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Abstract

During the last decade, the importance of recommender systems has been increasing to the

point that the success of many well-known service providers depends on these technologies.

Recommender systems can assist people in their decision making process by anticipating

preferences. However, common recommender algorithms often suffer from lack of explicit

feedback and the “cold start” problem.

This thesis investigates an approach of using implicit data only, to extract users’ intent

for fashion e-commerce in cold start situations. Markov Decision Processes (MDPs) are

used on web session data to extract topic models. This thesis also explores how well the

topic models can capture users intent and whether they can be used to produce good

recommendations. The results show that this approach was able to accurately identify

sessions topics, and in most cases the topics could successfully be translated to product

recommendations.

Keywords: Recommender system, Context-aware, Topic models, E-commerce, Cold start,

Markov decision process
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1 Introduction

Since the amount of information on the web is growing rapidly, information overload has

become an increasing problem for users (Khoshneshin and Street 2010). For example, there

exist e-commerce sites that offer millions of products (Linden, Smith, and York 2003).

Consumers who need to select the right products quickly often lose themselves in the

amount of options they have. Consequently, they often either miss the products they prefer

or have a hard time making decisions. Recommender systems can be of great help when

dealing with this challenge (Baltrunas and Amatriain 2009; Khoshneshin and Street 2010).

Through anticipating information needs of users and providing suggestions, recommender

systems may not only increase the overall user experience, but also link directly to revenue

(Schafer, Konstan, and Riedl 1999; Yi et al. 2014).

The creation of new and better recommender systems has been an important field since the

middle of the 1990s (Adomavicius and Tuzhilin 2005; Schafer, Konstan, and Riedl 1999), and

it is still an active area of research and development today. There are scientific conferences

dedicated exclusively to this topic, such as the ACM conference on Recommender Systems1.

There have also been competitions offering tempting grand prizes, such as the Netflix

Prize2, in order to address the practical aspects of recommendation tasks.

Recommender systems are available across various domains, e.g. music, movies, blogs and

news feeds (Adomavicius and Tuzhilin 2005; Schafer, Konstan, and Riedl 1999). In order

to provide relevant recommendations in any domain, user interests and preferences towards

the products need to be understood. This can be done through analyzing user interactions

with products. User interactions are mainly classified into explicit and implicit feedback

(Baltrunas and Amatriain 2009; Cho, J. K. Kim, and S. H. Kim 2002). Explicit feedback

refers to the preferences that are learned without any assumptions, such as ratings. Implicit

feedback is user preferences that are inferred from actions. For instance, in the domain of

e-commerce, purchases and page views are indications of user interests.

Matrix-completion based collaborative filtering has become one of the most popular

recommendation techniques with its success in the Netflix Prize competition (Aksel and

Birtürk 2010; Khoshneshin and Street 2010; Yi et al. 2014). Collaborative filtering is a

method of making predications about a user’s preferences based on many other users who

share the same taste (Cho, J. K. Kim, and S. H. Kim 2002; Ghazanfar and Prugel-Bennett

2010; Jambor and Wang 2010; Lu, Agarwal, and Dhillon 2009). It is stated by Campos Soto

1http://recsys.acm.org
2http://www.netflixprize.com
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1.1. BACKGROUND CHAPTER 1. INTRODUCTION

(2011) and Cho, J. K. Kim, and S. H. Kim (2002) that among all the possible information

sources used by collaborative filtering, the most valuable is explicit rating. However, in

most cases, users are rarely motivated to provide direct feedback to the service provider.

The sparsity of explicit user ratings is thus a problem for recommendation tasks. Another

problem that recommender systems are facing is the cold start problem (Adomavicius and

Tuzhilin 2005; Braunhofer 2014; Gunawardana and Meek 2009; Ronen et al. 2013). This is

referring to the cases where recommender systems have no information of the active user

or items. For example, in the domain of e-commerce, some users log in to their accounts

only at the moment of checkout. In this case, the recommender system has no information

about previous purchases or visits by the users. This case is usually referred as “new

user” problem. Another situation is the “new item” problem, which is related to new

products being added to the inventory. In the collaborative filtering approach, products

are recommended to the users who share the same preferences. This approach would fail to

consider those new products which no one in the community has shown interest in.

1.1 Background

Lindex3 is a European fashion chain that has over 480 stores in the world. Its fashion

products are also sold online in all EU countries and Norway. Lindex online store contains

a large number of products in various categories, where a recommender system can be of

great assistance for customers.

Figure 1.1: A Lindex product page.

Figure 1.1 shows a product page in Lindex online store. There are two sections to the

right of the product, which are “Complete the look” and “Popular buys”. Complete the

look is reserved for products which are complements for the current product. It is edited

3http://www.lindex.com
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1.2. MOTIVATION CHAPTER 1. INTRODUCTION

manually by experienced Lindex staff. Popular buys are for products proposed by the

current recommender system.

In 2014, Lundgren and Lindberg (2014) conducted a study on constructing and evaluating

a recommender system in the domain of clothing e-commerce. Their thesis was supported

by 3Bits Consulting4 and used datasets provided by Lindex. They used on-going shopping

cart data together with contextual information to find patterns using clustering and

create recommendations with collaborative filtering. They mentioned that contextual

information can be defined as time, location, weather, mood or device etc. Their proposed

algorithm was better than a simple frequency algorithm, but was outperformed by the

current recommendation system at Lindex. Due to time constraints, they performed simple

contextual pre-filtering instead of a thorough investigation as planned. In the end, they

concluded that the complexity of the solution might be unnecessary and a simpler solution

could have sufficed. It was suggested by Lundgren and Lindberg (2014) that in order to

increase recommendation accuracy, more complex context-awareness models should be

investigated. Also, since data sparsity was one of the problems they faced, a suggestion

was to use more data than just on-going shopping carts.

As the recommender system created by Lundgren and Lindberg (2014) did not match the

initial expectations on prediction accuracy, this thesis aimed to create a new recommender

system, with focus on more complex context-aware models and new data sources. This

thesis was also supported by 3Bits Consulting, and the solution was tailored to datasets

from Lindex.

1.2 Motivation

As mentioned, most recommender systems suffer from data sparsity or cold start problems.

It is shown in figure 1.1 that there are “Facebook Like” and “Add to Wish List” options

under the product from Lindex online store. However, the pre-study showed that the

direct feedback collected by these features was too sparse to be usable as input for matrix

factorization approaches. In this case, the implicit feedback was the only source that could

be used due to its availability. Recent studies have suggested that web session data is an

alternative to subjective user ratings (Alam et al. 2013; Cho, J. K. Kim, and S. H. Kim

2002; D.A., Z., and Y. 2014; Liu et al. 2010; White, Jose, and Ruthven 2001; Yi et al. 2014).

Web session data records the visitor’s path through a website and provides information

essential to understanding shopping patterns or pre-purchase behaviors. The underlying

assumption is that customers are interested in the products they visit. Moreover, Lindex

web shop does not require a user to log in in order to make a purchase. Thus, in order to

provide adequate recommendations, the recommender system for Lindex shall also deal

with the cold start problem.

Generally, the effectiveness of recommender systems is measured in terms of prediction

accuracy on user preferences (Desarkar, Sarkar, and Mitra 2010; Guy et al. 2010; Said and

Belloǵın 2014). Traditional recommender systems are designed to capture users’ long term

4http://www.3bits.se
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1.3. PROBLEM DEFINITION CHAPTER 1. INTRODUCTION

interests, which is under the assumption that users’ preferences do not change (Tavakol

and Brefeld 2014). However, in fashion industries, customer preferences are likely not

consistent over time (Rendle, Freudenthaler, and Schmidt-Thieme 2010). The taste may be

influenced by external factors such as the current fashion trend, or by time periods, such

as Christmas. The unobservable internals such as mood changes and events happening in

life can also influence the taste on clothing. Studies have shown that short term interests

of users is valuable information to improve the quality of recommendations (Tavakol and

Brefeld 2014). The aforementioned external and internal factors are usually referred to as

“context”, which can be used to capture a user’s short term interests (Rendle, Freudenthaler,

and Schmidt-Thieme 2010; Tavakol and Brefeld 2014).

In this thesis, web session data was used to detect users’ preferences in cold start situations.

Visited products in a session were used to generate topic models. Topic models that reflect

the context can be seen as probabilistic semantics for retrieving information (Tavakol and

Brefeld 2014). Evaluation was performed on the historical data provided by Lindex.

Recommender systems is not a new research field, there exist many studies on improving

the prediction accuracy of a recommender system. However, a recommender system is

normally designed and developed for specific datasets in a certain domain. For example, a

recommender system for music recommendation, is not likely suitable for recommending

real estate. The main contribution of this thesis is to choose the right approaches for

designing and constructing a recommender system for fashion e-commerce. Moreover, as

opposed to most existing solutions that focus on addressing users’ long term interests, the

approach in this thesis also aims to capture users’ short term interest, which is another

contribution.

1.3 Problem definition

Attribute p1 p2 p3 p4 p5

Section Shirt Shirt Shirt Shirt Shirt

Color Blue Black Brown Black Black

Gender Women Women Unisex Women Women

Size Small Medium Small Small Small

Table 1.1: An example of user session.

Table 1.1 shows an example of a user session, which contains five visited products. The

first item is a blue shirt for women with size small, followed by a black shirt for women

with size medium and so on. Instead of approaching a product as a whole, we focus on

each attribute independently. For example, with the color attribute, we get a sequence

of blue, black, brown, black, black. The attribute size will return the sequence of small,

medium, small, small, small, and so on. Each of the sequences gives an expectation of

4



1.4. RESEARCH GOALS CHAPTER 1. INTRODUCTION

associated value. For example, shirt is expected to be viewed together with shirt and black

is expected to be viewed together with black.

To create a topic for the example session, a set of consecutive visited products is taken

into account at each step. This results in sequences of attributes, e.g. (blue, black), (black,

brown), (brown, black) and (black, black) for color with sequences of length two. The best

value associated with each sequence is part of the topic for that sequence. This is done

for all the attributes, so in each step in the session a tuple of best values can be produced

and this tuple is defined as the topic at that moment. The topic is then used to retrieve

products. The assumption is that with longer sequences the topic can reflect the whole

session.

In this thesis, the aim is to identify the most probable occurrence given one set of attribute

values using Markov decision processes (MDPs). The model is then used to identify the

topic of a set of products within a session. Both value iteration and Q-learning are used

for creating the model. Value iteration and Q-learning are two techniques to solve MDPs,

which will be explained further in Section 2.3. Topics are used to capture user intent, which

reflects the context the user is in. The recommendations are translated from topics.

1.4 Research Goals

Q1. Given a set of items visited by a user, is it possible to detect the user’s intent?

As shown by multiple papers (Alam et al. 2013; D.A., Z., and Y. 2014; Liu et al. 2010),

web session data can be used to improve the accuracy of recommendations. The idea is

intuitive, since customer behavior on a web site should indicate the objective with the

session, but to identify the goal is not a trivial task. An important problem is hence to

isolate the parameters which describe the goal of the customer. More specifically, find

traits of the products that the customer would purchase.

Q2. Can topics created from user sessions be used to generate high precision recommenda-

tions?

Research has shown that topic implies the context and context has an impact on product

recommendations, and is thus worth investigating. The problem is to translate the topic

to recommendations without losing its original meaning.

Q3. Can a web session based approach with topic models be used to create a recommender

system that handles cold start situations?

We hypothesize that cold start situations can be solved by using topic models. The web

session data can improve the topic accuracy adaptively with increasing knowledge on the

products in the session. Since the topic is modeled as a list of attribute values of possible

recommended products, the approach is expected to deal with the situation.

5



1.5. OUTLINE CHAPTER 1. INTRODUCTION

1.5 Outline

The thesis is structured as follows. Chapter 1 introduces the topic and motivates the

problem setting. Chapter 2 reviews the related work on recommender systems and

the recommendation algorithms. Chapter 3 introduces the data collected, technical

contributions and presents the implementation details. Chapter 4 shows the empirical

results, and reflects on the results. Chapter 5 provides conclusion by answering the research

questions and recommends future work.

6



2 Related Work and Theory

This chapter provides an overview of existing recommender systems and recommendation

algorithms. The aim of this chapter is to provide a relevant background about recommender

systems. It also explains the related machine learning methods, Context-awareness and

topic models. Since only existing methods and techniques are used in this work to solve a

specific problem, this chapter serves as the foundation of the selected approach.

2.1 Recommender System Classification

As mentioned in the introduction, one of the challenges for online customers today is to

process all the available information and make sensible decisions. Recommender systems

are designed to help individuals deal with this problem and serve as an aid in the decision

making.

In the literature, recommender systems are usually classified into three basic categories.

These are content-based filtering, collaborative filtering and hybrid approaches. (Adomavi-

cius and Tuzhilin 2005).

2.1.1 Content-Based filtering

In a content-based approach, relations between items is the core problem. How the relations

are described depends on the problem, but in general items are compared based on their

attributes. Movies, for example, can be described by genre, director, actors etc. Depending

on how many of these attributes that match, it is possible to calculate similarity scores

between all movies for a given service, and use these scores to find recommendations based

on the viewing history of a user, or an explicit profile of preferences.

A benefit of using content-based filtering is that items that no one has visited or purchased

still can be recommended. This is usable for newly added items in a system. A drawback

however, is that since items are combined with an artificial score, and not by users, important

connections may be overlooked. In most cases people’s associations between items have

higher relevance than a score created by the developers of the system (Adomavicius and

Tuzhilin 2005).

7
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2.1.2 Collaborative filtering

Collaborative filtering is the opposite of content-based filtering, since it uses similarities

between users instead of between items. The general idea is to group users with similar

behavior, e.g. purchases, and use these groups as a source for recommendations. When a

user looks at a product, the user can be associated with one or more groups of users who

have bought that product, and recommendations can be produced based on what these

other users have purchased in addition to the current product.

Collaborative approaches usually suffer from data sparsity and the cold start problem,

e.g. when a lot of users have bought very different products, it can be difficult to create

groups of users with similar behavior. Another case is when no one has bought a particular

product, and it gets visited by a user. In this case it is not possible to find users with

similar behavior, because there simply are none. The pros of using a collaborative approach

is that when lots of data is available, the recommendations become reliable, since they

reflect actual user behavior (Adomavicius and Tuzhilin 2005).

2.1.3 Hybrid approaches

Combining a content-based and a collaborative approach is called a hybrid approach. This

is a common method to counter the cons with both methods. The cold start problem in a

collaborative approach can be solved by using similarities between items, and connections

between items that has not been revealed by a content based approach can be detected

by looking at similar users. How the approaches are combined depends on the specific

problem (Adomavicius and Tuzhilin 2005).

2.2 Context-awareness

Context is an area in recommender system research which has become increasingly im-

portant. The idea comes from behavioral research in marketing, which has shown that

decision making depends on the context of the decision (Adomavicius, Sankaranarayanan,

et al. 2005). This means that customer preferences change, depending on the situation,

and a recommender system which reflects these changes is called a context-aware recom-

mender system. The exact definition of context is not fixed, but varies depending on the

problem.

There have been multiple studies to test the influence of context. In 2005 a study was

published which used a custom built web site to collect movie ratings and contextual

factors, such as the time, the location and in what company the movie was watched

(Adomavicius, Sankaranarayanan, et al. 2005). This data was used in a multidimensional

collaborate-filtering recommender system. The name multidimensional means that the 2D

user-item matrix was extended with the contextual information to form a multidimensional

cube. The results showed that context can increase the precision of recommendations,

but also that there are cases where it has no influence or even worsens the results. The

8



2.3. TOPIC DETECTION CHAPTER 2. RELATED WORK AND THEORY

authors therefore claimed that selection of contextual factors should be done with care

(Adomavicius, Sankaranarayanan, et al. 2005).

Another collaborative filtering method has been created by Baltrunas and Amatriain

(2009), where the purpose was to recommend music. In this case contextual factors could

not be incorporated beforehand, so the only available contextual data was time. The

hypothesis was that people listen to different music depending on the time of day, and the

results showed that using time as a contextual factor might increase the recommendation

precision.

A bigger study by Domingues, Jorge, and Soares (2011) concluded that in order for context

to have a significant impact is must add “rich contextual dimensions”. Their experiments

included data from three sources: two music web sites and one restaurant web site. For all

three datasets, time and location were selected as contextual factors. In addition to this,

genre, band and whether the music were instrumental or not was added to the context for

the music data. For the restaurant data the customer’s intention with the site visit was

added. The datasets were then tested with an item-based collaborative filtering approach

and association rules.

Higher level psychological surveys has also been performed. The authors Gorgoglione,

Panniello, and Tuzhilin (2011) wanted to answer the questions how trust and purchase

behavior depends on context. They worked together with a large Italian comic book

company, to get access to real users for the purpose of A/B-testing. The company used

non-personalized newsletters as a part of their marketing strategy, and the authors used

this resource to ask users to participate in the survey. The users who agreed to participate

were asked to rate a representative set of comic books to set up initial preference profiles.

Three separate recommender systems were then used to produce recommendations: a

content-based, a context-based and a random system. The random system was used as

a baseline. For each set of recommendations, the users were asked to answer a set of

questions, and also to specify two contextual parameters: the intention of a potential

purchase and the current mood. All this information was used to update the profiles over

time, and the result clearly showed that the contextual system outperformed the other two

with regard to user trust, product diversity and the amount of sold products.

2.3 Topic detection

A problem with context-awareness is that contextual factors can be fully observable, partly

observable or unobservable. If the factors are fully observable, modeling the context is

not difficult, but in many real life situations this is not the case. An approach to solve

this is topic detection, also called topic models. The hypothesis is that context affects the

preferences of users, and therefore is reflected in their behavior. If this is true, then context

does not have to be modeled directly, but can be captured implicitly with topics.

An attempt to test this hypothesis was performed by Hariri, Mobasher, and Burke (2012).

They created a music recommender system, which used a social music tagging service to

create latent topics in listening sessions. Topic prediction was performed by analyzing

9
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the last n songs for a user, and perform sequential matching on a set of existing topics.

If the predicted topics had a probability above a certain threshold, then those topics

were considered as recommendation candidates. The system was compared to three other

methods, and in general it performed better. Another result was that using topics can be a

good approach to counter the cold start problem. New songs can be difficult to recommend,

because they do not have any connections to other songs, but it is almost certain that they

will fit into existing topics.

Tavakol and Brefeld (2014) also made a study about topic detection. The goal of their

study was to investigate how well topic could be predicted in web sessions for a large

e-commerce company in the clothing business. Their reason for choosing the topic based

approach was that user intent is much easier to look for, than contextual factors. As

others have argued (Hariri, Mobasher, and Burke 2012), the intent of the user can reflect

the context the user is in. The method used in the paper is called a factored Markov

decision process (fMDP), and their idea to model each topic as a separate fMDP was quite

successful. They achieved prediction precision up to around 90%. They also manage to

use the topics in a recommender system which outperformed several baseline collaborative

filtering methods.

2.4 Markov decision process

A Markov decision process is a method for solving stochastic planning problems. These are

planning problems extended with an uncertainty for each action. Because of the uncertainty

the goal also differs from regular planning. Instead of searching for a particular goal state,

the objective is instead to find an estimated goal. This means that the same set of actions

in a given state space may produce different results. An example of where MDPs have

successfully been used is game theory, and according to Otterlo and Wiering (2012) MDPs

has become the de facto method for sequence based decision making.

Formally, an MDP is a tuple (S, A, T , R) of two sets and two functions. The sets

are assumed to be finite for real applications, but in the general case infinite sets are

allowed.

• S is the set of all possible states. A state consists of characteristics specific to the

modeled problem.

• A is the set of all possible actions. Actions are used to switch between states.

• T (s, a, s′) is the conditional probability that action a in state s results in state s′.

Can be rewritten as P (s′|s, a).

• R(s, a, s′) is the reward for changing state from s to s′ with action a.

The goal of an MDP is to collect the optimal amount of reward, and according to Otterlo

and Wiering (2012) there are at least three definitions of optimality. In short these are: the

sum of rewards in a finite time horizon, the sum of rewards in an infinite time horizon and

the average reward in an infinite time horizon. These definitions are important because
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they determine how the learning agent should handle future decisions in relation to the

present.

To find the optimal reward in an MDP, the optimal policy π has to be found. A policy

is a mapping between states and actions, that determines what action to take in each

state. Optimal policies can be found in two ways: using V -functions or Q-functions. A

V-function V π(s) describes the goodness of policy π in state s in terms of the expected

reward. V -functions are used when both the transition function T and the reward function

R are known. When T and R are unknown, Q-functions are used. They are also called

state-action functions, because Qπ(s, a) calculates the expected reward by performing

action a in state s and then follow the policy π (Otterlo and Wiering 2012).

2.4.1 Solving using dynamic programming

For MDPs where the transition function T and the reward function R are known, there are

two common algorithms for finding the optimal policy. These are called policy iteration

and value iteration, and both are based on dynamic programming.

Policy iteration

Policy iteration has two steps for each iteration. The first is called policy evaluation, where

the value function is calculated for the current policy. The second step is called policy

improvement, where the next policy is calculated by maximizing over value functions. Both

steps are repeated until convergence within some selected margin. The evaluation step can

be formulated as:

V π
k+1(s) =

∑
s′

T (s, π(s), s′)(R(s, π(s), s′) + γV π
k (s′)) (2.1)

In the equation k depicts time steps, and γ is a discount factor that satisfies 0 ≤ γ < 1.

The discount controls the influence of historical values.

The policy improvement step iterates through all actions to check if a better action can be

found. The approach looks for the greedy policy π′, based on the value function from the

evaluation step:

π′(s) = arg max
a

∑
s′

T (s, a, s′)(R(s, a, s′) + γV π(s′)) (2.2)

If the improvement step results in a new action for any state, the algorithm continues.

Otherwise is stops, and the resulting policy is returned. With finite state and action sets,

policy iteration can be shown to converge in finite time, but a bound on the number of

iterations is not known (Otterlo and Wiering 2012).

Value iteration

Value iteration is similar to policy iteration, but the difference is that the evaluation and

improvement steps are combined. Instead of converging using one policy and then evaluate

11
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the policy, value iteration tries all actions directly, and then iterates to converge on optimal

values for each state. The policy can then be calculated afterwards. The equation is:

Vk+1(s) = arg max
a

∑
s′

T (s, a, s′)(R(s, a, s′) + γVk(s
′)) (2.3)

2.4.2 Solving using reinforcement learning

Reinforcement learning is an alternative when a model of the problem is not available

beforehand, i.e. the transition function T and the reward function R. This problem can be

solved with either direct or indirect reinforcement learning. An indirect approach interacts

with the environment to approximate T and R, and then the dynamic programming

methods from the previous section can be applied. However, most algorithms based on

reinforcement learning have the direct approach. This means that no approximation of the

model is performed, and instead the Q-function is estimated directly (Otterlo and Wiering

2012).

Another part of reinforcement learning is the selection of exploration policy. This policy

controls the relation between exploration and exploitation. Exploration is required to test

new actions, and exploitation is used to maximize the reward by selecting the currently

best action. There exist many policies with different levels of sophistication, but one of the

most common is the simple ε-greedy policy. It selects the best action with probability ε,

and uniformly random among the other actions with probability 1− ε (Otterlo and Wiering

2012).

Q-learning

This is a common basic approach that follows a real session of requests, rather than

exploring the whole state space. The Q-values for states and actions are calculated during

the course of the session, based on observed state changes. The update formula is:

Qk+1(s, a) = Qk(s, a) + α(r + γ arg max
a′

Qk(s
′, a′)−Qk(s, a)) (2.4)

The Q-matrix is initiated with arbitrary values, e.g. Q(s, a) = 0, ∀s ∈ S and ∀a ∈ A. The

variables α and γ both satisfy 0 ≤ α, γ < 1. α is called a learn rate parameter, and is

usually low and fixed, or decreased in each iteration. Then, for each step k, an action is

selected for the current state, based on the exploration policy. The next step s′ is observed

and the reward r is returned. With this experience Q(s, a) is updated accordingly (Otterlo

and Wiering 2012).

12
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2.5 Evaluation methods

2.5.1 Online

In online testing of recommender systems, the purpose is to investigate how real users

behave and react. It has been shown that user tests, in e.g. controlled lab simulations

or surveys, can reveal important factors other than just accurate predictions. Herlocker

et al. (2004) write that trust and confidence in the recommender system are important

for users, and can be achieved by revealing the underlying reason for a recommendation.

A/B-testing is another method used to monitor user behavior (Gorgoglione, Panniello, and

Tuzhilin 2011) (Lundgren and Lindberg 2014). It is useful for comparing algorithms, since

the users does not know that they are being surveyed.

2.5.2 Offline

Offline testing is an alternative to online testing, that is common in the recommendation

system community. The general approach is to use historical data and split it up into

a training set and a testing set. The split can be performed randomly or along a time

axis. The training set is used to train the model, and the testing set is used to measure

the prediction accuracy. It is important that these sets are disjoint, because testing on

training data will in most cases make the results biased towards the training data, i.e.

overfitting.

Offline testing is usually easier to perform than online testing, since no interaction with real

users is required. On the other hand, with offline testing it can be difficult to capture other

factors than prediction accuracy. Hence, the results can be used to compare algorithms,

but should not be considered as representative for the whole problem.

The are two common approaches to measure recommendation accuracy: statistical and

decision support (Campos Soto 2011). Two ways of measuring statistical accuracy is mean

absolute error (MAE) and root mean squared error (RMSE).

MAE =
1

n

n∑
i=1

|pi − ai| (2.5)

RMSE =

√∑n
i=1(pi − ai)2

n
(2.6)

Both methods give an error based on the difference between the predicted value pi and the

observed value ai, but RMSE puts more emphasis on big errors because of the squaring.

A lower error means higher accuracy. Since they measure the difference between scores,

suitable applications are e.g. prediction of ratings (Campos Soto 2011) (Herlocker et al.

2004).

Decision support problems do not predict scores or ratings, but helps with making choices.

Usually the task is to recommend a set of items, and the goal is to make as relevant

13
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recommendations as possible. The most common approach to measure the accuracy of

such recommendations, is precision and recall. Precision is defined as the ratio between

the number of good predictions g and the total number of predictions t, which shows how

many of the recommendations that actually are relevant (Herlocker et al. 2004).

precision =
g

t
(2.7)

Recall is the ratio between the number of good predictions g and the number of all possible

good predictions p, which shows how relevant the recommendations are overall (Herlocker

et al. 2004).

recall =
g

p
(2.8)

When both precision and recall are used for comparing algorithms, the F1-measure can

be applied instead. It combines the two and returns the harmonic mean between them

(Herlocker et al. 2004).

F1 = 2 ∗ precision ∗ recall
precision+ recall

(2.9)

Precision and recall depends on the definition of relevant items. Some researchers in the

area of information retrieval have argued that relevance can be decided objectively. This

means that if a user is searching for an item, either with a query or by viewing related

items, the most relevant items are the ones which matches the query or viewed items

the best. On the other hand, in a real situation, only the user can decide whether the

recommended items feels relevant to the current objective. This turns it into a subjective

problem, which shows that the concept of relevance may not be as useful in recommender

systems as in traditional information retrieval. Another problem is that in most cases it

is only possible to recommend a small number of items. If that is the case, precision is

important to measure how many of the recommended items that are relevant to the user.

Recall is less important, because the user probably does not care how many other relevant

items there are (Herlocker et al. 2004).
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3 Methods

This chapter describes the approaches and methods used in this thesis, including data

collection, algorithm implementation and experimental setting. The aim of this chapter is

to present the necessary means to realize the project.

3.1 Motivation of methods

As explained in the introduction, the goal of the thesis was to create a context-aware

recommender system. In section 2.2 some examples of related work within this area was

presented and the term context was described. Later, in section 2.3, some problems with

context-awareness were addressed, and as the provided dataset from Lindex lacked explicit

contextual factors, it was decided to use the topic based approach described by Tavakol

and Brefeld (2014).

3.2 Data collection

The focus of this work is to extract meaningful information from web sessions from Lindex

online store, in order to gain insights about customer preferences and interests on fashion

products. Thus, primary data sources are web session data and product information. The

datasets used in this thesis were collected from real life network traffic to Lindex online

store. The data is unfortunately not public since there is a need to protect the company’s

business information and customer data based on the Swedish law of personal record.

Publicly available datasets were not chosen because recommender systems are data depen-

dent. In order to conduct this work, traffic data from a real life fashion e-commerce site

was needed. Due to the sensitivity of such information, we failed to find public datasets

that fulfill our requirements.

3.2.1 Web session data

Web session data contains a sequence of network request-response transactions. The request

messages contain actions that users performed on the resource. It is an alternative to

explicit user feedback, since the user’s intent can be derived from request messages.
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Web session data is traditionally recorded by server logs. There are however a number

of cloud services today for doing the same task of recording web logs, such as Google

Analytics, which provides aggregated data on web traffic. As a strategy decision by Lindex,

the current system is under transition to migrate from using traditional log files to cloud

logging. The web session data used in this thesis is therefore retrieved from Application

Insights1 which is a service from Microsoft Azure.

Requirements and assumptions

Since we want to keep track of the products visited by real users who intend to make

purchases in the online store, some requirements and assumptions were made to extract

the data from the web sessions.

Req 1: A unique product id is required in order to identify products.

Req 2: A time stamp is required to identify when a product was visited.

Req 3: A session id is required to identify a session.

Req 4: The user who visited the product cannot be a bot.

Assump: One web session should contain between 2 and 50 visited products.

Pre-processing

The data collected by Application Insights can be viewed through Azure Portal2. However,

in order to access it programmatically, the data needs to be exported to Azure storage3.

The exported data is in JSON format and is stored as blob files. It is sorted based on

request type and time. The types can be Request, Dependency, Exception etc4. The data

that fulfills the specified requirements can be obtained from the Request type.

Figure 3.1 is an example of a request that is in JSON format. The request has a unique id

that is 12356638698845046525, and it is a HTTP GET request. The url has a base which

is /Assets/SiteV3/Pages/Product/Product.aspx and product id equals to 7231252. The

request is made at eventTime 2015-05-14T03:57:26.4185891Z and it is from a syntheticSource

called bingbot. The session has an id which is 0341b7260b86405f873ddf196d7c04e4.

C# was used to programmatically download the data from Azure Storage and Json.NET

library was used to parse the JSON object, and extract the data fields according to the

requirements. Specifically, the following fields were collected:

dRequestId, SessionId, ProductId,EventT imee

During the processing, the following steps were used to filter out unwanted data:

1. Filter based on request methods.

1http://azure.microsoft.com/en-us/documentation/articles/app-insights-get-started/
2https://portal.azure.com/
3http://azure.microsoft.com/en-us/services/storage/
4https://azure.microsoft.com/en-us/documentation/articles/app-insights-data-retention-privacy/
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Figure 3.1: Request Example

The GET method from the HTTP specification is for retrieving a specified resource. The

information in the resource contains the data relevant to the requirements, so a decision

was made to only consider the GET requests.

2. Filter based on “base”.

The example in figure 3.1 has base which is /Assets/SiteV3/Pages/Product/Product.aspx.

It indicates that the resource the user is requesting is a product page. Since the goal is to

get the visited products, other bases can safely be filtered out to remove pictures, scripts,

etc.

3. Filter based on “syntheticSource”.

The user who visited the product page cannot be synthetic, thus only data where synthet-

icSource is null is kept. Bots such as “bingbot”, “YandexBot”, “Googlebot”, “Yahoo Bot”

and “TwitterBot” are detected and will not be considered. The data shown in figure 3.1 is
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thus disregarded.

All fields are stored in a database with RequestID as the key, since it is unique. Database

management was done through using Entity Framework, which provides the object-relational

mapper that supports .NET framework with relational data using domain-specific object.

It eliminates the need for writing most of the data-access code. As a concrete example, if

the syntheticSouce in the data presented in figure 3.1 is null, the following entry would be

added to the database.

d12356638698845046525, 0341b7260b86405f873ddf196d7c04e4,

7231252, 2015− 05− 14T03 : 57 : 26.4185891Ze

4. Clean the sessions according to request count in a session.

Based on the assumptions, the requests were grouped by sessionID, and the number of

requests in each session was counted. Sessions with a length of less than 2 or more than

50, were removed from the databases.

Limitation

Since Application Insights is in the preview stage, up to 500 telemetry messages per second

and up to 10 million page views or events per month are stored. The rest of the messages

will be dropped. Hence, in case of a data peak, data might be lost.

3.2.2 Product information

Product information is retrieved directly from Lindex product database. A product can

be described with a set of attributes, such as color, gender, size etc. In this thesis, the

attributes are used to describe the topic of a session, so a full analysis of the product

database was done.

Selected attributes

The attributes were selected empirically by observing the online store, product database

tables and schemes. The following attributes were chosen:

• Gender

• Section

• Size

• Color

Section, size and color are self-explanatory. Gender in this thesis is not only referring to

the state of being male or female, but also reflects the status of a person and the height.

In total 16 genders, 102 sections, 315 sizes and 30 colors were identified. The sizes and

colors were easily retrieved. But genders and sections required some preprocessing.
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Process gender

By analyzing the products, a list of keywords could be obtained, and resulted in the

following key-value dictionary.

Key Value

44-68 0

56-86 1

86-122 2

128-170 3

girl x

boy y

women X

men Y

mom Z

generous +

Table 3.1: key-value dictionary

According to table 3.1, the distinct genders in table 3.2 were created.
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Identifier Gender

X women

Y men

X+ plus size women

XZ mom

0 new borns

1 44-68cm children unisex

2 86-122cm children unisex

3 128-170cm children unisex

x1 44-68cm girl

y1 44-68cm boy

x2 44-68cm girl

y2 86-122cm boy

x3 128-170cm girl

y3 128-170cm boy

xy: children unisex

Table 3.2: Genders

Process section

Since the section has many more keys than the gender has, it is not possible to manually

create the keywords. For keyword generation, the entire product description and category

description were used to search for the keywords dynamically. Words to ignore were

identified, and the rest were normalized by transforming from plural to singular. This

resulted 102 sections.

Limitation

There is a limitation in the attribute selection. Four attributes were selected to test the

approach of using topic models on visited products. However, since the topic is formulated

by attributes, the more attributes there are, the more detailed the topic is. Another

limitation is in keyword accuracy. The keywords, that were selected manually for genders

and dynamically for sections, are dependent on the product description. However, as

mentioned by Lundgren and Lindberg (2014), some data fields were not consistent over

time in Lindex database, such as the technical description of items that lack of uniqueness

and was rather sparse in appearance.
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3.3 Implementation

The MDP was implemented in two versions: one using indirect reinforcement learning

and one using direct reinforcement learning. This section lists various key elements of the

algorithms, and the algorithms themselves. A single MDP was used for each attribute. A

state in the MDP was modeled to either contain 1, 2 or 3 consecutive requests.

3.3.1 Symbols and definitions

• S - The set of all states. A state is either a single attribute values, or a series of

them.

• A - The set of all actions. To perform an action is to recommend an attribute. The

action set is equal to the state set.

• U - A web session of requests for a single user. Each request is a state s.t. U ⊆ S.

• M - A matrix with dimensions |S| ∗ |S|. Initialized with 0s.

• V - An array containing the value history for each state s.t. V [s] is a chronological

list of values for state s, with the most recent value last.

• X - An array s.t. X[s] is the best action for state s according to the MDP.

• Q - A matrix s.t. Q[s][a] is the value for choosing action a in state s.

• r - Reward. A numerical value used to promote good predictions.

• γ - Discount factor. Controls how much past values influence new ones.

• α - Learn rate. A factor used in Q-learning to control convergence speed.

• ε - The probability used in the EGreedy algorithm.

3.3.2 Indirect reinforcement learning

The indirect approach has two key parts: distribution approximation and value iteration.

The distribution approximation is divided into algorithms 1 and 2. Algorithm 4 describes

the value iteration, which uses algorithms 2 and 3.

The first part of the approximation consists of counting the number of times two attribute

values have occurred together in the same session, for each session U in a certain training

period. The result is an updated version of the M matrix.

Algorithm 1: Approximation of distribution

Input: U

Output: M

1 for u, u′ ∈ U do

2 M [u][u′]←M [u][u′] + 1

3 end
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The transition algorithm is a simple addition to the distribution matrix. It is used to

calculate the conditional probability between two states s and s′, based on the current

M .

Algorithm 2: Transition

Input: s, s′ ∈ S
Output: P (s′|s)

1 return M [s][s′]/
∑

iM [s][si]

The reward algorithm is used to reward good predictions. If a state s and a recommended

state s′ occurs in the same session, the recommendation is deemed successful, and the

reward value is returned.

Algorithm 3: Reward

Input: s, s′ ∈ S, U

Output: r ∈ R

1 if s, s′ ∈ U then

2 return r

3 end

4 else

5 return 0

6 end

The value iteration algorithm is based on the value iteration described in section 2.4.1.

The biggest formal difference is the removal of the summation. This relaxation can be

done because the state space and the action space are equal. Additionally it reduces the

complexity and increases the prediction precision, according to the tests performed during

development.

The algorithm takes a session U and updates the values and actions for each request in

U , until it converges. For each request u, all states in S are considered in the central

equation at line 7. At the end of the inner loop at line 12, the best state to recommend for

request u is stored in X and the value associated with that state is stored in V . Note that

states to recommend are called actions. Convergence occurs when the difference between

V [u]k−1 and V [u]k is smaller than 1, for all requests in U . The variable k is the number of

iterations performed until convergence.
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Algorithm 4: Value iteration

Input: U

Output: V , X

1 converged← false

2 while converged = false do

3 for u ∈ U do

4 bestAction← null

5 bestV alue← 0

6 for s ∈ S do

7 temp← Transition(u, s) ∗ (Reward(u, s, U) + γ ∗ V [s])

8 if temp > bestV alue then

9 bestV alue← temp

10 bestAction← s

11 end

12 end

13 V [u]← bestV alue

14 X[u]← bestAction

15 end

16 for s ∈ S do

17 converged← true

18 if V [s]k−1 − V [s]k > 1 then

19 converged← false

20 end

21 end

22 end
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3.3.3 Direct reinforcement learning

The selected algorithm for the direct approach was Q-learning. This algorithm does not

use a probability distribution, but calculates the values for states and actions directly. It

takes a session U and iterates through it once. For each request u, an action a is selected

with the ε-greedy policy, the best action amax for the next request u′ is selected, and finally

the new value for Q[u][a] is calculated.

Algorithm 5: Q-learning

Input: U

Output: Q

1 for u ∈ U do

2 a← EGreedy(u)

3 amax ← FindMaxQAction(u′)

4 Q[u][a]← Q[u][a] + α ∗ (Reward(u, a, U) + γ ∗Q[u′][amax]−Q[u][a])

5 end

The ε-greedy exploration policy is a simple but popular policy, that selects the best action

for a given state with probability ε. It selects uniformly random between the other actions

with probability 1− ε.

Algorithm 6: EGreedy

Input: s ∈ S
Output: a ∈ A

1 a← FindMaxQAction(s)

2 rand← generate random value, s.t. 0 ≤ rand ≤ 1

3 if rand < ε then

4 return a

5 end

6 else

7 a′ ← find random action s.t. a′ 6= a

8 return a′

9 end

Algorithm 7 uses the values in the Q-matrix to find the best action for the given state. It

iterates through all actions for the state, and selects the one with the highest value.
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Algorithm 7: FindMaxQAction

Input: s ∈ S
Output: a ∈ A

1 bestAction← null

2 bestV alue← 0

3 for a ∈ Q[s] do

4 if Q[s][a] > bestV alue then

5 bestV alue← Q[s][a]

6 bestAction← a

7 end

8 end

9 return bestAction

3.4 Performance analysis

The complexity of the value iteration is O(I ∗ |U | ∗ |S| ∗ (|S|+ |U |) + C) where I is the

number of iterations until convergence, |U | is the number of states in the session U and

|S| is the number of states in the whole state space S. The complexity of the Q-learning is

O(|U | ∗ (|A|+ |U |) + C), where |A| is the number of actions in the action space. In the

the implementation |S| = |A|, and in a worst case scenario a session contains all possible

states, i.e. |U | = |S|. This means that the complexity for value iteration can be rewritten

as O(I ∗ |S| ∗ |S| ∗ |S| + C) = O(I ∗ |S|3 + C). The complexity for Q-learning can be

rewritten as O(|S| ∗ |S| + C) = O(|S|2 + C). This clearly shows that Q-learning is the

fastest algorithm, but the drawback is that it requires more session data to converge, since

it only iterates through each session once.

3.5 Evaluation

The tests were divided into three distinct parts: single attribute prediction, topic prediction

and product prediction. The selected evaluation metric was precision. Recall was not

included, mainly because of the reasons explained in section 2.5.

During the tests, the session data was divided into days. To simulate realistic behavior,

the model was first trained on one day and tested on the next day. In the second run two

days were used for training and the third day for testing. In this way the test data was

gradually increased with one day at a time, and testing was always performed on the day

after the last training day. This way of training and testing simulates the behavior of a real

online system, where new data is added gradually. To test different convergence points,

the training data was split in two periods.
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3.5.1 Single attribute prediction

The single attribute test was performed with the attributes color, size, section and gender.

In the test a session is a set of requests, and a request is a visited product and contains an

attribute value. The test iterates through all sessions in the testing period, and produces

recommendations. Each recommendation is based on either 1, 2 or 3 consecutive requests,

and the pseudocode shows the case with 1 request, line 6. If the recommended attribute

value occurs in the session, then the recommendation is successful.

Algorithm 8: Single attribute test

1 sessions← select sessions in training period

2 train mdp with sessions

3 sessions← select sessions in testing period

4 for session ∈ sessions do

5 for request ∈ session do

6 rec← GetBestAction(mdp, request)

7 if rec ∈ session and rec 6= request then

8 successful recommendation

9 end

10 end

11 end

3.5.2 Topic prediction

The purpose of the topic prediction test was to investigate the joint prediction rate of all

4 attributes together. Hence, a topic in this test is a tuple of attribute values. 4 MDPs

are created, one for each attribute, and they are trained separately. A session is a set of

requests, and a request contains all information about the visited product. Topics are

created based on 1, 2 or 3 requests, and the pseudocode shows the case with 1 request, line

7. The if-statement at line 8 matches the recommended topic with the individual topic

of all products in the session, and returns a result which depends on how well the topic

matches. If all 4 attributes match, then the topic is 100% successful, but if e.g. only 2 of

the attributes in the topic matches, then it is only a 50% match.
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Algorithm 9: Topic test

1 sessions← select sessions in training period

2 mdps← create 4 MDPs for color, size, section and gender

3 train mdps with sessions

4 sessions← select sessions in testing period

5 for session ∈ sessions do

6 for request ∈ session do

7 topic← GetBestTopic(mdps, request)

8 if parts of or all of topic ∈ session then

9 successful recommendation

10 end

11 end

12 end

3.5.3 Product prediction

The product prediction is an extension of the topic detection, but instead of predicting the

topic, the topic is used retrieve products. Similarly to the topic test, topics are selected

based on 1, 2 or 3 consecutive requests, and the case with 1 request is shown at line 7. To

get products, line 8, all products are first ordered by their overall popularity, and then the

top products which matches the topic are selected. 1, 5 or 10 products are recommended,

and a successful recommendation occurs if at least one of the retrieved products exist in

the session, which is checked at line 9.

Algorithm 10: Product test

1 sessions← select sessions in training period

2 mdps← create 4 MDPs for color, size, section and gender

3 train mdps with sessions

4 sessions← select sessions in testing period

5 for session ∈ sessions do

6 for request ∈ session do

7 topic← GetBestTopic(mdps, request)

8 products← GetProducts(topic)

9 if at least 1 product in products ∈ session then

10 successful recommendation

11 end

12 end

13 end
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4 Results and Discussion

This chapter presents all the collected results, explains them and reasons about them. The

results are divided into single attribute results, topic results and product results.

4.1 Experimental setting

The results presented in this section were collected using the MDP with value iteration

and the MDP with Q-learning. The probability distribution used in the value iteration

was also used directly, as a baseline. The whole time period for the tests was between

2015-02-10 and 2015-03-16. The period was split between February and March to test

different convergence periods. The data from February is referred to as period 1, and the

data from March is referred to as period 2.

In the graphs P is the probability distribution, V is the value iteration and Q is the

Q-learning. The Y-axis shows the precision in percent, and the X-axis is divided into

days. The actual dates are omitted to save space, and because they lack relevance. In

order to capture the behavior in a session, multiple requests have to be considered when

making predictions. The tests were therefore performed by taking 1, 2 and 3 requests into

account. Because of performance reasons, value iteration was only used when taking 1

request into account. In the other cases only the probability distribution and Q-learning

were used.

4.2 Individual attributes

The single attribute tests are divided into color, size, section and gender. Each test was

performed for period 1 and period 2.

4.2.1 Color

The best average precision for color (60%) was achieved when only considering 1 request

at a time. Both P and V succeeded with that (figures 4.1 and 4.2). Q on the other hand

takes some time to converge, and averages 49%.
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Figure 4.1: Color, 1 request, period 1. Figure 4.2: Color, 1 request, period 2.

With 2 requests (figures 4.3 and 4.4) there is almost no difference for P (59%), but Q

converges directly to an average of 58%. The quicker convergence shows that by considering

2 requests the results are more stable.

Figure 4.3: Color, 2 requests, period 1. Figure 4.4: Color, 2 requests, period 2.

With 3 requests (figures 4.5 and 4.6) the precision drops for P to around 50% and Q drops

to around 47%. The curve for Q also gets a bit bumpier.

Figure 4.5: Color, 3 requests, period 1. Figure 4.6: Color, 3 requests, period 2.

Overall the results show that color is difficult to predict. By looking at longer sequences

does no seem to increase the precision, and a reason for that is probably that people look

at different colors in different orders. This makes it more difficult to predict, and also

indicates that color may not be that important for the topic. The reason why the results

are not lower is because some colors are much more common that others, and therefore

results in successful predictions because of high probability.
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4.2.2 Size

Similarly to the color test, the best results were achieved with 1 request with P (64%) and

V (64%) (figures 4.7 and 4.8). P and V are fairly stable, but Q never converges completely,

which suggests that the periods are too short.

Figure 4.7: Size, 1 request, period 1. Figure 4.8: Size, 1 request, period 2.

With 2 requests (figures 4.9 and 4.10) the behavior is also similar to color, where Q is

much more stable. Here P averages 62% and Q 58%.

Figure 4.9: Size, 2 requests, period 1. Figure 4.10: Size, 2 requests, period 2.

With size it was not possible to perform the test with 3 requests, because the state set in

the MDP grew too big. The conclusion for size is that it also varies a lot, like color, but

this has probably more to do with the fact that there are different sizes for different types

of clothes.

4.2.3 Section

In the section tests P, V and Q performs more evenly in comparison to color and size. The

results are also generally higher. The best results are achieved when considering 2 requests,

P gets 94% and Q gets 93% (figures 4.13 and 4.14). These results are significantly better

than the case with 1 request (figures 4.11 and 4.12), but only marginally better than the

case with 3 requests (figures 4.15 and 4.16).
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Figure 4.11: Section, 1 request, period 1. Figure 4.12: Section, 1 request, period 2.

Figure 4.13: Section, 2 requests, period 1. Figure 4.14: Section, 2 requests, period 2.

Figure 4.15: Section, 3 requests, period 1. Figure 4.16: Section, 3 requests, period 2.

The general conclusion for section is that is seems to much easier to predict. There are

two probable reasons for this. The first is that it is more likely that users stay within the

same product section when looking for something to buy. This creates more predictable

patterns, which is evident when considering the much faster convergence for Q in the case

with 1 request. The precision also increase when considering 2 requests instead to 1, and

only decrease slightly when considering 3, which supports this argument. The other reason

may be related to the probability distribution for section. It may be the case that the

distribution is very skewed towards a small set of categories, and therefore resulting in

easier predictions.

4.2.4 Gender

The gender results are a bit surprising, since they decrease when taking more requests into

account. Intuitively the target gender in a session should not vary, but apparently it does.
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The decrease is quite significant, from around 85% (figures 4.17 and 4.18), to 78% (figures

4.19 and 4.20) to 71% (figures 4.21 and 4.22) for P, V and Q. One reason for this may be

the way gender is defined in this project. It is a combination of sex and age, e.g. there is a

difference between young girls and grown up women.

Figure 4.17: Gender, 1 request, period 1. Figure 4.18: Gender, 1 request, period 2.

Figure 4.19: Gender, 2 requests, period 1. Figure 4.20: Gender, 2 requests, period 2.

Figure 4.21: Gender, 3 requests, period 1. Figure 4.22: Gender, 3 requests, period 2.

4.2.5 Comparison with related work

When comparing the results from the single attribute tests with the results from Tavakol

and Brefeld (2014) some similarities can be detected. The best results for color is 60%

against their 93%, section has 94% against their 92% and gender has 87% against 93%.

Tavakol and Brefeld (2014) did not perform tests on size. The biggest difference is color,

but for section and gender the results are very similar. This reinforces their idea of using

MDPs for topic detection, since the result could be recreated with another dataset.
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4.3 Topic

The topic results are surprising, because Q performs better than P and V, with an average

precision of 84% compared to 79% and 81%, in the case with 1 request (figures 4.23 and

4.24). The difference is not significant, but still better, considering that Q only performed

worse than or equal to P and V in the single attribute tests. With 2 (figures 4.25 and

4.26) and 3 (figures 4.27 and 4.28) requests P increases to around 85% and Q decreases

to around 82%. There is apparently no big difference between taking 2 or 3 requests into

account. One thing to note however is that the topic with 3 requests does not contain size

because of the previously stated performance issues.

Figure 4.23: Topic, 1 request, period 1. Figure 4.24: Topic, 1 request, period 2.

Figure 4.25: Topic, 2 requests, period 1. Figure 4.26: Topic, 2 requests, period 2.

Figure 4.27: Topic, 3 requests, period 1. Figure 4.28: Topic, 3 requests, period 2.
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4.4 Product

The product recommendations were made by creating a topic, and then select 1, 5 or 10

products to recommend. As explained in section 3.5 the precision was calculated on the

whole set of recommended products, and not on individual products. As in the topic tests,

size was not included in the tests with 3 requests.

4.4.1 10 recommendations

When making 10 recommendations based on 1 request (figures 4.29 and 4.30), there is

a big difference between Q, P and V. This may be related to the topic results with 1

request (figures 4.23 and 4.24), where Q also performed better. But in this product test

the difference is much larger, which is noteworthy. There is also a bigger difference between

V and P.

Figure 4.29: Products, 1 request, period 1. Figure 4.30: Products, 1 request, period 2.

In the case with 2 requests (figures 4.31 and 4.32), the precision for P and Q increases

dramatically, to around 92% for P and 93% for Q. This is also the best result for 10

products.

Figure 4.31: Products, 2 requests, period 1. Figure 4.32: Products, 2 requests, period 2.

Using 3 requests (figures 4.33 and 4.34) produces worse results than using 2, 86% for P

and 87% for Q, but still better than using only 1.
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Figure 4.33: Products, 3 requests, period 1. Figure 4.34: Products, 3 requests, period 2.

It is clear from these results that taking more than 1 request into account when making

recommendations is better. The results are more stable, and the precision is higher.

However, it is interesting to note that P and Q perform so similar. This suggests that

the data is suitable for a probabilistic model, and that a more advanced machine learning

algorithm like Q-learning may be unnecessarily complicated.

4.4.2 5 recommendations

Decreasing the number of selected products naturally lowers the precision, since the

probability to get a match is decreased. The decrease is most obvious in the case with 1

request (figures 4.35 and 4.36), but there is a clear decrease for the other cases as well

(figures 4.37, 4.38, 4.39 and 4.40). The relative difference between the algorithms does

change, and the best results are achieved when using 2 requests.

Figure 4.35: Products, 1 request, period 1. Figure 4.36: Products, 1 request, period 2.

Figure 4.37: Products, 2 requests, period 1. Figure 4.38: Products, 2 requests, period 2.
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Figure 4.39: Products, 3 requests, period 1. Figure 4.40: Products, 3 requests, period 2.

4.4.3 1 recommendation

The trend spotted for five products continues when only selecting one single product to

recommend. The case with 1 request (figures 4.41 and 4.42) gets much lower precision, but

even if there is a decrease in precision for the other cases with 2 (figures 4.43 and 4.44)

and 3 (figures 4.45 and 4.46) requests, their results remain high. This seems a bit strange,

and may depend on the data distribution more than the model itself.

Figure 4.41: Products, 1 request, period 1. Figure 4.42: Products, 1 request, period 2.

Figure 4.43: Products, 2 requests, period 1. Figure 4.44: Products, 2 requests, period 2.
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Figure 4.45: Products, 3 requests, period 1. Figure 4.46: Products, 3 requests, period 2.
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5 Conclusions and Future Work

This chapter summarizes the thesis by answering the research questions. Possible future

work is also suggested.

5.1 Conclusion

Throughout this master thesis, we have developed a recommender system that uses topic

models to predict users intent with implicit feedback only. The topic models were created

using Markov decision processes on web session data, which in turn were translated to

product recommendations. The results show that our approaches was able to accurately

identify sessions topics. In most cases the topic of a session could successfully be translated

to product recommendations.

The research questions defined in the beginning of this thesis were:

Q1. Given a set of items visited by a user, is it possible to detect the user’s intent?

Q2. Can topics created from user sessions be used to generate high precision recommenda-

tions?

Q3. Can a web session based approach with topic models be used to create a recommender

system that handles cold start situations?

Regarding Q1, the results show a positive answer to the possibility of using visited items

to detect user intent. The topic accuracy is around 80% in general regardless the length of

the sequence that is used to predict.

Regarding Q2, the results clearly show that it is possible to translate topics to product

recommendations. When considering sequences of two requests, the average precision

is above 85%, and for three requests it is just below 80%. Compared to the thesis by

Lundgren and Lindberg (2014), our results are better in general. But it is difficult to give

a decisive answer, since there are almost two years in between the data sets. The best way

to measure the difference between our approaches would be to use A/B-testing on actual

users.

Regarding Q3, our initial hypothesis about the success of countering the cold start problem

had two reasons. First, the use of topic models makes it possible to recommend products

to new users, because they reflect general user behavior. Second, the use of attributes to

describe the topics can capture all products regardless if it has been viewed or bought
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previously. Our solution in the end fits the first reasoning. However, our solution does not

fit the second reasoning, even though the topic catches the new item, because during the

translation, the recommended products were based on the most popular products that fits

the topic.

5.2 Future work

With the presented results, this work has showed that using MDPs with web session data

can provide adequate recommendations in terms of prediction accuracy. However, future

work can be done on top of this concept. In this section, the future work is divided into

algorithm modifications, additional extensions and further evaluation.

5.2.1 Algorithm modification

Selection on attributes

We have selected four attributes for products, which are color, gender, size and section.

We argued in our work that the context is implied when using attributes for describing the

session topic. However, more attributes can be chosen to further specify the topic, which

can probably increase the prediction accuracy. Work can be done on attribute extraction

from product databases. A thorough experiment can be done to determine which attributes

are relevant for improving the topic accuracy.

State Size

In this work, we have defined a state in the MDP as one single attribute value, two attribute

values and three attribute values. Through observation on the results, we found that the

state size is important to the prediction accuracy, which is not surprising since the longer

the state, the better it captures the entire web session. Additional experiments can be

done on determining the perfect state size for creating accurate topic models. Also, a

computational problem arises when the number of possible values for attributes increase,

since the state size in the MDP grows quickly, because of combinatorics. This can result in

a very memory heavy system.

Topic translation

Since our main focus of the thesis was to extract topic models which captures users intent,

little effort has been done on translating the topic to recommended products. The current

solution is to conduct a database search on the products that matches the topic, and

choose the most popular ones. In most cases, there are more products than our designed

recommendation space. Our current solution is sufficient enough according to our presented

results. However, additional work can be done on finding other alternatives such as using

ratings.
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5.2.2 Additional extension

Novelty and diversity

Our solution nature limited us to recommend the products within the topic. Our assumption

is that customers have a clear goal on what they want to purchase. But in real life, there are

cases that people like to do window shopping, and purchase things that they do not know

they would like to buy beforehand. A suggestion is to combine our solution with another

recommendation algorithm which provides more diversity and novelty to recommended

products.

Attributes Normalization

Effort was spent on pre-processing genders and sections in our work. We used the size

and colors directly from the product database. This resulted with 315 sizes and 30 colors.

In real life, it is usually hard to choose between a 36 size and 38 size, and color black

and color dark brown do not matter much to some individuals. We suggest that further

processing on the datasets can be done to improve the recommender system. For example,

color black and color dark brown can be normalized to dark colors, etc.

5.2.3 Further evaluation

Different datasets

Our recommender solution was specifically tailored to the fashion e-commerce. We have

only used datasets from Lindex, which is not public. Using publicly available datasets

could certainly be benefit for the confidence of our approach.

AB testing

We have compared our results with the one presented by Lundgren and Lindberg (2014).

However, the comparison is not made by confidence, since we were using different datasets

within different time periods. The solution to make two approaches comparable is to

preferably conduct an A/B-testing with both approaches and measure the number of actual

purchases.
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