
Distributed Model Predictive Control
for a Coordinated Multi-Agent System
Simulation and Implementation on a System of Autonomous
Quadcopters with Path-Planning for Formation Flying and
Collision Avoidance

Master’s thesis in Systems, Control and Mechatronics

ALEXANDER WALDEJER
ASHKAN GHODRATI

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

Master’s thesis EX004/2018

Distributed Model Predictive Control for a
Coordinated Multi-Agent System

Simulation and Implementation on a System of Autonomous
Quadcopters with Path-Planning for Formation Flying and

Collision Avoidance

ALEXANDER WALDEJER
ASHKAN GHODRATI

Department of Electrical Engineering
Division of Systems and Control

Chalmers University of Technology
Gothenburg, Sweden 2018

Distributed Model Predictive Control for a Coordinated Multi-Agent System
Simulation and Implementation on a System of Autonomous Quadcopters with
Path-Planning for Formation Flying and Collision Avoidance
ALEXANDER WALDEJER, ASHKAN GHODRATI

© ALEXANDER WALDEJER, ASHKAN GHODRATI, 2018.

Supervisor: Jonas Kurol, ÅF Technology, Embedded Systems West
Examiner: Balázs Adam Kulcsár, Electrical Engineering

Master’s Thesis EX004/2018
Department of Electrical Engineering
Division of Systems and Control
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Illustration of a multi-agent system application of three quadcopter together
lifting a payload.

iv

Distributed Model Predictive Control for a Coordinated Multi Agent System
Simulation and Implementation on a System of Autonomous Quadcopters with
Path-Planning for Formation Flying and Collision Avoidance
ALEXANDER WALDEJER, ASHKAN GHODRATI
Department of Electrical Engineering
Chalmers University of Technology

Abstract
This thesis investigates how to use Model Predictive Control in a distributed fash-
ion in order to achieve coordinated behaviour in a multi-agent system, where the
proposed application is a system of multiple quadcopters which would together lift
a hanging payload from one point to another. The coordinated task would translate
to formation flying between the agents with the purpose of keeping a desired payload
orientation.
The work involves physical modelling of the quadcopter and inverse kinematics of
the payload. Further, a control design using a system of three decoupled Model
Predictive Controllers in order to achieve reference tracking for altitude, position
and attitude. An Extended Kalman Filter is used as an observer for output feed-
back and disturbance estimation. Model mismatch and external disturbances are
compensated by means of feed-forward terms in parallel to each controller. Model
Predictive Control input constraints are actively adapted to the feed forward terms.
Sensor fusion algorithms have been used in order to estimate the orientation using
an Inertial Measurement Unit. Path planning by means of formation flying is in-
troduced to the position controller by augmenting the model as a solution to the
coordinated task. As a benefit of using Model Predictive Control, the predicted
formation states are shared between the agents in order to improve the tracking
performance and compensate for communication delays. Further path planning al-
gorithms are developed for both static obstacle and inter-vehicle collision avoidance.
Both algorithms rely on a temporary change in target references to get around the
obstacle. The inter-vehicle collision avoidance also relies on actively communicating
the states between the agents in either a distributed or decentralized fashion.
The proposed methods for sharing predicted information in a distributed scheme
has shown improvement in performance over a decentralized scheme. The perfor-
mance is evaluated in terms of formation tracking and time of arrival at final target,
with different communication delays. Stationary formation flying has been eval-
uated and introduced a chain reaction between the agents, where the distributed
scheme dampened the oscillatory behaviour. The methods for collision avoidance
have been demonstrated in simulation. The methods for a single quadcopter have
been implemented using low cost hardware exploiting a computational inexpensive
approximation of Model Predictive Control.

Keywords: Model Predictive Control, Distributed Control, Decentralized Control,
Multi-Agent System, Path-Planning, Formation Flying, Collision Avoidance, Sensor
Fusion, Extended Kalman Filter, Feed-Forward Disturbance Compensation.

v

Acknowledgements
We would first of all like to thank Associate Professor, Balázs Adam Kulcsár at
Chalmers University of Technology, Electrical Engineering, for believing in our
project. We knew that our project was ambitious and would not be able to complete
it without his encouragement. He gave us the freedom needed in order to explore
in depth and pursue in the directions we wanted to.

Further, we would like to thank our industrial supervisor, Jonas Kurol at ÅF Tech-
nology, Embedded Systems West, for supporting us. He and several of his engi-
neers gave us advice and pushed us forward in the tougher parts of the work. ÅF
Technology, Embedded Systems West, gave us also the support for investing in an
experimental setup and office space where we could focus on our work.

Finally, we would like to thank our family and girlfriends, for keeping up with
us and giving us motivation during the long days and nights. Not only for this final
master thesis, but also for supporting us throughout the years of studying. This
graduation could never have been completed without the help and support from
them. Thank you.

Alexander Waldejer, Gothenburg, January 2018
Ashkan Ghodrati, Gothenburg, January 2018

vii

Contents

List of Figures xiii

List of Tables xv

Nomenclature xvii

Abbreviations xix

1 Introduction 1
1.1 Aims and Purpose . 1
1.2 Present Research . 2
1.3 Scope of Work . 3
1.4 Limitations . 3
1.5 Report Overview . 4

2 Theory 5
2.1 Model Predictive Control . 5

2.1.1 General Formulation . 6
2.1.2 Fast Model Predictive Control 6

2.2 Observers . 8
2.2.1 Kalman Filter . 8
2.2.2 Extended Kalman Filter . 8

2.3 Control Strategies . 10
2.3.1 Centralized Control . 10
2.3.2 Decentralized Control . 10
2.3.3 Distributed Control . 11

3 Methods 13
3.1 Model . 13

3.1.1 Quadcopter . 13
3.1.2 Payload . 17

3.2 Control Design . 23
3.2.1 General Overview . 23
3.2.2 Model Simplification and Linearization 23
3.2.3 Discretization . 26
3.2.4 Disturbance Compensation . 26
3.2.5 Time-Variant Input Constraints 28

ix

Contents

3.2.6 Distributed and Decentralized Control Strategy in Coordinat-
ing Tasks . 29

3.2.7 Controller Sampling Time . 30
3.2.8 MPC Terminal Cost for Stability 31

3.3 Path-Planning . 33
3.3.1 Formation Flying . 33
3.3.2 Collision Avoidance . 36
3.3.3 Reference Ramp . 39

3.4 Observer . 41
3.4.1 State and Disturbance Estimation 41
3.4.2 Decoupled Observer . 43
3.4.3 Alternative Disturbance Estimation 44
3.4.4 Observer Sampling Time . 45

3.5 Sensor Fusion, Filtering and Orientation Estimation 47
3.5.1 IMU Sensor . 47
3.5.2 Sensor fusion and Orientation Estimation 50
3.5.3 Orientation Estimation Verification 52
3.5.4 Mechanical Damping . 54

3.6 Parameter Identification . 60
3.6.1 Mass . 60
3.6.2 Motor and Lift Constant . 60
3.6.3 Drag Constant . 62
3.6.4 Inertia . 63

3.7 Implementation . 66
3.7.1 Hardware . 66
3.7.2 Software . 68

4 Results and Discussion 71
4.1 Simulation . 71

4.1.1 Simulation Setup . 71
4.1.2 Distributed Control against Decentralized Control on Forma-

tion Flying and Target Tracking 72
4.1.3 Stationary Formation Flying 82
4.1.4 Obstacle Collision Avoidance 85
4.1.5 Inter-Vehicle Collision Avoidance 88

4.2 Implementation . 91
4.2.1 Positioning System . 91
4.2.2 Real Time Stationary Flying and Step Response 93
4.2.3 Suggestions on Improvement 97

5 Conclusion 99

6 Future Work 103

7 Sustainability and Ethics 105

Bibliography 107

x

Contents

A Appendix I

xi

Contents

xii

List of Figures

2.1 Centerlized control architecture . 10
2.2 Decenteralized control architecture 11
2.3 Distributed control architecture . 11

3.1 Quadcopter setup with reference and world frame axes xb, yb, zb and
x, y, z respectively. 14

3.2 Hanging payload with quadcopter connection points P1, P2 and P3. . 18
3.3 Flat hanging payload with three possible quadcopter configurations. . 20
3.4 Tilted hanging payload with three possible quadcopter configurations. 21
3.5 Block diagram of MPC scheme. 23
3.6 Block diagram of MPC scheme with disturbance compensation using

feed forward and integration. 27
3.7 Distributed MPC with benefits of sharing predicted information con-

sidering a delay in communication lines 30
3.8 Singular values of the three different MPC models. 31
3.9 Formation flying concept with three agents. 33
3.10 Formation flying concept with four agents. 34
3.11 Formation flying concept with five agents. 35
3.12 Collision avoidance decision making flow chart. 36
3.13 Collision avoidance selection principle. OCA principle in the top fig-

ure and IVCA principle in the bottom figure. 38
3.14 Block diagram of the observer with controller. 42
3.15 Block diagram of the decoupled observer with controller. 44
3.16 Singular values of the observer model. 46
3.17 Raw accelerometer and magnetometer measurements with gravity

unit G and magnetic unit µT. 48
3.18 Raw gyroscope measurements with unit rad/s. 49
3.19 Orientation estimation IMU filter block diagram. 50
3.20 Orientation estimation test rig. 52
3.21 Orientation estimation verification results. 53
3.22 Heading ψ drift over time. 53
3.23 Mechanical damping of IMU sensors using earplug foam material. . . 54
3.24 Tilt estimation comparison; without mechanical damping (left) and

with mechanical damping (right). 55
3.25 Raw accelerometer comparison; without mechanical damping (left)

and with mechanical damping (right). 56

xiii

List of Figures

3.26 Raw gyroscope comparison; without mechanical damping (left) and
with mechanical damping (right). 57

3.27 Raw accelerometer comparison in frequency domain 58
3.28 Raw gyroscope comparison in frequency domain 59
3.29 Relation between input PWM and resulting motor speed in RPM. . . 61
3.30 Relation between input PWM and resulting total mass produced by

spinning motors. 62
3.31 Simplified quadcopter frame illustrating momen of inertia estimation. 63
3.32 Open loop gyroscope response on input sine waves. Two first plots

are ωφ and τφ. Two last plots are ωθ and τθ. 65
3.33 The quadcopter developed for real time experiments. 67
3.34 Hardware overview. 67
3.35 Simplified software overview. 68

4.1 Simulation scenario in XY plane. 73
4.2 Performances of decentralized control scheme with tz = 5 74
4.3 Performances of distributed control scheme with tz = 5 75
4.4 Performances of distributed control scheme with tz = 15 76
4.5 Formation flying error for different communication delays. 77
4.6 TOA for different communication delays. 78
4.7 Performances of decentralized control scheme with tz = 5 without

target ramping. 80
4.8 Performances of distributed control scheme with tz = 5 without target

ramping. 81
4.9 Performances of altitude control agent x1 during distributed control

scheme with tz = 5. 82
4.10 Performance of decentralized control scheme with tz = 5 for station-

ary formation flying. 83
4.11 Performance of distributed control scheme with tz = 5 for stationary

formation flying. 84
4.12 Performances of static collision avoidance with a single agent. 86
4.13 Performance of static collision avoidance together with formation fly-

ing in XY plane. 87
4.14 Performance of static collision avoidance together with formation fly-

ing in time for agent to obstacle distance and tracking errors. 88
4.15 Performances of static collision avoidance with a single agent. 89
4.16 Performance of positioning system in both XY plane and time. 92
4.17 Performance of position reference tracking on step response. 94
4.18 Manual thrust T for altitude control. 95
4.19 Performance of attitude φ and θ reference tracking on step response. . 96
4.20 Performance of attitude ψ reference tracking on step response. 97

A.1 Benchmark scenario of formation flying. I
A.2 OCA of static obstacle. II
A.3 OCA of static obstacle during formation flying. III
A.4 IVCA during formation flying. IV

xiv

List of Tables

3.1 Quadcopter roll, pitch and yaw motion summarized. 14
3.2 Quadcopter translation motion summarized. 14
3.3 Flat hanging payload example with three different quadcopter con-

figurations with associated tensions. 20
3.4 Tilted hanging payload example with three different quadcopter con-

figurations with associated tensions. 21
3.5 Minimum and recommended controller frequencies and sampling times. 31
3.6 Minimum and recommended observer frequencies and sampling time. 45
3.7 Mean and variance of raw gyroscope, accelerometer and magnetome-

ter measurements. 47
3.8 Variances of raw accelerometer and gyroscope measurements with and

without damping. 57
3.9 Estimated motor and lift constants for different voltage levels. 61
3.10 Model parameters. 63
3.11 Initial inertia estimations. 64
3.12 Inertia estimations based on LLS. 64
3.13 Hardware overview. 66
3.14 Real time priorities and sampling times. 69

4.1 Controller setup throughout simulation results. 72
4.2 Variances of formation flying chain reaction when using the distributed

and decentralized control scheme. 85
4.3 Raw and filtered position measurement variances at time 90-120s. . . 91
4.4 Controller setup throughout real time flight. 93

xv

List of Tables

xvi

Nomenclature

x̂pj,k|k+1 Predicted states of agent j-th at time k for time k + 1
τ Quadcopter torque vector
A Motion model state space A matrix
B Motion model state space B matrix
C Motion model state space C matrix
D Motion model state space D matrix
D Quadcopter disturbance vector
FD Quadcopter air friction vector
Mxy

i,c Circle-Circle i-th intersection point
Mxy

i,l Circle-Line i-th intersection point
q Quaternion vector of orientation
T Quadcopter total thrust vector
ui Agent i-th input vector
vi Agent or obstacle i-th velocity vector in XY plane
xi Agent i-th state vector
xmi Agent i-th measured state vector
xi,cref Agent i-th collision avoidance temporary references in XY plane
xi,fref Agent i-th formation references in XY plane
xxyi,obs Obstacle i-th position in XY plane
xi,tref Agent i-th target references in XY plane
xxyj,k Estimated states of agent j-th at time k in XY plane
yk Full measurement vector in discrete time
yatt,k Decoupled attitude measurement vector in discrete time
ypos,k Decoupled position measurement vector in discrete time
x̂i Agent i-th estimated state vector
x̂k Estimated full state vector in discrete time
x̂att,k Estimated decoupled attitude state vector in discrete time
x̂pos,k Estimated decoupled position state vector in discrete time
λi Quadcopter i-th connector tension to payload
R The set of real numbers
ωφ Angular velocity around reference X axis
ωψ Angular velocity around reference Z axis
ωθ Angular velocity around reference Y axis
φ Roll, rotation around reference X axis
ψ Yaw, rotation around reference Z axis
τφ Quadcopter physical input torque around reference X axis
τψ Quadcopter physical input torque around reference Z axis

xvii

Nomenclature

τθ Quadcopter physical input torque around reference Y axis
θ Pitch, rotation around reference Y axis
M̃xy

i,c Circle-Circle i-th intersection candidate point
M̃xy

i,l Circle-Line i-th intersection candidate point
d̃x Quadcopter disturbance including mass in world frame X axis
d̃y Quadcopter disturbance including mass in world frame Y axis
d̃z Quadcopter disturbance including gravitational force and mass in

world frame Z axis
b Quadcopter drag constant
cm Quadcopter motor constant
dx Quadcopter disturbance in world frame X axis
dy Quadcopter disturbance in world frame Y axis
dz Quadcopter disturbance in world frame Z axis
g Gravitational force
Ixx Quadcopter inertia around reference X axis
Iyy Quadcopter inertia around reference Y axis
Izz Quadcopter inertia around reference Z axis
k Quadcopter lift constant
kd Air friction
L Quadcopter diagonal center to motor length [m]
Lf Quadcopter diagonal motor to motor length [m]
m Quadcopter mass
mA Quadcopter motor mass [kg]
mC Quadcopter centre arm mass [kg]
mF Quadcopter diagonal frame arm mass [kg]
rA Quadcopter single frame arm radius [m]
rC Quadcopter centre radius [m]
rF Quadcopter frame arm intersection radius [m]
rfref Formation flying reference distance, equal to Ai circle radius
T MPC Prediction horizon
tz Discrete time delay
ui Quadcopter motor i-th electrical PWM input
vx Velocity in world X axis
vy Velocity in world Y axis
vz Velocity in world Z axis
x Position in world X axis
y Position in world Y axis
z Position in world Z axis

xviii

Abbreviations

CA Constant Acceleration
CCW Counter Clock-Wise
CV Constant Velocity
CW Clock-Wise
DARE Discrete Algebraic Ricatti Equation
EKF Extended Kalman Filter
EMPC Explicit Model Predictive Control
ESC Electronic Speed Controller
FMPC Fast Model Predictive Control
IVCA Inter-Vehicle Collision Avoidance
KF Kalman Filter
LLS Linear Least Squares
LQR Linear Quadratic Regulator
LTI Linear Time-Invariant
LTV Linear Time-Variant
MPC Model Predictive Control
OCA Obstacle Collision Avoidance
PID Proportional–Integral–Derivative
PWM Pulse Width Modulation
QP Quadratic Program
RPM Revolution Per Minute
RPi Raspberry Pi
UAV Unmanned Aerial Vehicle

xix

Abbreviations

xx

1
Introduction

As computational power is increasing in embedded systems, implementation of
Model Predictive Control (MPC) schemes have become more feasible on systems
with faster dynamics. In traditional Proportional–Integral–Derivative (PID) con-
trol, the computed control policy does not take into account system dynamics and
control actuator constraints. A lot of optimum solutions to control problems require
the actuators to perform close to these constraints. Consequently saturation and
more heuristic features such as anti-windup functionality are used, and saturation
potentially results in nonlinear behaviour that generally are not desirable. However
MPC is liberated from these approaches in that constraints are taken into account
in a systematic way as part of the control design. It uses a mathematical model
of the system at hand in order to predict an optimum trajectory and delivering a
control law.
An instance of systems with fast dynamics are Unmanned Aerial Vehicles (UAVs).
The area of applications for UAVs are increasing every year where there has been a
lot research and development with means of the quadcopter. The manoeuvrability
and flexibility of the UAVs has made it popular for specific applications such as
aerial photography, surveillance, search and rescue, and logistics such as package
delivery. This thesis investigates the particular application of coordinated control
of multiple quadcopters in order to perform a task together, where the given task is
to lift an object together. Working on coordinated control of multiple quadcopters
requires some considerations. It requires formation flying algorithms in order to
control the payload position and orientation. UAVs flying close in formation or
in an environment with obstacles, are in the risk of colliding, hence introduces the
need of Inter-Vehicle Collision Avoidance (IVCA) and Obstacle Collision Avoidance
(OCA) capabilities as safety.

1.1 Aims and Purpose

The aim of this thesis is to design a set of distributed MPC based controllers enabling
multiple quadcopters to act in a coordinated fashion; autonomously lifting a pay-
load with a desired attitude by keeping a formation between agents when travelling
between a set of reference points. In order to do so, a mathematical quadcopter and
payload model is needed to describe the system’s overall behaviour. The focus of
this thesis is to investigate how the MPC scheme can be used in a distributed fashion
in order to optimize coordinated control between the quadcopters. A decentralized
control strategy will be used for benchmarking the solution. The complete applica-

1

1. Introduction

tion will be implemented and verified in a simulated environment. In addition, the
main control architecture will be implemented on a single quadcopter in order to
evaluate the MPC based controller on a physical system based on low cost hardware.
For this system, sensor fusion with respect to orientation estimation is necessary, in
addition to state estimation and local indoor position measurement. The proposed
methods are applicable to many multi agent systems, where the quadcopter applica-
tion is on of them. A system of quadcopters with a set of multiple controllers where
there are several states and limitations, is a big challenge that exercises advance
features within control theory. With that mind, it is worth mentioning that some
of the proposed algorithms are tailored for the problem at hand, hence reusability
of them among any multi-agent system is not necessarly plug-and-play.

1.2 Present Research
Interesting areas of related research are many. [1] proposes how a set of distributed
MPC based UAVs keep distance from each other by communicating predicted states
which are added directly in to the quadratic cost function. The paper proposes a
collision avoidance scheme based on state constraints and benchmarks the perfor-
mance between a centralized and a distributed control strategy as the UAVs travel
between reference two points. [2] introduces the idea of using a leader/follower prin-
ciple in order to keep formation between three moving quadcopters. [3] presents
different approaches on how multiple vehicles can perform leader/follower principle
by sharing information such that current and future anticipated motion is taken
in to the objective function to provide better stability. [4] describes a 2D model
for two UAVs with the leader/follower principle. It uses an adaptive controller in
order to improve robustness for unknown disturbances created by the UAVs. [5]
talks about introducing dynamic priority based leader/follower principle in order to
avoid chain reactions among the UAVs as they approach an obstacle. The idea is
that not all of the UAVs need to manoeuvre just because another UAV performs
collision avoidance. It also introduces the idea of using virtual leadership, which
could be the payload centre point. A detailed 12 state nonlinear quadcopter model
is given in [6]. [7] presents an MPC based quadcopter where the full 12 state non-
linear model has been decoupled, simplified and linearized. The payload can be
illustrated as an inverted Stewart platform. However the Stewart platform is a rigid
structure and does not represent the hanging payload [8]. [9] presents modelling and
implementation of multiple cooperative quadcopters lifting a payload using station-
ary fixed point PID controllers. The approach is similar to the proposed solution
of this thesis, however it differs in terms of applied control theory and reference
point tracking. The presented model covers static equilibrium of the payload at
a fixed position with the necessary wire tensions. The paper proposes an inverse
kinematics solution where the robot positions are generated based on desired pay-
load position and orientation, satisfying the constraints of static equilibrium and
wire tension. [10] presents another application area where the inverse kinematics
model of a hanging payload is used, namely a suspended load crane. The approach
is similar to [9]. [11] presents a Lyapunov approach for feedback control of cable
suspended robots in 2D, where static equilibrium of connection points and platform

2

1. Introduction

dynamics caused by mass, inertia and gravity is described. For the single quadcopter
implementation, [12, 13, 14] present different approaches on how to perform sensor
fusion, orientation and position estimation using an accelerometer, a gyroscope and
a magnetometer, together with or without using an absolute measurement of posi-
tion. Computational expensive solutions using the Kalman filter are given, however
a more computational inexpensive solution to the orientation estimation based on a
gradient descent method is presented in [15, 16]. For indoor positioning, a recursive
trilateration algorithm is presented in [17], where the position estimation is based
on four fixed anchor points in the room measuring the distance to a single mobile
tag.

1.3 Scope of Work
The thesis includes physical modelling of the quadcopter dynamics with identifica-
tion of system parameters, followed by modelling of the payload kinematics which
includes estimation of the quadcopter payload connector tension. Further, a dis-
tributed MPC based control scheme is developed, that features functionality such
as state and disturbance estimation, feed-forward disturbance compensation and
actuator constraints which are varying given the disturbance feed-forward terms.
Formation flying is introduced by means of path-planning dynamically depending
on each quadcopter, satisfying a set of desired distances between each quadcopter.
A collision avoidance algorithm is developed based on temporary target reference
changes. Orientation estimation is achieved by fusing an accelerometer and gyro-
scope. The application is implemented in a simulation environment and evaluated
between different control strategies for multiple flight scenarios. A real time imple-
mentation is developed in C language, using low cost hardware and a computational
inexpensive Fast Model Predictive Control (FMPC) algorithm. The solution is also
evaluated given this hardware.

1.4 Limitations
Limitations are set in order to compress the size of work. The following list gives a
short description of limitations for this thesis.

• The thesis is not set to develop, nor benchmark the MPC optimization solver.
• The thesis does not include swarm robotics algorithms and where by means

of communication, fusion of information is used for Consensus-seeking of col-
lective behaviour.

• The thesis is not about Artificial Intelligence (AI) which is a higher level of
strategic evaluation.

• The thesis is not related to the mechanical design aspect of a quadcopter, but
rather focus on choosing low cost hardware for where the control scheme can
be implemented.

• The sensor fusion algorithm is implemented and tuned to combine information
from the gyroscope and accelerometer in order to achieve reliable state mea-
surement, however the selected algorithm is not benchmarked among other

3

1. Introduction

available algorithms,
• The focus is not on producing optimized lines of code or algorithms, rather

than a working implementation.

1.5 Report Overview
The thesis starts of by presenting related theory in Chapter 2 in order to give the
reader necessary background knowledge related to the major theories applied to this
work. The methods are presented in Chapter 3 including physical modelling of both
the quadcopter and the payload. The control design is given including model simpli-
fication, linearization, disturbance compensation, dynamic actuator and algorithms
for path-planning of formation flying and collision avoidance. The state and dis-
turbance observer is presented, followed by a sensor analysis, orientation estimation
algorithm and verification of the implemented sensor fusion. Mechanical dampening
of sensor noise is also given. Finally, model parameter identification is presented. All
of the methods are implemented in simulation and on the real time system. Results
and discussions are presented Chapter 4, where the multiple coordinated quadcopter
scenario is evaluated for different test cases and benchmarked in simulation. On the
real time system, the performance of a single flying quadcopter is evaluated given
the low cost hardware used. Finally, a conclusion is made in Chapter 5, followed by
proposed future work in Chapter 6.

4

2
Theory

This chapter presents necessary base theories applied in this thesis. The generic
MPC problem is given, followed by the a brief overview of the computational less
demaning FMPC algorithm. Next, both the Kalman Filter and Extended Kalman
Filter are presented. Finally, definitions are given to distinguish between the cen-
tralized, decentralized and distributed control strategies.

2.1 Model Predictive Control
MPC is an optimization based regulator in which a problem of optimization is
solved at each step to deliver an optimal control law. This noble approach takes
into account actuators limits (minimum and maximum) and potentially limit on the
rate of change (the slew rate) as well as process states constraints in delivering its
solution. Consequently it liberates the need for any sort of saturation and all the
problems arising with them. Given a model of the plant, it predicts what could
be the states of the plant over some future sampling interval, taking into account
the possibility of reaching the actuator constraints. There is a computation burden
in solving such an optimization problem at every time instant problem. Given a
precise model of the plant, it might not be necessary to calculate a new control
law as frequent as with more conventional class of controllers such as PID. There
is another approach to avoid the heavy computation load, namely Explicit MPC
(EMPC), in which the plant is divided into sub regions where the optimal control
law is calculated and stored offline. Then, given the estimated states of the plant
and parameters, the relevant control law calculated offline is applied online in real
time. Such an approach can become challenging in terms of storage. EMPC is not
not addressed in this thesis and interested readers can study it further in [18].
This section present the general formulation of MPC [18], followed by an algorithm
for faster delivery of the solution to MPC, namely Fast MPC [19].

5

2. Theory

2.1.1 General Formulation
For a Linear Time-Invariant (LTI) MPC the objective or cost function can be ex-
pressed as

VT (xk,uk:k+T−1) = xTTQfxT +
k+T−1∑
i=k

(xTi Qxi + uTi Rui)

=∆ lf (xT) +
k+T−1∑
i=k

l(xi,ui)
(2.1)

where the objective VT is quadratic in x ∈ Rn×1 and u ∈ Rm×1 with weightings of
positive semi-definiteQ,Qf ∈ Rn and positive definiteR ∈ Rm; all being symmetric
matrices. l(x, u) and lf are referred to as stage cost and final cost respectively with
lf (.) ≥ 0 and lf (0) = 0. By rephrasing the control moves as U =∆ uk:k+T−1, the
optimization problem to be minimized from (2.1) can be expressed as

min
U

VT (xk,U)

subject to xk+1 = Axk +Buk, ∀k ∈ [k, k + T − 1]
xk ∈ X, uk ∈ U, ∀k ∈ [k, k + T − 1]
xT ∈ Xf ⊆ X

(2.2)

The sets of X and U define the allowed spaces for states and control moves re-
spectively; in addition to Xf for the allowed space for final state with respect to
the physical constraints. These sets are commonly treated as inequality constraint
boxes expressed as xk,min ≤ xk ≤ xk,max. A and B is the state-space representa-
tion of the Motion model and the Manipulated variable model respectively. Given a
linear model, a set of convex constraints and the quadratic cost, this optimization
problem is referred to as a Quadratic Program (QP). It is worth mentioning that
when i = k in (2.1), the objective xTkQxk is a constant as it is not possible or too
late to affect it with optmization variables U and hence it is redundant, but it is
kept for notation convenience purposes. As the solution to (2.2) is delivered to be
the set uk:k+T−1, only the first solution uk for prediction, is applied as the control
move for the current time k and the rest is discarded.

2.1.2 Fast Model Predictive Control
Fast Model Predictive Control (FMPC) is a computational less expensive approach
which delivers a sub-optimal optimization solution to (2.2) that is on order of 100
times faster than a method that uses a generic optimizer [19]. Without going into
details, a brief overview of the collection of methods suggested by [19] is presented.
The reader is referred to the citation for a more detailed and extensive presentation.
A compact form of the QP can be described by

min
z

zTHz + gTz

s.t. Cz = b,

Pz ≤ h
(2.3)

6

2. Theory

with optimization variable of z ∈ Rnz×1 and for some matrices of H ∈ Rnz , g ∈
Rnz×1 which are to fit the weightings from (2.1), C ∈ Rn×nz , b ∈ Rn×1 to fit the
motion model from (2.2) and finally P ∈ Rl×nz ,h ∈ Rl×1 to fit the inequality
constraints of (2.2).
Using an Infesible Start Primal Barrier Method the inequality constraints can be
replaced with a barrier term in the objective resulting in

min
z

zTHz + gT z + κφ(z)

s.t. Cz = b
(2.4)

where κ > 0 is a barrier parameter, and φ is the log barrier associated with the
inequality constraints given by

φ(z) =
l∑

i=1
− log(hi − pTi z) (2.5)

where pT1 , ..., pTl are the rows of P and if Pz ≮ h, then φ(z) =∞. As κ approaches
zero, the solution of (2.4) approaches to (2.3). The problem (2.4) is a convex op-
timization problem with smooth objective and linear equality constraints, and is
solved by Newton’s method. The solution of (2.4) is no more than κl suboptimal to
(2.3).
By introducing some variations into the infeasible start primal barrier method, the
problem of (2.4) can be computed much faster than the original problem and no
significant decrease in the quality of the control law (as measurerd by the objective).
Two major variations that are used in the software package of the FMPC algorithm,
are the tuning parameters κ and Kmax. Instead of using a decreasing sequence
of values of κ, it is proposed to use a fixed value. This has several advantages
among which the number of Newton’s steps required are reduced, hence speeding
up the approximation. In conventional Newton’s method, iteration of Newton’s
steps are stopped when a limit of iterations, Kmax, are reached. In a real-time
implementation with hard constraints, one might need to settle with the delivered
solution in a worst-case time which is Kmax times the time per Newton step.

7

2. Theory

2.2 Observers

This section presents the theory behind the Kalman Filter (KF) which is used for
filtering of the raw position estimations provided by the positioning system and the
theory behind the Extended Kalman Filter (EKF) used for state and disturbance
estimation within the control scheme.

2.2.1 Kalman Filter
The Kalman filter is a closed loop linear Gaussian filtering model based on Bayesian
filtering equations, including both motion and measurement state space models [20].
The filter proceeds by performing state and certainty predictions based on previ-
ous posterior results, before updating the prediction with measurement data. The
prediction step is given by

x̂k|k−1 = Ak−1x̂k−1|k−1

P̂k|k−1 = Ak−1P̂k−1|k−1A
T
k−1 +Qk−1

(2.6)

where the priors x̂k|k−1 and P̂k|k−1 are the predicted states vector and certainty
matrix. The motion models Ak−1 are either LTI or Linear Time-Variant (LTV).
Should the parameters of the model stay the same Ak = Ak−1,∀k, then it is an LTI
and it is not necessary to specify it with a time index. The update step is given by

vk = yk −Hkx̂k|k−1

Sk = HkP̂k|k−1H
T
k +Rk

Kk = P̂k|k−1H
T
k S
−1
k

x̂k|k = x̂k|k−1 +Kkvk

P̂k|k = P̂k|k−1 −KkSkK
T
k

(2.7)

where the posterior state vector and certainty matrix x̂k|k and P̂k|k are computed
using the innovation vector vk and its certainty matrix Sk, and the Kalman gain
Kk. In addition,Hk is the measurement model which governs the equations between
some measurements and the states. Similarly to the motion model, this measurement
model can also be either LTI or LTV. The Kalman filter is an optimal filter as the
certainty matrices converge.

2.2.2 Extended Kalman Filter
The Extended Kalman filter is the nonlinear version of the KF, where the filter
distribution is based on a Gaussian approximation using the Taylor series [20]. The
base principle of computing the prior and posterior is similar to the KF, however
the prediction and/or the measurement models are nonlinear, and the state and/or
innovation certainty matrices are based on Jacobian matrices computed from the
nonlinear models linearized at every sampling instance. The prediction step is given

8

2. Theory

by

x̂k|k−1 = f(x̂k−1|k−1)
P̂k|k−1 = F (x̂k−1|k−1)P̂k−1|k−1F (x̂k−1|k−1)T +Qk−1

(2.8)

where the prior state vector x̂k|k−1 is based on the the nonlinear prediction model
f(x̂k−1|k−1) and where the prior certainty matrix P̂k|k−1 is based on the Jacobian
matrix F (x̂k−1|k−1) linearized around the previous posterior x̂k−1|k−1. The update
step is given by

vk = yk − h(x̂k|k−1)
Sk = H(x̂k|k−1)P̂k|k−1H(x̂k|k−1)T +Rk

Kk = P̂k|k−1H(x̂k|k−1)TS−1
k

x̂k|k = x̂k|k−1 +Kkvk

P̂k|k = P̂k|k−1 −KkSkK
T
k

(2.9)

where the posterior state vector and certainty matrix x̂k|k and P̂k|k are again, com-
puted using the innovation vector and certainty matrix vk and Sk, and the Kalman
gain Kk. h(x̂k|k−1) is the nonlinear measurement model and H(x̂k|k−1) is the Ja-
cobian matrix linearized around the prior x̂k|k−1. The EKF is not an optimal filter
as it does not converge in terms of the certainty matrix.
The filter is expanded with a term related to the innovation vk. If measurements
are unavailable during the update step, the innovation is set vk = 0 such that the
state estimation is only based on the prediction using prior state vector xk|k−1. The
conditional innovation term is given by

vk =

yk − h(x̂k|k−1), if yk available.
0, otherwise.

(2.10)

9

2. Theory

2.3 Control Strategies

This section presents different control strategies on how to approach a multi-agent
system with respect to computing the controller locally or centrally and in either
cases what sources of information are to be communicated between agents [1]. The
principles of centralized, decentralized and distributed control are given, where the
two latter are implemented throughout simulation.

2.3.1 Centralized Control

For centralized control, the measured state information xmi from multiple agents
i = {1...∞}, are collected centrally in one controller. The control law of each
individual agent ui is communicated back as illustrated in Figure 2.1. Computation
can take place on either of the agents or remotely on a stand-alone computer. This
is optimal solution in the sense that it has collected the current states of all agents
before calculating the control law.

Agent 1

Centralized MPC for all agents

Agent 2 Agent 3

x1
m

x2
m

x3
m

u1 u2 u3

Figure 2.1: Centerlized control architecture

2.3.2 Decentralized Control

For decentralized control, calculation of the control law is performed on each of the
agents locally using its own measured state xmi , as illustrated in Figure 2.2. Sharing
information between the agents can be done through communication between the
agents, a sensory system on each individual agent which measures and builds up
information about the other agents locally, or by using a remote sensory system
that centrally communicates the information of all agents to each individual. It is
worth mentioning that the control law of each individual is not shared, hence the
agents do not know what the other agents are going to do with respect to actuation
moves.

10

2. Theory

MPC for Agent 1

Agent 1

MPC for Agent 2

Agent 2

MPC for Agent 3

Agent 3
x
m

x1
m

x2
m

x3
m

u1 u2 u3

x
m

x
m

Figure 2.2: Decenteralized control architecture

2.3.3 Distributed Control
For distributed control, the control law is computed locally on each agent similar
to the decentralized control strategy. However, the architecture is improved by also
sharing the controller information. The MPC predictions xp and up of the states and
control moves are shared to acquire better performance as illustrated in Figure 2.3.
Since the control law is computed locally, this requires a mean of communication
between the agents to share the available information.

MPC for Agent 1

Agent 1

MPC for Agent 2

Agent 2

MPC for Agent 3

Agent 3
x

m

x1
m

x2
m

x3
m

u1 u2 u3

x
m

x
m

x
p

,u
p

x
p

,u
p

x
p

,u
p

Figure 2.3: Distributed control architecture

As a comparison, since centeralized control can take place at the same node, the con-
trol action is optimum given information from the multi-agent system, potentially
the latest information. This is in contrast to other two architectures where either
the information regarding the control moves is absent or more extensive information

11

2. Theory

regarding states and control moves are subject to noticeable delays in lines of com-
munication. As a comparison between decenteralized and distributed control, one
relies on existence of a communication line between the agents in distributed con-
trol, while decenteralized control can potentially be exploited by using of a sensory
system remote from the agents liberating the demand for a line of communication.

12

3
Methods

This chapter presents all proposed methods developed for this thesis. It covers quad-
copter, payload and disturbance modelling. The proposed control design includes
model simplification, linearization and discretization, with disturbance compensa-
tion, time-variant input constraints and model analysis with respect to sampling
time. Path-planning algorithms are presented for formation flying, collision avoid-
ance and reference ramping. Observer design is given in order to estimate system
states and disturbances, followed by a sensor analysis of the hardware used, in-
cluding sensor fusion, orientation estimation and verification of the implementation.
Next, the quadcopter model parameters are identified and presented. Finally, an
overview is given of the real time system hardware setup and developed software.

3.1 Model
This section covers physical modelling of the quadcopter and the payload. The
payload model is used to set the agent formation in the XYZ plane. Further, it
returns a disturbance estimate of how much the connector tension between the
quadcopter and payload affects the XYZ position.

3.1.1 Quadcopter
The quadcopter design is presented in Figure 3.1. The model is inspired by [6] and
[7]. The model is given by 12 states, where the first six states describe the translation
of the reference frame in the world frame, while the last six states describes the
attitude of the quadcopter between the world frame and the reference frame. System
inputs are based on four identical motors M1-M4, all facing the same direction,
where each pair of diagonal motors spin Clock-Wise (CW) and Counter Clock-Wise
(CCW). Different combinations of total thrust and diagonal pair wise difference of
thrust between the individual motors, creates the translational motion and changes
in attitude.

13

3. Methods

z
b

y
b

x
b

M1 M4

M2 M3

Ψ

θΦ

(a) Illustration of quadcopter design

z

yx

(b) World frame

Figure 3.1: Quadcopter setup with reference and world frame axes xb, yb, zb and
x, y, z respectively.

Table 3.1 illustrates how roll, pitch and yaw motion is achieved by creating the
torques τφ, τθ and τψ using M1-M4.

Table 3.1: Quadcopter roll, pitch and yaw motion summarized.

Angles Torques Motors
Positive φ (roll) Positive τφ M3 increase, M1 decrease, M2 = M4
Negative φ (roll) Negative τφ M1 increase, M3 decrease, M2 = M4
Positive θ (pitch) Positive τθ M4 increase, M2 decrease, M1 = M3
Negative θ (pitch) Negative τθ M2 increase, M4 decrease, M1 = M3
Positive ψ (yaw) Positive τψ M1 and M3 increase, M2 and M4 decrease
Negative ψ (yaw) Negative τψ M2 and M4 increase, M1 and M3 decrease
Balanced Zero All equal, M1 = M2 = M3 = M4

Table 3.2 illustrates how the translational motion in x, y and z axes is achieved
depending on the angles φ, θ and ψ.

Table 3.2: Quadcopter translation motion summarized.

Translation Angles and Input
Positive x Positive θ with input thrust
Negative x Negative θ with input thrust
Positive y Negative φ with input thrust
Negative y Positive φ with input thrust
Positive z Total thrust larger than gravitational force
Negative z Total thrust less than gravitational force
x and y Positive and/or negative combination of θ and φ

with either ψ = 0 or ψ 6= 0

The model is divided into three parts describing the translation, attitude and actu-
ator dynamics. The equation of translational motion for positions x, y and z in the

14

3. Methods

world frame is given by

m

ẍÿ
z̈

 =

 0
0
−mg

+RφθψT + FD +D (3.1)

where m is the system mass, g is gravitational acceleration, Rφθψ ∈ R3×3 is the
rotational matrix between the reference and world frame as a function of the angles
φ, θ and ψ, T is the total thrust vector created by the actuators, FD is the air
friction vector and D is a disturbance vector representing payload tension. The
rotational matrix is given by

Rφθψ =

cosψ cos θ cosψ sin θ sinφ− cosφ sinψ sinψ sinφ+ cosψ cosφ sin θ
cos θ sinψ cosψ cosφ+ sinψ sin θ sinφ cosφ sinψ sin θ − cosψ sinφ
− sin θ cos θ sinφ cos θ cosφ


(3.2)

The air friction and disturbance vectors are given by

FD = −kd

ẋẏ
ż

 D =

dxdy
dz

 (3.3)

where kd is the air friction coefficient, and dx, dy and dz represents disturbances
exciting the quadcopter in the inertial frame. The angular velocity dynamics de-
scribed in the reference frame xb, yb and zb come from the Euler’s equations of rigid
body motion given by

Iω̇ + ω × (Iω) = τ (3.4)
where I ∈ R3×3 is the diagonal moment of inertia matrix, the ω = [ωφ ωθ ωψ]T vector
represents angular velocity around the reference axes, and the τ = [τφ τθ τψ]T vector
represents the available input torques. Expanding (3.4) leads toIxx 0 0

0 Iyy 0
0 0 Izz


ω̇φω̇θ
ω̇ψ

 =

τφτθ
τψ

−
 (Iyy − Izz)ωθωψ

(Izz − Ixx)ωφωψ
(Ixx − Iyy)ωφωθ)

 (3.5)

The attitude relation between the reference frame and the inertia frame is described
by the angles φ, θ and ψ given byφ̇θ̇

ψ̇

 =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ/ cos θ cosφ/ cos θ


ωφωθ
ωψ

 (3.6)

The actuator dynamics given by the thrust vector T from (3.1) is given by

T =
4∑
i=1

fi

0
0
1

 = k
4∑
i=1

ω2
i

0
0
1

 = k
4∑
i=1

cmu
2
i

0
0
1

 (3.7)

where fi, ωi and ui is the thrust, angular velocity and applied voltage of motors
i = {1...4}. The angular velocity is typically related to the motor voltage by means

15

3. Methods

of the motor constant cm. On the real time system, the motors are directly controlled
via a 0-100% Pulse Width Modulation (PWM) analogue signal passed on to a set of
Electronic Speed Controllers (ESCs) which converts the control signal to a suitable
voltage level. Therefore, in this the motor constant cm represents a conversion
between the PWM signal and the motor angular velocity. Further, the relation
between motor angular velocity and actual thrust is given by the lift constant k,
which translates motor angular velocity to thrust. The torque vector τ from (3.4)
is expanded to

τφ = L(−f1 + f3) = Lk(−ω2
1 + ω2

3) = Lkcm(−u2
1 + u2

3)
τθ = L(−f2 + f4) = Lk(−ω2

2 + ω2
4) = Lkcm(−u2

2 + u2
4)

τψ = b(ω2
1 − ω2

2 + ω2
3 − ω2

4) = bcm(u2
1 − u2

2 + u2
3 − u2

4)
(3.8)

where L is the distance between the motors and the reference frame origin, and b is
the drag constant relating the motor angular velocity to torque around the zb axis.
Individual thrust of each motor is expressed as fi, i = {1...4}. The relation between
the PWM inputs ui, i = {1...4}, thrust T and torques τ is expressed in a compact
form given by 

T
τφ
τθ
τψ

 =


kcm kcm kcm kcm
−Lkcm 0 Lkcm 0

0 −Lkcm 0 Lkcm
bcm −bcm bcm −bcm



u2

1
u2

2
u2

3
u2

4

 (3.9)

where the solution for each PWM input ui is given by

u1 =
√

(TLb− 2bτφ + Lkτψ)/(4Lbcmk)

u2 =
√

(TLb− 2bτθ − Lkτψ)/(4Lbcmk)

u3 =
√

(TLb+ 2bτφ + Lkτψ)/(4Lbcmk)

u4 =
√

(TLb+ 2bτθ − Lkτψ)/(4Lbcmk)

(3.10)

The complete model results in 12 nonlinear state equations given by

16

3. Methods

ẋ = vx (3.11)
ẏ = vy (3.12)
ż = vz (3.13)

v̇x = −kd
m
vx + k cm

m
(sinψ sinφ+ cosψ cosφ sin θ)(u2

1 + u2
2 + u2

3 + u2
4) + dx

m
(3.14)

v̇y = −kd
m
vy + k cm

m
(cosφ sinψ sin θ − cosψ sinφ)(u2

1 + u2
2 + u2

3 + u2
4) + dy

m
(3.15)

v̇z = −kd
m
vz + k cm

m
(cos θ cosφ)(u2

1 + u2
2 + u2

3 + u2
4)− g + dz

m
(3.16)

φ̇ = ωφ + ωθ(sinφ tan θ) + ωψ(cosφ tan θ) (3.17)
θ̇ = ωθ cosφ− ωψ sinφ (3.18)

ψ̇ = sinφ
cos θωθ + cosφ

cos θ ωψ (3.19)

ω̇φ = Lk cm
Ixx

(−u2
1 + u2

3)− (Iyy − Izz
Ixx

)ωθωψ (3.20)

ω̇θ = Lk cm
Iyy

(−u2
2 + u2

4)− (Izz − Ixx
Iyy

)ωφωψ (3.21)

ω̇ψ = b cm
Izz

(u2
1 − u2

2 + u2
3 − u2

4)− (Ixx − Iyy
Izz

)ωφωθ (3.22)

with the complete state and input vectors given by

x = [x y z vx vy vz φ θ ψ ωφ ωθ ωψ]T u = [T τφ τθ τψ]T (3.23)

Note that u describes the inputs as thrust and torques, which are the physical inputs
to the quadcopter. The electrical inputs ui represented by PWM are all nonlinear
functions of thrust and torques as given in (3.57). Working with the physical inputs
is more practical with respect to avoiding the nonlinear terms and linearization.

3.1.2 Payload
The payload model is based on a vertically hanging load which is physically attached
to the three agents. The payload dynamics and modelling are based on [9], with
inspiration of [10]. The main steps are introduced here, but for the full model
derivation, see [9]. By using inverse kinematics, the necessary position of each
agent is calculated given a desired payload position and orientation in the XYZ
plane. Based on this the agents formation can be determined. Figure 3.2 illustrates
the principle of a hanging equilateral triangle shaped load, with agent coordinates
xi = [x y z]T attached to connection points pi = [x y z]T via the connector li,
where i = {1...3}. In general, static payload position is a result of static equilibrium
achieved when the line tensions cancel each other out such that the total forces in x
and y directions are zero and force z direction counteracts gravitational disturbance.
The outcome from the following model will give a set of quadcopter positions in the
world frame which give a desired static payload position and orientation.

17

3. Methods

x3

x1

x2

p3p2

l3

p1

l2

l1pc

(a) Payload from side

y

xz

x2 x3

x1

p2 p3

p1

pc

l3l2

l1

(b) Payload from above

Figure 3.2: Hanging payload with quadcopter connection points P1, P2 and P3.

The dynamics contain orientation and translation of the platform frame with respect
to the world frame, and connector tensions with respect to static equilibrium of a
certain given initial position and orientation. By specifying initial payload coordi-
nates pi, a desired payload translation T = [x y z]T with respect to the payload
centre point pc = [x y z]T and a desired orientation O = {θ, φ, ψ}, new platform
coordinate points p̃i given by

p̃i = T +Rψθφpi (3.24)

where Rψθφ is a ZYX rotational matrix given by

Rθφψ =

cosθ cosφ cosψ− sinθ sinψ − cosψ sinθ− cosθ cosφ sinψ cosθ sinφ
cosθ sinψ + cosφ cosψ sinθ cosθ cosψ− cosφ sinθ sinψ sinθ sinφ

− cosψ sinφ sinφ sinψ cosφ

 (3.25)

Equilibrium is given by the total non zero pitch wrench created by the connector
tension equalized by the gravity wrench. Non zero pitch wrench defines zero rota-
tional motions on the connectors, hence it has only straight line motion. The two
wrenches ωi and g are given by

wi = 1
li

[
xi − p̃i
p̃i × xi

]
g = −mg

[
RT
θφψe3

pc ×RT
θφψe3

]
(3.26)

where the gravitational force g is represented in x, y and z directions through a
rotation and the unit vector e3 = [0 0 1]T . By arranging the wrench equations in
vector form and introducing the connector tension λi ≥ 0, the static equilibrium is
given by [

w1 w2 w3
] λ1
λ2
λ3

 = −g → Wλ = −g (3.27)

The static equilibrium equation can be simplified by finding the screw matrix S
which belongs to the null space of W . The screw matrix describes the coordinates
and the magnitude of a line in space. The simplification is given by

W TS = 0 (3.28)

18

3. Methods

Finally, the inverse kinematics of the payload results in a set of agent configurations
for positions in the x, y and z by solving

STg = 0 (3.29)

The fixed connector length li defines a constraint on each agent position xi within
the set of configurations and is given by

‖xi − p̃i‖ = l2i (3.30)

The new, constrained agent position x̃i is finally given by normalizing each agent
position xi from the set given in (3.29) with respect to the constraint in (3.30), given
by

x̃i = li
xi
‖xi‖

+ p̃i (3.31)

The hanging payload resembles the classic robotic Stewart platform in terms of solv-
ing the inverse kinematics problem for the set of connectors given a desired payload
position and orientation. However , while the inverse kinematics of the Stewart plat-
form will give finite solutions because of gravitational forces are counteracted by the
rigid actuator joints, the inverse kinematics will give infinite solutions for the static
equilibrium of the hanging payload. In order to limit down the numerical search
of possible agent configurations, a set of constraints are introduced. The maximum
difference between each individual tension is given by

|max(λ1...λi)−min(λ1...λi)| < λlim (3.32)

The maximum individual tension of a single wire is given by

0 ≤ (λ1...λi) ≤ λmax where λmax = 1
2mg (3.33)

The maximum altitude difference in the global frame between each individual quad-
copter is given by

|max(x̃z1...x̃zi)−min(x̃z1...x̃zi)| < x̃zmin (3.34)
The minimum altitude global quadcopter position in the global frame is given by

(x̃z1...x̃zi) = x̃zmin (3.35)

In addition, the normalized altitude is fixed to given position such that the config-
uration is constrained to all agents set at equal altitudes.

Examples Two examples are given on how the payload model can be used in order
to create initial agent positions in x, y and z, for a desired payload orientation,
and how the resulting tension values for each configuration can be used as known
disturbances for robustness in the control design. Figure 3.3 presents the scenario
where a payload with mass m = 1 kg has no orientation angles O = {0, 0, 0} and is
fixed around the centre point pc = [0, 0, 0]T . Given the initial payload positions are
p1 = [−1.7321 − 1.0 0.0]T , p2 = [1.7321 − 1.0 0.0]T and p3 = [0 2 0]T , and
zero translation T = [0 0 0]T , with appropriate selected constraints for (3.32) to

19

3. Methods

(3.35), three different sets of quadcopter configurations satisfy the static equilibrium
of the payload.

-0.5

0

0.5

1

2

1.5

2
11

00

-1-1

-2-2

Figure 3.3: Flat hanging payload with three possible quadcopter configurations.

Table 3.3 presents details regarding the resulting quadcopter positions i and con-
nector tensions for each of the three configurations j. Configuration j = 2 achieves
equal connector tension for all quadcopters when the positions x̃i2 are above each
payload connection points. As the quadcopters have different x and y positions in
configurations j = 1 and j = 3, the resulting line tension increases. Since the connec-
tor lengths are rigid and cannot be stretched, the resulting z position of quadcopter
i, decreases as the x and y positions are different from p̃i.

Table 3.3: Flat hanging payload example with three different quadcopter configu-
rations with associated tensions.

x̃ij xij [m] yij [m] zij [m] λij [N]
x̃11 -2.3321 1.9779 0.3273 4.0875
x̃21 -1.0 -0.41754 1.4331 4.2169
x̃31 0.8 0.7755 0.7559 4.3258
x̃12 -1.7321 1.7321 0.0 3.27
x̃22 -1.0 -1.0 2.0 3.27
x̃32 1.0 1.0 1.0 3.27
x̃13 -1.1321 1.4862 -0.3273 4.0875
x̃23 -1.0 -1.5816 2.5669 4.2169
x̃33 0.8 0.7755 0.7559 4.3258

20

3. Methods

For the second scenario, the desired orientation has been set to O = {0, π/12, π/8}.
Figure 3.4 illustrates the static tilted payload with three different quadcopter orien-
tations.

-1

0

21

1

1

0 0

2

-1
-1

-2

Figure 3.4: Tilted hanging payload with three possible quadcopter configurations.

Again, details from the results are presented in Table 3.4. A variation of tensions
are achieved for different configurations.

Table 3.4: Tilted hanging payload example with three different quadcopter config-
urations with associated tensions.

x̃ij xij [m] yij [m] zij [m] λij [N]
x̃11 -2.0078 1.5365 0.4754 2.9661
x̃21 -1.1596 -0.6815 1.8478 3.5471
x̃31 1.0215 0.1515 0.7001 2.6658
x̃12 -2.0078 1.8097 0.1981 3.7264
x̃22 -0.6882 -0.6882 1.4005 3.3674
x̃32 1.0215 0.1249 1.6337 2.4403
x̃13 -1.5364 1.6115 -0.0793 3.2985
x̃23 -0.6882 -1.1662 1.8478 2.5058
x̃33 1.0215 0.1515 1.7001 3.4033

The results from the payload modelling is used as a reference generator for desired
formation flying which is needed to keep the payload orientation during flight. The

21

3. Methods

payload coordinates of p̃1, p̃2 and p̃3 can be used to find initial and final target
references xi,tref = x̃i = [x y]T , where the distance between x̃1, x̃2 and x̃3, can be
used as desired formation distance rfref . More on formation flying is presented in
3.3.1.

Disturbance Free flying without the payload will be subject to disturbance caused
by gravitational force, air resistance and physical model mismatch from the real
system. When the payload is attached, the quadcopter will have the additional
tension forces λ from (3.27). This known disturbance is mapped in to appropriate
disturbance components dx, dy and dz from (3.14), (3.15) and (3.16), by normalizing
the vector between the current quadcopter position in x and the payload connection
point p̃. This vector is equal to the tension value λ which is then multiplied in such
that the resulting components are given by

D = λ
p̃− x
‖p̃− x‖

(3.36)

where D = [dx dy dz]T from (3.3). Further, in order to use this information in the
control design, (3.37) is rewritten toẍÿ

z̈

 = 1
m
RφθψT + 1

m
FD −

1
m

 0
0
mg

+ 1
m
D

= 1
m
RφθψT + 1

m
FD + D̃

(3.37)

where the disturbances for gravitational force g, and connector tension and model
mismatch D̃ are augmented and given by

D̃ =

d̃xd̃y
d̃z

 =


dx
m
dy
m

−g + dz
m

 (3.38)

To summarize, the disturbance model D̃ contains information regarding model mis-
match such as inaccurate parameters, connector tension and gravitational force.

22

3. Methods

3.2 Control Design
This section covers control design, including model simplification, linearization and
discretization. Solutions for disturbance compensation are proposed using feed-
forward and integrator action. Finally, by using time-variant input constraints in
the controllers, the actuator saturation limits are not exceeded.

3.2.1 General Overview
The complete nonlinear model has been decoupled such that three individual con-
trollers each keep track on position, attitude and altitude respectively. The control
scheme is presented in Figure 3.5. MPC for position control delivers necessary ref-
erence angles φref and θref to MPC attitude, in parallel to a desired ψref . Attitude
controller delivers necessary torques τφ, τθ and τψ to achieve reference tracking which
again, steers true position towards references xref and yref . The position controller
has no information regarding current heading ψ, hence the attitude references φref
and θref are rotated with respect to ψ prior to passing them in to MPC attitude.
In parallel to position and attitude control, an altitude controller keeps track on
desired zref by delivering total thrust T to the system, counteracting gravitational
and disturbance forces on the system. Finally, T , τφ, τθ and τψ are converted to
PWM signals ui, i = {1...4} which are passed on to the quadcopter.

MPC

Posi on

MPC

A tude

MPC

Al tude

Thrust and

Torque to

PWM

Quadcopter
τΦ

τ�

τΨ

T

1

2

3

4θref

Φref

Ψref

ωΦref

ωΘref

ωΨref

xref

vxref

yref

vyref

Φ Θ Ψ ωΦ ωΘ ωΨ

z vz

zref

vzref

Figure 3.5: Block diagram of MPC scheme.

3.2.2 Model Simplification and Linearization
All three controllers are based on three LTI state space models derived from the
complete nonlinear model presented in (3.11) to (3.22). The state space models in
the form ẋ = Ax + Bu, are found using the Jacobian matrix evaluated around
equilibrium points where there is no translational or rotational motion and with
zero input to the system. In addition, prior to solving the Jacobian matrix, a small
angle approximation is applied to the motions models given by

sin∠ ≈ ∠ cos∠ ≈ 1− ∠2

2 tan∠ ≈ ∠ (3.39)

23

3. Methods

where ∠ is replaced by the attitude angles φ, θ and ψ.

Altitude controller For the altitude model, the equations presented in (3.13)
and (3.16) together with the disturbance component d̃z from (3.38), are written in
compact form in terms of total thrust T and with the small angle approximation.
The model is given by

ż = vz

v̇z = −kd
m
vz +

(
1− θ2

2

)(
1− φ2

2

)
G

(3.40)

where G = 1
m
T + d̃z, is the system input. The equilibrium points for the simplified

model are given by

xalt,0 = [z vz]T = [0 0]T ualt,0 = G = 0 (3.41)

where the resulting linearized state space model is given by[
ż
v̇z

]
=
[
0 1
0 −kd

m

] [
z
vz

]
+
[
0
1

]
G (3.42)

Details regarding the control input shows that when a total force T equal to the
total disturbance force d̃z in z direction is applied to the system, the quadcoptor will
hover. In fact, the input G forms the base of disturbance compensation for altitude
control which is presented in (3.2.4).

Position controller Further, the position equations presented in (3.11), (3.12),
(3.14) and (3.15) are also written in compact form in terms of total thrust T from
(3.7) and with the small angle approximation. The model is given by

ẋ = vx

v̇x = −kd
m
vx + 1

m

(
ψφ+

(
1− ψ2

2

)(
1− φ2

2

)
θ

)
g + 1

m
dx

ẏ = vy

v̇y = −kd
m
vy + 1

m

((
1− φ2

2

)
ψθ −

(
1− ψ2

2

)
φ

)
g + 1

m
dy

(3.43)

where g = T
m

decouples the input T from the equations by introducing the constant
driving gravitational disturbance force g. The driving thrust for position is based
on the assumption of zero offset reference tracking in a hovering z position. As the
quadcopter is kept hovering, the input thrust T of altitude controller will cancel out
the disturbance g. In order to reach a desired x and y position, the quadcopter needs
an angle in θ and φ respectively, hence as a result of model decoupling, the inputs
are now set to be θ and φ. Equilibrium points for the simplified and decoupled
model are given by

xpos,0 = [x vx y vy]T = [0 0 0 0]T upos,0 = [θ φ]T = [0 0]T (3.44)

24

3. Methods

where the resulting linearized state space model is given by
ẋ
v̇x
ẏ
v̇y

 =


0 1 0 0
0 −kd

m
0 0

0 0 0 1
0 0 0 −kd

m



x
vx
y
vy

+


0 0
g 0
0 0
0 −g


[
θ
φ

]
(3.45)

Attitude controller Finally, the attitude equations presented in (3.17) to (3.22)
are written in compact form in terms of torques τφ, τθ and τψ and with the small
angle approximation. The model is given by

φ̇ = ωφ + ωθ (φθ) + ωψ

((
1− φ2

2

)
θ

)

ω̇φ = 1
Ixx

τφ −
(
Iyy − Izz
Ixx

)
ωθωψ

θ̇ = ωθ

(
1− φ2

2

)
− ωψφ

ω̇θ = 1
Iyy

τθ −
(
Izz − Ixx
Iyy

)
ωφωψ

ψ̇ = φ(
1− θ2

2

)ωθ +

(
1− φ2

2

)
(
1− θ2

2

)ωψ
ω̇ψ = 1

Izz
τψ −

(
Ixx − Iyy
Izz

)
ωφωθ

(3.46)

where the driving inputs are the torques τφ, τθ and τψ. As the position controller
passes the calculated input angle as a reference to the attitude controller, reference
tracking in position depends on reference tracking in attitude. Equilibrium points
are given by

xatt,0 = [φ ωφ θ ωθ ψ ωψ]T = [0 0 0 0 0 0]T uatt,0 = [τφ τθ τψ]T = [0 0 0]T
(3.47)

where the resulting linearized state space model is given by

φ̇
ω̇φ
θ̇
ω̇θ
ψ̇
ω̇ψ


=



0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0





φ
ωφ
θ
ωθ
ψ
ωψ


+



0 0 0
1
Ixx

0 0
0 0 0
0 1

Iyy
0

0 0 0
0 0 1

Izz



τφτθ
τψ

 (3.48)

The references θref and φref passed from position controller into the attitude con-
troller do not take the current heading ψ in to account. The position controller
assumes zero heading when calculating θref and φref . As a result of this, the ref-
erences are adjusted according to the heading. The adjustment is a 2D rotation in
XY plane given by [

φ̄ref
θ̄ref

]
=
[
cosψ − sinψ
sinψ cosψ

] [
φref
θref

]
(3.49)

25

3. Methods

where the resulting φ̄ref and θ̄ref are the ψ adjusted references passed to the attitude
controller.

3.2.3 Discretization
For implementation purpose, the linear controller models (3.42), (3.45) and (3.48)
are all discretized using the approximation xk+1 = (I + ∆tA)xk + ∆tBuk, where
I is an identity matrix and ∆t is the time step between each sample. The discrete
time state space model for altitude is given by[

zk+1
vz,k+1

]
=
[
1 ∆t
0 1−∆tkd

m

] [
zk
vz k

]
+
[

0
∆t

]
Gk (3.50)

The discrete time state space model for position is given by
xk+1
vx,k+1
yk+1
vy,k+1

 =


1 ∆t 0 0
0 1−∆tkd

m
0 0

0 0 1 ∆t
0 0 0 1−∆tkd

m



xk
vx k
yk
vy k

+


0 0
g∆t 0

0 0
0 −g∆t


[
θk
φk

]
(3.51)

The discrete time state space model for attitude is given by

φk+1
ωφ,k+1
θk+1
ωθ,k+1
ψk+1
ωψ,k+1


=



1 ∆t 0 0 0 0
0 1 0 0 0 0
0 0 1 ∆t 0 0
0 0 0 1 0 0
0 0 0 0 1 ∆t
0 0 0 0 0 1





φk
ωφ,k
θk
ωθ,k
ψk
ωψ,k


+



0 0 0
∆tI−1

xx 0 0
0 0 0
0 ∆tI−1

yy 0
0 0 0
0 0 ∆tI−1

zz


τφ,kτθ,k
τψ,k



(3.52)

3.2.4 Disturbance Compensation
Disturbance compensation is necessary for the robustness of the overall system in
order to cope with model mismatch during control prediction and also to compensate
for the payload and the gravitational force. As a result of the model linearization,
the disturbance terms are gone and the controller models are no longer aware of
the disturbances. However, these same terms are added back again using the idea
of feed forward running in parallel to the control signal. This is the case for both
altitude and position control, where the nonlinear model describes the disturbance
forces D̃ from (3.38).

Altitude controller For altitude control, the input signal G = 1
m
T + d̃z from

(3.40), contains the feed forward disturbance compensation d̃z. The total thrust
applied to the quadcopter is given by

T = m
(
G− d̃z

)
(3.53)

where d̃z will provide a constant base thrust which cancels out the disturbances.

26

3. Methods

Position controller Position control has a similar design to the disturbance com-
pensation for altitude control, where in addition to the driving force g from (3.45)
which is multiplied by the input angles θ and φ, the disturbance forces d̃x and d̃y
are added in terms of feed forward. The disturbance compensated angle references
which are then passed to the attitude controller are given by

θ̃ref = θref + m

g
d̃x

φ̃ref = φref + m

g
d̃y

(3.54)

where θ̃ref and φ̃ref are the new input signals. The estimated disturbances out from
the observer are defined as d̃x = dx

m
and d̃y = dy

m
. In order to only feed forward the

true estimated disturbances dx and dy, g and m are cancelled out on the disturbance
terms in (3.54) when multiplied by the input dynamic matrix B of (3.45).

Attitude controller Finally for attitude control, the model (3.46) does not spec-
ify any disturbances. However integrators are introduced running in parallel to τθ
and τφ to compensate for unevenly distributed mass such as battery, which causes
the quadcopter to tilt towards the heavier side which results in a attitude reference
offset. The offset compensated torques are given by

τ̃θ = τθ + ki

∫ k+∆t

k

(
θ − θ̄ref

)
∆t

τ̃φ = τφ + ki

∫ k+∆t

k

(
φ− φ̄ref

)
∆t

(3.55)

where θ− θ̄ref = θerr and φ− φ̄ref = φerr, which are the reference errors for attitude
control, φ̄ref and θ̄ref are the ψ adjusted references from (3.49), and ki is the integral
gain. To summarize the disturbance compensation, the control scheme from Figure
3.5 is updated with feed forward functionality and integrator action, and presented
in Figure 3.6.

x y vx vy

MPC

Posi on

MPC

A tude

MPC

Al tude

Thrust and

Torque to

PWM

Quadcopter
�

�

�

G

u1

u2

u3

u4ref

ref

ref

�ref

�ref

�ref

xref

vxref

yref

vyref

 � � �

z vz

zref

vzref

dx dy

FF

ref

ref

~

~

FF

dz
~

T

1

s

err

err

+

�

�

�

~

~

~ ~

Figure 3.6: Block diagram of MPC scheme with disturbance compensation using
feed forward and integration.

27

3. Methods

3.2.5 Time-Variant Input Constraints
The quadcopter has physical actuator constraints where the input signals saturate
at PWM 0% and 100%. There is a risk of exceeding such saturation limits when
using feed forward disturbance compensation. since the delivered control action is
a sum of both the MPC input and the disturbance term. In order to exploit the
input constraints within the MPC such that optimal control actions are delivered,
the feed-forward terms are passed in to the MPC as time-variant input constraints.
This procedure is carried out prior to calculating the control action since the feed-
forward disturbance term is estimated earlier within the observer. From (3.57) the
PWM is a function of the total thrust T from MPC altitude and torques τφ, τθ and
τψ from MPC attitude. Among the three controllers, position controller is computed
first as it delivers the input angles φ and θ, which are after feed forward disturbance
compensation and ψ adjustment passed to MPC attitude as references as φ̄ref and
θ̄ref . The MPC position model is based on a small angle approximation, hence the
controller has input constraints equal to [−10, 10] degrees. This constraint will also
dampen aggressive translational motion. In order to not exceed the limit angles,
the input constraints are functions of the feed forward contributions d̃x and d̃y from
(3.54) and given by

θmax = 10π
180 −

m

g
d̃x θmin = −10π

180 −
m

g
d̃x

φmax = 10π
180 −

m

g
d̃y φmin = −10π

180 −
m

g
d̃y

(3.56)

The attitude controller input torques are the second to be computed. This MPC
has no input constraints. Priority of computing the torques prior to thrust is im-
portant with the reason that thrust is a necessary base in order to apply torque to
the quadcopter. The torques are differences in PWM applied to the motor speed
controllers. For the scenario where the quadcopter is thrusting at 100% in positive z
direction, there will be no room for attitude control since the differences in applied
PWM signal will be physically saturated. Hence, MPC altitude will have input
constraint based on the current computed torque from MPC attitude. A result of
this coupling is that there will always be a base thrust provided by MPC altitude
in order for MPC attitude to apply differences in PWM. MPC altitude is last to
compute necessary thrust. The time-variant constraints are based on the PWM,
torque and thrust relations from (3.37), the altitude feed forward disturbance com-
pensation from (3.53) and the minimum and maximum saturation for PWM. The
set of PWM signals ui for i = {1...4} from (3.37) with input thrust T = m(G− d̃z),
is given by

u1 =
√

(m(G− d̃z)Lb− 2bτφ + Lkτψ)/(4Lbcmk)

u2 =
√

(m(G− d̃z)Lb− 2bτθ − Lkτψ)/(4Lbcmk)

u3 =
√

(m(G− d̃z)Lb+ 2bτφ + Lkτψ)/(4Lbcmk)

u4 =
√

(m(G− d̃z)Lb+ 2bτθ − Lkτψ)/(4Lbcmk)

(3.57)

28

3. Methods

In order to translate the minimum and maximum PWM signal to equivalent altitude
input G, the set of equations are solved with respect to G with the two minimum
and maximum scenarios ui = 0, 100 %. This returns two sets of equations, where
the lower bound Gmin is selected as the maximum value of the set representing
ui = 0 % and where the upper bound Gmax is selected as the minimum value of the
set representing ui = 100 %. The selection is basically doing a worst case scenario
between all motor inputs ui in order to make sure that none of the four values exceed
the minimum or maximum constraint. The set of equations given by

Gmin = max



2bτφ−Lkτψ+Lbd̃zm
Lbm

2bτθ+Lkτψ+Lbd̃zm
Lbm

−2bτφ−Lkτψ+Lbd̃zm
Lbm

−2bτθ+Lkτψ+Lbd̃zm
Lbm

Gmax = min



2bτφ−Lkτψ+40000Lbcmk+Lbmd̃z
Lbm

2bτθ+Lkτψ+40000Lbcmk+Lbmd̃z
Lbm

−2bτφ−Lkτψ+40000Lbcmk+Lbmd̃z
Lbm

−2bτθ+Lkτψ+40000Lbcmk+Lbmd̃z
Lbm

(3.58)

To summarize, by adding time-variant input constraints to the control scheme, the
decoupled controllers become aware of the feed forward disturbance compensation,
thus the calculated control signal will always be with respect to the currently re-
maining input range available for each particular controller.

3.2.6 Distributed and Decentralized Control Strategy in Co-
ordinating Tasks

When performing a coordinated task between multiple agents such as formation
flying, it is a merit to share more information between the agents related to the task
at hand. Such information can range from what the remote agents states are, which
is more crucial in context of formation flying, to what the decided control policies
are, i.e. what the remote agents are planning on doing. In addition to this, the
MPC scheme benefits by enabling sharing predicted information.
In multi agent system, communication delays are inevitable and is worth to be
taken into account for when in context of sharing information between the agents.
If the shared information is subject to large delays, they might not be worthy. The
distributed control strategy mentioned in Chapter 2.3, has the opportunity to share
not only current measurement states xmk , but also predicted information xpk+1:k+p.
One can use such predictions to cancel out the effect of delays. For instance, instead
of using received information with td seconds of delay, one can use the same delayed
package but instead, the predicted information with a horizon of td seconds into the
future.
As path-planning algorithms are carried out using the translational states (mainly
in XY plane), the position controller is set to perform long predictions with an
horizon p = 20 steps. Packages received from each remote agent can be acquainted
with time stamps to notify about the potential time delay td. Consequently the
path-planning algorithms would select prediction horizon information accordingly.
Figure 3.7 illustrates the distributed MPC scheme between two agents and how it
benefits from sharing predicted information in the presence of communication delay.
Needless to say, this is expandable for any number of agents.

29

3. Methods

tz

Agent 1 Agent 2

PP

x
p
1,k+1-tz:k+p-tz

x
m
1,k-tz

x
p
2,k+tz

PP

x
p
1,k+tz

x
p
1,k+1:k+p

x
m
1,k

tz

x
p
2,k+1-tz:k+p-tz

x
m
2,k-tz

x
p
2,k+1:k+p

x
m
2,k

Figure 3.7: Distributed MPC with benefits of sharing predicted information con-
sidering a delay in communication lines

3.2.7 Controller Sampling Time
System analysis is necessary to identify at what sampling frequency the control
system must run in order to capture necessary dynamics of the system. For MIMO
systems, analysing the singular values of the dynamic system frequency response will
indicate at which frequency the dynamics are located. By using sigma(sys,w) in
MATLAB, the minimum sampling frequency is found at the cross over frequency, the
point where the highest singular value is zero dB. The controller sampling frequencies
are found separately for each model. For both altitude model from (3.42) and
attitude model from (3.48), the inputs G, τφ, τθ and τψ are replaced by the equivalent
electrical PWM inputs from (3.9). This is done prior to the analysis, in order to
appropriately scale the models using the motor, lift and drag constants cm, k and
b, and the quadcopter arm length L, so that the frequency response represents the
physical inputs. As a result, the linearized models are all analysed around the input
equilibrium point where the quadcopter is hovering. The hovering input is found by
rearranging (3.16) equal to the gravitational force and solving it with respect to the
input u where the angles, velocity and acceleration are all zero. The hovering input
is given by

g = k cm
m

(u2
1 + u2

2 + u2
3 + u2

4) → ui = 56.7069% ∀i (3.59)

30

3. Methods

Figure 3.8 presents the frequency response of the three models.

10
-2

10
-1

10
0

10
1

-60

-40

-20

0

20

40

60

80

100

Figure 3.8: Singular values of the three different MPC models.

The collected minimum frequencies fs,min are multiplied by a factor of 10 times in
order give the recommended sampling frequency fs,rec an error margin. Table 3.5
presents the frequencies with the associated recommended sampling times.

Table 3.5: Minimum and recommended controller frequencies and sampling times.

fs,min [rad/s] fs,rec [Hz] Ts [s]
Altitude MPC 0.273 0.430 2.356
Position MPC 10.100 16.070 0.062
Attitude MPC 4.690 7.460 0.134

For both simulation and implementation, all controllers run at the equal sampling
time. The recommended frequencies did however turn out to be too low for attitude
control on the real implementation. As a result of this, the sampling times are all
adjusted down to Ts = 0.025 s, where the frequency is fs = 40 Hz.

3.2.8 MPC Terminal Cost for Stability
In pursue of designing a stable MPC controller, the terminal costs are used. As
the theory suggests [21], terminal costs are derived solving the Discrete Algebraic
Ricatti Equation (DARE), which solves the stabilizable weights for a restrictive
unconstrained infinite-horizon Linear Quadratic Regulator (LQR). Using this sta-
bilizable weights from LQR approach as terminal costs in MPC approach makes it
possible to make finite-horizon MPC equivalent to an infinite-horizon LQR [21].

31

3. Methods

DARE solves for Qf in

A†QfA−Qf − A†QfB(R +B†QfB)−1B†QfA+Q = 0 (3.60)

where A, B, Q and R are the motion model, input model, state cost and input cost
respectively. Models and penalizing costs for all three controllers, altitude, position
and attitude are each used used in DARE and resulting terminal costs have been
used in attempt to make the MPC design theoretically stable.

32

3. Methods

3.3 Path-Planning

This section presents proposed solutions for formation flying and collision avoidance
in details.

3.3.1 Formation Flying
A formation flying algorithm is necessary in order to keep desired payload orientation
during flight, as varying distance between the quadcopters will cause orientation
errors. Formation flying is achieved by following reference points for positions x and
y that are dynamically created between the quadcopters based on an intersection
point between two imaginary circles formed around each quadcopter. The principle
is presented in Figure 3.9. Agent xi for i = {1...3}, will follow the closest intersection
point between the circles of the two other agents. When all three agents are on
reference, an equilateral triangle will be formed with the desired side length of rfref .

-4 -3 -2 -1 0 1 2 3 4

-2

-1

0

1

2

3

Figure 3.9: Formation flying concept with three agents.

Algorithm Formation flying of three agents is based on the two circles given by(x− x1)2 + (y − y1)2 = r2
fref

(x− x2)2 + (y − y2)2 = r2
fref

(3.61)

33

3. Methods

where (x1, y1) and (x2, y2) are the circle centre points. The system of equations are
solved for x and y which results in two formation reference candidates for xi,fref ,
denoted by the intersection points M̃xy

1,c = [x y]T and M̃xy
2,c = [x y]T on the edge of

the circle radius rfref . The distances d1 and d2 between each candidate point and
current position of agent xi are given by

d1 =
∥∥∥M̃xy

1,c − x
xy
i

∥∥∥ d2 =
∥∥∥M̃xy

2,c − x
xy
i

∥∥∥ (3.62)

where the candidate point at the shortest distance becomes the formation reference
xi,fref = Mxy

2,c. xxyi = [x y]T denotes position states x and y of agent i. The circle
intersection holds only if the two circles actually intersect, e.g. for agent x1, the two
other agents need to intersect given ‖xxy3 − x

xy
2 ‖ < 2rfref . The proposed solution

is based on but not limited to three agents. As the number of agents increase, the
number of intersections also increase, which emphasises that the formation reference
for xi will always be the closest intersection point when choosing between multiple
candidates. Figures 3.10 and 3.11 illustrates the reference formation for four and
five agents. The formation shape is changed from an equilateral triangle to a square
as i = {1...4} and to a pentagon shape as i = {1...5}. Again, the desired formation
distance between each agent is achieved when all agents are on formation reference.

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Figure 3.10: Formation flying concept with four agents.

The formation flying is implemented in to the position controller by augmenting the

34

3. Methods

-5 -4 -3 -2 -1 0 1 2 3 4 5

-3

-2

-1

0

1

2

3

4

Figure 3.11: Formation flying concept with five agents.

state space model in (3.45) with a copy of the position states x and y given by



ẋ
v̇x
ẏ
v̇y
ẋf
ẏf


=



0 1 0 0 0 0
0 −kd

m
0 0 0 0

0 0 0 1 0 0
0 0 0 −kd

m
0 0

0 1 0 0 0 0
0 0 0 1 0 0





x
vx
y
vy
xf
yf


+



0 0
g 0
0 0
0 −g
0 0
0 0


[
θ
φ

]
(3.63)

where the new position states xf and yf are controlled with respect to the formation
reference point xi,fref . The same augmented state space system in discrete time is
given by



xk+1
vx,k+1
yk+1
vy,k+1
xf,k+1
yf,k+1


=



1 ∆t 0 0 0 0
0 1−∆tkd

m
0 0 0 0

0 0 1 ∆t 0 0
0 0 0 1−∆tkd

m
0 0

0 ∆t 0 0 1 0
0 0 0 ∆t 0 1





xk
vx,k
yk
vy,k
xf,k
yf,k


+



0 0
g∆t 0

0 0
0 −g∆t
0 0
0 0


[
θk
φk

]
(3.64)

35

3. Methods

3.3.2 Collision Avoidance
Collision avoidance is a necessary online path-planning feature when working on
autonomous agents. How to approach it can be done in many differenet ways.
The proposed solution is based on performing collision avoidance by creating any
intermediate temporary reference change for positions x and y in order to steer the
agent around an obstacle. In details, when the quadcopter is within a defined vicinity
of an obstacle, the final target reference which is beyond the obstacle, will switch to
a reference following an imaginary circle trajectory at a defined safety radius from
the obstacle. By using the obstacle velocity as a base for setting priorities among
multiple agents, the avoidance performance and flow can be increased. There are
two scenarios, static Obstacle Collision Avoidance (OCA) and Inter-Vehicle Collision
Avoidance (IVCA) between two dynamic agents. The decision making is summarized
as a flow chart in Figure 3.12.

No

Sta c Obstacle ?

Set high priority

and go the shortest

way around the

obstacle

Yes

No

Other agent has

equal velocity?

Other agent has

higher ID number?

Yes

Set low priority and go in the

opposite direc on of the other

agents velocity vector

Yes

Other agent has

lower velocity?

No

Set high priority

and go the shortest

way around the

obstacle

No Yes

Start

Figure 3.12: Collision avoidance decision making flow chart.

Static Obstacle Collision Avoidance For OCA, the obstacle velocity is zero,
hence the moving agent is the one who needs to perform avoidance around the
obstacle and is assigned higher priority. As the agent is within the imaginary circle
from the obstacle, the final target reference point will change to go the shortest way
around the circle.

Inter-Vehicle Collision Avoidance For IVCA, the agent with higher velocity
is assigned higher priority and will perform avoidance by following the imaginary
circle in the shortest way around the remote agent, similar to OCA scenario. The

36

3. Methods

low priority, slow flying agent, will perform avoidance by following the imaginary
circle in the opposite direction of the velocity vector of the higher priority agent.
This selection is crucial in order to avoid a chain reaction which results in both
agents going in parallel because the lower priority agent going towards where the
higher priority agent is heading instead of going behind it. The slower flying agent
has also got less energy to stop when approaching an object, hence it is easier to
slow down and travel in the opposite direction of the other agents velocity. If the
agents in IVCA have the same velocity up to some defined precision, the lower agent
ID number receives the higher priority. Since a small difference in velocity can be
due to different numerical rounding, there is a high chance that the algorithm will
flip the priority between the agents back and forth.

Algorithm Two imaginary circles are created around the obstacle position xi,obs =
[x y]T in the XY plane. The inner circle is given by a radius robs and forms the tempo-
rary collision avoidance trajectory. The outer circle is given by a radius robs,lim > robs
and forms a limit distance from the inner circle and is used to determine when the
collision avoidance trajectory is to be followed. In order to perform collision avoid-
ance, the current position of xi must be within the outer circle and have the final
reference xi,tref beyond the obstacle such that the imaginary line between the cur-
rent position and the final target reference, intersects the inner circle. When the
current position of xi is within the outer circle, the collision avoidance reference
xi,cref = [x y]T is generated based on the following steps:

1. Find the closest intersection point between the inner circle and the imaginary
line between xi and xi,tref ,

2. Create a normal of the imaginary line at closest intersection point,
3. On the normal, travel α distance in both directions from the intersection point

and create vectors towards the obstacle such that two new intersections are
created on the inner circle,

4. If the obstacle has zero or lower velocity or the same velocity with bigger
agent ID number than xi, then assign the new intersection point which has
the shortest distance to xi,tref as the temporary reference Ai,cref ,

5. If the obstacle has higher velocity or have the same velocity with smaller agent
ID number than xi, then velocity vector vobs = [vx vy]T is normalized with
respect to the inner circle robs and negated. The closest new intersection point
to the negated velocity vector −v̂obs, is assigned as the temporary reference
xi,cref ,

Figure 3.13 presents two illustrations on the OCA and IVCA selection principles are
carried out. The intersection points are created when the agent is within the outer
circle. The highlighted point xi,cref is set as the temporary avoidance reference.
x̃i,cref is the alternative candidate which is the other way to go around the obstacle.

37

3. Methods

7 8 9 10 11 12 13

3

4

5

6

7

8

9

7 8 9 10 11 12 13

3

4

5

6

7

8

9

Figure 3.13: Collision avoidance selection principle. OCA principle in the top
figure and IVCA principle in the bottom figure.

38

3. Methods

The intersection points two M̃1,l = [x y]T and M̃2,l = [x y]T between the inner circle
and the crossing line is found by solving the quadratic system of equations given byalx+ bly + c = 0,

(x− x1)2 + (y − y1)2 = r2
obs

(3.65)

where al, bl and cl define the line between xi and xi,tref and (x1, y1) is the position
of xi,obs. Solving the equations results in two intersection candidate points given by
M̃1,l and M̃2,l. The distances d1 and d2 between each intersection point and current
position of agent xi is given by

d1 =
∥∥∥M̃1,l − xxyi

∥∥∥ d2 =
∥∥∥M̃2,l − xxyi

∥∥∥ (3.66)

where the closest intersection point Ml is chosen among the intersection candidate
points. Two temporary avoidance reference candidates x̃i,cref are created on the
inner circle by finding the intersection points on the vectors from S1 and S2 to the
obstacle xi,obs. The points S1 and S2 are located on the normal n with a distance
α fromMl. α is a tuning factor which decides the step size of how fast the collision
avoidance reference generator moves around the inner circle as xi approaches it.
The criteria for selecting xi,cref among the two candidates depends on whether the
obstacle is static or not. If the obstacle is static, has lower velocity than xi, or
the agent velocities are equal but the xi has lower identify number, the candidate
x̃i,cref with the shortest distance to the final reference xi,tref , is assigned to xi,cref .
If the obstacle has faster velocity vi,obs than xi, the candidate x̃i,cref which has
the shortest distance to −v̂i,obs, is assigned to xi,cref . v̂i,obs is the obstacle velocity
vector, normalized with respect the inner circle radius robs, given by

v̂i,obs = robs
vi,obs
‖vi,obs‖

(3.67)

In this way, the slower flying quadcopter will avoid the faster flying obstacle in the
opposite direction of the obstacle velocity, hence the mentioned chain reaction is
avoided.

3.3.3 Reference Ramp
Target references can be given in a ramp fashion ahead of the agent according to

xtref,ramp =

x̂
xy + α

xtref−x̂xy

|xtref−x̂xy |
, if | xtref−x̂xy |> α

xtref , otherwise.
(3.68)

where the ramp reference is xtref,ramp = [x y]T . Ramping the reference has several
advantages. Firstly, aggressive agent motion and velocity can be controlled with
respect to avoiding big reference changes. Secondly, it makes it easier to tune the
controller weights between the target tracking xtref and the formation tracking
xfref . Regardless of how big the references changes are, ramp function will limit
down the step changes and give it to each agent in smaller proportions. Finally,
ramping allows more freedom with respect to keeping aggressive weights such that

39

3. Methods

manoeuvrability does not become limited. If the weights are used purely to dampen
the velocity when not using the ramp functionality, the quadcopter might be too
limited due to actuator constraints, hence the risk of running in to a state where
the quadcopter cannot recover from.

40

3. Methods

3.4 Observer
In general, model based control design relies on full state feedback. For the quad-
copter, the number of measurements does not match the number of states, hence
a state observer is necessary. This section describes the EKF based state observer
and how it is used to provide full state feedback and estimation of unknown dis-
turbances. In addition to the full state observer, a decoupled version is presented
in order to reduce the computational effort on hardware. The main argument for
using the nonlinear EKF observer is based on that the nonlinear motion model has
more information and is more representative to the real system.

3.4.1 State and Disturbance Estimation
The EKF based observer uses an augmented version of the nonlinear quadcopter
model, where the disturbance states d̃x, d̃y and d̃z are added to the model in terms
of the Gaussian random walk model xk+1 = xk + qk, with the normally distributed
zero mean white noise qk ∼ N (0, Q) [20]. The idea is that given a prediction of the
states, the disturbance components will converge over time to the true disturbances
as the prediction mismatches the measurement, which is the innovation of the filter.
The full extended nonlinear observer model in discrete time is given by

x̂k+1 = x̂k + ∆t v̂x,k
ŷk+1 = ŷk + ∆t v̂y,k
ẑk+1 = ẑk + ∆t v̂z,k

v̂x,k+1 = v̂x,k + ∆t
(
−kd
m
v̂x,k + 1

m

(
sin ψ̂k sin φ̂k + cos ψ̂k cos φ̂k sin θ̂k

)
Tk + ˆ̃dx,k

)

v̂y,k+1 = v̂y,k + ∆t
(
−kd
m
v̂y,k + 1

m

(
cos φ̂k sin ψ̂k sin θ̂k − cos ψ̂k sin φ̂k

)
Tk + ˆ̃dy,k

)

v̂z,k+1 = v̂z,k + ∆t
(
−kd
m
v̂z,k + 1

m

(
cos θ̂k cos φ̂k

)
Tk + ˆ̃dz,k

)
φ̂k+1 = φ̂k + ∆t

(
ω̂φ,k + ω̂θ,k sin φ̂k tan θ̂k + ω̂ψ,k cos φ̂k tan θ̂k

)
θ̂k+1 = θ̂k + ∆t

(
ω̂θ,k cos φ̂k − ω̂ψ,k sin φ̂k

)
ψ̂k+1 = ψ̂k + ∆t

sin φ̂k
cos θ̂k

ω̂θ,k + cos φ̂k
cos θ̂k

ω̂ψ,k

 (3.69)

ω̂φ,k+1 = ω̂φ,k + ∆t
(1
Ixx

τφ,k −
Iyy − Izz
Ixx

ω̂θ,k ω̂ψ,k

)
ω̂θ,k+1 = ω̂θ,k + ∆t

(
1
Iyy

τθ,k −
Izz − Ixx
Iyy

ω̂φ,k ω̂ψ,k

)

ω̂ψ,k+1 = ω̂ψ,k + ∆t
(1
Izz

τψ,k −
Ixx − Iyy
Izz

ω̂φ,k ω̂θ,k

)
ˆ̃dx,k+1 = ˆ̃dx,k
ˆ̃dy,k+1 = ˆ̃dy,k

41

3. Methods

ˆ̃dz,k+1 = ˆ̃dz,k

where the discrete time disturbance components ˆ̃dx,k, ˆ̃dy,k and ˆ̃dz,k are influencing
the translational motion states v̂x,k, v̂y,k and v̂z,k. The associated state vector is
given by

x̂k = [x̂k ŷk ẑk v̂x,k v̂y,k v̂z,k φ̂k θ̂k ψ̂k ω̂φ,k ω̂θ,k ω̂ψ,k
ˆ̃dx,k ˆ̃dy,k ˆ̃dz,k]T (3.70)

The disturbance estimations are expected to change dynamically due to mismatching
model parameters, swinging payload and declining battery power which causes the
total propeller thrust to drop as time goes. Introducing it to the observer is expected
to improve the overall performance of the system by means of using close to real
estimates of the actual true disturbances. The number of measurements p = 9 is
less than the number of states n = 15. The available quadcopter measurements are
given by

yk = [xk yk zk φk θk ψk ωφ,k ωθ,k ωψ,k]T (3.71)
where the translational velocity and disturbance states are absent. From the the-
ory on EKF in Section 2.2.2, the augmented nonlinear motion model from (3.69)
represents the nonlinear function f(x̂k−1|k−1), where the related Jacobian matrix
F (x̂k−1|k−1) is not presented here. As there is no nonlinear measurement model,
the related measurement model h(x̂k|k−1) and Jacobian matrix H(x̂k|k−1), simply
selects the associated measurements yk from the prediction x̂k|k−1 and certainty
Pk|k−1. Figure 3.14 summarizes the observer in a block diagram. rk is the reference
vector for the initial 12 nonlinear states from (3.23), uk is the electrical motor input
from (3.57), uT,k = T and uτ,k are the physical input signals from (3.9), yTk is the
measurement vector, and finally where d̂k is the estimated disturbance vector and
x̂k is the estimated full state feedback. The discrete time nonlinear observer model
used for prediction in the EKF is given

Quadcopter

MPC Al tude

MPC Posi on

MPC A tude

Full State and

Disturbance

Observer

uk

uT,k

uτ,k

yk

rk

xk

dk

^

^

Figure 3.14: Block diagram of the observer with controller.

Due to hardware limitations, the measurement of position is received at a different
sampling rate than the controller and observer. Whenever the position measurement
at t = k has not been deliverred, the innovation of update step of the EKF from
(2.9) is set to zero as of (2.10), such that the observer position output is not updated
with the old measurements, hence purely based on the prediction using the nonlinear
model.

42

3. Methods

3.4.2 Decoupled Observer

Analysis of the full state and disturbance observer from (3.69), shows that it is
necessary to compute a 9x9 S−1

k matrix inverse during the EKF update step from
(2.9). With respect to the implemented solution and the real time performance and
computational demand, computing such an inverse matrix online is very expensive.
An alternative to computing S−1

k online is to produce a symbolic inverse matrix
version offline and replace all the symbolic variables with numerical values online.
Due to lack of necessary memory, the symbolic version of the 9x9 S−1

k was not
possible to compute. By decoupling the full 15 state observer from (3.69) in to
two separate observers; one for the position and disturbance states and one for the
attitude states, the 9x9 S−1

k is reduced to two smaller 6x6 and 3x3 matrices. The
necessary memory needed in order to compute the symbolic versions of these two
matrices is available. The first decoupled observer estimates the attitude motion
states x̂att,k = [φ̂k θ̂k ψ̂k ω̂φ,k ω̂θ,k ω̂ψ,k]T from (3.69). These states are not coupled
to the remaining position and disturbance states. The attitude observer has the
number of states natt = 6 with full state measurements patt = 6, hence the observer
is used to improve the pure measurements with the nonlinear motion model. The
decoupled attitude observer model is given by

φ̂k+1 = φ̂k + ∆t
(
ω̂φ,k + ω̂θ,k sin φ̂k tan θ̂k + ω̂ψ,k cos φ̂k tan θ̂k

)
θ̂k+1 = θ̂k + ∆t

(
ω̂θ,k cos φ̂k − ω̂ψ,k sin φ̂k

)
ψ̂k+1 = ψ̂k + ∆t

sin φ̂k
cos θ̂k

ω̂θ,k + cos φ̂k
cos θ̂k

ω̂ψ,k


ω̂φ,k+1 = ω̂φ,k + ∆t

(1
Ixx

τφ,k −
Iyy − Izz
Ixx

ω̂θ,kω̂ψ,k

)
ω̂θ,k+1 = ω̂θ,k + ∆t

(
1
Iyy

τθ,k −
Izz − Ixx
Iyy

ω̂φ,kω̂ψ,k

)

ω̂ψ,k+1 = ω̂ψ,k + ∆t
(1
Izz

τψ,k −
Ixx − Iyy
Izz

ω̂φ,kω̂θ,k

)

(3.72)

where the associated state and measurement vectors are given by

x̂att,k = [φ̂k θ̂k ψ̂k ω̂φ,k ω̂θ,k ω̂ψ,k]T yatt,k = [φk θk ψk ωφ,k ωθ,k ωψ,k]T (3.73)

The second decoupled observer, estimates the position states x̂pos = [x̂ ŷ ẑ v̂x v̂y v̂z]T

and the disturbance states d̂ = [ˆ̃dx ˆ̃dy ˆ̃dz]T . The resulting attitude estimations from
the first observer, are passed as parameters θ̂k = [φ̂k θ̂k ψ̂k]T to the second observer,
making the motion model time varying. The attitude observer has the number of
states npos = 9 with full state measurements ppos = 3, hence the observer is used
to estimate the non measured states and unknown disturbances. The decoupled

43

3. Methods

position and disturbance observer model is given by

x̂k+1 = x̂k + ∆t v̂x,k
ŷk+1 = ŷk + ∆t v̂y,k
ẑk+1 = ẑk + ∆t v̂z,k

v̂x,k+1 = v̂x,k + ∆t
(
−kd
m
v̂x,k + 1

m

(
sin ψ̂k sin φ̂k + cos ψ̂k cos φ̂k sin θ̂k

)
Tk + ˆ̃dx,k

)

v̂y,k+1 = v̂y,k + ∆t
(
−kd
m
v̂y,k + 1

m

(
cos φ̂k sin ψ̂k sin θ̂k − cos ψ̂k sin φ̂k

)
Tk + ˆ̃dy,k

)

v̂z,k+1 = v̂z,k + ∆t
(
−kd
m
v̂z,k + 1

m

(
cos θ̂k cos φ̂k

)
Tk + ˆ̃dz,k

)
ˆ̃dx,k+1 = ˆ̃dx,k
ˆ̃dy,k+1 = ˆ̃dy,k
ˆ̃dz,k+1 = ˆ̃dz,k

(3.74)

where the state and measurement vectors is given by

x̂pos,k = [x̂k ŷk ẑk v̂x,k v̂y,k v̂z,k
ˆ̃dx,k ˆ̃dy,k ˆ̃dz,k]T ypos,k = [xk yk zk]T (3.75)

Figure 3.15 summarizes the decoupled observer in a block diagram. r is the reference
vector for the initial 12 nonlinear states from (3.23), uk is the electrical motor input
from (3.57), uT,k = T and uτ,k are the physical input signals from (3.9), yatt,k and
ypos,k are the measurement vectors, θ̂k are the decoupled attitude state estimates
passed as parameters to the second observer, and finally where d̂k is the estimated
disturbance vector and x̂k is the estimated full state feedback.

Quadcopter

MPC Al tude

MPC Posi on

MPC A tude

Posi on State

and Disturbance

Observer

uk

uT,k

rk

A tude State

Observer

u�,k

ya�,k

ypos,k

xk

dk

^

^

θk
^

Figure 3.15: Block diagram of the decoupled observer with controller.

3.4.3 Alternative Disturbance Estimation
Ideally the quadcopter would have evenly distributed mass with aligned inertias Ixx
and Iyy, perfectly synchronized motor angular velocities, perfectly specified model

44

3. Methods

parameters such as lift k, motor cm and drag b constants, and accurate, high sam-
pled attitude and position measurements. This is not the case for the real hardware,
where the mass is unevenly distributed, model parameters are not specified by man-
ufacturer but manually identified, attitude measurements are results of estimation
from sensor fusion, and where the local positioning system is based on low cost
hardware where sampling frequency is not matching the sampling frequency of the
online observer. By analysing the complete observer model from (3.69), augmenting
the model with inertia estimation could potentially improve the model accuracy on-
line, resulting in better model predictions within the attitude controller. However,
the inertias are coupled between each axis, and represented as inverse functions.
The risk of observer instability is high as singular solutions can occur when inertia
estimations approach zero.

3.4.4 Observer Sampling Time
The system analysis with respect to sampling time for the observer is done similar
to the controller sampling time in 3.2.7. The only difference is that since the EKF
based observer linearizes the model at every sampling instance, the complete nonlin-
ear observer model from (3.69) is analysed around multiple equilibrium points. By
stepping through a range of initial input signals, velocities, angles and angular veloc-
ities, a range of sampling frequencies can be found, where the largest result ends up
being the selected observer frequency. The range of initial values are selected around
the expected operating points, where angles go from -15 to 15 degrees, angular and
translational velocities from -0.2 to 0.2 rad/s and -1 to 1 m/s, and PWM input
signals from 0-100 %. Figure 3.16 presents the frequency response of the observer
model with initial conditions giving largest frequency. This maximum frequency
was found around maximum initial condition for PWM input and both minimum
and maximum conditions for the angular and translational motion, hence the fast
quadcopter moves, the faster the observer need to sample. Table 3.6 presents the
frequency with the associated recommended sampling times.

Table 3.6: Minimum and recommended observer frequencies and sampling time.

fs,min [rad/s] fs,rec [Hz] Ts [s]
Observer 8.5600 13.6000 0.0735

Similar to the controller sampling time, the actual sampling time of the implemented
observer runs at a considerably faster rate than the analysed recommendation. The
implemented observer runs in a real time loop together with orientation estimation
algorithm. In order to achieve convergence of the sensor fusion filter and the EKF
based observer, the sampling time is set to Ts = 0.01 s, where the frequency is
fs = 100 Hz.

45

3. Methods

10
-3

10
-2

10
-1

10
0

10
1

-50

0

50

100

150

200

Figure 3.16: Singular values of the observer model.

46

3. Methods

3.5 Sensor Fusion, Filtering and Orientation Es-
timation

This section describes the IMU based sensor fusion algorithm used to estimate ori-
entation of the quadcopter. It presents a raw sensor measurement analysis prior to
giving results on orientation estimation. It also describes how physical quadcopter
frame vibration caused by the spinning motors, makes the orientation estimation
drift, and a mechanical dampening solution to solve this issue.

3.5.1 IMU Sensor
Orientation estimation is typically based on combining information from a gyro-
scope, accelerometer and a magnetometer in order get steady and non-drifting at-
titude angles φ, θ and ψ. The sensor used is the Inertial Measurement Unit (IMU)
TDK InvenSense MPU9250, which has the three mentioned sensors, including a tem-
perature sensor. The gyroscope provides relative raw angular velocity body frame,
the accelerometer provides absolute raw acceleration applied to the sensor in the
world frame and the magnetometer measures the surrounding magnetic field. All
measurements are related to the x, y and z axes of the sensor (reference) frame.
Before proceeding on to the details around the particular orientation filter used, the
sensors are analysed with respect to raw measurement noise; mean and variance.
Figures 3.17 and 3.18 presents raw measurements from the accelerometer, magne-
tometer and gyroscope, and Table 3.7 presents the variances and mean values for
all axes.

Table 3.7: Mean and variance of raw gyroscope, accelerometer and magnetometer
measurements.

Mean Variance
gx -0.000851 3.722076e-06
gy 0.000795 8.430107e-06
gz 0.000706 8.312619e-06
ax -0.145991 2.862287e-06
ay -0.097737 2.929547e-06
az 0.9031941 3.986317e-06
mx -3.052830 0.587330
my -8.181940 0.592540
mz 6.679058 0.551842

47

3. Methods

0 2 4 6 8 10 12 14 16 18 20

-0.16

-0.14

-0.12

0 2 4 6 8 10 12 14 16 18 20

-0.11

-0.1

-0.09

0 2 4 6 8 10 12 14 16 18 20

0.85

0.9

0.95

0 2 4 6 8 10 12 14 16 18 20

-10

-5

0

0 2 4 6 8 10 12 14 16 18 20

-15

-10

-5

0 2 4 6 8 10 12 14 16 18 20

0

5

10

Figure 3.17: Raw accelerometer and magnetometer measurements with gravity
unit G and magnetic unit µT.

48

3. Methods

0 2 4 6 8 10 12 14 16 18 20

-0.05

0

0.05

0 2 4 6 8 10 12 14 16 18 20

-0.05

0

0.05

0 2 4 6 8 10 12 14 16 18 20

-0.05

0

0.05

Figure 3.18: Raw gyroscope measurements with unit rad/s.

All of the measurement are simultaneously collected with the sensor board mounted
on the quadcopter. The quadcopter is located on a table in a stationary horizon-
tal position. The gyroscope measurement is expected to have a mean ≈ 0. The
collected small mean and variance indicates that the gyroscope measurement is of
good quality. If heading ψ is only estimated based on integrating the angular ve-
locity around the z axis, a bias of ḡz = 0.000706 rad/s will cause slow accumulating
drift in ψ. More on how to compensate for such drift in Section 3.5.2. The ac-
celerometer measurement is expected to have a mean value ≈ 0 in x and y axes
and ≈ 1 in z axis (one gravitational force unit). Again, the collected small mean
and variance indicates that the accelerometer measurement is of good quality. The
small biases indicates that the sensor board is not perfectly horizontally aligned,
which results in that a small proportion of the gravitational force unit in the z axis
becomes distributed in x and y axes. The magnetometer measurement is expected
to have a mean approximately equal to the surrounding field, which is unknown.
The collected data has a larger variance which indicates that the measurement is
subject to noise. When using magnetometers indoor, the surrounding environment
must be taken in to account as it is subject to magnetic fields such as electrical
equipment.

49

3. Methods

3.5.2 Sensor fusion and Orientation Estimation
The implemented orientation estimation is based on using only the gyroscope and
accelerometer. The non-filtered sensor measurements are passed directly to an open
source, computational inexpensive IMU algorithm, designed by Sebastian Madgwick
from [15, 16]. The algorithm derivation is not presented in detail here and can be
found in the citations, however the main steps are still covered in order to provide an
understanding on how the sensor fusion is used to get desired orientation estimations.
Figure 3.19 presents a block diagram of the algorithm flow.

Accelerometer Update

Gyroscope Update

z
-1

∇f

∇f

q

q

z
-1

+
_

ax

ay

az

gx

gy

gz

∫

q0

q1

q2

q3

Figure 3.19: Orientation estimation IMU filter block diagram.

The algorithm returns a quaternion representation of orientation given by q =
[q0 q1 q2 q3]T . The three axes gyroscope measurements are passed in to the gy-
roscope update, where the quaternion representation of the angular rate of change
is given by

S
Eq̇ω,t = 1

2
S
Eq̂t−1 ⊗ Sωt (3.76)

where S
E denotes earth relative to sensor frame, the gyroscope measurements are

arranged in to ω = [0 gx gy gz]T , ⊗ is a quaternion product and ˆ represents a
normalized vector. The orientation is achieved by integrating (3.76) given by the
discrete time equation

S
Eqω,t = S

Eq̂t−1 + S
Eq̇ω,t∆t (3.77)

In theory, the orientation is now obtained, however the present gyroscope noise
will accumulate over integration and make the attitude drift as time goes. The
accelerometer is used to provide an absolute measurement of the earth gravitational
force in order to compensate for the drifting angles around x and y axes. The
quaternion orientation estimation based on the accelerometer is found by using the
computational inexpensive gradient descent method in order to solve an optimization
problem defined such that a complete solution for the quaternion representation
is found among infinite solutions based on the raw accelerometer measurements.
The objective function is based on a simplification assuming that there is only the

50

3. Methods

gravitational force working on the sensor. The resulting quaternion orientation
estimation based on the accelerometer is given by

S
EqO,t = S

Eq̂t−1 − µt
Of
‖Of‖

(3.78)

where the Of is the gradient descent objective function based on the accelerometer
measurements and µ is the gradient descent step size. In order to achieve the
complete orientation estimation, the two quaternion estimations are combined as of
Figure 3.19 and given by

S
Eqt = γt

S
EqO,t + (1− γt)SEqω,t (3.79)

where γt is the weight factor between the orientation estimation from the gyroscope
and the accelerometer. This factor is expressed as γt ≈ β∆t

µt
which is the optimal

value where the divergence of S
Eqω is equal to the convergence of S

EqO with the
tuning factor β. By substituting (3.77) and (3.78) in to (3.79), and defining the
accelerometer contribution as an estimate of the quaternion error, the complete
sensor fusion is simplified and given by

S
Eqt = S

Eq̂t−1 +
(
S
Eq̇ω,t − β

Of
‖Of‖

)
∆t (3.80)

The adjustable factor β is used to tune how much of the gyroscope measurement
error is to be removed by the estimated error from the accelerometer. In the practi-
cal scenario, β is a trade-off between a fast converging filter that quickly adapts to
changes in orientation, or a slower converging filter which has good outlier detection
for bad measurement data provided by the gyroscope and the accelerometer. The
smaller value of β, the slower the filter is. For the sensor fusion verification pre-
sented in Section 3.5.1, the tuning factor of β = 0.05 turned out to give satisfying
results with respect to convergence of true orientation and outlier detection during
quadcopter translational motion. The quaternion representation of the orientation
of the sensor frame relative to the earth is finally given by the conjugate

E
S q̂t = S

Eq̂
∗
t = [q0 − q1 − q2 − q3]T (3.81)

The accelerometer is only going to compensate for the error in estimation of φ and
θ. In order to achieve non drifting ψ, a magnetometer is typically used. Sebastian
Madgwick does introduce an Attitude and Heading Reference Systems (AHRS) fil-
ter, where the magnetometer is used as a reference for true heading. However, a
combination of changing indoor environment magnetic field around the sensor board
and noisy variance given in Table 3.7, the AHRS filter did not give satisfying com-
pensation, hence the IMU filter is part of the implemented solution. In order to
minimize the drift, data is collected during initialization of the filter such that the
present bias can be removed during run time. An alternative to the AHRS filter, is
to use an EKF approach on estimating the orientation. An EKF orientation esti-
mation was implemented and benchmarked on computational effort with respect to
the IMU filter. The IMU filter turned out to outperform up to three times faster
than the EKF based filter, regardless of the hardware.

51

3. Methods

3.5.3 Orientation Estimation Verification

The resulting orientation estimation is verified by rotating the quadcopter around
each axis to predefined angles. In order to keep consistency between rotation, a
fixed rig is preset at an angle of 10.42◦. Figure 3.20 illustrates the actual physical
test rig with the associated calibration measurements and the test angle.

(a) Actual test rig

57 mm

397 mm

10.42 °

(b) Test rig measurements

Figure 3.20: Orientation estimation test rig.

The quadcopter is rotated and placed back and forth between the horizontal plane
next to the rig and on to the actual rig such that most angle scenarios are covered.
The complete test procedure is given by:

1. Initialize at φ, θ and ψ equal to zero degrees,
2. Rotate θ = −10.41◦ and back to θ = 0◦,
3. Rotate ψ = 90◦,
4. Rotate φ = −10.41◦ and back to φ = 0◦,
5. Rotate ψ = 180◦,
6. Rotate θ = 10.41◦ and back to θ = 0◦,
7. Rotate back ψ = 90◦, ψ = 0◦ and then to ψ = −90◦,
8. Rotate φ = 10.41◦ and back to φ = 0◦,
9. Rotate ψ = −180◦,
10. Rotate θ = 10.41◦ and back to θ = 0◦,
11. Finally rotate back ψ = −90◦ and ψ = 0◦.

Figure 3.21 presents the results from the described test procedure. The test results
shows that the desired angle of ≈ 10.41◦ is reached for both positive and negative
rotations in φ and θ. Heading estimation within the range of ψ = [−180◦, 180◦]
are good. In between 50 to 70 seconds, the sign of ψ is flipped as the orientation
goes above the desired angle ψ = 180◦. This does not affect the tilt angles φ and
θ. Notice that when θ ≈ 10.41◦ at 60 and 135 seconds, the heading is ψ ≈ 180◦
(without the flipped sign) and ψ ≈ −180◦. This is expected as the quadcopter frame
is rotated in the same direction for both φ and θ regardless of whether the heading
is rotated ±180◦.

52

3. Methods

0 20 40 60 80 100 120 140 160

-20

-10

0

10

20

0 20 40 60 80 100 120 140 160

-200

-100

0

100

200

X: 32.72

Y: -10.93

X: 59.4

Y: 10.59

X: 107.2

Y: 11.22

X: 32.73

Y: 90.06

X: 54.54

Y: -178.8

X: 75.42

Y: 90.73

X: 100.3

Y: -89.2

X: 153.7

Y: -88.13

Figure 3.21: Orientation estimation verification results.

The present ψ drift is verified by collecting data for five minutes. Figure 3.22 presents
the results, where approximately -0.00385◦/s will be the heading drift whenever the
quadcopter is stationary. The drift can vary depending on whether the collected
gyroscope bias in the z axis actually represents the present angular velocity bias
such that raw measurement is compensated correctly prior to being passed in the
IMU algorithm. Without the bias compensation, the drift would be considerably
larger.

0 50 100 150 200 250 300

-1.5

-1

-0.5

0

0.5

Figure 3.22: Heading ψ drift over time.

53

3. Methods

3.5.4 Mechanical Damping
UAVs are subject to vibration when the motors are spinning. This has resulted into
a random drift in angle estimation from the sensor fusion algorithm and made sensor
measurements unworthy. As a practical solution, a mechanical damping is used. It
consists of two rigid plastic plates where the only connections between them are
four ear plugs. One of the plates is mounted on the quadcopter frame stiffly and the
sensor board is mounted on the other plate stiffly and the ear plugs in between are
meant to capture the vibrations. Figure 3.23 presents the design.

Figure 3.23: Mechanical damping of IMU sensors using earplug foam material.

To evaluate the effect of them, a comparison is done between two scenarios of with
and without the ear plugs in both time and frequency domains. Figure 3.24 illus-
trates two different runs, without and with mechanical damping. With the quad-
copter constrained in a horizontal position in a rig with all four motors spinning
equally at ui = 90%, the attitude estimation drifts without dampening and stays
immune against the vibrations with dampening.

54

3. Methods

0 2500 5000 7500 10000

-10

0

10

20

30

0 2500 5000 7500 10000

-30

-20

-10

0

10

0 2500 5000 7500 10000

-10

0

10

20

30

0 2500 5000 7500 10000

-30

-20

-10

0

10

Figure 3.24: Tilt estimation comparison; without mechanical damping (left) and
with mechanical damping (right).

Figures 3.25 and 3.26 present raw measurements from the IMU sensor for both cases
of without and with mechanical damping for all three axes in the time domain. The
mean values are also presented. On the accelerometer plots, a clear shift in the
mean values for the x and y axes, occurs as soon as the motors start spinning
at around sample k = 3500 without using damping. When using damping, the
mean values are immune to such shift. This is suspected to be the main reason
for the unworthy attitude estimations, since the accelerometer cannot accurately
compensate for drift from the gyroscope. Table 3.8 presents the variance of each
sensor without and with damping. For the accelerometer, the variances of vibration
noises would get 177, 9 and 1

3 times larger in x, y and z axes respectively, compared
to using damping. However for the gyroscope, using damping gives equal mean
values as without damping, but bigger noise variances of 6, 2 and 8 times larger.
Loosely specking, accelerometer is better, gyroscope is worse, but not as much as
accelerometer got better in terms of variances. In terms of mean values, while there
is not much change for gyroscope, accelerometer shows much better results. This
magnifies the importance of using an accelerometer as an absolute measurement
in the world frame for correction of drifting attitude estimation using purely the
gyroscope which is a measurement relative to the sensor frame. Note that the two
set of data with and without damping are separately collected from the system, since
the sensor board has to be taken off and changed with respect to damping, hence
the starting time of the motors are slightly different between the two scenarios. Also

55

3. Methods

the accelerometer sensor has a saturation of ±2G.

0 5000 10000

-1

0

1

2

0 5000 10000

-1

0

1

2

0 5000 10000

-1

0

1

2

0 5000 10000

-1

0

1

2

0 5000 10000

-0.5

0

0.5

1

1.5

2

0 5000 10000

-0.5

0

0.5

1

1.5

2

Figure 3.25: Raw accelerometer comparison; without mechanical damping (left)
and with mechanical damping (right).

56

3. Methods

0 5000 10000

-0.4

-0.2

0

0.2

0.4

0 5000 10000

-0.2

-0.1

0

0.1

0.2

0 5000 10000

-0.4

-0.2

0

0.2

0.4

0 5000 10000

-0.2

-0.1

0

0.1

0.2

0 5000 10000

-0.15

-0.1

-0.05

0

0.05

0 5000 10000

-0.15

-0.1

-0.05

0

0.05

Figure 3.26: Raw gyroscope comparison; without mechanical damping (left) and
with mechanical damping (right).

Table 3.8: Variances of raw accelerometer and gyroscope measurements with and
without damping.

Sensor
Without damping With damping

σ2
x σ2

y σ2
z σ2

x σ2
y σ2

z

Accelerometer [G] 0.12300 0.11500 0.07900 0.00700 0.01300 0.24400
Gyroscope [rad/s] 0.00070 0.00060 0.00004 0.00420 0.00160 0.00033

57

3. Methods

Figures 3.27 and 3.28 presents the frequency plots of the same raw measurements
from the accelerometer and gyroscope. It does not show much improvement for
gyroscope using the damping. However for accelerometer, frequencies below 30 dB
are considerably filtered using the damping. The filtered frequencies are suspected
to be the vibration frequency components causing the problem, as there is no real
motion of quadcopter in these tests. Note again that the two sets of data with and
without damping are separately collected, hence the ticking frequencies of the data
sets are slightly different and that is why one cuts shorter in frequency compared to
the other one.

0 5 10 15 20 25 30 35 40 45 50

-20

0

20

40

0 5 10 15 20 25 30 35 40 45 50

-20

0

20

40

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

Figure 3.27: Raw accelerometer comparison in frequency domain

58

3. Methods

0 5 10 15 20 25 30 35 40 45 50

-40

-20

0

20

0 5 10 15 20 25 30 35 40 45 50

-20

0

20

0 5 10 15 20 25 30 35 40 45 50

-20

0

20

Figure 3.28: Raw gyroscope comparison in frequency domain

59

3. Methods

3.6 Parameter Identification
This section presents parameter identification of the quadcopter, where each indi-
vidual parameter given in Section 3.1 are estimated based on raw calculations and
collected data.

3.6.1 Mass
The quadcopter mass is the sum of all sub parts. The total mass is weighted using
a scale and found to be m = 0.4234 kg. Ideally quadcopter would have the mass
equally distributed along the structure. This is not case here due to battery and
controller placement. However, the centre of mass is placed as low as possible,
creating a pendulum effect which forces the quadcopter to always face the propellers
upward.

3.6.2 Motor and Lift Constant
The motor constant is necessary in order to accurately translate the electrical motor
input PWM ui to physical motor speed ωi, for i = {1...4}. The motor constant is
initially identified by collecting data from a tachometer which is connected directly
to the motor shaft such that the motor speed is measured and related to the electrical
motor input. The physical connection between the tachometer and motor shaft was
vulnerable at high motor speed due to vibrations and a slipping effect, hence only
motor speeds up to approximately 50 % are investigated. Battery voltage level
is crucial as the resulting motor speed will decrease as voltage decreases. As the
current increases together with the increases of motor speed, the voltage drops. For
the collected data, multiple fixed voltage levels are investigated, where the minimum
is 9.0 V and the maximum is 12.6 V. The nominal voltage is considered to be 11.1
V. Figure 3.29 presents the collected motor speed in Round Per Minute (RPM) for
ui = 20, 30, 40 and 50 %, together with a linear approximation of the complete
range ui = 0-100 %.
The lift constant is necessary in order to go from motor speed to thrust. The
lift constant is identified by placing the quadcopter upside down on top of a high
resolution scale. Further, the total mass is set zero such that when the motors are
spinning, force will push upwards, creating measurable mass. The total mass M
measured is a sum of all four motors, and is mapped to the force fi created by each
individual motor i = {1...4} by fi = Mg

4 using the gravitational force g. Figure 3.30
presents the collected total mass for ui = 20, 30, 40 and 50 %, together with a linear
approximation of the complete range ui = 0-100 %.
The combined relation between the motor and the lift constant, translates the elec-
trical input PWM to motor force as from (3.7). Table 3.9 summarizes the resulting
parameters based on the collected data. Ideally, the lift constant is independent of
the voltage level as it depends on the the physical propeller design, which does not
change. For initial quadcopter flight tests, cm = 23.0907 and k = 1.0107e-05 at the
nominal voltage of 11.1 V was used. The initial estimation of cm and k showed in-
stability in attitude control with increasing oscillation around the reference point at

60

3. Methods

0 10 20 30 40 50 60 70 80 90 100

-0.5

0

0.5

1

1.5

2

2.5

3
10

4

Figure 3.29: Relation between input PWM and resulting motor speed in RPM.

Table 3.9: Estimated motor and lift constants for different voltage levels.

Voltage [V] cm [PWM to rad/s] k [rad/s to N]
9.0 21.1848 7.4528e-06
10.0 23.0279 8.4282e-06
11.1 23.0907 1.0107e-05
12.0 25.3945 1.0464e-05
12.6 26.4417 1.0607e-05

zero degrees. The increasing oscillation indicates that either cm or k, or both of the
parameters are wrong. Based on the vulnerable initial estimation method of cm, this
parameter is approximated again. By using a Proportional-Integral (PI) controller
for attitude, thrust is applied manually controlled such that the quadcopter stays at
a hovering altitude position where the gravitational acceleration is cancelled, where
cm can be estimated based on which electrical input the motors actually need to
keep hovering. For this experiment, the unstable motor constant cm = 23.0907, is
increased to cm = 30 in order for the attitude PI controller to fly stable around
zero degrees in φ and θ. Regardless of which cm or k parameter used, the electrical
input signal ui will always stay the same. From the test ui = 56.7062 % is collected.
Further, the new motor constant estimation is found by solving the motion equation

61

3. Methods

0 10 20 30 40 50 60 70 80 90 100

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 3.30: Relation between input PWM and resulting total mass produced by
spinning motors.

for v̇z from (3.16) with respect to cm at the hovering state, given by

cm = mg

k (u2
1 + u2

2 + u2
3 + u2

4) (3.82)

where k = 1.0107e-05 from the initial guess is used. Since k and cm are in all
equations except (3.22) coupled as k cm, offset of k compared to the real value
would also map onto cm and the coupled term would be correct. The resulting
motor constant is cm = 31.9513. Compared to the initial estimation cm = 23.0907,
the new motor constant has an approximately 40 % increase, hence the motors
become more dampened, and the reason for why the initial flight was unstable with
increasing oscillation.

3.6.3 Drag Constant

The drag constant b has not been estimated. A value of b = 3.3691e-07 is used
during flight. The value is a rough guess based on the relationship of approximately
b = 1

30k between the lift and drag constant from [6].

62

3. Methods

3.6.4 Inertia
Initial estimations of inertias Ixx, Iyy and Izz are carried out using basic formulas
for moment of inertia on physical systems, with respect to the quadcopter [22]. The
quadcopter structure is simplified in to several sub parts. Figure 3.31 illustrates how
the initial body frame in Figure 3.1a has reduced to spheres and cylinder shaped
rods together with the moment of inertia concept applied.

rC

rF

mM

mM mM

mM

mC

mF

x
b

y
b

z
b

Φ

Ψ
rA

(a) Simplified quadcopter frame

IF IC

IMIB

(b) Inertia concepts

Figure 3.31: Simplified quadcopter frame illustrating momen of inertia estimation.

Figures 3.31a and 3.31b introduce some new notations, where mF and rF is the
mass and radius of the frame arm, mC and rC is the mass and radius of the centre,
and mM and rA is the motor mass and distance from frame centre to motor. Lf
represent the total length between the diagonal motors. The quadcopter inertia Ixx,
Iyy and Izz are then estimated by summarizing the individual frame, centre, body
and motor inertia IF , IC , IB and IM , resulting in

Ixx = Iyy = 1
2mF r

2
F︸ ︷︷ ︸

IF

+ 1
4mF r

2
F + 1

12mFL
2︸ ︷︷ ︸

IB

+ 2
5mCr

2
C︸ ︷︷ ︸

IC

+ 2(mMr
2
A)︸ ︷︷ ︸

IM

(3.83)

Izz = 2
(1

4mF r
2
F + 1

12mFL
2
)

︸ ︷︷ ︸
IB

+ 2
5mCr

2
C︸ ︷︷ ︸

IC

+ 4(mMr
2
A)︸ ︷︷ ︸

IM

(3.84)

where the different inertia parameters are given by Table 3.10.

Table 3.10: Model parameters.

mF [kg] mC [kg] mM [kg] rF [m] rC [m] rA [m] Lf [m]
0.055 0.269 0.025 0.010 0.035 0.125 0.250

The resulting estimated inertia is given by Table 3.11.
Test results of attitude control with reference point at the origin for both φ and
θ, shows that the delivered control input to the quadcopter is aggressive causing

63

3. Methods

Table 3.11: Initial inertia estimations.

Ixx [kg/m2] Iyy [kg/m2] Izz [kg/m2]
0.0012 0.0012 0.0023

unstable oscillation. The MPC has little or no room for tuning using state and input
weights, hence the prediction model does not represent the real plant parameters. A
second inertia estimation is therefor carried out for φ and θ by applying a sine wave
shaped input torque signal for τφ and τθ to the quadcopter in open loop. White
noise is added on top of the sine wave in order to excite more frequencies of the
system. Raw measurement data is collected directly from the gyroscope where Ixx
and Iyy are estimated using Linear Least Squares (LLS) . The linearized discrete
time versions of Equations (3.20) and (3.21) given by

ωφ,k+1 = ωφ,k + 1
Ixx

∆t τφ,k (3.85)

ωθ,k+1 = ωθ,k + 1
Iyy

∆t τθ,k (3.86)

are rewritten to match the regressor model used for Linear Least Squares estimation
and given by

ωφ,k+1 − ωφ,k︸ ︷︷ ︸
yφ

= 1
Ixx︸︷︷︸
βxx

∆t τφ,k︸ ︷︷ ︸
Xφ

(3.87)

ωθ,k+1 − ωθ,k︸ ︷︷ ︸
yθ

= 1
Ixx︸︷︷︸
βyy

∆t τθ,k︸ ︷︷ ︸
Xθ

(3.88)

where the output and input vectors y and X contain measurements k = {1, ..., N −
1}. N is total collected samples. The resulting estimation of βxx and βyy is found
by solving

β̂xx = (XT
φXφ)−1XT

φ yφ (3.89)
β̂yy = (XT

θ Xθ)−1XT
θ yθ (3.90)

β̂xx and β̂yy returns the inertia inverse which is inverted back. Figure 3.32 presents
the collected data for ωφ and ωθ. The input signal is based on the discrete sine wave
y(n) = Asin

(
2πn
L
f
)

+ ω, where the amplitude A = 0.004, white noise ω ∼ N(0, σ2)
with variance σ2 where 3σ = A

3 and frequency f
L

= 40
0.8Hz. The resulting estimated

and verified inertia is given by Table 3.12. Verification is based on a second set of
collected data from equal input signal.

Table 3.12: Inertia estimations based on LLS.

Ixx [kg/m2] Iyy [kg/m2]
Estimate 0.001692037 0.001463176

Verification 0.001799774 0.001496044

64

3. Methods

0 5 10 15 20 25 30

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30

-0.01

-0.005

0

0.005

0.01

0 5 10 15 20 25 30

-2

-1

0

1

2

0 5 10 15 20 25 30

-0.01

-0.005

0

0.005

0.01

Figure 3.32: Open loop gyroscope response on input sine waves. Two first plots
are ωφ and τφ. Two last plots are ωθ and τθ.

65

3. Methods

3.7 Implementation
This section presents the implemented solution of the base functionality of a single
quadcopter. A hardware overview is presented together with how the overall system
is configured and setup. A software overview is presented describing the architecture
and functionality of the designed platform, including a list of the main functions.

3.7.1 Hardware
The assembled quadcopter developed for real time experiments is presented in Fig-
ure 3.33. The hardware setup contains a list of different components. The core of
the flight control system is the Raspberry Pi (RPi) computer. The RPi receives the
accelerometer and the gyroscope measurements from the IMU sensor board, per-
forms sensor fusion and state estimation, calculates the control action and passes
it to the motors. An external positioning system calculates the quadcopter posi-
tion indoor. The positioning system consists of a mobile tag mounted on to the
quadcopter and four static anchor points which are mounted around the indoor
environment. Position estimation is carried out on a stand alone computer. All
communication between anchors, server and quadcopter is over Wifi. Figure 3.34
presents an hardware overview. Table 3.13 lists all the hardware in details.

Table 3.13: Hardware overview.

Type Manufacturer Description
FPV250 frame kit HobbyKing Quadcopter frame
1704 Motors Multistar Brushless motors
3s LiPoly 1000mAh Turnigy Battery
5x3x3in Propellers Hobbyking Propellers (CW/CCW)
V3 12A ESC Afro (Simionk) Motor Speed Controller
16-Channel PWM Hat Adafruit Motor Controller
Raspberry Pi 3 Model B Raspberry Pi Flight Controller
Localino v2.0 Kit Heuel & Loeher Positioning System

66

3. Methods

Figure 3.33: The quadcopter developed for real time experiments.

Raspberry Pi Computer

IMU Sensors

ESC ESC ESC ESC

Posi on Tag

M1 M2 M3 M4

PWM Control

I
2
C

I
2
C

PWM

QuadcopterFlight Room

Posi on

Anchor

Posi on

Anchor

Posi on

Anchor

Posi on

Anchor

WIFI

Router
Laptop

PWM PWM PWM

3.3 V

Figure 3.34: Hardware overview.

67

3. Methods

3.7.2 Software
The flight controller is developed from scratch, where all the presented algorithms
from 3.2 are implemented in C. Systems based on MPC are typically computa-
tional demanding. The RPi has a four core CPU. By exploiting this hardware
architecture, the computational load is expanded over as much as possible of the
available recourses. Figure 3.35 presents the developed multi-core software archi-
tecture in a simplified overview. The system is initialized by a startup procedure in

sensor.c controller.c communica on.c

startup.c

startSensors() startController() startCommunica on ()

threadSensorFusion ()

threadPWMControl ()

threadProcessComm()

threadController()

threadProcessComm() threadProcessComm()

threadUdpWrite ()

threadUdpRead()

threadUserControl ()

states, control inputs communica on variables

Figure 3.35: Simplified software overview.

startup.c which calls and activates three processes: sensor.c , controller.c and
communication.c. The first process is reserved for tasks related to the sensors, in-
cluding measurements, sensor fusion, state observer and motor control. The second
process is reserved for tasks related to the FMPC, including position, attitude and
altitude control. The last process is reserved for tasks related to communication.
Between each process there is a two way pipe line with communication of variables
such as estimated states, control inputs, constraints, communication inputs from
the stand alone computer and variables to be communicated out from quadcopter.
Within each process, the main tasks are split in to parallel running threads. For
sensor.c, the following main functions are implemented:

• threadSensorFusion(), IMU sensor fusion, state observer and disturbance
estimation:
– enableMPU9250(), enable the IMU sensor board, including hardware sen-

sor calibration,
– readAllSensorData(), read the gyroscope and accelerometer,
– MadgwickAHRSupdateIMU(), IMU filter orientation estimation,
– q2euler_zyx(), quaternions to euler angles,
– ekfCalibration(), calibrate EKF,

68

3. Methods

– EKF(), state observer and disturbance estimation.
• threadPWMControl(), PWM motor control:

– setPWM(), set the PWM signal to each individual ESC.
For controller.c, the following main functions are implemented:

• threadControll(), FMPC algorithms for position, attidue and altitude:
– controllerPos(), position controller,
– controllerAtt(), attitude controller,
– controllerAlt(), altitude controller,
– refGen_formation(), formation reference generator,
– getAltitudeInputConstraints(), dynamic altitude control input con-

straints based on current attitude control input,
– controllerPID(), PID controller for test scenarios,
– posFmpc(), position FMPC algorithm called by the controller,
– attFmpc(), attitude FMPC algorithm called by the controller,
– altFmpc(), altitude FMPC algorithm called by the controller,
– fmpcsolve(), FMPC solver called by each FMPC algorithm,

For communication.c, the following main functions are implemented:
• threadUdpWrite(), broadcasts states and inputs over UDP.
• threadUdpRead(), receives position measurements:

– messageDecode(), decodes received message.
• threadKeyReading() (threadUserControl()) , user input from keyboard:

– keyReading(), decodes the keyboard input.
The RPi runs a Linux kernel with the PREEMPT_RT real time patch [23]. Each indi-
vidual thread is given a specific priority from [0...99], where 99 is the highest priority.
In addition, certain threads which requires specific sampling times, are given this
too. Table 3.14 presents an overview over the specific real time system priorities
and sampling times. Notice that the highest priority is assigned the controller, as
without a delivered control signal, the resulting flight control can be devastating
for the quadcopter. Also, the specific sampling times for threadController() and
threadSensorFusion() are assigned based on the calculated controller and observer
sampling times from Sections 3.2.7 and 3.4.4.

Table 3.14: Real time priorities and sampling times.

Thread Priority Sampling Time [s]
threadController() 60 0.025
threadSensorFusion() 50 0.01
threadPWMControl() 40 Interrupted
threadProcessComm() 35 Interrupted
threadUdpWrite() 33 0.01
threadUdpRead() 32 Interrupted
threadKeyReading() 31 Interrupted

69

3. Methods

70

4
Results and Discussion

This chapter presents results from simulation and implementation using all the pro-
posed methods from Chapter 3. The effect of different communication delays in
a coordinated multi-agent system is benchmarked between the distributed and de-
centralized control strategies. Next, the formation flying algorithm is evaluated,
followed by collision avoidance is verified for static obstacle and inter-vehicle colli-
sion avoidance, both with and without formation flying. Finally, the implemented
solution on a single quadcopter is evaluated by mean of performance with respect
to low cost hardware. In addition to a number of figures presented together with
each simulation scenario, a selection of animations illustrating the main simulation
scenarios can be found in Appendix A.

4.1 Simulation
This section presents results from simulation. To evaluate the performance of the
distributed control strategy, the system is benchmarked against the decentralized
control strategy. The simulation scenarios include mobile and stationary formation
flying tracking, target tracking, static Obstacle Collision Avoidance and Inter-Vehicle
Collision Avoidance. Final target reference ramping is used during all scenarios. In
addition, a single scenario is also simulated without using target reference ramping.
For simulation, all three quadcopters are implemented identical. Communication is
set up between each agent with adjustable time delay. All simulations are imple-
mented in MATLAB and Simulink. It is based on a combination of scripts written
only for simulation and implemented C code from the real time system as a Software-
In-Loop test. The SIL test has covered most of the functionality implemented in
sensor.c and controller.c. Results given in this section are all based on different
combinations of the methods described in Chapter 3 and the reader is referred to
that chapter for detailed description of the methods.

4.1.1 Simulation Setup
Controller weights are taken the same for all scenarios to make it easier to compare.
Table 4.1 presents the setup. The first two rows, Q and R, show the state and
input weights for the objective functions according to (2.1), where Ii is an identity
matrix of dimension i× i. The weights are all defined as diagonal matrices for each
controller, with zero weights for cross values and based on the controller dimensions
according to (3.63), (3.48) and (3.42). The third row shows the prediction horizon

71

4. Results and Discussion

T taken for each individual MPC. Finally, the last two rows are the tuning factors κ
and Kmax for FMPC as described in Section 2.1.2. Furthermore, the scenarios are
run with full-state feedback without the observer, noise-free measurements and zero
disturbances.

Table 4.1: Controller setup throughout simulation results.

Position controller Attitude controller Altitude controller

Q



10000
1

10000
1

10000
10000


I6



1000
1

1000
1

1000
1


I6

[
100000

100

]
I2

R

[
100
100

]
I2

1000
1000
1000

 I3 0.1

T 20 20 20
κ 0.1 0.001 0.001

Kmax 5 5 5

4.1.2 Distributed Control against Decentralized Control on
Formation Flying and Target Tracking

Different control strategies are exploited given the requirements and limitations of
a multi-agent system as described in Section 2.3. A benchmark study between the
decentralized and the distributed strategy, is carried out in simulation in terms of
performance. In general, controller performance can be described in different terms
such as reference tracking error, Time Of Arrival (TOA), oscillating behaviour and
chain reaction behaviours. Evaluating performance factors is a trade-off, e.g. an
attempt in making on performance criteria better might weaken another one. The
performance terms analyzed in this benchmark are listed as the following

1. Formation flying with respect to tracking error,
2. TOA at the final target reference,
3. The effect of communication delays on the shared information between agents

on terms 1. and 2.
The scenario tested is the same for all the different cases. That is manoeuvring in
XY plane between a set of target references while keeping formation between all
agents. After starting from initial position and reaching the current set of target
reference points within a vicinity given by ||x̂xyi − xi,tref || 6 0.02;∀i = {1...3}, a
new set of target reference points are given for all three agents to track. Figure 4.1
presents the scenario in XY plane, where the formation moves between two sets of
target reference points, xi,tref1 and xi,tref2 . An animation is presented in Figure A.1
in Appendix A.

72

4. Results and Discussion

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

2

3

4

5

6

7

8

Figure 4.1: Simulation scenario in XY plane.

Decentralized Control Figure 4.2 presents the resulting performance for the
decentralized control scheme in an environment with delay in communication as
described in 3.2.6. Agent xi,k at current time k, receives information of the remote
agents x̂j,k−5; ∀j 6= i with tz = 5 delay steps of sampling time. Given the sampling
frequency of fs = 40 Hz, this results in t = 0.125 seconds of delay for information
between the agents. Target references are ramped as described in Section 3.3.3.
The set of target references are changed from xi,tref1 to xi,tref2 at time t ≈ 12.5
s. The plots show that the agents are leading their formation references xi,fref .
Since position information from the other agents is used in the formation flying
algorithm, this leading behaviour on formation reference tracking is expected due
to the delayed information. The algorithm is based on delayed information for
formation flying path-planning, hence the formation references lags the agent.

73

4. Results and Discussion

0 5 10 15 20

3

4

5

6

7

8

0 5 10 15 20

3

4

5

6

0 5 10 15 20

3

4

5

6

Figure 4.2: Performances of decentralized control scheme with tz = 5

Distributed Control The formation tracking performance can be improved by
using the distributed control strategy. Figure 4.3 presents the same delay tz = 5
scenario using distributed control. Here agent xi,k at current time k, receives in-
formation of the remote agents x̂mj,k−5;∀j 6= i as well as the predicted information
x̂pj,k−5; ∀j 6= i. By using the predicted states of each remote agent, it can be com-
pensated for the communication delay as suggested in Section 3.2.6. For the delay
step of tz = 5, the predicted state information of p = 5 is used from the remote
agents, x̂pj,k−5|k;∀j 6= i for agent xi,k.

74

4. Results and Discussion

0 2 4 6 8 10 12 14 16

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16

3

4

5

6

0 2 4 6 8 10 12 14 16

3

4

5

6

Figure 4.3: Performances of distributed control scheme with tz = 5

Complete Benchmark of Different Time Delays Generally, as delay in com-
munication increases, one can expect performances of both the decentralized and
distributed strategies to get worse in terms of formation tracking. Figure 4.4 illus-
trates how the distributed scheme for a delay of tz = 15 has an increase of formation
flying tracking error compared to tz = 5. In addition, even though the distributed
control strategy with predicted information has been used, it still cannot compen-
sate for the larger communication delays such as tz = 15, hence there is a similar
behaviour to the decentralized strategy, where the agent is leading of formation ref-
erences. Accuracy of the prediction model highly affects such performances. Also, as
the system is correlated in terms of formation flying where each agent compensates
for each others error, regardless whether the prediction model is strong, constantly

75

4. Results and Discussion

changes of control action on each individual agent makes long predictions difficult.

0 5 10 15 20 25

3

4

5

6

7

8

0 5 10 15 20 25

3

4

5

6

0 5 10 15 20 25

3

4

5

6

Figure 4.4: Performances of distributed control scheme with tz = 15

A complete comparison between the decentralized and distributed control strategy
is presented on Figures 4.5 and 4.6 for a set of delays tz = {1...15}. Figure 4.5
presents the average error which represents the performances of formation flying
and is given by

ef = 1
N

N∑
k=1

(x̂xy1,k − x1,fref,k) + (x̂xy2,k − x2,fref,k) + (x̂xy3,k − x3,fref,k) (4.1)

where xi,fref,k for i = {1, 2, 3} is the formation references for i-th agent at time k
as described in Section 3.3.1. Figure 4.6 resents the TOA evaluated with respect to

76

4. Results and Discussion

all the agents arriving into the vicinity of their final target reference points, e.i.
||x̂xyi,k − xi,tref,final|| 6 0.02;∀i = {1, 2, 3}. This is generally inversely proportional to
formation tracking performances, as when agents are more off-tracking from forma-
tion, they are more liberated to reach the target references and consequently reach
the destination faster. Figure 4.5 presents two sets of errors for distributed scheme:
first, the error described by (4.1), when the agents share predicted horizon informa-
tion equivalent to their delays, i.e. p = tz, as described in Section 3.2.6. Second, it
additionally presents the same error as (4.1), but when the agents share predicted
horizon information different to their communication delays, i.e. p = tz − 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.05

0.1

0.15

0.2

0.25

Figure 4.5: Formation flying error for different communication delays.

77

4. Results and Discussion

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16

18

20

22

24

26

28

30

32

34

36

Figure 4.6: TOA for different communication delays.

Distributed control strategy shows better formation tracking performances for tz ≥ 5
for when sharing horizon equivalent to the communication delay (p = tz) and better
formation tracking performances for all delays when sharing horizon different to the
communication delays (p = tz − 1). Distributed control strategy also shows better
TOA performances for all delays, regardless of which horizon is shared between the
agents.
An interesting observation when using the distributed control strategy with p = tz
is that the error is increasing together with the delay in the range of tz = {1...5} as
expected, however for the delays in the range of tz = {6...9} the error is decreasing as
the delay increases, before the error starts increasing again in parallel to the increase
of delay from tz ≥ 10. The reason for this is that the formation reference is leading
the agent up tz = 5 where the trend turns around going over to a lagging reference.
The result is that as the reference is going from leading to lagging, it will surpass
the current position of the agent, hence the error decreases with decreases amount
of leading, before the error increases again with increases amount of lagging. This
trend behaviour is suspected to be due to the lack of prediction quality as the delay
increases because of the non-linearity in the plant model compared to the linearized
MPC model for position. One can argue that prediction with linear model upholds
good approximations for predictions of less than p = 6 into the horizon and as delays
get larger they are not as good and make the references lag the agents. The case is
similar when using distributed control strategy with shared horizon different to the
communication delay (p = tz − 1).

78

4. Results and Discussion

Another interesting observation is that distributed scheme using shared horizon dif-
ferent to the communication delay (p = tz − 1) shows better formation tracking
performances than distributed scheme using shared horizon equivalent to the com-
munication delay (p = tz). This demonstrates that not necessarily using the shared
horizon equivalent to the communication delay would result in the optimum solution
in terms of errors. Using shared horizon different than communication delays with
different shifts, e.g. p = tz−2 or p = tz−3, have resulted in arbitrary better or worse
performances than p = tz − 1, but always better performances than decentralized
scheme.
An interesting area of future research would be to improve the prediction model to
perform larger delays scenarios where the strength of using the predicted states in a
distributed fashion becomes even more obvious. Also as more approximated models
compared to reality are used in control designs and shared prediction are based
on models used in MPC control design, another interesting area to be investigated
further is that which prediction horizon step in regards to communication delay
should be shared between the agents to optimize the error.

Without target reference ramping The distributed and decentralized control
strategy is also benchmarked without ramping the target reference. The error will no
longer be limited down by the ramp function, hence the performance is expected to
become more aggressive with a considerable shorter TOA. The simulation scenario is
equal the scenario presented in Figure 4.1. Figures 4.7 and 4.8 present the resulting
performance using the decentralized and distributed control strategy with delay
tz = 5 respectively.

79

4. Results and Discussion

0 2 4 6 8 10 12

3

4

5

6

7

8

0 2 4 6 8 10 12

3

4

5

6

0 2 4 6 8 10 12

3

4

5

6

Figure 4.7: Performances of decentralized control scheme with tz = 5 without
target ramping.

80

4. Results and Discussion

0 1 2 3 4 5 6 7 8 9 10

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9 10

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10

3

4

5

6

Figure 4.8: Performances of distributed control scheme with tz = 5 without target
ramping.

The resulting performance has changed between the two strategies in favour of the
decentralized control scheme. Formation flying reference is lagging the agent position
for the decentralized controller; the same as with using the reference ramping. This
is expected as the larger error in target reference will be minimized the most. As
the agents approach the target references at t ≈ 6s and t ≈ 13s it is clear that the
formation flying error becomes smaller as the formation flying and target references
become equally small. The distributed control scheme performance is considerably
worse. TOA is faster than the decentralized control strategy, however due to large
error in formation flying, the faster TOA is not considered as an improvement.
The larger formation flying error is suspected to be a result of the prediction states.

81

4. Results and Discussion

When the target tracking error is large, the resulting predicted velocity will be large,
hence the larger error in formation state prediction and tracking. The velocity is
considered to be increasing out from the step change at t ≈ 1.5 − 3s in target
reference and decreasing as the error decreases and the agent approaches the target
reference at t ≈ 3 − 5s. As a result of this, the formation flying error is increasing
and decreasing in a similar fashion.

Altitude control The altitude control during all simulation scenarios are based on
an initial altitude and reference of z = 2m. Figure 4.9 presents the resulting altitude
tracking performance of agent x1 during the main simulation scenario presented in
Figure 4.1. The altitude tracking is stable with a small constant offset of ≈ 0.015m.
Small dips in altitude are visible at the times ≈ 1.5s and ≈ 9s. These are caused by
step changes in target references for position x and y, which forces the quadcopter
in to necessary angles in order to reach the new position references. As a result, the
vertical thrust vector is shifted from pointing directly upwards to having components
in both x and y directions. The altitude performances are more or less similar for all
agents during all simulation scenarios, hence only this particular result is presented.

0 2 4 6 8 10 12 14 16

2

2.005

2.01

Figure 4.9: Performances of altitude control agent x1 during distributed control
scheme with tz = 5.

4.1.3 Stationary Formation Flying
Stationary formation flying in this context is described as when the agents are on
the target references and still actively keeping the formation reference. Since the
formation flying is based on circle intersections which are depending on each of the
agents position, small errors in formation tracking causes a chain reaction between
the agents as they try to compensate their own error, while at the same time move
the formation references of the other agents. Figure 4.10 presents the decentralized
control strategy where the chain reaction causes large oscillating behaviour around
the target reference. The communication delay between the agents is tz = 5. As
soon as one of the three agents compensates for its error, the error of the two other
agents increases or decreases. Notice that the oscillation is not increasing in to
unstable states. As both target and formation states are equally weighted in the

82

4. Results and Discussion

controller, an increase of error in target reference compared to formation reference
would pull the agent back towards the target reference.

0 10 20 30 40 50 60 70 80 90 100

2.5

3

3.5

4

4.5

0 10 20 30 40 50 60 70 80 90 100

2

2.2

2.4

2.6

2.8

0 10 20 30 40 50 60 70 80 90 100

2

2.5

3

3.5

4

Figure 4.10: Performance of decentralized control scheme with tz = 5 for station-
ary formation flying.

The stationary chain reaction can be improved by using the distributed control
strategy, with the predicted state information of p = 5. Figure 4.11 presents the
resulting performance, where the oscillating behaviour is still present, though sig-
nificantly dampened.

83

4. Results and Discussion

0 10 20 30 40 50 60 70 80 90 100

2.5

3

3.5

4

4.5

0 10 20 30 40 50 60 70 80 90 100

2

2.2

2.4

2.6

0 10 20 30 40 50 60 70 80 90 100

2

2.5

3

3.5

4

Figure 4.11: Performance of distributed control scheme with tz = 5 for stationary
formation flying.

Table 4.2 presents the variance of the formation flying positions of each agent and
emphasizes how the predicted state information has contributed by dampening the
variance with a minimum of 8.8 times and up to 31.8 times when using the dis-
tributed control scheme compared to the decentralized.

84

4. Results and Discussion

Table 4.2: Variances of formation flying chain reaction when using the distributed
and decentralized control scheme.

Agent
Decentralized Distributed
σ2
x [m] σ2

y [m] σ2
x [m] σ2

y [m]
x1 0.00142 0.00077 0.00010 0.00004
x2 0.00267 0.00159 0.00010 0.00005
x3 0.00267 0.00088 0.00009 0.00010

4.1.4 Obstacle Collision Avoidance
The OCA algorithm described in 3.3.2 is simulated over two different scenarios.
First, a single agent performs avoidance of a static obstacle. Second, the formation
flying scenario from Section 4.1.2 is introduced to a static obstacle. Figure 4.12
presents the resulting tracking performance of the single agent scenario in XY plane
together with the true distance between the position of agent x̂xy1 and the obstacle
xxyobs over time, given by ‖x̂xy1 − x

xy
obs‖. An animation is presented in Figure A.2 in

Appendix A. As the agent moves within robs,lim, the target reference point switches to
the temporary avoidance reference around robs. As soon as the distance between the
current position of x̂xy1 and the target reference xxy1,tref is shorter than the distance
between xxyobs and x

xy
1,tref , the temporary avoidance reference is completed and the

agent continues towards xxy1,tref . Note that due to the ramp functionality, the agent
distance decreases and increases linearly before and after passing robs,lim at t ≈ 7s
and t ≈ 17s. The figure illustrates how the size of robs,lim can be used to tune the
collision avoidance entrance curve. If x̂xy1 has a high velocity, a small robs,lim would
cause the agent to perform aggressive slow down manoeuvre with a resulting sharp
turn around xxyobs. By increasing robs,lim, x̂xy1 has more room to slow down and start
avoidance in a less aggressive fashion. Note that the collision avoidance algorithm is
based on reference tracking. How well the avoidance performance is depends on the
selected controller weights. For a single agent without any other obligations such as
formation tracking, the weights on target states x and y could be larger in order to
avoid xxy1 violating robs a t ≈ 10 − 15s. However, the weights are kept as given in
Section 4.1.1 for consistency throughout the results chapter.

85

4. Results and Discussion

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

0 5 10 15 20

0

1

2

3

4

5

Figure 4.12: Performances of static collision avoidance with a single agent.

Figure 4.13 presents the obstacle avoidance performance with three agents and for-
mation tracking. An animation is presented in Figure A.3 in Appendix A. Each
agent has now two references to track, target reference xxyi,tref and formation refer-
ence xxyi,fref . Initially from start, it is only agent x3 who has the obstacle xxyobs on
its path to the first target xxy3,tref1 . As x3 performs avoidance within robs,lim, the
formation is kept between the three agents. As a result of this, x2 is forced to
perform avoidance as xxyobs comes in to its path to xxy2,tref1 . As both x2 and x3 per-
form avoidance, x1 is left tracking formation without needing to take the obstacle
in to account. Since the controller weights on target states x and y and forma-
tion states xf and yf are all equal, the position of agent x̂xyi lays in between the
references xxyi,tref and xxyi,fref . For better performance, an alternative is that target

86

4. Results and Discussion

tracking gets substantially higher weights compared to formation tracking as the
obstacle avoidance mode is activated; in case formation tracking would suggest a
point inside the critical region robs. This is also mentioned in the Future Work.

0 1 2 3 4 5 6 7 8

2

3

4

5

6

7

8

Figure 4.13: Performance of static collision avoidance together with formation
flying in XY plane.

Figure 4.14 presents the resulting distance between each agent and the obstacle
given by ‖x̂xyi − x

xy
obs‖, and the formation and target tracking error in the XY plane

given by
ei,f = ‖x̂xyi − xi,fref‖ ei,t = ‖x̂xyi − xi,tref‖ (4.2)

The target reference errors ei,t have the constant offset of 0.2m which is equal to
the step size of the ramp functionality. The formation errors ei,f are all equal to
each other up to t ≈ 3s where the obstacle avoidance for x3 is activated. When all
errors ei,f are equal to each other, the absolute position between each agent will be
equal, hence the true formation will be on track. As soon as collision avoidance is
activated for x3 at t ≈ 3s, the formation tracking suffers. The target error e3,t has
temporarily become the avoidance reference and diverges slightly from the two other
agents. The formation errors are increasing as agent x2 starts performing avoidance
at t ≈ 5s. The target errors e2,t and e3,t increase at t ≈ 8s where the formation errors
are largest. This is a result of the equal weighted position states in the controller.
As the agents pass the obstacle, ei,f and ei,t go back to the initial values prior to
avoidance at t ≈ 2s. The switching point between temporary obstacle avoidance
and target tracking can be seen at t ≈ 14s.

87

4. Results and Discussion

0 5 10 15 20

0

2

4

6

0 5 10 15 20

0

0.1

0.2

0.3

Figure 4.14: Performance of static collision avoidance together with formation
flying in time for agent to obstacle distance and tracking errors.

4.1.5 Inter-Vehicle Collision Avoidance

IVCA is the collision avoidance between two dynamic agents as described in Section
3.3.2. The scenario given to evaluate the algorithm is two agents starting in two
adjacent corners of a square, travelling in diagonal of the square to reach the corners
x1,tref and x2,tref , as presented in the top plot in Figure 4.15. An animation is pre-
sented in Figure A.4 in Appendix A. As agents have the same target reference ramp
functionality that pushes the target reference ahead with the same magnitude, they
would meet each other at the origin. Using the IVCA algorithm, the performance of
decentralized control strategy is evaluated in Figure 4.15, where in the top plot one
can see the performance in XY plane from above and on the bottom one, distance
between them in 2D as time goes. Looking into the top plot, one can see that as
they arrive into each others vicinity, agent x2 is the one which is going to slow down.
Although agents have the same velocity up to some certain precision, the reason for
which x2 is the one that reacts is that it has lower priority given its agent number;
as the algorithm suggests. Should x2 have higher velocity than x1,x1 would be the
one that reacts instead, regardless to their priority suggested by their agent number-
ing. Also looking into the which path x1 has taken, one can see a slight change in
target reference. This is due to that target references are pushed outside the critical
region robs of the obstacle, so even though x2 is the one reacting, x1 target reference

88

4. Results and Discussion

would take a small detour as well to not land in the critical region. Looking into
the bottom plot, one can see that the agents never come closer to each other than
the robs,lim which is the ideal behaviour for the algorithm.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

0 5 10 15 20

0

2

4

6

8

Figure 4.15: Performances of static collision avoidance with a single agent.

The algorithm is also tested for distributed control strategy and it does not show any
better performance than the decentralized control strategy. As the references use
the ramp functionality, the prediction of the agents at each step would suggest that
they would slow down as they are arriving to this references in close future. However
that is not the case as the references are moving further next step continuously
because of the nature of reference ramp. Therefore they are not slowing down in
reality. This phenomenon would make the target states prediction unworthy and

89

4. Results and Discussion

unreliable. This is a drawback with using the reference ramp functionality in that it
would make the communicated predictions unworthy for distributed fashion. As an
extended study, one can investigate having two sets of formation flying agents that
two agent, each from one of these sets, are closing in to a collision. In that case they
have the opportunity to communicate the formation states predictions which do not
suffer from the phenomenon with reference ramping that makes the prediction states
unworthy. This is also mentioned in the Future Work.

90

4. Results and Discussion

4.2 Implementation
This section covers the resulting performance of the real time implementation on a
single quadcopter. The section starts off by introducing and evaluating the indoor
positioning system with respect to absolute and relative accuracy. Further, the
test scenario is given. This includes an overview of the overall system and actual
flight results with evaluation of initial reference and step response tracking. Finally,
suggestions on necessary improvements are given.

4.2.1 Positioning System
The positioning system is based on the Localino v2.0 kit presented in Section 3.7.1,
consisting of four static anchor points and one mobile tag mounted on the quad-
copter. Each anchor measures the distance between itself and the tag. The resulting
four measurements are passed in to a recursive trilateration algorithm which then
returns the coordinates of the tag [17]. The estimated position is further filtered
using the KF from Section 2.2.1. Two different motion models are used for pre-
diction; the Constant Velocity (CV) and Constant Acceleration (CA) models. To
verify the absolute and relative accuracy of the positioning system, the quadcopter
is manually moved on a straight line in the XY plane between the starting point
(3, 3) and the two end points (2, 3) and (3, 2). The resulting measurements in both
the XY plane and in time are presented in Figure 4.16. From the XY plane, results
shows that the absolute accuracy with respect to the measured reference points have
an error of ≈ (±0.2,±0.2). During translation, similar variations of ≈ (±0.2,±0.2)
are visible. The absolute accuracy is related to overall the accuracy of anchor posi-
tions in the global frame. Any slightest offset from true position can result in errors
in the estimated absolute position. The relative accuracy is good, where the total
translations of ≈ ±1m in both X and Y directions are achieved. From the time plot,
the differences between just using the raw position estimation and the KF becomes
visible. Table 4.3 presents the variances during static position measurements at time
90-120s. The filtered variance is considerably more dampened compared to the raw
positions. In particularly the x position. The differences between the two motion
models CV and CA are not visible in the plots. However, during actual flight, the
CV introduces a slight time delay in filtered positions compared to actual true posi-
tion. This gives the quadcopter lagging information which accumulates in to larger
error in position reference tracking. Hence, the CA motion model is preferred for
the KF.

Table 4.3: Raw and filtered position measurement variances at time 90-120s.

Measurement Type σ2
x [m] σ2

y [m]
Raw 0.0105 0.0066

KF CV 0.0071 0.0062
KF CA 0.0073 0.0063

91

4. Results and Discussion

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

0 20 40 60 80 100 120

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

Figure 4.16: Performance of positioning system in both XY plane and time.

92

4. Results and Discussion

From [17] the trilateration algorithm also provides a altitude estimation for the Z
position. However, the estimation turned out to be highly non reliable and not
suitable for reference tracking. For the coming section on flight results, the altitude
is manually controlled via the total thrust produced by all four motors.

4.2.2 Real Time Stationary Flying and Step Response
The real system implementation presented in Section 3.7 is tested on a single quad-
copter. The goal of the test is to evaluate the performance of the MPC based
scheme on initial reference point and step response tracking. A standalone com-
puter handles the trilateration algorithm for position estimations, which are then
wirelessly passed to the quadcopter. For the flight test, the quadcopter is initialized
at position (3, 2) in the XY plane. As a results of not having appropriate altitude
measurement, manual thrust is given to the quadcopter in order to lift of. At time
≈ 2.6s, the reference is stepped to position (3, 3). At time ≈ 6.1s the reference is
stepped back to the position (3, 2). The controller weights are set according to Table
4.4. As the altitude controller is not used, associated parameters are not relevant.
In order to keep real time system performance of the overall implemented solution,
the prediction horizon is T = 20 for position controller and T = 10 for attitude
controller.

Table 4.4: Controller setup throughout real time flight.

Position controller Attitude controller Altitude controller

Q



750
500
750
500
1
1


I6



1500
100
1500
100
100
300


I6 -

R

[
2000
2000

]
I2

 1
1

100

 I3 -

T 20 10 -
κ 0.001 0.001 -

Kmax 5 5 -

Figure 4.17 presents the resulting position tracking performance in time. Both x
and y position tracking have fluctuating errors of ±0.4m. The position response to
the step change in reference is sharp. The quadcopter travels ±1m in y position in
≈ 0.3s.

93

4. Results and Discussion

0 1 2 3 4 5 6 7 8 9 10

1

1.5

2

2.5

3

3.5

Figure 4.17: Performance of position reference tracking on step response.

The accuracy of the positioning system has a major impact on the overall tracking
performance and needs to be taken in to account when evaluating the performance.
The underlying position estimation error of ±0.2m in XY plane will create fluctua-
tion in reference tracking. Another important factor is the manual thrust given to
the system in order to keep altitude. The MPC position model from (3.45) is based
on a hovering quadcopter where thrust is equal to the gravitational force. In reality,
the manual thrust creates variance in altitude, hence the position predictions within
the MPC algorithm can be misleading. The last factor to consider is accuracy of
the motor constant cm. The parameter estimation in Section 3.6.2 is highly related
to the battery voltage level. As the voltage drops over time during flight, the quad-
copter response to actuator changes is weakened. Figure 4.18 shows how the manual
thrust is increasing during flight time when in reality, the altitude is not increasing.
The increase in position error over time can therefor be connected to the dropping
battery voltage.

94

4. Results and Discussion

0 1 2 3 4 5 6 7 8 9 10

5.2

5.4

5.6

Figure 4.18: Manual thrust T for altitude control.

Further, the accuracy of attitude tracking is directly related to position tracking
performance since the position controller passes the necessary angles to the attitude
controller in order to reach any given position reference. Figure 4.19 presents re-
sulting attitude control performance with associated torques. Both roll and pitch
references φ̄ref and θ̄ref are heading compensated according to (3.49). The overall
attitude tracking is considered good. A slight time delay between reference and state
is present for both φ and θ. Notice how the reference step change in position y is
visible at time ≈ 2.6s. φ̄ref is mainly affected as it is the driving angle in achieving
change is position y. Also θ̄ref has an increase in activity with respect to reference
tracking. This is suspected to be due to nonlinearities in the quadcopter such as
unevenly distributed mass, combined with decreasing battery effect and resulting
mismatching position model parameters. Figure 4.20 presents these nonlinearities
in terms of small heading offsets. As a result, the heading compensation forces both
attitude angles φ and θ to actively work. To each attitude angle plot, the associ-
ated torques are also presented. For heading control, the torque τψ comes directly
from the attitude MPC. For yaw and pitch control, both the torques τ̃φ and τ̃θ are
feed forward disturbance compensated with integration action according to (3.55).
The disturbance compensation is clearly active compared to the non compensated
torques τφ and τθ. The nonlinearities of mass and mismatching motor constant are
compensated for.

95

4. Results and Discussion

0 1 2 3 4 5 6 7 8 9 10

-0.2

0

0.2

0.4

0 1 2 3 4 5 6 7 8 9 10

-0.05

0

0.05

0 1 2 3 4 5 6 7 8 9 10

-0.2

0

0.2

0 1 2 3 4 5 6 7 8 9 10

-0.05

0

0.05

Figure 4.19: Performance of attitude φ and θ reference tracking on step response.

96

4. Results and Discussion

0 1 2 3 4 5 6 7 8 9 10

-0.2

-0.1

0

0.1

0.2

0 1 2 3 4 5 6 7 8 9 10

-0.02

-0.01

0

0.01

0.02

Figure 4.20: Performance of attitude ψ reference tracking on step response.

To summarize the results; regardless of the fluctuating position tracking, the overall
performance is considered to be acceptable with respect to the low cost hardware
used. The position controller is strongly affected by the inaccuracy of the indoor
positioning system. The position controller does its best in order to keep the de-
sired references by passing the necessary angle references to the attitude controller.
The attitude tracking is considered to be sufficiently good, hence the resulting po-
sition tracking would be less fluctuating if the position measurements were better.
Disturbance compensation using integral action is effective.

4.2.3 Suggestions on Improvement
The major bottleneck on better position tracking is the indoor positioning sys-
tem, hence an upgrade here would benefit the overall system. Further, introducing
stronger batteries in order to remove the rapidly decreasing voltage level would
improve actuator performance and stabilize model parameters and overall nonlin-
earities. Lastly, closed loop altitude control would increase reliability of position
MPC prediction model.

97

4. Results and Discussion

98

5
Conclusion

This thesis investigates using MPC in a distributed fashion in order to achieve co-
ordinated behaviour in a multi-agent system, where the proposed application is a
system of multiple quadcopters which would together lift a hanging payload from one
point to another. The coordinated task would translate to formation flying between
the agents with the purpose of keeping a desired payload orientation. Coordinated
tasks performed by multiple agents would improve the performance when their deci-
sions are in harmony. The coordinated task can in a systematic way be be included
by means of modelling and decision making. The MPC approach, does not only
benefit from being a model-based optimization controller in delivering an optimum
solution, but also gains from the fact that it delivers a candidate optimum path into
the future given the model. In context of multi-agent systems, algorithms and in-
telligence are to maintain coordination and harmony between the agents. They rely
on sharing their states and given the benefit of the MPC optimum candidate path,
they can be informed about each others future potential states. However validity
of the future states rely on accuracy of the model, consequently these approaches
would not be as beneficial unless the model is representing the real system to a
decent degree of accuracy.
A nonlinear model is exploited representing the quadcopter, together a model of the
payload dynamics. Model parameters were initially identified based on offline exper-
imental data. However, these estimations proved to be not accurate enough for the
purpose of the model-based controller. Consequently, new parameters were identi-
fied online resulting in improvement of the control performance. This emphasises
the fact that initial rough estimations do not necessarily hold in reality.
The control scheme is based on three decoupled MPCs; altitude, position and atti-
tude control. There are several benefits of decoupling the controllers over using a
single, full state control scheme. Firstly, tuning a coupled controller is of big chal-
lenge in that e.g. holding zero attitude is in a way contradictory to manoeuvring in
the XY plane. Secondly, the computational demand can be improved by using mul-
tiple, decoupled controller with smaller dimensions compared to running a coupled
controller with large dimensions. This further benefits that each decoupled system
can be sampled at different frequencies.
An EKF based observer using the nonlinear motion model is used for state and
disturbance, motivated by the fact that a nonlinear model has more information
regarding the system than a linearized model. Two different approaches to the ob-
server design is proposed; one with the full state and disturbance estimation using
the complete nonlinear quadcopter model and another decoupled version in order to
improve real time computational demand. Observers are necessary in that they in-

99

5. Conclusion

form about non-measured states and disturbances. Initially, disturbance estimation
was based on an approach with augmenting the model with a disturbance term and
attempt to estimate such disturbances. While the approaches did work flawlessly in
simulation, their credibility were more questioned when implemented in reality due
to model inaccuracy and instability in estimations. This rises the question that if
model-based disturbance compensation really worth the effort. As a result, a more
conventional approach using feed-forward disturbance compensation is proposed.
Using feed-forward in parallel to the decoupled MPC arises another question. Since
the feed-forward term is added in parallel to the MPC, actuator constraints would
be blind to such terms and would no hold. It is proposed to correlate the decoupled
controllers with the feed-forward terms by actively changing the MPC input con-
straints of each controller, in order to adapt the actuator constraints. In this way
each MPC would deliver the optimal control actions based on the available input
range if the range is modified by the feed forward term.
Path-planning and in particular formation flying, requires the agents to dynami-
cally set new references. A solution based on augmenting the position controller
with copies of the position states is proposed. This allows a set of multiple refer-
ences for the same physical state to be followed, in particular target and formation
tracking. The disadvantage of this approach is that the velocity states are still cou-
pled to both position states. As a result, the MPC position predictions are not
solely mapped back to each position states individually. Collision avoidance is also
proposed in order to improve reliability of the autonomous system. Algorithms for
both static and inter-vehicle collision avoidance are based on temporary changing
target references to go around an obstacle. There are a couple of disadvantages with
this approach. The performance of collision avoidance would suffer; firstly if target
references are not being tracked adequately and secondly, if the formation and target
tracking are given equal weights and where using only formation references would
result in a collision.
The MPC has a computation burden in being realized for today’s embedded com-
puters, but as the computers get stronger and cheaper, MPC approaches get more
realizable. However, there exists methods on approximating the MPC solver in order
to make it less demanding and still deliver a sufficient performance. In this work, a
less demanding FMPC solver is used to verify the proposed methods in simulation
and more importantly, implementation on real hardware. This work takes proud in
implementing the MPC architecture on a cheap computer like RPi, exploiting the
approximations of the FMPC. A further study can investigate if the sampling fre-
quency requirements of a model-based approach is as frequent as more conventional
approaches like PID.
A benchmark between the distributed and decentralized control strategies shows
advantages of sharing predictive state information between the agents, in particular
where there is communication delay. In a scenario including both target and for-
mation tracking, the distributed control strategy shows an improvement of 50-690%
for formation tracking error when the communication delay varies from 2-15 time
steps, and improvement of 10-40% for target tracking time of arrival, when the com-
munication delay varies from 1-15 time steps. In another scenario where the agents
are on target but still actively keeping formation reference, the distributed control

100

5. Conclusion

strategy has 8.8-31.8 times more dampening effect on oscillating behaviour. This
highlights the strength of the predictive control where it compensates for increasing
communication delays and minimizes formation error over time.
Many approaches to control problems, including this work, are based on linearizing
the process model in designing the control algorithm. As a result, the prediction
information from the MPC is subject to approximations and do not match the reality.
This is beside the fact nonlinear models are another approximation of the reality
in themselves before linearization. This emphasizes the limitation on prediction
accuracy after some certain horizon. Should it make the solution to formation
flying better using more precise models in MPC, higher order linearization of the
model, or even better, nonlinear MPC can be used. The credibility of the claim that
it would make coordinated multi-agent algorithms better, and if it is really worth
it to make the effort in using higher order approximations or designing much more
complex controllers such as nonlinear MPC, is still a question.

101

5. Conclusion

102

6
Future Work

This chapter gives an overview of potential future work proposed in order to improve
and continue on the work presented in this thesis.

• Compare the results from the decentralized and distributed control strategies
with a centralized control strategy.

• Use the payload model and evaluate the resulting connector tension as it
changes along with the varying formation error. Include this tension in to
the simulation and evaluate the performance given this varying disturbance.

• Improve the orientation estimation with respect to the present heading drift.
Evaluate the need of upgrading the magnetometer or the use of an appropriate
filter to cut the surrounding indoor magnetic noise.

• Study effect of time-varying weights for formation flying without a reference
ramp. The weights can be proportional to the errors of target and formation
perhaps with more strength on weighing formation states.

• Another feature to test with time-varying weights is in terms of different con-
troller’s behavioural or mode. For an instance, target tracking gets substan-
tially higher weights compared to formation tracking as the obstacle avoidance
mode is activated; in case formation tracking would suggest a point inside the
critical region of an obstacle.

• Investigate inter-vehicle collision between two sets of formation flying agents
where the formation states are shared between the agents.

• Increase indoor position system quality and evaluate the complete multi-agent
scenario in real time, using three quadcopters.

103

6. Future Work

104

7
Sustainability and Ethics

Model and optimization based solutions are beneficial in terms of being optimum
solution. MPC design is based on optimization problems and this has the advantage
of being optimized to a number of objectives. Among such objectives, it is typical
to take into account the energy consumed by the system. This results in minimizing
the energy consumed by the actuators, while the controller delivers the task. MPC
and model based approaches in general, are serving as a solution to technical prob-
lems nowadays, more than ever before. Research on the topic, such as this work that
takes into account the implementation, will pave the way for further development
and make the theory realizeable in industry far more than already today.

The application of this work, quadcopters or more publicly known as UAVs, are
already serving as sustainable solutions automating tasks with minimum effort. The
potentials of using UAVs in everyday life are vast. They range from delivery of dif-
ferent kinds of products, where the UAVs are carrying products as an autonomous
system. Autonomous systems are immune to the factor of human faults as a driver.
UAVs can be used in agriculture and with the increase of world population, the
industry always foster for more innovative and sustainable ideas which help make
plantation for such population feasible. They can be used in search and rescue mis-
sions, where they can locate people in danger, e.g. a drowning person or stuck in
fire, without putting at risk the lives of rescue teams. UAVs have been tested as a
construction aid for building bridges and houses. All these are just a few examples
of how they can serve the society with minimum risk and energy.

105

7. Sustainability and Ethics

106

Bibliography

[1] S. S. Mansouri, G. Nikolakopoulos, and T. Gustafsson, “Distributed model
predictive control for unmanned aerial vehicles,” in 2015 Workshop on Research,
Education and Development of Unmanned Aerial Systems (RED-UAS), Nov
2015, pp. 152–161.

[2] Q. Ali and S. Montenegro, “Explicit model following distributed control scheme
for formation flying of mini uavs,” IEEE Access, vol. 4, pp. 397–406, 2016.

[3] S. M. Huck, M. Rueppel, T. H. Summers, and J. Lygeros, “Rcopterx - experi-
mental validation of a distributed leader-follower mpc approach on a miniature
helicopter test bed,” in 2014 European Control Conference (ECC), June 2014,
pp. 802–807.

[4] E. Semsar and K. Khorasani, “Adaptive formation control of uavs in the pres-
ence of unknown vortex forces and leader commands,” in 2006 American Con-
trol Conference, June 1992, p. pp. 373–385.

[5] Z. Chao, L. Ming, Z. Shaolei, and Z. Wenguang, “Collision-free uav formation
flight control based on nonlinear mpc,” in 2011 International Conference on
Electronics, Communications and Control (ICECC), Sept 2011, pp. 1951–1956.

[6] O. M. Agudelo and B. D. Moor., “Computergestuurde regeltechniek
exercise session case study : Quadcopter,” 2016. [Online]. Avail-
able: http://homes.esat.kuleuven.be/~maapc/static/files/CACSD/exercises/
Session%203/quadcopter_exercise.pdf

[7] D. J. L. Mapopa Chipofya and K. T. Chong, “Trajectory tracking and stabi-
lization of a quadrotor using model predictive control of laguerre functions„”
in Abstract and Applied Analysis, vol. 2015, 2015.

[8] W. U. M. Group, “The mathematics of the stewart platform.” [On-
line]. Available: https://web.archive.org/web/20130506134518/http://www.
wokinghamu3a.org.uk/Maths%20of%20the%20Stewart%20Platform%20v5.pdf

[9] N. Michael, J. Fink, and V. Kumar, “Cooperative manipulation and
transportation with aerial robots,” Autonomous Robots, vol. 30, no. 1, pp.
73–86, 2011. [Online]. Available: http://dx.doi.org/10.1007/s10514-010-9205-0

[10] B. R. Albus, J. and N. Dagalakis, “The nist spider, a robot crane,” vol. 97(3),
p. pp. 373–385, 1992.

[11] S. R. Oh and S. K. Agrawal, “A control lyapunov approach for feedback control
of cable-suspended robots,” in Proceedings 2007 IEEE International Conference
on Robotics and Automation, April 2007, pp. 4544–4549.

[12] C. LLC, “Using accelerometers to estimate position and velocity.” [Online].
Available: http://www.chrobotics.com/library/accel-position-velocity

107

http://homes.esat.kuleuven.be/~maapc/static/files/CACSD/exercises/Session%203/quadcopter_exercise.pdf
http://homes.esat.kuleuven.be/~maapc/static/files/CACSD/exercises/Session%203/quadcopter_exercise.pdf
https://web.archive.org/web/20130506134518/http://www.wokinghamu3a.org.uk/Maths%20of%20the%20Stewart%20Platform%20v5.pdf
https://web.archive.org/web/20130506134518/http://www.wokinghamu3a.org.uk/Maths%20of%20the%20Stewart%20Platform%20v5.pdf
http://dx.doi.org/10.1007/s10514-010-9205-0
http://www.chrobotics.com/library/accel-position-velocity

Bibliography

[13] A. H. Toshak Singhal and D. N. Vishwakarma, “Kalman filter implementation
on an accelerometer sensor data for three state estimation of a dynamic system,”
International Journal of Research in Engineering and Technology (IJRET),
vol. 1, pp. 330–334, 2012.

[14] Z. G. Sławomir Romaniuk, “Kalman filter realization for orientation and posi-
tion estimation on dedicated processor,” acta mechanica et automatica, vol. 8,
pp. 330–334, 2014.

[15] S. O. H. Madgwick, A. J. L. Harrison, and R. Vaidyanathan, “Estimation of
imu and marg orientation using a gradient descent algorithm,” in 2011 IEEE
International Conference on Rehabilitation Robotics, June 2011, pp. 1–7.

[16] S. O. Madgwick, “An efficient orientation filter for inertial and inertial/magnetic
sensor arrays.” [Online]. Available: http://www.x-io.co.uk/res/doc/madgwick_
internal_report.pdf

[17] A. Norrdine, “An algebraic solution to the multilateration problem,” in 2012
International Conference on Indoor Positioning and Indoor Navigation, nov
2012.

[18] J. Rawlings and D. Mayne, Model Predictive Control: Theory and Design.
Nob Hill Pub., 2009. [Online]. Available: https://books.google.se/books?id=
3_rfQQAACAAJ

[19] Y. Wang and S. Boyd, “Fast model predictive control using online optimiza-
tion,” IEEE Transactions on Control Systems Technology, vol. 18, no. 2, pp.
267–278, March 2010.

[20] S. Särkkä, Bayesian Filtering and Smoothing, 2013.
[21] P. O. M. Scokaert and J. B. Rawlings, “Constrained linear quadratic regula-

tion,” IEEE Transactions on Automatic Control, vol. 43, no. 8, pp. 1163–1169,
Aug 1998.

[22] R. Nave, “Common moments of inertia.” [Online]. Available: http:
//hyperphysics.phy-astr.gsu.edu/hbase/mi.html#mi

[23] T. L. Foundation, “Howto setup linux with preempt_rt properly,” Oct 2017.
[Online]. Available: https://wiki.linuxfoundation.org/realtime/documentation/
howto/applications/preemptrt_setup

108

http://www.x-io.co.uk/res/doc/madgwick_internal_report.pdf
http://www.x-io.co.uk/res/doc/madgwick_internal_report.pdf
https://books.google.se/books?id=3_rfQQAACAAJ
https://books.google.se/books?id=3_rfQQAACAAJ
http://hyperphysics.phy-astr.gsu.edu/hbase/mi.html#mi
http://hyperphysics.phy-astr.gsu.edu/hbase/mi.html#mi
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup

A
Appendix

Figure A.1: Benchmark scenario of formation flying.

I

A. Appendix

Figure A.2: OCA of static obstacle.

II

A. Appendix

Figure A.3: OCA of static obstacle during formation flying.

III

A. Appendix

Figure A.4: IVCA during formation flying.

IV

	List of Figures
	List of Tables
	Nomenclature
	Abbreviations
	Introduction
	Aims and Purpose
	Present Research
	Scope of Work
	Limitations
	Report Overview

	Theory
	Model Predictive Control
	General Formulation
	Fast Model Predictive Control

	Observers
	Kalman Filter
	Extended Kalman Filter

	Control Strategies
	Centralized Control
	Decentralized Control
	Distributed Control

	Methods
	Model
	Quadcopter
	Payload

	Control Design
	General Overview
	Model Simplification and Linearization
	Discretization
	Disturbance Compensation
	Time-Variant Input Constraints
	Distributed and Decentralized Control Strategy in Coordinating Tasks
	Controller Sampling Time
	MPC Terminal Cost for Stability

	Path-Planning
	Formation Flying
	Collision Avoidance
	Reference Ramp

	Observer
	State and Disturbance Estimation
	Decoupled Observer
	Alternative Disturbance Estimation
	Observer Sampling Time

	Sensor Fusion, Filtering and Orientation Estimation
	IMU Sensor
	Sensor fusion and Orientation Estimation
	Orientation Estimation Verification
	Mechanical Damping

	Parameter Identification
	Mass
	Motor and Lift Constant
	Drag Constant
	Inertia

	Implementation
	Hardware
	Software

	Results and Discussion
	Simulation
	Simulation Setup
	Distributed Control against Decentralized Control on Formation Flying and Target Tracking
	Stationary Formation Flying
	Obstacle Collision Avoidance
	Inter-Vehicle Collision Avoidance

	Implementation
	Positioning System
	Real Time Stationary Flying and Step Response
	Suggestions on Improvement

	Conclusion
	Future Work
	Sustainability and Ethics
	Bibliography
	Appendix

	anm0:
	0.EndLeft:
	0.StepLeft:
	0.PauseLeft:
	0.PlayLeft:
	0.PlayPauseLeft:
	0.PauseRight:
	0.PlayRight:
	0.PlayPauseRight:
	0.StepRight:
	0.EndRight:
	0.Minus:
	0.Reset:
	0.Plus:
	anm1:
	1.EndLeft:
	1.StepLeft:
	1.PauseLeft:
	1.PlayLeft:
	1.PlayPauseLeft:
	1.PauseRight:
	1.PlayRight:
	1.PlayPauseRight:
	1.StepRight:
	1.EndRight:
	1.Minus:
	1.Reset:
	1.Plus:
	anm2:
	2.EndLeft:
	2.StepLeft:
	2.PauseLeft:
	2.PlayLeft:
	2.PlayPauseLeft:
	2.PauseRight:
	2.PlayRight:
	2.PlayPauseRight:
	2.StepRight:
	2.EndRight:
	2.Minus:
	2.Reset:
	2.Plus:
	anm3:
	3.EndLeft:
	3.StepLeft:
	3.PauseLeft:
	3.PlayLeft:
	3.PlayPauseLeft:
	3.PauseRight:
	3.PlayRight:
	3.PlayPauseRight:
	3.StepRight:
	3.EndRight:
	3.Minus:
	3.Reset:
	3.Plus:

