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Estimating Travel Demand from Twitter
using an Individual Mobility Model

KRISTOFFER EK
ERIC WENNERBERG
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
The cost of conducting household travel surveys is increasing, while the response
rate is decreasing, pushing researchers to explore new sources of data that can be
used to estimate travel demand. Among these new data sources is geotagged tweets
from Twitter due to its large quantity of available data and low cost of access. At
the same time, using Twitter for travel demand estimation has garnered criticism
regarding the biases inherent in Twitter data. This thesis uses geotagged tweets
from three regions: Sweden, the Netherlands and São Paulo, to quantify the bias in
Twitter data and develop a novel model that estimates travel demand by de-biasing
the raw Twitter data. The model integrates two natural dimensions of individ-
ual mobility: regularly returning to habitual locations and occasionally exploring
new locations. The proposed model addresses the under-representation of habitual
places such as home and workplace and corrects the geotagging behavioural bias
of overly representing long-distance travel. The model is validated against external
data sources in each of the three regions and it is found to result in significant im-
provements over contemporary methods for using Twitter data for travel demand
estimation. The model’s parameters are robust across regions studied, and by using
the parameters found in this thesis one can expect the same improvements compared
to contemporary approaches when applied to other regions.

Keywords: human mobility, travel demand estimation, Twitter, individual mobility
model.
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1
Introduction

People visit different places to participate in a variety of activities every day, and
the series of these places form a trajectory. Aggregating the whole population’ tra-
jectories reveals the flows of the population between places. Travel demand, as
quantified by such flows, is vital for making informed policies in transport and other
areas such as urban planning, public health, and greenhouse gas (GHG) mitigation.
In understanding how people move, empirical data with good quality plays an im-
portant role. To date, daily and short-distance travel have been extensively studied
by transportation and geographic researchers using traditional household travel sur-
veys. However, the costs of conducting these surveys are increasing, response rate
decreasing to an alarmingly low rate, and are typically conducted every 5-10 years,
if at all, meaning that it is hard to keep up-to-date [1].

The increased availability of humans’ spatiotemporal records via various social media
platforms have provided researchers with new data sources for estimating travel
demand. Among these sources, Twitter is especially appealing due to its low cost
and easy access to a significant volume of mobility traces. Previous studies have
used data from Twitter to answer important mobility questions, for example how
geographical features and cultural norms affect long-distance travel, how people
move within cities, and how people can be clustered based on their mobility patterns.

The main criticism, however, of using Twitter to measure the mobility pattern of the
general population pertains to three aspects: (1) Twitter users do not necessarily
represent the whole population, (2) The users’ incentives for using Twitter, such as
showing off being at unusual places, might skew the observed mobility, (3) Twitter
data lack of regular, and often sparse, sampling.

So far, there is not a good way to address these criticisms other than to acknowledge
that the issues exist, but being able to address them is essential to bringing Twitter
into play for travel demand estimation in a more rigorous manner. This thesis
examines Criticism (1) and creates individual mobility model to address Criticism
(2)-(3), and by doing so, advance the case of using Twitter for mobility studies.

The rest of this chapter reviews the related work on common data sources and models
to represent mobility and how the above criticisms are considered in the modelling.
Finally, the thesis objectives and ethical considerations conclude the chapter.
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1. Introduction

1.1 Related work
There are a few data sources that have been used for travel demand estimation, such
as household travel surveys, GPS log, Call Detailed Record (CDR), and Twitter as
an example of social media. This section reviews the strengths and limitations
of Twitter data as compared with the other sources (Section 1.1.1). In Section
1.1.2, we show how mobility is measured by geotagged tweets in the literature and
the corresponding problems. Section 1.1.2 reviews a range of mobility models for
characterising human mobility at both individual and population level, where we
justify the selection of an individual mobility model to build upon in this thesis to
model mobility trajectories for travel demand estimation.

1.1.1 Data sources
In the last decade, new technologies and services have offered an alternative source
of human mobility data in addition to the traditional household travel survey. Three
categories of unconventional data sources have been widely used: GPS-enabled
tracking devices (GPS logs), Call Detail Records (CDR), and geotagged social me-
dia. These new data sources have different characteristics that impact the type of
research questions suitable to explore.

GPS log data contain time-series data of GPS coordinates indicating individuals’
whereabouts. They are commonly collected from a limited number of subjects who
willingly carry a GPS tracker. Most studies applying GPS log data collect data from
a small group of individuals, typically in a range of 20-500 [2]. GPS devices produce
positions that have an accuracy of 10 meters [3]. The major advantage of GPS logs
is their high temporal resolution (e.g., every 10 seconds [4]). Therefore, they provide
a relatively complete and accurate picture of an individual’s movements during the
observation period, which usually lasts several days to a few months. However,
in comparison to other sources, GPS log data is used infrequently by the broader
research community due to small sample size, high cost, and privacy concerns.

Mobile phone CDR is collected by cell towers in a specific area and contain informa-
tion, timestamps and position, about calls and text messages sent in the vicinity of
each tower. While more data is collected by cell-providers, researchers typically only
have access to records on calls and texts. CDR is collected long-term with a large
number of individuals due to the high penetration rate of cell phone users. CDR
is the most frequently used data source today to estimate the mobility patterns of
the general population. For example, one study used a one-year-long CDR data set
with 3 million individuals tracked to model the fundamental patterns of individual
mobility, e.g., the long-tailed distribution of trip distance [5]. Because the position
attributed to each record is the position of the closest cell tower, the spatial reso-
lution is directly correlated to the density of the cell tower network, where towers
are typically spaced 200-300 meters apart in urban areas and up to 30 km in rural
areas. The spatial sparsity in rural areas, and the limitation to a single cell phone
provider, restrict the usage of CDR to urban cities, and consequently, short distance
travel. Furthermore, locations are only recorded when an individual makes a phone
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1. Introduction

call or sends a text message, leading to sparse and irregular samples. Lastly, while
CDR is often used, it is difficult to access, and the data are anonymised for pri-
vacy consideration, resulting in various drawbacks depending on the anonymisation
techniques.

Despite some drawbacks, in contrast to both CDR and GPS logs, data from Twitter
is easy, cheap to access, and scale-free, e.g., adaptive to both regional and global
scales [2]. A tweet in which the user has selected to attach its position is called
a geotagged tweet. Geotagged tweets contain information useful for transportation
research: timestamp, position, and text. In general, only a small number of tweets
have position attached, varying between different regions of the world, typically 1-3%
[6]. The relatively low number of geotagged tweets could be improved by inferring
position from the text content, but the accuracy is low [7]. Because the position of
geotagged tweets is based on the GPS-enabled device the user sent the tweet from, it
shares the same spatial resolution of GPS-log data, typically 10m. Geotagged tweets
are collected when an individual sends a tweet, which leads to the same issues, such
as sparsity and irregularity, as CDR. Geotagged tweets enabled observation of a
large number of individuals’ movement over long periods, while not restricted by
geographical and administrative boundaries such as cities and countries.

Previous studies have used geotagged tweets to derive summarised mobility pat-
terns around the world. Hawelka et al. (2014) [8] analysed global mobility patterns
observed from one billion tweets and found that geographical features and cultural
norms influenced the mobility patterns. For example, individuals in isolated coun-
tries, such as Australia and New Zealand, exhibited a relatively larger radius of gy-
ration and individuals from Arabic countries travelled significantly less during the
period of Ramadan. Lenormand et al. (2014) [9] compared the commuting-mobility,
travel between home and work, during weekdays derived from Twitter data and CDR
in Barcelona and Madrid to travel surveys and found a high correlation between the
three data sources.

To summarise, though geotagged social media as an emerging data source has been
used widely to quantify mobility in the last ten years, careful investigations and
validation are still needed to further extend its application in estimating travel
demand more robustly for the entire population and across different regions. This
thesis aims to address these challenges as we describe in the following sections.

1.1.2 Measuring human mobility with geotagged tweets
Challenges with using Twitter data for travel demand estimation pertains to two
aspects: user behaviour and temporal sparsity. User behaviour manifests itself in
how Twitter users interact with the platform. Tasse et al. (2017) [10] found that
users geotag their tweets in order to show off being at cool places and to keep their
friends and family updated. This consequently leads to users geotagging tweets
at places they rarely visit, and even being reluctant to geotag at routine places.
Further, they find that users generally geotag their tweets at places far from home,
with only 46.7% of geotagged tweets originating from the user’s home city. Due to
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1. Introduction

geotagged tweets being the result of a conscious decision [10], they are naturally
sparse and irregular in time. The issue with temporal sparsity lies in the observed
movement from Twitter data. Travel demand is an aggregation of individuals’ trips,
the connection between two consecutive stays. Due to the temporal sparsity of
geotagged tweets, trips are not directly observed in Twitter data [11], but rather
what is observed is more precisely named ’displacements’, the connection between
two, possibly but not necessarily, consecutive stays.

Most previous studies use geotagged tweets without considering, or over-simplifying
these challenges. One approach used in literature to translate displacements to trips
is to apply a time threshold between 4 and 24 hours [12, 13]. Displacements with
a time interval shorter than the threshold are considered trips, and all other dis-
placements are discarded. Regardless of the exact time threshold used, the amount
of available data is massively reduced. Lenormand et al. (2014) [9] bypassed the
issue of temporal sparsity by estimating the home and workplace of individuals, and
derived commuting-mobility, travel between home and work. While this in some
sense solves the temporal sparsity, it does so by falsely relying on the second prob-
lem that Twitter users are reluctant to post on habitual places. Therefore, careful
modelling of the individual mobility trajectories using Twitter data is essential to
use geotagged tweets for travel demand estimation.

1.1.3 Modelling travel demand: from individuals to popu-
lation

Travel demand estimation manifests at the population level, reflecting the flows
between regions. There are two types of models, population-based and individual-
based. Population-based models, as the name implies, operate on the entire popu-
lation at once. In contrast, the individual-based models operate on individuals, and
its output can be aggregated to the population level.

One of the most applied population-level models in travel demand estimation is the
gravity model [14], which states that the trip number between two places can be
determined by the production (e.g., population) and attraction (e.g., workplaces) of
both places, and their distance from one another. Despite the widespread use of the
gravity model, it has notable limitations such as over-simplification and being data-
demanding. Another model that recently has gained attention is called Radiation
model, which improves the traditional gravity model [15]. The estimated travel de-
mand has fixed zoning once the model is constructed. Its further application is more
constrained than the combination of individual-based modelling and aggregation.

Population-based models often require good-quality data at the individual level.
Liao et al. (2020) [11] explore the feasibility of using geotagged displacements from
Twitter with the gravity model to estimate travel demand where, however, the
individual trajectories are not modelled sufficiently to consider behavioural biases.
When using Twitter data for travel demand estimation, the individual trajectories
require reasonable de-biasing to be better used to estimate the population flows
between regions.

4



1. Introduction

Of the individual-based models, Markovian models are among the typical ones that
have been used widely. Cárcamo et al. (2017) [16] used CDR and constructed a
Markov model capturing the transitions between antennas based on the entire pop-
ulation. Gambs et al. (2012) [17] described an algorithm for next place prediction
based on a Markov mobility model of an individual, called n-MMC, which achieved
up to 95% accuracy. Approaches similar to Markovian models require observed
transitions between locations which, however, are not observable in Twitter data
due to the sparsity issue. Therefore, these types of models are not suitable for travel
demand estimation based on Twitter data.

Lévy-flight and random walk models have been successfully used to model the mobil-
ity of animals, and have also been used to model the individual mobility of humans
[18]. Although these models exhibit a striking statistical resemblance to human
mobility[19], they are based on the assumption that human movement is random.
Song et al. (2010), proposes that human mobility is barely random, but follows re-
producible scaling laws [5]. In their Individual Mobility Model, they focus primarily
on two generic mechanisms, exploration and preferential return, both unique to hu-
man mobility. According to the model, an individual’s next displacement can either
be exploring a new location or returning to a previously visited location.

The Individual Mobility Model captures the asymptotic/general mobility of individu-
als, meaning it is a good fit for estimating travel demand after a proper aggregation.
Furthermore, the model does not rely on observed trips between places but instead
uses the visitation frequency of places to determine the next displacement. The
model reflects the input data, and without modification, it would output the be-
haviour bias observed in Twitter data. However, given the generality of the model,
it holds the potential to be adapted to Twitter data, and allow travel demand esti-
mation to be recovered.

1.2 Thesis objectives
To address the limitations of traditional travel surveys, Twitter data has gained
increased interests among emerging data sources in estimating mobility. However,
some of the well-known criticisms have continued to be ignored in practice. This
thesis examines the biases of geotagged tweets and proposes an individual mobility
model for travel demand estimation with the attempt to address some of the biases.
The model is applied to several regions globally and validated against other "official"
data sources in the field of transport. Specifically, this thesis has four objectives:

• Examine the representativeness of geotagged Twitter users and potential bi-
ases.

• Propose an individual mobility model to address the sparsity issue and be-
havioural biases of using geotagged tweets.

• Calibrate and validate the proposed model against travel surveys and the
traffic model output to obtain optimal model parameters. Investigate the
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1. Introduction

performance of the proposed model compared with the common practice of
utilising geotagged tweets.

• Compare the sensitivity of model parameters and discuss the ability to gener-
alising it to the other global regions.

1.3 Disposition of this thesis
The remainder of this thesis consists of five chapters; Methods, Validation, Re-
sults, Discussion, and Conclusion. Methods describe the data and how they are
processed and the proposed model. Validation describes the data sets that are val-
idated against, and also how the validation is carried out. Results show the effects
of applying the validation to the model. Discussion deliberates the main findings,
limitations, and future work. At last, Conclusion summarises this thesis.

1.4 Ethical considerations
The available data will contain users’ Twitter handles, a unique identifier for the
user, meaning that the derived travel behaviour can be tied to a specific user. To
combat this, the data will be anonymised, i.e. the Twitter handles will be replaced
with pseudonymised strings, to remove the direct connection between the data and
the underlying Twitter user. To prevent "reverse engineering", we do not publish
individual trajectories and their locations. Furthermore, users have opted in to share
their location, meaning that some form of consent is already given. The users have
however not consented for their data to be part of this study, but this is, in part,
mitigated by the fact that the data is publicly available on their profiles, meaning
anyone could potentially retrieve it.

6



2
Methods

This chapter describes the methods applied in this thesis. Section 2.1 describes the
dataset in terms of collection and preprocessing. Section 2.2 describes the features
constructed from the dataset. Section 2.3 introduces the model of individual mobility
and how to deal with the biases found in Twitter data.

2.1 Data collection and preprocessing
The Twitter data used in this thesis have been collected and extracted by a previous
study [20]. The data set consists of 23 regions, both countries and cities, and was
collected in two stages. In the first stage, tweets during six months (20 December
2015 - 20 June 2016) were collected using a geographical bounding box containing
the region. From these tweets, the users who geotag their tweets most frequently
was identified. In the second stage, the 3200 most recent tweets of the identified
users were retrieved. Not all users have a total of 3200 tweets, and some tweet more
frequently than others, such that the total number of tweets and timespan varies
from user to user. In total, there are between 30 and 65 million tweets for each
region.

To provide more detailed validation, this thesis focuses on the following regions:
Sweden, São Paulo and the Netherlands. Furthermore, only geotagged tweets are of
interest, and all regular tweets are removed from the data set. Table 2.1 shows the
number of tweets and geotagged tweets in each region.

The geotagged tweets that user i have sent are: (X, Y, t)i,p, p = 1, 2, ..., Ni, where X

Before processing After processing

Region Tweets Individuals Geotweets Individuals Geotweets

Sweden 31 591 697 7 773 2 943 731 3 961 1 248 158

São Paulo 65 089 103 22 853 8 059 448 10 943 3 513 796

The Netherlands 31 997 687 12 638 4 418 891 5 375 1 479 674

Table 2.1: Summary of data for each region, before and after processing.
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2. Methods

is the decimal degree of latitude, Y is the decimal degree of longitude, and t is the
local time converted from the original UTC timestamp of the pth geotagged tweet
using the location (X, Y ). Ni is the total number of geotagged tweets sent by this
user. For each geotagged tweet, we also calculate the day of the week and hour of
the day based on t. The sequence of the user’s geotagged tweets is, therefore:

Gi = {X, Y, t, w, h}i,p, p = 1, 2, ..., Ni (2.1)

Cross-platform posting
Twitter supports cross-platform posts, meaning that a user can link their account
to other platforms and posts shared on one platform will be shared on the other.
Cross-posting is problematic for geotagged tweets, as platforms have different spatial
accuracy in their reported locations. For example, when a user shares an image on
Instagram and tags it with a place, the reported location will be in the centre of
that place. So if an individual sets their location on Instagram as Sao Paulo, the
geotagged tweet will be reported in the middle of Sao Paulo, as opposed to an exact
location. To deal with this artefact, all geotagged tweets are grouped based on their
exact latitudinal and longitudinal coordinates, and groups with more than 0.1% of
the tweets in the region are removed. This could potentially remove some regular
geotagged tweets (not cross-posted), but the likelihood of several geotagged tweets
having exact coordinates is minimal.

Clustering locations into places
The spatial resolution of GPS devices is typically within 10 meters [3], meaning that
geotagged tweets from the same place can have slightly different coordinates, X and
Y . To deal with this problem, each individual’s observed locations are grouped
to places using DBSCAN [21], a clustering algorithm that groups points tightly
packed based on density. The algorithm is parameterised with distance threshold,
ε, and the minimum number of points per cluster, nmin. Parameter ε controls the
geographic size of the clusters but has been found to not be very sensitive for travel
demand estimation as the overall patterns emerge despite different values [3]. We
use ε = 100m as it prevents a large number of small places being identified, while
still separating different places. We use nmin = 1 in order to not ignore places that
have only been visited once.

Let ni be the number of distinct places for user i, Xj and Yj be the spatial centroid
of the of place j, obtained from DBSCAN. Furthermore, let K denote the number
of geotagged tweets at this place. The set of the user’s distinct places is, therefore:

Si = {X, Y,K}i,j, j = 1, 2, ..., ni (2.2)

Estimating home place
It is possible that during the first stage of data collection, some top geotag users were
only visiting the region, but live somewhere else. As we focus on the residents in
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each region, this artefact needs to be removed. Therefore, each user’s home location,
sh ∈ Si, is detected using the assumption that they live at the most visited location
during weekends and 7 pm-8 am on weekdays [22]. Due to Twitter users’ reluctance
to geotag their tweets at habitual places, including their home, combined with the
fact that not everyone has the same circadian rhythm (some working night shifts for
example) this method is not perfect. Although the method is not perfect, it is the
most common approach for identifying home locations for this type of data. Finally,
individuals with an estimated home located outside of the region are removed from
the data set.

Considering the long study period, up to 9 years for some users, it is probable that
some have moved during the study period, resulting in multiple home locations
detected from their timelines. The home location is an essential part of a person’s
mobility pattern; thus, moving will most likely results in a significant change in their
mobility pattern. Hence, as a measure to reduce the complexity of the analysis, we
only consider the period where the user lives at his/her latest home location.

Bot accounts and insufficient geotagged tweets
Another artefact of the data set is bot accounts, which, for example, only tweet
about job postings and weather updates. Some of these accounts also geotag their
tweets, often at the same place. These are identified by selecting users with only
one distinct place and subsequently removed.

After the processing to deal with the artefacts in the original data set, we further
remove users based on the amount of available data. This is done to ensure mobility
patterns can be identified. Users with less than 20 tweets are removed. Table 2.1
presents the data sets, before and after processing.

2.2 Feature construction
For the trajectory of each Twitter user, not all distinct places are visited with the
same frequency; some are visited more frequently than others. Thus, a place j has
a visitation frequency of being visited, fi,j, that is calculated based on the number
of geotagged tweets individual i has sent at the place j.

fi,j = Ki,j∑ni
j=1 Ki,j

(2.3)

Jump size, θp,p+1, refers to the distance between two consecutive geotagged tweets
p and p+ 1, and is defined as

θp,p+1 = haversine(Xp, Yp, Xp+1, Yp+1) (2.4)

where haversine(Xp, Yp, Xp+1, Yp+1) is the Haversine distance (distance along the
curved surface of the earth) between two coordinates.
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Bearing, αp,p+1, refers to the direction of the straight line one travels between two
consecutive geotagged tweets p and p+ 1 and it is defined as

∆Yp,p+1 =Yp+1 − Yp (2.5)
yp,p+1 = sin(∆Yp,p+1) ∗ cos(Xp+1) (2.6)
xp,p+1 = cos(Xp) ∗ sin(Xp+1)− sin(Xp) ∗ cos(Xp+1) ∗ cos(∆Yp,p+1) (2.7)
αp,p+1 = arctan2(yp,p+1, xp,p+1) (2.8)

Feature Description

Si Set of distinct places visited by the individual

sh ∈ Si Estimated home place of the individual

fi,j Visitation frequency of place j, j = 1, 2, ..., ni
Prob(θ)i Jump size distribution

Prob(α)i Bearing distribution

Table 2.2: Summary of mobility features constructed for individual i.

2.3 Individual mobility model
As mentioned earlier in Section 1.2, the goal of this thesis is to demonstrate a
novel method to estimate travel demand using Twitter data while addressing biases
such as under-representation of short-distance trips. In this section, we describe
the Individual Mobility Model, first proposed by Song et al. (2010) [5], without
considering any potential bias in the data source, and our adaptions. We start this
section with an overview of the framework in which the model operates, followed by
a detailed description of how the steps in the model are carried out.

2.3.1 Framework
The raw trajectory of geotagged tweets constitutes a biased observation of the actual
mobility trajectory for a Twitter user. The model developed aims to construct the
mobility pattern of an average week for individuals. To achieve this, we create a
timeline, Li, for each individual i. The timeline consists of trajectories of multiple
days, Li = (Ti,d), d = 1, 2, ..., D. Each daily trajectory, Ti,d, consists of multiple
visits Ti,d = (vi,d,m), m = 1, 2, ...,Md. This is depicted in Figure 2.1.

The number of daily trajectories, D, is set at twenty weeks (D = 140). It is selected
to be large enough such that we can find a regular pattern for an average week.
We found that increasing D, i.e. increasing the number of modelling days, does not
change our results. The number of visits generated per day, Md, is drawn from a
normal distribution estimated from travel survey from Sweden[23], N(3.14, 1.8), and
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Figure 2.1: Hierarchy of timeline for an individual.

the same distribution is used for all regions. Due to drawingMd from a distribution,
each day has a different number of visits per day.

Each visit vi,d,m consists of latitude and longitude, X and Y , expressed in decimal
degrees.

vi,d,m = (X, Y ) (2.9)

For the first visit of each daily trajectory, vi,d,1, it is assumed that the individual is
located at their estimated home, sh. This assumption reflects humans’ tendency to
return home at the end of every day.

To generate the remaining visits for the daily trajectory, it is assumed that the
individual can perform one of two choices: exploration or preferential return. When
exploring, the model generates a visit to a place j not observed in the individual’s
distinct places, j /∈ Si. On the other hand, when returning, the model generates a
visit to place j observed in the individual’s places, j ∈ Si.

The probability of each choice is dependant on the number of distinct places, ni, de-
rived from the individual’s geotagged tweets. The more distinct places, the smaller
the probability of exploration is. How much the number of distinct locations influ-
ences the probabilities is controlled via two parameters: 0 < ρ ≤ 1 and 0 ≤ γ.

Prob(explore)i = ρn−γi (2.10)
Prob(return)i = 1− Prob(explore)i (2.11)

The parameters ρ and γ are not specific for an individual but is shared across the
population. Figure 2.2 shows their influence on the exploration probability.

From an individuals timeline, a set of trips is constructed by considering each pair
of consecutive visits to be the origin and destination of a trip. For the remainder of
this chapter, we describe the process of modelling individual mobility in detail with
two possible options: exploration and preferential return. The chapter is concluded
with an example showing how the model works.
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Figure 2.2: Influence of parameters ρ and γ on the exploration probability. ni is
the number of distinct places visited by an individual.

Figure 2.3: A Bearing distribution for one individual i. B Jump size distribution
for one individual i. C Visual explanation of the shift function, where θ is drawn
from the jump size distribution and α is drawn from the bearing distribution.

2.3.2 Exploration
For day d, let m denote the current place. When exploring, the individual i makes a
visit to an unobserved location, m+ 1 /∈ Si. The new location’s coordinates, Xm+1
and Ym+1, is generated based on the individual’s jump size distribution (Prob(θ)i),
bearing distribution (Prob(α)i), and current location, (Xm, Ym), as depicted in Fig-
ure 2.3.

θ ← Prob(θ)i (2.12)
α← Prob(α)i (2.13)

Xm+1, Ym+1 = shift(Xm, Ym, θ, α) (2.14)
vi,d,m+1 = (Xm+1, Ym+1) (2.15)

2.3.3 Returning
For day d, let m denote the current place. When returning, the individual moves to
one of their previously visited places m+1 ∈ Si. The selection of place m+1 among
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all places in Si depends on two factors: the visitation frequency of the candidate
place m + 1, and the travel distance from the current place, m, to the candidate
place.

Visitation frequency

Previous research on human mobility suggests that the visitation frequency of hu-
mans is uneven, such that the frequency z of the kth most visited location follows
Zipf’s law[5] with parameter ζ ≈ 1.2± 0.1.

zk ∼ k−ζ (2.16)

Because Twitter users are reluctant to geotag tweets at habitual places, we assume
that the observed visitation frequency fi,j is skewed. Habitual places, such as home
(sh) and work, have an observed visitation frequency that is lower than the actual
visitation frequency of the place. On the other hand, infrequent place, such as one-
time visits to bars, have an observed visitation frequency that is higher than the
actual visitation frequency. We assume that, while the observed visitation frequency
is skewed, the order of places based on visitation frequency is correct. Therefore we
use the below equation to re-scale the visitation frequency of geotagged places where
s ∈ Si and rank(s) denotes the relative order of places by visitation frequency.

P (s) = zrank(s)∑
s′∈Si zrank(s′)

(2.17)

Figure 2.4 shows the effect of re-scaling the visitation frequency as described in
Equation 2.17 for one individual. The re-scaling results in habitual places being
visited more frequently than they have been observed in the geotagged tweets.

Figure 2.4: Comparison of cumulative distributions of observed visitation fre-
quency, fj, and re-scaled visitation frequency, P (s), for one individual.
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Impedance to the candidate places

The other factor determining the selection of next place, m+ 1, is its distance from
the last visit’s location, Xm and Ym. Including distance in the selection helps de-bias
the trajectories generated, accounting for the fact that Twitter users are more likely
to geotag tweets far from home. The intuition is that we want to slightly increase the
probability of visiting places closer to where the individual is currently located. To
achieve this, we use an approach similar to that of the Gravity model, by modelling
the probability of travelling to a place to be inversely proportional to the distance to
it. In other words, the longer the distance one needs to travel from a place to another,
the more unlikely the visit happens. Therefore, the impedance between a candidate
place s and previous place m is expressed as exp(−β ∗ haversine(Xm, Ym, Xs, Ys))
and normalised with the below equation.

I(s) = exp(−β ∗ haversine(Xm, Ym, Xs, Ys))∑nj
j=1 exp(−β ∗ haversine(Xm, Ym, Xj, Yj))

(2.18)

The strength of preference for short-distance travel, I(s), is controlled by parameter
β. Figure 2.5 shows how different values for β yield a stronger och weaker preference.

Figure 2.5: Preference for short-distance travel for varying values of β.

Combining visitation frequency and impedance

Both factors, P (s) and I(s), are in the range [0, 1]. And they are combined with
multiplication and re-normalised to sum to 1. The place the individual moves to for
the next visit, vi,d,m+1 = (Xm+1, Ym+1), is drawn from the resulting distribution of
the candidate places’ probability.

Prob(s) = P (s) · I(s)∑
s′∈Si P (s′) · I(s′) (2.19)

vi,d,m+1 ← Prob(s) (2.20)
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2.3.4 Example
This section show an example of how the model works, by simulating the choices
made during one daily trajectory, Ti,d. Three different visits are simulated and
illustrated in Figure 2.6. The individual in the example have visited three distinct
places, and their observed visitation frequency is depicted in the left-most part of
the figure, indicated by their size.

Figure 2.6: Example of the model choices when simulating three visits of a daily
trajectory.

The first visit of the daily trajectory is to the individual’s home location, sh. In the
example, the second visit is assumed to be preferential return. The figure shows the
combination of visitation frequency and impedance, P (s) ∗ I(s), indicated by the
size of the circles. Note how the place in the bottom right has lower probability to
returned to, due to the distance to the current location. Instead, the top-left place
is returned to, marked with 2 in the figure, because of it’s proximity to the current
location. For the final visit in the example, it is assumed to be exploration, and an
unobserved place will be visited based on the bearing and jump size distributions,
Prob(θ) and Prob(α). The sampled values from these two distributions are depicted
in the figure. The individual will move to where they intersect, marked with 3 in
the figure. This process is repeated until the daily trajectory is completed, and then
repeated for the remaining daily trajectories of the individual’s timeline.
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3
Validation

To validate the proposed model, we compare the model outputs with established
data sources including travel survey and traffic model output. When validating in-
dividual mobility patterns, it is uncommon to have two data sources which include
the same group of individuals. Hence, validation is conducted at the population
level. Aggregating individual trajectories of mobility yields a picture of how the
population flows between regions. One of the most common ways to validate travel
demand is to construct and compare Origin-Destination (OD) matrices from differ-
ent data sources. An OD matrix represents the volume of trips between any two
zones in a study area. Using OD matrices, it is possible to compare and analyse two
independent travel demand estimations of the same study area.

In this chapter, Section 3.1 presents the external data sources used for validation in
each region: Sweden, the Netherlands, and São Paulo. Section 3.2 and Section 3.3
describe the methods used in population representation and trip distance validation,
respectively.

3.1 External data sources
This section details four different data sources; three of them are survey-based travel
demand estimations, and one is a population distribution estimation.

3.1.1 EU-wide population grid
The GEOSTAT initiative was taken jointly by Eurostat and the National Statistical
Institutes to establish a data and production infrastructure for geospatial statistics.
The GEOSTAT 2011 dataset [24] represent the main characteristics of the 2011
population and housing census in a 1 km2 grid system for the entire European
Union. This information allows us to identify potential population biases in terms
of the spatial distribution of Twitter users’ detected home location as compared with
the general population in Sweden and the Netherlands.

3.1.2 Sweden
Sampers [25] is a tool owned and managed by the Swedish Transport Administra-
tion (Trafikverket), that estimates the historical and future traffic volumes based on
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Figure 3.1: (A) A geographical overview of Sweden’s national and regional bound-
aries. (B) Snapshot of zones in West area zoomed in on Gothenburg. (C) Snapshot
of zones in East area zoomed in on Stockholm.

studies of travel demand. From the Sampers model, three OD matrices have been
retrieved for Sweden from 2014; “National”, “East”, and “West” (see Figure 3.1).
The cell value of the OD matrices represents the estimated number of trips between
the origin and destination zone. Although the data is, at time of this thesis, six
years old, it is the most representative ground truth for Sweden. The OD matri-
ces represent the domestic travel demand during an average weekday. Each area
is segmented into zones, and the segmentation depends on the area. The national
model considers trips longer than 100 km done by residents in all of Sweden and is
segmented into 682 zones. The models in East and West consider all trips within
Sweden, done by residents in the respective study area and is segmented such that
spatial resolution decreases further away from the largest city in the area, Stock-
holm and Gothenburg respectively. The East and West study area each contains
approximately 3000 zones.

3.1.3 The Netherlands
OViN (Onderzoek Verplaatsingen in Nederland) is a recent dataset on daily mobility
of the Dutch population. The dataset consists of a basic survey at a national level
and possible follow-up surveys. The research is a continuous daily study of the
travel behaviour of Dutch people. Respondents are asked to keep track of where
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Figure 3.2: Geographical overview of OViN zones in the Netherlands

they go for that particular day of the year, for what purpose, with what means of
transport and how long it takes to get there. Based on this research, information
can be obtained about all daily trips by Dutch people on Dutch territory.

All trips in the OViN data set originates and ends in postal code areas, grouped
by their first four digits. In other words, the geographical partitioning into zones
is defined by the location’s first four postal code digits. In the Netherlands, this
results in 4066 zones that trips can occur in between. A geographical overview of
these zones can be seen in Figure 3.2.

3.1.4 São Paulo

The city of São Paulo has collected information on trips from citizens in São Paulo.
The study, carried out in 2017, interviewed 32,000 households distributed in 517
research zones. In total, approximately 100,000 people were interviewed. Trips were
collected from each respondent over 24 hours, and only weekdays were considered.

Of the 517 research zones, 342 represents the municipality of São Paulo, and 175
represents the neighbouring municipalities. Their geographical distribution is shown
in Figure 3.3.
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Figure 3.3: A geographical overview of the São Paulo Metropolitan region in Brazil
(left) and its distribution of research zones (right).

3.2 Population representation of top geotag Twit-
ter users

The representativeness of top geotag Twitter users for the whole population is crucial
for our study and the validity using Twitter data for mobility estimation. The
density distribution at the zone-level shows the discrepancy between Twitter users’
derived home locations and the census number of residents in the corresponding
zones. A similar process has been done at the county level [20], compared to which
this project will move one step forward to quantify the population bias at a much
finer geographical resolution.

For Sweden and the Netherlands, the GEOSTAT 2011 data source is used as the
ground truth. The spatial resolution of GEOSTAT, 1 km2 grids, is too detailed for
our analysis. Hence, the grids are grouped into counties and municipalities before
comparison. The derived distribution from Twitter will then be compared to the
GEOSTAT distribution for each of the two resolutions (counties and municipalities).

For São Paulo, the population distribution is included in the data source, i.e. there
is an estimated number of residents in each of the 517 research zones included in
the study. Thus, the comparison of population distribution will be conducted at the
zone level for the São Paulo region.

3.3 Mobility representation of the proposed model

While trip distance (d, km) does not encompass the direction of flow between places,
it is an essential metric of mobility whose distribution reveals the validity of using
Twitter to estimate travel demand [11]. Therefore, it is selected to test the proposed
model as calibrated and validated against the external data sources.
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Two baselines

In order to quantify the improvement of the model, we compare our model to two
other models (hereafter called baselines) from the literature[20, 13, 12, 26]. The two
baselines differ in how they construct trips from displacements observed in the raw
geotagged tweets. The first baseline, henceforth called just baseline, considers every
displacement to be a trip, i.e. every pair of consecutive geotagged tweets form the
origin and destination of a trip. The second baseline, henceforth called baseline-24,
considers displacements with a duration shorter than 24 hours to be trips, i.e. every
pair of consecutive geotagged tweets posted within 24 hours of each other becomes
an origin and a destination of a trip.

Comparison procedure

For each set of trips (baseline, baseline-24, model), an OD matrix is created. First,
the coordinates of origin and destination for each trip is geographically joined to
the zones of the external data source. Secondly, the number of trips between each
origin-destination pair is calculated and normalised so that the sum of all cells in
the OD matrix add up to 1.

Based on the distance between zones, 100 distance quantiles are calculated (Q =
100), such that each quantile contains the same number of origin-destination pairs.
For each quantile, 0 < q ≤ Q, the share of trips from the external data source, tq,
and the model, t′q is calculated. The similarity of the model compared to the external
data source is quantified by Mean Squared Error, MSE (see eqs. (3.1) and (3.2)).

SEq = (tq − t′q)2 (3.1)

MSE =
∑Q
q=1 SEq
Q

(3.2)

Model calibration

Because the model is parameterized (ρ, γ, and β), the question of which parameters
are optimal, or close to optimal, should be addressed. Furthermore, it is possible that
the optimal parameters in one region is not optimal for another region, for example
due to geographical differences. Hence, the difference in optimal parameters for
different regions should also be explored.

To find the optimal model parameters within a region a two-phased grid search is
conducted. In the first phase a wide range of parameters are tested, as seen Eq.
3.3. After evaluating all parameters, the ones that achieves the lowest MSE of trip
distance distribution, in comparison to external data source, are selected.
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ρ ∈ [0.3, 0.6, 0.9]
γ ∈ [0.2, 0.5, 0.8]
β ∈ [0.01, 0.04, 0.07] (3.3)

In the second phase of the grid search, a narrow set of parameters is selected for
evaluation centred around the best parameters found in the first phase. For example,
if ρ = 0.6, γ = 0.5, β = 0.04 was selected in the first phase, the parameters to be
evaluated in second phase are depicted in Eq. 3.4. After evaluating all parameters in
the second phase, the ones that achieve the lowest MSE are considered the optimal
parameters for that region.

ρ ∈ [0.5, 0.6, 0.7]
γ ∈ [0.45, 0.5, 0.55]
β ∈ [0.03, 0.04, 0.05] (3.4)

When the two phased grid search is completed for the three regions, the optimal
parameters of the regions, and their respective MSE, are compared. In the best
case, the optimal parameters in each region would be the same, and thus indicate
that the model is robust across these regions.
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Results

In this chapter, the results are presented; Section 4.1 shows the representativeness
of the estimated home locations of observed Twitter geotag users compared with
the external data sources described in the previous section. Section 4.2 presents
the parameters of the model and the process used for setting them, and Section 4.2
shows the performance of the model in terms of the trip distance distribution.

4.1 Population representation

This section presents the spatial distribution of the estimated home locations of
geotag Twitter users and compare their spatial distributions with census/survey
data sources in Sweden, the Netherlands, and São Paulo.

Sweden

Figure 4.1 shows the representativeness of the estimated home locations of geotag
Twitter users compared with the census population in Sweden. The top geotag
Twitter users in Sweden are overly representing the residents in Stockholm county,
where the capital of Sweden is located, but under-representing the residents in Väs-
tra Götaland county, where the second-largest city Gothenburg is located. At the
municipality level, Figure 4.1.B shows that Twitter users are overly representing
the residents who live in urban centres as well as a few more rural municipalities,
such as Åre and Rättvik.The municipality of Sweden’s capital, Stockholm, is over-
represented by a factor of 2.2. Comparing Figure 4.1.A and Figure 4.1.B, shows
that even if the population level is close to census at the county level, individual
municipalities within the county can still be over- or under-represented. This is due
to the smaller zones at municipality level, which sheds light on how the population
is distributed in each county.

Figure 4.2 compares the estimated home locations of Twitter users and census pop-
ulation. For both county and municipality level, less populated areas are more likely
to be under-represented by top Twitter users.
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Figure 4.1: Spatial distribution of estimated home locations of Twitter users com-
pared to census data in Sweden. The numbers on the colour bar represent the
Twitter-derived population percentage divided by the percentage derived from GEO-
STAT. 1 represents an equal ratio of residents between the Twitter users and census
data, in the specific zone. A: Comparison at the county level. B: Comparison at
the municipality level.

Figure 4.2: Comparison of estimated home locations of Twitter users with census
data in Sweden. The diagonal line represents a perfect correlation. Each data point
represents the share of population in a zone calculated from census (x axis) and top
geotag Twitter users (y axis). A: County level. B: Municipality level.
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The Netherlands
Figure 4.3 shows the population representation of estimated home locations of geo-
tag Twitter users relative to the derived GEOSTAT distribution. The population
distribution at the county level is similar to that of GEOSTAT. The county of North
Holland is slightly over-represented, by a factor of 1.7. Figure 4.3.B shows the dis-
tribution at the municipality level. At this resolution, it is evident that the two
sparsely populated islands Vlieland and Terschelling are over-represented by the
Twitter users. More urban municipalities, such as Amsterdam and Utrecht are also
over-represented; Amsterdam by a factor of 3.35 and Utrecht by a factor of 1.69.

Figure 4.3: Spatial distribution of estimated home locations of Twitter users com-
pared to census data in the Netherlands. The numbers on the colour bar represent
the Twitter-derived population percentage divided by the percentage derived from
GEOSTAT. 1 represents an equal ratio of residents between the Twitter users and
census data, in the specific zone. A: Comparison at the county level. B: Comparison
at the municipality level.

Figure 4.4 shows the relationship between the two sources at both municipality and
county level. Similar to the findings in Sweden (Figure 4.2), geotagged tweets in the
Netherlands tend to be more prevalent among the residents in urban and populated
areas.

São Paulo
Figure 4.5 illustrates the results of population representation for the 517 research
zones. It indicates that rural zones, located far from the inner city of São Paulo, are
under-represented. Moreover, the Twitter distribution of inner São Paulo resembles
that of the travel survey, with one exception. That is the research zone of Barra
Funda, which has a travel survey estimate of 324 out of the 20 821 671 residents in
São Paulo. For twitter, 22 out of 10 686 users are estimated to have a home location
in Barra Funda. This results in an over-representation by a factor of 132.
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Figure 4.4: Comparison of estimated home locations of Twitter users with census
data in the Netherlands. The diagonal line represents a perfect correlation. Each
data point represents the share of population in a zone calculated from census (x
axis) and top geotag Twitter users (y axis). A: County level. B: Municipality level.

Figure 4.5: Spatial distribution of estimated home locations of Twitter users com-
pared to census data in São Paulo. The numbers on the colour bar represent the
Twitter-derived population percentage divided by the percentage derived from GEO-
STAT. 1 represents an equal ratio of residents between the Twitter users and census
data, in the specific study zone.

Resembling what is observed in Sweden and the Netherlands, top geotag Twitter
users in São Paulo tend to overly represent the residents in densely populated areas.
However, as shown Figure 4.6 the discrepancy between Twitter users and census
population is more salient than Sweden and the Netherlands, i.e., the top geotag
Twitter users in São Paulo display a lower population representation.
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Figure 4.6: Comparison of estimated home locations of Twitter users with census
data in São Paulo. The diagonal line represents a perfect correlation. Each data
point represents the share of population in a zone calculated from census (x axis)
and top geotag Twitter users (y axis).

4.2 Individual mobility model: parameters and
validation

Model parameters
This section presents the results obtained in each region with different model con-
figurations.

Figure 4.7 shows the influence of different model configurations for Sweden, the
Netherlands and São Paulo. For Sweden, which consists of three areas, the optimi-
sation is based on the sum of the three MSE values. The optimal values for explo-
ration rate parameters γ and ρ are different for Sweden compared to the other two
regions. In Sweden, the exploration rate parameters are optimal when γ ∈ [0.75, 0.8]
and ρ ∈ [0.3, 0.4], while in São Paulo and the Netherlands they are optimal when
γ ∈ [0.45, 0.5] and ρ ∈ [0.6, 0.7]. The results indicate that a lower probability for
exploration is preferential in Sweden, while a slightly higher exploration rate in the
Netherlands and São Paulo.

Parameter β, controlling preference for short-distance travel, is subsequently anal-
ysed when exploration parameters is fixed in their respective range, depicted in the
right column of figure 4.7. For all regions, there is one value of β that achieves a
better score, regardless of the values of exploration rate parameters. In Sweden,
that value is β = 0.03, in the Netherlands β = 0.04, and São Paulo β = 0.05. This
indicates that the smaller the region in the study, the larger the optimal value of
β is. Furthermore, the smaller the region under study, the less influence the exact
value of β has.
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Figure 4.7: Parameter topology in Sweden, the Netherlands and São Paulo. A
Influence of exploration parameters γ and ρ on MSE - β is fixed at 0.04. B Influence
of β on MSE - γ and ρ is fixed at different values. One pair of ρ and γ was included in
both the first and the second phase of grid search, thus, having results for additional
β values.
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Table 4.1 shows the best model configuration for each region. The complete table
of results for different model configurations across the three regions can be found in
Appendix B.

Region γ ρ β

Sweden 0.75 0.4 0.03

The Netherlands 0.45 0.6 0.04

São Paulo 0.45 0.6 0.05

Table 4.1: Optimal set of parameters for the model in each region.

Validation
This section presents the results of validation for each region using the method
described in Section 3.3. In this section, the model’s results are presented using the
best set of parameters found in the previous section.

Sweden

The trip distance distribution for the region of Sweden has three areas: “National”,
“East” and “West”. Note that the maximum straight-line distance for Sweden is
around 1500 km.

National

Sampers-National model considers trips with a minimum distance of 100 km by
residents from all over Sweden. Figure 4.8 shows the trip distance distributions for
the National region from the external source (Sampers), the two baselines, and the
model. Both the baseline and the baseline-24 under-represents medium distance
trips, 100 km to 250 km, and over-represents long-distance trips up to about 600
km. Although baseline-24 yields an improvement of the baseline distribution, it still
deviates from Sampers. Our model closely follows the cumulative distribution of
Sampers up until 200 km. For the distance above 200 km, it slightly deviates from
Sampers for the distance of 200 - 500 km.

East

For the East area, the Sampers output considers trips in all of Sweden, made by the
residents who live in the East area. The trip distance distributions for the area are
illustrated in Figure 4.9. The first distance quantile, which contains trips up to 3.2
km, is under-represented by both the baseline and the model. The baseline continues
to under-represent trips up to 100 km and then heavily over-represents long-distance
trips. baseline-24 resembles the baseline except for having a lot more short-distance
trips, with 76% of the trips in the first distance quantile. The model generates
slightly more trips in the range of 3.2 - 7 km than Sampers. For distance above 7
km, the model approximates the cumulative distribution derived from Sampers.
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Figure 4.8: Trip distance distributions for the National area, Sweden
(Source=Sampers-National). Cumulative percentage of trips in each distance quan-
tile. The black vertical lines indicate the upper and lower boundaries for the distance
quantiles. The same below for all figures on distance distributions.

Figure 4.9: Trip distance distributions for the East area (Source=Sampers-East).

West

Figure 4.10: Trip distance distributions for the West area (Source=Sampers-West).

For the West area, the Sampers output considers trips in all of Sweden, made by the
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residents who live in the West area, and the trip distance distributions are illustrated
in Figure 4.10. Compared to Sampers, the two baselines overly represent the first
quantile, 0 - 2.1 km, but then under-represents trips with a distance less than 100
km. The time threshold in baseline-24 generates more trips in the first quantile than
the unbounded baseline. Moreover, the baseline also over-represents long-distance
trips. In contrast, the model slightly over-represents trips up to 5 km and then
follows the same cumulative distribution as Sampers.

In summary, the model improves over the two baselines across all three areas, espe-
cially on the national level. On the national level baseline-24 is slightly better than
baseline while being worse on both East and West. According to figures 4.10 and
4.9, this is due to the much larger share of short-distance trips (<10 km). The MSE
between the Sampers’ output and the baselines’ as well as the model are summarised
in Table 4.2.

MSE (10−5) between Source (Sampers)

Region Baseline Baseline-24 Model

National 14.9 9.49 0.79

East 2.06 7.13 0.61

West 2.51 23.2 1.17

Table 4.2: Summary of MSE in Sweden, comparing baselines to the best model
configuration.

The Netherlands

The longest distance one can travel within the Netherlands is around 300 km, shorter
than Sweden due to its different geometry of the territory. Figure 4.11 shows the cu-
mulative trip distance distribution, comparing the source (OViN), baseline, baseline-
24 and model.

Figure 4.11: Trip distance distributions for the Netherlands (Source=OViN).

The baseline significantly under-represents travel shorter than 10km, being off by
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10%. The cumulative trips distance distribution for the baseline continues to be
lower than expected until around 50km, and trips longer than 50km are slightly
over-represented. The baseline-24, however, has a significantly better share of short
distance trips but still follow the under and over-representation pattern as the base-
line. In comparison, the model corrects the short distance under-representation of
Twitter data, and achieves a good fit with the source data for all the distance ranges.

The MSE between the trips in the external source (OViN) and the baselines’ as well
as the model are summarised in Table 4.3. The baseline-24 outperforms the baseline,
due to it’s higher share of short-distance trips (<10 km). The model further improves
on both of the baselines, because of a better share of medium-distance trips, which
are very similar to OViN.

MSE (10−5) between Source (OViN)

Region Baseline Baseline-24 Model

The Netherlands 6.72 0.63 0.10

Table 4.3: Summary of MSE in the Netherlands, comparing baseline to the best
model configuration.

São Paulo

São Paulo is different from Sweden and the Netherlands because it is a city where
the longest distance one can travel is significantly shorter, slightly more than 100km.
Figure 4.12 shows the cumulative trip distance distribution, comparing the source
(travel survey), baseline, baseline-24 and the model. The baseline overly represents
travel in the shortest distance interval, 0 - 2.15 km, while slightly under represents
travel on distances up to 20 km. Here, the baseline-24 actually performs worse
than the baseline, by having a 20 percentage point increase in the shortest distance
interval as compared with the source data. The model, however, corrects the short
distance over-representation, and all together achieves a good fit with the source
data.

The MSE between the trips in the travel survey and the baselines’ as well as the
model are summarised in Table 4.4. The baseline model over-represents the share
of short-distance trips (<3 km), and the baseline-24 further increase the share of
short-distance trips leading to a worse MSE. The model, however, achieves a good
fit for the share of short-distance trips, which leads to the best MSE of the three
models.
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Figure 4.12: Trip distance distributions for São Paulo (Source=OD Survey 2017
in São Paulo).

MSE (10−5) between Source (travel survey)

Region Baseline Baseline-24 Model

São Paulo 12.6 47.7 0.33

Table 4.4: Summary of MSE in São Paulo, comparing baseline to the best model
configuration.
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5
Discussion

This thesis estimates travel demand using geotagged tweets. We develop an individ-
ual mobility model that accounts for and corrects the observed mobility behaviour
biases found in geotagged tweets so that geotagged tweets can improve the estimates
of travel demand. The model is calibrated and validated in two countries, Sweden
and the Netherlands, and one city, São Paulo.

5.1 Top geotag Twitter users vs general popula-
tion

In agreement with previous studies, we find that the top geotag users on Twitter
overly represent residents in urban areas (see figs. 4.1, 4.3 and 4.5). Stockholm
county in Sweden and North Holland in the Netherlands both indicate an over-
representation by a factor of, approximately, 1.7. In addition to previous work,
we also find that the urban area over-representation can be attributed to the most
central areas. The centre of Stockholm city in Sweden is overly represented by a
factor of 2.3, and this number is 3.4 for Amsterdam in the Netherlands, and 130
for Barra Funda in São Paulo. Quantifying the population biases sheds light on
the need for further de-biasing. For instance, the discrepancy between the spatial
distribution of top geotag Twitter users and the general population could be used
to attach a weight to each top geotag Twitter user when modelling the population
flows between places.

An issue with the high-resolution comparison of population density arises due to the
small sample size of Twitter users in each region. This leads to the summary statis-
tics in small zones being very sensitive to scale, and them being disproportionately
over- or under-represented in comparison to the true population. This indicates the
importance of properly choosing study zones when using geotagged tweets.

5.2 Mobility measured by geotagged tweets
The baseline trips are created by connecting every two consecutive geotagged tweets
by the same user without any time threshold, similar to other methods in the liter-
ature [20, 26]. We found that the trips tend to overly represent long-distance travel
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(see figs. 4.8 to 4.11). For Sweden and the Netherlands, the distance at which the
baseline starts to overly represent is approximately 50 km. The baseline’s tendency
to over-represent long distance trips further confirms the behaviour bias described
by Tasse et al (2017) [10]. However, it should also be noted that the external
data sources used in validation might not perfectly represent the true mobility for
the region. Traditional household travel surveys have, for example, been shown to
under-report long-distance trips [27, 28].

We also show that, if the considered region is geographically small, a short distance
over-representation, less than 5 km, emerges in the trip distance distribution. For
example, in São Paulo, where the maximum distance is 100 km, trips less below 3 km
are over-represented by 10% (see Figure 4.12). Hence, regardless of the study area’s
scale, trips derived directly from geotagged tweets will not yield a representative
trip distance distribution. Furthermore, the share of short distance trips is affected
by the spatial aggregation used, and the spatial resolution of the source. Geotagged
tweets have a higher spatial resolution, leading to many short-distance trips which
is more realistic than travel surveys because surveys sometimes only have tips with
minimum distance of 1 km.

The baseline-24 uses a time threshold of 24 hours, as commonly found in litera-
ture [12, 13]. The threshold appears to primarily remove long-distance trips, which
in turn yields a more representative share of long-distance trips compared to the
baseline. We also find that the threshold produces a considerably greater share of
short-distance trips, i.e. 0 - 10 km, than the baseline. In all regions except for the
Netherlands, this impacts the MSE negatively, as the ground truth has a lower share
of short-distance trips. Overall, we find that the baseline-24 produce trip distance
distributions worse than the baseline. Furthermore, the common practice [12, 13] of
adding a time threshold to convert displacements into trips reduces the amount of
available data, and as the accuracy of the estimations is actually decreased, there
are not many benefits of this practice.

5.3 Individual mobility model
Based on the mobility biases found in Twitter data, we propose an Individual Mo-
bility Model that accounts for the observed behavioural biases of geotagged tweets.
The proposed model integrates two natural dimensions of individual mobility: reg-
ularly returning to habitual locations and occasionally exploring new locations. To
address the caveat of under-representation of habitual places such as home and work-
place, the model re-scales the observed visitation frequency of various locations by
combining their order and Zipf’s law [5]. In addition, the model combines visitation
frequency and distance when selecting a location to return to. By doing so, the
tendency for long-distance travel observed in Twitter data, is corrected. As a result,
the modelled mobility prefers making visits to places closer to where the individual
is currently located more than the baselines.

The model consistently improves upon the baseline models across all regions (see
Table 5.1), especially on short-distance trips (< 50 km). Despite the good results,
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the model have some limitations that should be explored further; the dependence
on estimated home location, and assumed independence of jump size and bearing
distributions. First, the model is dependant on the estimated home location from the
tweets, as the first visit every day is assumed to be at home. Consequently, inherent
in the the model is the uncertainties of the estimated home locations. Theoretically,
the model only requires the first visit of the user’s timeline to be at a known preferred
location, and the remaining visits could be generated without starting at the home
location every day. This would drastically decrease the dependence on estimated
home locations, but other effects are still unknown.

Secondly, the jump size and bearing distributions are independent in the proposed
model which is a simplification of the reality. For example, it is not likely that a
person living in Sweden makes a 6000 km north (crossing the north pole), while
taking a flight to New York of the same distance is much more likely. This could be
addressed by sampling the jump size conditionally based on the bearing in future
work. The consequences of this assumption do not emerge in the results, however,
because the trip distance distribution is one aspect of mobility, and does not take
bearing into account.

MSE (10−5) Parameters

Region Baseline Baseline-24 Model γ ρ β

Sweden: National 14.9 9.49 0.79 0.75 0.4 0.03

Sweden: East 2.06 7.13 0.61 0.75 0.4 0.03

Sweden: West 2.51 23.2 1.17 0.75 0.4 0.03

The Netherlands 6.72 0.63 0.10 0.45 0.6 0.04

São Paulo 12.6 47.7 0.33 0.45 0.6 0.05

Table 5.1: MSE and parameters of the best performing model in each region
compared to the baselines.

5.4 Model sensitivity to different parameters
There are three parameters in the proposed model: ρ, γ and β We calibrate the
model parameters for three of the regions in this thesis: Sweden, the Netherlands
and São Paulo.

The β parameter, controlling preference for short-distance travel, is the parameter
that influences the MSE the most. Furthermore it appears to be correlated with
the maximum length travel within the region. That is, the longer the maximum
travel, the lower β is found. Despite this, it is found that the shorter the maximum
travel in the region, the less influence β has on the model. This is because the
lower probability of long-distance trips, controlled by β, becomes irrelevant when
only considering short-distance trips. The optimal value of β in each region is
summarised in Table 5.1. Parameters controlling exploration rate, ρ and γ, have
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less influence on the MSE in the studied regions than β. However, across all regions
the optimal parameters suggest that small amounts of exploration is beneficial for
the MSE presumably due to biases towards unusual locations in geotagged tweets
as compared with the actual mobility.

Although the optimal model parameters found for each region is slightly different,
our grid search results (see Figure 4.7) suggests that the optimal values are in the
same range for all regions: β around 0.04, ρ around 0.5 and γ between 0.45 and
0.75. We expect that applying the model with these parameters to a new region
would yield better results than using consecutive tweets directly, with or without a
time threshold.

5.5 Future work
This thesis carefully examines the biases of geotagged tweets in two aspects, popu-
lation representation and mobility representation as measured by geotagged tweets.
Despite addressing the behavioural biases by proposing the individual mobility
model, the population bias of the top geotag Twitter users are not integrated into
the modelling. In order to de-bias on both aspects for travel demand estimation, one
future direction can be adding varying weights to those top geotag Twitter users as
compared with the general population when aggregating their trajectories to create
an origin-destination matrix.

The proposed individual mobility model performs well as compared with the other
established data sources in the three regions that we studied. However, the evalua-
tion method in this thesis is limited to the trip distance distribution which consti-
tutes one part of the travel demand. The next step is to further validate the model
on where visits are generated to take spatial orientation into consideration.

Another future work is to generalise the proposed model into global regions to further
test its feasibility and conduct cross-regional analysis on the individual mobility to
make full use of social media data as an emerging data source in mobility study.
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Traditional household travel surveys is a commonly used method of estimating travel
demand. However, the cost of conducting these travel surveys is increasing, while
the response rate is decreasing. This has led researchers to explore new sources of
data that can be used to estimate travel demand. Among these new data sources is
social media data such as geotagged tweets from Twitter, which is promising due to
it’s large quantity of available data and low cost of access. At the same time, using
Twitter for travel demand estimation has garnered criticism regarding the biases
inherent in Twitter data.

We quantify and confirm the results of previous research regarding the biases of
Twitter users. (1) The users of Twitter are overly represented in urban areas, and
even more so in the absolute centre of these areas. (2) Twitter users geotag their
tweets during trips far from home leading to an over-representation of long distance
trips if used directly as a proxy of human mobility.

Our main contribution to the field, corresponding to the revealed biases, is to de-
velop a novel model to generate individual mobility trajectories for travel demand
estimation using geotagged tweets. It takes behavioural biases into consideration.
The proposed model produces individual based series of visits based on the observed
geotagged activities. The proposed model integrates two natural dimensions of indi-
vidual mobility: regularly returning to habitual locations and occasionally exploring
new locations that have not been visited before. The proposed model addresses the
under-representation of habitual places such as home and workplace and corrects
the geotagging behavioural bias of being less constrained by distance. Validation on
three different regions suggests that the model is able to capture the essential travel
demand in multiple regions of distinct geographical properties as compared with the
other established data sources. Finally, the results suggest that the model’s param-
eters are robust across regions studied, and by using the parameters found in this
thesis one can expect similar improvements compared to contemporary approaches
across other regions.

Given that geotagged tweets as an emerging data source have been used widely to
characterise travel demand, it is imperative to address the known biases, as we have
demonstrated here. Future work includes examining the performance of the model
by using more validation metrics than trip distance distribution, integrating the
population de-biasing in the model and test the model in other regions.
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A. Notations

Notation Definition

i Individual index

(X,Y ) Decimal coordinates of a geotagged tweet

t Local time of a geotagged tweet converted

Gi Sequence of a user’s geotagged tweets

p Index of geotagged tweet in Gi

Ni Total number of geotagged tweets in Gi

w Day of week

h Hour of day

Si Set of distinct places visited by individual i

j Index of distinct place in Si
ni Total number of distinct places in Si
Kj Frequency of visiting a place j for individual i

fj Frequency rate of place j among total visited places in Si
θp,p+1 Distance between two consecutive geotagged tweets

αp,p+1 Bearing between two consecutive geotagged tweets

s A place in Si
sh Identified home place of the individual

Li Model output of individual mobility trajectory for individual i

D Total number of days for Li
Ti,d A series of visits for individual i at day d

Md Total number of visits for Ti,d

vi,d,m The mth visit at dth day for individual i

γ, ρ Two parameters that control exploration in the proposed model

β The parameter that controls returning in the proposed model

ζ The parameter of Zipf’s Law

k Rank of visited places by their visiting frequency

Table A.1: Lookup table with the main symbols and relevant notations used in
this thesis.

II



B
Parameter tuning

III



B. Parameter tuning

ρ γ β MSE* (10−5)

0.4 0.75 0.03 2.57

0.4 0.8 0.03 2.71

0.3 0.8 0.03 2.92

0.3 0.75 0.03 3.08

0.4 0.85 0.03 3.22

0.4 0.75 0.04 3.39

0.3 0.8 0.04 3.46

0.4 0.85 0.04 3.51

0.3 0.75 0.04 3.59

0.4 0.8 0.04 3.62

0.3 0.85 0.03 3.74

0.6 0.8 0.04 3.75

0.3 0.85 0.04 4.04

0.2 0.75 0.04 4.13

0.3 0.5 0.04 4.23

0.2 0.8 0.04 4.61

0.2 0.75 0.03 4.74

0.9 0.8 0.04 4.82

0.2 0.85 0.04 5.05

0.2 0.8 0.03 5.83

0.6 0.5 0.04 6.23

0.4 0.8 0.05 6.84

0.3 0.75 0.05 6.92

0.9 0.5 0.07 6.92

0.4 0.75 0.05 6.98

0.2 0.85 0.03 7.0

0.3 0.2 0.07 7.09

0.4 0.85 0.05 7.25

0.2 0.75 0.05 7.27

0.2 0.85 0.05 7.45

0.2 0.8 0.05 7.67

0.3 0.8 0.05 7.73

0.3 0.85 0.05 7.83

0.6 0.5 0.07 8.05

0.3 0.2 0.04 8.77

0.9 0.5 0.04 9.66

0.9 0.8 0.07 10.75

0.3 0.5 0.07 12.54

0.6 0.8 0.07 13.03

0.3 0.8 0.01 13.72

0.6 0.8 0.01 15.69

0.3 0.8 0.07 15.73

0.3 0.5 0.01 16.55

0.6 0.2 0.07 16.91

0.9 0.8 0.01 18.57

0.6 0.5 0.01 23.72

0.6 0.2 0.04 25.87

0.3 0.2 0.01 28.8

0.9 0.5 0.01 31.22

0.9 0.2 0.07 42.41

0.6 0.2 0.01 52.99

0.9 0.2 0.04 53.84

0.9 0.2 0.01 81.65

Table B.1: Performance, in terms of MSE*, for the different model configurations
in Sweden, sorted by MSE*. MSE* is the sum of the three MSE values received for
the areas “National”, “East” and “West”.
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ρ γ β MSE (10−5)

0.6 0.45 0.04 0.1

0.7 0.5 0.04 0.12

0.7 0.45 0.04 0.14

0.6 0.5 0.04 0.16

0.7 0.55 0.04 0.16

0.6 0.5 0.04 0.17

0.5 0.45 0.04 0.18

0.3 0.2 0.04 0.19

0.9 0.5 0.04 0.21

0.5 0.55 0.03 0.26

0.5 0.5 0.04 0.29

0.6 0.55 0.04 0.3

0.7 0.45 0.05 0.3

0.5 0.5 0.03 0.4

0.6 0.55 0.03 0.4

0.5 0.55 0.04 0.44

0.6 0.2 0.07 0.49

0.5 0.45 0.03 0.57

0.7 0.55 0.03 0.58

0.6 0.45 0.05 0.59

0.6 0.5 0.03 0.59

0.7 0.5 0.05 0.65

0.9 0.8 0.04 0.66

0.3 0.5 0.04 0.82

0.7 0.5 0.03 0.83

0.6 0.45 0.03 0.92

0.6 0.8 0.04 1.0

0.6 0.5 0.05 1.02

0.7 0.55 0.05 1.03

0.5 0.45 0.05 1.04

0.7 0.45 0.03 1.25

0.6 0.55 0.05 1.41

0.5 0.5 0.05 1.42

0.3 0.8 0.04 1.52

0.9 0.5 0.07 1.73

0.5 0.55 0.05 1.88

0.3 0.2 0.07 1.91

0.6 0.2 0.04 3.49

0.6 0.5 0.07 4.06

0.9 0.2 0.07 5.77

0.9 0.8 0.07 6.82

0.3 0.5 0.07 7.37

0.6 0.8 0.07 8.43

0.3 0.8 0.01 9.42

0.3 0.8 0.07 10.09

0.6 0.8 0.01 10.39

0.3 0.5 0.01 10.64

0.9 0.8 0.01 11.0

0.9 0.2 0.04 11.08

0.6 0.5 0.01 12.85

0.3 0.2 0.01 14.76

0.9 0.5 0.01 15.21

0.6 0.2 0.01 21.77

0.9 0.2 0.01 29.77

Table B.2: Performance, in terms of MSE, for the different model configurations
in the Netherlands, sorted by MSE.
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B. Parameter tuning

ρ γ β MSE (10−5)

0.7 0.5 0.05 0.33

0.6 0.45 0.05 0.34

0.6 0.55 0.04 0.37

0.7 0.45 0.05 0.38

0.5 0.5 0.04 0.38

0.6 0.5 0.05 0.39

0.7 0.55 0.05 0.39

0.5 0.45 0.04 0.4

0.5 0.55 0.04 0.4

0.9 0.5 0.07 0.41

0.9 0.8 0.04 0.42

0.7 0.55 0.04 0.42

0.6 0.5 0.04 0.43

0.5 0.45 0.05 0.43

0.6 0.55 0.05 0.51

0.6 0.45 0.04 0.53

0.5 0.5 0.05 0.54

0.7 0.5 0.04 0.55

0.5 0.55 0.03 0.55

0.3 0.5 0.04 0.58

0.6 0.8 0.04 0.64

0.3 0.2 0.04 0.66

0.5 0.5 0.03 0.67

0.6 0.55 0.03 0.69

0.5 0.55 0.05 0.71

0.7 0.45 0.04 0.76

0.3 0.2 0.07 0.79

0.5 0.45 0.03 0.82

0.6 0.5 0.03 0.89

0.7 0.55 0.03 0.92

0.9 0.5 0.04 1.04

0.3 0.8 0.04 1.06

0.6 0.45 0.03 1.15

0.7 0.5 0.03 1.18

0.3 0.8 0.01 1.29

0.6 0.2 0.07 1.39

0.6 0.5 0.07 1.48

0.7 0.45 0.03 1.58

0.6 0.8 0.01 1.76

0.3 0.5 0.01 1.86

0.9 0.8 0.01 2.33

0.9 0.8 0.07 2.95

0.6 0.5 0.01 3.26

0.3 0.5 0.07 3.75

0.3 0.2 0.01 4.02

0.6 0.8 0.07 4.09

0.6 0.2 0.04 4.39

0.9 0.5 0.01 5.12

0.3 0.8 0.07 5.67

0.9 0.2 0.07 7.15

0.6 0.2 0.01 9.75

0.9 0.2 0.04 11.32

0.9 0.2 0.01 16.83

Table B.3: Performance, in terms of MSE, for the different model configurations
in São Paulo, sorted by MSE.
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