in the search space, the node with the minimum function value (f(n))
is selected from the open list for further exploration. This results in a ‘best first’
search. Open list ensures that all the possible paths are considered so that resulting
path is the shortest path. As the search reaches the target node, the search stops
by adding the last node into the closed list. By traversing back through the parents
of the last node in the close list, optimal path between target node and start node
is obtained.

Admissible heuristic: In order to ensure the optimal solution to A* search, it
is important to have an admissible heuristic [20, chapter 4, p. 97]. The heuristic is
admissible if the value of the heuristic is always less than the actual cost to reach the
end node from the current node. Hence, the heuristic should not exceed minimum
possible cost to reach the target node from current node. One admissible heuristic
would be h = 0 which is basically Dijkstra’s algorithm. A zero heuristic will result in
more computation leading to a slower search operation. On the other hand, larger
heuristic results in the faster search operation. However, overestimated heuristic

17

2. Problem Definition

does not ensure the optimality. Therefore it is beneficial to look for a finite positive
admissible heuristic to ensure optimality along with high search speed with A*.

Branching factor: Branching factor in the context of A* search algorithm is the
number of possible connections from a given node to the neighbouring nodes [20,
chapter 3, p. 74]. Figure 2.12 shows examples from two search algorithms with
different branching factors.

Figure 2.12: Branching factor in the grid search

If search is allowed only in the particular direction, then the branching factor
decreases. This term will be relevant later in the section 3.4.2.

18

3
Approach

Velocity planning approach developed in this work is presented in this chapter.
This approach is based on the concept of space-time analysis presented in [5]. As
discussed in the earlier sections, velocity planning is one of the two sub-problems of
the trajectory planning problem which include path planing and velocity planning.
Entire velocity planning approach is broken down into two steps:

• Formation of space-time map using collision check
• Generating time optimal velocity profile using A* algorithm

Furthermore, on-line velocity planning implies re-planning after certain time interval.
At every new planning instance, a new velocity plan is generated using the proposed
method in this chapter. Frequency at which velocity is re-planned is referred as
planning frequency and it will be discussed in the next chapter in section 4.1.2.

3.1 Assumptions
Following are the two important assumptions based on which this approach is
developed.

• Bus follows the path with a good enough accuracy with the help of path
following controller so that its actual position on the road is approximated
with the corresponding position on the fixed path

• Road is flat

3.2 Discretization of Space-time map
This work is focused on discretized space-time map which is generated using the
collision checking. Discretized space-time map (or plot) in the figure 3.1 represents
collision with two vehicles. Spacing along the space coordinate is called space
interval ∆s and the spacing along the time co-ordinate is called as time interval
(∆t). These values are selected in a specific way and will be discussed in the later
sections. Total length of time in the future for which the motion of the fellow vehicles
(moving obstacles) is predicted is called as ‘time horizon’. Similarly, ‘space horizon’
is defined as the length of the ego path considered in the space time analysis at a
given planning instance. Space horizon is nothing but the distance along the path
for which velocity is planned. Figure 3.1 shows how space and time horizons define
the size of the space-time map. In the subsequent sections, systematic method for
generating space-time map will be presented.

19

3. Approach

Figure 3.1: Discretized space-time map

3.3 Collision checking
Collision checking needs to be done in a specific fashion to get the required information
in space-time domain. Since the main purpose of velocity planning is to control
the position of the ego vehicle along its path, it is quite intuitive to calculate the
footprints of the ego vehicle along its path. However, ego vehicle is forbidden to
occupy certain path segments during specific time intervals for collision avoidance
with other moving obstacles. These time intervals are based on the motion of other
moving obstacles and therefore, vehicle footprints are calculated for current and
future time instances using motion model.

In figure 3.2, paths of Car1 and Car2 are unknown and to be predicted using
Coordinate turn model (CT model). Actual path for the bus is already known
(predefined or preplanned path).

Figure 3.2: Collision checking

20

3. Approach

3.3.1 Inflation of the vehicle size
Ego footprint is generated at fixed space interval along its path. So, it is important
to ensure that the intermediate positions of the ego vehicle do not indulge into
any collision. This can be achieved by enlarging (inflating) the sizes of the vehicle
footprints before collision checking. Collision checking between these inflated footprints
will add a safety distance between the vehicles. However, the velocity planning as a
result of such collision checking is more conservative. Following figure 3.3 shows how
the area swept by the inflated vehicle footprints (green colour) at the fixed space
interval on the path covers the area swept by the actual footprints (blue colour) of
the vehicle along entire path.

40 50 60 70 80 90 100 110
Global X (m)

35

40

45

50

55

60

65

70

G
lo

b
a
l
Y

 (
m

)

FootPrint Analysis: Area swept by actual footprint Vs area swept by inflated footprint

Area swept by the inflated footprint

Area swept by the actual footprint

Figure 3.3: Inflated bus footprints (Length = 16.5m, Width = 3.55m) at 1m
interval along the path covering actual bus footprints (Length = 14m, Width =
2.55m) at 0.1m interval along the path

How much inflation in size is required at a given space interval of ∆s is subject to
the investigation and out of the scope of this work. Table 4.1 in results chapter
includes the inflated dimensions used in the simulation.

3.3.2 Vehicle footprints along time
Future position of each fellow vehicle is predicted using coordinated turn model
at a fixed time interval ∆t. Equations describing the motion model are presented
in section 2.6.2. Based on the predicted positions of the vehicles, corresponding
footprints are obtained with the help of homogeneous coordinate transformation
explained in section 2.6.4. Figure 3.4 shows prediction of footprints of two vehicles
(Car1 and Car2) along their predicted paths at fixed time instances (t1, t2, ... so
on). These time instances form the time axis in the space time grid as shown in the

21

3. Approach

figure. Yaw rate is zero for the first car implying straight line motion and non-zero
for the second implying circular motion.

Figure 3.4: Prediction of vehicle footprints using CT model

∆t is chosen in a way such that the every two adjacent car footprints just overlap
with each other leaving no space between them. If there is a gap between two
adjacent footprints, collision happening in this gap cannot be captured by the
collision checking. This time interval (∆t) can be calculated using the length and
speed of the vehicle as shown in equation 3.1. Here, α ∈ [0, 1] is a factor that affects
degree of overlapping of two consecutive footprints. α = 1 implies footprints are
just in contact at the edges while α = 0 implies complete overlapping. Suppose a
particular car has dimensions as: (Length×Width× heigth) ≡ (Lv ×Wv × hv).

∆tcar = Lengthcar

V elocitycar

× α (3.1)

Different sizes and speeds of the vehicles (cars) will result in different time intervals.
However, the outcome of collision check against all the vehicles is mapped on the
same space-time map. This is achieved by storing the information of collision in
a single large Boolean matrix called ‘Collision Matrix’ (refer to the section 3.3.4).
Therefore common time interval (∆t) is chosen for collision check using equation
3.2.

∆t ≤ min{∆t1,∆t2,∆t3,,∆tK} (3.2)

In this work, a time interval of ∆t = 0.5sec is considered which is fixed throughout
the simulation. ∆t = 0.5sec obeys above inequality in the equation 3.1 for given
vehicle speeds in the simulations.

3.3.3 Ego vehicle footprints along the space
Footprints of the ego vehicle lie along its known (or pre-calculated) path. Figure
3.5 shows illustration of generating ego vehicle footprints at regular space intervals

22

3. Approach

along its path. In order to use these footprints for the collision checking, the ego
vehicle (bus) should follow its desired path with a very good accuracy (assumption
in section 3.1). Distance between between two consecutive ego footprints is referred
as ‘space interval’ (∆s). ∆s is also the spacing along space axis in discretized
space-time map. Figure 3.5 shows how discrete positions along the path of the ego
vehicle corresponds to discrete space positions in the space-time map. Space interval
(∆s), time interval (∆t) and maximum ego speed (Vmax) are related parameters and
their values for the simulation will be calculated in the section 4.1.2.

Figure 3.5: Ego vehicle footprints along space

Figure 3.6 shows footprints of ego and other vehicles as discussed above. Generating
space-time map would require collision checking between all the footprints of ego
vehicle against all the footprints of other vehicles on the street.

Figure 3.6: Collision Checking: Car footprints Vs Bus footprints

23

3. Approach

Suppose that we have M vehicle footprints along future time instances and N ego
footprints along its path. Figure 3.7 shows a footprint of the Car1 predicted at the
future time instance t = tm.

Figure 3.7: Collision Check: M ×N computations

This footprint of Car1 would have to be checked against all the bus footprints from
s1 to sN in figure 3.7. For a single vehicle (car), collision checking needs to be done
M×N times. Hence, this step would be highly demanding in terms of computations
when algorithm of collision detection stated in section 2.6.3 is used. Furthermore,
it would require powerful computers for collision checking with multiple vehicles on
the street. Some kind of reduction must be done in order to make this collision check
realistic. Section 3.3.6 will focus on reduction in the computations in the collision
checking.

3.3.4 Collision Matrix
Collision checking between ego vehicle and other vehicles can be represented and
stored systematically using a single 2D matrix. We will call this matrix the collision
matrix. In collision matrix, index along rows represent the discretized time (t0,t1...tm)
and columns represent the discretized space (s0,s1...sm). For a typical intersection
scenario in the figure 3.8a, collision check will result in a 2D Boolean matrix as
illustrated in the figure 3.8b. The matrix can be initialised to 0 (false) and then
collision can be represented using 1 (true) upon ‘detection’. This kind of representation
is very useful in saving data of collision checking against all the vehicles in a single
matrix. Location of any element in this matrix represents a point in the space-time
map ((i, j) ⇒ (ti = i × ∆t, sj = j × ∆s)), where ∆s and ∆t are the intervals in
space and time that are used for the collision checking. This way collision matrix

24

3. Approach

represents entire space-time map along with the collision information.

In order to store collision checking of all the vehicles in a single matrix, it is important
to have a same time interval for collision check against all the vehicles. This is
important because any element of final collision matrix should correspond to same
absolute time for all the vehicles. However, using different ∆t for different vehicles
based on their speeds (equation 3.1) is computationally cheaper. If two different time
intervals (∆t1,∆t2) are used for collision checking against two different vehicles, then
single element (i, j) in the final matrix will correspond to different absolute time for
different vehicles (t = ∆t1 × i and t = ∆t2 × i). Hence, remapping must be done in
such case to represent all the collisions in the same space-time map with common
time interval (∆t). In this work, time interval (∆t) is kept same for all the vehicles.

3.3.5 Space-time map using collision check
Collision matrix is used to plot the space-time map. There are three different types
of collisions that are discussed in figure 2.9. Figure 3.8c shows space-time graph for
the scenario in section 3.8a using collision matrix in 3.8b. Same concept of collision
matrix is applied for scenarios in figures 3.9 and 3.10 to generate their respective
space-time maps.

(a) Intersection of paths

(b) Collision Matrix: ‘1’ represents collision (c) Space-time map

Figure 3.8: Space-time analysis in case of intersecting paths

25

3. Approach

In figure 3.9, ta is the earliest future time instance of Car1 when collision is detected
and sl is the corresponding position of the ego vehicle (bus) along its path. Similarly,
tb is the last time instant in the future where collision detected and sN = starget is
the last ego position corresponding to it. Collisions in the figure 3.9b represents
merging of the ego vehicle and Car1 into the same lane.

(a) Merging of paths

(b) Space-time map

Figure 3.9: Space-time map in case of merging

In figure 3.10, ego vehicle is going to enter opposite lane while making right turn.
Hence, this results in a collision with a vehicle coming from opposite side.

26

3. Approach

(a) Vehicles from opposite lane

(b) Space-time map

Figure 3.10: Space-time map showing collision of ego vehicle with a vehicle
travelling on opposite lane

3.3.6 Collision checking: Scope of reduction in computation
If collision detection between each pair of footprints is achieved using method
presented in section 2.6.3, the process of collision checking becomes computationally
expensive. Order of computation of ‘collision detection’ becomes N2. Hence, it is
essential to reduce computations in this process to achieve collision detection against
many vehicle footprints.

This can be achieved at several stages in implementation. Perception about the
motion of the vehicles in the localised environment can result in the great level of
reduction in collision checking computations. For example, information of the lanes
of the other vehicles can be used to avoid collision checking against the vehicles that
lie in the irrelevant lanes. In this project, use of extensive collision detection method
is avoided using three schemes.

1. Using a tree structure to avoid use of extensive collision detection method

27

3. Approach

2. Using a threshold on the distance between two footprints to avoid use of
extensive collision detection method

3. Using the heading direction of a vehicle’s footprint to avoid use of extensive
collision detection method

3.3.6.1 Use of a Tree structure

Ego vehicle footprints are to be checked for collisions against the footprints of all the
vehicles. Space bounded by the ego vehicle’s footprints can be divided as shown in
the figure 3.11. So, footprints of the vehicles that lie entirely outside this bounded
area do not obviously collide with any of the ego footprint and hence do not require
extensive collision detection. Footprint of a car at t = tm lies in a top-left region in
the divided space in figure 3.11. Ego footprints that completely lie inside or overlap
with the top-left region can possibly collide with this car footprint. All the other ego
footprints that lie completely outside this top-left region obviously do not collide
with a given car footprint. Hence, a set of potential ego footprints can be generated
for extensive collision detection. This concept can be implemented by storing ego
footprints in a data structures like Kd tree or quad-tree using the position of the
ego footprint in the divided space. A simple tree presented in the figure 3.12 is
implemented in this work to improve computational speed.

Figure 3.11: Bounding area of ego footprints along with the division of space
within it for efficient collision checking. Ego footprints in the black colour lie in the
same quadrant as the given vehicle footprint

Each vehicle footprint needs to be checked against all the ego footprints (s0 to s17 in
table 3.1) for collision. Goal of this method is to find the set of ego footprints that
can potentially collide with a given vehicle footprint. In the figure 3.11, bounding
region of area swept by the ego vehicle along its path is represented using (xmin, ymin)
and (xmax, ymax). This region is divided along xmid and ymid. Based on the position

28

3. Approach

of the ego footprint in the divided space, sets of ego footprints are formed. Division
lines xmid and ymid are used to form theses sets of ego footprints (refer to the table
3.1). Pseudo code for generating sets of ego footprints is given in algorithm 1.

Set name Summary Footprints from
figure 3.11

ST otal Set of all the bus footprints {S0 to S17}
SRight Subset of ST otal containing footprints that

overlap or lie on the right side of xmid

{S10 to S17}

SLeft Subset of ST otal containing footprints that
overlap or lie on the left side of xmid

{S0 to S13}

ST op Subset of ST otal containing footprints that
overlap or lie above ymid

{S2 to S17}

SBottom Subset of ST otal containing footprints that
overlap or lie below ymid

{S0 to S5}

SRight/T op Subset of SRight that overlap or lie above
partition line ymid

{S10 to S17}

SRight/Bottom Subset of SRight that overlap or lie below
partition line ymid

Φ

SLeft/T op Subset of SLeft that overlap or lie above
partition line ymid

{S2 to S13}

SLeft/Bottom Subset of SLeft that overlap or lie below
partition line ymid

{S0 to S5}

Table 3.1: List of ego footprint sets stored at different nodes in the Kd tree shown
in the figure 3.11

Division of bounding region (of ego footprints) along xmid and ymid is also used
to build a tree. Each node of the tree represents particular sub-region in the
bounding region of ego footprints. Therefore each set of ego footprints generated
above corresponds to a particular node in the tree from figure 3.12. Tree can be
generated using recursive function. However in the current work, tree presented
in the figure 3.12 is implemented manually (pseudo code given in algorithms 1 and
2). Such tree is used during collision checking against each footprint of every vehicle.

Position of the given vehicle footprint in the divided space corresponds to a particular
node in the tree. This node can be found by doing a search in the tree based on
the position of the vehicle footprint with respect to the division lines xmid and
ymid. Pseudo code for this implementation is given in the algorithm 2. Set of ego
footprints corresponding to this node is used for collision detection against given
vehicle footprint. Rest of the ego footprints do not collide and hence do not require
collision detection.

Consider the car footprint (at t = tm) shown in the figure 3.11. Car footprint can
have any orientation and hence its bounding box (referred as ‘Box’ in figure 3.12) is
used to carry out search through tree. Car footprint (or Box) lies on the left of the

29

3. Approach

line xmid and above the line ymid. This corresponds to the node SLeft/T op in the tree
from figure 3.12. The set of ego footprints stored at this node is SLeft/T op ⇒ {S2 to
S13}. Therefore given car footprint requires collision detection against ego footprints
{S2 to S13}.

Figure 3.12: Formation of a tree for the collision checking

Depth of the tree is just 2 in the implementation in this work. However, use
of kd-tree or quad-tree for collision checking is much more efficient in reducing
computations [14, 15]. Kd tree is a binary tree in which nodes of the tree are
populated by the objects based on their position in the space [14]. It is a type of a
binary tree which is often used in the problems like nearest point search. Recursive
function is used to divide the space and populate the tree with different sets of
ego footprints. Similar to algorithm 2, a search function is used to search through
kd tree for node corresponding to vehicle (car) position. This method can reduce
the order of computation of collision checking process up to NlogN [14]. A typical
collision checking process of 25 vehicle footprints against 25 ego footprints will be
able to achieve the order of computation 25log25 ≈ 34.95 using proper kd tree
implementation which would otherwise become 252 = 225. Therefore, this use of
kd-tree or quad-tree is recommended for implementing collision checking against
large number of vehicles and objects.

30

3. Approach

Data: Efootprints − 3D array storing corners [x1, x2, x3, x4; y1, y2, y3, y4] of all the
ego footprints

Result: Sets of ego footprint in divided space
Result: Tree parameters - Leftbounding, Rightbounding, Topbounding, Bottombounding,

xmid, ymid

• Set N equal to total number of ego footprints;
• Set ST otal to 1D array from 1 to N;
• Generate array(size 1×N) storing bounding box of each ego footprint:
Left - array storing min(x1, x2, x3, x4) of each ego footprint,
Right - array storing max(x1, x2, x3, x4) of each ego footprint,
Top - array storing max(y1, y2, y3, y4) of each ego footprint,
Bottom - array storing min(y1, y2, y3, y4) of each ego footprint,

• Calculate bounding region all ego footprints (footprintsE):
Bounding region - (xmin, ymin) and (xmax, ymax)-
Leftbounding - min(Left)
Bottombounding - min(Bottom)
Rightbounding - max(Right)
Topbounding - max(Top)

• Calculate division line:
xmid = (Leftbounding +Rightbounding)/2 and
ymid = (Bottombounding + Topbounding)/2

• Find sets of ego footprints in regions formed by xmid and ymid:
for i from 1 to N do

if (Right(i) ≤ xmid) or (Left(i) ≤ xmid ≤ Right(i)) then
SetLeft = SetLeft ∪ i ; /* Left half region */

end
if (Left(i) ≥ xmid) or (Right(i) ≥ xmid ≥ Left(i)) then

SetRight = SetRight ∪ i ; /* Right half region */
end
if (Bottom(i) ≥ ymid) or (Top(i) ≥ ymid ≥ Bottom(i)) then

SetT op = SetT op ∪ i ; /* Top half region */
end
if (Top(i) ≤ ymid) or (Bottom(i) ≤ ymid ≥ Top(i)) then

SetBottom = SetBottom ∪ i ; /* Bottom half region */
end

end
SetLeft/T op = SetLeft ∩ SetT op

SetRight/T op = SetRight ∩ SetT op

SetLeft/Bottom = SetLeft ∩ SetBottom

SetRight/Bottom = SetRight ∩ SetBottom

• Return all the calculated sets of ego footprints
• Return tree parameters - Leftbounding, Rightbounding, Topbounding,
Bottombounding, xmid, ymid

Algorithm 1: Generating sets of ego footprints based on division of space

31

3. Approach

Data: Sets of ego footprint in divided space
Data: Tree parameters - Leftbounding, Rightbounding, Topbounding, Bottombounding,

xmid, ymid

Data: Bounding box of Car footprint - [CarLeft, CarBottom, CarRight, CarT op]
Result: SET - Set of ego footprints corresponding to given car footprint
if CarRight < Leftbounding then

SET = φ ; /* Empty set (No collision) */
else if CarLeft > Rightbounding then

SET = φ ; /* Empty set (No collision) */
else if CarT op < Bottombounding then

SET = φ ; /* Empty set (No collision) */
else if CarBottom > Topbounding then

SET = φ ; /* Empty set (No collision) */
else

if CarRight < xmid then
if CarBottom > ymid then

SET = SetLeft/T op ; /* Left-Top region */
else if CarT op < yBottom then

SET = SetLeft/Bottom ; /* Left-Bottom region */
else

SET = SetLeft ; /* Left half region */
end

else if CarLeft > xmid then
if CarBottom > ymid then

SET = SetRight/T op ; /* Right-Top region */
else if CarT op < yBottom then

SET = SetRight/Bottom ; /* Right-Bottom region */
else

SET = SetRight ; /* Right half region */
end

else
if CarBottom > ymid then

SET = SetT op ; /* Top half region */
else if CarT op < yBottom then

SET = SetBottom ; /* Bottom half region */
else

SET = SetT otal ; /* Overlapping with all regions */
end

end
end
Return SET
Algorithm 2: Searching in a tree to find corresponding set of ego (bus) footprints
for a given footprint of the vehicle (car)

32

3. Approach

3.3.6.2 Minimum distance threshold

A sub-set of ego footprints that can possibly collide with the given vehicle footprint
is generated using tree structure. It is possible to discard some of the ego footprints
from this sub-set by calculating distance between the footprints. Consider one
vehicle footprint and one ego footprint at distance ‘d’ from each other. Distance
between two footprints (d) should be less than a threshold for collision to exist
between these footprints.

Figure 3.13: Distance checking

Figure 3.13 shows how the distance checking can help to avoid checking extensive
overlapping of the rectangles represented by vehicle(car) and bus (ego). If d >
dthreshold, then vehicles do not collide. Formula to find dthreshold is given in equation
3.3 where dimensions of the bus and the car are inflated dimensions and draxle is the
distance of the rear axle center from the center of the bus.

dthreshold =
[(
Lcar + Lbus

2 + draxle

)2

+
(
Wcar +Wbus

2

)2] 1
2

(3.3)

Distance check is useful to avoid extensive collision detection between two distant
footprints.

3.3.6.3 Heading direction of the vehicle

Refer to the bounding box of ego footprints in figure 3.14. Vehicle footprints that
lie outside this bounding box do not obviously collide with any of the ego footprint.
Furthermore, if such footprint is headed away from this bounding box, then the
predicted footprints in the future also do not collide with any of the ego footprints.
Hence, heading direction of vehicle footprint can be used to avoid extensive collision
detection to some extent.

Consider the scenario in the figure 3.14 where vehicle footprints are plotted from the
current time instance t = t0 to time instance t = tend. Vehicle footprints predicted
after t = tm will not have any collision with any of the bus footprints. Therefore,
footprints of the vehicle after time t = tm are not even required to be predicted for
the analysis of collision checking. This method contributes to a significant amount
of reduction in the computation from collision checking process.

33

3. Approach

Figure 3.14: Optimization in collision checking operation using vehicle heading
direction

3.3.7 Block diagram: Collision check implementation
Implementation of the collision check using three layers of optimisation mechanisms
is presented in the figure 3.15. Current state of vehicles and Kd tree of ego footprints
are the inputs to this function block of collision checking. This function block is
executed in the loop for multiple vehicles (Not presented in this figure).

For a single vehicle at a given planning instance, vehicle positions are predicted
at M (M is time horizon) future instances with the time interval of ∆t. However,
Kd tree is the same for all of the footprints of all the vehicles. Therefore, every
successive vehicle footprint in the future is generated in the loop (i = 0 to M) and
the collision checking is carried out for that vehicle footprint.

Figure 3.15: Block diagram: Implementation of collision checking

34

3. Approach

3.4 Velocity planning using space and time analysis
Let us have a look at space-time map in figure 3.16. One way to find the optimal
path between the start position s0 and the end line send is by making a grid search.
It is possible to find the shortest path to reach the end line using search algorithm
such as A*. Space-time map represented as a grid contains nodes and some of which
represent collisions. More importantly space-time map is a reflection of the collision
matrix that is discussed in the section 3.3.5. Acceleration of the ego vehicle is not
considered while planning the velocity, instead the scheme for addressing the effect
of finite acceleration is presented in the section 3.4.6.

3.4.1 Formation of optimization problem
Consider the following figure 3.16 representing space-time map as a grid. Here, the
nodes in red color represent the collision region and those in green color represent
the non-collision region. The grid spacing is defined by ∆s and ∆t. Size of a grid is
M ×N , M being space horizon of the path of ego vehicle and N being time horizon
for motion prediction. Goal is to reach the target line (s = starget) using shortest
feasible collision free path. Shortest path is associated with the minimum travel
time which makes it a time optimal problem. Furthermore, any solution to this
problem should also obey the constraints discussed in the section 2.6.1.3.

Figure 3.16: Space-time map as a grid

35

3. Approach

The optimization problem can be formulated as follows-

Objective: Find a shortest sequence of nodes starting from the start node (s0, t0)
to any node on end-line s = starget subject to constraints -

• Sequence is strictly monotonously increasing along time axis
• Sequence is not decreasing along space axis
• All the nodes labelled as obstacles are to be avoided

3.4.2 A* search
Optimization problem formulated in the section 3.4.1 is solved using an A* algorithm
stated in the section 2.6.5. Version of A* path search algorithm available on
Mathwork file exchange [16] is used for implementation. This search function is
modified in this work to solve above optimization problem. This section includes
details on solving optimization problem using A* search.

Constraints stated in the previous section result in the lesser branching factor (refer
to the section 2.6.5). Hence, search is always carried out in the forward direction
(north-east search as shown in the figure 3.17) making the search process much
faster than the original search. The A* algorithm maintains open list and closed
list. The node in the open list with the lowest f(n) value is explored. Since nodes
in the closed list are not explored, all the nodes representing collision are put into
the closed list.

A* search starts from the start node and searches in the direction of the target
node with the help of heuristic based function value (f(n) from the equation 2.5).
At a typical stage during the search, successive node can be chosen via possible
connections in the north-east direction as shown in the figure 3.17.

Figure 3.17: Search direction during A* algorithm

A* is an informed search algorithm. Total number of nodes explored by a non-informed
search algorithm (such as depth-first) is of order O(bd), where b is branching factor
and d is the depth of the solution (shortest path) [20, chapter 3, p. 74]. With
suitable admissible heuristic (discussed in section 2.6.5), A* is much faster search
algorithm. Reducing branching factor also increases the speed of the search by
reducing computations.

36

3. Approach

Connection cost

Since this is a time optimal problem, all the costs and function values should also
have the same unit as the time. Therefore, the cost of a connection from one node
to the next is equal to the time required for that connection (refer figure 3.18).

Figure 3.18: Calculating costs for different connections

Here, f(ni) is the function value at a given node ni, g is the cost to reach the parent
node, Ci is the connection cost from parent node and hi is the heuristic as explained
in the section 2.6.5.

Target node and heuristic

This search problem only demands to reach destination along the space (starget)
dimension and there is no hard constraint on the final time (ttarget). Also, not all
the nodes can reach the same target node because of maximum velocity constraint.
Hence, there cannot be a single target node for all the explored nodes in the search.

In this problem, the heuristic is the estimated time to reach the final node. As
discussed earlier in the section 2.6.5, heuristic should be admissible to ensure optimali-
ty. The admissible heuristic in this case should not be greater than the minimum
time to reach the destination (ttarget). Minimum time to reach destination is basically
the time taken to reach destination with maximum speed. Hence, the admissible
heuristic for any node (n(tn, sn) in the search space is given by

H(n) ≤ starget − sn

Vmax

(3.4)

Vmax corresponds to the direction of the search along maximum speed in the space-time
map, using which one can also find out an individual target node for any particular
node during the search. Refer to the figure 3.19 which shows how the heuristic is
calculated for three given nodes using above equation. Maximum speed in this figure
corresponds to the connection along diagonal (Vmax = ∆s

∆t
). Implementation becomes

simple by using integers (unit spacing) instead of actual spacing (with standard SI
units) between nodes. All functions and costs can be calculated using integers to
ease the calculations. In this figure 3.19, yellow nodes correspond to the destination
(starget).

37

3. Approach

Figure 3.19: Heuristic calculation for nodes with corresponding target nodes

3.4.3 Discontinuity in speed and connectivity of nodes
Search algorithm is implemented using above method results in the optimal path
(in space-time map) as shown in the figure 3.20a. Such optimal path results in
the velocity profile as shown in 3.20b. One can observe that the speed profile
provided by the optimal path is varying from zero to maximum (and vice versa).
Such speed profile is a result of only 2 possible connections in the grid search where
the vehicle can either go with finite speed or stop. Sharp transitions in the speed
are unrealisable. Hence, optimal path should also ensure step by step changes in
the speed profile. By having higher connectivity in the search direction based on
the current speed, gradual changes in the speed can be obtained.

(a) Optimal path: Search with two types
of node connections

(b) Sharp change in the speed
levels

Figure 3.20: Optimal path with only two speed levels

This is where formulating the problem as a grid helps. In the center of the figure 3.21,
all possible connections from a particular node are shown. During the search, based

38

3. Approach

on the previous connection to reach the given node, only specific set of connections
is allowed in order to allow small changes in the speed. Refer to the figure 3.21.

1. C0 represents connection with speed, v = 0
2. C1 represents connection with speed, v = ∆s

3∆t

3. C2 represents connection with speed, v = ∆s
2∆t

4. C3 represents connection with speed, v = ∆s
∆t

5. C4 represents connection with speed, v = 2∆s
∆t

Figure 3.21: Search direction based on the previous connection

Therefore, there are five cases resulting in five different sets of possible connections
from a current node as shown in figure 3.21. Such modification will result in the
relatively smoother speed profile along the optimal path which is more preferred
from the comfort point of view. Figure 3.22 shows optimal solution to the same
problem in 3.20 with relatively smooth speed profile. Even though the change in
the speed levels is gradual, it is still sharp which implies infinite acceleration. This
issue is addressed in the section 3.4.6.

39

3. Approach

(a) Optimal path: Search with four types
of node connections

(b) Gradual change in the speed
levels

Figure 3.22: Optimal path with gradual change in the speed levels

This concept can be extended in the future work to include more speed levels. Also,
search can be modified to have at least two consecutive node connections with same
speed to achieve slower transitions between different speed levels. Therefore, there is
a good scope of study of grid connectivity in the A* search to improve performance
of this approach.

3.4.4 Motion at the end of the path
As the destination approaches, the vehicle needs to plan speed in order to stop
at the destination while avoiding collisions. This can be realised by defining grid
connectivity in A* to achieve gradual decrease in the speed levels. Following figure
3.23 shows how deceleration at the end of the path can be defined.

Figure 3.23: Illustration to show how the deceleration at the end of the path is
defined by not allowing ‘higher speed connections’ in the search at the nodes closer
to the destination

40

3. Approach

3.4.5 Real time planning and Desired speed
Once the speed plan is available, next step is to execute it. Speed controller is a
part of an inbuilt path following controller in the simulation environment of software
PreScan (discussed in section 2.4.5). Figure 3.24 shows that the velocity planning
is carried out at lesser sampling rate (Tsampling = 0.5 sec) than the sampling rate of
rest of the system (Tsampling = 1/50 sec). Speed input to the controller is constant
for 0.5 sec after which it receives re-planned reference speed (further comments in
section 4.1.2).

Figure 3.24: Block diagram showing interface between the velocity planning
function and the speed controller

Desired speed input (or reference speed) for the speed controller needs to be calculated
from the generated velocity plan. At the end of A* search, there could be two
outcomes: Optimal solution or no solution. In the case of no solution, vehicle may
take following actions:

1. Re-calculating the speed in order to stop before nearest collision in the space
time map or at a stop line the road such as zebra crossing

2. Slowing down or stopping immediately by applying hard brakes
In this project, hard brakes are applied in order to stop vehicle when the solution
to optimization problem seize to exist. So, absence of the optimal solution is one of
the challenges that needs to be addressed in the future.

Desired speed is calculated using two methods. Consider figure 3.25, showing speed
profile generated using velocity planning.

Figure 3.25: Time optimal speed profile generated by velocity planning function.

In the experiment 1 from section 4.2.1, vdesired = v1. It is quite possible to have

41

3. Approach

different time optimal speed profiles in two consecutive re-planning instances because
of -

1. Discrete speed levels: Speed plan consists of only few speed levels
2. Finite set of feasible solutions due to discrete nature of search space
3. Continuously changing positions, speeds and directions of all the vehicles
4. Rapid changes in traffic and corresponding collision predictions

Speed levels defined via A* are finite. If the traffic situation requires ego vehicle to
travel with the intermediate speed between the predefined speed levels, then desired
speed input to the controller will switch between these two speed levels. Such rapid
changes in optimal speed profile may result in flickering of reference input to the
speed controller (as shown in the figure 3.26).

Figure 3.26: Discrete set of speed levels in the A* search may cause switching
between two speed levels in certain cases due to lack of appropriate speed level

In experiments 2 and 3 from sections 4.2.1 and 4.2.2, moving average technique is
used to calculate the reference input for the controller. Moving average is a type of
a low pass filter that can be used to reduce effect of short term fluctuations while
keeping long term trends [21, chapter 15, p . 277]. Moving average of previous,
current and three future speed values from the generated speed vector is given in
equation 3.5.

vdesired = (vk−1 + vk + vk+1 + vk+2 + vk+3)/5 (3.5)

Weighted moving average can also be used to have specific type of performance.
Figure 5.2 shows how moving average can have a stable speed input to the controller.

3.4.6 Effect of finite acceleration
Speed profile generated here assumes instant change in the reference speed to the
speed controller which cannot be achieved by real vehicles with finite and continuous
acceleration. The actual speed profile of the vehicle looks similar to the one shown
in figure 3.27. Let us say that vehicle 1 has infinite acceleration and vehicle 2 has
finite acceleration. If vehicle 1 follows desired speed profile exactly, then it will
cover more distance than vehicle 2 which follows the desired speed profile with finite

42

3. Approach

acceleration. This difference in the distance is represented by the area of shaded
region the figure 3.27.

Figure 3.27: Velocity vs time plot for vehicle with finite acceleration. Area of
shaded region between two adjacent velocity levels is showing the lag in the distance
covered in actual motion from the distance covered in desired motion

The time required to cover a particular distance is also different in the case of finite
and infinite acceleration. Figure 3.28 shows deviation of the actual motion from
desired motion in space and time (∆si and ∆ti). In this figure, ∆s1 is the distance
lag caused by the speed change from v0 to v1. Similarly, ∆s2 is the distance lag
caused by the speed change from v1 to v2 and so on. ∆t1 is the time lag caused by
the speed change from v0 to v1. Similarly, ∆t2 is the time deviation caused by the
speed change from v1 to v2 and so on. Similarly, deviation can be expected in case
of deceleration where actual motion (s(t)) leads the desired motion in space-time
map.

Figure 3.28: Figure showing desired motion and actual motion of the ego vehicle
in space-time map. ∆si and ∆ti is distance lag and time lag respectively from the
desired motion plan caused by finite acceleration of the vehicle

Finally, figure 3.29 shows the implications of not considering such effect of finite

43

3. Approach

acceleration in the motion planning. The planned motion (shown by dotted line)
seems collision free however the actual motion (shown by bold line) results in
situation of potential collision in the future.

Real time velocity planning overcomes this limitation by re-planning speed over the
time. Since other vehicles on the street also respond to the motion of ego vehicle,
such collision may not occur in reality. However, it is still important to consider
this deviation during velocity planning in order to achieve better performance and
higher margin of safety.

Figure 3.29: Desired motion Vs actual motion in space-time map. Deviation from
the planned motion (desired motion) resulting in the potential collision in the future

In order to compensate for the deviation from desired motion, one can add a safety
margin while searching for the optimal path in space-time map. Margin can be
derived by studying the deviations in the space and time (∆si and ∆ti) when speed
changes from one level to another level (as shown in figure 3.28). Figure 3.30 shows
an example of how the otherwise optimal path can be disregarded as the collision is
detected at the marginal node.

It is worth noting that the method proposed in this section is not implemented in
this thesis work due to lack of acceleration data of simulation model. This method
is proposed for overcoming the limitation of this approach in the future work by
including the vehicle dynamics in the grid connectivity. With the help of vehicle
dynamics and acceleration values for a particular vehicle model, search connectivity
can be designed to overcome the limitations of finite acceleration.

44

3. Approach

Figure 3.30: Adding safety margin can result in the velocity plan which is more
conservative than the one without safety margin while ensuring a collision free
motion for the vehicle with finite acceleration

3.5 Planning distance and planning frequency
It is important to investigate the relationship between the planning distance, braking
distance and planning frequency for safer motion planning. Let say that B meters is
the braking distance (at v = Vmax), Tp sec is the time interval for re-planning speed
and Vmax m/s is the maximum speed of the vehicle. Vehicle travelling with Vmax

will move a distance of Vmax × Tp m in time Tp sec. Planning distance P should be
high enough to stop the vehicle within its limits due to the fact that the anything
beyond planning distance is not known to the vehicle as far as space time analysis
is concerned. Therefore, P > B. Since planning input to the speed controller (or
brakes) arrives after every Tp sec and distance travelled by the ego vehicle (with
maximum speed) during this time interval should also be considered along with the
braking distance. Hence, the relationship becomes

P > Vmax × Tp +B (3.6)

3.6 Velocity planning function - System architecture
Entire approach developed in the previous sections is summarised in this section.
Velocity planning function takes in following three inputs -

1. Sensor information: State of ego vehicle and all other vehicles on the street
2. Path of the ego vehicle
3. Invariants of the system: Vehicle dimensions, grid parameters, planning distance,

etc.

45

3. Approach

Block diagram of velocity planning function is shown in the figure 3.31. Function
block for collision checking is explained in the figure 3.15.

Figure 3.31: System architecture: Velocity planning function

46

4
Results

Objective of the thesis is to develop a ‘velocity planning approach’. Therefore,
there is no concrete base against which the algorithm performance can be compared
other than the performance of a vehicle with a human driver. Simulation results
presented in this chapter are understood by observing how the function requirements
and characteristics presented in the section 2.2 fulfilled.

Velocity plan generated at the very first instance of the motion is used to compare
the performance of the real time velocity plan (figure 4.8). If the speed of the other
vehicles (apart from ego vehicle) on the street is constant then ideally the velocity
plan should not change over the time due to deterministic nature of this approach.
Hence, the velocity plan (initial plan) evaluated in the first instant can be used as a
bench mark to compare the actual real time plan that is being followed. However,
such type of comparison only makes sense when the surrounding vehicles do not
change their speeds for entire maneuver of the ego vehicle. If the traffic is changing
continuously, then there is no meaning to the comparison with the initial plan.

For this purpose, typical traffic scenarios are created and simulations are performed.
This approach is very general in the sense of road geometry and hence following two
road geometries are used for modelling the traffic scenario.

1. Traffic Junction
2. Traffic Circle

Both traffic junction and traffic circle demand high level of negotiation capabilities as
compared to most other road geometries. At these places, vehicles also experience
rapid changes in the speed based on real time perception of the changing traffic.
Therefore, simulations are performed at these two road geometries and corresponding
results are presented in this chapter.

4.1 Simulation platform - PreScan
Development and testing of velocity planning algorithm is carried out in the simulation
software PreScan. This software has an interface with the MATLAB-Simulink
through which all the calculations related to planning and vehicle dynamics are
carried out. Entire traffic scenario is modelled in PreScan and corresponding Simulink
model (also called as compilation sheet) is generated.

47

4. Results

4.1.1 Ego vehicle Model
Bicycle model available in PreScan is used for the dynamics of the bus in this
simulation. This model is able to simulate the vehicles longitudinal, lateral and roll
motion. Bus model [17] used for this simulation is ‘Scania Omni Bus’ that is shown
in the simulation results.

4.1.2 Simulation parameters
There are several parameters that are invariant for the simulation. Some of these
parameters are co-related and hence they are to be evaluated before simulation.
Following are the main invariant parameters that directly affect performance of the
function.

Actual and increased sizes of the vehicle footprints Following table 4.1
shows sizes of the cars and the bus along with the increased sizes (length and width)
of their footprints used in the collision checking. Change in height of the vehicle
does not affect the size of footprint.

parameter actual value (m) inflated value (for footprint) (m)
Bus length 14 16.5
Bus width 2.55 3.55
Bus height 3.32 -
car length 4.7 6.2
car width 2 2.5
car height 1.5 -

Table 4.1: Sizes of the vehicles used in the simulation along with the corresponding
inflated footprint dimensions

Maximum ego speed: One of the parameters on which most of the other simulati-
on parameters are dependent is maximum speed of the ego vehicle for the given
motion. The inbuilt velocity controller in the PreScan is a PID controller which
generates a steady state error for a given step input. This steady state error is
significant at higher speed inputs and hence maximum speed in all simulations is
kept at 4m/s (14.4Km/hr).

Grid Spacing: Analysis on suitable values of ∆s based on the size and speed of
ego vehicle along with the performance specifications is out of the scope of this work.
Space interval (∆s) of 1 meter is used for the simulations. A* search is implemented
in a way to facilitate five different speed levels through five different connections (T0
to T4) as shown in figure 4.1.

48

4. Results

Figure 4.1: Different connections corresponding to different speed levels

Using Vmax from the last paragraph, time interval for the collision checking, ∆t is
calculated as ∆t = 2∆s

Vmax
= 2×1

4 = 0.5 sec. Please note that, this value of ∆t also
satisfies inequality derived in the equation 3.2 during the simulations. Therefore,
the rest of the speed levels can be calculated as shown in the table 4.2.

Transition Speed expression value (m/s)
T0 v0 = 0/∆t 0
T1 v1 = ∆s/3∆t 0.66
T2 v2 = ∆s/2∆t 1
T3 v3 = ∆s/∆t 2
T4 v4 = 2∆s/∆t 4

Table 4.2: List of the speed levels associated with the different connections defined
in the A* search algorithm

Simulation frequency and planning frequency: In order to save the processing
power, velocity planning is carried out with lower rate than actual sampling rate
of rest of the functions in the simulation platform. Minimum time required for
receiving new speed input in the space-time map is ∆t. Hence, re-planning should
be done no longer than ∆t in order to remain consistent with the velocity plan from
the previous planning instance (refer to the figure 4.2).

Figure 4.2: Time interval for re-planning is T ≤ ∆t

49

4. Results

Therefore, re-planning is carried out after every ∆t = 0.5sec (sampling rate = 1/∆t).
These parameter values are summarized in the table 4.3.

Parameter value unit
Vmax 4 m/s
Simulation - sampling rate 50 Hz
∆s 1 m
Velocity planning function - sampling rate 2 Hz
Initial ego speed 0 m/s

Table 4.3: Simulation parameters

4.2 Simulation Results
Critical instances in the simulation are captured and presented in following format:

1. PreScan screen shot
• Traffic scenario in PreScan (ex. Left plot in figure 4.3)

2. Space-time search space showing collision nodes and optimal node sequence
(ex. Right plot in figure 4.3)

• X axis is representing the planning time (in seconds) starting from t = 0
(’current time instant’) until time horizon. Hence, current position of the
ego vehicle in this plot is always lying along the Y axis.

• Y axis is representing the ‘distance travelled by ego’ along its path
• ‘Start’ and ‘End’ on the left of the plot represent the starting point and

end point (destination) of the entire ego path. Ego position advances
along Y axis from ‘start’ to ‘end’ of the path.

• ‘Current’ on the right of the plot denotes current ego position along Y
axis.

• ‘Horizon’ denotes distance up to which the planning is carried out.
• Search space for a given space-time plot is a rectangular region confined

between ‘current’ ego position and ‘horizon’.
3. Collision checking plots showing intersection of vehicle footprints and ego

footprints (ex. figure 4.7)
Planning frequency of 2 Hz (sampling time = 0.5 sec) had resulted in initial delay
of 0.5 seconds. Hence, initial capturing instant is t = 0.5 seconds. Post simulation
plots include:

1. Real time plan Vs actual speed
2. Executed plan (real time) Vs initial plan at t = 0

4.2.1 Experiment 1: Straight line motion at traffic junction
Here, the ego vehicle (Scania Omni bus) is trying to cross the junction while
negotiating with the other two vehicles. Speeds of other vehicles are constant as
given below.

50

4. Results

1. Vehicle 1 (red vehicle) with speed = 4 m/s
2. Vehicle 2 (blue vehicle) with speed = 3.5 m/s

Search space is defined by space and time horizon as given below.

• Space horizon = 25 m
• Time horizon = 20 sec

Desired speed is calculated as the first element the velocity plan ({V1, V2, V3, ..., VN})
as given in the equation 4.1.

Vdesired = V1 (4.1)
In the space-time map of figure 4.3 at t = 6s, the optimal path (blue line) goes
around the corner of set of nodes that represent collision (red circles) while keeping
some gap. At a later instant in the simulation shown by figure 4.4, current ego
position and the collision node are next to each other with some gap between them.
This distance-gap is the same as the one that is observed in the figure 4.3 at t = 6
seconds. This is a good illustration of how connectivity of the grid can be used to
achieve distance keeping in this approach of velocity planning.

time (sec)

0 2 4 6 8 10 12 14 16 18 20

D
is

ta
n

c
e

 (
s
)

tr
a

v
e

lle
d

 a
lo

n
g

 t
h

e
 e

g
o

 p
a

th
 (

m
)

0

6.5

13

19.5

26

32.5

39

45.5

52

58.5

65

Horizon

Current

Current Ego Speed = 0 m/sEnd

Start

Optimal path in space time domain

Current Ego Position (s)

Optimal node sequence

Optimal path

Obstacle nodes

Figure 4.3: First iteration, t = 0.5sec

time (sec)

0 2 4 6 8 10 12 14 16 18 20

D
is

ta
n
c
e
 (

s
)

tr
a
v
e
lle

d
 a

lo
n
g
 t
h
e
 e

g
o
 p

a
th

 (
m

)

0

6.5

13

19.5

26

32.5

39

45.5

52

58.5

65

Horizon

Current

Current Ego Speed = 0.89726 m/s

Start

End

Optimal path in space time domain

Current Ego Position (s)

Optimal node sequence

Optimal path

Obstacle nodes

Figure 4.4: Intermediate iteration, t = 6.5sec

51

4. Results

Space-time map in figure 4.5 shows another similar instance where time gap can be
seen between ego vehicle and future collision. Hence, grid connectivity can be used
effectively not only to plan collision free velocity profile but also to plan speed in
a particular fashion to maintain certain distance and time margins while avoiding
collisions.

time (sec)

0 2 4 6 8 10 12 14 16 18 20
D

is
ta

n
c
e
 (

s
)

tr
a
v
e
lle

d
 a

lo
n
g
 t
h
e
 e

g
o
 p

a
th

 (
m

)
0

6.5

13

19.5

26

32.5

39

45.5

52

58.5

65

Horizon

Current

Current Ego Speed = 3.7884 m/s

Start

End

Optimal path in space time domain

Current Ego Position (s)

Optimal node sequence

Optimal path

Obstacle nodes

Figure 4.5: Intermediate iteration, t = 14.5sec

time (sec)

0 2 4 6 8 10 12 14 16 18 20

D
is

ta
n

c
e

 (
s
)

tr
a

v
e

lle
d

 a
lo

n
g

 t
h

e
 e

g
o

 p
a

th
 (

m
)

0

6.5

13

19.5

26

32.5

39

45.5

52

58.5

65
Current

Current Ego Speed = 0.0082855

Start

End

Optimal path in space time domain

Current Ego Position (s)

Optimal node sequence

Optimal path

Obstacle nodes

Figure 4.6: Last iteration, t = 35.5sec

Following figure 4.7 shows calculation of collision checking at above two instances.
Footprints of ego vehicle intersecting with the footprints of moving vehicles results in
a region represented by collision nodes (red circle) in the space-time map. Footprints
of the ego vehicle are bounded in a bounding box. This bounding box is divided
in the four quadrants to implement the collision checking using division of space as
explained in the section 3.3.6.1.

52

4. Results

Global X (m)

40 50 60 70 80 90 100 110 120 130

G
lo

b
a

l Y
 (

m
)

40

50

60

70

80

90

100

110

120
Collision check using vehicle footprints

Ego Path

Ego footprint with collision

Bounding box of footprints

Bounding box division

Vehicle footprints with collision

Current vehicle position

Vehicle 1

Vehicle 2

Global X (m)

40 50 60 70 80 90 100 110 120 130

G
lo

b
a
l
Y

 (
m

)

40

50

60

70

80

90

100

110

120
Collision check using vehicle footprints

Ego Path

Ego footprint with collision

Bounding box of footprints

Bounding box division

Vehicle footprints with collision

Current vehicle position

Vehicle 1

Vehicle 2

Figure 4.7: Matlab plot showing collision checking of vehicle and ego footprints at
t = 0sec (left plot) and t = 6.5sec(left plot)

Post simulation analysis can be done by observing certain variables such as ego
speed (v(t)), distance of ego vehicle from other moving vehicles and also distance
travelled by ego vehicle over time (s(t)). Performance of the velocity planning can
be understood by looking at the actual speed of ego vehicle against desired speed
input to the speed controller.

time (sec)

0 5 10 15 20 25 30 35

S
p

e
e

d
 (

m
/s

)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Executed Speed profile Vs Desired Speed Profile

Desired ego speed (Step input)

Actual ego speed

time (sec)

0 3.5 7 10.5 14 17.5 21 24.5 28 31.5 35

S
p
e
e
d
 (

m
/s

)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Executed plan Vs Initial plan

Initial plan

Executed plan (step input)

Actual ego speed

Figure 4.8: Executed plan Vs initial plan at (t = 0.5sec)

It is important to note that there are in total 7 reference speed levels that can be
seen in the figures 4.8, 4.16 and 4.16. However, there are only five speed levels
that are defined by the A* search for the simulation. The two extra speed levels
(v = 0.3m/s, v = 0.1m/s) at the end of path are implemented in order to achieve
smoother braking via speed controller in the PreScan. These speed levels should be
ignored while analysing the results since they occur after the negotiation with other
vehicles has happened.

Left plot in figure 4.8 is showing actual ego speed vs desired speed over the time of
simulation. Vehicle gradually escalates speed levels from 0 to 4 m/s and decreases
gradually to 0 while avoiding the collision with moving vehicles. Vehicle speed
increases and decreases with finite acceleration and deceleration creating a deviation
from desired plan. Speed controller results in a significant steady state offsets at
different speed levels adding more deviation from desired speed profile. Deviation

53

4. Results

caused by all these issues is effectively addressed by real time planning. This can be
understood from the right plot in the figure 4.8. Right figure includes an extra curve
which is referred as ‘initial plan’. This initial plan is the velocity profile generated
in the first iteration of the simulation. In this simulation, vehicles are moving with
the constant speed along a straight line which means that the collision checking
predictions will not change significantly over time. Hence, initial plan should not
differ significantly from the actual plan. However, deviations caused by ‘actual speed
profile (blue curve)’ are compensated by real time planning. This compensation can
be seen as offsets between ‘executed plan’ and ‘initial plan’ at several instances as
shown in the right hand side plot.

Figure 4.9 shows distance covered by ego vehicle as a function of time. This plot is
basically the actual motion of bus in the space-time map.

time (sec)

0 5 10 15 20 25 30 35 40

D
is

ta
n
c
e
 (

m
)

0

10

20

30

40

50

60

70
Distance (s) covered by the ego vehicle

Figure 4.9: Distance covered by the ego vehicle over time (s(t))

4.2.2 Experiment 2: Right hand turn at traffic junction
Here, the ego vehicle (Scania Omni bus) is going make a right hand turn at the
junction while negotiating with the other two vehicles. Vehicle speeds are given
below:

1. Vehicle 1 (red vehicle) with speed = 4 m/s
2. Vehicle 2 (blue vehicle) with speed = 3.5 m/s

Search space is defined by space and time horizon as follows:
• Space horizon = 25 m
• Time horizon = 20 sec

As mentioned earlier in the section 3.4.5, reference speed input to the conotroller is
calculated as weighted moving average of the velocity plan ({V1, V2, V3, ..., VN}) as
shown in equation 4.2.

Vdesired = Vold + Vcurrent + 1.5V1 + V2 + 0.5V3

5 (4.2)

Simulation results are as given below. Figures 4.10 to 4.14 shows development of
space-time map in real time motion of ego vehicle.

54

4. Results

time (sec)

0 2 4 6 8 10 12 14 16 18 20

D
is

ta
n
c
e
 (

s
)

tr
a
v
e
lle

d
 a

lo
n
g
 t
h
e
 e

g
o
 p

a
th

 (
m

)

0

6

12

18

24

30

36

42

48

54

60

Horizon

Current

Optimal path in space time domain

0 m/sCurrent Ego Speed =
End

Start

Current Ego Position (s)

Optimal node sequence

Optimal path

Obstacle nodes

Figure 4.10: First iteration, t = 0.5sec

time (sec)

0 2 4 6 8 10 12 14 16 18 20

D
is

ta
n
c
e
 (

s
)

tr
a
v
e
lle

d
 a

lo
n
g
 t
h
e
 e

g
o
 p

a
th

 (
m

)

0

6

12

18

24

30

36

42

48

54

60

Horizon

Current

Optimal path in space time domain

1.6604 m/sCurrent Ego Speed =
End

Start

Current Ego Position (s)

Optimal node sequence

Optimal path

Obstacle nodes

Figure 4.11: Intermediate iteration, t = 6.5sec

time (sec)

0 2 4 6 8 10 12 14 16 18 20

D
is

ta
n

c
e

 (
s
)

tr
a

v
e

lle
d

 a
lo

n
g

 t
h

e
 e

g
o

 p
a

th
 (

m
)

0

6

12

18

24

30

36

42

48

54

60

Horizon

Current

Optimal path in space time domain

4.1491 m/sCurrent Ego Speed =
End

Start

Current Ego Position (s)

Optimal node sequence

Optimal path

Obstacle nodes

Figure 4.12: Intermediate iteration, t = 12.5sec

55

4. Results

time (sec)

0 2 4 6 8 10 12 14 16 18 20

D
is

ta
n
c
e
 (

s
)

tr
a
v
e
lle

d
 a

lo
n
g
 t
h
e
 e

g
o
 p

a
th

 (
m

)

0

6

12

18

24

30

36

42

48

54

60

Horizon

Current

Optimal path in space time domain

3.0984 m/sCurrent Ego Speed =
End

Start

Current Ego Position (s)

Optimal node sequence

Optimal path

Obstacle nodes

Figure 4.13: Intermediate iteration, t = 14sec

time (sec)

0 2 4 6 8 10 12 14 16 18 20

D
is

ta
n
c
e
 (

s
)

tr
a
v
e
lle

d
 a

lo
n
g
 t
h
e
 e

g
o
 p

a
th

 (
m

)

0

6

12

18

24

30

36

42

48

54

60

Current

Optimal path in space time domain

0.021682 m/sCurrent Ego Speed =
End

Start

Current Ego Position (s)

Optimal node sequence

Optimal path

Obstacle nodes

Figure 4.14: Last iteration, t = 28sec

Following figure 4.15 shows calculation of collision checking at time instances t =
0.5sec and t = 6.5sec. It is possible to relate collision checking in figure 4.15 to the
corresponding space-time maps.

Global X (m)

40 50 60 70 80 90 100 110 120 130

G
lo

b
a
l Y

 (
m

)

40

50

60

70

80

90

100
Collision check using vehicle footprints

Ego Path

Ego footprint with collision

Bounding box of footprints

Bounding box division

Vehicle footprints with collision

Current position of vehicle

Vehicle 1

Vehicle 2

Global X (m)

40 50 60 70 80 90 100 110 120 130

G
lo

b
a

l Y
 (

m
)

40

50

60

70

80

90

100
Collision check using vehicle footprints

Ego Path

Ego footprint with collision

Bounding box of footprints

Bounding box division

Vehicle footprints with collision

Current position of vehicle

Vehicle 1

Vehicle 2

Figure 4.15: Matlab plot showing collision checking of vehicle and ego footprints
at t = 0.5sec (left plot) and t = 6.5sec (right plot)

56

4. Results

Left plot in the figure 4.16 shows the actual speed of the ego vehicle vs the desired
speed (v1 in the generated speed profile). In the other plot, initial velocity plan is
also plotted. Since the speed of the other vehicles on the streets are constant, the
executed plan should be same as the initial plan for the deterministic approach (no
uncertainties in the model). However, due to finite acceleration of the ego vehicle
and steady state errors of the speed controller, ego vehicle is not able to follow its
initial plan. Executed plan however is result of re-planning after every 0.5sec. This
is why, the executed plan has offsets with the initial plan. This also proves that the
real time planning is an essential feature of velocity planning function to overcome
limitations of model as well as the plan itself.

time (sec)

0 5 10 15 20 25 30 35

S
p

e
e

d
 (

m
/s

)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Executed speed profile Vs Desired speed profile

Desired ego speed (Step input)

Actual ego speed

time (sec)

0 3.5 7 10.5 14 17.5 21 24.5 28 31.5 35

S
p

e
e

d
 (

m
/s

)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Executed plan Vs Initial plan

Initial plan

Executed plan (step input)

Actual ego speed

Figure 4.16: Executed plan Vs initial plan (at t = 0.5sec)

Figure 4.17 shows actual motion of the bus in space-time map.

time (sec)

0 5 10 15 20 25 30

D
is

ta
n
c
e
 (

m
)

0

10

20

30

40

50

60
Distance (s) covered by the ego vehicle

Figure 4.17: Distance travelled by ego vehicle over time (s(t))

4.2.3 Experiment 3: Motion at traffic circle
Here, ego vehicle (Scania Omni bus) is going to cross the traffic circle while merging
into the traffic. Vehicle speeds are given below:

1. Vehicle 1 (green vehicle) with speed = 4.5 m/s
2. Vehicle 2 (red vehicle) with speed = 3.9 m/s

57

4. Results

Search space is defined by space and time horizon as follows:
• Space horizon = 30 m
• Time horizon = 20 sec

Reference speed input to the speed controller is calculated using moving average of
the velocity plan ({V1, V2, V3, ..., VN}) as shown in equation 4.3.

Vdesired = Vold + Vcurrent + V1 + V2 + V3

5 (4.3)

Simulation results are as given below. Figures 4.18 to 4.24 shows development of
space-time map in real time motion of ego vehicle.

time (sec)

0 2 4 6 8 10 12 14 16 18 20

D
is

ta
n

c
e

 (
s
)

tr
a

v
e

lle
d

 a
lo

n
g

 t
h

e
 e

g
o

 p
a

th
 (

m
)

0

11

22

33

44

55

66

77

88

99

110

Horizon

Current

Optimal path in space time domain

0 m/sCurrent Ego Speed =

Start

End

Current Ego Position (s)

Optimal node sequence

Optimal path

Obstacle nodes

Figure 4.18: First iteration, t = 0.5sec

time (sec)

0 2 4 6 8 10 12 14 16 18 20

D
is

ta
n
c
e
 (

s
)

tr
a
v
e
lle

d
 a

lo
n
g
 t
h
e
 e

g
o
 p

a
th

 (
m

)

0

11

22

33

44

55

66

77

88

99

110

Horizon

Current

Optimal path in space time domain

1.5537 m/sCurrent Ego Speed =

Start

End

Current Ego Position (s)

Optimal node sequence

Optimal path

Obstacle nodes

Figure 4.19: Intermediate iteration, t = 3.5sec

58

4. Results

time (sec)

0 2 4 6 8 10 12 14 16 18 20

D
is

ta
n

c
e

 (
s
)

tr
a

v
e

lle
d

 a
lo

n
g

 t
h

e
 e

g
o

 p
a

th
 (

m
)

0

11

22

33

44

55

66

77

88

99

110

Horizon

Current

Optimal path in space time domain

3.0096 m/sCurrent Ego Speed =
End

Start

Current Ego Position (s)

Optimal node sequence

Optimal path

Obstacle nodes

Figure 4.20: Intermediate iteration, t = 7.5sec

time (sec)

0 2 4 6 8 10 12 14 16 18 20

D
is

ta
n
c
e
 (

s
)

tr
a
v
e
lle

d
 a

lo
n
g
 t
h
e
 e

g
o
 p

a
th

 (
m

)

0

11

22

33

44

55

66

77

88

99

110

Horizon

Current

Optimal path in space time domain

3.7034 m/sCurrent Ego Speed =

Start

End

Current Ego Position (s)

Optimal node sequence

Optimal path

Obstacle nodes

Figure 4.21: Intermediate iteration, t = 13.5sec

time (sec)

0 2 4 6 8 10 12 14 16 18 20

D
is

ta
n
c
e
 (

s
)

tr
a
v
e
lle

d
 a

lo
n
g

 t
h
e

 e
g

o
 p

a
th

 (
m

)

0

11

22

33

44

55

66

77

88

99

110

Horizon

Current

Optimal path in space time domain

3.8062 m/sCurrent Ego Speed =

Start

End

Current Ego Position (s)

Optimal node sequence

Optimal path

Obstacle nodes

Figure 4.22: Intermediate iteration, t = 17.5sec

59

4. Results

time (sec)

0 2 4 6 8 10 12 14 16 18 20

D
is

ta
n

c
e

 (
s
)

tr
a

v
e

lle
d

 a
lo

n
g

 t
h

e
 e

g
o

 p
a

th
 (

m
)

0

11

22

33

44

55

66

77

88

99

110

Horizon

Current

Optimal path in space time domain

3.7496 m/sCurrent Ego Speed =
End

Start

Current Ego Position (s)

Optimal node sequence

Optimal path

Obstacle nodes

Figure 4.23: Intermediate iteration, t = 25.5sec

time (sec)

0 2 4 6 8 10 12 14 16 18 20

D
is

ta
n

c
e

 (
s
)

tr
a

v
e

lle
d

 a
lo

n
g

 t
h

e
 e

g
o

 p
a

th
 (

m
)

0

11

22

33

44

55

66

77

88

99

110
Current Ego Speed = 0.0011928 m/s

Start

End Current

Optimal path in space time domain

Current Ego Position (s)

Optimal node sequence

Optimal path

Obstacle nodes

Figure 4.24: Last iteration, t = 40sec

Following figure 4.25 shows calculation of collision checking using vehicle footprints
at above two simulation instances. Collision checking is done by predicting the
motion of the fellow vehicles using motion model as discussed in section 3.3. Left plot
in the figure 4.25 shows example of poor motion prediction. These two plots differ
by only 3.5 seconds but the parameter that makes a big difference is yaw rate. Yaw
rate has opposite signs in these two instances making totally different perception of
the situation. Such drastic change in the motion prediction affects the corresponding
space-time plot which results in different speed profiles (refer space-time plot in 4.18
and 4.19). This is expected since the knowledge of road structure is not considered
in the prediction step. Limited knowledge of the environment and lack of motion
prediction of fellow vehicles put limits on its perception. This issue is discussed in
details in the section 5.1.6.

60

4. Results

Global X (m)

30 40 50 60 70 80 90 100 110 120 130 140

G
lo

b
a
l
Y

 (
m

)

50

60

70

80

90

100

110

120

130

140
Collision check using vehicle footprints

Ego Path

Ego footprint with collision

Bounding box of footprints

Bounding box division

Vehicle footprints with collision

Current position of vehicle

Vehicle 1

Vehicle 2

Global X (m)

30 40 50 60 70 80 90 100 110 120 130 140

G
lo

b
a
l
Y

 (
m

)

50

60

70

80

90

100

110

120

130

140
Collision check using vehicle footprints

Ego Path

Ego footprint with collision

Bounding box of footprints

Bounding box division

Vehicle footprints with collision

Current position of vehicle

Vehicle 1

Vehicle 2

Figure 4.25: Matlab plot showing collision checking of vehicle and ego footprints
at t = 0.5sec (left plot) and t = 3.5sec (right plot). Bounding box of ego footprints
(black colour) and the corresponding partition shown by dotted lines are used to
form Kd tree (for optimization in collision checking) at this planning instance

Left plot in the figure 4.26 shows actual ego speed Vs desired speed (v1 in the
generated speed vector). Green line in this plot corresponds to the moving average
speed input to the speed controller (calculated using equation 4.3). It is interesting
to see that the collision which is detected at time t = 3.5sec is reflected in the
corresponding speed plan. This ‘change in plan’ is happening due to lack of perception
of motion of the vehicle 1. Having a comparison with the initial plan is not going to
make any sense in this case since initial plan has already changed at t = 3.5sec as
discussed in earlier paragraph. Therefore, executed velocity plan is compared with
the velocity plan at time t = 33.5sec.

0 5 10 15 20 25 30 35 40

time (sec)

0

1

2

3

4

5

6

S
p

e
e

d
 (

m
/s

)

Executed speed profile Vs Desired speed profile

Desired ego speed (Step input)

Desired ego speed (Moving average)

Actual ego speed

0 4 8 12 16 20 24 28 32 36 40

time (sec)

0

1

2

3

4

5

6

S
p
e
e
d
 (

m
/s

)

Execute plan Vs Plan at t = 3.5s

Plan at t = 3.5s

Executed plan (Step input)

Execute plan (Moving average)

Actual Ego speed

Figure 4.26: Executed plan (dotted line) Vs plan at t = 3.5sec (pink line)

Following figure 4.27 belongs to the same time instance (t = 3.5sec) in the simulation
as it is of figure 4.19 but with the bigger search space (or planning distance). This
figure shows bigger search space with number of potential possibilities to merge into
the traffic. Multiple collisions with the same vehicle are generated in the space-time
map due to limitations of the motion prediction.

61

4. Results

0 5.1 10.2 15.3 20.4 25.5 30.6 35.7 40.8 45.9 51

time (sec)

0

11

22

33

44

55

66

77

88

99

110

D
is

ta
n
c
e
 (

s
)

tr
a
v
e
lle

d
 a

lo
n
g
 t
h
e
 e

g
o
 p

a
th

 (
m

)

Optimal path in space time domain

Horizon

Current

Current Ego Speed = 1.5537 m/s

Start

End

Current Ego Position (s)

Optimal node sequence

Optimal path

Obstacle nodes

Figure 4.27: Complete path with bigger search space at t = 3.5 sec

Figure 4.28 shows the position of the bus at discrete positions on the space-time
map as a function of time. Hence, this figure fails to capture the dip in speed due
to change in plan at time t = 3.5sec.

time (sec)

0 10 20 30 40 50

D
is

ta
n

c
e

 (
m

)

0

20

40

60

80

100

120
Distance (s) covered by the ego vehicle

Figure 4.28: Distance travelled by ego vehicle over time (s(t))

62

5
Discussions

Key issues causing limitations to this approach are observed during the simulation.
These issues and corresponding limitations of this approach are discussed in this
chapter. These limitations also provide the direction for the future study and
development associated with this approach. Therefore, possible future work directions
are also proposed in this chapter.

5.1 Limitations: Key issues
Final outcome in this approach is based on series of computations from different
sub-functions along with the values of certain parameters. Hence, it is important
to understand how these functions and parameters result in the limitations to the
overall performance of this velocity planning approach.

5.1.1 Discretization of the search space
Discretization of the search space allow us to find the solution efficiently but also
introduces various limitations to this approach.

1. Discrete search space results in a finite set of feasible solutions
2. Absence of the solution through the search in the discrete space-time map does

not necessarily imply absence of solution in continuous space -time map.
3. In case of lack of a feasible solution, re-planning is required to make an

informed choice.
4. Discrete nature of problem formulation allows only fixed speed levels for ego

vehicle. In general, velocity planning function should be able to deal with any
speed up to the maximum speed of the ego vehicle. Having fixed speed levels
may also result in the lack of comfort due to undesirable changes in the speed.

5.1.2 Flickering in optimal speed profile
Discrete nature of space time grid allows only specific combinations of node connections
in search of optimal path. This may result in different optimal speed profiles
for consecutive iterations despite of no or little change in the traffic situations.
Refer to the figure 5.1 where four consecutive iterations with four different velocity
profiles. Initial connection in the optimal path decides desired reference speed for
the controller. Therefore, reference input to the controller fluctuates which we are
calling as flickering.

63

5. Discussions

time (sec)

0 2 4 6 8 10 12 14 16 18 20

D
is

ta
n

c
e

 (
s
)

tr
a

v
e

lle
d

 a
lo

n
g

 t
h

e
 e

g
o

 p
a

th
 (

m
)

0

6

12

18

24

30

36

42

48

54

60

Horizon

Current

Current Ego Speed = 4.1803 m/s

Start

End

Optimal path in space time domain

Current Ego Position (s)

Optimal node sequence

Optimal path

Obstacle nodes

time (sec)

0 2 4 6 8 10 12 14 16 18 20

D
is

ta
n

c
e

 (
s
)

tr
a

v
e

lle
d

 a
lo

n
g

 t
h

e
 e

g
o

 p
a

th
 (

m
)

0

6

12

18

24

30

36

42

48

54

60

Horizon

Current

Optimal path in space time domain

4.1184 m/sCurrent Ego Speed =

Start

End

Current Ego Position (s)

Optimal node sequence

Optimal path

Obstacle nodes

time (sec)

0 2 4 6 8 10 12 14 16 18 20

D
is

ta
n
c
e
 (

s
)

tr
a
v
e
lle

d
 a

lo
n
g
 t
h
e
 e

g
o
 p

a
th

 (
m

)

0

6

12

18

24

30

36

42

48

54

60

Horizon

Current

Optimal path in space time domain

3.2374 m/sCurrent Ego Speed =

Start

End

Current Ego Position (s)

Optimal node sequence

Optimal path

Obstacle nodes

time (sec)

0 2 4 6 8 10 12 14 16 18 20

D
is

ta
n

c
e

 (
s
)

tr
a

v
e

lle
d

 a
lo

n
g

 t
h

e
 e

g
o

 p
a

th
 (

m
)

0

6

12

18

24

30

36

42

48

54

60

Horizon

Current

Optimal path in space time domain

3.1361 m/sCurrent Ego Speed =

Start

End

Current Ego Position (s)

Optimal node sequence

Optimal path

Obstacle nodes

Figure 5.1: Four consecutive iterations (clockwise from top left) showing how
different optimal solutions are generated due to little changes in the space time grid

Left plot in the figure 5.2 shows the flickering in the speed profile. This is not
desirable behaviour and hence needs to be solved either by ensuring unchanged
speed profile over time or by employing some kind of low pass filter at the input
to the speed controller. Moving average is a type of low pass filter that not only
eliminates the short term fluctuations by keeping long term trends but also can be
used as a weighted mean. This allows us to tune it for desirable performance.

time (sec)

0 5 10 15 20 25 30 35

S
p

e
e

d
 (

m
/s

)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Executed speed profile Vs Desired speed profile

Desired Ego Speed (Step input)

Actual ego speed

time (sec)

0 5 10 15 20 25 30 35

S
p
e
e
d
 (

m
/s

)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Executed speed profile Vs Desired speed profile

Desired ego speed (Step input)

Actual ego speed

Figure 5.2: Left figure showing the flickering in the desired speed and right figure
showing filtering using moving average of desired speed

64

5. Discussions

In the experiments from sections 4.2.2 and 4.2.3, the moving average of the first
three terms in the velocity profile ({v1, v2, v3, ..., vN−1, vN}) is used together with
the current and previous speed values. Right plot in the figure 5.2 shows effect of
moving average input to the speed controller by reducing the fluctuations in the
actual ego speed. Weighted moving average that is used in this simulation (right
hand side plot) is calculated according to the equation 4.2.

5.1.3 Limited search space
Size of the search space is defined by the space and time horizons. This factor
directly affects the availability of the feasible solutions. Larger search can help in
better planning but it is computationally expensive. Following figure 5.3 shows
how different search space results in solutions for the space-time plot of same traffic
situation.

time (sec)

0 2 4 6 8 10 12 14 16 18 20

D
is

ta
n

c
e

 (
s
)

tr
a

v
e

lle
d

 a
lo

n
g

 t
h

e
 e

g
o

 p
a

th
 (

m
)

0

6.6

13.2

19.8

26.4

33

39.6

46.2

52.8

59.4

66

Current

Horizon

Optimal path in space time domain

0Current Ego Speed =

Start

End

Current Ego Position (s)

Optimal node sequence

Optimal path

Obstacle nodes

(a) Search space = 25m× 20sec
time (sec)

0 2 4 6 8 10 12 14 16 18 20

D
is

ta
n

c
e

 (
s
)

tr
a

v
e

lle
d

 a
lo

n
g

 t
h

e
 e

g
o

 p
a

th
 (

m
)

0

6.6

13.2

19.8

26.4

33

39.6

46.2

52.8

59.4

66

Horizon

Current

Optimal path in space time domain

0 m/sCurrent Ego Speed =

Start

End

Current Ego Position (s)

Optimal node sequence

Optimal path

Obstacle nodes

(b) Search space = 35m× 20sec

time (sec)

0 2 4 6 8 10 12 14 16 18 20

D
is

ta
n

c
e

 (
s
)

tr
a

v
e

lle
d

 a
lo

n
g

 t
h

e
 e

g
o

 p
a

th
 (

m
)

0

6.6

13.2

19.8

26.4

33

39.6

46.2

52.8

59.4

66
Current Ego Speed = 0 m/s

Start

End

Optimal path in space time domain

Current Ego Position (s)

Optimal node sequence

Optimal path

Obstacle nodes

(c) Search space = 35m×22.5sec

Figure 5.3: Optimal solution for a given traffic scenario with different search space
sizes. No feasible solution exist for the example in figure (b)

In the figure 5.3a, solution (optimal path) does not realise the collision in the
subsequent instances. In the second figure 5.3b, search space is big enough to
capture the entire collision region but small enough to plan the speed. This is
of course a more mature solution than the first one. In such case, vehicle has to
take a conservative stance by slowing down or stopping. In the third case shown in
the figure 5.3c, search space is even bigger allowing the search algorithm to find the
most suitable solution for this situation.

65

5. Discussions

5.1.4 Inconsistent footprints
Footprints of the ego vehicle are calculated along its desired path. Path following
controller makes sure that the ego vehicle is travelling on the desired path with a
good accuracy which is also one of the key requirements in this work. However, if
the deviation of the actual path and the desired path of ego vehicle is significant,
then the ego vehicle travels away from the footprint which is used for the collision
checking. This inconsistency may result in the collision which may not be detected or
predicted by the velocity planning function especially for the system with predefined
path (or offline path planning). Consider the figure 5.4 and 5.5 as shown given below.

Global X (m)

40 50 60 70 80 90 100 110 120 130

G
lo

b
a

l Y
 (

m
)

40

50

60

70

80

90

100
Collision check using vehicle footprints

Ego Path

Ego footprint with collision

Bounding box of footprints

Bounding box division

Vehicle footprints with collision

Current position of vehicle

Vehicle 1

Vehicle 2

Figure 5.4: Ego vehicle following footprints with precision

Global X (m)

40 50 60 70 80 90 100 110 120 130

G
lo

b
a

l Y
 (

m
)

40

50

60

70

80

90

100
Collision check using vehicle footprints

Ego Path

Ego footprint with collision

Bounding box of footprints

Bounding box division

Vehicle footprints with collision

Current position of vehicle

Vehicle 1

Vehicle 2

Figure 5.5: Ego vehicle travelling with deviation from the footprints

5.1.5 Lack of feasible solution
Referring back to the figure 5.3 where three different sizes of search space results
in three different outcomes of A* search. Second plot in this figure is showing no
optimal path implying that no solution exists for this case. Such situations may
happen quite often on typical traffic scenarios. In case ego vehicle is made to slow
down or stop completely, new solutions are obtained over successive re-planning
instances. Lack of solution also takes velocity planning problem into higher level of
motion planning where perception of the environment and traffic situation can play

66

5. Discussions

important role in generating proper solution. Consider a traffic junction in which
ego vehicle is yet to arrive at junction as shown in the figure 4.3. If ego vehicle fails
to find optimal solution due to occupied junction, it can re-plan the speed profile in
order to stop at the zebra crossing (shown in figure 5.6 by red line). Such planning
or re-planning can be carried out with better perception through understanding of
environment, traffic scenario, traffic rules, priorities, etc.

Figure 5.6: Concepts like stop line can be used to plan speed for short distance if
long term planning is not possible

There is one more case that needs to be looked at. Refer to the figure 5.7 where
optimal path in the space time plot is the only feasible path. Hence, this is a solution
that exists on the edge of the set of feasible solutions. Following the speed profile
which exists on the edge of feasibility may also create flickering in the successive
iterations. For manually driven vehicle, this is a typical situation of a confusion in
the traffic negotiation. Usually conservative approach is employed in such scenarios
by slowing down before nearest collision. Hence, velocity planning in space time
diagram should be influenced by the inputs from the perception in such scenario.

67

5. Discussions

Figure 5.7: In case of only feasible solution, conservative velocity plan should be
preferred

5.1.6 Limitations in motion predictions
At this stage, motion prediction of the fellow vehicles is solely based on the CT
model. This much of information is clearly not good enough for making a right
choice. As already encountered in the figure 4.25, information such as lanes of
the other vehicles, road geometry and lane exits can be very helpful in making an
informed decision in velocity planning. Hence, performance of velocity planning
function will improve over the time with improvement in motion prediction with
better sensor fusion and perception of the environment. One optimization problem
with the fixed criteria of optimality is not sufficient enough plan motion in all
the traffic scenarios. Hence, perception plays very important role not only in
understanding the traffic situation but also in deciding right motion planning strategy
for a particular motion. Perception can be useful in many ways. Some of the
examples are given below:

• Including perception to predict most likely lanelet in which another vehicle
may travel

• Branching the other vehicles along all the possible lanelets in the prediction
model

• Identifying vehicles irrelevant for motion planning analysis so that the information
from such vehicles can be disregard for further processing.

Analysing the behaviour of other vehicles to anticipate their actions and predict
their motion is very important part of perception that can improve performance of
motion planning in general for autonomous vehicles.

68

5. Discussions

5.1.7 Computational complexity
Even though this approach seems promising in terms of mathematical complexity,
there are still factors that significantly affect the computational cost. Complexity
analysis of the this velocity planning approach is out of the scope of this project.
However, it is possible to identify the factors influencing the computational cost.
Computational complexity of this velocity planning function is dependent on -

1. Number of vehicles on the street
2. Size of the search space in the space-time map
3. Constraints on the optimal speed profile

In order to scale up this approach for negotiation against many vehicles, computational
cost of collision checking needs to be optimised using a tree structure such as kd tree
or quad tree [15]. Use of a tree structure along with various other methods (such
as distance checking) together have a good possibility to bring down computational
cost for collision checking operation. As far as the search operation for optimal path
is concerned, it is not influenced by number of vehicles in the environment since size
of search space remains the same.

Availability of the information can also influence the amount of computations system
has to do to make an informed choice about speed planning. For example, knowledge
of lane layout can be used to easily discard the vehicles travelling in the irrelevant
lanes without needing to carry out extensive collision checking by predicting their
motion.

5.2 Future work
There are several aspects with the scope of future development and improvements
in this work. Apart from the optimisation in computations using a complete Kd
tree (or quad-tree) following are the few aspects that need an attention from the
future developers.

5.2.1 Discrete speed levels to continuous speed levels
Current way of finding the optimal speed profile in a discrete search space results
in some limitations that need to be overcome in the future time. It is possible
to increase grid connectivity to achieve large number of speed levels in the speed
planning function.

Another possible way to achieve any speed profile could be to replace the speed
controller with the acceleration controller. Such controller would require an acceleration
reference input. This acceleration input can be generated with the help of acceleration
planning instead of velocity planning in the same discrete search space. This kind of
acceleration planning requires formulation of the path finding problem and search
algorithm accordingly.

Discrete acceleration levels will overcome two important limitations of this approach:

69

5. Discussions

1. Allowing all possible speeds for the ego vehicle
2. Deviation caused by the finite acceleration will not exist any more

5.2.2 Optimisation problem formulation
After generating a space-time map, optimisation (used for speed planning) can be
achieved using various methods (ex. A* search) and criteria of optimality (such as
travel time, jerk and collision margin from the obstacle). Formation of objective
function as well as the optimisation algorithm have a good scope of modification to
overcome the current challenges as well as to achieve enhanced performance.

5.2.3 Variable speed limit along the path
Maximum speed limit(to avoid the rolling over and skidding) along a curved path
changes along the length of the path. In this work, this speed limit has been kept
same at 4m/s for entire motion. Therefore if the information of the maximum
allowable speed along the path is available in the database then there is a scope of
improvement in the current path finding algorithm to generate a speed profile with
variable speed limit along the path. This will allow ego vehicle to travel with the
maximum possible speed to improve travel time.

5.2.4 Deterministic to probabilistic approach
Even though estimated trajectories may be different from the real trajectories of
the obstacles, it will provide reasonable information at a given instance to plan the
future motion. As the estimation is also repeated every instant, the estimate will
adjust itself in the response to the real time changes in traffic. However, uncertainty
in the motion prediction should be included in the analysis while planning the speed.
Consider the following figure 5.8. Optimisation problem in such approach can be
modified to include the margin to the collision (shown by the arrow in the figure)
along with the time as the criterion for the optimality.

Figure 5.8: Space-time map with the nodes having lesser probability of collisions
(lighter colours). Collisions represented by the red colour represent the nodes with
highest probability of the collision

70

6
Conclusion

In this chapter, a brief summary of this master thesis work is presented by revisiting
the assumptions and the fundamental constraints. Key achievements and advantages
of this approach are highlighted. Conclusions based on various observations that
are made during the study are also presented in this chapter. In final remarks, an
attempt is made to describe the importance and significance of this approach in the
current research related to the autonomous vehicles.

6.1 Summary
This work started with the motivation of trajectory planning for the autonomous
vehicles in the urban environment to achieve collision free motion. Trajectory
planning for the autonomous vehicle is a very popular and challenging topic in the
research community. Approach used in this work is inspired from the work carried
out in [5] where the mathematical complexity of the problem is given a significant
consideration while achieving general solution to the trajectory planning problem.
Proposed approach in [5] is based on decomposition of trajectory planning problem
into path planning and velocity planning problem.

Velocity planning approach developed in this work is based on the same idea of
decomposition of the trajectory planning problem proposed in [5]. Hence, to start
with this approach, the knowledge of the path of the ego vehicle is essential. In longer
terms, there should be a separate path planning functionality in the autonomous
driving system that will feed pre-calculated path to this velocity planning function to
achieve complete online trajectory planning. Furthermore, planning velocity on the
known path implies the need of a path following controller. Path following controller
has to make sure the desired path is being followed with the speed calculated by the
velocity planning function. These are the two main requirements upon which this
approach is based on.

Space-time analysis used in this thesis was originally proposed for achieving collision
free motion of a point object moving along a known path ([5]). Moreover, the
true trajectories of the moving obstacles were assumed to be known. Through
this project, We have managed to extend this space-time approach for motion
of a 2 dimensional object moving along a known path in a plane while avoiding
collision with other 2 dimensional objects moving in the same plane. Since the true
trajectories of other vehicles on the street were unknown, corresponding trajectories

71

6. Conclusion

were estimated using coordinated turn (CT) motion model. Collision check was used
in a specific fashion to obtain space-time map. Reduction in the collision checking
computations was achieved using various schemes particularly by the use of tree date
structure. Collision checking at discrete path positions and future time instances
resulted in a discrete space-time map (in the form of a grid).

Velocity planning was achieved with the help of A* search algorithm to find the
collision free optimal path in the space-time grid. Time was the only criteria of
optimality. It was observed that the grid connectivity in the space-time grid is
associated with the speed of the ego vehicle. This property was used in the search
algorithm to allow gradual changes in the speed levels while searching for the optimal
path. As a proof of concept, five different node connections corresponding to five
different speed levels were implemented in the A* search and corresponding optimal
speed profile as a function of time was obtained. Sharp transitions in the optimal
speed profile are not achievable by the vehicle with finite acceleration. Possible
solution to this limitation is proposed in the section 3.4.6 through the modification
of grid connectivity.

Simulations were carried out on the ’Scania Omni bus’ model in the simulation
platform called PreScan along with the computations in Simulink - MATLAB. This
velocity planning function was implemented and simulated for two different types
of road geometries i.e. traffic junction and traffic circle. At a traffic junction, right
hand turn and straight line motion of the bus (ego vehicle) in the presence of two
other vehicles was tested. These two scenarios included merging and intersection
maneuvers for the ego vehicle with respect to the other moving vehicles. Also,
these experiments were designed to create a ‘window of opportunity’ for the ego
vehicle (to pass through) which was ‘captured and ceased’ by the velocity planning
function. Similarly at the traffic circle, ego vehicle managed to merge into the traffic.

Specific limitations and challenges that were encountered during the simulation
are presented in the discussion chapter. Future work possibilities related to this
approach are also presented in this chapter.

6.2 Key highlights
Proposed approach has been developed by considering some features and requirements
(section 2.2). Now in this section, key features of this velocity planning approach
will be highlighted to understand how promising this approach is for the future
development. Conclusions based on certain observations will be presented as well.

6.2.1 Space-time map for the motion of 2 dimensional object
Approach of velocity planning using space-time map was originally proposed for
the velocity planning of a point [5]. In this master thesis project, the method of
generating space-time map for 2 dimensional object (ego footprint) is developed.

72

6. Conclusion

In [5], true trajectories of the moving obstacles were considered to be known. Proposed
method in this project uses motion model for motion prediction along with the real
time velocity planning to overcome this limitation.

6.2.2 Reduction in computational cost for collision checking
Proposed method for generation of space-time map uses collision checking in a
particular fashion which is computationally very expensive. Method of using tree
structure for optimizing computational cost of collision checking makes this approach
realisable for real hardware platforms.

6.2.3 Collision avoidance
Collisions on all sides and corners of ego vehicle can be avoided through the proposed
approach. Through this velocity planning approach, collision avoidance with the
multiple vehicles is achieved which is another essential feature for the autonomous
vehicle on the street.

6.2.4 Generalised approach
This approach is very generalised as far as the traffic situation is concerned. Generality
of this approach can be understood through following three aspects:

1. Path type of the ego vehicle:
This approach works well on both the straight line path as well as the curved
path

2. Road geometry:
The Same approach can be used for the velocity planning at various road
geometries such as traffic junction(T-junction, single lane junction, multi-lane
junction), traffic circle and lane entrance, etc. These are also the most common
road geometries in the urban environment.

3. Maneuver:
This velocity planning approach works well with some of the most common
maneuvers for any vehicle in the traffic such as merging, yielding and intersection.

6.2.5 Real time planning
Real time planning is one of the essential features of the autonomous vehicle.
Through the simulations results presented in the previous chapter, conclusion can be
made about necessity of real time motion planning. The real time motion planning is
not only necessary to address rapid changes in the traffic scenarios but also required
to overcome the limitations of ‘controller performance’ as well as the ’velocity plan’
itself.

6.2.6 Formulation of optimization problem
Formulation and solving of optimization problem (time optimal) is another challenging
step of velocity planning problem after modelling the problem. Time optimal

73

6. Conclusion

speed profile with the finite speed levels is generated in this work using A* search
algorithm. This serves as a proof of a concept of the fact that space-time framework
developed in this thesis can be utilised to formulate and solve optimization problems
with different optimality criteria using different optimization methods. A* search
algorithm is just one of the many methods to formulate and solve this problem.

6.2.7 Grid connectivity
Grid connectivity in the search algorithm has allowed us to generate a time optimal
velocity profile with the gradual increase or decrease in speed to achieve feasible
solution to the optimization problem. Moreover, limitation of finite acceleration is
also addressed with modified grid connectivity. These two examples are good enough
to state that despite of limitations of discretized approach, the grid connectivity
holds very high potential for addressing and solving many practical issues and
challenging problems in such framework.

6.2.8 Possibility of extension
One of the most important features of this approach is the possibility of the extension
to the complex traffic scenarios and road geometries. This approach is also very
helpful in modelling and analysing complex and critical traffic scenarios through
measurable parameters of space and time. This framework itself can serve as tool
for development and simulation of velocity planning algorithms by visualizing the
performance in space-time map.

Knowing the limitations of current deterministic approach, it should be possible
to use a probabilistic motion model to include uncertainty in the approach during
the future development as discussed in section 5.2.4. There is also a possibility to
formulate the objective function for the optimal speed profile with the criteria of
optimality such as acceleration, jerk, margin from the collision along with time. Such
possibilities of expansion and modification exist at different stages in this approach
making it suitable for a long time development process.

6.3 Final remarks
Through this project, we have successfully put together a framework that can
generate a velocity profile to navigate an autonomous vehicle through a traffic
junction or a roundabout, or even follow another vehicle. Within this framework,
it would be possible to make it better and better over time as issues are resolved.
From this stage, other sub-issues can be focused on in the further projects.

In the final remarks, we will try to see this velocity planning function as a subsystem
in the bigger picture i.e. autonomous driving system. In order to achieve the full
autonomous behaviour, vehicle needs to gather and process lot of information and
make informed decision based on it. Since the planning is being done on the several
levels based on the informati-

74

6. Conclusion

on from the localisation in the environment and the perception of the surrounding,
there has to be a good scope of interaction between the various sub-functions at
different levels. Various subsystems in the autonomous driving system are currently
under development and rely on the exchange of information with the other blocks.
Therefore it is not just the interaction between the subsystems but also the collective
development over significant period of time that should affect the choice of approach.
Generality and the possibility of the extension are two very important aspects for
any approach to become a part of long term development process. Hence, velocity
planning approach developed and proposed in this master thesis is very promising
to fit and interact well with the other subsystems and evolve over the time with the
entire autonomous driving system.

75

6. Conclusion

76

References

[1] Junqing Wei, John M. Dolan and Bakhtiar Litkouhi; "Autonomous Vehicle
Social Behavior for Highway Entrance Ramp Management", "IEEE Intelligent
Vehicles Symposium", 2013, pages 201-207

[2] Julius Ziegler, Philipp Bender, Markus Schreiber, Henning Lategahn, Tobias
Strauss, Christoph Stiller, Thao Dang, Uwe Franke, Nils Appenrodt, Christoph
G. Keller, Eberhard Kaus, Ralf G. Herrtwich, Clemens Rabe, David Pfeiffer,
Frank Lindner, Fridtjof Stein, Friedrich Erbs, Markus Enzweiler, Carsten Knöp-
pel, Jochen Hipp, Martin Haueis, Maximilian Trepte, Carsten Brenk, Andreas
Tamke, Mohammad Ghanaat, Markus Braun, Armin Joos, Hans Fritz, Horst
Mock, Martin Hein, Eberhard Zeeb; "Making Bertha Drive—An Autonomous
Journey on a Historic Route", "IEEE Intelligent transportation systems maga-
zinem", 2014, pages 8-20

[3] Junqing Wei, Jarrod M. Snider, Tianyu Gu, John M. Dolan and Bakhtiar Litk-
ouhi; "A Behavioral Planning Framework for Autonomous Driving", "IEEE In-
telligent Vehicles Symposium", 2014, pages 458-464

[4] Dong Hun Shin and Sanjiv Singh; "Path generation for the robotic vehicles using
composite clothoid segments", "Robotics Institute, Carnegie Mellon University",
December-1990

[5] Kamal Kant, Steven W. Zucker; "Towards Efficient Trajectory Planning: The
Path-Velocity Decomposition", "The International Journal of Robotics Re-
search", volume 5, 1986, pages 72-89

[6] Peter E. Hart, Nils J. Nilsson, Bertram Raphael; "A Formal Basis for the Heuris-
tic Determination of Minimum Cost Paths", "IEEE Transactions on Systems
Science and Cybernetics", Volume 4, Issue 2, July 1968, pages 100-107

[7] Jesse Levinson, Jake Askeland ; Jan Becker; Jennifer Dolson; David Held;
Soeren Kammel; J. Zico Kolter; Dirk Langer; Oliver Pink; Vaughan Pratt;
Michael Sokolsky; Ganymed Stanek; David Stavens; Alex Teichman; Moritz
Werling; Sebastian Thrun; "Towards fully autonomous driving: Systems and
algorithms", "Intelligent Vehicles Symposium , IEEE", volume 4, 2011, pages
163-168

[8] "Robotics Institute: NavLab", Ri.cmu.edu, 2016. [Online]. Available: http://
www.ri.cmu.edu/research_lab_group_detail.html?lab_id=28. [Accessed:
02- Jun- 2016].

[9] A. Widodo, T. Hasegawa; "A new inter-vehicle communication system for in-
telligent transport systems and an autonomous traffic flow simulator", "The
International Journal of Robotics Research", Sept. 1998, pages 82-86,

77

Ri.cmu.edu
http://www.ri.cmu.edu/research_lab_group_detail.html?lab_id=28
http://www.ri.cmu.edu/research_lab_group_detail.html?lab_id=28

References

[10] Scania Group, "Innovative Scania: Automatic driving systems
pave the way to safer roads - Scania Group", Scania Group,
2016. [Online]. Available: http://www.scania.com/group/en/
automatic-driving-systems-pave-the-way-to-safer-roads/. [Accessed:
02- Jun- 2016].

[11] Standford Team, "Welcome | Stanford Autonomous Driving Team", Driv-
ing.stanford.edu, 2016. [Online]. Available: http://driving.stanford.edu/.
[Accessed: 02- Jun- 2016].

[12] "Google Self-Driving Car Project", 2016. [Online]. Available: http://www.
google.com/selfdrivingcar/. [Accessed: 02- Jun- 2016].

[13] "Volvo IntelliSafe - Innovations | Volvo Cars", Volvocars.com, 2016. [On-
line]. Available: http://www.volvocars.com/us/about/our-innovations/
intellisafe. [Accessed: 02- Jun- 2016].

[14] Russell A. Brown, "Journal of Computer Graphics Techniques", "Building a
Balanced k-d Tree in O(kn log n) Time", vol. 4, No. 1, 2015

[15] S. Lambert, "Quick Tip: Use Quad-trees to Detect Likely Colli-
sions in 2D Space", Game Development Envato Tuts+, 2012. [On-
line]. Available: https://gamedevelopment.tutsplus.com/tutorials/
quick-tip-use-quadtrees-to-detect-likely-collisions-in-2d-space\
--gamedev-374. [Accessed: 10- May- 2016].

[16] Paul Premakumar; "A* (A Star) search for path planning tutorial -
File Exchange - MATLAB Central", Se.mathworks.com, 2016. [Online].
Available: https://se.mathworks.com/matlabcentral/fileexchange/
26248-a---a-star--search-for-path-planning-tutorial. [Accessed: 16-
May- 2016].

[17] "Scania Omni bus model, 3dwarehouse.sketchup.com, 2016. [On-
line]. Available: https://3dwarehouse.sketchup.com/model.html?id=
u1da436c7-7479-4f10-845d-ade4f2f80753. [Accessed: 22- Feb- 2016].

[18] "Stopping distances on wet and dry roads (Department of Trans-
port and Main Roads)", Tmr.qld.gov.au, 2016. [Online]. Avail-
able: http://www.tmr.qld.gov.au/Safety/Driver-guide/Speeding/
Stopping-distances/Stopping-distances-on-wet-and-dry-roads.aspx.
[Accessed: 22- Aug- 2016].

[19] Stephen Boyd and Lieven Vandenberghe, "Convex Optimization", Cambridge
University Press, New York, Edition 7, 2009

[20] Stuart J. Russell and Peter Norvig, "Artificial Intelligence - A Modern Ap-
proach", Prentice Hall, New Jersey, 1995

[21] Steven W. Smith, "The Scientist and Engineer’s Guide to Digital Signal Pro-
cessing", California Technical Publishing, San Diego, California, 1998

78

http://www.scania.com/group/en/automatic-driving-systems-pave-the-way-to-safer-roads/
http://www.scania.com/group/en/automatic-driving-systems-pave-the-way-to-safer-roads/
http://driving.stanford.edu/
http://www.google.com/selfdrivingcar/
http://www.google.com/selfdrivingcar/
http://www.volvocars.com/us/about/our-innovations/intellisafe
http://www.volvocars.com/us/about/our-innovations/intellisafe
https://gamedevelopment.tutsplus.com/tutorials/quick-tip-use-quadtrees-to-detect-likely-collisions-in-2d-space\--gamedev-374
https://gamedevelopment.tutsplus.com/tutorials/quick-tip-use-quadtrees-to-detect-likely-collisions-in-2d-space\--gamedev-374
https://gamedevelopment.tutsplus.com/tutorials/quick-tip-use-quadtrees-to-detect-likely-collisions-in-2d-space\--gamedev-374
https://se.mathworks.com/matlabcentral/fileexchange/26248-a---a-star--search-for-path-planning-tutorial
https://se.mathworks.com/matlabcentral/fileexchange/26248-a---a-star--search-for-path-planning-tutorial
https://3dwarehouse.sketchup.com/model.html?id=u1da436c7-7479-4f10-845d-ade4f2f80753
https://3dwarehouse.sketchup.com/model.html?id=u1da436c7-7479-4f10-845d-ade4f2f80753
Tmr.qld.gov.au
http://www.tmr.qld.gov.au/Safety/Driver-guide/Speeding/Stopping-distances/Stopping-distances-on-wet-and-dry-roads.aspx
http://www.tmr.qld.gov.au/Safety/Driver-guide/Speeding/Stopping-distances/Stopping-distances-on-wet-and-dry-roads.aspx

A
Appendix A

Bus parameters are presented in the table A.1.

Parameter value Unit Description
M 12783 Kg Unloaded bus mass
Jzz 200000 Kgm2 Inertia of vehicle along Z (along height)
Jyy 175010 Kg Inertia of vehicle along Y (along width)
Jxx 11212 Kg Inertia of vehicle along X (along length)
Length 13.19 m Length of Bus
Width 2.550 m Width of Bus
Height 3.310 m Height of Bus
Wheelbase 7 m Distance from front to rear wheel
Ntyre1 2 - Number of tyres on 1st Axle
Ntyre2 4 - Number of tyres on 2nd Axle
F11 2.795 m Distance of front wheel to front edge of

vehicle
a 4.3786 m Distance of COG to front wheel
b 2.6214 m Distance of COG to rear wheel
hCOG 0.460 m COG height from road
R1 0.507 m Radius of wheel on second axle
R2 0.507 m Radius of wheel on second axle
Pbreak 150 bar Maximum brake pressure
Cw 0.7 - Air resistance coefficient
R2 0.507 m Radius of wheel on second axle
Csrear 41400 N/m Rear suspension system stiffness
Csfront 52151 N/m Front suspension system stiffness
Dsrear 3624 Ns/m Rear suspension damping rate
Dsfront 4980 Ns/m Front suspension damping rate
Steering ratio 17.0 - Steering ratio
δmax 750 degree Maximum steering wheel angle

Table A.1: Model parameters used for the simulation: Scania Omni Bus

I

	List of Figures
	List of Tables
	Introduction
	Background
	Related work

	Problem Definition
	Problem Description
	Function requirements and desired attributes
	Function Requirements
	Desired characteristics of the velocity planning approach
	Performance parameters

	Available information
	Introduction to basic terms
	Ego Vehicle
	Environment
	Reference Frames
	Guide point
	Path follower (Speed Controller)

	System Overview
	Related theory
	Space time analysis
	Space time plot for a point moving along a path
	Space time map for a 2D object moving along a path
	Space time map characteristics and constraints

	Motion model
	Collision detection
	Homogeneous Coordinate Transformation
	A* search

	Approach
	Assumptions
	Discretization of Space-time map
	Collision checking
	Inflation of the vehicle size
	Vehicle footprints along time
	Ego vehicle footprints along the space
	Collision Matrix
	Space-time map using collision check
	Collision checking: Scope of reduction in computation
	Use of a Tree structure
	Minimum distance threshold
	Heading direction of the vehicle

	Block diagram: Collision check implementation

	Velocity planning using space and time analysis
	Formation of optimization problem
	A* search
	Discontinuity in speed and connectivity of nodes
	Motion at the end of the path
	Real time planning and Desired speed
	Effect of finite acceleration

	Planning distance and planning frequency
	Velocity planning function - System architecture

	Results
	Simulation platform - PreScan
	Ego vehicle Model
	Simulation parameters

	Simulation Results
	Experiment 1: Straight line motion at traffic junction
	Experiment 2: Right hand turn at traffic junction
	Experiment 3: Motion at traffic circle

	Discussions
	Limitations: Key issues
	Discretization of the search space
	Flickering in optimal speed profile
	Limited search space
	Inconsistent footprints
	Lack of feasible solution
	Limitations in motion predictions
	Computational complexity

	Future work
	Discrete speed levels to continuous speed levels
	Optimisation problem formulation
	Variable speed limit along the path
	Deterministic to probabilistic approach

	Conclusion
	Summary
	Key highlights
	Space-time map for the motion of 2 dimensional object
	Reduction in computational cost for collision checking
	Collision avoidance
	Generalised approach
	Real time planning
	Formulation of optimization problem
	Grid connectivity
	Possibility of extension

	Final remarks

	References
	Appendix A

