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Abstract
Machine learning and mathematical models are two tools used in prior research of
stock predictions. However, the stock market provides enormous data sets, making
machine learning an expensive and slow task, and a solution to this is to distribute
the computations. The input to the machine learning in this thesis uses market
orders, which is a different way to make short-term predictions than previous work.
Distributing machine learning in a modular configuration is also implemented in
this thesis, showing a new way to combine predictions from multiple models. The
models are tested with different parameters, with an input base consisting of a list of
the latest market orders for a stock. The distributed system is divided into so-called
node-boxes and tested based on latency. The distributed system works well and has
the potential to be used in large systems. Unfortunately, making predictions with
market orders in neural networks does not provide good enough performance to be
viable. Using a combination of predictions and financial indicators, however, shows
better results.

Keywords: Machine learning, deep neural network, distributed systems, stock mar-
ket prediction, market orders.

v





Acknowledgements
We would like to thank our supervisor Philippas Tsigas for the guidance, support,
and advice during the thesis.

We would also like to thank our examiner Andrei Sabelfeld for taking the time to
read trough our thesis and giving us feedback.

Finally we want thank our partners-in-life Amanda and Sonja for supporting us
throughout this thesis and always keeping spirits high. Long live beters.

Oscar Carlsson, Kevin Rudnick, Gothenburg, June 2021

vii





Contents

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Aim of The Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Risk and Ethical Considerations . . . . . . . . . . . . . . . . . . . . . 2
1.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory 5
2.1 Stock market momentum . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Lagging and leading indicators . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Exponentially weighted moving average . . . . . . . . . . . . . 5
2.2.2 Relative Strength Index . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Moving Average Convergence Divergence . . . . . . . . . . . . 6
2.2.4 Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.5 Price Channels . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.1 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2.1 Backpropagation . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Activation functions . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.3.1 ReLU . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3.2 Leaky ReLU . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.1 Min-max Normalization . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Z-Score Normalization . . . . . . . . . . . . . . . . . . . . . . 11

3 Previous work 13

4 Methods 15
4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Building features . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.1.1 Price . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.1.2 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.1.3 Financial indicators . . . . . . . . . . . . . . . . . . 16

ix



Contents

4.1.2 Matching x and y data . . . . . . . . . . . . . . . . . . . . . . 16
4.1.3 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Distributed system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.1 Node-Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.2 Smart-sync . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.3 Applying Techniques in Layer 1 . . . . . . . . . . . . . . . . . 21
4.2.4 Coordinator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.5 Coordinator Protocol . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.6 Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.7 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.8 Cycling node-boxes . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.9 Financial Indicator Node . . . . . . . . . . . . . . . . . . . . . 24
4.2.10 Test Bench . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Stock predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.1 PyTorch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.2 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.3 Input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.4 Output data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.5 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.6 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Results 31
5.1 Feed-forward Neural Network . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 Min-max normalization . . . . . . . . . . . . . . . . . . . . . . 31
5.1.2 Z-normalization . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.2.1 Swedbank . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.2.2 Nordea . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Distributed System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.1 Smart-sync . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.2 Node-Boxes latency . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.3 Discussion of Smart-sync . . . . . . . . . . . . . . . . . . . . . 39
5.2.4 Discussion of Node-boxes . . . . . . . . . . . . . . . . . . . . . 39

5.3 Distributed combined models . . . . . . . . . . . . . . . . . . . . . . 41
5.3.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 General remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4.1 Convergence Towards Average . . . . . . . . . . . . . . . . . . 45
5.4.2 Offset in X and Y axis . . . . . . . . . . . . . . . . . . . . . . 45
5.4.3 Deep and Shallow Network performance . . . . . . . . . . . . 45
5.4.4 Network instability . . . . . . . . . . . . . . . . . . . . . . . . 46
5.4.5 Financial Indicators Combined With Market Orders . . . . . . 47

6 Conclusion 49
6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1.1 Long Short-Term Memory and Transformers . . . . . . . . . . 50
6.1.2 Train model with data from several stocks . . . . . . . . . . . 50
6.1.3 Volume indicators . . . . . . . . . . . . . . . . . . . . . . . . . 50

x



Contents

6.1.4 Train using node-boxes . . . . . . . . . . . . . . . . . . . . . . 50
6.1.5 Optimize node-box code . . . . . . . . . . . . . . . . . . . . . 51
6.1.6 Classification predictor . . . . . . . . . . . . . . . . . . . . . . 51

Bibliography 53

A Appendix 1 I

xi



Contents

xii



List of Figures

4.1 The base of a Node-Box . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Node-Box with Swebank’s 200 latest market orders . . . . . . . . . . 18
4.3 Three nodes in layer 1, with their targets connected to one node in

layer 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Basic structure of the smart-sync. . . . . . . . . . . . . . . . . . . . . 19
4.5 Smart-sync with data added. The data in green is completed data

that has been sent to be processed. The data in yellow is still missing
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.6 The dark green color indicates old data that has been overwritten. . . 21
4.7 Nodes in layer 1 taking turns to calculate their target, possibly achiev-

ing higher processing power . . . . . . . . . . . . . . . . . . . . . . . 21
4.8 Node-Boxes asking the coordinator who and how to communicate . . 22
4.9 Two Node-Boxes are doing the same calculations to achieve redundancy. 23
4.10 Two Node-Boxes doing different calculations to parallel processing. . . 24
4.11 Two nodes cycling their workloads, increasing the processing power . 24
4.12 FI-Node, which gives financial indicators as features to the Node-Box

in layer 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.13 Graph showing how the data is split in the distributed system. Test

L1 overlaps Train L2, Eval L2, and Test L2 as the same dataset is
used. Lx means Layer x. . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 Graphs for predictions of three models using min-max normalized
data with different window sizes; 70, 200 and 700. All graphs depict
the same time period . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Two graphs for Swedbank stock price prediction using model
70_100e_lr0.0001_S. Left graph shows prediction for 3 hour window
of Swedbank stock. The left shows a 30min window. Larger figures
can be found in Appendix I. . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Two graphs for price prediction using model 200_50e_lr0.0001_S.
Left graph shows prediction for 3 hour window of Swedbank stock.
The left shows a 30min window. Larger figures can be found in Ap-
pendix I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.4 Two graphs for price prediction using model 700_100e_lr0.0001_S.
Left graph shows prediction for 3 hour window of Swedbank stock.
The left shows a 30min window. Larger figures can be found in Ap-
pendix I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

xiii



List of Figures

5.5 Two graphs for price prediction using model 70_100e_lr0.0001_N.
Left graph shows prediction for 3 hour window of Nordea stock. The
left shows a 30min window. Larger figures can be found in Appendix I. 35

5.6 Two graphs for price prediction using model 200_100e_lr0.0001_N.
Left graph shows prediction for 3 hour window of Nordea stock. The
left shows a 30min window. Larger figures can be found in Appendix I. 36

5.7 Two graphs for price prediction using model 700_30e_lr1e-05_N.
Left graph shows prediction for 3 hour window of Nordea stock. The
left shows a 30min window. Larger figures can be found in Appendix I. 36

5.8 Graph showing the difference between Algorithm A and B. . . . . . . 38
5.9 Graph showing the fastest, mean, and slowest time it took to run n

node-boxes in layer 1, with one node-box in layer two. The test is
done over a 5 minute interval and is measured from the time a node
in layer 1 starts its processing, until the node in layer 2 calculates it
prediction from that timestamp. . . . . . . . . . . . . . . . . . . . . . 39

5.10 Graph shows stock price predictions for the distributed model
vol50_lr0.01_None_D. Pred70, Preds200 and Preds700 refers to the
prediction inputs used for the distributed model. Predictions for a 3
hour Swedbank window. . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.11 Graph shows stock price predictions for the distributed model
vol50_lr0.01_None_D. Pred70, Preds200 and Preds700 refers to the
prediction inputs used for the distributed model. Predictions for a 30
min Swedbank window. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.12 Graph shows stock price predictions for the distributed model
ema15_macd_rsi5_rsi30_vol100_vol50_lr0.001_NordeaPred70_D.
Pred70, Preds200 and Preds700 refers to the prediction inputs used
for the distributed model. Predictions for a 3 hour Swedbank window. 43

5.13 Graph shows stock price predictions for the distributed model
ema15_macd_rsi5_rsi30_vol100_vol50_lr0.001_NordeaPred70_D.
Pred70, Preds200 and Preds700 refers to the prediction inputs used
for the distributed model. Predictions for a 30 min Swedbank window. 44

5.14 Price prediction result of a section of the test data for Swedbank_A,
using model ema_70_35E_30s_1e-06_time1. X-axis is num-
bering of datapoints from the start of the test set. Data collected
from 08/25-2020 to 15/3-2021 . . . . . . . . . . . . . . . . . . . . . . 46

5.15 Price prediction result of a section of the test data for Swedbank_A,
using model price_200_5E_15s_1e-06_time1. X-axis is num-
bering of datapoints from the start of the test set. Data collected
from 08/25-2020 to 15/3-2021 . . . . . . . . . . . . . . . . . . . . . . 46

5.16 Average test loss for two independent runs using the same data. Nor-
malization is not applied. . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.17 Average test loss for two independent runs using the same data. Nor-
malization applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.1 Prediction of Nordea stock with 70 market orders as input, using
model 70_100e_lr0.0001_N. The graph is shown over a 3 hour window. II

xiv



List of Figures

A.2 Prediction of Nordea stock with 70 market orders as input, using
model 70_100e_lr0.0001_N. The graph is shown over a 30 minute
window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II

A.3 Prediction of Nordea stock with 200 market orders as input, using
model 200_100e_lr0.0001_N. The graph is shown over a 3 hour win-
dow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III

A.4 Prediction of Nordea stock with 200 market orders as input, using
model 200_100e_lr0.0001_N. The graph is shown over a 30 minute
window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III

A.5 Prediction of Nordea stock with 700 market orders as input, using
model 700_30e_lr1e-05_N. The graph is shown over a 3 hour window. IV

A.6 Prediction of Nordea stock with 700 market orders as input, using
model 700_30e_lr1e-05_N. The graph is shown over a 30 minute
window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V

A.7 Prediction of Swedbank stock with 70 market orders as input, using
model 70_100e_lr0.0001_S. The graph is shown over a 3 hour window. VI

A.8 Prediction of Swedbank stock with 70 market orders as input, using
model 70_100e_lr0.0001_S. The graph is shown over a 30 minute
window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII

A.9 Prediction of Swedbank stock with 200 market orders as input, using
model 200_50e_lr0.0001_S. The graph is shown over a 3 hour window.VIII

A.10 Prediction of Swedbank stock with 200 market orders as input, using
model 200_50e_lr0.0001_S. The graph is shown over a 30 minute
window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VIII

A.11 Prediction of Swedbank stock with 700 market orders as input, using
model 700_100e_lr0.0001_S. The graph is shown over a 3 hour window. IX

A.12 Prediction of Swedbank stock with 700 market orders as input, using
model 700_100e_lr0.0001_S. The graph is shown over a 30 minute
window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX

A.13 Prediction of Swedbank stock using the distributed model
rsi30_lr0.01_None_D. The graph is shown over a 3 hour window. . . X

A.14 Prediction of Swedbank stock using the distributed model
rsi30_lr0.01_None_D. The graph is shown over a 30 minute window. XI

xv



List of Figures

xvi



List of Tables

4.1 The hardware specification of the test bench. . . . . . . . . . . . . . . 25

5.1 MSE and MAE test-set losses for models using min-max normaliza-
tion. Swedbank between 1 Mars - 19 April . . . . . . . . . . . . . . . 32

5.2 Table showing loss scores over Swedbank test set, 1 Mars to 19 April
for three different models. Losses for a 10 minute average strategy
and the offset strategy is also shown. Swedbank single models (the
best ones, used in dist ) 70 uses time, 200, 700 does not (Deep 30s all) 33

5.3 Table showing loss scores over Nordea test set, 1 Mars to 19 April for
three different models. Losses for a 10 minute average strategy and
the offset strategy is also shown. . . . . . . . . . . . . . . . . . . . . 35

5.4 Comparison between Algorithm A and B with different input-sizes. . 38
5.5 Node-boxes benchmark as n : m, where n is the number of nodes in

layer 1, and m the number of nodes in layer 2 . . . . . . . . . . . . . 38
5.6 Table shows MSE and MAE losses for layer two models used in the

distributed network. Sorted by MSE loss. Data is Swedbank stock
price for 13 April - 19 April . . . . . . . . . . . . . . . . . . . . . . . 41

5.7 Table shows MSE and MAE losses for top performing distributed
models and single stock models. Data is Swedbank stock price for 13
April - 19 April . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xvii



List of Tables

xviii



1
Introduction

The stock market introduces considerable monetary opportunities for investors with
their ears to the ground. Buying when the market is low and selling when it is
high is a common saying in the stock market community. However, employing this
strategy with good timing and precision is a challenging task. To stand a chance,
investors use various predictive techniques to gain some market insight. However,
with the massive amount of traded stocks each second[47] it can be a daunting task
to forecast this massive market. Traditionally investors have used mathematical
models for different kinds of technical analyses, such as the Black-Scholes model
[24], the Heston model [9] or the Gamma Pricing model [25]. These models are
proficient and are still in use today. Other financial tools often used in conjugation
with pricing models are financial indicators such as the Moving Average Conver-
gence Divergence (MACD), the Relative Strength Index (RSI), and the Stochastic
Oscillator (KDJ). Traditionally an investor needs experience to combine all these
models and indicators into a final quality prediction. Studies show that these tech-
nical analysis techniques can increase profitability when being acted upon compared
to a buy-and-hold strategy [6, 50, 37].

Even though several pricing models have shown promising results, some studies still
debate whether the stock market is predictable [44]. The efficient market hypoth-
esis and random walk hypothesis [26] are two examples of such theories debating
stock market predictability, both of which state that the stock price is not based
on historical value or historical movement but instead based on new information.
Moreover, the hypothesis state that the value of a stock is precisely its price and
is determined instantly based on new information. An opposite school of thought
states that the market is indeed predictable and thus is not arbitrarily random. It
states that the market price moves in trends and that market history repeats itself.
Since market price is determined (in the end) by humans selling and buying stocks,
the human psyche determines the market, which does not necessarily react instantly
to new information and is prone to follow trends.
In the hopes of detecting such price trends, several researchers have deployed price
prediction models using neural networks [11, 29]. Neural networks are function
approximators that can learn advanced patterns in data. Furthermore, neural net-
works are universal, meaning they can make predictions on any data, thus not
limiting choices of input data. For example, Chong et al.[5] created a deep neural
network that inputs several 5min intervals of stock return data from several differ-
ent stocks, showing the potential of cross-stock data. Qian and Rasheed [36], using
daily return data, increased their prediction accuracy with an ensemble of several
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1. Introduction

machine learning models, combining artificial neural networks, decision trees, and
k-nearest neighbors. This ensemble outperformed all individual models.
In the stock market, there are two main types of transactions; market orders and
limit orders. Market orders are placed at the current market price and executed
nearly instantly. The buyer or seller can not decide the price of the transaction.
Setting an asking price lower or higher than the market price creates a limit order,
which executes when it matches someone else’s market order. Several researchers
have created models which aim to forecast stock market price based on limit order
status [45, 41], and other researchers have created models using fixed interval price
data, for example, daily price or 5min interval price segments. However, to the best
of our knowledge, no research exists describing the use of market orders directly in
real-time.

1.1 Aim of The Project
The main contribution of this thesis will be to create a model that attempts to
forecast the stock market using market orders in real-time. Additionally, the massive
quantity of stock information, financial indicators, and earnings reports that can be
gathered from the stock market indicate the need for a system that can utilize several
such inputs at once. Our goal is to create a system that inputs several different types
of predictive information and creates a final prediction. We hypothesize that by
utilizing several models, prediction prices from different stocks, and various window
sizes, the combined prediction could produce a better result than any single model.
Additionally, since we wanted to display the computational power potential of a
distributed system, using market orders was a natural decision.

1.2 Risk and Ethical Considerations
There are several considerations to have in mind when working with the stock mar-
ket. First of all, legalities must be taken into considerations, such as Pump and
Dump Schemes[39] and Insider Trading[38]. In the case of this thesis, there is no
trading or social interaction done, so there is no risk of any impact on the stock
market. As there is no impact on the stock market, there is no need to consider any
legalities.

An ethical issue to consider is the idea of machine learning trying to understand
human behavior for the possibility of earning money (when someone else will lose
it). In this case, the program will try to predict stock prices by learning from its
previous history. As it will only look at individual market orders, which can be seen
as individual trades between humans, it will solely base its prediction on human
behavior. It will try to find patterns such as optimism and pessimism, which could
correspond to an upcoming rise or fall in the stock market price. However, this is
solely speculation, and the program might find other patterns that a human cannot
see or understand.

2



1. Introduction

1.3 Limitations
As no historic market order data was found for Stockholmsbörsen, the data was
collected daily as soon as the thesis was proposed. The short time resulted in a
limited amount of historic market order data, which could impact the performance
of the machine learning algorithms.

Our data will consist of market orders, on which we will perform our forecasting.
However, on the stock market, one can perform several different orders. Limit or-
ders are one of those. Limit orders can contain a lot of predictability information,
as shown by Zheng[53]. However, we will not use this data and limit ourselves to
market orders.

The system will use historical stock data, as previously mentioned. Thus, the system
will not use live stock market data. Using live data would have been an intriguing
step to take, but it would add little value to the academic goal of this thesis.

The testing of the distributed part of the thesis was done on a single computer,
as there was not possible to access an extensive network of computers. It would
theoretically work over several computers, but it will not be possible to get any
performance statistics from this thesis.

1.4 Thesis outline
Six chapters divide the thesis. After the introduction, the theory chapter explains
different machine learning aspects and financial indicators.

In chapter 3, we examine previous work of stock prediction with machine learning
and distributed machine learning. Several different techniques that inspired this
thesis are mention.

Chapter 4 explains the machine learning components used in our predictive models
and presents the distributed system.

Chapter 5 describes the result of the thesis and discusses those results. The main
focus of the results is the performance of the predictions, but it also includes some
benchmarks of the distributed system.

Chapter 6 is the final chapter which contains the conclusion and future work.
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2
Theory

In this chapter, we present relevant background information and theories. The first
sections describe the stock market and relevant financial indicators. Following this,
machine learning information is explained, such as neural networks, backpropaga-
tion, and normalization.

2.1 Stock market momentum
Stock market momentum can be a good indicator for deciding between a long or
short position for any investor. Momentum in the stock market serves to measure
the overall trend based on historical data. Several researchers have shown that
following a strategy based on stock market momentum can be highly profitable [12,
17]. Many indicators can measure stock market momentum, such as RSI or MACD,
which are described in further detail below.

2.2 Lagging and leading indicators
A lagging indicator is an indicator that aims to explain the past. In doing so, one
might find specific trends that indicate what will happen in the future. For example,
if the unemployment rate went up last month and this month, one could say that it
seemingly will rise again next month. This prediction is, of course, not certain, as
the unemployment rate can not climb indefinitely.
A leading indicator on the other hand, says what will happen in the future. Events
that have happened but have not yet affected the process at hand are the basis for
these indicators. For example, if customer satisfaction is way down, the company
performance might not be affected yet, but it might be in the future.

2.2.1 Exponentially weighted moving average
Exponentially weighted moving average (EMA) is a technique used to calculate the
average of rolling data. What makes EMA unique is that it uses the constant α
to determine how much impact older data should have on the new average. The
expression used for EMA is as follows:

x̂k = αx̂k−1 + (1− α)xk
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where 0 < α < 1. x̂k is the calculated EMA, α is the constant to determine the
importance of older data, also known as the filter constant. x̂k−1 is the most recent
EMA, and xk is the current value [43].

2.2.2 Relative Strength Index
Relative Strength Index (RSI) is a financial indicator that shows the momentum of
a stock. It is an oscillator that ranges from 0 to 100. It is calculated by comparing
the decrease and increase of closing prices over a certain period. Presented by Welles
wilder Jr in 1978, this indicator has seen significant use among investors. Tradition-
ally, an RSI value under 30 is considered a buy signal, and a value over 70 a sell
signal. On average, the RSI value is 50, meaning any RSI over this value indicates a
possibly overbought security, and anything under a possibly oversold security [42].

When calculating the RSI value, a time window first needs to be determined. Welles
Wilder presented a period of 14 periods as an appropriate window. The periods
could be any time intervals, for example, days, weeks, or months. Then two expo-
nentially moving averages are calculated. One over any periods where the closing
price is down, and one for periods with a higher closing price. The RS value can be
determined by:

RS = EMAUP
EMADOWN

The following formula is used to convert this relative strength value into a value
between 0 and 100, :

RSI = 100− 100
1 +RS

The result RSI is the relative strength index value.

2.2.3 Moving Average Convergence Divergence
Moving Average Convergence Divergence (MACD) is a momentum-based indicator
that shows the relationship between long and short-term exponentially moving aver-
ages. In other terms, it helps decide if the market is overbought or oversold compared
to the expected trend, the long-term exponentially moving average. MACD value is
calculated simply by subtracting a short-running EMA by a long-term EMA; thus,
a negative value indicates that the security is underperforming short term, and vice
versa for a positive MACD value [52].
Normally the MACD value is based on a 12 period EMA and a 26 period EMA and
can thus be calculated by the following formula:

MACD = EMA12 − EMA26

Any MACD movement that crosses zero typically indicates a buy or sell signal.
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2.2.4 Volatility
Volatility is a statistical measure of the dispersion of a stock. Dispersion is the
expected range for which a value is predicted to fall within, in other terms, the
uncertainty of a particular position. The uncertainty could be determined by, for
example, the returns or risk of a portfolio.

If the price of a stock falls and climbs rapidly over a certain period, the security can
be considered volatile. How much the price oscillates around the mean price in a time
segment can be interpreted as the volatility value. Thus stocks with high volatility
have less predictability and are considered higher risk than stocks with low volatility.

The variance of the price over some time defines historical volatility. The standard
deviation can measure historical volatility during this period [10].

2.2.5 Price Channels
Price channels are indicators for the highest and lowest price trends over a time
segment. Donchian channels are a way to calculate price channels over different
time segments. The highest point, not including the current timestamp, of the
stock price during a time segment calculates the top channel. During the same time
segment, the stock’s minimum price calculates the bottom channel. The current
price is not included in the time segment to make it possible to see if the current
price breaks the current trend of the top or bottom channel. Breaking the current
trend could indicate a future bear or bull trend [7, 4].

2.3 Machine Learning
Machine learning is a process in which a computer improves a model’s predictability
power by finding patterns in data. By processing a large amount of sample data
points from some distribution, the computer can learn how to interpret the data
and output an accurate result. These inputs could be pre-collected annotated data
or data gathered live via interaction with an environment. Machine learning can
solve many different problems, including item classification, regression, and text
processing. Different machine learning algorithms are thus more suited to specific
problems than others. For example, a decision tree will not be as suited for image
classification as a Convolutional neural network (CNN) [28].

2.3.1 Neural networks
Neural networks are a type of machine learning built by layers of weights and biases
that can learn most classification or regression tasks. Often portrayed as a network of
nodes, a neural network can train to approximate any non-linear function. Between
nodes, an activation function is used that introduces non-linearity to the model,
explained in further detail below. Typically a neural network has several layers,
starting with the input layer. This layer inputs some vector x, which then propagates
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forward through the network, finally reaching the output layer. Layers between the
input and output layers are called hidden layers. The term deep neural networks
refer to networks with multiple hidden layers. Neural networks require a larger
amount of data than other machine learning approaches since they contain more
parameters to optimize than other machine learning techniques.

2.3.2 Loss function
Loss functions, or cost functions, present a way to evaluate the performance of clas-
sifiers. It does so by representing the error of some predictions compared to the
target with an actual number. Intuitively this is needed since simply measuring a
classifier in simple wrong, or correct terms does not provide any numerical scale re-
garding how accurate the classifier is. For example, if a model can classify the animal
species of a picture, such as a cat, predicting a dog is better than predicting a whale.

As predictions improve, the value given by the loss function decreases; thus, training
a classifier is an optimization problem where we seek the function f , which maps
inputs to outputs that minimize the loss. Let L(·, ·), be the loss function and
L(f(xi), yi) be the loss for prediction f(xi), where xi is the input vector, and for yi
the target value. For N training samples the optimization problem is [48]

min
f

1
N

N∑
i=1

L(f(xi), yi)

Choosing a loss function is an integral part of solving this optimization problem
satisfactorily. For example, a typical loss function for classification tasks is the
cross-entropy loss. The cross-entropy loss is defined as:

L(f(xi), yi) = yilog(σf(xi))

where σ(·) is the probability estimate, and yi is the target label for data point i.
The greater probability value from σ for a correct answer will yield a lower loss.

For regression tasks, a typical loss function is the Mean Squared Error (MSE), also
known as L2 loss.

MSE =
∑n
i=1(yi − f(xi))2

n

where yi is the target value for data sample i and f(xi) is the predicted value [20].

An alternative way to calculate loss is to use the mean absolute error (MAE), cal-
culated as following:

MAE =
∑n
i=1 |f(xi)− yi|

n
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where f(xi) is the prediction, yi is the target value for data sample i, and n is the
number of values [49].

2.3.2.1 Backpropagation

Backpropagation is a method for training and fitting neural networks. The word
back refers to the method used in doing this, where gradients are calculated from end
to start, backward, in order to calculate them efficiently. Gradients are the direction
that a function is increasing. Thus, by calculating all gradients for all weights with
respect to a loss function, one can use the gradients with an optimization algorithm,
such as Stochastic gradient descent.
Calculating gradients using more traditional approaches is done by calculating the
gradient for each weight independently, which grows exponentially in a neural net-
work. On the other hand, backpropagation utilizes previously calculated gradients,
finding all gradients in linear time.

If J measures the error between an output from the model and the target, then ∆J
is the movement of the loss function, which we are trying to minimize. We call
∆J the gradient for the loss function that builds up a vector containing all partial
derivatives of weights and biases.

Let, x: the input vector
y: the target vector
J : the loss or error function
L: amount of layers in neural network
W l: the weights connecting layers l − 1 and l
bl: the bias for layer l
f l: activation function for layer l

A single layer in the neural network has the following structure:
zl = W l ∗ al−1 + bl

al = f l(zl)
where al is the output of layer l and al−1 is the previous layers output.

The gradients as mentioned before is calculated from end to start, thus using the
chain rule:
δJ
δW l = δW l

δzl
δal

δzl
δJ
δal

This can be expanded to each layer of the network since:
δJ

δal−1 = δzl

δal−1
δal

δzl
δJ
δal

Thus reusing some of the derivatives of layer l for finding the derivatives for layer
l − 1. This propagates through the nodes until the start is reached in which case
a0 = x.

9



2. Theory

Using all the partial derivatives for the weights and biases, the gradient ∆J is then:

∆J =



δJ
δW 1
δJ
δb1

. . .
δJ
δWL

δJ
δbL



2.3.3 Activation functions
Activation functions that output small values for small value inputs and large out-
puts for large value inputs if that value reaches a threshold. This "non-linearity,"
where the output drastically changes at some threshold, introduces neural networks’
ability to learn complex tasks.

2.3.3.1 ReLU

ReLU (rectified linear activation function) has the following property:

yi =

xi, if xi ≥ 0
0, if xi < 0

(2.1)

This property means that y should equal x unless it is lower than 0, and in that
case, it is 0. ReLU is classified as a non-saturated activation function [51].

2.3.3.2 Leaky ReLU

Leaky ReLU is a variant of ReLU which will not set the negative values to 0. The
definition is as following:

yi =

xi, if xi ≥ 0
xi

ai
, if xi < 0

(2.2)

where ai is a constant in Z+ [51]. A problem with a regular ReLU is called the dying
ReLU, which results in neurons becoming inactive, making all input result in an
output of 0 [22]. Leaky ReLU solves this problem as it never changes any output to
0 [23]. Research suggests that leaky ReLU gives a better result than regular ReLU
[51].

2.4 Normalization
The purpose of normalization is to bring different data sets to a similar scale. The
reason is to equalize the impact of data points for the machine learning algorithm.
For example, without normalization, data sets with huge numbers could overpower
data sets with smaller numbers, even though both of their data could be equally
important for the machine learning [32].
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2.4.1 Min-max Normalization
Min-max normalization is a normalization technique where all values in a data-set
are linearly transformed into fitting between a minimum and maximum value, such
as 1 and 0. Thus, 0 Would correspond to the lowest value in the original data-set
and 1 to the highest value. The function to calculate min-max normalization of a
data point is as follows:

f(x) = x− xmin
xmax − xmin

where xmin is the original minimum value in the data set and xmax is the maximum
value [32].

2.4.2 Z-Score Normalization
Z-Score normalization normalizes the data in a way that compensates for outliers. If
a single value in a data-set is much higher or lower than the rest of the data points,
using min-max normalization would skew the result, as almost all data points will be
in the lower or higher section of the normalized data. Z-Score normalization solves
this problem by using the mean and standard deviation. The created normalized
data will hover around zero, depending on their standard deviation. The function
for Z-Score normalization is as following:

f(x) = x− µ
σ

where µ is the mean value of the data set, and σ is the standard deviation [32].
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3
Previous work

Several researchers have published studies applying neural networks to forecast the
stock market. Many have also done so together with financial indicators. This sec-
tion presents relevant work to this thesis and how our approach differs from related
work.

In the scope of input data for stock forecasting, most researches lean towards longer
time segments, often using daily price increments [33, 18, 31]. Using daily prices
provides a broader, more macroeconomic viewpoint for models to make predictions
and requires an extended data collection period. Other research has used shorter
time segments, in the order of minutes, [5, 40], in turn shortening data collection
time. However, we have not found any research which attempts to utilize direct
market orders, which show price jumps in real-time.

Numerous studies are published showing the use of machine learning for financial
forecasting. Furthermore, the use of neural networks for this task has seen much
research [5, 19]. For example, Yang et al. [3] and shows that the daily closing price
of the Shanghai market can be predictable using artificial neural networks. Chong
et al.[5] presents a deep neural network that utilizes historical returns from several
stocks, showing with a sensitivity matrix that stock prices are to some degree cor-
related with each other. Hoseinzade et al. [16] also show that cross stock prices are
correlated using a convolutional neural network (CNN), including time as an input
dimension.

Patel et al. [34] create several machine learning networks for predicting stock market
prices. They investigate the performance of combing different networks in a hybrid
system. Using data from two different Indian indexes, they create an input vector
containing ten financial indicators, such as RSI, MACD, and daily close. From their
experimental results, the use of a two-stage fusion network reigns supreme. The
first stage in the model consisting of a Support vector regression (SVR) following
by a neural network. Patel et al. further explore using different machine-learning
techniques but do not investigate how different indicators affect the result.

Agrawal et al. [1] further investigates the use of financial indicators for stock price
prediction. Training an LSTM network using both volume and price indicators, they
achieve high classification scores. Their experiments reveal that moving average and
MACD correlate highly with the closing price. Dixon et al. [8] designs a deep neural
network which input features consist of lagged price differences and moving averages
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with varying window sizes. He concludes that DNN is a promising platform for stock
price prediction combined with financial indicators.

As data size and data complexity increase, predictive models will too. Increasing lo-
cal computational power has a limit, financial or physical. Distributed models serve
as a solution to this problem, using the power from several computers in parallel.
In 2014 Mu Li et al.[21] showed, using a parameter server, they could efficiently
distribute a single model’s parameters over several computation nodes. All nodes
calculate gradients for different data samples in this system, where-after a server
calculated new weights from all gradients, which are returned to the nodes.

In [14] Hajewski and Oliveira create an SmSVM distributed network for ensemble
learning. Here several worker nodes create predictions that a single master node
collects, and the final output is simply the majority vote of all worker predictions.
Predictions are used as votes since all models need to approximate the same func-
tion; that is, the models try to predict the same target. Ahmed et al. [2] creates
a similar network of machine learning models, creating a multi-model ensemble of
machine learning models in order to forecast weather conditions.
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Methods

This chapter explains the procedure that was applied to obtain our results. Fur-
thermore, it describes utilized tools, libraries, and algorithms.

4.1 Data
All data used in this thesis is based on market orders from Nasdaq OMX Nordiq[30].
The data was gathered using their Download CSV options on the various stock
overviews. Via this button, all daily market orders for each stock could be collected.
Each market order contained price, time of trade, stock id, amount of shares etc.
A script was written which collected this data daily, starting on the 25:th of Au-
gust 2020 and continuing until the 19:th of April 2021. A CSV file for each stock
combined the market orders, making it easy to process several months’ worth of data.

4.1.1 Building features
The raw market orders obtained from the stock exchange need to be processed into
features to be used with machine learning. This section describes what the input
features for the neural networks contain and how the features are created.

4.1.1.1 Price

For each second during trading hours, all new market orders are placed into a fixed
size queue. The size of this queue is referred to as window size for the prediction
models. The values in this queue are appended to a CSV file, where each row cor-
responds to each second. This means that the CSV file contains the window size
amount of market order prices for each second of open hours.

The window sizes tested are 70, 200, and 700. It should be noted that it is impossible
to determine any time segment from the market orders, as it is unknown if the values
in the queue would be replaced in one second or over several minutes.

4.1.1.2 Time

In the CSV file created, each row represents one second. A separate column for each
price can be added to keep track of the time for each market order. The time is
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normalized for each day. The formula for the normalization is the following:

F (x) = x

32400
where x is the timestamp adjusted to start at 0 and end at 32400. In other words
the first timestamp of the day gets offset to become zero, the second timestamp one,
and so on until the final timestamp of the day, which will become 32400.

4.1.1.3 Financial indicators

Several financial indicators were calculated in order to be used in neural networks.
The financial indicators used were RSI, MACD, Volatility, EMA, and Price Chan-
nels. These indicators were calculated using the market orders described above.
Many of these indicators describe change over a specific time interval, in which case
several different time variations was calculated, for example, a 10-minute EMA and
a 30-minute EMA.

Donchian channels inspired the implementation of the price channels, but the cal-
culation of the max and min points differ. In order to find a max point for the price
channels, two steps are performed. First, the time segment looked at is split into n
number of sections. Secondly, the maximum points in the first and last section are
selected, which is then used to calculate a straight line between the points in the
following way:

y1 = maxPoint1

y2 = maxPoint2

x1 = timestampMaxPoint1

x2 = timestampMaxPoint2

k = ∆y
∆x = y2 − y1

x2 − x1

m = y − kx = y1 − kx1

After this, we can use the straight-line equation to calculate the y value of the line
between the maximum points at the latest timestamp:

y = kx+m

where x is the current price at the latest timestamp.

4.1.2 Matching x and y data
As the input vector for the machine learning model cannot vary in size, there occurs
a problem during the beginning of the day as the window might not be filled the
first second upon market opening from a lack of market orders. The implemented
solution is to wait until the window has been filled, then begin creating and saving
features. In order to find the matching target value for each input vector, the latest
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price is offset with the prediction time. When there is a new day, the window is
cleared, and a new offset is created at that timestamp.

Another issue arises when trying to predict the future in the last n seconds of a day,
where n is the number of seconds predicted into the future. As the last n seconds
will not have any future prediction because the stock market has closed, the solu-
tion is to not predict during these seconds. However, by not predicting the last n
seconds, it also means that the y data corresponding to the last n seconds of a day
is not added to the data set.

4.1.3 Graphs
Plotting the stock price there are periodic straight lines in the y direction. The
reason for this is when a weekend or end of the day occurs, and the price changes
drastically during this time. This also means that the x-axis in the graphs only
shows time when the stock market is open. Therefore the numbers on the x-axis
should be seen as seconds of open stock-market time.

4.2 Distributed system
The distributed system is a system of nodes connected in any desired configuration.
The nodes work together in layers, where each layer sends its output to the layer
below it. For example, in the top layer, the nodes could get their data from a third-
party source, such as a stock exchange. The nodes in the bottom layer output the
final result of calculations in the system. The distributed system code was written
in python to get a prototype up and running as fast as possible.

4.2.1 Node-Box
A Node-Box is the base piece of each node, as seen in Figure 4.1. This Node-Box
contains a processor, inputs, and an output. For example, the processor could be
an algorithm to calculate a financial indicator such as RSI or a machine learning
algorithm. Each Node-Box belongs to a layer, where layer one is the top layer, and
layer n is the bottom layer. The output of one or several Node-Boxes could be a
single or several other Node-Boxes inputs in the layer below. Combining several
Node-Boxes creates the possibility of setups that support redundancy, parallelisms,
and increased computational speed. Figure 4.2 shows a simple example of a single
Node-Box. In this figure, the inputs are the latest 200 market orders for the stock
Swedbank.

Figure 4.3 shows a connected example of Node-Boxes. In this figure, there are a
total of four nodes, three in layer one and one in layer two. All nodes in layer one
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Figure 4.1: The base of a Node-Box

Figure 4.2: Node-Box with Swebank’s 200 latest market orders

send their predictions as an input to Node-Box-Swedbank-Final, which calculates the
final prediction with the help of all predictions from layer one.

4.2.2 Smart-sync
A data structure has been created to synchronize the different inputs received in
a node-box, referred to as asmart-sync structure. The smart-sync synchronizes
the data at different timestamps in an asynchronous way, making it fault-tolerant
against delays.

As the predictions made by machine learning in the processing layers are between
5 and 60 seconds, it is more important that a prediction gets processed as fast as
possible and less important that every prediction gets processed. For every second
a prediction is not processed, it loses importance, and if more time has passed than
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Figure 4.3: Three nodes in layer 1, with their targets connected to one node in
layer 2

the prediction time, then we already know the actual price, and the prediction is
useless. The smart-sync handles this issue by having a Window-Size (WS), which
decides how many seconds the smart-sync should keep information.

A single matrix, with a height of the WS and a width of the input-size+1, creates
the base for the smart-sync structure. The input-size is the size of the number of
inputs that should be synchronized. Increasing the width by one makes it possible
to fit a field to check how many cycles have been done. A floor division between the
timestamp and WS calculates this field, denoted as TS // WS. Figure 4.4 visualizes
the structure. In the figure, a field denoted TS % WS can be seen. This field is the
index of the matrix, and TS % WS is how the data should be indexed. Thus, TS %
WS is the timestamp modulo window-size and will place the new data in a cyclic
pattern.

Figure 4.4: Basic structure of the smart-sync.

When new data is to be added, three things are needed:
1. The timestamp
2. The node-box id
3. The data
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The timestamp is used to calculate which row the data should be put in by us-
ing TS % WS. The node-box id is used to select which column the data should be
placed in. The IDs need to be sequential, as to calculate the column position, the
formula (ID % input-size)+1 is used. Increasing the input size by one is used to
ignore the first field where the number of cycles is kept track of. The data is added to
the corresponding row and column, calculated from the timestamp and node-box id.

When data is added to the smart-sync two checks are done:

1. Compare the incoming data with the field of the current cycle. If the cycle
is the same, add the data to the correct column. If the field is lower than
the incoming data, erase all data in the row and add the new data to the
corresponding column. If the field is higher than the incoming data, then do
nothing. These steps will ensure that the new data overwrites the old data
and that the old data never overwrites the new data.

2. Check if the row where the data was added is filled. If a row is filled, data has
been received from all sources at the specific timestamp, which means that it
can be processed. The smart-sync will thereby notify the processor with an
array of the data at that timestamp.

Figure 4.5 shows an example of added data. The two rows in yellow have not been
processed yet as they are still missing some data. To the left, under the column TS,
shows the original timestamp. The upcoming timestamps would start overwriting
the old ones, as shown in Figure 4.6. A darker green marks the overwritten rows
from the old ones.

The second check when data is added to the smart-sync is tested in two different
ways. In the first one, called Algorithm A, the whole row is iterated to check if it
is filled. This iteration has a complexity of O(n). The second way, Algorithm B, is
to have an integer that counts how many times an element has been inserted into
a row. Every new cycle, the integer resets. Algorithm B has a time complexity of
O(1), as there is no iteration.

Figure 4.5: Smart-sync with data added. The data in green is completed data
that has been sent to be processed. The data in yellow is still missing data.
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Figure 4.6: The dark green color indicates old data that has been overwritten.

4.2.3 Applying Techniques in Layer 1
Redundancy, parallelization, or an increase in processing power, can all be applied
to layer one as well. For example, if an increase of processing power is desired, the
number of Node-Boxes in layer one can be doubled and run in cycles the same way
as layer 2. Figure 4.7 shows an illustration of this.

Figure 4.7: Nodes in layer 1 taking turns to calculate their target, possibly achiev-
ing higher processing power

4.2.4 Coordinator
The Coordinator is used to decide the communication between the different Nodes.
The different nodes ask the Coordinator where they should send or receive their pre-
dictions, as seen in Figure 4.8. Depending on how the Coordinator is programmed,
the nodes can be utilized in different ways. Some of the possible utilization could
be for redundancy, parallelization, or an increase in processing power.

4.2.5 Coordinator Protocol
The protocol can be divided into three steps:
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Figure 4.8: Node-Boxes asking the coordinator who and how to communicate

1. Discovery
2. Designation
3. Initiation

Discovery
In the Discovery phase, every node-box that wants to join the system connects to the
coordinator and sends its layer position. The coordinator keeps track of the different
node-boxes by saving the IP and port they used to connect. The coordinator can
complete the Discovery phase in two different ways, depending on its configuration.
The first way is to wait until a certain number of node-boxes has connected, and the
second one is to have a waiting time and accept any number of node-boxes during
that time.

Designation
In the Designation phase, the coordinator takes the different node-boxes discovered
in the Discovery phase and assigns a connection between them. This connection
is based on the configuration of the node-box, such as Redundancy, Parallelization,
or increased processing power. When the coordinator has decided which node-boxes
should communicate with which, it returns a key-value store with the following
structure:

’port’: int,
’id’: int,
’server_ip_port’: list(tuple)

port is the port number the node-box should use when hosting a server for its out-
put. id is the unique id of the node-box, which can be used for identification.
server_ip_port is a list of tuples, where each tuple contains an IP address and a
port. The tuples are the node-boxes that the current node-box should listen to and
use as input.
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Initiation Lastly the initiation phase begins. In this step, the individual node-
boxes has received their unique key-value store from the coordinator. As soon as
this is received, the node-boxes will start their local server and try to connect to
other servers in the server_ip_port key. As soon as all the node-boxes have con-
nected and started their servers, the system is up and running.

4.2.6 Redundancy
Redundancy can be achieved by having two or more nodes in any layer with the
same prediction model and the same input data. Any prediction of these nodes can
then be used as the final answer. So, for example, if one of the nodes crashes, the
other can continue to operate as usual. Figure 4.9 shows an example of this, where
two Node-Boxes in layer two create redundancy.

Figure 4.9: Two Node-Boxes are doing the same calculations to achieve redun-
dancy.

4.2.7 Parallelization
It is possible to parallelize two different Node-Boxes by sending the same input to
two or more Node-Boxes in any layer. The Node-Boxes will work independently
on their data, and their predictions can be used as desired. Figure 4.10 shows an
example of this with two Node-Boxes.

4.2.8 Cycling node-boxes
If the case would exist where a Node-Box cannot keep up with inference every
second, it is possible to distribute this load over several Node-Boxes, which would
increase the processing power. Every Node-Box would receive features to predict
every n seconds, where the first Node-Box gets it on second n, the second one on

23



4. Methods

Figure 4.10: Two Node-Boxes doing different calculations to parallel processing.

second n + 1, and so on. When every node has received features to predict, it will
restart again with node n. An example can be seen in Figure 4.11.

Figure 4.11: Two nodes cycling their workloads, increasing the processing power

4.2.9 Financial Indicator Node

The Financial Indicator Node (FI-Node) is a node that only calculates different
Financial Indicators, such as MACD or RSI. The purpose is to add more features
to any Node-Box in an effort to improve the machine learning performance. The
FI-Node calculates financial indicators for any single stock, such as Swedbank, but
could also calculate financial indicators for an index if desired. Figure 4.12 shows
an illustration of this.
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Figure 4.12: FI-Node, which gives financial indicators as features to the Node-Box
in layer 2

4.2.10 Test Bench
When running any benchmarks or tests is was run on the system shown in Table
4.1.

CPU Intel i5-4670k (4 cores), Overclocked to 4,3 GHZ
GPU Nvidia GTX 970
RAM 32 GB DDR3
OS Pop!_OS 20.10 (based upon Ubuntu 20.10)

Table 4.1: The hardware specification of the test bench.

4.3 Stock predictor
This section describes the machine learning libraries, input feature construction,
and network architecture used in this thesis. It further describes how the training
for layer one models and created and describes the combined distributed system.

4.3.1 PyTorch
The machine learning library, PyTorch, creates and trains models. PyTorch is an
open-source library that Facebook mainly develops. This thesis uses the python
interface but is executed in a C++ environment. PyTorch introduces a tensor data
structure, a matrix-style structure developed for fast computations on graphic pro-
cessing units (GPU). It also contains an auto differentiation feature, which alleviates
training neural networks through backpropagation[35].
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4.3.2 Neural networks
There are three neural networks used in this thesis denoted The deep network, The
shallow network, and The combiner network. The deep network consists of 5 linear
layers, where the activation function of the layers is Leaky ReLU. The layers get
gradually smaller as they approach the final layer. Listing 4.1 shows the implemen-
tation of The deep network. The shallow network consists of 3 linear layers, where
the first layer increases the number of neurons, but the other two gradually decrease
them. The activation function for each layer is Leaky ReLU. Listing 4.2 shows the
implementation of The shallow network. Leaky ReLU is used instead of a regular
ReLU to avoid the problem of dying ReLU. Both The deep network and The shallow
network are only used for single stock prediction. For a combined stock prediction,
The combiner network is used. This network’ has similar depth to The shallow net-
work, but its width is dependant on the input size. Listing 4.3 shows the network
in detail.

4.3.3 Input data
The input vector containing all features for the neural networks is a combination of
the market order price, market order publication time, and financial indicator data.
Naturally, different models require different combinations of these data features, and
might therefore include or exclude some of the features, however, the general shape
of feature vector X is the following:

X =
[
p0, ..., pw, t0, ..., tw, EMAa, RSIb,MACDc, V old,

PCminK
e , PCmaxK

e , PCminY
e , PCmaxY

e

]
(4.1)

where w is the window size, pi is the price from the market order that was added w−i
market orders ago. The market order publication time is represented as ti, meaning
that pi and ti stem from the same market order. EMAa, RSIb,MACDc, V old are
financial indicators where a, b, c and d represent different time windows for which
the indicators are applied. The price channel is described with
PCminK

e , PCmaxK
e , PCminY

e , PCmaxY
e , where minK and maxK is the slope for the

top and bottom channel, and where minY and maxY are y-axis values for points
on the bottom and top channel lines.

The non-distributed models The deep network, The shallow network, also referred
to as layer one models, requires input vectors of the shape described by Equation
4.1. The The combiner network uses outputs from layer one models together with
financial indicator data to create is input vector Xd with the shape:

XD =
[
p70, p200, p700, EMAa, RSIb,MACDc, V old,

PCminK
e , PCmaxK

e , PCminY
e , PCmaxY

e , pN
]

(4.2)
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where p70, p200, p700 is the outputs of layer one models using 70, 200 and 700 market
order window sizes and pN is cross stock data from a Nordea predictor.

4.3.4 Output data
The output from the models is stock price, meaning that the models will be aiming
to solve a regression task. Time to predict into the future, or prediction time, de-
termines how far ahead the model should predict. For this thesis we will aim for 30
second prediction times, motivated by the real-time nature of using market orders
as input data.

Listing 4.1: The deep network
c l a s s DeepModel ( nn . Module ) :

def __init__ ( s e l f ) :
super ( ) . __init__ ( )

def i n s t a n t i a t e ( s e l f , i n p u t _ s i z e ) :
s e l f . f c 1 = nn . Linear ( input_size , i n p u t _ s i z e ∗ 2 ) . type ( dtype )
s e l f . f c 1 . weight . data . uniform_ ( −0.1 , 0 . 1 )
s e l f . f c 2 = nn . Linear ( i n p u t _ s i z e ∗2 , round ( i n p u t _ s i z e ∗ 1 . 5 ) ) . type ( dtype )
s e l f . f c 2 . weight . data . uniform_ ( −0.1 , 0 . 1 )
s e l f . f c 3 = nn . Linear ( round ( i n p u t _ s i z e ∗ 1 . 5 ) , round ( i n p u t _ s i z e ∗ 0 . 5 ) ) . type ( dtype )
s e l f . f c 3 . weight . data . uniform_ ( −0.1 , 0 . 1 )
s e l f . f c 4 = nn . Linear ( round ( i n p u t _ s i z e ∗ 0 . 5 ) , 2 0 ) . type ( dtype )
s e l f . f c 4 . weight . data . uniform_ ( −0.1 , 0 . 1 )
s e l f . f c 5 = nn . Linear ( 2 0 , 1 ) . type ( dtype )
s e l f . f c 5 . weight . data . uniform_ ( −0.1 , 0 . 1 )

def forward ( s e l f , x ) :
x = F . l e a k y _ r e l u ( s e l f . f c 1 ( x ) )
x = F . l e a k y _ r e l u ( s e l f . f c 2 ( x ) )
x = F . l e a k y _ r e l u ( s e l f . f c 3 ( x ) )
x = F . l e a k y _ r e l u ( s e l f . f c 4 ( x ) )
x = F . l e a k y _ r e l u ( s e l f . f c 5 ( x ) )
return x

Listing 4.2: The shallow network
c l a s s ShallowModel ( nn . Module ) :

def __init__ ( s e l f ) :
super ( ) . __init__ ( )

def i n s t a n t i a t e ( s e l f , i n p u t _ s i z e ) :
s e l f . f c 1 = nn . Linear ( input_size , i n p u t _ s i z e ∗ 3 ) . type ( dtype )
s e l f . f c 1 . weight . data . uniform_ ( −0.1 , 0 . 1 )
s e l f . f c 2 = nn . Linear ( i n p u t _ s i z e ∗3 , round ( i n p u t _ s i z e ∗ 0 . 5 ) ) . type ( dtype )
s e l f . f c 2 . weight . data . uniform_ ( −0.1 , 0 . 1 )
s e l f . f c 3 = nn . Linear ( round ( i n p u t _ s i z e ∗ 0 . 5 , 1 ) ) . type ( dtype )
s e l f . f c 3 . weight . data . uniform_ ( −0.1 , 0 . 1 )

def forward ( s e l f , x ) :
x = F . l e a k y _ r e l u ( s e l f . f c 1 ( x ) )
x = F . l e a k y _ r e l u ( s e l f . f c 2 ( x ) )
x = F . l e a k y _ r e l u ( s e l f . f c 3 ( x ) )
return x

Listing 4.3: The combiner network
c l a s s CombinerModel ( nn . Module ) :

def __init__ ( s e l f , i n p u t _ s i z e ) :
data_type = t o r c h . cuda . FloatTensor
super ( ) . __init__ ( )
s e l f . f c 1 = nn . Linear ( input_size , i n p u t _ s i z e ∗ 3 ) . type ( data_type )
s e l f . f c 1 . weight . data . uniform_ ( −0.1 , 0 . 1 )
s e l f . f c 2 = nn . Linear ( i n p u t _ s i z e ∗3 , round ( i n p u t _ s i z e ) ) . type ( data_type )
s e l f . f c 2 . weight . data . uniform_ ( −0.1 , 0 . 1 )
s e l f . f c 3 = nn . Linear ( round ( i n p u t _ s i z e ) , 1 ) . type ( data_type )
s e l f . f c 3 . weight . data . uniform_ ( −0.1 , 0 . 1 )

def forward ( s e l f , x ) :
x = f . l e a k y _ r e l u ( s e l f . f c 1 ( x ) )
x = f . l e a k y _ r e l u ( s e l f . f c 2 ( x ) )
y = f . l e a k y _ r e l u ( s e l f . f c 3 ( x ) )
return y
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4.3.5 Training
When training the non-distributed models, the data set becomes very large, surpass-
ing the system memory available in the test system. Since all the data could not be
read into memory at once, chunking was applied. When training with chunks, the
data-set is split into several chunks of a chosen size. The size used for the chunks
was 500 000 rows, which made it possible to fit any data-set used into the RAM
size of 16GB. When training a model, each chunk is trained iteratively. When the
first chunk is read, the model is trained for the entirety of the epoch range. Af-
ter that, the next chunk is read. This process is repeated until all chunks have
been processed. The Combiner model did not face this problem as its training data
contained substantially smaller input feature vectors, directly decreasing the data
memory size. Therefore, layer two models using the Combiner model did not employ
chunking when training.

The distributed system does not contain an implementation to train all machine
learning nodes based on the final predictions of the last layer. Each machine learn-
ing model needs to be trained separately, where all layers, except the top layer,
trains with the output from previous layers’ test data.

4.3.6 Testing
The comparison of different networks is measured by the loss and by comparing a
graph of the predicted data with the original data. Because of how loss is measured,
normalized and non-normalized data will not be directly compared using loss. If
any comparison would be made between different stocks, the loss is likely to be
partially misleading depending on the difference in price, volatility, or other indi-
cators. Therefore all conclusions made from loss only apply to the specific stock
and the normalized/non-normalized versions. Only optical measurements between
the graphs will be done to get an idea of the performance between stocks or be-
tween normalized and non-normalized data. Additional metrics were developed for
comparison reasons. A 10-minute average prediction strategy was employed as a
benchmark. This prediction strategy predicts using the 10-minute average price.
Another strategy that was used was Offset, where the prediction is the current
price, thus producing a perfect 30-second offset if the target prediction time is 30-
second.

Exhaustive testing will be done to measure the performance of different parame-
ters. A script testing all the different parameters will run and save the result to a
spreadsheet, making it easy to compare the different configurations.

• 151 days for training in layer 1 (Aug 25 2020 - 22 Jan 2021)
• 37 days for evaluation in layer 1 (23 Jan 2021 - 28 Feb 2021)
• 49 days for testing in layer 1 (1 Mars 2021 - 19 April 2021)
• 37 days for training in layer 2 (1 Mars 2021 - 7 April 2021)
• 6 days for evaluation in layer 2 (8 April 2021 - 13 April 2021)
• 6 days for testing in layer 2 (14 April 2021 - 19 April 2021)
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The 49 days for testing in layer 1 is the same days that is used in training, evaluation
and testing in layer 2. The reason for this is to utilize as much data as possible.
Figure 4.13 visualizes the split.

0 34 68 102 136 170 204 238

Data split between layer 1 and 2 in distributed system

Test L2 Eval L2 Train L2 Test L1 Eval L1 Train L1

Figure 4.13: Graph showing how the data is split in the distributed system. Test
L1 overlaps Train L2, Eval L2, and Test L2 as the same dataset is used. Lx means
Layer x.
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5
Results

5.1 Feed-forward Neural Network
This section presents the results and discussion of the single stock predictions.
The models are trained in different ways, where variables such as input data and
learning rates differ. Therefore a naming convention is used. The model name
70_100e_lr0.0001_S means that the model used 70 market orders as input data,
was trained for 100 epochs, used a learning rate of 0.0001, and S stands for Swed-
bank. If the model is trained and used for Nordea stocks, the last symbol is N
instead.

In table 5.2 and table 5.3 loss scores for different prediction strategies are pre-
sented.The strategy called 10AVG is the 10-minute average prediction strategy and
Offset the 30-second offset strategy.

5.1.1 Min-max normalization
Using min-max normalization over the entire data-set of Swedbank data had mixed
results. The results presented are from the best models for each window size in-
vestigated: 70, 200, and 700. The presented losses are from test data between the
period 1 Mars to 19 April.

(a) 70_100e_lr0.0001_S (b) 200_50e_lr0.0001_S (c) 700_100e_lr0.0001_S

Figure 5.1: Graphs for predictions of three models using min-max normalized data
with different window sizes; 70, 200 and 700. All graphs depict the same time period

Figure 5.1 depicts three models predictions over test data: 70_100e_0.0001_S,
200_50e_lr0.0001_S and 700_100e_lr0.0001_S. The first model,
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Model MSE_preds MAE_preds MSE_offset MAE_offset
70_100e_lr0.0001_S 0.06316 0.21146 0.00310 0.03156
200_50e_lr0.0001_S 0.01813 0.10073 0.00313 0.03147
700_100e_lr0.0001_S 0.94534 0.88968 0.00328 0.03011

Table 5.1: MSE and MAE test-set losses for models using min-max normalization.
Swedbank between 1 Mars - 19 April

70_100e_0.0001_S, uses a window size of 70 market orders together with time data
for the market orders. This is the only model of the three that uses time, as the
result of the other two models with time was inadequate. Its prediction follows the
general price trend but fails to generalize accurately. Graph b shows a model with
window size 200 and no time data, which follows the price trend better. Moreover
model 200_50e_lr0.0001_S has the lowest MSE and MAE loss, as seen in Table 5.1,
of all three models shown in Figure 5.1. The larger model 700_100e_lr0.0001_S
performs poorly, failing to follow the general price trend and shows the highest loss,
both in MSE and MAE loss. None of the models using min-max normalization
outperformed the offset score, shown in Table 5.1.

5.1.2 Z-normalization

The Z-normalized data consists of market data from Swedbank and Nordea stocks.
The machine learning for Swedbank and Nordea is trained with a window size of 70,
200, and 700 market orders, respectively.

5.1.2.1 Swedbank

The model 70_100e_lr0.0001_S, which uses a 70 market order window, follows the
price trend well, seen in the left graph of Figure 5.2. It is, however, offset in the
x-axis, seen in the 30-minute graph in Figure 5.2. Figure 5.3 shows the prediction
of Swedbank with a window size of 200 market orders. With a window size of 200
market orders, Swedbank still follows the price trend, but less tightly compared to
a window size of 70. It is not necessary to look at the zoomed-in graph in Figure
5.3 (a) to see the offset in the x-axis. However, Figure 5.3 (b) shows that the
predictions are not very accurate and that it misses some dips that the 70 market
order model was able to predict. Figure 5.4, depicting the prediction graph for
model 700_100e_lr0.0001_S, shows that the trend of following the target graph
less tightly continues. The zoomed-in version seen in Figure 5.4 (b) clearly shows
that the prediction does not follow small changes in the target data.
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(a) 3 hour window (b) 30 min window

Figure 5.2: Two graphs for Swedbank stock price prediction using model
70_100e_lr0.0001_S. Left graph shows prediction for 3 hour window of Swedbank
stock. The left shows a 30min window. Larger figures can be found in Appendix I.

Parameters MSE_preds MAE_preds MSE_10AVG MAE_10AVG MSE_Offset MAE_Offset
70_100e_lr0.0001_S 0.00277 0.03598 0.01518 0.09137 0.00326 0.03359
200_50e_lr0.0001_S 0.00877 0.06854 0.01497 0.09090 0.00327 0.03348
700_100e_lr0.0001_S 0.01314 0.08675 0.01312 0.08671 0.00343 0.03220

Table 5.2: Table showing loss scores over Swedbank test set, 1 Mars to 19 April
for three different models. Losses for a 10 minute average strategy and the offset
strategy is also shown. Swedbank single models (the best ones, used in dist ) 70
uses time, 200, 700 does not (Deep 30s all)

Table 5.2 shows losses of the different models predicting Swedbank. The model
70_100e_lr0.0001_S performs best, beating all other models, including the 10-
minute average and offset strategy. On the other hand, models 200_50e_lr0.0001_S
and 700_100e_lr0.0001_S does not perform on par with the 70 market order model.
Moreover, the models show higher loss than the offset strategy, and in the case of
700_100e_lr0.0001_S higher MAE loss than the 10-minute average.

5.1.2.2 Nordea

Figure 5.5 depicts prediction windows for 3 hours and for 30 minutes using model
70_100e_lr0.0001_N. In the 3-hour window graph, the model follows the price trend
well, missing some local price jumps. In the 30-minute window, an x-axis offset be-
comes evident, but the model still follows price movements. Despite this offset, the
model performs well, outperforming other Nordea models in both MSE and MAE
loss, seen in Table 5.3. The 200 market order window model 200_100e_lr0.0001_N
follows the price movement in both time windows shown in Figure 5.6. However, pre-
diction movements are more conservative compared to model 70_100e_lr0.0001_N.
The 30-minute window in Figure 5.6 (b) shows smaller prediction movements, where
large price jumps are more constrained. Model 700_30e_lr1e-05_N uses 700 mar-
ket orders and its performance is seen in Figure 5.7. The 3-hour graph shows
a rough price movement following but with a larger x-axis offset compared to
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(a) 3 hour window (b) 30 min window

Figure 5.3: Two graphs for price prediction using model 200_50e_lr0.0001_S.
Left graph shows prediction for 3 hour window of Swedbank stock. The left shows
a 30min window. Larger figures can be found in Appendix I.

(a) 3 hour window (b) 30 min window

Figure 5.4: Two graphs for price prediction using model 700_100e_lr0.0001_S.
Left graph shows prediction for 3 hour window of Swedbank stock. The left shows
a 30min window. Larger figures can be found in Appendix I.
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(a) 3 hour window (b) 30 min window

Figure 5.5: Two graphs for price prediction using model 70_100e_lr0.0001_N.
Left graph shows prediction for 3 hour window of Nordea stock. The left shows a
30min window. Larger figures can be found in Appendix I.

70_100e_lr0.0001_N and 200_100e_lr0.0001_N. The 30-minute window shows
a failure to react rapidly to local price movements.

Parameters MSE_preds MAE_preds MSE_10AVG MAE_10AVG MSE_Offset MAE_Offset
70_100e_lr0.0001_N 0.00079 0.01786 0.00432 0.04758 0.00072 0.01652
200_100e_lr0.0001_N 0.00124 0.02188 0.00426 0.04734 0.00073 0.01643
700_30e_lr1e-05_N 0.00204 0.03310 0.00385 0.04543 0.00086 0.01588

Table 5.3: Table showing loss scores over Nordea test set, 1 Mars to 19 April
for three different models. Losses for a 10 minute average strategy and the offset
strategy is also shown.

Table 5.3 shows the loss results for the Nordea stock test set. Model
70_100e_lr0.0001_N outperforms all other models in the table, including both
MSE and MAE with 10-minute running average, but only beats the offset strat-
egy in terms of MSE loss. On the other hand, the offset strategy outperforms
70_100e_lr0.0001_N in MAE. The models 200_100e_lr0.0001_N and
700_30e_lr1e-05_N both received lower losses than the 10-minute running average
but higher than the offset losses.

5.1.3 Discussion
As shown in the results above, using more than 70 market orders as input data does
not seem to increase prediction accuracy. The models using 70 market orders also
contain the time data for each market order, so at first glance, this seems to be
the separating factor for success. However, accuracy faltered when using time data
combined with models using 200 or 700 market order inputs.

Models using 70 market orders as input performed well against the 10-minute aver-
age and offset prediction strategy but did not consistently outperform them. The
close results to the offset losses are especially interesting since the model’s predic-
tion graphs are skewed in the x-axis, becoming similar to the offset predictions. This
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(a) 3 hour window (b) 30 min window

Figure 5.6: Two graphs for price prediction using model 200_100e_lr0.0001_N.
Left graph shows prediction for 3 hour window of Nordea stock. The left shows a
30min window. Larger figures can be found in Appendix I.

(a) 3 hour window (b) 30 min window

Figure 5.7: Two graphs for price prediction using model 700_30e_lr1e-05_N. Left
graph shows prediction for 3 hour window of Nordea stock. The left shows a 30min
window. Larger figures can be found in Appendix I.
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result indicates that the models have a hard time generalizing patterns in the price
data and perhaps sometimes predict safely, that is, its latest market orders price.
However, as seen for the Swedbank single stock model, it is possible to outperform
the offset strategy, as Swedbank single stock model indicates learned patterns.

Normalizing time series data contains some complications. Traditionally one nor-
malizes the input over the entirety of a data set, for instance, using min-max nor-
malization. Doing such a normalization, however, can introduce problems. Firstly,
future data higher or lower than the normalized data set will not fit inside the nor-
malization range. Furthermore, if normalizing the entire data set with parameters
calculated from the entire data set, some information about future data is leaked.
However, this possible leak does not seem to impact our results as normalizing in
this way performs worse than normalizing according to a sliding time window. A
reason for this could be that when normalizing over the entire data set, a larger
span of values need to be accounted for, making the normalized values possibly very
small. Since the networks already showed instability issues, using very small values
could further cause this effect, in turn decreasing performance.

5.2 Distributed System
The first two subsections cover the results from the smart-sync and node-boxes.
In the two subsections after, the results from the smart-sync and node-boxes are
discussed.

5.2.1 Smart-sync
The smart-sync is tested by creating six different instances with input sizes of 10,
100, 1000, 10 000, 100 000, and 1 000 000 elements. A mean is calculated by running
the test ten times for each instance. The test works by linearly putting data into
one row until filled. The test compares two different algorithms. Algorithm A is
an algorithm that iterates through every row to see if all the positions are filled.
Algorithm B has an integer for every row that keeps track of the number of filled
elements by incrementing the integer every time anything is put into the row. As
the test adds n elements, Algorithm A gets a complexity of O(n2) during the test,
and Algorithm B a complexity of O(n). The results can be seen in Figure 5.8 and
Table 5.4.

5.2.2 Node-Boxes latency
In order to measure the latency of the node-boxes a specific scenario is needed. In
the chosen scenario, many node-boxes are in layer one, and one node-box is in layer
two. All node-boxes in layer one connect to the one in layer two. The latency is
measured from when each node in layer one starts to process a market order at
a given timestamp and stops when the node-box in layer two has predicted this
timestamp. Running all the node-boxes on the same computer creates a best-case
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Figure 5.8: Graph showing the difference between Algorithm A and B.

Input-size Algorithm A (seconds) Algorithm B (seconds)
10 0.0000555754 0.0000225544
100 0.0003901720 0.0002108097
1000 0.0041720390 0.0020816088
10 000 0.0692465067 0.0209511042
100 000 2.8141211271 0.2088546753
1 000 000 477.0214994431 2.1033621311

Table 5.4: Comparison between Algorithm A and B with different input-sizes.

scenario, where each node-box runs in an individual process. This way, there will
not be any latency from any network connection between computers. To get the
lowest latency, smart-sync used Algorithm B.

Five configurations specify the test, which are 1, 2, 4, 6, and 8 node-boxes in layer
one. The mean, fastest, and slowest latency is measured during 5 minutes, and
Figure 5.9 displays the result. The first 10 seconds of the tests are not included, as
they were unstable and not representative over a more extended period.

1:1 Boxes 2:1 Boxes 4:1 Boxes 6:1 Boxes 8:1 Boxes
Slowest time (s) 0.005547 0.006376 0.007149 0.007043 0.007882
Fastest time (s) 0.001353 0.001203 0.001490 0.001223 0.001306
Mean time (s) 0.00332 0.003262 0.003531 0.004311 0.004945

Table 5.5: Node-boxes benchmark as n : m, where n is the number of nodes in
layer 1, and m the number of nodes in layer 2
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Figure 5.9: Graph showing the fastest, mean, and slowest time it took to run n
node-boxes in layer 1, with one node-box in layer two. The test is done over a 5
minute interval and is measured from the time a node in layer 1 starts its processing,
until the node in layer 2 calculates it prediction from that timestamp.

5.2.3 Discussion of Smart-sync
When looking at the results from the smart-sync, the superior algorithm is Algo-
rithm B. It is more than two times faster when working with an input size of 10
and more than 200 times faster when working with 1 000 000 inputs. It should,
however, be considered that during the testing done throughout this thesis, when
using node-boxes, the input size has been in the 101 area. With such a small input
size, we would compare a speed of 55.5754 µs in Algorithm A against the speed
of 22.5544 µs in Algorithm B. With such fast speeds, the result could be seen as
negligible, as when compared to the results of the node-boxes, the fastest one of all
results was 1203 µs. Adding the latency delta of Algorithm A and B to the result
from the node-boxes would result in a speed of 1236.0210 µs instead.

With an input size more prominent than 105, there is a dramatic performance in-
crease by using Algorithm B. The likelihood of applying such an extensive network
might be small, but there could potentially be applications that could use such a
smart-sync structure.

5.2.4 Discussion of Node-boxes
The results from the node-boxes show that the meantime is in the millisecond range,
as seen in Table 5.5. The table shows that the meantime for 1, 2, and 4 nodes is very
similar, but it increases more rapidly for 6 and 8 nodes. This increase is possibly
from the CPU having four cores and splitting the work more evenly for up to 4
node-boxes. The explanation for two node-boxes being faster than one is probably
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a random margin of error.

To get an idea of how fast the processing is, the slowest time, 0.007882 seconds,
can be taken in comparison to a future prediction of 30 seconds, where the delay in
percent can be calculated:

0.007882
30 = 0.000262733 ≈ 0.026%

This result shows that the time delta from the prediction start until finished has
a 0.026% delay of 30 seconds to make the prediction. As the prediction’s result
gets less relevant from each second that passes (after 30 seconds, the prediction is
useless, as the actual price is then known), having this slight delay of only a few
milliseconds is a success. This tiny delay would even make it possible to predict
only a few seconds into the future.

With such low latency, the question arises of how valuable cycling node-boxes are,
as written about in Section 4.2.8. If one node-box can process the data from any
timestamp in less than one second, it will always keep up, but otherwise, it will
always become more and more delayed. However, three things have been identified
that could increase the latency:

• Worse hardware. Currently, a GTX 970 is used, which is a dedicated graphics
card. Using a weaker graphics card or a CPU for the machine learning inference
would increase processing times.

• More complex processing algorithm. The current neural network could become
more complex, which would increase the processing times.

• Processing more often than every second. Right now, the latest trade during
a timestamp for each second is used. Splitting this second into even smaller
timestamps would require more processing per second, and therefore shorter
time available for processing.

The processing times might surpass the processing time window by meeting any or
all of these three constraints, and therefore making the cycling node-boxes useful.
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5.3 Distributed combined models
This section presents the prediction results from the distributed network. The mod-
els with a name ending withD are distributed models. The method chapter presents
the input features into the second layer models.

Model MSE_preds MAE_preds MSE_10AVG MAE_10AVG MSE_Offset MAE_Offset
vol50_lr0.01_None_D 0,00163 0,02803 0,01023 0,07745 0,00294 0,02832
rsi30_lr0.01_None_D 0,00164 0,02830 0,01023 0,07745 0,00294 0,02832
ema15_macd_rsi5_rsi30_vol100_vol50_lr0.001_Nordea70_D 0,00164 0,02833 0,01023 0,07745 0,00294 0,02832
rsi5_rsi30_vol100_vol50_ema30_ema15_lr0.001_Nordea70_D 0,00164 0,02834 0,01023 0,07745 0,00294 0,02832
macd_lr0.01_None_D 0,00165 0,02828 0,01023 0,07745 0,00294 0,02832
ema30_ema15_macd_rsi5_rsi30_vol100_lr0.001_Nordea700_D 0,00165 0,02831 0,01023 0,07745 0,00294 0,02832
vol100_lr0.01_None_D 0,00165 0,02832 0,01023 0,07745 0,00294 0,02832
ema15_lr0.001_NordeaPred200_D 0,00165 0,02837 0,01023 0,07745 0,00294 0,02832
rsi30_vol100_vol50_ema30_ema15_macd_lr0.001_Nordea200_D 0,00165 0,02837 0,01023 0,07745 0,00294 0,02832
rsi5_lr0.01_None_D 0,00165 0,02844 0,01023 0,07745 0,00294 0,02832

Table 5.6: Table shows MSE and MAE losses for layer two models used in the
distributed network. Sorted by MSE loss. Data is Swedbank stock price for 13
April - 19 April

Table 5.6 shows the results for the ten best performing distributed models. The
table shows that no single model outperforms the rest. However, model
vol50_lr0.01_None_D does have slightly lower MSE and MAE losses compared to
the others. Furthermore, model vol50_lr0.01_None_D and model
rsi30_lr0.01_None_D are the only models that beat the offset strategy in MAE
loss. All models beat MSE and MAE for 10-minute average strategy and MSE for
offset strategy.

Model MSE MAE
vol50_lr0.01_None_D 0,00163 0,02803
rsi30_lr0.01_None_D 0,00164 0,02830
70_100e_lr0.0001_S 0.00170 0,02889
200_50e_lr0.0001_S 0,00648 0,05812
700_100e_lr0.0001_S 0,01889 0,07789

Table 5.7: Table shows MSE and MAE losses for top performing distributed models
and single stock models. Data is Swedbank stock price for 13 April - 19 April

Table 5.7 compares the top distributed models with the single stock models used in
the input feature vector. Losses in this table are calculated from the period 13 April
to 19 April. All single stock predictors perform slightly worse than the distributed
models, measured in MSE and MAE losses.
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Figure 5.10: Graph shows stock price predictions for the distributed model
vol50_lr0.01_None_D. Pred70, Preds200 and Preds700 refers to the prediction in-
puts used for the distributed model. Predictions for a 3 hour Swedbank window.

Figure 5.11: Graph shows stock price predictions for the distributed model
vol50_lr0.01_None_D. Pred70, Preds200 and Preds700 refers to the prediction in-
puts used for the distributed model. Predictions for a 30 min Swedbank window.

Figure 5.10 shows a 3-hour prediction window for model vol50_lr0.01_None_D.
The prediction for the distributed model follows the price movement of the tar-
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get stock Swedbank. Taking a closer look, with a 30-minute window, in Figure
5.11 the distributed prediction follows the 70 market order single stock model
70_100e_lr0.0001_S closely. However, it often differs in amplitude, scoring a
better loss value than the single stock. For comparison the distributed model
rsi5_rsi30_vol100_vol50_ema30_ema15_lr0.001_Nordea70_D, using Nordea price
prediction in its input features, is shown in a 3-hour window in Figure 5.12 and a
30 minute window in Figure 5.13. The predictions from this model are very similar
to 70_100e_lr0.0001_S.

Figure 5.12: Graph shows stock price predictions for the distributed model
ema15_macd_rsi5_rsi30_vol100_vol50_lr0.001_NordeaPred70_D.
Pred70, Preds200 and Preds700 refers to the prediction inputs used for the dis-
tributed model. Predictions for a 3 hour Swedbank window.
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Figure 5.13: Graph shows stock price predictions for the distributed model
ema15_macd_rsi5_rsi30_vol100_vol50_lr0.001_NordeaPred70_D.
Pred70, Preds200 and Preds700 refers to the prediction inputs used for the dis-
tributed model. Predictions for a 30 min Swedbank window.

5.3.1 Discussion
The results presented in the section above show that the distributed models outper-
form the models 70_100e_lr0.0001_S, 200_50e_lr0.0001_S, and
700_100e_lr0.0001_S. Since the distributed models perform better than any of the
layer one models, the distributed model must utilize other accessible information.
This information could be from financial indicators or extracted from several single
stock predictors at once. For example, in Figure 5.12 the 700_100e_lr0.0001_S
lags behind, resulting in a smoother prediction curve, imitating a pseudo moving
average. This imitation might increase the prediction capability of layer two mod-
els since it contributes to a larger historical aspect. Additionally, layer two models,
which included several financial indicators, did not perform better than simpler mod-
els. This worse performance might be because of poor utilization of financial data
or neural networks failing to find complex patterns between the financial indicators.
Either way, the results for the layer two models do not show any specific correlation
between any financial indicator and lower loss, possibly hitting that the performance
gain of the layer two models came from comparing predictions from layer one models.

The distributed model uses predictions from pre-trained models using different win-
dow sizes. These pre-trained layer one models a large amount of data in order to
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convergence, this is fine expect this training data cannot be reused for use with the
distributed model, since this would entail that layer one models would predict on
already seen data, thus falsely increasing performance. Because of this, the amount
of data available for training the distributed system is the test data set for the layer
one models, which is substantially smaller, possibly affecting performance for the
distributed models.

Figure 5.11 and Figure 5.13 show the 30-minute windows for models vol50_lr0.01
_None_D and ema15_macd_rsi5_rsi30_vol100_vol50_lr0.001_NordeaPred70_D
respectively. The prediction graphs in theses figures are quiet similar, both resem-
bling the graph for model 70_100e_lr0.0001_S (pred70 in the Figures legend). This
indicates that any influence financial indicators has on our models is marginal, mak-
ing it hard to distinguish if financial indicators contributed to performance increase.
This similarity could also be seen for all models in Table 5.6, graphs showing this
can be found in Appendix I.

5.4 General remarks
This section describes patterns that could be seen generally when training and test-
ing on different data.

5.4.1 Convergence Towards Average
Many of the trained models with the lower loss show that the training converges
towards the mean of the window size data. Figure 5.14 indicates this, displaying
the average and prediction overlap in many cases.

5.4.2 Offset in X and Y axis
Many of the trained models, either good or bad, often end up looking to be shifted
in the x and y-axis. Figure 5.15 shows an example of this. We have not been able to
draw any conclusion as to why this happens, but one theory about the shift in the
x-axis could be that the neural network’s next prediction could be the same as the
latest price it got or the average price, which would end up looking like a reasonable
shifted prediction.

5.4.3 Deep and Shallow Network performance
Several different networks were tested, but The deep network and The shallow net-
work were the ones ending up used to measure performance. From testing, we saw
that prediction performance benefited from The deep network. The shallow network
and other shallow models failed to learn meaningful patterns in the data, regardless
of the input vector size tested.
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Figure 5.14: Price prediction result of a section of the test data for Swedbank_A,
using model ema_70_35E_30s_1e-06_time1. X-axis is numbering of data-
points from the start of the test set. Data collected from 08/25-2020 to 15/3-2021
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Figure 5.15: Price prediction result of a section of the test data for Swedbank_A,
using model price_200_5E_15s_1e-06_time1. X-axis is numbering of data-
points from the start of the test set. Data collected from 08/25-2020 to 15/3-2021

5.4.4 Network instability
When training The deep network with different combinations parameters, it was
found that the results are volatile between runs, as Figure 5.16 shows. The di-
agram shows the difference in test loss between identical parameter settings and
model architecture, training over the same data. Applying normalization reduces
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this instability, as seen in Figure 5.17. Testing different activation functions showed
additional improvements. Replacing Rectified linear unit (ReLU) with leaky ReLU
proved to contribute to overall stability. However, the training remained in large
unstable. Further attempts to reduce this instability, for example, using various
weight initialization methods, had minimal impact.

Figure 5.16: Average test loss for two independent runs using the same data.
Normalization is not applied.

Figure 5.17: Average test loss for two independent runs using the same data.
Normalization applied.

5.4.5 Financial Indicators Combined With Market Orders
When using a feed-forward neural network, the input size is fixed and needs to be
set before the network can start. Since the input data is individual market orders,
the chosen window size of prior market orders to include mainly decides this size.
Other data that can affect the size are various financial indicators. These are in
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some cases calculated on additional historical data than the market orders included
in the current window. Thus they can give the model additional insight into the
prior movement and market trends. Another data feature to include is the time any
market order was placed. This data should, in theory, give the model the required
information to adjust predictions according to market pressure and volatility. All
these various data combinations contribute to a more extensive search plane.

From all the different parameters, it is challenging to distinguish valuable patterns
from the input data choice. After running the same setup repeatedly, there is little
difference between using different financial indicators or leaving them out entirely.
Also, using market order publication time shows some benefit over excluding it, but
with a tiny margin.
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Predicting the stock market using market orders is hard, even when only predicting
30 seconds into the future. With different window sizes of 70, 200, and 700 recent
market orders, it was difficult to find any clear patterns of which window size is the
best. Stability of the predictions was another issue, which normalization and Leaky
ReLU improved. Using financial indicators together with the window sizes showed
no clear benefit, and the result looked somewhat random when looking at which
combination of indicators was the best.

A new prediction from both outputs of different model predictions of different win-
dow sizes and financial indicators indicated a better result than using a single
window-size model. The impact from other indicators was hard to measure, as
the loss was not improved. Adding the output from the Nordea stock as an input
when predicting Swedbank this way did not increase the performance of the predic-
tion.

The prediction loss was measured against the loss from the latest 10-minute average
and the loss of the latest market order. The prediction loss was, in the best cases,
always better than the 10-minute average. However, the latest market order loss
had a similar performance compared to the best non-distributed machine learning
prediction. Only the distributed machine learning with financial indicators had a
lower loss than the loss of the latest market order.

Creating more advanced predictions by combing outputs with financial indicators
resulted in a lower loss. Running a distributed prediction with nine node-boxes in
two layers created a worst-case delay of 0.07882 seconds. Such a slight delay relative
to the 30-second prediction makes the distributed system viable for these kinds of
predictions.

Using a window size of the latest market orders as input for artificial neural networks
does not show a promising result. In most cases, for a 30-second prediction, a more
accurate prediction is made by taking the latest available market order rather than
using the created machine learning algorithm. However, when combining the pre-
diction from several models and financial indicators, the prediction becomes more
accurate than the latest market order when measured in MSE. Such a system of com-
bining several predictions can also work in a real-time scenario with the distributed
system implemented in this thesis.
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6.1 Future work
This section describes further work that would be a suitable expansion upon this
thesis. Some future work focuses on other techniques, while some focus on expanding
the current work.

6.1.1 Long Short-Term Memory and Transformers
Long Short-Term Memory (LSTM) is a recurrent neural network machine learning
algorithm. LSTM’s architecture is made to be able to remember sequences of data,
such as the history of the stock market [15].

Transformers is a machine learning architecture for predicting sequential data. Us-
ing an encoding decoding format, transformers lend themselves well for natural
language processing (NLP) problems. Compared to RNN networks, transformers
use no ”recurring” part but only uses attention, creating connections with the past.
Because of this transformers do not suffer from the vanishing gradient problem, as
in the case for RNN or LSTMs. Furthermore, transformers sequentially encode the
inputs before processing, thus eliminating the need to process inputs sequentially,
allowing for easy parallel computations [46].

Both LSTM and Transformers have the benefit of remembering sequences of data.
As this thesis’s stock market predictions are based on the sequential history of
market orders, LSTM and Transformers could give better results than the current
machine learning algorithm.

6.1.2 Train model with data from several stocks
In this thesis, there was a combination of two stocks trained together, Swedbank
and Nordea. Expanding this to more stocks from a sector, such as banking, mining,
or telecommunication, could potentially give promising results.

6.1.3 Volume indicators
Currently, the volumes of trading are not taken into account. Adding an indicator
for the volume could improve the machine learning performance, as the volume
gives more information about what is happening in the stock. In this thesis, it
is impossible to know if a price increase is from someone buying a few stocks or
someone buying several millions of stocks. Some interesting indicators to look into
could be On-Balance Volume [13] and Klinger Oscillator [27].

6.1.4 Train using node-boxes
As the node-boxes are currently not made to be able to train the machine learning
in them, they have to be manually trained one by one. They also need first to
be trained in the first layer to give good predictions to layer two. This process is
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pretty time-consuming and makes it challenging to train many different node-box
configurations. Implementing a way to train directly in the node-box configuration
could make it easier to test different configurations and also possibly train faster, as
it is distributed.

6.1.5 Optimize node-box code
The code for the node boxes is written in python. The code is not optimized for
parallelism, and this could be a possible improvement. As future work, the code
could be rewritten in a low-level language such as c or c++, focusing on parallelizing
as much as possible, for example, the smart-sync.

6.1.6 Classification predictor
Instead of predicting a future price, a classification could instead be done to predict
whether the price would go up, down, or stay the same. Such a classification has
been done before by [5, 34] with some success, but it has not been tested directly
with market orders, as in this thesis.
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A. Appendix 1

Figure A.1: Prediction of Nordea stock with 70 market orders as input, using
model 70_100e_lr0.0001_N. The graph is shown over a 3 hour window.

Figure A.2: Prediction of Nordea stock with 70 market orders as input, using
model 70_100e_lr0.0001_N. The graph is shown over a 30 minute window.
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Figure A.3: Prediction of Nordea stock with 200 market orders as input, using
model 200_100e_lr0.0001_N. The graph is shown over a 3 hour window.

Figure A.4: Prediction of Nordea stock with 200 market orders as input, using
model 200_100e_lr0.0001_N. The graph is shown over a 30 minute window.
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Figure A.5: Prediction of Nordea stock with 700 market orders as input, using
model 700_30e_lr1e-05_N. The graph is shown over a 3 hour window.

IV



A. Appendix 1

Figure A.6: Prediction of Nordea stock with 700 market orders as input, using
model 700_30e_lr1e-05_N. The graph is shown over a 30 minute window.
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Figure A.7: Prediction of Swedbank stock with 70 market orders as input, using
model 70_100e_lr0.0001_S. The graph is shown over a 3 hour window.
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Figure A.8: Prediction of Swedbank stock with 70 market orders as input, using
model 70_100e_lr0.0001_S. The graph is shown over a 30 minute window.
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Figure A.9: Prediction of Swedbank stock with 200 market orders as input, using
model 200_50e_lr0.0001_S. The graph is shown over a 3 hour window.

Figure A.10: Prediction of Swedbank stock with 200 market orders as input, using
model 200_50e_lr0.0001_S. The graph is shown over a 30 minute window.
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Figure A.11: Prediction of Swedbank stock with 700 market orders as input, using
model 700_100e_lr0.0001_S. The graph is shown over a 3 hour window.

Figure A.12: Prediction of Swedbank stock with 700 market orders as input, using
model 700_100e_lr0.0001_S. The graph is shown over a 30 minute window.
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Figure A.13: Prediction of Swedbank stock using the distributed model
rsi30_lr0.01_None_D. The graph is shown over a 3 hour window.
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Figure A.14: Prediction of Swedbank stock using the distributed model
rsi30_lr0.01_None_D. The graph is shown over a 30 minute window.

XI


	List of Figures
	List of Tables
	Introduction
	Aim of The Project
	Risk and Ethical Considerations
	Limitations
	Thesis outline

	Theory
	Stock market momentum
	Lagging and leading indicators
	Exponentially weighted moving average
	Relative Strength Index
	Moving Average Convergence Divergence
	Volatility
	Price Channels

	Machine Learning
	Neural networks
	Loss function
	Backpropagation

	Activation functions
	ReLU
	Leaky ReLU


	Normalization
	Min-max Normalization
	Z-Score Normalization


	Previous work
	Methods
	Data
	Building features
	Price
	Time
	Financial indicators

	Matching x and y data
	Graphs

	Distributed system
	Node-Box
	Smart-sync
	Applying Techniques in Layer 1
	Coordinator
	Coordinator Protocol
	Redundancy
	Parallelization
	Cycling node-boxes
	Financial Indicator Node
	Test Bench

	Stock predictor
	PyTorch
	Neural networks
	Input data
	Output data
	Training
	Testing


	Results
	Feed-forward Neural Network
	Min-max normalization
	Z-normalization
	Swedbank
	Nordea

	Discussion

	Distributed System
	Smart-sync
	Node-Boxes latency
	Discussion of Smart-sync
	Discussion of Node-boxes

	Distributed combined models
	Discussion

	General remarks
	Convergence Towards Average
	Offset in X and Y axis
	Deep and Shallow Network performance
	Network instability
	Financial Indicators Combined With Market Orders


	Conclusion
	Future work
	Long Short-Term Memory and Transformers
	Train model with data from several stocks
	Volume indicators
	Train using node-boxes
	Optimize node-box code
	Classification predictor


	Bibliography
	Appendix 1

