
Predicting Impact of Training Data for
Pedestrian Detection in
Autonomous Vehicles
Using Influence Functions
Master’s Thesis in Complex Adaptive Systems

BRITTA THÖRNBLOM

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

Master’s thesis EX052/2018

Predicting Impact of Training Data for
Pedestrian Detection in Autonomous Vehicles

Using Influence Functions

BRITTA THÖRNBLOM

Department of Electrical Engineering
Division of Systems and Control

Mechatronics Group
Chalmers University of Technology

Gothenburg, Sweden 2018

Predicting Impact of Training Data for Pedestrian Detection in Autonomous Vehicles
Using Influence Functions BRITTA THÖRNBLOM

© BRITTA THÖRNBLOM, 2018.

Supervisor: Arian Ranjbar, Department of Electrical Engineering
Supervisor: Nasser Mohammadiha, Zenuity
Examiner: Jonas Fredriksson, Department of Electrical Engineering

Master’s Thesis EX052/2018
Department of Electrical Engineering
Division of Systems and Control
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Web comic ridiculing the black-box property of machine learning algo-
rithms.[15]

Typeset in LATEX
Printed by [Name of printing company]
Gothenburg, Sweden 2018

iv

Predicting Impact of Training Data
for Pedestrian Detection in Autonomous Vehicles
Using Influence Functions
BRITTA THÖRNBLOM
Department of Electrical Engineering
Chalmers University of Technology

Abstract
With the widespread use of neural networks comes a need to illuminate their inner
workings. In applications such as autonomous vehicles where human safety is in-
volved, accountability and transparency is crucial not only for the sake of user trust
but can also be a tool for developers seeking to increase the robustness of the sys-
tems. To this end, influence functions from robust statistics has been presented as
a tool of predicting what impact training data has on a given classification. Earlier
works using influence functions have showed correlation between these predictions
and the loss after retraining the model without the given training image. These
experiments were done on data sets of images much smaller than those processed
in the autonomous vehicle industry. The purpose of this thesis was to investigate if
influence functions could be used in the same way on a binary pedestrian detection
model more similar to those used in real-life applications. The results show no corre-
lation like those found in earlier works, but still has an apparent internal coherency.
In total, this points to the fact that the increased complexity of the model puts
constraints on the algorithm that needs to be met in future research.

Keywords: autonomous vehicles, convolutional neural network, classification,
predictions, influence functions.

v

Acknowledgements
I would like to thank my supervisors Arian Ranjbar and Nasser Mohammadiha
and my examiner Jonas Fredriksson for all their help and support throughout the
project.

Furthermore, a big thanks to Zenuity’s Deep Learning group, and especially
Christofer Cincinnati for helpful discussions regarding Tensorflow as well as general
encouragement.

Britta Thörnblom, Gothenburg, June 2018

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Motivation . 2
1.2 Goals . 2
1.3 Contributions . 2
1.4 Limitations . 3
1.5 Outline of the thesis . 3

2 Theory 5
2.1 Convolutional Neural Networks . 5

2.1.1 Layer types . 5
2.1.1.1 Convolutional layer 5
2.1.1.2 Max pooling layer 6
2.1.1.3 Softmax layer and cross entropy 7

2.1.2 Training - Gradient descent 7
2.2 Influence Functions . 8

2.2.1 Necessary traits of the system 10
2.2.1.1 Twice-differentiable loss function 10

2.3 Dealing with the inverse hessian . 10
2.3.1 Conjugate Gradients . 11

2.3.1.1 Hessian assumptions 12
2.3.2 LiSSA: Linear Stochastic Second-Order Algorithm 12

3 Methods 13
3.1 Implementation . 13
3.2 Leave-one-out-retraining . 13
3.3 Pedestrian detection . 16

3.3.1 Data sets . 16
3.3.2 Network . 17
3.3.3 Code Design . 17

4 Results 19
4.1 Pedestrian detection problem . 19

4.1.1 Network performance . 19

ix

Contents

4.1.2 Leave-one-out retraining results 20

5 Discussion 25
5.1 Reasons for low correlation . 25
5.2 Image interpretation . 26
5.3 Retraining from θ̂ . 28
5.4 Dataset . 28
5.5 Further research . 29

5.5.1 Road Segmentation . 29
5.5.2 Earth mover’s distance . 30

6 Conclusion 33

A Appendix 1 I

x

List of Figures

2.1 A schematic view of an artificial neural network. Data flows from left
to right through layers where data processing takes place. 6

3.1 Schematic of the loss differences evaluated during the retraining ex-
periment. 15

3.2 Work flow of the retraining experiment. θ̂, θ′, θ̃1, θ̃j and θ̃k are pa-
rameter sets after the corresponding training sessions. LD stands for
loss difference and is always taken in the point of the test image. . . . 16

3.4 The architecture of the studied network 17
3.3 The test image used throughout the experiments. 17

4.1 Label distribution in top 100 predictions. 20
4.2 In blue dots the retraining loss difference when retraining without the

training image corresponding to the index of the x-axis. The orange
dots are the predicted loss difference for the same training image. . . 21

4.3 Training images with top 5 highest predicted influence. 22
4.4 Training images with sixth to tenth highest predicted influence. . . . 23

5.1 Training images visually similar to the test image. 27
5.2 Training image with confusing annotation. 29

A.1 Training images with top 1 - 5 highest influence. II
A.2 Training images with top 6 - 10 highest influence. III
A.3 Training images with top 11 - 15 highest influence. IV
A.4 Training images with top 16 - 20 highest influence. V
A.5 Training images with top 21 - 25 highest influence. VI
A.6 Training images with top 26 - 30 highest influence. VII
A.7 Training images with top 31 - 35 highest influence. VIII
A.8 Training images with top 36 - 40 highest influence. IX
A.9 Training images with top 41 - 45 highest influence. X
A.10 Training images with top 46 - 50 highest influence. XI
A.11 Training images with top 51 - 55 highest influence. XII
A.12 Training images with top 56 - 60 highest influence. XIII
A.13 Training images with top 61 - 65 highest influence. XIV
A.14 Training images with top 66 - 70 highest influence. XV
A.15 Training images with top 71 - 75 highest influence. XVI
A.16 Training images with top 76 - 80 highest influence. XVII

xi

List of Figures

A.17 Training images with top 81 - 85 highest influence. XVIII
A.18 Training images with top 86 - 90 highest influence. XIX
A.19 Training images with top 91 - 95 highest influence. XX
A.20 Training images with top 96 - 100 highest influence. XXI

xii

List of Tables

4.1 Losses evaluated after the retraining with full data set. The first
two columns contain the loss values taken before and after the extra
training iterations, respectively. The third column is the difference
between these values taken as L(θ̂) − L(θ′) meaning that a negative
sign is equivalent to an improvement in network performance. 20

xiii

List of Tables

xiv

1
Introduction

Artificial neural networks are one of the most popular machine learning models to-
day. Out-of-the-box models from one of the large number of available frameworks
make them accessible with little foreknowledge which has helped increase their pop-
ularity. However, with the spread of the use comes a growing concern of their lack of
opacity. While they are powerful and adaptable to varying applications, their inner
workings remain something of a mystery to humans. It might be annoying or cute
when a face lock on a smart phone cannot differentiate between a parent and their
child, but there are instances where the neural networks simply cannot be allowed
to fail. In the growing field of autonomous vehicles, convolutional neural networks
(CNNs) are widely used for various tasks such as road segmentation, [8], and feature
detection, [22]. Today these models are pushed to their limits to accommodate for
the rapid development speed as companies race to build the first fully autonomous
vehicle. The pace of this development has brought to the public’s attention the
problems that arise when systems like these fail, [6].

Unlike a car accident where a driver has been controlling the vehicle, when
an autonomous vehicle is involved it is not apparent what caused it or who is re-
sponsible. Such occurrences has shed light on the need for neural networks that can
explain their decisions. This is important for several reasons. A deeper understand-
ing of neural networks could help the development of new, more robust models. To
this end, machine learning engineers need to open the black-box and understand
the inner workings of the models. Research has been conducted seeking to pinpoint
these mechanisms (see for example [2], [17] and [20]) and explain the behaviour of
these models. A second reason is that the black-box property of neural networks de-
crease their trust from the end users, [3]. If these models provided explanations and
justifications alongside their predictions this could increase the trust from the end
user. Another reason why this is so important is that even accurate predictions can
be difficult to leverage if the producing model is too opaque. If the model produces a
motivation alongside the decision or classification it makes, these can be interpreted
by a human to assess the correctness of the result. This is the case especially in
medicine where convolutional neural networks (CNNs) have successfully been used
in a large spectrum of applications such as identifying bone erosion from rheumatoid
arthritis, [16], and diagnosing breast cancer, [19]. In these types of applications, the
motivations of the neural network can be used by a medical professional to assess
the quality of a classification, see [7].

Several attempts have already been made to produce explanations for CNN
classifications. Because of the complexity of the models this can be done in many
different ways. Some earlier works have studied individual pixels in the training

1

1. Introduction

data, [21], and constructing attention maps to identify what parts of a training
image the network considers most when classifying a test image, [18]. Given these
different interpretation tools, attempts have also been made to unify them, [13].
These methods often seek to find a part of a single training image and how it
impacts the behaviour of a network. In contrast, influence functions, [12], a concept
originating from robust statistics, measure the impact of an entire training image on
a given classification. Earlier works have applied them successfully to the MNIST
and CIFAR-10 data sets with good results. Now the question is if they can also be
applied to the feature detection systems of the autonomous vehicle industry.

1.1 Motivation

In the growing field of autonomous vehicles, neural networks are tasked with making
precise and important decisions. Since the classification performed by a neural
network is critical in this kind of application, their every aspect must be studied and
understood. Network architecture is a common point of study, but the training data
is another important factor in the training process. To this end, influence functions
can be used to try to find a common characteristic in the data pinpointing valuable,
harmful or insignificant data. This might help development of the classifications of
the future since it can indicate what kind of training data the models use to learn
different features.

Hopefully, this can lead to future systems used for pedestrian detection being
even more robust than those existing today. Even if the problems studied in this
project is down scaled both in terms of problem complexity and data set size, their
outcome can provide an indication of whether influence functions are a viable option
to further optimise the training set up for such systems.

1.2 Goals

The purpose of this thesis is to apply the theory of influence functions to a classifying
CNN comparable to those used in autonomous vehicles today. The results could
provide valuable insights on why these systems provide the classifications they do,
which in turn is crucial for developers seeking to make future versions more robust.
Moreover, user trust is dependent on human interpretation of the algorithms.

1.3 Contributions

To take state-of-the-art tools previously only used on academic applications and see
if they make sense in the context of problems usually studied in the autonomous
vehicle industry.

2

1. Introduction

1.4 Limitations
A single binary pedestrian detection problem is studied to determine if influence
functions can accurately predict how individual training images impact a given clas-
sification. The data used in the set up is a subset of the well studied KITTI object
detection data set, [9]. Due to the computationally expensive operations needed
by the experiment, the model was deliberately simple compared to those commonly
used for similar data sets. Within the time constraints of the thesis a from-scratch
implementation of the experiment could not been completed and the code run is
heavily based on that used in earlier works, [12].

1.5 Outline of the thesis
The second chapter covers the mathematical theory alongside some approximation
techniques. It also gives a very brief introduction to neural networks. Chapter
three provides a detailed run through of the experimental procedure and the studied
model and data set. The results of the experiment are presented in chapter four and
discussed in chapter five. Finally, the sixth chapter contains the conclusions of the
thesis.

3

1. Introduction

4

2
Theory

Using influence functions on convolutional neural networks (CNNs) requires a fusion
of a result of robust statistics with the classification models. This chapter starts with
a brief run down of CNNs, which should not be seen as an exhaustive description of
these systems but rather a reminder. For an introduction to CNNs please see one
of the free sources online (for example the documentation of the machine learning
framework DL4J, [5]). The focus will instead be put on the influence functions
themselves, since understanding their notation is detrimental to interpreting the
results of the experiments. Finally, the complexity of the CNNs pushes the equations
to their limits and some approximations will be needed. Some of these methods will
also be covered by this chapter.

2.1 Convolutional Neural Networks
The overall structure of all neural networks is a number of layers that given an input
produces an output. The output of a preceding layer is the input of a following.
This flow of data can be seen in figure 2.1. What kind of output that is produced
and how it is calculated depends on the type of layer. This section will give a brief
description of the layers of neural networks and how they are trained. It is by no
means exhaustive. While neural networks is a large family of models, this project
deals only with CNNs used for image classification. ("Is this an image of a dog or a
cat" type questions). Apart from section 5.5.1 all neural networks mentioned in this
report will be of this type.

2.1.1 Layer types
There are a number of different layers used in CNNs, especially state-of-the-art net-
works. This section will only cover the more traditionally used layer types, since
the networks used in this project have been kept simple because of computational
constraints. Every layer has parameters that are conditioned during training. Be-
fore applying the respective functions of a layer, the input is multiplied by some
parameters (often called weights) and summed with others (called biases).

2.1.1.1 Convolutional layer

Like their name suggests, the convolutional layers perform convolutions on the data.
CNNs are often used in image classifications so the data is often images. They are
characterised by the size of their kernels which determines the line of sight of the

5

2. Theory

Figure 2.1: A schematic view of an artificial neural network. Data flows from left
to right through layers where data processing takes place.

operation. The convolution can be interpreted as a filter swiping over the data,
and by its nature, where the overlap is great the result will be higher. (So one
convolutional layer in a network meant to detect images of dogs might have a ’snoot’
filter).

After the convolutional operation, an activation function is applied to the result
to add a measure of non-linearity to the layers. Two common choices of activation
function are tanh(x) and the rectifier function R(x). The definition of tanh is:

tanh x = sinh x
cosh x = ex − e−x

ex + e−x
(2.1)

while the definition of the rectifier function is:

R(x) = max(0, x) (2.2)

this means that it is equal to 0 if its input is 0 and linear otherwise.

2.1.1.2 Max pooling layer

A pooling layer is often put after a convolutional layer to squash the size of the
data by condensing the information. It swipes an n × n max filter over the image.
The stride is often chosen to ensure that the regions to which it is applied are non-
overlapping. This means the operation gives a reduction in data size as well as a
sort of binning operation of the regions.

6

2. Theory

2.1.1.3 Softmax layer and cross entropy

The Softmax layer often serves as the final output from the network. It squashes
a K-dimensional vector of arbitrary real values to a K-dimensional vector that can
be interpreted as a probability distribution. Its values sum to 1 and the larger the
number the higher the probability. When the number of target classes is K it is
defined as:

σ(z)j = ezj∑K
i=1 e

zi
(2.3)

where z is the input vector. Say a network is trying to determine if an image
contains a cat or a dog. The image it is processing contains a dog which has label 0.
The ground truth for this image is then a vector [1, 0]. If the result from the softmax
layer is [0.8, 0.2] this means the network believes to a degree of 80% that the image
is of a dog and 20% that it is of a cat. In upcoming sections we need a metric of how
well the network is performing. To determine the error in a classification output,
there needs to be a comparison between the distribution resulting from the softmax
function and the target feature vector for the input. To this end, cross entropy is
often used. If the network input consists of N examples, the cross entropy between
the distributions q (softmax output) and p (target vector) is defined as:

H(q, p) = −
∑
x

p(x) log(q(x)) (2.4)

Cross entropy (equation 2.4) provides a metric that when minimised should give
better network classifications. It is chosen as loss function in all models used in the
project.

2.1.2 Training - Gradient descent
Say we have a neural network with given architecture and a set of parameters θ (the
weights and biases of the network). Given an input x, the network will produce some
output y. The goal is to perform an iterative fitting of the parameters θ (training)
over known pairs of input-output (training data) until the network can correctly
classify previously unseen examples (test data).

In each training step, the output of the network is compared to the (known)
true classification of the input. The error of the classification is quantified as the
loss L(zinput) (often the cross entropy from equation 2.4) of the network for the input
zinput. To use this error to update the parameters, it’s gradient it taken with respect
to the parameters of the network:

∇θL(zinput, θ) = ∇θH(q(zinput, θ), p) (2.5)

where the right side holds if we use cross entropy as loss function. Now we will take
a moment to remember what we are actually doing. Since the loss is a function
of all the parameters of the system we are dealing with a scalar field with a well
defined gradient. (It is well defined thanks to equations 2.4 and 2.3 and the chain
rule of derivatives). By definition, the gradient of a scalar field always points in the

7

2. Theory

direction of steepest increase. (In three dimensions it is easily visualised as always
pointing in the direction of the steepest climb from the point where it is evaluated).
This means that taking a step in parameter space in the opposite direction should
take us to a point where the value of the scalar field (loss) is lower. Based on this,
the values of the parameters are updated by taking a small step in the opposite
direction of the gradient of the loss:

θnew = θ − η∇θL(zbatch, θ) (2.6)

where η is the learning rate of the model. In some applications, η is adapted (re-
duced) throughout training which makes the earlier updates of the parameters more
significant and then as the model is assumed to start reaching an optimum it de-
creases. Performing this kind of steps over a large number of iterations is the princi-
ple of gradient descent and the idea is to reach a minimum in the loss space. There
are other optimisation options for neural networks (for example the ADAM opti-
miser[11]) that take into account additional metrics, but the idea of gradient descent
is still present at their core.

There are a number of things to consider when putting gradient descent into
practice. In addition to the learning rate decay already mentioned, there are other
hyper parameters that can be used. Weight decay puts a penalty on large parameters
and is implemented by adding a term to the loss function which means the loss will
increase with larger parameters. It is one of the tools for preventing the network to
model the noise of the training data in addition to the relevant features (overfitting).

Another risk factor for overfitting is the number of training iterations the net-
works goes through. The session should not be so long that the network memorises
the training data, but needs to be long enough that it learns the characterising fea-
tures of the target classes, (i.e "what is a dog"). An overfitted model will excel at
classifying training data, but the memorised noise (some features of the training dog
images that are not, in fact, characteristic of dogs) will make it worse at classifying
test images. (Kind of like memorising compared to learning when studying for an
exam).

2.2 Influence Functions
To understand what influence functions are it can be helpful to look at what they
seek to find; "The measure of the dependence of the estimator on the value of one of
the points in the sample", [4], or in other words: "Which training data is responsible
for a given prediction?". We can break the question down into two parts:

What is the effect from a training point on the parameters of the model? (2.7)

and

What is the impact of the parameters on the loss for the test point? (2.8)

It should be evident that in mathematical terms these are connected through the
chain rule of derivatives.

8

2. Theory

For neural networks, the answer to the first question is the impact of one
training image on the parameters θ. We cannot directly answer this, so we ask a
similar question "How are the parameters changed if we up weight a training point
by some small measure ε?". (In practice this would correspond to increasing the
frequency of training on the given data point.) In mathematical terms, this means:

Iup, params(z) = dθ̂ε,z
dε

∣∣∣∣∣∣
ε=0

= −H−1
θ̂
∇θL(z, θ̂) (2.9)

where

Hθ̂ = 1
n

n∑
i=1
∇2
θL(zi, θ̂) (2.10)

with zi ∈ training data set. This is a result from robust statistics[4]. The reason ε
is set to 0 is that it corresponds to considering all training points equally, which is
the case we are interested in. This means that equation 2.9 answers the question in
equation 2.7.

Now we move on to the question in equation 2.8. Again we will consider an up
weighting ε when deriving the equations, but set it to 0 to ensure the results hold
for the base case where no up weighting is present. The impact on L(ztest, θ̂) by this
up weighting is equal to its derivative:

Iup, loss(z, ztest) = ∂L(ztest, θ̂)
∂ε

∣∣∣∣∣∣
ε=0

{Deriving according to the chain rule}

= ∇θL(ztest, θ̂)
∂θ̂ε,z
∂ε

∣∣∣∣∣∣
ε=0

{Leveraging equation 2.9}
= −∇θL(ztest, θ̂)H−1

θ̂
∇θL(z, θ̂) (2.11)

This ties together the answers to the two questions of equations 2.7 and 2.8. We
now define the product between H−1

θ̂
and the gradient of the test loss as

stest = H−1
θ̂
∇θL(ztest, θ) (2.12)

which means that the influence of a single training image zi on a test image ztest is:

Iup, loss(zi, ztest) = −∇θL(zi, θ̂)stest (2.13)

The negative sign means that a positive predicted influence means that the algorithm
believes that the training image is helpful when classifying stest. (Removing the

9

2. Theory

training image would cause a positive change in the loss function, and a higher loss
is worse). After comparing Iup, loss(zi, ztest) across all i that the most influential
training data can be found.

The equations are deceivingly concise but hides some computational traps.
First of all, remember from equation 2.10 that Hθ̂ is a sum of the twice differentiated
loss function in all training points with respect to every parameter of the model.
To top that up, it is also inverted. Even just applying the ∇θ operator once is a
cumbersome operation since it means differentiating with respect to all parameters
of the network, and for models such as neural networks the number of parameters
are usually very large.

To allow for a practical implementation there are several numerical approxi-
mation approaches. Two possible approaches are to get the inverse hessian vector
product (stest) through the conjugate gradients method, or; approximating the in-
verted hessian by leveraging Taylor expansion (LiSSA method) and then inserting
this value into equation 2.12 to get stest. These approaches will be further discussed
in section 2.3.1 and 2.3.2. (The focus on these two methods comes from their proven
success in earlier experiments, [12]).

2.2.1 Necessary traits of the system
The equations described have neat forms, but there are requirements hidden in their
formulations. It is evident from equation 2.12 that the loss of the system needs to
be twice differentiable. Moreover, if we want to use the conjugate gradients method,
the hessian of the system has to be positive definite and symmetrical. The former is
true if we have reached a local minimum of the parameter space during training (i.e.
if we have trained the network enough) and the latter holds if (again) the second
derivatives are continuous in an environment surrounding θ̂.

2.2.1.1 Twice-differentiable loss function

From the definition of the influence functions, equation 2.9, it is evident that if we
want to calculate the influence for a model the associated loss function must be
twice-differentiable. (Or the weaker condition; it must be possible to approximate it
with good enough precision). In reality this is only a slight limitation on the possi-
ble choices of loss definition, and since the cross entropy used in this project passes
this criterion it will not be investigated further. (Some exploration of this topic
this is done in earlier works [12] with good experimental results for approximated
gradients). For the applications of this project, the gradient of the loss (cross en-
tropy) with respect to the parameters is well defined. The second order derivatives
used in the LiSSA approximation method were evaluated using an adaption of the
Tensorflow hessian method.

2.3 Dealing with the inverse hessian
The worst bottleneck when applying influence functions to neural networks is the
inverse hessian. Neural networks can have a large number of layers which each in

10

2. Theory

turn have a set of weights and biases. Since the hessian takes into account the second
derivative with respect to each parameter it is important to find a sufficiently, but
not overly, complex model architecture since this will make the evaluation of the
hessian too cumbersome.

Explicitly evaluating and inverting the hessian part of equation 2.12 is basically
impossible when studying a neural network of reasonable size. To avoid doing this,
we can use an approximation instead. This section introduces algorithms for this.

2.3.1 Conjugate Gradients
To use the conjugate gradients method, the problem must be reinterpreted and cer-
tain assumptions made on the hessian. Instead of calculating the hessian, inverting
it and multiplying it by a vector, which is what we want in accordance with equa-
tion 2.12, we instead look at this as an implicit hessian vector product (IHVP). In
those terms the vector we want to multiply the inverse hessian by is the gradient
∇θL(ztest, θ). For simplicity in the derivations we will set some new variables. We
are looking for:

stest = H−1
θ̂
L(ztest, θ̂) = H−1

θ̂
v = t (2.14)

with v = L(ztest, θ̂) and t as the unknown, sought-after quantity. stest now coincides
with the solution t to the matrix equation:

Hθ̂t = v ⇔ t = H−1
θ̂
v (2.15)

We form the quadratic form f(t) = 1
2t
THθ̂t− vT t. Given that the hessian is positive

definite (PD) and symmetrical (explored below in section 2.3.1.1), the t that min-
imises f(t) is also the solution to equation Hθ̂t = v. We will use the fact that the
gradient of the quadratic form

f ′(t) = 1
2H

T
θ̂

+ 1
2Hθ̂t− v (2.16)

will reduce to

f ′(t) = HT
θ̂
− v (2.17)

if the hessian is symmetric. Setting f ′(t) = Hθ̂t− v = 0 we see that we are back to
equation 2.15. This means that if we find the v that correspond to this stationary
point (which is a minimum given the assumption that the hessian is PD) we have
found stest. Given this, we must only find the value v that minimises the quadratic
form to find stest.

A more compact summary of the results is: if Hθ̂ is positive definite and
symmetric, the solution t to the equation Hθ̂t = v coincides with arg min f(t) =
arg min

(
1
2t
THθ̂t− vT t

)
. So the inversion problem has been transformed into a min-

imisation problem. To solve this equation through conjugate gradients method we
leverage the first and second derivative of the quadratic form: f ′(t) = Hθ̂t− v and

11

2. Theory

f ′′(t) = Hθ̂. This problem can then be solved with out-of-the-box tools such as
fmin_ncg (Newton-CG method) from the scipy Python library.

While the conjugate gradients method is a viable option for obtaining the
inverse hessian product, the size of the CNNs will still affect the efficiency of the
approximations. In each iteration, we need to take the first and second derivative of
the quadratic form. While they both have nice closed forms, they will still scale with
the square of the number of parameters of the network. Once again the equations
are deceptively concise while reality reveals the true complexity of the method.

2.3.1.1 Hessian assumptions

As a reminder, this method requires two things of the hessian; that it is symmetrical
and positive definite in the point θ̂. The former is true if the second derivatives are
continuous in a neighbourhood surrounding θ̂ while the latter holds when θ̂ corre-
sponds to a minimum in parameter space. For cross entropy the second derivatives
will be continuous. The convexity of the hessian in θ̂ depends on the model archi-
tecture and the training. In practice this means training will be done longer than
what is usual in classifying problems since it is crucial that a minimum has been
reached.

2.3.2 LiSSA: Linear Stochastic Second-Order Algorithm
Another approach to dealing with the hessian computation problems is the Linear
Stochastic Second-Order Algorithm, or LiSSA, presented by Agarwal et al in 2016[1].
Instead of approximating a hessian vector product like conjugate gradients does, it
seeks the value of the inverse hessian itself. It is is based on the Taylor expansion
of the inverse Hessian matrix:

H−1 =
∞∑
i=0

(I −H)i (2.18)

where I denotes the identity matrix. Note that equation 2.18 assumes that the norm
of H is ≤ 1, ||H|| ≤ 1 and that H is positive definite (H � 0). Furthermore, we
denote the first j terms of the Taylor expansion H−1

j :

H−1
j =

j∑
i=0

(I −H)i (2.19)

for which it holds that H−1
j → H−1 as j → ∞. In practice, this approximation

is computed recursively for a given (large) number of steps. The result is then
multiplied with the test loss gradient according to equation 2.12 to get stest.

12

3
Methods

The main experiment follows the set up of earlier works applying influence functions
to neural networks (see [10] and [12]). These steps will be described in section 3.2.
To make the implementation easier, a machine learning framework was used for
the base operations. There are a number of choices that supports sophisticated
operations for neural networks and one had to be chosen early on in the project.
The choice of Tensorflow was motivated by knowledge among the group where the
thesis was done (available support) and the fact that it would make it easier to
directly leverage open-source code from previous studies[12].

As previously mentioned, the methods of analysis are equivalent to those done
before (see [10] and [12]). While the steps of the experiments are the same as in those
previous works, the data used is more true to actual data used in the autonomous ve-
hicle industry. This means that network-building is not a major part of the project,
and that the results will be more applicable to the development of systems for au-
tonomous vehicles. While it would have been useful if the networks studied had also
followed the architecture of those used in these applications, hardware constraints
made this impossible.

3.1 Implementation
The experiments run in the project leveraged code used in earlier research[12]. How-
ever, alterations have been made to allow for larger and RGB (colour) images. Gen-
eralisations has been introduced to the code base which allows it to run experiments
on different types of data.

3.2 Leave-one-out-retraining
Recall from section 2.2 that what influence functions claims is "This is the effect the
training point had on the prediction for the test point". The straight-forward way of
validating this claim is to simply retrain the model without the given training point.
This has been done before with successful results in [10] and [12]. The schematic
of the full retraining experiment in figure 3.2 explains the work flow of the method
while the plot in figure 3.1 shows an exaggerated example of the evaluated loss
differences.

A test point ztest is chosen as the point of study. We must also choose a
number k for how many predicted top impact training points we want to study.
This number severely affects the time complexity of the experiment, but needs to

13

3. Methods

be large enough to ensure that the statistical metrics can be trusted. The number
of training iterations ntraining as well as the number of retraining iterations nretraining
must also be chosen.

The model goes through an initial training session after which the parameter
set of the network (denoted θ̂) is saved. The loss L(ztest, θ̂) is calculated and stored
for future reference. Then the influence functions are used according to section 2.2
to make predictions on what the impact from each of the data points of the training
set is on the loss for ztest. These values are used to evaluate which training points
are the most important for the loss in the point ztest. These top impact training
points are denoted zj, and the predictions for their influence on the test image ztest
is called Iup, loss(zj, ztest) in accordance with equation (2.13).

As a pre-step to the retraining part of the experiment, the model is trained
for nretraining steps using the full data set, resulting in the parameter set θ′. This is
done for two reasons; to ensure that the changes in loss

LDfull = L(ztest, θ
′)− L(ztest, θ̂) (3.1)

and

LDtrain
full =

∑
i=1

L(zi, θ′)− L(zi, θ̂) (3.2)

with zi ∈ training data set are both close to 0. This is important since it indicates
that the initial training has reached a somewhat stable point.

In the second part of the experiment, the retraining steps begin. This is where
the predicted loss differences should be validated by measured loss differences. The
model is reset to the parameter set ˆtheta and trained for an additional nretraining
steps while withholding one of zj at a time. (That is, the set of examples from
where the batches are drawn consists of all original training images except zj). We
will call the parameter set after one such retraining session θ̃j. At the end each
retraining session, the loss in the test point L(ztest, θ̃j) is evaluated and the loss
difference (LDj), considered ground truth for the influence from training point is
zj, is taken according to:

LDj = L(ztest, θ̃j)− L(ztest, θ̂) (3.3)

The plot in figure 3.1 might be helpful to get a more intuitive understanding
of this measure. Before retraining while withholding the next zj, the parameters are
reset to θ̂ so that every session starts with the parameter set the network had after
the initial training. As a reminder, the schematics in figure 3.2 can be helpful to
visualise this. This produces a set of n values describing the actual loss difference
for the test point when the training point is withheld. These values should correlate
with the loss differences predicted using influence functions. One suitable metric to
determine this correlation is through the Pearson correlation coefficient r:

r =
∑k
j=1

(
LDj − LD

) (
Iup, loss(zj, ztest)− I

)
√∑k

j=1

(
LDj − LD

)2
√∑k

j=1

(
Iup, loss(zj, ztest)− I

)2
(3.4)

14

3. Methods

where

I = 1
k

k∑
j=1
Iup, loss(zj, ztest) (3.5)

LD = 1
k
LDj (3.6)

r assumes a value between -1 and +1 (inclusively) where +1 corresponds to complete
linear and -1 perfect inverse linear correlation. If r = 0 the data sets have no linear
correlation.

Figure 3.1: Schematic of the loss differences evaluated during the retraining ex-
periment.

15

3. Methods

Figure 3.2: Work flow of the retraining experiment. θ̂, θ′, θ̃1, θ̃j and θ̃k are pa-
rameter sets after the corresponding training sessions. LD stands for loss difference
and is always taken in the point of the test image.

3.3 Pedestrian detection
To evaluate how useful influence functions are for applications in autonomous vehi-
cles they have been applied on a subset of the KITTI dataset, [9], an object detection
data set. The problem setup is a simple binary classifier tasked with determining
whether a given image contained a pedestrian or not. The principal idea of this
experiment is in line with earlier published works, [10] and [12], but the nature of
the data set used is very different.

3.3.1 Data sets
Compared to the academic data sets studied before where the image sizes are 28x28,
[12], and 30x30, [10], pixels, the KITTI data set image size is 370x1224 pixels. In
order to use this data set, the images are down sampled by a factor 0.5, which mean
that the resulting image size is 185x612 pixels. To ensure that the feature in an
image did not shrink too much from the down sampling, a threshold of 35 pixels
was set for the resulting height of a pedestrian. If its height fell below this after
down sampling, the image would be labelled 0 (meaning it contained no pedestrian).
From the KITTI object data set 683 images meet these requirements. To balance
the set, 683 images containing no pedestrians were added. To increase the size of
this set the images where then mirrored which meant the total training set contained
2732 images. 32 of these became a validation data set which meant the final size of
the training data set was 2700.

16

3. Methods

Figure 3.4: The architecture of the studied network

The testing data was hand annotated based on the requirements above since
KITTI contains no test labels. A test image (figure 3.3) was hand picked for the
experiments based on feature visibility and the fact that there were a number of
images from the same scene that also contained pedestrians.

Figure 3.3: The test image used throughout the experiments.

3.3.2 Network
The network architecture was the same as that used to run the influence experiment
in previous works [12]. It consisted of 6 consequent layers of convolutions with tanh
activations, finalised by a softmax layer. The convolutional layers had a patch size
of 3x3 pixels. It utilised weight decay on its parameters. It contained no maxpool
layers which meant that all layers had easily interpreted gradients. All six layers
contained eight hidden units. The schematics of the network can be seen in figure
3.4.

3.3.3 Code Design
Some of the design choices of the code base are not in accordance with the current
Tensorflow guidelines. While this puts a dent in the efficiency of the code, it was
necessary if Tensorflow was to be used at all. In particular, during the spring of
2018 when the project took place, queue runners were the recommended data feeding
practice for projects in Tensorflow. While these provide an efficient way of injecting
data into the model, they offer no option of tailoring the batches. During the
retraining step where all but one example is used for training would have required

17

3. Methods

n separate instances of queue runner set ups. (Where n is the number of images
withheld, one at a time). While this is certainly possible to do, it would have
required scripts constructing each individual local data set to be read from, since
the queue runners consume blindly from their given source.

18

4
Results

There are two important metrics to keep in mind when looking at the results. First,
we have the predicted influence on the loss for the test image from training image zi,
denoted Iup, loss(zi, ztest). Then there is the measured loss difference when retraining
without the training image, LDj. This is only evaluated for the training images
with the 100 highest predicted influences (zj), i.e zj is a subset of zi.

The results were acquired by training for an initial 50 000 iterations and then
using influence functions to get the predicted loss differences Iup, loss(zi, ztest). After
this, an additional 10 000 iterations long training session was completed. The last
step was the retraining sessions when one training image at a time was withheld
from the network, and after each of them the respective measured loss differences
LDj was evaluated.

A negative LDj means the network got better when training image zj was
withheld and that it had previously impeded the classification of the test image. If
LDj is positive it meant the loss for the test image went up after retraining without
zj and that it had been helpful to the model.

4.1 Pedestrian detection problem

This section presents the results from running the retraining experiment using the
network configuration described in section 3.3.2. The initial training consisted of
50 000 iterations and retraining for 10 000 iterations. Batch size was 100 for both
training sessions. The conjugate gradients method described in section 2.3.1 was
used to approximate the IHVP (implicit hessian vector product), and it was done
over 100 iterations. The IHVP approximation was terminated when the maximum
number of iterations was reached and a minimum had not been reached.

4.1.1 Network performance

The final accuracy across the train data was 0.85 and across the test data 0.72.
Considering the problem at hand was a binary classifier these numbers do not inspire
confidence. However, the network gave the softmax output [0.0300, 0.9699] for the
test image with label [0, 1].

The control retraining loss differences LDfull and LDtrain
full was evaluated after

the initial training. Their values can be seen in table 4.1.

19

4. Results

Original model (θ̂) Retrained model (θ′) Difference
ztest 0.030558474 0.019499514 LDfull = -0.01105896
All ztrain 0.38356976 0.36736464 LDtrain

full = -0.01620513

Table 4.1: Losses evaluated after the retraining with full data set. The first two
columns contain the loss values taken before and after the extra training iterations,
respectively. The third column is the difference between these values taken as L(θ̂)−
L(θ′) meaning that a negative sign is equivalent to an improvement in network
performance.

4.1.2 Leave-one-out retraining results

The measured and predicted loss differences (LDj, Iup, loss(zj, ztest)) can be seen in
figure 4.2. The magnitude of the predictions grow with increasing index since that
is the selection metric for the set zj. However, there is a cluster of predictions in the
top right corner that seem to break the somewhat linear characteristics of the other
prediction values. The images corresponding to these predictions can be seen in
figures 4.3 and 4.4. Figure 4.1a indicates that according to the influence functions,
a larger impact on the loss of the test image will come from training images also
containing pedestrians. The plot in figure 4.1b show the predictions for images with
and without pedestrians (blue and orange, respectively). The breaking of symmetry
from figure 4.2 is evident in the top right corner here as well. The Pearson correlation
coefficient (equation (3.4)) between the predictions and the actual loss was evaluated
as r = −0.0177.

(a) Comparison of the number of label
1 and label 0 among the predicted top
100 most influential training images.

(b) Labels of training images compared
to the value of their predictions. Blue
dots are training images with label 1
(pedestrian) and orange label 0 (no
pedestrian).

Figure 4.1: Label distribution in top 100 predictions.

20

4. Results

Figure 4.2: In blue dots the retraining loss difference when retraining without the
training image corresponding to the index of the x-axis. The orange dots are the
predicted loss difference for the same training image.

21

4. Results

(a) Training image with index 1713. Highest predicted influence with
Iup, loss(z100, ztest) ≈ 0.1762.

(b) Training image with index 1661. Second highest predicted influence
with Iup, loss(z99, ztest) ≈ 0.1524.

(c) Training image with index 2497. Third highest predicted influence with
Iup, loss(z98, ztest) ≈ 0.1523.

(d) Training image with index 1343. Forth highest predicted influence with
Iup, loss(z97, ztest) ≈ 0.1454.

(e) Training image with index 2493. Fifth highest predicted influence with
Iup, loss(z96, ztest) ≈ 0.1439.

Figure 4.3: Training images with top 5 highest predicted influence.
22

4. Results

(a) Training image with index 1712. Sixth highest predicted influence with
Iup, loss(z95, ztest) ≈ 0.1438.

(b) Training image with index 455. Seventh highest predicted influence
with Iup, loss(z94, ztest) ≈ 0.1362.

(c) Training image with index 1577. Eighth highest predicted influence with
Iup, loss(z93, ztest) ≈ 0.1324.

(d) Training image with index 1660. Ninth highest predicted influence with
Iup, loss(z92, ztest) ≈ 0.1257.

(e) Training image with index 2421. Tenth highest predicted influence with
Iup, loss(z91, ztest) ≈ 0.1235.

Figure 4.4: Training images with sixth to tenth highest predicted influence.
23

4. Results

24

5
Discussion

While influence functions have been applied to classifying CNNs before, it has only
been done in academic settings with data sets primed for the task. The experiments
performed in this project seems to be one of the first tries with applying them
to data closer to that processed by autonomous vehicles. During the project, the
available hardware put considerable constraints on the architecture of the networks
to be studied. It is possible that when taking the step from academic data sets such
as MNIST to the more complex KITTI object data set, these networks simply could
not keep up. While a ramp up in the network architecture might have been positive
for the results, the models used were already saturating the available memory in the
GPU. The time constraint from it being a thesis project also meant that experiments
simply could not take too long.

The results after using the first network architecture had a correlation coeffi-
cient of r = −0.0177, which means that there was basically no correlation between
the predictions and measure retraining loss difference. In comparison, earlier works,
[12], have produced values of r > 0.9 after equivalent experiments on the MNIST
data set. The major mystery of the results from the KITTI experiment is the obvi-
ous theme of the top 10 predicted influential images of figures 4.3 and 4.4. It seems
like they share some feature that the equation 2.13 picks up on. Since the correla-
tion between the measured loss differences is basically nonexistent, this is the only
indication in the results that the influence functions manage to find some intrinsic
characteristic in the training data. However, it is not evident why the algorithm
considers these types of images to be so important to ztest.

5.1 Reasons for low correlation
One important sign that the algorithm was not given full freedom to make correct
predictions is the control loss differences taken after the retraining using the full
training set. Recall from table 4.1 that there was a significant decrease in loss
for both the full training data set and for the test image after these extra 10 000
iterations. This strongly indicates that the initial 50 000 training iterations were
not sufficient for the model to reach a stable point. It also rules out the explanation
that the model got stuck in a local minimum. Further proof that the model should
have gone through a longer initial training is that all of the 100 retraining loss
differences have a negative sign. This means that regardless of which training image
that was withheld during retraining the model still improved. Available resources
made it impossible to run probing experiments to find these warning signs in time,

25

5. Discussion

or run additional experiments with a higher number of training iterations. It is
possible that changing only these hyper parameter would be enough to improve the
correlation between the predictions and the measures loss differences.

The fact that time constraints meant that influence functions could only be
tested on a smaller network was probably one of the biggest reasons for the disap-
pointing results. The studied network simply does not have the architecture needed
to classify images as complex as those in the KITTI object detection data set, even
after they were down sampled. It was built to run on the MNIST data set which
is barely comparable to those used in the pedestrian detection problem where the
images sizes are magnitudes larger and the images are RGB instead of grey scale. It
is probable that a more sophisticated network tailored to the data used would have
performed better.

The methods used for the approximation of the hessian has never been com-
pleted without warning from the used method, either numerical precision loss or ex-
ceeding the maximum allowed number of iterations without reaching a satisfactory
approximation. When the method was run on the MNIST data set, it ran without
problems. The complexities of both the problem and the network will increase the
difficulty of approximating the inverse hessian product, but without further study
of the problem it is not obvious how much. It is possible that a different method
is needed for the hessian approximation when studying data sets such as KITTI
compared to those used when running the experiment on MNIST.

To summarise, the experiment contained many arbitrary hyper parameters
such as the number of iterations for initial and the retraining sessions, the number
of iterations used for hessian or IHVP approximation and which test image is used.
One of the most important, the network architecture, proved to be very difficult to
explore given the available time and hardware resources available.

5.2 Image interpretation
The 10 top predicted influential images (figures 4.3 and 4.4) were all assumed to be
helpful to the test image (figure 3.3). They are all from the same scene even though
they are scattered across the data set. This indicates that the prediction algorithm
finds something in these types of images helpful to the model when classifying the
test image, but it is not evident what that is. There are images in the training set
that are taken at the same scene as the test image, but they did not get as high
predicted influence as these images. (In fact, they were not even present among the
predicted top 100 influential training images). One thing to note is that figures 4.3d,
4.3e, 4.4b and 4.4c all contain a blue car in the shadows of the left side. The test
image also has a brightly blue segment in the shape of a building wall. However,
since the blue shadows are not present in all the top 10 predicted influential images,
it cannot be the whole explanation to their high prediction values. The overall
light/shade composition of the images might be another explanation, but the images
from the same scene as ztest are more similar in that regard.

Interestingly, the pedestrian giving many of these images their label is almost
invisible in the shadows. The fact that the network still finds them useful might be
explained by the presence of the bicycle riders that resembles pedestrians to a high

26

5. Discussion

enough degree. This points to the fact that perhaps the model could not differentiate
properly between pedestrians and bicyclists, further impeding its performance.

The complete set of the 100 training images with highest predicted influence
can be seen in A. As mentioned earlier, none of them are from the same scene as the
test image, even though the training data contains a number of such images with
pedestrians in them. (Some examples of images like these can be seen in figure 5.1).
Since the test image has a characteristic blue wall it is not naive to expect that at
least some of these images would be present among the top 100 predicted influential
training images. It is not apparent why they are not.

Figure 5.1: Training images visually similar to the test image.

27

5. Discussion

5.3 Retraining from θ̂

The design of the retraining experiment was the same that was used in earlier
works, [12] and [10]. As a reminder, it starts each retraining session at a point
θ̂ that the model has reached by already going through training. With enough
time and computational power, another evaluation of the predictions could be done
where the model is retrained from scratch with randomly initialised parameters. One
training image at a time would then be withheld as before, but each retraining session
would start with an untrained model. Since the equations of influence functions is
defined in the point θ̂ these trials would show if the predictions are actually a true
representation of the characteristics of the data or not. If the predictions only hold
for some given initial training their merit as evaluation tool is not especially useful.
If, on the other hand, they can actually pinpoint the underlying relations between a
test image and the training images an experiment with this set up could show that.

One choice of set up for this experiment could be training the model for a
given number of iterations n and evaluating the loss in the test image. (θ̂ would be
the resulting parameter set, like before). At that point influence functions would
be used to make predictions in the impact on that loss form each training image.
A number of them would be picked for retraining based on the magnitude of their
predictions. The difference would then come in the retraining sessions. Instead of
reverting the model back to the parameter set θ̂ like in the retraining experiment
described in this report, the model would be reinitialised with random parameter
values and then retrained for the same number of steps n as the initial training. The
loss difference LDj could then be taken as LDj = L(stest, θ̃j) − L(stest, θ̂), and the
rest of the analysis would be equivalent to the one done in this report. If correlation
could be found between the predictions and a loss difference it would indicate that
the influence is intrinsic to the data and that the hessian, parameters and other
model defining metrics after initial training are simply tools of finding it. If it would
not, it would mean that influence functions are able to adequately predict the loss
difference only in an environment surrounding θ̂, in that case it could be explained
by the training point that is later removed has been detrimental in some path choices
taken by the optimisation during initial training.

5.4 Dataset
The big step taken from MNIST to KITTI might have been too much, especially
when not scaling up the networks used sufficiently. When approximating the hessian
it is not apparent that the desired accuracy has been reached, especially for the more
complex network 2.

When annotated according to the rules described in section 3.3.1 some images
would lose their features since they would be too small (according to the threshold)
after re-sizing. However, the fact that the KITTI object data set contains humans
in different configurations resulted in annotations that could be confusing at times.
The image in figure 5.2 is one such image where the bicyclist in the foreground is
ignored (since as a feature it is a Bicyclist and not a Pedestrian) and the pedestrians

28

5. Discussion

in the background became a few pixels too small to still count as features after down
sampling. In reality this will be a false negative for the network since the woman
in the foreground has very similar geometrical shape to a person taking a step.
It is difficult to say how many false negatives like this example the training data
contains, but it is likely that it caused some problems for the classifier. One possible
solution to this could be to also allow for bicyclist to be considered pedestrians when
generating the data set.

Figure 5.2: Training image with confusing annotation.

5.5 Further research
Given that one error source of the experiments might have been the hessian approx-
imations, it would have been interesting to try using the LiSSA method for this step
and see if it would give different results.

Earlier works [12] have shown that the choice of test image can have great
impact of the results of the influence experiment. While time limitations puts this
outside of the scope of this project, an interesting experiment would have been to
run the experiment on several different test images and see if there is something
characterising what makes it possible to predict influence from that point of view.

While influence functions have an accessible definition that makes it fairly
straightforward to think of interesting applications, many can be difficult to imple-
ment in reality. Especially for a Master’s Thesis project which is limited both in
terms of work force and time scope. Some interesting ideas that have come up dur-
ing the project still deserve an honourable mention, even if time and other limiting
factors made it impossible to fit them under the scope of the project. This section
will describe some of these ideas.

5.5.1 Road Segmentation
The road segmentation problem is simply the segmentation problem applied to a
topic relevant to the autonomous vehicle industry. The system needs to know what
parts of an image is road. Since each pixel of an image is to be classified, this means
that each pixel in an image will have an associated loss. Each pixel has a label and
the cross entropy is defined in each one. The accuracy of a run is the fraction of
correctly classified pixels in the test image. Let’s assume that the input data is of

29

5. Discussion

shape nxn and index the pixels by 0 ≤ i, j,≤ n− 1. Since the loss is defined in each
pixel we will have to (and want to!) see how each of them individually influences the
parameters (and then, by continuation, the test loss). The expression from equation
2.9 becomes:

Iup, params(z) = −H−1
θ̂
∇θL(z, θ̂) (5.1)

= −H−1
θ̂
∇θL(zi,j, θ̂) (5.2)

= dθ̂ε,z
dε

∣∣∣∣∣∣
ε=0

(5.3)

This might not seem like a major change in closed form, but in practice Iup, params(z)
just went from having the same shape as the set of the parameters, lets call it
shape(param) (which is dictated by network architecture), to having shape shape(param)∗
n∗n. Similarly, the gradient of the test loss with respect to the up weighting (equa-
tion 2.13) will expand in dimension to:

Iup, loss(z, ztest) = ∇θL(ztesti,j
, θ) dθ̂ε,z

dε

∣∣∣∣∣∣
ε=0

(5.4)

{Plugging in the value from equation 5.2} (5.5)
= ∇θL(ztesti,j

, θ)(−1)H−1
θ̂
∇θL(zi′,j′ , θ̂) (5.6)

This describes the influence on each pixel i, j in ztesti,j
from each pixel in the training

image zi′,j′ (index subscript over training id dropped for simplicity). Since i, j, i′, j′
all go from 1 to n, the complexity of this will skyrocket. The influence over all
pixels from each training image could then be summed up to find the top influential
images, and from there, top impact pixels could be identified. Hopefully this would
yield clusters of pixels so that the results would make sense to a human. Another
option would be to study a single pixel (perhaps wrongly classified) to find out what
caused the model to erroneously classify it. This is very similar to earlier works
where the influence of individual pixels of the training set was studied, [21].

5.5.2 Earth mover’s distance
In earlier works, [12], a logistic regression mode was studied using influence func-
tions. Since this kind of model is a lot simpler compared to a neural network, the
definition of influence functions on it will also be simpler. It also has a very useful
characteristic; the dot product is part of the closed form expression. Leveraging this,
factors of the influence function can be removed to pinpoint which one is responsible
for catching which correlation. In particular, the influence functions can be stripped
down until only the dot product remains. All this yields nice comparisons which
visualises what parts of the influence functions carries which information. Specif-
ically, it gives a measure of how much better influence functions are at predicting
the impact of a training point compared to simply making that assumption based
on image likeness computed through the dot product.

30

5. Discussion

This is an interesting experiment, but it has two drawbacks when working with
neural networks. First of all, the influence functions cannot be peeled down to a
dot product. And more importantly, the dot product is a bad measure of image-
image likeness. A better one is the Wasserstein, or earth mover’s distance. It can
be shortly described as the cost of transforming one distribution into another. This
is readily interpreted in the context of images if one views them as two dimensional
distributions. Has been used in comparison to Euclidean distance, Pearson’s Corre-
lation and one more in a k-NN application where it outperformed the other distance
measures [14].

A better measure is the earth mover’s distance or Wasserstein distance. An
interesting experiment could be to compare the influence function predictions to the
Wasserstein measure between the training images and the test image. One problem
is that evaluating the Wasserstein distance itself is also a complex operation and if
it should be taken between the test image and each training image it would be a big
experiment in itself.

On a smaller scale, the retraining experiment described earlier in this report
could be performed and the Wasserstein distance taken between the chosen test im-
age and the top predicted influencers. If correlation is found between these predic-
tions and the Wasserstein distance it would indicate that image likeness is important
for influence functions. If no correlation is found it means that the parameters of
the network take into consideration features that are more abstract than the image
likeness captured by the measure of earth mover’s distance. This would be quite
similar to earlier works done with attention maps [18].

31

5. Discussion

32

6
Conclusion

The results of this project give some indication that influence functions may pick
up on characteristics of the training data that affect the classifications made by the
model. However, when running the experiment on larger images the clear correlation
that could be found when studying MNIST and CIFAR-10 was lost. There are a
number of possible explanations for this.

There were clear problems when approximating the IHVP (inverse hessian vec-
tor product) when working with larger images. The fact that the network evidently
did not go through enough initial training meant both that its classifications were
not as good as they might have been, but also that all the assumptions made when
using the conjugate gradients methods were not met by the system. The absolute
first thing to change with the experiment would be to increase the number of training
iterations.

The surprising result where the top 10 predicted influential training images
were strongly correlated visually still points to the fact that there is something to
be gained by further trying to apply influence functions to applications within the
autonomous vehicle industry. Even if the correlation between prediction and loss
differences were close to 0, the algorithm managed to find some sort of subset of the
training data that it for some reason found interesting. Considering the size of the
training data set this can not be accounted to chance.

Finally, it must be said again that the models studied needs to be more complex
than those used on data sets such as MNIST and with that comes a computational
cost. The experiment described in this report is cumbersome and needs sufficient
resources to tackle that.

33

6. Conclusion

34

Bibliography

[1] N. Agarwal, B. Bullins, and E. Hazan. “Second-Order Stochastic Optimization
for Machine Learning in Linear Time”. In: ArXiv e-prints (Feb. 2016). arXiv:
1602.03943 [stat.ML].

[2] J. M. Benitez, J. L. Castro, and I. Requena. “Are artificial neural networks
black boxes?” In: IEEE Transactions on Neural Networks 8.5 (Sept. 1997),
pp. 1156–1164. issn: 1045-9227. doi: 10.1109/72.623216.

[3] Jong Kyu Choi and Yong Gu Ji. “Investigating the Importance of Trust on
Adopting an Autonomous Vehicle”. In: International Journal of Human–Computer
Interaction 31.10 (2015), pp. 692–702. doi: 10.1080/10447318.2015.1070549.
eprint: https://doi.org/10.1080/10447318.2015.1070549. url: https:
//doi.org/10.1080/10447318.2015.1070549.

[4] R. Dennis Cook and Sanford Weisberg. ““Characterizations of an Empirical
Influence Function for Detecting Influential Cases in Regression.”” In: Tech-
nometrics 22.4 (1980), pp. 495–508. doi: 10.2307/1268187.

[5] Deep Learning 4 Java Documentation. A Beginner’s Guide to Deep Convolu-
tional Neural Networks (CNNs). June 2018. url: https://deeplearning4j.
org/convolutionalnetwork.

[6] Saeed Elnaj. The Uber Accident, Waymo Technology And The Future Of Self-
Driving Cars. June 2018. url: https://www.forbes.com/sites/forbestechcouncil/
2018/05/24/the-uber-accident-waymo-technology-and-the-future-
of-self-driving-cars/#6e09c7647814.

[7] Cabitza F, Rasoini R, and Gensini G. “Unintended consequences of machine
learning in medicine”. In: JAMA 318.6 (2017), pp. 517–518. doi: 10.1001/
jama.2017.7797. eprint: /data/journals/jama/936418/jama_cabitza_
2017_vp_170094.pdf. url: +%20http://dx.doi.org/10.1001/jama.2017.
7797.

[8] M. Foedisch and A. Takeuchi. “Adaptive real-time road detection using neural
networks”. In: Proceedings. The 7th International IEEE Conference on Intelli-
gent Transportation Systems (IEEE Cat. No.04TH8749). Oct. 2004, pp. 167–
172. doi: 10.1109/ITSC.2004.1398891.

[9] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for Au-
tonomous Driving? The KITTI Vision Benchmark Suite”. In: Conference on
Computer Vision and Pattern Recognition (CVPR). 2012.

35

http://arxiv.org/abs/1602.03943
https://doi.org/10.1109/72.623216
https://doi.org/10.1080/10447318.2015.1070549
https://doi.org/10.1080/10447318.2015.1070549
https://doi.org/10.1080/10447318.2015.1070549
https://doi.org/10.1080/10447318.2015.1070549
https://doi.org/10.2307/1268187
https://deeplearning4j.org/convolutionalnetwork
https://deeplearning4j.org/convolutionalnetwork
https://www.forbes.com/sites/forbestechcouncil/2018/05/24/the-uber-accident-waymo-technology-and-the-future-of-self-driving-cars/#6e09c7647814
https://www.forbes.com/sites/forbestechcouncil/2018/05/24/the-uber-accident-waymo-technology-and-the-future-of-self-driving-cars/#6e09c7647814
https://www.forbes.com/sites/forbestechcouncil/2018/05/24/the-uber-accident-waymo-technology-and-the-future-of-self-driving-cars/#6e09c7647814
https://doi.org/10.1001/jama.2017.7797
https://doi.org/10.1001/jama.2017.7797
/data/journals/jama/936418/jama_cabitza_2017_vp_170094.pdf
/data/journals/jama/936418/jama_cabitza_2017_vp_170094.pdf
+%20http://dx.doi.org/10.1001/jama.2017.7797
+%20http://dx.doi.org/10.1001/jama.2017.7797
https://doi.org/10.1109/ITSC.2004.1398891

Bibliography

[10] A. Ghorbani, A. Abid, and J. Zou. “Interpretation of Neural Networks is Frag-
ile”. In: ArXiv e-prints (Oct. 2017). arXiv: 1710.10547 [stat.ML].

[11] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. In:
ArXiv e-prints (Dec. 2014). arXiv: 1412.6980 [cs.LG].

[12] P. W. Koh and P. Liang. “Understanding Black-box Predictions via Influence
Functions”. In: ArXiv e-prints (Mar. 2017). arXiv: 1703.04730 [stat.ML].

[13] Scott Lundberg and Su-In Lee. “A unified approach to interpreting model pre-
dictions”. In: CoRR abs/1705.07874 (2017). arXiv: 1705.07874. url: http:
//arxiv.org/abs/1705.07874.

[14] Michael Miller and Jan Van Lent. “Monge’s Optimal Transport Distance
with Applications for Nearest Neighbour Image Classification”. In: CoRR
abs/1612.00181 (2016). arXiv: 1612.00181. url: http://arxiv.org/abs/
1612.00181.

[15] Randall Munroe. Machine learning. May 2018. url: https://xkcd.com/
1838/.

[16] Seiichi Murakami et al. “Automatic identification of bone erosions in rheuma-
toid arthritis from hand radiographs based on deep convolutional neural net-
work”. In: Multimedia Tools and Applications (Dec. 2017). issn: 1573-7721.
doi: 10.1007/s11042- 017- 5449- 4. url: https://doi.org/10.1007/
s11042-017-5449-4.

[17] Julian D Olden and Donald A Jackson. “Illuminating the “black box”: a ran-
domization approach for understanding variable contributions in artificial neu-
ral networks”. In: Ecological Modelling 154.1 (2002), pp. 135–150. issn: 0304-
3800. doi: https://doi.org/10.1016/S0304-3800(02)00064-9. url: http:
//www.sciencedirect.com/science/article/pii/S0304380002000649.

[18] Dong Huk Park et al. “Attentive Explanations: Justifying Decisions and Point-
ing to the Evidence”. In: CoRR abs/1612.04757 (2016). arXiv: 1612.04757.
url: http://arxiv.org/abs/1612.04757.

[19] Reza Rasti, Mohammad Teshnehlab, and Son Lam Phung. “Breast cancer
diagnosis in DCE-MRI using mixture ensemble of convolutional neural net-
works”. In: Pattern Recognition 72 (2017), pp. 381–390. issn: 0031-3203. doi:
https://doi.org/10.1016/j.patcog.2017.08.004. url: http://www.
sciencedirect.com/science/article/pii/S0031320317303084.

[20] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “"Why Should I
Trust You?": Explaining the Predictions of Any Classifier”. In: Proceedings
of the 22Nd ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining. KDD ’16. San Francisco, California, USA: ACM, 2016,
pp. 1135–1144. isbn: 978-1-4503-4232-2. doi: 10.1145/2939672.2939778.
url: http://doi.acm.org/10.1145/2939672.2939778.

[21] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep Inside Con-
volutional Networks: Visualising Image Classification Models and Saliency
Maps”. In: CoRR abs/1312.6034 (2013). arXiv: 1312.6034. url: http://
arxiv.org/abs/1312.6034.

36

http://arxiv.org/abs/1710.10547
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1703.04730
http://arxiv.org/abs/1705.07874
http://arxiv.org/abs/1705.07874
http://arxiv.org/abs/1705.07874
http://arxiv.org/abs/1612.00181
http://arxiv.org/abs/1612.00181
http://arxiv.org/abs/1612.00181
https://xkcd.com/1838/
https://xkcd.com/1838/
https://doi.org/10.1007/s11042-017-5449-4
https://doi.org/10.1007/s11042-017-5449-4
https://doi.org/10.1007/s11042-017-5449-4
https://doi.org/https://doi.org/10.1016/S0304-3800(02)00064-9
http://www.sciencedirect.com/science/article/pii/S0304380002000649
http://www.sciencedirect.com/science/article/pii/S0304380002000649
http://arxiv.org/abs/1612.04757
http://arxiv.org/abs/1612.04757
https://doi.org/https://doi.org/10.1016/j.patcog.2017.08.004
http://www.sciencedirect.com/science/article/pii/S0031320317303084
http://www.sciencedirect.com/science/article/pii/S0031320317303084
https://doi.org/10.1145/2939672.2939778
http://doi.acm.org/10.1145/2939672.2939778
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034

Bibliography

[22] M. Szarvas et al. “Pedestrian detection with convolutional neural networks”.
In: IEEE Proceedings. Intelligent Vehicles Symposium, 2005. June 2005, pp. 224–
229. doi: 10.1109/IVS.2005.1505106.

37

https://doi.org/10.1109/IVS.2005.1505106

Bibliography

38

A

Appendix 1

Top 100 from CG method experiment.

I

A. Appendix 1

Figure A.1: Training images with top 1 - 5 highest influence.

II

A. Appendix 1

Figure A.2: Training images with top 6 - 10 highest influence.

III

A. Appendix 1

Figure A.3: Training images with top 11 - 15 highest influence.

IV

A. Appendix 1

Figure A.4: Training images with top 16 - 20 highest influence.

V

A. Appendix 1

Figure A.5: Training images with top 21 - 25 highest influence.

VI

A. Appendix 1

Figure A.6: Training images with top 26 - 30 highest influence.

VII

A. Appendix 1

Figure A.7: Training images with top 31 - 35 highest influence.

VIII

A. Appendix 1

Figure A.8: Training images with top 36 - 40 highest influence.

IX

A. Appendix 1

Figure A.9: Training images with top 41 - 45 highest influence.

X

A. Appendix 1

Figure A.10: Training images with top 46 - 50 highest influence.

XI

A. Appendix 1

Figure A.11: Training images with top 51 - 55 highest influence.

XII

A. Appendix 1

Figure A.12: Training images with top 56 - 60 highest influence.

XIII

A. Appendix 1

Figure A.13: Training images with top 61 - 65 highest influence.

XIV

A. Appendix 1

Figure A.14: Training images with top 66 - 70 highest influence.

XV

A. Appendix 1

Figure A.15: Training images with top 71 - 75 highest influence.

XVI

A. Appendix 1

Figure A.16: Training images with top 76 - 80 highest influence.

XVII

A. Appendix 1

Figure A.17: Training images with top 81 - 85 highest influence.

XVIII

A. Appendix 1

Figure A.18: Training images with top 86 - 90 highest influence.

XIX

A. Appendix 1

Figure A.19: Training images with top 91 - 95 highest influence.

XX

A. Appendix 1

Figure A.20: Training images with top 96 - 100 highest influence.

XXI

	List of Figures
	List of Tables
	Introduction
	Motivation
	Goals
	Contributions
	Limitations
	Outline of the thesis

	Theory
	Convolutional Neural Networks
	Layer types
	Convolutional layer
	Max pooling layer
	Softmax layer and cross entropy

	Training - Gradient descent

	Influence Functions
	Necessary traits of the system
	Twice-differentiable loss function

	Dealing with the inverse hessian
	Conjugate Gradients
	Hessian assumptions

	LiSSA: Linear Stochastic Second-Order Algorithm

	Methods
	Implementation
	Leave-one-out-retraining
	Pedestrian detection
	Data sets
	Network
	Code Design

	Results
	Pedestrian detection problem
	Network performance
	Leave-one-out retraining results

	Discussion
	Reasons for low correlation
	Image interpretation
	Retraining from
	Dataset
	Further research
	Road Segmentation
	Earth mover's distance

	Conclusion
	Appendix 1

