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Abstract

The fetal well-being is routinely monitored using a cardiotocograph (CTG), a com-
bination of a Doppler sensor used to measure the fetal heart beats and a pressure
sensor to measure uterine muscle contractions. However, the equipment is expen-
sive and there is a recurrent issue where the CTG confuses the maternal heart rate
for the fetal heart rate, leading to ambiguities that have resulted in adverese fetal
outcomes on multiple occasions. Non-invasive recordings of the fetal heart activity
on the maternal abdomen could constitute a viable alternative to Doppler ultra-
sound recording. However, the potential sensed by an abdominal electrode is the
combination of many sources, making it an onerous task to extract the components
stemming from the fetal heart beats. The most difficult subsignal to circumvent is
the contribution from the maternal heart.

This thesis explores the viability of using non-contact electrodes to reliably measure
the fetal electrocardiogram, fECG, and an electrode is successfully designed for this
purpose. This electrode could be implemented in an array embedded in a piece
of clothing for a practical implementation of many uncorrelated electrodes, which
normally facilitates the signal separation process and improves its accuracy.

Separately, using the Non-Invasive Fetal Electrocardiogram (NI-fECG) database,
source separation and fetal heart rate extraction algorithms are evaluated, devel-
oped, and improved upon. It is shown that using said algorithms in combination
with a novel fetal heart rate detector, fetal heart beats can be detected in a reliable
manner on the evaluated data.
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Chapter 1

Introduction

1.1 Motivation and historical context

In 2017, the global neonatal mortality rate (death within 28 days after live birth)
was 18 in 1000. In the native country of the authors, Sweden, that figure is 2 in
1000. While that is still undesirably high, the situation is substantially worse in e.g.
sub-Saharan countries whose neonatal mortality rate is more than 13 times as high
(27 per 1000)[9].

According to WHO, World Health Organization, there were 2.6 million stillbirths
in the world in 2015, corresponding to almost 7200 deaths a day. 98% of these
deaths occurred in low- and middle-income countries and about half during the
intrapartum period, i.e. during childbirth. Constituting the most high-risk period,
the intrapartum proportion of stillbirths still differ a lot worldwide, with 10% in
some high-income regions to 59% in south Asia. A similar distribution of maternal
deaths can be seen and the correlation with areas with substandard health care at
birth is substantial[10].

Consequently, there is a dire need for a cheap, effective and accessible fetal health
monitoring technique during pregnancy and labor. Furthermore, the main cause of
birth defect-related deaths is heart defects[11]. Nowadays, many congenital cardiac
defects are identified and diagnosed prepartum with routine ultrasound scans us-
ing the Doppler ultrasound sensor in cardiotocographs (CTG). The CTG apparatus
consists of said Doppler sensor and pressure sensor to measure uterine muscle con-
tractions. An electrode is sometimes placed directly on the fetal scalp if the fetal
heart rate (fHR) measurements are inadequate during labour. Indicators are derived
from the fHR and maternal contractions and used to monitor the fetal well being.
However, some heart diseases cannot be detected using this modality and there is a
recurrent issue where the CTG confuses the maternal heart rate for the fetal heart
rate. In a study of approximately 10 000 deliveries, five examples of unexpected ad-
verse fetal outcome attributed to this signal ambiguity were encountered, including
still births, neonatal deaths, and severe brain damage[12].

The non-invasive fetal electrocardiogram (NI-fECG) could constitute a viable alter-
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native to Doppler ultrasound recording. Using electrodes on or close to the maternal
abdomen, both a more accurate estimation of the fetal heart rate (fHR) and addi-
tional information about the electrical activity of the fetal heart, obtained through
the study of the FECG morphology, could hopefully be achieved. Unfortunately, it
is a highly complicated task to extract the fECG from the abdominal signal mixture
in a reliable manner. As a consequence, its usage has been very limited to this
day.

1.2 Outline of thesis

The objective of this thesis was to investigate the feasibility of using NI-FECG as a
cheap, precise, and reliable modality for beat-to-beat fHR monitoring. To that end,
a highly sensitive non-contact electrode was designed and a set of novel algorithms
and tools for fHR extraction developed and evaluated. The thesis is split into three
main parts: I) Context and problems to be solved, II) Hardware development and
testing III) Software development and testing. These parts are then followed by a
brief general summary of findings, conclusions and remaining future work.

1.2.1 Part I - Context and problems to be solved

The main intention of this part is to introduce the background of the field, address
issues with the existing technology, and motivate the need and requirements for
novel fHR extraction methods. The part includes succinct descriptions of the general
electrophysiology of the heart and the physical origin of an electrocardiogram, as
well as features and characteristics of the fECG during different stages of gestation.
Furthermore, a summary of the different subsignals comprising an ECG and their
discerning characteristics is given.

1.2.2 Part II - Hardware development and testing

This part begins with an introduction to theoretical physical concepts crucial for
the operation of the developed sensors. It then describes the various considerations
and experimental evaluations leading to the final electrode prototype, including
the choice of non-contact sensors and certain noise reduction features. Finally, a
description of other vital components of an ECG measurement setup is given and
some results from their implementation presented.

1.2.3 Part III - Software development and testing

Starting off with brief descriptions of relevant signal processing techniques, this
part then reviews the pros and cons and the potential of the contemporary state-
of-the-art fECG extraction methods. After that, the data sets used for testing
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and evaluation of the developed algorithms are presented and the score system for
benchmarking defined. Lastly, the experimentally evaluated methods are described
and their performances presented and discussed.

1.2.4 Part IV - Conclusion and future work

This part concisely summarizes the findings of this thesis and emphasizes promising
directions for further future research.
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Chapter 2

Electrophysiology of the heart

This chapter summarizes the basic physiology and key events of a human heart,
which eventually leads to the potential difference on different parts of the skin that
can be mapped in an electrocardiogram.

Figure 2.1: Figure showing the periodic action potentials generated in a pacemaker cell
in the SA node. The orange line shows the slow depolarization due to sodium influx. At
the threshold the cell rapidly depolarizes (red line) and then repolarizes (green line). In
this manner the pacemaker cells initiate the propagating action potential, and therefore
sets the rhythm of the heart. Reproduced from OpenStax College.

2.1 Cardiac muscle contraction

Virtually all cells have a potential across the cell membrane [13]. This potential is
set by the interplay between ion pumps that actively transport specific ions across
the membrane and ion channels that set the ion permeability of the membrane. The
cardiac muscle cell (myocardiocyte) has a membrane potential of approximately -90
mV at rest [14] measured from the inside of the cell. However, approximately one
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percent of myocardiocytes are never truly at rest and are known as pacemaker cells.
Due to a net inflow of sodium ions the membrane potential slowly depolarizes over
time[15]. At a certain threshold potential, approximately -40 mV[15], a series of
rapid changes in ion permeability causes the cell to rapidly depolarize, and then
repolarize back to the resting potential. This brief change in membrane potential
is known as a cardiac action potential and triggers muscle contraction through an
intracellular signal chain. A depiction of the membrane potential for a pacemaker
cell is shown in Figure 2.11. The orange line is the slow depolarization due to
sodium leakage, the red line is the rapid depolarization and the green line is the
repolarization. The action potential propagates through the cell and to neighbouring
cells through intercellular connections. Through a structured network of muscle cells
and specialized conduction cells, the action potential propagates through the heart
and causes the atrium and ventricles to contract in a coordinated fashion. The
wave of depolarization can be detected on the skin surface, which is the basis of
electrocardiography (ECG).

Figure 2.2: Anatomical illustration of a frontal plane cross section of the human heart.
The illustration shows the propagation path of the action potential. The action potential
originates from the SA node and propagates through both atria and also to the AV node.
At the AV node, which is the only electrical connection between the atria and ventricles,
the action potential is delayed before it propagates through specialized conductive fibers,
Purkinje fibers, to both ventricles. Reproduced from OpenStax College.

2.2 The cardiac cycle

The pacemaker cells with the fastest rate of depolarization set the origin of the heart
beat and the heart rate. A cluster of pacemaker cells in the sinoatrial (SA) node,

1
OpenStax College. SA Node Tracing. Wikimedia Commons. License: https://

creativecommons.org/licenses/by/3.0/deed.en. Link: https://commons.wikimedia.org/
wiki/File:2020_SA_Node_Tracing.jpg
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just below the superior vena cava in the left atrium (Figure 2.22), are in general the
cells with the fastest rate of depolarization and therefore the natural pacemaker of
the heart.

The rate of the pacemaker is influenced by sympathetic and parasympathetic nerve
fibers. The action potential propagates to the left and right atrium and to a collec-
tion of pacemaker cells in the interatrial septa known as the atrioventricular (AV)
node. The AV node is the only passage point for signals between the atria and
ventricles. Here, the signals are delayed so that the atria have time to contract.
After the delay, the action potential wave propagates to the ventricles through spe-
cialized conductive fibers, Purkinje fibers. The Purkinje fibers permeates both ven-
tricles and the action potential proceeds through intercellular connections in the
myocardium.

2.3 Dipole moment of layers and closed surfaces

As previously mentioned the resting potential of myocardiocytes is approximately
-90 mV and arises from concentrations of different ions across the membrane. A
simple electrostatic depiction of the cell membrane would be two separated sheets
with charge densities +� and �� separated at a distance a. At an observation point
at a distance much greater than a, the field from a single dipole in vacuum is

V =
1

4⇡✏0

m · r
r3

=
1

4⇡✏0

✓
m cos ✓)

r2

◆
,

where m is the dipole moment and r the distance between the observation point
and the center point between the two charges. Consider the contribution to the
potential at an observation point from a small part of the cell membrane,

dV =
1

4⇡✏0

cos ✓

r2
dm = {dm = �adS} =

�a

4⇡✏0

cos ✓

r2
dS. (2.1)

In spherical coordinates with ✓ defined as the angle from the horizontal plane to the
z axis, the solid angle differential element is given by d⌦ = cos(✓)

r2 dS. Hence,

dV =
�a

4⇡✏0
d⌦ (2.2)

and the total potential at the observation point is therefore given by

V =

Z

⌦S

�a

4⇡✏0
d⌦

For a closed surface of two sheets of separated charges, the potential will be zero
as any differential solid angle will intersect two surfaces with opposite signs of the

2
OpenStax College. Conduction System of Heart. Wikimedia Commons. License: https://

creativecommons.org/licenses/by/3.0/deed.en. Link: https://commons.wikimedia.org/
w/index.php?curid=30148214
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charge density �. Therefore a fully polarized or depolarized cell will have no net
dipole moment. As this is true for all cells, the potential from a heart at rest is
zero.

Figure 2.3: Figure showing an electrostatic model of a partially depolarized heart. a)
shows the cell as the action potential has depolarized part of the cell. The right side of
the cell is yet to be depolarized by the propagating action potential. An equivalent model
of a) is the superposition of b) and c). Since there is no net electric field from the closed
surface b), the only contribution comes from c). The model for the heart as a whole
becomes equivalent as the action potential propagates from cell to cell. This means that
the depolarization of the heart can be seen as a propagating charged surface that intersects
the current position of the action potential wave.

How can a heart cell which is partially depolarized be described within this picture?
As the action potential propagates through the heart, parts of the myocardiocytes
are depolarized and parts are polarized. At any instant one can think of a cross
section of the heart which divides the heart in to a part that is fully depolarized
and a part that is yet to be depolarized. As discussed above, both the depolarized
and polarized part of the heart will have no net contribution to the potential at an
observation point. However, the cells at the cross section do. A schematic figure
of a partially polarized cell is shown in Figure 2.3. The cell a) can be formed
through superposition of a closed sheet of a charge double layer, b), and a residual
surface c). The potential from the closed surface is zero. Thus, only the residual
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surface of separated charges in c) will contribute to the potential at the observation
point.

Integrating (2.1) over the residual surface of all partially depolarized cells in the
cross section results in the total potential at an observation point P . Assuming
that this point is far away from the heart, r = rP is approximately constant. With
r = rP and ✓ = ✓p

V =
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2
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where S is the total cross section and m̃ is the net dipole moment. If the observation
point is close to the heart, the dipoles that are close to the heart will contribute
more than dipoles far away. Either way the potential at the skin surface can be
seen as the instantaneous projection of the net dipole moment on rP when P is far
away from the heart, or as the sum of contributions of many small dipoles when P

is close to the heart. The net dipole moment is often referred to as the "electrical
force vector" or "activity" in medical literature[16].

One might question why the model was set out in vacuum when the body to an
excellent degree is approximated as purely resistive[17]. One can however show that
as the resistance inside and outside of the cell is the same, a conductive model would
yield the same results as in a vacuum[16, 18].

Also, one might wonder if there will be any differences in an electrodynamic model
compared to the electrostatic equivalent. Signals stemming from voltage sources
will experience a negligible phase shift and attenuation for frequencies under 1000
Hz[17], which includes the contributions from both the fetal and the maternal heart.
Therefore the associated time shift from voltage source to body surface is negligible
and the propagation can be considered as quasi-static.
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Figure 2.4: Measurement made from two abdominal electrodes. The large loop is the
contribution of the maternal QRS wave and the smaller loop is the contribution of the fetal
QRS wave. Looking at the figure it is clear that the maternal and fetal net dipole moments
traverse different paths in space. The data is taken from the Abdominal and Direct Fetal
Electrocardiogram Database [1].

2.4 Electrocardiogram as a net dipole map

The ECG is constructed by mapping the electrical activity from the heart on the
skin surface. Measurements are taken as differences between the readings of two
electrodes at the skin, also know as a lead. With electrode one situated at r1 and
electrode two at r2 with the origin from the heart, according to (2.3),

V =
1

4⇡✏0r3
(r1 � r2) · m̃ =

1

4⇡✏0r3
R · m̃, (2.3)

where R is a vector pointing from electrode 1 to electrode 2. During the cardiac
cycle the net dipole moment makes very distinct loops in space[16]. The ECG results
from the projection of the dipole moment during the loops on to combinations of
electrodes on the skin. A projection of the dipole moment from a maternal and fetal
heart onto two abdominal electrodes is shown in Figure 2.4. Looking at the figure,
it is clear that the maternal and fetal net dipole moments traverse different paths
in space.

A conventional ECG contains measurements consists of at least 9 leads. Three
electrodes are limb leads. They are placed one on each arm as well as on the left
leg. As the body is well approximated as purely resistive[17], the limbs can be seen
as cylindrical conductors. The potential on each limb lead is therefore proportional
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to the point where the limbs meet abdomen and torso. The three limb leads form a
geometrical reference system for other electrode measurements known as Einthoven’s
triangle. Three augumented leads are formed from combinations of the limb leads to
show the projection of the dipole moment onto three new axes. These axes originate
from the center of the triangle to each limb lead. aVL to the left electrode, aVR to
the right electrode and aVF to the electrode on the leg (F as in foot). Apart from
limb leads, there are generally six precordial leads placed across the chest. Each of
these measure the projection of the dipole moment from the center of Einthoven’s
triangle, i.e. the sum of the limb leads, to points around the heart. As these
leads are placed close to the heart, the assumption that all dipoles are equidistant
to the electrode breaks down. That is, each of these electrode are more heavily
influenced by the myocardium tissue near to it. With strategic placement of the
electrodes, each of the precordial leads accurately measure the contribution of the
action potential from specific parts of the heart. This information can be useful
within cardiac diagnostics.

Figure 2.5: Illustration of an ECG waveform recorded on a lead on the skin surface. The
P wave arises from atrial contraction, the PR segment is from the delay in the SA node
and the QRS complex from ventricular depolarization. The ST is the isoelectric interval in
between ventricular depolarization and repolarization. The T wave comes from ventricular
repolarization. The U wave is not always visible and comes from repolarization of so-called
purkinje fibers.
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Each lead has three characteristic regions corresponding to cardiac events. First,
the depolarization and contraction of the atrium are manifested as a small peak
known as the P wave, see Figure 2.5. The dipole moment arising from venrticular
depolarization is projected to the electrodes as a large wave known as the QRS com-
plex. The repolarization of the ventricles manifests as a more slowly varying wave.
The repolarization of the atrium is in general masked by the QRS complex. The
sign and amplitude of the events at each electrode depend on electrode placement
relative to the instantaneous net dipole moment.
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Chapter 3

The fetal ECG

Figure 3.1: The most common fetal presentations and their concomitant prevalences in
utero at the time of labor. The statistics are fetched from Symonds et al.[2].

The first functional organ to take shape in vertebrate embryos is the heart, which
starts beating already at the end of the first month. Fetal movement is common
during the first two trimesters of pregnancy, with an estimated frequency of once per
four-five minutes between eight and 30 weeks of gestation[19]. At later stages the
movements in the uterus are restricted by the fetus’s size. Figure 3.1 illustrates the
incidence of the most common fetal presentations during labor. The vertex position,
i.e. head down and directed toward the birth channel, is by far the most common
(96.8%).
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(a) SECG (b) AECG

Figure 3.2: a) Time-frequency spectrum of an SECG waveform. The yellow nodes
are fetal heart beats. For each heart beat, most of the spectra is contained within the
bandwidth 15-70 Hz. b) The time frequency spectrum of an abdominal electrode. Note
that the fetal heart rate is higher than the maternal, the maternal heart beats have a
higher amplitude than the fetal equivalents, and that the fetal wave packet contains higher
frequencies than the maternal ditto. The data is taken from the Abdominal and Direct
Fetal Electrocardiogram Database[1].

3.1 Similarities and differences to adult ECG sig-

nals

The recorded body surface potential corresponds to the electrical wave that has
propagated from the myocardium to the body surface. Usually the signal-to-noise
ratio (SNR) is considerably worse for fECGs than for adult ECGs due to the addi-
tional obstructing media between the heart and the electrodes and simply because
the fetal heart is smaller. Furthermore, the fetal heart’s development stage, fetal po-
sition and movements all affect the signal strength, orientation and non-stationary
features of the fECG recorded from the maternal abdomen[3].

In general, however, there are many similarities with adult ECGs. The fetal electro-
cardiogram also contains the different characteristic waves as defined by Einthoven;
P, QRS, and T, and the mECG and fECG usually overlap in both the time and
frequency domain (although the fECG normally mainly comprises higher frequen-
cies). Among the more pronounced dissimilarities, the fHR is normally higher than
the adult equivalent (even though the normal range varies over the pregnancy)[20]
and the variability of the heart rate is lower for the fetus[21]. Some of these charac-
teristics are illustrated in Figure 3.2. The so-called magnitude scalograms show the
time-frequency spectrum of an abdominal lead and a scalp electrode respectively.
As seen, the fECG has a faster heart rate and each wave packet contains higher
frequencies, although the spectra are overlapping.

Some of the smaller features of the fECG morphology are often more onerous to
detect clearly than in adult ECGs. For instance, the T wave usually has a very low
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amplitude for the fetus[22].

Figure 3.3: Timeline of prenatal development, including some key entries for fetal mon-
itoring. Vernix caseosa is a thin, highly non-conductive layer normally surrounding the
fetus between around the 28th-32nd week and the 37th-38th week that has a significant
adverse affect on NI-fECG extraction. Based upon statistics given in Behar[3].

3.2 Prenatal development landmarks relevant to fECG

extraction

Figure 3.3 displays important periods of the gestation, including parts that play
important roles in the feasibility of fECG extraction. Starting around the 20th
week, the fetal heart can be heard without amplification[21] and monitored through
Doppler ultrasound, fECG and fetal magnetocardiography (fMCG)[23]. Somewhere
around the 28th-32nd week of gestation, a thin layer called the vernix caseosa takes
shape around the fetus and normally does not dissolve until the 37th-38th week[24].
Since this layer is highly non-conductive, it has been shown to aggravate the difficulty
of NI-fECG extraction substantially[25, 26].

3.3 Significant features of the fECG

The most significant characteristics in fetal monitoring are related to rhythm (fHR)
and morphology (e.g. changes in ST and QT segments). Fetal heart rate variability
reflects the autoregulation by the autonomic nervous system, but its interpretation is
challenging since it can be affected by factors such as fetal sleep state, stage of preg-
nancy, and drugs[27]. Antepartum, the fHR can be used for screening of intrauterine
growth restricted fetuses[28] and intrapartum as a fetal distress indicator[29]. Mor-
phological analyses of the fECG is outside of the scope of this thesis, but has the
potential of many clinical applications such as intrapartum hypoxia detection[30].
However, as a consequence of the current inability to accomplish accurate extrac-
tions of the full fECG morphology (using either SECG or NI-fECG), a very limited
number of studies have managed to show a substantial improvement regarding fetal
outcomes or reductions in the proportion of cesarean deliveries[3].
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Figure 3.4: A uterine contraction, recorded by an intrauterine pressure transducer, and
its effect on the signal quality of an ECG measured on the maternal abdomen. After 70
seconds there is a deterioration in the ECG quality that correlates with the onset of the
contraction. The figure has been reproduced by permission of IOP Publishing.

3.4 Extraction of uterine contractions and fetal res-

piratory movements from the abdominal ECG

During childbirth, the timing of uterine contractions are normally tracked with
an external tocodynamometer attached to the CTG or an intrauterine pressure
catheter. It is however also possible to extract the contractions from the multi-
sourced signal measured in abdominally recorded ECGs[31]. An example of the
effects of a contraction on an abdominal ECG (AECG) can be seen in Figure 3.41.
Even though it degrades the signal quality of the ECG and complicates NI-fECG
extraction, it also indicates that contractions could be extracted through assessment
of its concomitant noise in the AECG.

The first respiratory movements of a fetus were observed already in 1888[32]. Later
on it was inferred that the breathing-like movements of the fetus were necessary as
stimulation of lung development. Since oxygen is provided by the mother during the
pregnancy, the fetal lungs ostensibly do not serve an oxygenation-related purpose
antepartum[3]. The respiratory-like movements can be seen after the 10th pregnancy
week[33] and healthy fetuses should have around 57 breaths per minute (brpm)
30-33 weeks into gestation and around 48 brpm at week 37-40[34]. Breathing rate
extraction from adult ECGs is nowadays implemented in commercial applications[3],

1
Joachim Behar et al. A practical guide to non-invasive foetal electrocardiogram extraction

and analysis. April 2016. Physiological Measurement. 37(5):R1–R35. DOI: 10.1088/0967-

3334/37/5/r1. ©Institute of Physics and Engineering in Medicine. All rights reserved.
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but the feasibility of the equivalent extraction from the fECG, although theoretically
possible, has not yet been rigorously studied.
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Chapter 4

Issues with current technology and

problems to be solved

4.1 Current technology and its drawbacks

There are many different indicators and parameters which doctors can use to deter-
mine whether pregnancy and childbirth are developing as expected. Many crucial
indicators are studied with CTG, cardiotocography, which measures uterine contrac-
tions via a pressure sensor and the fHR via an ultrasonic Doppler sensor or scalp
electrode. Ever since the end of the 19th century, decelerations of the fHR have
been associated with fetal distress. By the middle of the 20th century, sporadic ob-
servations of fetal heart sounds, auscultation, had become standard clinical practice
and commercial fetal heart rate monitors became widespread during the mid-1970s.
The expectations were high that continuous monitoring of the fHR drastically would
reduce the incidence of undiagnosed fetal hypoxia (deprivation of oxygen)[11]. How-
ever, multiple studies showed that the outputs of fHR monitors were frequently
unreliable and difficult to interpret, rendering a surge in the rates of painful, in-
vasive, and expensive cesarean sections and subsequent postnatal depressions[35]
and postoperative pain that negatively affected breastfeeding and infant care[36].
Conversely, little evidence supported that reductions in adverse outcomes could be
attributed to the fHR monitor usage[11].

In addition to being expensive, the usage of Doppler ultrasound sensors comes with
several challenges and drawbacks. Even though it is non-invasive, the measurement
procedure is not passive and it has not been shown that long-term exposure to
ultrasound radiation is harmless for the fetus[37]. Furthermore, it is beneficial for
the mother to be mobile during labor and the sensor can often reduce her mobility
significantly. Even if the sensors would be connected wirelessly, the transducer and
cables are awkward and unwieldy and have substantial power requirements. Another
disadvantage is that the technique is dependent upon a secondary phenomena (the
mechanical activity of the heart). This, together with the utilization of the usual
averaging procedures, makes the produced data ill-suited for the clinically significant
beat-to-beat analysis of the fHR variability[38].
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In particular, as mentioned in Section 1.1, Doppler ultrasound heart rate extraction
occasionally confuses the fHR with the maternal heart rate, mHR, if the ultrasound
transducer gets misoriented. In 10 000 monitored deliveries, five examples of unex-
pected adverse fetal outcome attributed to this signal ambiguity were encountered,
including still births, neonatal deaths, and severe brain damage. Further cases of
signal mix-ups were recorded during the study, but fortunately these did not have
severe effects on the fetal outcome[12].

There are other electronic fetal monitoring techniques under investigation as well.
Fetal magnetocardiography (fMCG) detects the magnetic field of the fetal heart
through SQUIDs, superconducting quantum interference devices, positioned close
to the maternal abdomen. While facilitating morphological analysis of the mea-
sured biopotential due to a higher signal-to-noise ratio compared to the fECG, it
is expensive, demands skilled personnel, and as of now lacks the possibility of long
term monitoring due to the size and cost of the apparatus[3]. Fetal pulse oximetry,
FPO, is a fairly new method (the first device to get FDA approval received it in
2000[39]), but clinical studies showed that the usage of this technique in addition to
the CTG was not associated with significant differences in neonatal outcomes. Its
effects on cesarean frequency could not be determined[39, 40].

The second standard method in clinical practice today in addition to the CTG, the
scalp fetal electrocardiogram (SECG), is measured by attaching an electrode to the
scalp of the fetus. The method can only be used intrapartum and not at earlier stages
of pregnancy and it also carries a slight risk of infection. Moreover, it is not unusual
that the scalp electrode loses contact due to maternal and fetal movement[41]. Due
to the invasiveness and the limitations in accessibility and consistency, SECG has
not been adopted as a routine procedure in all pregnancies. Furthermore, since only
one differential electrode is possible, the resultant cardiac activity will be projected
on a specific lead axis. A mapping of the three dimensional field originating from
the fetal heart is therefore not possible with this modality[3].

With the CTG only being able to give an estimate of the fHR, the SECG being
invasive and mostly unavailable, and other methods being expensive, inaccessible
and/or having dubious efficacy, the NI-fECG received a lot of interest within the
scientific community during the past decades. It could constitute an alternative
monitoring method that combines the advantages of the current clinical methods,
being both non-invasive and accurately determining the fHR and other useful in-
formation about the fetal heart’s electrical activity. However, unsurprisingly, the
NI-fECG comes with its own inherent challenges. The rapidly developing nature of
the fetal heart requires the signal processing methods to be able to manage large
extents of intra- and inter-subject variability[3]. Moreover, the embedding of the
weak fECG field strength within the recorded abdominal mixture makes an accu-
rate reconstruction of the full fECG waveform a highly complicated task.
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4.2 The other subsignals and how to circumvent

them or reduce their prominence

The fECG signal itself usually manifests frequencies from around 0.05 to 100 Hz. For
composite abdominal signals the maximal amplitude of the maternal QRS complex
is normally in the range of 100-150 µV, whereas the fetal equivalent is merely up
to 60 µV at best. Moreover, the fECG is often embedded in electrical noise as
well as other biopotentials and the shape of the fECG signal is dependent on the
electrode placement (there is no well-defined standard positioning for optimal fECG
acquisition[42]), position of the fetus and the gestational age. All these additional
signals aggravate the fECG extraction substantially. Consequently, understanding
their characteristics and the properties that distinguish them from the fetal signal
is of paramount importance for a successful extraction of the fECG. The following
categorization of relevant subsignals can be made[6]:

• mECG signal: the maternal heart signal resembles and interferes with the
fECG the most out of all the subsignals in the composite abdominal signal.
It’s frequency range partly overlaps with the fetal signal and thus will not
regular filtering alone suffice to separate the two signals.

• Power line interference (PLI): PLI comprises 50 Hz and its harmonics and may,
thanks to the well-defined frequency content, be modeled as (a combination
of) sinusoids. Normally it should not vary noticeably during a measurement
in a specific environment and keeping the electrode within a fairly electrically
shielded environment such as a Faraday cage together with post-processing
should reduce this noise significantly.

• Maternal muscle noise (EMG): this signal stems from maternal movement,
mainly from the abdominal and leg muscles and could e.g. be registered
through a reference electrode on the thighs. This electromyographic noise
has a wide frequency span and can sometimes be difficult to identify and sep-
arate from the rest of the abdominal signal, but usually it should not have the
same level of periodicity as the respective heart rates.

• Electrode contact noise: this kind of transient interference originates from loss
of contact between a contact electrode and the skin, which disconnects the
modality from the subject. The ensuing noise can be modeled as a random
baseline transition, occurring once or several times in close succession, that
decays exponentially to the baseline value and has a superimposed 60 Hz
component. Naturally, this noise could be avoided through usage of non-
contact electrodes.

• Motion artifacts: predominantly originating from two sources, electrode-skin
interface and the electrode cables, this noise is present for both contact and
non-contact electrode configurations. Proper design of the electrode circuitry
and full setup as well as a filter that crops low frequencies can suppress these
artifacts.
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• Inherent noise in electronic components: intrinsic noise is present in all elec-
tronics and cannot be eliminated. This adds a restriction on the available
selection of components, which have to be below the (highly application de-
pendent) allowed noise levels.

• Ambient noise: electromagnetic radiation is omnipresent and it is practically
impossible to completely avoid exposing the skin of the subject to some level
of ambient noise.

• Baseline drift and ECG amplitude modulation with respiration: the respiration-
induced baseline drift can be modeled as a sinusoid with the frequency of the
respiration cycle superimposed on the ECG signal. Unfortunately, the ampli-
tude of the ECG signal itself may vary by about 15% with respiration.
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Part II

Hardware development and testing
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Chapter 1

Basic theory/Fundamental

principles

1.1 Capacitance

A capacitor comprises two conductors separated by a non-conductive region. The
non-conductive region can either consist of complete vacuum or a dielectric mate-
rial (an electrical insulator that can be polarized by an applied electric field) such
as glass, air and ceramics. As stated by Coulomb’s law, a charge carrier in one
conductor will exert a distance- and charge-dependent force on the charge carriers
of the other conductor. Since opposite polarities will get attracted and equal po-
larities will get repelled, an opposite surface charge will be induced on the other
conductor. Consequently, the two conductors will hold opposite charges of the same
magnitude on the surfaces that face each other which will render an electric field
between them[43].

An ideal capacitor is characterized by a constant capacitance C, which has the unit
farads (F) in the SI system and is defined as the ratio of the charge magnitude Q

on each conductor to the voltage V between them:

C =
Q

V
.

Thus, a capacitance of one F corresponds to that one coulomb of charge on each
conductor would result in a voltage of 1 V across the capacitor.

23



Figure 1.1: Schematic of the charge separation in a parallel-plate capacitor and its ren-
dered internal electric field. The dielectric material between the plates (orange ellipses)
becomes polarized due to the charge displacement, which reduces the total internal field
and increases the capacitance. Reproduced from November[4].

1.1.1 Displacement current and capacitive sensing

Capacitive sensors are instruments that are able to detect electric signals through
capacitive coupling. The principle can be modelled by a parallel-plate capacitor and
is based on that the sensor makes up one of the two plates and the surface of the
investigated object the other plate. The capacitance for a parallel-plate capacitor is
given by

C = "0"r
A

d
, (1.1)

where "0 is the vacuum permittivity, "r the relative permittivity, A the area of
each of the plates, and d the distance between them (i.e. the thickness of the
dielectric medium). The charge distribution on the object surface at every instant
of time gives rise to an electric field between the two “plates”. The redistribution
of charge carriers on the sensor plate, as a response to the Coulomb forces exerted
by the surface charges on the object, is called displacement current and acts to
achieve temporary equilibrium. Since all quantities could be time-dependent and
I(t) = dQ/dt, it may be written

I(t) = C(t)
dV (t)

dt
. (1.2)

During the cycle of a heartbeat, the myocardium-generated potential will propagate
to the skin, where a redistribution of free charges will occur so as to minimize the
potential differences along all body dimensions at each instant of time. Thus a real
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current, reflecting the shape and periodicity of the cardiac potential, will flow in the
body and generate a time-varying electric field between the constantly redistributing
skin surface charges and the sensor. By measuring the displacement current in the
sensor plate, one should therefore be able to record an ECG.

In the case of capacitive sensing of the heartbeat induced skin current, with air
as the dielectric medium between the sensor and the skin, the capacitance should
according to (1.1) stay constant as long the distance is kept constant (since the
areas normally should stay the same). This is desirable for ECG measurements,
since there according to (1.2) otherwise would not be a linear relationship between
the displacement current and the electric field. However, subject movements may
lead to slight variations in distance between the body and the sensor. Thus, it is
important to take precautionary measures to minimize these distance variations and
the impact they will have on the total capacitance between the skin and the active
components of the sensor. This will be discussed in Section 2.3.3.

(a) (b)

(c) (d)

Figure 1.2: Illustration of the working principle of a Faraday cage. In a), an external
field has just been applied and thus the electrons in the conductive cage are starting to
move towards the positive pole of the field. This redistribution of charges creates a polarity
between the left and right edge of the cage, as seen in b). This polarity, in turn, renders its
own electric field in the opposite direction of the external field as displayed in c). These two
opposing fields cancel out each other to a great extent, in theory (for a perfect conductor)
completely. This is illustrated in d). Adapted from Skowron[5].

1.2 Faraday cage

To isolate electrical devices from their surroundings it is common to apply shielding,
which aim to minimize disturbances from external electromagnetic fields by block-
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ing the fields with enclosing conductive (or magnetic) barriers. Shielding can be
realized with a Faraday cage, which is an enclosed mesh or continuous covering of
a conductive material that to a very high degree cancels out external fields’ within
the interior of the cage. Mathematically, a Faraday cage may be described as a
hollow perfect conductor[44]. Its operation is illustrated in Figure 1.2; an exter-
nal field yields a response from the freely moving charge carriers in the conductor
that, in turn, results in an electric field (in the opposite direction of the external
field) between the edges of the cage that cancels out the external field within the
cage.

Faraday cages are ubiquitous within contemporary technology and an invaluable tool
for noise protection of weak analog signals. For instance, in addition to an insulating
layer, the inner conducting wire of a coaxial cable is encapsulated inside a conducting
layer to avoid external interference with the transmitted information.

1.3 Differential measurements and CMRR

An ECG corresponds to the potential difference between two points on the surface
of the body. Since the two locations are fairly adjacent, they should be exposed
to almost identical external electromagnetic fields (such as power line interference).
By measuring the difference between the two electrodes, the external contributions
should therefore to a great extent cancel each other out while the difference in the
localized fields stemming from the relative positions to the heart should constitute
the predominant output.

In order to further amplify the differences between the two signals and attenuate the
similar elements, it is common to use a differential amplifier. A common measure of
how well this accentuation of differences is accomplished is Common mode rejection
ratio (CMRR). It can be defined as[45]

CMRR = 10 log10

✓
ADM

ACM

◆2

= 20 log10

✓
ADM

|ACM |

◆
, (1.3)

where ADM is the amplification of the difference between the signals and ACM the
amplification of common elements in both signals. Evidently, a high value of ADM

and a small value of ACM yields a high CMRR, i.e. a strong differential amplification.
A CMRR of at least 100-120 dB is desirable for ECG measurements[45].
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Chapter 2

Electrode design

This chapter describes the considerations that were taken into account when de-
signing the non-contact electrode. Initially, the pros and cons with non-contact
electrodes as compared to contact electrodes are discussed in section 2.1. A list of
design priorities and desired properties are set in section 2.2. A simple non-contact
electrode architecture based on previous work by [46] is described in section 2.3. The
electrodes produced in this thesis are inspired by that design, with the same core
component, the Burr-Brown INA116 instrumentation amplifier [47]. The transfer
function and output noise profile is derived for this electrode. In 2.3.3 the issue of
motion artifacts [48] and a solution is presented.

For non-contact probes, it is important to have a high bias impedance, high source
capacitance and low bias capacitance as it reduces noise and sets the high-pass filter
cutoff frequency, described in section 2.3.1 and 2.3.2. A previously used feedback
circuit [49] to increase the input impedance, resistance bootstrapping, is described
in section 2.4. A high input impedance can lead to large voltage offsets and long
settling times. This phenomenon is treated in 2.5. Methods to reduce the bias
capacitance, input neutralization and input guarding, is described in section 2.6
and 2.8. Shielding to reduce the effect of ambient noise and PLI (discussed in part
I section 4.2) is described in 2.7.

All the findings from the initial, preparatory theory are eventually combined when
the chapter is concluded with a summary of the electrode design procedure in section
2.9.

2.1 Contact or non-contact electrode?

The disposable Ag/AgCl contact electrode with hydro-gel interface is used univer-
sally for acquiring bio-potential signals and most of its properties are well understood
and documented, e.g. [50] [51] [52]. It has for a long time proven to be a reliable and
predictable interface for acquiring bio potential signals. However, there are some
intrinsic issues with contact electrodes. Many electrodes in a near vicinity are prone
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to cross-talk [53] and the gel dehydrates over time [50]. Also, there is a prepara-
tion procedure for each applied electrode. These issues are mitigated when using a
non-contact electrode.

Also, the robustness with regards to motion artifacts and external electric fields
have been shown to be the same or even better in non-contact electrodes than
wet electrodes [50]. However, an issue with non-contact electrodes is that they
tend to have an increased noise floor [54], especially at low body electrode coupling
capacitance [55]. Since the fECG is often contaminated with electrical noise from
amplifiers [6], it is important that noise in the electrode is minimized.

Non-contact electrodes offer reusability and a measurement device that easily could
be integrated into a piece of clothing (that do not necessarily need to be in contact
with the skin). This could have a positive effect on costs, environmental friendliness,
and subject mobility during operation. In a long term perspective, it would also
enable continuous health monitoring applications in home environments for both
pregnant and non-pregnant individuals.

Taking all these aspects into account; for long term monitoring of minute signals
and/or if creating a mesh of electrodes to improve signal quality after processing,
non-contact electrodes would be a more realistic solution than wet electrodes.

2.2 Desired properties for non-contact electrodes

There are many requirements when designing electrodes, especially when trying to
measure minute signals in a noisy and dynamic environment (see section 4.2). Most
importantly, the electric components in the circuit should have a noise level that is
much than the fECG, be resistant to power line interference and ambient nose, have
a low-enough cutoff frequency and be resistant to motion artifacts. Furthermore,
Non-contact electrodes must have a high input impedance to be able to detect low
frequency signals arising from minute capacative couplings. Previous coin sized elec-
trodes have had coupling capacitances of around 10 pF through a shirt to multiple
nF with contact through a good dielectric interface [48]. This resistance can lead
to large offset voltages if the bias current of the front end amplifier is large (see
section 2.5). In conclusion, the electrodes should be designed to fulfill the following
requirements:

1. Be able measure the fECG with sufficient signal to noise ratio (SNR).
2. Have a desirable (low) offset voltage and be stable with respect to motion ar-
tifacts. This means that the electrode output should be resistant to variations in
source impedance (i.e. in the skin-electrode coupling).
3. Be designed in a way such that it minimizes the influence from the environment,
e.g. PLI and ambient noise.
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2.3 Circuit analysis

A non-contact electrode schematic without feedback is shown in Figure 2.1. Note
that the amplifier is an instrumentation amplifier and therefore does not necessarily
need a feedback connection. The biopotential at the skin surface capacitively couples
with the electrode surface through an insulating layer, i.e. dielectric coating and
cloth, and is represented with an ideal capacitor Cbody. The resistive element between
electrode and skin is assumed to be very large compared to other circuit elements
and is therefore neglected. Although, this approximation is discussed from a noise
perspetive in section This resistive element is treated from a noise perspective in
section 2.3.2.1. Following the skin-electrode interface is a capacitor in series which
limits the effect of variations in input capacitance. These two capacitors constitute
the total source capacitance, CS = CbodyClim

Cbody+Clim
.

Apart from the source capacitance, there are both a bias resistance and a bias
capacitance to ground, set either explicitly or stemming from the nonideality of the
amplifier, parasitic capacitance and noninfinite insulation resistances.

Figure 2.1: Circuit model of the proposed circuit, shown without external feedback cir-
cuitry such as bootstraping and input neutralization. The amplifier is an instrumentation
amplifier and hence has no gain feedback. eRB is the Johnson-Nyquist noise arising from
the bias resistor to ground, in is the input referred current noise and en the input referred
current noise of the amplifier. Cbody is the capacitive coupling between body and electrode
and Clim is a capacitor that limits variation in source capacitance. CB is the bias capac-
itance, which is the contribution between parasitic coupling capacitances between other
parts of the circuit and the input capacitance of the amplifier.

2.3.1 Derivation of transfer function, maximal gain and cut-
off frequency

A schematic illustration of the circuit is shown in Figure 2.2. Kirchoffs Voltage
Law in the frequency domain on the circuit before the instrumentation amplifier

29



yields

Vskin =
I

j!CS
+ CB||RBI = I

✓
1

j!CS
+

RB

1 + j!CBRB

◆
(2.1)

= I

✓
1 + j!(CS + CB)RB

j!CS(1 + j!CBRB)

◆
, (2.2)

where CS is the combination of the limiting capacitance Clim and the body electrode
coupling Cbody, CS = CbdClim

Cbd+Clim
. The current flowing through the bias resistor and

capacitor is
I =

Vin

RB||CB
= Vin

1 + j!CBRB

RB
,

where Vin is the voltage on the input terminal. The output of the instrumentation
amplifier is set by the the internal gain G. Hence, the output Vout = GVin. This
yields

I =
Vout

G

1 + j!CBRB

RB
,

which in combination with (2.2) gives

Vin = Vout
1 + j!CSRB

GRB

1 + 2j!CSRB

j!CS(1 + j!CSRB)
) (2.3)

H =
Vout

Vin
= G

j!CSRB

1 + j!(CS + CB)RB
(2.4)

Maximal gain occurs when

lim
!!1

|H| = lim
!!1

s
(!CSRB)2

1 + (!(CS + CB)RB)2
= G

CS

CS + CB
(2.5)

The cutoff frequency, fc, is defined as the frequency where the square of the ampli-
tude has decreased by a factor of 1p

2
. Given the maximum amplitude in (2.5):

1p
2
=

����
j!CSRB

1 + j!(CS + CB)RB

����

�✓
CS

CS + CB

◆
=

j!(CS + CB)RBp
1 + !2(CS + CB)2R2

B

,

2!2(CS + CB)
2
R

2
B = 1 + !

2(CS + CB)
2
R

2
B ,

! =
1

(CS + CB)RB
)

fc =
1

2⇡(CS + CB)RB
. (2.6)

30



Figure 2.2: Noise sources in the proposed circuit, shown without external feedback cir-
cuits such as bootstraping and input neutralization. The amplifier is an instrumentation
amplifier and hence has no gain feedback. eRB is the Johnson-Nyquist noise arising from
the bias resistor to ground, in is the input referred current noise and en the input referred
current noise of the amplifier. Cbody is the capacitive coupling between body and electrode
and Clim is a capacitor that limits variation in source capacitance. CB is the bias capac-
itance, which is the contribution between parasitic coupling capacitances between other
parts of the circuit and the input capacitance of the amplifier.

2.3.2 Derivation of output noise

The noise in an instrumentation amplifier is usually specified by three sources, volt-
age noise on the inputs ein, current noise from the input to ground, iin, and output
noise eo [56]. However, the INA116 noise equivalent does not include noise on the
output [47]. These voltage sources are the square root of the power spectral density.
On top of this, there’s Johnson-Nyquist noise stemming from the bias resistance
and given by e

2
R = 4⇡kBTRB. An illustration of the noise sources in the proposed

circuit is shown in Figure 2.2.

Beginning with the Johnson-Nyquist noise and setting all other noise sources to zero.
CB is in parallel with the source capacitance CS = Cbody + Clim. Kirchoffs voltage
law gives

eRB = IRB +
I

j!(CB + CS)
= I

✓
1 + j!(CS + CB)RB

j!(CS + CB)

◆
)

I = eRB

✓
j!(CS + CB)

1 + j!(CS + CB)RB

◆
.

The voltage on the input to ground, einv , is

einv = eRB � IRB + en = eRB � eRB

✓
j!(CS + CB)RB

1 + j!(CS + CB)RB

◆
+ en

= eRB

✓
1

1 + j!(CS + CB)RB

◆
+ en.

31



The same calculation for the current noise yields

eini = in((CS||CB)||RB) = in ((CS + CB)||RB) =
inRB

1 + j!(CS + CB)RB
. (2.7)

The total voltage noise on the input is the sum of the two contributions:

ein = eRB

✓
1 + inRB

1 + j!(CS + CB)RB

◆
+ en.

Squaring the voltage sources and taking the time average, all cross terms cancel due
to that the noise sources are uncorrelated:

e2(f) =
4kbTRB + i2nR

2
B

1 + (CS + CB)2R2
B(2⇡f)

2
+ e

2
in. (2.8)

From now to simplify notation, the mean of the power density of noise sources is
defined through their root mean square values, ê =

p
e2, în =

q
i2n and ên =

q
e2n.

The high-pass cutoff frequency is given by 1/ (2⇡RB(CS + CB)), see (2.6), resulting
in

ê
2(f) =

4kbTRB + î
2
nR

2
B

1 +
⇣

f
fC

⌘2 + ê
2
in. (2.9)

The main frequencies of interest for the fECG should be much higher than the
desired cutoff frequency of the electrode. Hence, if f

fc
>> 1 then

ê
2(f) ⇡ 4kbTRB + î

2
nR

2
B⇣

f
fC

⌘ + ê
2
n

=
4kbTRB + î

2
nR

2
B

(CS + CB)2R2
B(2⇡f)

2
+ ê

2
n

=
1

(CS + CB)2(2⇡f)2

✓
4kbT

RB
+ î

2
n

◆
+ ê

2
n (2.10)

2.3.2.1 The effect of finite source resistance

In previous calculations we have assumed that the source impedance is effectively
infinite, however it is worth mentioning the effect if the source impedance is finite.
To simplify the calculations the limiting capacitance is set to zero. The input noise
density is then given by [57]:

v
2
in = 4kBT |Zs||ZB|2

✓
1

Rs
+

1

RB

◆
,

where RS is the resistance between electrode and body, Zs = RS
1+j!CSRS

is the cor-
responding source impedance, and ZB = RS

1+j!CBRB
is the bias circuit impedance.
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Rewriting the expression

v
2
in =

����
RsRB

(RS +RB) + j!RsRB(CS + CB)

����
2✓ 1

Rs
+

1

RB

◆

=
R

2
sR

2
B

(RS +RB)2 + !2R2
sR

2
B(CS + CB)2
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Rs +RB

RsRB

◆

=

✓
RsRB

RS +RB

◆
1

1 + !2
⇣

RsRB
Rs+RB

⌘2
(CS + CB)2

with Rs >> RB, RsRB
Rs+RB

) RB and the equation reduces to the first term in (2.9).
If Rs << RB, the source resistance instead dominates and the thermal noise is
decided by this resistance. Previous authors have shown that this contribution can
be dominating, e.g. the resistance through a cotton shirt can be around 300 M⌦[48]
(depending on specific material, moisture level and thickness etc.). It is therefore
important that the electrode surface is coated with a highly resistive dielectric.

2.3.2.2 Signal to noise ratio

The signal to noise ratio is given by the power of a signal divided by the power of
the surrounding noise

SNR =
Psignal

Pnoise
. (2.11)

The signal frequency amplitude spectrum on the input of the amplifier is the trans-
fer function H multiplied by the source frequency spectrum, V . The signal power
is proportional to the amplitude squared. The signal power at the input is there-
fore

Ṽ
2
in =

���ṼskinH

���
2

.

The transfer function to the input of the amplifier is simply the the transfer function
to the output, equation (2.4), divided by the amplifier gain. Assuming that the fre-
quency band is far away from the cutoff frequency, the transfer function is estimated
to be at its maximal value, i.e. equation (2.5) divided by signal gain.

Ṽ
2
in ⇡ Ṽ

2
skin

✓
CS

CS + CB

◆2

.

The total signal power within a frequency bandwidth �f is the integral of the power
spectrum. Assuming that the latter is flat within the bandwidth, the total signal
power becomes:

Psignal =

Z

�f

Ṽ
2
skin

✓
CS

CS + CB

◆2

df = V
2
skin

✓
CS

CS + CB

◆
�f.

The total noise power on the corresponding bandwidth is the integral of equation
(2.10). Analytically, it is in this case more convenient to observe the noise to signal
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rato NSR = 1
SNR since each noise contribution is additive. The noise to signal

ratio
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2
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◆
df. (2.13)

For the noise to signal ratio to be minimized, each of the terms in the integral should
be as small as possible. The contributions from the thermal noise and current noise
reduces with C

2
S, while the contribution from the input referred noise depends on

the relationship between CS and CB, i.e. the gain to the input. Also, the current
noise contribution reduces with RB. An electrode with a high signal to noise ratio
and therefore a low noise to signal ratio have a high source capacitance, a low bias
capacitance and a high bias resistance. It is however very important to know which
noise contribution that dominates. This is found by inserting tabulated/measured
values for the three noise sources with actual values for CS, CB and RS.
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Figure 2.3: Amplification vs body-electrode coupling capacitance for different limiting
capacitors Clim.
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2.3.3 Variations in body electrode coupling

An issue with previous non-contact electrodes has been the sensitivity to motion
artifacts[48]. This is due to that even a modest change in skin-electrode distance
may induce a significant change in the coupling capacitance between the electrode
and the skin surface. To limit the influence of variations in this capacitance, a small
capacitance Clim was introduced. This capacitor sets an upper limit for the input
capacitance CS as CS = ClimCbody

Clim+Cbody
. The amplitude modulation of the measured

signal with respect to changes in electrode-body coupling is seen in the derivative
of the maximal transfer function |H|!=1 = CS/(CS +CB) between the skin and the
input of the instrumentation amplifier:

d|H|!=1

dCbody
=

d|H|!=1

dCS

dCS

dCbody
=

CB

(CS + CB)
2

✓
Clim

Clim + Cbody

◆2

(2.14)

If there was no Clim, then CS = Cbody and

d|H 0|!=1

dCbody
=

CB

(Cbody + CB)
2 (2.15)

The ratio at which the derivative is reduced is

d|H 0|!=1

dCbody

�
d|H|!=1

dCbody
= (2.16)

✓
Clim + Cbody

Clim

◆2

=

✓
1 +

Cbody

Clim

◆2

(2.17)

In regions where Cbody > Clim the derivative of the transfer function with respect to
body electrode coupling is reduced and in regions where Cbody < Clim it is increased.
Hence, to minimize variations in source capacitance Clim should be set as low as
possible. However, this should be done with caution as it reduces CS which in turn
reduces the term signal to noise ratio, or equivalently, increases the noise to signal
ratio, equation (2.13). Figure 2.3 displays the transfer function as a function of the
body-electrode capacitance for various values of Clim.
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Figure 2.4: Circuit model showing input resistance bootstrapping network. The equiva-
lent input impedance is Zin = Rin = R1 +R2 +

R1R2
R3

2.4 Bootstrapping

Bootstrapping is a method for increasing the resistance of the bias resistor, which
ideally should be as high as possible for a low noise electrode, see (2.10). A boot-
strapped bias resistance was tested and implemented by [49]. The bootstrapped
circuitry is shown in Figure 2.4. The R1, R2 and R3 form an equivalent input re-
sistance to ground Req = R1 + R2 +

R1R2
R3

. The analytic noise profile is similar to
(2.10), with the only difference being that the bias resistance RB is replaced with
R1 [49]

ê
2(f) =

4kbT

(CS + CB)2R1(2⇡f)2
+

î
2
n

(CS + CB)2(2⇡f)2
+ ê

2
in

=
1

(CS + CB)2(2⇡f)2

✓
4kbT

R1
+ î

2
n

◆
+ ê

2
in (2.18)

The R1 resistance is much smaller than that of a non-bootstrapped circuit with
a large bias resistor RB with the same value as Req. This is the purpose of this
type of bootstrapping, smaller resistors can be combined to create a huge equivalent
resistance. However, since R1 and not Req goes into (2.18), the noise contribution
from the bias circuitry becomes much larger for a bootstrapped setup than for a bias
resistor with the same resistance as Req. In conclusion, bootstrapping is a simple
way to increase the effective resistance to ground, but will introduce more noise
from the bias resistors. As long as large enough resistors are available, they should
be preferable to an equivalent bootstrapping setup. That being said, whether or
not the first term in (2.18) is dominating over the other terms is dependent on the

36



actual values involved.

Figure 2.5: The top figure shows the decay time constant for a step response on the
input of the amplifier as a function of resistance, see equation (2.5). The bias current
in =100 fA, the bias capacitance CB = 7pF and CS = 10pF. The time constant is directly
proportional to CS +CB and RB. The bottom graph shows the equilibrium offset voltage
on the input due to the bias current. The input offset is linear with respect to bias current
and bias resistance. When the bias resistance is in the range of multiple T⌦, the response
time becomes large and so does the input offset voltage.

2.5 Input offset voltage and discharge time

If there were no bias current path on the input terminal, charges would inevitably
build up on the electrode input due to bias currents. One of the main features of
INA116 is the low bias current. In the datasheet[47], the typical bias current is spec-
ified to 3 fA and the maximum bias current 100 fA. As in the previous calculations,
assume that the source capacitance CS is around 10 pF. The voltage over the input
is the same expression as for the current source in the noise calculations:

ein =
iBRB

1 + j!(CS + CB)RB
= eiB

1

1 + j!(CS + CB)RB
.
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At ! = 0 there will be a constant offset voltage eiB = iBRB. Such one-pole systems
as the one in (2.5) are well-studied[58] and it can be shown that the corresponding
transient response is

ein(t) = eiB(0)
⇣
1� e

t
(CS+CB)RB

⌘
,

where ⌧ = (CS +CB)RB is the response time. For CS = 10 pF, CB = 7 pF and iB =
100 fA, the response time and offset voltage with respect to resistance is shown in
Figure 2.5.

Figure 2.6: Figure showing the principle of driven guard. b) shows the sensitive trace,
3, and some other trace, 1, on the circuit board, e.g. ground. The sensitive trace couples
with 1 through Cp and RB. a) shows the driven guard techinque. The sensitive input, 3,
couples with the guard, 2, through Cd and Rd. The guard couples with some other trace,
1, through Cp and Rp. As the guard is actively driven to the same potential as the input,
there is no leakage current between these two traces. Since the guard is not sensitive, it is
unaffected by the coupling with trace 1.

2.6 Driven guard and stray capacitance

Low current circuits can sometimes be sensitive to leakage currents in the PCB,
printed circuit board, material. Driven guard is a technique used to minimize these
leakage currents. A unit gain output of the amplifier is directed in a loop around
the sensitive input, the principle is illustrated in Figure 2.6. In this way there will
be no potential difference between the input and and the surrounding guard loop,
and if designed correctly, a very high barrier to other parts of the board. The guard
ring itself is not sensitive to leakage currents as the output of the amplifier can draw
large currents. A well used technique [59] for guarding the input of a high impedance
electrode is to use a three layer board with a guard ring around the input on the
top layer, a middle layer completely filled with a copper guard plate and a guard
ring around the electrode surface. By using the middle plate and the bottom plate,
the large electrode surface does not couple with any other circuitry on the board
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nor other electronics.
However, the small input pin on the top of the electrode is not isolated from the
environment. The influence of the environment on the input is reduced through
electrostatic shielding.

2.7 Electrostatic shielding

Shielding is a technique used to reduce external electromagnetic field in an en-
closed space. Electrostatic shielding builds on the same principle as the Faraday
cage, see Part II Section 1.2. The sensitive circuitry and signal carrying wires are
surrounded with a metal sheet that neutralizes external electrostatic fields. Further-
more, shielded cables are used as well as a shielded enclosure around the backside
of the electrode.

Figure 2.7: Figure showing the neutralization technique of input capacitance. The output
is amplified by 1+ � fed back to the input through the coupling capacitance Cn. With the
correct choice of Cn and � (Cn = CB/�) the current to the parasitic capacitance is drawn
from Cn, hence canceling the effect of CB. In this way the capacitive part of the input
impedance Zin is removed, or in practise, reduced.
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2.8 Neutralization of input capacitance

Guarding can reduce much of the parasitic capacitance. However, there will always
be a capacitance associated with the input of the an amplifier. For example, INA116
has an input capacitance of 7 pF[47]. A technique used to reduce the effect of the
input capacitance is neutralization. A small portion of the output is amplified by
a gain 1 + � and fed to the input to a capacitor Cn. By setting both Cn and
� appropriately, the current to the parasitic capacitance is drawn from Cn, hence
canceling the effect of CB.

Denote the output Vo. For a the configuration in figure 2.7 Vi ⇡ Vo (This is a so called
voltage follower configuration). The current over Cn is In = ((1+�)Vi�Vi)

j!Cn
= �Vi

j!Cn
. The

current over CB is IB = Vi
j!CB

. Looking at the input node, node 1 in Figure 2.7, IB
is effectively removed if

Iin = IB � In = 0 ) Cn =
CB

�
. (2.19)

This requires the input impedance observed from the input to be

Zin =
Vi

Iin
= j!(CB � �Cn). (2.20)

Nevertheless, there are drawbacks with this technique. The feedback loop introduces
noise to the circuit. Denote the voltage noise on the input of the voltage follower
amplifier e1n and the corresponding noise on the feedback amplifier e2n. The output
noise eo of the amplifier is given by[55]

e
2
o = e

2
1n(1 + (1 +

1

�
)
Cin

CS
)2 + e

2
2n((1 +

1

�
)
Cin

CS
)2 (2.21)

A small � leads to undesired noise through feedback in both amplifiers. On the
contrary, an excessively large � demands very small neutralization capacitors.

2.9 Design procedure

To make design decisions based on the noise analysis, it is important to know which
type of noise that is dominating. Equation (2.10) shows that RB reduces the thermal
noise on the input, and CS and CB reduces both thermal and current noise, however
CB reduces the signal to noise ratio. For INA116, the current noise is exceptionally
low, a typical value of 0.1 fA/

p
Hz at 1000 Hz[47]. Even though this current is small,

it will be comparable to the input referred noise because of the small source and
bias capacitors. From a noise perspective, the design proceeds as following:

1. Choose a reasonably large gain in the instrumentation amplifier. Gain reduces
the input referred noise [47].

2. Choose a reasonable bandwidth to minimize the noise on, i.e. the same as the
frequency spectrum of the fECG.
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3. Pick a bias resistance such that the thermal noise is in the same range as the
current noise on the desired bandwidth.

4. Find the source capacitance that makes the current and thermal noise in the
same range as the input referred noise on the desired bandwidth.

The input noise reduces drastically with gain for small amplifier gain. A table of
input referred noise at 1, 10 and 100 Hz for gain 1, 10 and 1000 for INA116 is
shown below. As can be seen, the noise reduces sharply from gain 1 to gain

Gain [-]\Frequency [Hz] 1 10 100
1 2000 450 195
10 500 140 56
1000 330 90 38

Table 2.1: Input referred noise in INA116 at different amplifier gain and frequencies. The
noise levels are given in nV/

p
Hz

10, but not much from gain 10 to gain 1000. The gain should be in the range of
10-1000. Exactly which gain that is used depends on experimental validation of the
robustness and offset voltage of the electrode.

The complete fECG contains frequencies in the range from DC to around 300 Hz[20],
however most of the spectrum is contained within 15 and 70 Hz as can be seen in
Figure 3.2.

Looking at (2.10), the noise contribution from the current source exceeds the thermal
noise contribution when 4kbT

RB
< i

2
n. Using the specified typical current noise at 1000

Hz, in = 0.1 fA/
p
Hz, the bias resistor that would be needed for the current noise

to be larger than the thermal noise is approximately 1.6 T⌦. For FET type input
amplifiers current noise is generally white for low frequencies and has a linear slope
at a certain cutoff frequency [60]. Hence, the result is valid for frequencies lower
than 1000 Hz.

To attain this bias resistance a bootstrapping feedback network is not feasible as the
purpose of the network is to reduce the need for large resistors, and the correspond-
ing resistance in the noise calculations (R1 in equation (2.18)) would increase the
thermal noise to a level several times greater than the current noise. It is noteworthy
that attempts have been made to create extremely large input impedances by using
bootstrapped reverse diodes [61] or not setting the bias resistance explicitly at all
[62], leaving the bias current path through the PCB, skin-electrode interface and
amplifier. However, for the purposes of this thesis, this only serves to reduce the
overall reliability of the electrode as the settling time and offset voltage would be-
come large, thereby indirectly reducing noise performance through a lower amplifier
gain. With this in consideration, a bias resistor with a resistance of 500 G⌦ was
implemented without bootstrapping. With this resistance, the input voltage offset
would be around 0.05 V (Figure 2.5), allowing for maximum input gain in the range
of ⇠200 if the INA116 is operated with the specified typical voltage supply, ±15
V.
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The source capacitance needed to reduce the current and voltage noise to levels of
the input referred noise depends on whether a neutralization network is implemented
or not. As described in section 2.8, the coupling capacitance must be relatively small
not to introduce excessive noise. This is in general not desired as the coupling capac-
itance between PCB traces may be in the range of the neutralization capacitance.
However, either a strict manufacturing process and well designed board layout, or
manually tuning the feedback gain can resolve this issue. A neutralization capac-
itor in a non-contact electrode has successfully been implemented by Spinelli[49],
although the authors used a bootstrap technique that increased the voltage noise,
see Part II Section 2.4). It has also been suggested that Harland and Prance used a
neutralization technique in their moderately secretive publication in 2002[62], [48].
Input neutralization is a must when dealing with very small coupling capacitances
as the gain drastically reduces as the bias capacitance approaches the source capac-
itance, see equation (2.5).

A neutralization technique was not implemented in the current electrode due to
two reasons. Firstly, the body-electrode capacitance is most of the time large with
respect to the input capacitance of the INA116, 10 pF to several nF compared to
7 pF. Secondly, setting the feedback gain of the feedback amplifier while adjusting
the gain of the INA116 for optimal performance would result in more experimental
error sources, which was deemed highly undesirable during the early evaluation
stages discussed in this report. However, the technique can be implemented in a
next generation electrode to marginally increase the electrode performance with
respect to stability to variations in coupling capacitance and input referred voltage
noise levels.

That being said, assuming that the driven guard is effective, the bias capacitance is
7 pF from the amplifier. The source capacitance that would reduce the current and
thermal noise contributions to the same level as the input referred noise is found
through equation (2.10):

1

(CS + CB)2(2⇡f)2

✓
4kbT
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2
n

◆
= ê

2
n , (2.22)
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ên(2⇡f)

r
4kbT
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+ i2n , (2.23)

CS =
1

ên(2⇡f)

r
4kbT

RB
+ i2n � CB. (2.24)

The thermal noise and current noise contributions decrease faster with frequency
than the input referred noise [47]. Hence, the thermal and current noise should
preferably be lower than the input referred noise at 15 Hz. Using gain 10, the
corresponding source capacitance is given by inserting the value into (2.24), which
results in CS = 8.6425 pF. Knowing this, the limiting capacitance Clim was set to
10 pF as it should be as low as possible to reduce the effect of variations in input
capacitance. However, as described in 2.3.2.2, a reduced ratio between source and
bias capacitance increases the term in the noise to signal arising from the input
referred noise, equation (2.11). An upper bound of the increase in NSR can be set
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by assuming that the other noise sources are negligible. The NSR then becomes:
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2
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◆2

ê
2
n. (2.25)

If the body-electrode coupling is 50 pF and the bias capacitance is 7 pF, the upper
limit is equation 2.25 evaluated at CS = CbodyClim

Cbody+Clim
divided by the same equation

evaluated at CS = Cbody = 50 pF. At the specified parameters the limiting capacitor
leads to a in an increase NSR by a factor 1.61 or equivalently, a reduction of the
SNR by a factor 0.619. This was deemed acceptable with regards to the increase in
robustness with respect to variations in source capacitance.
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Figure 2.8: Noise power spectral density for the desired configuration of the electrode.
As can be seen the thermal noise and current noise is lower than the input referred noise
on the interval 15-75 Hz. On this bandwidth the total noise is 0.9242 µVrms.

The noise power density spectrum with the set parameters and CS = 10 pF is shown
in Figure 2.8. The total noise in the bandwidth 15-75 Hz is 0.9242 µVrms.
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Figure 2.9: Design of the electrodes in EAGLE PCB. a) shows the top copper layer of
the electrode, b) shows the inner copper guard layer and c) shows the electrode surface
with a surrounding guard ring.

The three layer guarding technique was implemented as described in Section 2.6. The
three layers of the board is shown in Figure 2.9. The guard ring on the top layer can
be seen on the left side of the top view. The cross section shows the entire guard
layer in the middle of the electrode. The bottom view shows the electrode surface
as well as the surrounding guard ring. The four vertical stripes by the lower edge
on the top view are pads for output, ground, and power supply external connections
going to and from the electrode. Shielded cables were used and a shielded conductive
casing was placed around the electrode in accordance with Section 2.7.
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Chapter 3

Evaluation of electrode

Figure 3.1: The ECG measurement circuit. On the left side are circuit diagrams for the
electrodes described in section 2.9. The right side shows the amplifier circuit. Both signals
were passed through a high pass filter and then to INA128, a high CMMR instrumentation
amplifier, before a differential signal was logged.

3.1 ECG measurement setup

The ECG measurement circuit is shown in Figure 3.1. Both of the outputs from
the electrodes were propagated through a high pass filter that removed the DC
components. The signals were then amplified by an INA128 [63], a high CMRR
instrumentation amplifier. Gain of both electrodes and differential amplifier were
varied to find optimal performance. No notch filter for the PLI was implemented as
this distorts the ECG waveform. The signal from INA128 was acquired using the
data acquisition device DT9837A connected to a PC.
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3.2 Transfer function measurement setup

The electrode was mounted inside a closed metal box. An 820 nF ceramic capacitor
was connected to the input of the electrode. The electrode input was supplied
with sinusoidal signals from the digital to analog converter DT9837A through BNC
connectors in the metal box. The frequency of the driving signal was increased in
logarithmic steps from 0.05 to 1000 Hz. Both driving signal and output signal were
measured using the DT9837A. Exactly ten periods of the driving signals was used
to estimate the Fourier transform using MatlabTM. The maximum amplitude in the
frequency domain of the driving signal and the measured signal respectively were
used to calculate the amplitude and phase of the transfer function at each frequency
step. The amplitude of the transfer function at 1000 Hz was used to estimate the bias
capacitance CB through equation (2.5), which in combination with equation (2.6)
and measurement of the cutoff frequency was used to estimate the bias resistance.
The bias capacitance was compared to the capacitance measured on the board with
no components on to verify that the driven guard was working as expected.

Also, a measurement was conducted with the electrode surface (i.e. the insulating
solder mask made of photosensitive ink) connected to ground by conductive copper
tape. The amplitude of the transfer function at the cutoff frequency was compared
with and without copper tape to verify that the body electrode resistance was much
larger than than the bias resistance.

3.3 Noise measurements setup

The electrodes were connected in a shielded box with BNC conectors. Supply voltage
for the electrodes was supplied through the BNC connections in the box. As the
sensor is very sensitive to movement amd vibrations, measurements varied a lot
depending on where the shielded box was situated an on what type of equipment
that surrounded it. The shielded box was placed on a stack of thick, vibration
attenuating foam cuboids, to reduce the influence of external vibrations. The output
of the electrode was connected to a BNC connector and a BNC cable was connected
to the input on the box and to a lock-in amplifier, SR510. The lock-in amplifier
was supplied with a reference signal from a signal generator, Agilent 33220A. Noise
measurement was selected on the amplifier, the dynamic range was set to low, the
bandwidth was set to 1 Hz and the resolution was set depending on the magnitude
of the noise levels. The outgoing signal from the shielded box was pre-amplified ten
times before the lock-in amplifier measured the noise signal. This to enable accurate
detection of noise signals of smaller magnitude. All amplifications where accounted
for in the noise measurements. The measurements show the noise levels at the input
of the INA116.

The analog output of the amplifier was connected to a 16 bit analog-to-digital con-
verter, NI PCI-6014. Signals were recorded for on average 15 minutes. Longer
measurements were made (up to 11h over night) to make sure that the signal did
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not deviate over time. Before each measurement a delay of one or a few minutes
was introduced so that the averaging method in the lock-in amplifier had settled.
Measurements were made with various amplifier (INA116) gain and at various fre-
quencies.

Also, the lock-in amplifier was tested on various resistors and short circuiting to
make sure that the amplifier was working as expected.
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Chapter 4

Results

4.1 Transfer function - gain and cutoff frequencies

Figure 4.1: Figure showing the measured transfer function of the non-contact electrode
at CS = 10 pF. The upper figure shows the amplitude modulation and the lower figure
shows the phase attenuation. The high pass cutoff frequency was measured to be 0.0268
Hz which is well below 0.05, the standard for ECG measurements [6]. From the analytic
transfer function, equation (2.4), the bias capacitance CB was calculated to 7.01 pF and
the bias resistance RB to 349 G⌦.
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The measured transfer function for the electrode is shown in Figure (4.1). The gain
resistor was set to 2663 ⌦ which corresponds to gain 19.78. The maximum value
of the transfer function, i.e. at 1000 Hz, was |H|max = 11.626. This is well above
the cutoff frequency, which implies that the amplification is almost at a maximum,
equation (2.5). Using equation (2.5) with Cbody = 820 nF and Clim = 10pF, the
bias capacitance was determined to CB = 7.01 pF. Without any components on the
board, the capacitance was 5 pF from input to ground and 35 pF from the electrode
surface to ground.

The measured cutoff frequency was 0.0268 Hz, well below standards for ECG mea-
surements. This is slightly above the calculated cutoff frequency, 0.0187 Hz. The
bias resistance was not measured due to difficulty finding a valid reference resistor.
Using equation (2.6) with Cbody = 820 nF, Clim = 10 pF and CB = 7.01 pF, the bias
resistance was calculated to 349 G⌦. This is less than the specified resistance of the
bias resistor, 500 ± 100 G⌦. At 0.0268 Hz, the amplitude of the transfer function
was 8.67 with no connection between electrode surface and ground (air) and 8.65
with a direct conducting path to ground.
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4.2 Noise measurements

(a) (b)

(c) (d)

Figure 4.2: a) shows measurements of the mean of input noise density measured at 10
Hz for different amplifier gains. The error bars show ±1�. b) shows measurements of the
mean of input noise density measured at 100 Hz for different amplifier gains. The solid line
in c) shows the average noise over time for a measurement made at 10 Hz and gain 9.81.
The dashed line shows the corresponding expected noise level, equation (2.10). The solid
line in d) shows the average noise over time for a measurement made at 10 Hz and gain
8.92. The dashed line shows the corresponding expected noise level, equation (2.10). Note
that there are large fluctuations in the noise at 100 Hz, b), and that there is no obvious
trend with respect to gain, b). At this frequency, it is expected that the noise decreases
with gain until the contributions from the thermal and current noise are larger than the
input referred noise, see Figure (2.8). In the same way there is no trend in average noise
with respect to gain. Finally the noise levels in d) are in the vicinity of the estimated noise
and the noise seems to reach a noise floor at some time intervals.
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Figure 4.3: Histogram of the average noise over time at 100Hz and gain 24.92 measured
with the lock-in amplifier. The measurements where taken over 11 h over night. The
average noise distribution is not Gaussian and has a large standard deviation.

Noise measurements at 10Hz and 100Hz with different amplifier gain is shown in
Figure 4.2a and 4.2b respectively. The error bars indicate ±1�. According to the
noise calculations in Section 2.9, input referred voltage and total noise density should
decrease with gain, especially at 100 Hz, see Figure (2.8) and Table 2.1. At 10 Hz,
the noise should decrease with gain until the thermal and current noise dominate
over the input referred noise. As seen from Figure 4.2b, there is no clear trend for
noise at 100 Hz, although it is in the expected range. At gain 10 and 100 Hz the
input noise should be 61.432 nV/

p
Hz, equation (2.10). At gain 8.92 the noise is in

the range 42-47 nV/
p

Hz. However, at 10 Hz the measured noise is markedly higher
than what is expected and shows no clear trend. At this frequency, the noise is in
the range 1000-1300 nV/

p
Hz while it should be around 273.28 nV/

p
Hz. Looking

at a measurement over time, Figure 4.2c, gain 9.81 at 10 Hz, it can be seen that the
measurements drift over time. The dashed line indicate the expected noise level.
From a long measurement at 100 Hz and gain 8.92, Figure 4.2d, it can be seen
that drift still exists, but looking at the relative changes the measurement is more
stable. A histogram of the measurement is shown in Figure 4.3. As can be seen, the
distribution is not Gaussian.
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Figure 4.4: Typical ECG of abdominal non-contact electrode measurement (blue) con-
ducted with the setup developed in this thesis and abdominal contact electrode from the
NI-FECG database, see Part III Section 2.1. The red markers denote fQRS locations. The
noise and interference from the non-contact electrode is similar to the contact electrode
used for measuring the fECG.

4.3 ECG measurements

Figure 4.4 shows a typical abdominal non-contact electrode measurement conducted
with the setup developed in this thesis and a typical contact electrode-based mea-
surement taken from the NI-FECG database, see Part III Section 2.1. Both signals
are compensated for gain, i.e. the graph shows the potential at the skin surface.
The gain of INA116 was set to 20 and the gain of INA128 was set to 100. The red
markers indicate fQRS locations. A digital low pass filter with 2 Hz cutoff and a
digital high pass filter with 100 Hz cutoff have been applied to both signals. Note
that the non-contact electrode signal is similar with respect to noise and interference
to the contact electrode.
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Figure 4.5: The top figure shows raw data from two non-contact electrodes placed on the
chest near each shoulder. Dry ground and shielding were used to reduce PLI. The bottom
figure shows the same signal with a 50 Hz notch filter as well as a 2 Hz high-pass filter and
a 80 Hz low pass filter applied digitally.

Figure 4.6: Measurement of electrodes through a cotton t-shirt. One electrode was placed
on the chest near the right shoulder and one was placed near the left the apex of the left
ventricle. The repolarization of the ventricles (T-wave) is pronounced due to the placement
of the electrodes. A 50 Hz notch filter as well as a 0.5 Hz high-pass filter and a 80 Hz low
pass filter have been applied digitally.

The top pane in Figure 4.5 shows an unfiltered measurement with the non-contact
electrodes placed on the thorax near each shoulder. The bottom pane shows the
same signal with a 50 Hz notch filter as well as a 2 Hz high-pass filter and a 80 Hz
low pass filter applied digitally.
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Figure 4.6 shows a measurement made through a thin cotton shirt. One electrode
was placed on the chest near the right shoulder and one was placed near the apex of
left ventricle. The repolarization of the ventricles (the normally quite inconspicuous
T-wave) is pronounced due to the placement of the second electrode. A 50 Hz notch
filter as well as a 0.5 Hz high-pass filter and a 80 Hz low pass filter have been applied
digitally.
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Chapter 5

Discussion

The noise measurements were particularly difficult as any type of vibration seemed
to perturb the measurements, e.g. computer fans, walking in the vicinity of the
setup etc. Even when the foam stand was introduced there were large variations
in average noise levels, especially at 10 Hz. This noise could potentially come from
electro-mechanical coupling between cables in the shielded box or from the voltage
supply, although care was taken to filter out any noise from the DC source. From
the unreliability of the measurements, it is believed that the measurements at 10
Hz are due to other noise sources than the circuitry. However, as no noise source
can decrease the total noise, the absolute noise levels of the measurement at 100 Hz
should be fairly accurate. However, the discrepancy between the predicted noise vs
gain relationship and the measured ditto indicates that these measurements were
affected by external interference as well. Hence, the measurements have to be made
in an even more isolated environment to draw confident conclusions about the noise
profile of the electrode. One method that could improve the setup is to directly
solder a large (⇠ 10 µF) capacitor to the input of CS. In this way the source
capacitance would be approximately the same, whereas basically any signal picked
up by the electrode surface would be filtered through the external capacitor.

There were some issues with the settling time when applying the electrode, especially
at higher gain. This issue can however easily be resolved. By directing a low passed
version of the input signal (e.g. indirectly from the guard of the INA116) to the
grounded input, the DC offset is removed on the output. Furthermore, this type of
feedback makes higher gain on the amplifier more viable.

In the next version of the electrode, input neutralization should be implemented
to some extent to reduce noise levels and make the electrode more stable against
variations in source capacitance. Also, using this technique the electrodes can be
even smaller while having the same signal gain. If using a reasonably small capacitor
and fine tuning the feedback gain, the introduced noise should be almost negligible.
Lastly, a lower input capacitance allows for a lower limiting capacitance which would
make the electrodes more stable.

A technique called right leg drive is ubiquitous in medical ECG devices to cancel
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common mode signals, especially 50/60 Hz power line interference. The common
signal mode between two electrodes is inverted and amplified before it is returned to
the body through an electrode on the right leg. In our measurements there were a
lot of power line interference if not a dry ground and proper shielding were used as
in Figure 4.5. A strategically placed right leg drive could improve the signal quality,
however, the PLI in the measured signals is already small. Even a purely capacitive
right leg drive can prove very effective[64], making all the electrodes entirely non-
contact.

The amplification of the electrode was about the same at the cutoff frequency when
there was no conducting path between the insulating electrode surface and when
there was a direct connection to ground, Part II Section 4.1. There was small
difference ⇡ 0.2%. This minute difference can either come from a parallel circuit
with a very large resistance and the 500 G⌦ or other changes in the measurement
setup such as capacitive coupling to the input pin (which is simply added to the
10 pF source impedance). In either way the resistance in the solder mask is much
larger than the bias resistance.

In the future other operational amplifiers should be considered. The extremely
low bias current is not required if (as previously described) the output is high-pass
filtered and connected to the other input. At 500 G⌦ and 100 fA bias current, the
calculated input voltage offset was around 0.07 V, see Figure 2.5. If an amplifier
with 5 pF bias current was used, the input voltage would be around 3.5 V and
many amplifiers have supply voltages larger than this. A component search should
be made for all amplifiers with a bias current smaller than a specific threshold,
and then filtered with regards to the introduced noise, see Section 2.9. A possible
candidate is Analog Devices LTC6240 with much lower voltage noise and almost the
same current noise as INA116. It has a sufficiently low input bias current and is
sold at a fraction of the price of INA116.

The electrodes have been designed around being able to measure the fECG, although
to have the same functionality as the CTG it should also be able to measure con-
tractions. As the electrohystrogram (mEHG) is normally much larger in amplitude
and on a different frequency band (above the lower cutoff frequency of the devel-
oped electrode), around 0.1 to 1.1 Hz,[20] the electrodes should be able to reliably
measure contractions. Furthermore, during experiments the electrodes had a visible
shift in baseline voltage during breathing (where the amplitude naturally depended
on the placement on the electrode). Also this frequency range is included in the
bandwidth of the electrode.
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Chapter 6

Conclusion

A high impedance non-contact electrode was developed and optimized with respect
to noise, stability and resistance to artifacts. The electrode can reliably measure
an ECG signal and should be able to measure the fECG with similar signal to
noise ratios as state of the art contact electrodes, Figure (4.5). The electrodes are
suitable for stationary implementation in stretchy fabric, which facilitates an easy
application procedure, reusability and long term fECG monitoring.
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Part III

Software development and testing
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Chapter 1

Basic theory

This chapter briefly discusses concepts integral to the reviewed and developed fECG
extraction methods, including adaptive filtering and different kinds of neural net-
works.

1.1 Adaptive filtering

In order to remove noise from a signal one usually filters it in some way. For a
non-adaptive method the filter is fixed, meaning that it has a constant transfer
function, whereas the opposite holds for an adaptive method. Within the field
of fECG extraction, adaptive noise cancellation methods are usually employed to
suppress noise within the AECG mixture[65]. In such methods, the AECG y(n) is
regarded as a sum of the desired subsignal, the fECG s(n), and noise ⌘(n), that is
y(n) = s(n) + ⌘(n). The noise ⌘(n) is the composite signal comprising the mECG,
other biopotentials, and artifacts stemming from movement etc. It is adaptively
subtracted by a finite impulse response filter (a filter whose impulse response, or
response of any finite length input, has a finite duration) with coefficients/weights
w = [w1, ..., wN ]. N denotes the number of weights that are updated in a recursive
manner in order to minimize an error signal e(n)[3].
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Figure 1.1: A block diagram describing the adaptive noise cancelling process of the AECG
y(n) using a chest reference input signal u(n) at time step n. The fECG is the signal of
interest s(n), ⌘(n) is the total noise, ⌘̂(n) the estimated noise, e(n) the estimation error
signal, and ŝ(n) the output signal. The aim of the filter is to recursively map the fECG
free chest signal as closely as possible onto y(n). This mapping should then correspond to
the primary noise source in the AECG, the mECG, and can then be subtracted from the
abdominal signal.

A schematic of the adaptive filtering process is shown in Figure 1.1. Let an mECG
measurement recorded on the chest be the input signal u(n). Due to its placement,
it should be virtually fECG free. The aim of the filtering methods is to find a
model that maps u(n) to an output ⌘̂(n) such that ⌘̂(n), in the least mean square
error sense, resembles the target signal y(n) as much as possible. By applying a
filter that matches u(n) with y(n), the resulting signal ⌘̂(n) will predominantly
mimic the main source of noise in the AECG mixture, the mECG. Subtraction of
⌘̂(n) from the AECG should therefore yield a significant suppression of the mECG
component.

1.2 Blind source separation

In terms of NI-fECG extraction, the goal of blind source separation (BSS) methods is
to split the underlying sources of the AECG into three different categories: mECG,
fECG, and noise. For a standard BSS model, one considers p independent source
signals s = [sk1, ..., s

k
p] 2 <p and the observation of equally many mixtures m =

[mk
1, ...,m

k
p] 2 <p for time index k. The mixtures are assumed to be momentary

linear combinations of the sources, mk
i =

Pp
j=1 ai,js

k
j [66]. On matrix form, one gets

the mixing equation m = As, where the observation vector m at time k contains
the AECG at that time instant and A 2 <p⇥p is the mixing matrix. The general
objective of BSS is to extract the random variable vector s from the observed data
in the random variable vector m, which may be approached in multiple ways. Two
spatial separation techniques within the BSS framework are discussed in the fECG
extraction methods review in Part III Section 3.1, principal component analysis and
independent component analysis.
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1.3 Artificial neural networks

An artificial neural network (ANN) is a mathematical tool that function similarly
to (simplified) biological neural systems. Oftentimes, it is designed to reproduce hu-
man brain functions such as information processing, pattern recognition, and mem-
ory. Originally introduced by neuroscientist Warren McCulloch and mathematician
Walter Pitts in 1943, it was suggested early on that any computable function could
be fully realized by their so-called McCulloch-Pitts artificial neural network, even
though some functions would require impractically large networks[67]. Ever since,
a myriad of ANN types have been introduced and it is nowadays widely used to
solve a variety of problems within numerous research fields and commercial appli-
cations.

(a) Layered feedforward neural
network (b) McCulloch-Pitts neuron

Figure 1.2: The principle and structure of a layered feed forward neural network (a)) with
McCulloch-Pitts neurons (b)). In such a network, an input signal is propagating through
forward-pointing (left to right) connections, where a numerical operation is conducted in
each neuron (apart from in the input layer) before the signal is passed on to the neurons
of the next layer. In a McCulloch-Pitts neuron (circumscribed by the dash-dotted circle),
the output signal of the neuron is obtained by first calculating a weighted sum of all the
n inputs xj (which correspond to the outputs from the previous layer), then adding a bias
term specified for each neuron and finally using the sum as the argument to some activation
function �. a) is reproduced from Cburnett[7].

ANNs utilize intricate mathematical algorithms and computational functions in or-
der to simulate biological neural networks. They comprise building blocks called
“artifical neurons” that resemble the structure of real neurons and consist of three
main parts: inputs, transformation functions, and output. This introduction will
focus on one of the most common configurations, a layered feed forward neural net-
work (FFNN) with McCulloch-Pitts (MCP) neurons. In such a network, shown in
Figure 1.2, only forward-pointing connections (left to right) are used. Each of the
connections are associated with a weight, wij, with a specific numerical value. An
FFNN starts with a layer of input elements that simply transmits the incoming
signal to the next layer without performing any numerical operations. Each input
neuron normally corresponds to an element of an input vector.
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Usually there is one or more so-called hidden layers between the input layer and
the output layer. For each of the hidden layers and the output layer an elementary
operation is carried out before the signal is passed on to the next layer. Once the
output layer is reached, a final computation is performed to obtain the output of
the network. An FFNN with multiple hidden layers is often denoted a “deep neural
network”.

In an MCP neuron, the output signal yi of neuron i in a layer is obtained by first
calculating a weighted sum of all the n inputs xj (which correspond to the outputs
from the previous layer)

si =
nX

j=1

wijxj + bi,

where bi is a bias term. The output yi is then finally generated by

yi = � (si) ,

where � is an activation function that determines the output range. It could for
instance be the logistic sigmoid function

�(si) =
1

1 + e�csi
,

where c is a positive constant. The output is then limited within the range [0, 1]
and the bias term bi thus regulates the propensity of getting an output close to 1
or 0. In the case of a completely binary activation function that takes the value 1
if s exceeds some threshold value and 0 otherwise (imitating the biological neuron
property of all-or-none firing), the bias then adjusts the threshold value needed by
the weighted sum to get a non-zero output from the neuron.

There are various ways to train neural networks, that is to set their weights and
biases (and occasionally also structural parameters such as number of neurons in
a certain layer or number of hidden layers) in order to solve a specific computa-
tional task. Usually, learning methods are divided into supervised and unsupervised
methods. For supervised methods, there must be a desired output vector from the
network for each input vector inserted into the ANN. The objective of the learning
process then becomes to minimize the error (the difference) between the desired and
actual output of the network. The weights and biases are then driven towards values
that generate the desired outputs for each set of inputs. Conversely, unsupervised
learning methods are used in situations where complete information about all target
output values is not available.

The range of applications of feedforward neural networks is vast. Among other
things, they can be used to make decisions or draw conclusions from incomplete or
noisy data, they can recognize and classify patterns, conduct time series analysis and
prediction, approximate functions, and perform signal processing operations[67].
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Figure 1.3: To the left: the network structure of a one-unit recurrent neural network. A
single input state x is propagated to a hidden state h with the connection weight U , before
getting passed on with the weight W to the output state o. The output of the hidden layer
is also passed on to itself the subsequent time step with the weight V , where it will be
combined with the succeeding (weighted) input state to form the next hidden layer output.
To the right: an unfolded version of the same network, where each of the three “columns”
correspond to one time step. Note how the previous output of the hidden layer is combined
with the current input state to obtain the new output of the hidden layer. Reproduced
from Deloche[8].

1.4 Recurrent neural networks

An FFNN can be designed and trained to perform an immense amount of input-
output mappings, but one of its major disadvantages is that its output will always be
the same for any given input signal. That means that FFNNs lack dynamic mem-
ory, which is crucial in various applications where previous input to some extent
should affect the interpretation of the current input (such as for sentence handling
in language translators). This could be solved by introducing feedback (recurrent)
connections, yielding a recurrent neural network (RNN). In a fully recurrent neural
network, any neuron may, in principle, receive input from any other neuron (includ-
ing itself) in the network. For instance, the output of the network could be fed to
a hidden layer or the output of a hidden layer could be added to the same hidden
layer the subsequent network propagation sequence. It is common that each net-
work sequence corresponds to a certain time step and that it is fed with the current
input state for each time step[68]. Figure 1.3 illustrates one of the simplest topolo-
gies of an RNN and how it may be unfolded in time so as to become practically
equivalent with a deep neural network, where each hidden layer corresponds to a
timestep.

1.5 Genetic algorithms

A genetic algorithm, GA, is a search heuristic inspired by the theory of natural
evolution. The algorithm reflects the process of natural selection, in which the
fittest individuals are predominantly selected for reproduction and have a greater
influence on the offspring of the next generation. GAs can be highly useful in e.g.
optimization problems where the objective function cannot be explicitly expressed
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as a mathematical function, but rather only obtained after, for instance, a lengthy
simulation process[69]. There are different versions of GAs, but the one implemented
in this thesis will be based upon the methodology, terminology, and definitions in
Wahde[69].

Consider the optimization problem of finding the maximum of an n-dimensional
function f(x1, ..., xn). The search space is defined as the set of allowed values for
the variables x = (x1, ..., xn). In order to solve this problem with a GA the variables
are encoded in strings of digits, normally referred to as chromosomes. The digits
comprising the chromosome are denoted genes and may encode the information in
various ways. In the original genetic algorithms[70], introduced in the 1970s, a
standard binary encoding scheme was suggested that is still common to this day.
The individual genes can then take on the values 1 or 0 and a generic variable x is
decoded from genes g1, ..., gk through

x = �d+
2d

1� 2�k

�
2�1

g1 + · · ·+ 2�k
gk

�
,

which yields a value in the range [�d, d]. A drawback with this scheme, however,
is that a small change in a variable might require many genes to switch values. For
example, assume that the ideal chromosome that optimizes the objective function in
a case with a single variable is 10000, but the best chromosome of a GA session has
converged to 01111. The decoded variable will then have a value close to the optimal
one, but to reach it all gene values need to be flipped (which is a highly unlikely
event). To avoid that the algorithm gets stuck due to the encoding scheme, a so
called Gray code representation[71] is used in this thesis. It may be written

x = �d+
2d

1� 2�k
2�k

� (g1, . . . , gk) ,

where � (g1, . . . , gk) is the corresponding integer in the range [0, 2k�1] of the binary
number constituted by the genes g1, . . . , gk. An increment of one in the value of this
integer would only require a single (albeit specific) gene to change.

Figure 1.4: A chromosome that encodes two variables with 5-bit accuracy.

Upon initialization of the genetic algorithm, a set of chromosomes (denoted popula-
tion) is randomly generated by assigning the genes of each chromosome with a 1 or
0 (with equal probability). These chromosomes make up the first generation. After
they have been initialized, each of them is decoded to obtain their corresponding
individual, i.e. their corresponding set of n variable values. Commonly, a chromo-
some of length m is divided into n parts of length m/n that constitute the binary
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representation of the respective variable, see Figure 1.4. Evidently, the accuracy of
a variable is governed by the number of genes it contains.

When the variables are decoded, the individual is evaluated. During this procedure,
a problem-dependent fitness value is assigned to the individual depending on its vari-
able based performance. Usually the goal is to maximize the fitness value, which
is later used when individuals are selected and combined for reproduction. Obvi-
ously this do not exclude minimization problems, since minimization of a measure
is equivalent to maximization of its inverse.

When all individuals of the population have been decoded and evaluated, it is time
to shape the next generation. It is desirable to favor more fit individuals without
making the selection procedure fully deterministic. This since an individual that
is slightly superior to the others, but far from the global maximum, then probably
would have dominated the population and therefore obstructed the genetic algo-
rithm from finding the global optimum. Conversely, a worse performing individual
may contain chromosome sequences that will excel when combined with certain ge-
netic material from another individual. A common way to make the selection more
stochastic is to pick individuals through a tournament selection. Two (or more, it
is predefined by the tournament size parameter) individuals are then picked ran-
domly from the population at a time (with or without replacement) and then the
individual with the highest fitness is selected with a specified probability ptour called
tournament selection parameter. This implies that the weaker individual is selected
with probability 1 � ptour. Normally, ptour is set to around 0.7-0.8. In the case of
more than two individuals the best individual is also selected with probability ptour,
but if it is not chosen the procedure is repeated for the remaining individuals in the
tournament, i.e. the best of the remaining individuals is selected with probability
ptour.

Figure 1.5: The typical crossover procedure in genetic algorithms. Each square is a gene
and the dashed, red line is the crossover point which is picked randomly. The first part
(i.e. before the crossover point) of the first chromosome is combined with the second part
of the second chromosome and vice versa, forming two new chromosomes/individuals.

The selection process is used to pick pairs of individuals that get to shape two
new individuals through reproduction, i.e. by combining their genetic material.
In a procedure denoted crossover, the chromosomes of the two selected individuals
are cut at a randomly chosen crossover point and then “cross-assembled” so that
the first part of the first chromosome is attached to the second part of the second
chromosome and vice versa, see Figure 1.5. Crossover based reproduction is a very
efficient mechanism for spreading high-performing genetic material, so to find a
balance between exploitation and exploration in the optimization algorithm and
not converge to local optimas crossover is typically only applied with a certain
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probability. In the other cases the selected pair of individuals are simply copied
completely in the formation of the two new individuals.

After new individuals have been formed through the reproduction procedure, they
are exposed to mutation in order to introduce new material for the GA to work with.
Mutation is employed simply by changing the value of some randomly selected genes
of the new individuals. A rule of thumb is that the mutation probability should be
around 1/m, where m is the chromosome length. Consequently, the value of one
gene per individual will get flipped on average.

The final GA component employed in this thesis is elitism, which ensures that the
best performing individual of each generation is preserved until the next generation.
This is enforced by replacing one or more of the freshly formed individuals with
exact copies of the best individual before replacing the old population with the new
set of individuals and starting a new generation.

1.6 Continuous wavelet transform

Similarly to a Fourier transform, the continuous wavelet transform (CWT) utilizes
inner products to quantify the similitude between a signal and an analyzing func-
tion. For a regular Fourier transform, the analyzing functions have the form of
complex exponentials, ej!t, and the transformed function will be a function of a sin-
gle variable, the angular frequency !. In the case of a short-time Fourier transform,
STFT, the analyzing functions are time-dependent windowed complex exponentials
w(t)ej!t that yield a transformed function of two variables. The coefficients of the
transformed functions represent the similarity between the signal and a sinusoid
with the angular frequency ! within a time region of a specific length centered at
time ⌧ [72].

In a CWT, the analyzing function is instead a wavelet,  and the signal is com-
pared to dilated (i.e. compressed/stretched) and shifted versions of this wavelet.
Through comparison of the 1D signal with the wavelet at different positions and
scales (governed by the shifting and dilation respectively), the transform returns a
function of two variables. If a complex-valued signal is transformed, the CWT will
be a complex-valued function of position and scale. For a real-valued signal, the
CWT will instead be a real-valued function of the same variables. The continuous
wavelet transform of a function f(t) can formally be written

C(a, b; f(t), (t)) =

Z 1

�1
f(t)

1

a
 

⇤
✓
t� b

a

◆
dt, (1.1)

where a > 0 is the scale parameter and b the position parameter, which are con-
tinuously varied to acquire the CWT coefficients C(a, b; f(t), (t)). The complex
conjugate is denoted by ⇤. As seen in (1.1), in addition to the scale and position
values, also the choice of wavelet all affect the obtained CWT coefficients values. In
analogy with a regular Fourier transform, multiplication of the coefficients by their
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respective shifted and scaled wavelet renders the constituent wavelets of the original
signal[72].

A variety of wavelets can be used in CWTs and the choice is normally based upon
what signal features one attempts to detect. For instance, one wavelet may be appro-
priate for signals with abrupt discontinuities, whereas another might be suitable for
oscillations with smooth onsets and offsets[72]. Generalized Morse wavelets[73] are
a family of exactly analytic wavelets. Analytic wavelets are complex-valued wavelets
whose Fourier transforms are not supported on the negative real axis. Morse wavelets
are widely used for signals with e.g. time-varying amplitude and frequency and/or
localized discontinuities, and have been described as an ideal starting point for gen-
eral purpose usage[74].

The resulting CWT can be plotted in a scalogram, which shows the absolute value of
the CWT as a function of time and frequency. Frequency is plotted along the y-axis
with a logarithmic scale. Normally, a so-called cone of influence is added to the plot,
which delineates the boundary outside which edge effects become significant.

1.6.1 Scaling and shifting

As can be inferred from (1.1), longer scales (regulated by a) correspond to more
stretched wavelets. A more stretched wavelet implicates that a longer portion of the
original signal will be compared with it and thus that the wavelet coefficients will
measure coarser features. Conversely, a small a yields a compressed wavelet and
measures rapidly changing (i.e. high frequency) details.

To shift a wavelet means that its onset is delayed or advanced. In mathematical
terms, a delay of a function f(t) by k can be represented by f(t� k).

(a) Short-time Fourier transform (b) Wavelet transform

Figure 1.6: An illustration of the qualitative difference in time and frequency resolution
of a short-time Fourier transform and a wavelet transform. The resolution ratio of the two
quantities is constant for the STFT, whereas it can be frequency dependent for a wavelet
transform.

1.6.2 CWT as a windowed transform

STFTs are often described as windowings of the signal that enables local frequency
analysis. A significant limitation of the STFT is that the window size is constant,
which imposes a trade off between good resolution of time or frequency. A long time
window results in a good frequency resolution and a poor time resolution, since
the Fourier transform within each window do not have any time resolution at all,
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whereas a shorter time window has the opposite effect. Wavelet transforms, on the
other hand, offer a windowing method with variable-sized regions. Through wavelet
analysis, long time intervals can be used where more accurate low-frequency infor-
mation is required, and shorter time spans can be employed when high-frequency
information is desired[72]. An illustration of the resolution differences between the
two transforms is displayed in Figure 1.6. Examples of a CWT of an SECG signal
and an AECG signal respectively were displayed in Figure 3.2 in Part I.
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Chapter 2

Database and figures of merit

2.1 Non-Invasive Fetal Electrocardiogram Database

The NI-FECG database[1] comprises 55 multichannel abdominal NI-FECG record-
ings, measured with contact electrodes on a single subject between 21-40 weeks of
gestation. The records have different length and were taken weekly apart from some
weeks when two or more records were acquired. Each record contains two thoracic
(chest) channels and three to four abdominal channels with variable placements (the
electrode position was varied in order to improve SNR). The sampling rate of all
signals was 1 kHz with 16-bit resolution and a bandpass filter (0.1 Hz-100 Hz) and
a notch filter (50 Hz) were applied during the data acquisition.

14 of these records, where the fQRS complexes are fairly visible on at least one
channel, have previously been manually annotated[3]. A minute-long signal, starting
30 seconds after the beginning of the record, was excerpted from three abdominal
and two thoracic channels for each of the records. From these abdominal snippets,
visually examining the channel with the most visible fECG for each record, 2148
fQRS complexes were annotated in total. Since the abdominal channels may be
considered independently, 3⇥ 14 = 42 min of annotated data with 3⇥ 2148 = 6444
reference fQRS was available for fECG extraction efforts. The data was generally
of quite good quality with varying SNRs for the mECG and fECG and some lesser
artifacts that were not discarded.

2.2 Figures of merit

In compliance with the ANSI/AAMI guidelines[75], the positive predictive value
(PPV ) and the sensitivity (Se) should be defined as

Se =
TP

TP + FN
, PPV =

TP

TP + FP
. (2.1)
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Here TP denotes true positive (a correctly identified fQRS), FN false negative (a
missed existing fQRS), and FP false positive (an erroneously detected non-existing
fQRS).

For optimization of algorithm parameters, the F1 statistic was used as a performance
indicator. For binary classification tasks, it is defined as the harmonic mean of PPV

and Se

F1 = 2 · PPV · Se
PPV + Se

=
2 · TP

2 · TP + FN + FP
. (2.2)

As can be seen in (2.2), flaws in FN and FP affect F1 to the same degree. In contrast
to the arithmetic mean, F1 is suitable for situations when the average of rates is
considered[76]. As an example of the higher suitability of F1 over the arithmetic
mean, one may consider the case where Se = 1 and PPV ⇡ 0 (which corresponds
to every datapoint of the signal being annotated as an fQRS by the QRS detection
algorithm). Naturally, such an algorithm is highly undesirable, which should be
reflected in its score. Nevertheless, an arithmetic mean would yield around 0.5
(corresponding to 50% accuracy), while F1 would be equal to roughly zero.

According to ANSI/AAMI guidelines[77], a tolerance of ±5 beats per minute (BPM)
is advised for heart rate monitoring. The fHR was derived from the time difference of
two neighboring QRS detections made by the used algorithm. However, an alterna-
tive, slightly more lenient, acceptance criterion was primarily used for the methods
developed in this thesis. This criterion accepted detections within 50 ms of the
corresponding reference annotation. The reason for this tolerance criterion was un-
certainties in the exactness of the manual annotations available for benchmarking
of the extraction methods developed in this thesis. Furthermore, the main objective
was to develop methods that reliably detects incidences of fetal heart beats (without
making false detections), to optimize the precision of each correct detection was not
top priority. This was partly due to the dubiousness of the reference annotation
resolution and partly to address one of the main issues with current technology.
Since 50 ms corresponds to merely one third of the refractory period of a fetal heart,
the criterion should still be strict enough to demand that the right ECG cycle was
detected for each annotation.
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Chapter 3

Review of non-invasive fECG

extraction methods

Quite some work has previously been made within the field of fECG extraction
from electrodes on the maternal abdomen, although satisfactory performance is to
the authors’ knowledge yet to be reached. In particular, two distinct categories
of algorithms are discernible: algorithms that utilize spatial characteristics of the
different abdominal channels (electrodes), and algorithms that use temporal features
in the signal of each channel. A few of the more promising methodologies within
each category will be presented briefly below.

3.1 Spatial methods

Two of the more well-known BSS methods are principal component analysis (PCA)
and individual component analysis (ICA). They have previously been applied also
within the context of fECG extraction, using spatial information of a multi-electrode
abdominal configuration to separate sources contributing to the AECG. A central
assumption of classical PCA and ICA methods is that the mixing matrix between
the sources is linear and stationary. The latter property is often not a good approx-
imation over long recordings, since e.g. the relative positions of the sources and the
electrodes might shift due to fetal or maternal motion. This issue could however
be alleviated by regenerating the matrix frequently. Neither the assumption about
linearity is unproblematic. In fact, fetal signals and other interferences and noises
have been shown to not always be linearly separable[20].

The core idea of the techniques is to project the original signals into the “source
domain”, i.e. the domain of the abdominal signals that have been transformed by
a BSS method. The components representing the mECG and noise can then be
removed before the signals are projected back, which finally should result in signals
predominantly comprising fECG components.

71



3.1.1 Principal component analysis

PCA is an orthogonal transformation of the dataset in directions that maximize
the variance. In this manner it is expected to decorrelate the dataset, that is map
the possibly correlated variables (i.e. the sources) into a set of orthogonal variables
named principal components.

3.1.2 Independent component analysis

PCA suffers from two limitations that severely impair its potential within fECG
extraction, namely that the axes of the transformed principal components basis
have to be orthogonal and that the algorithm attempts to decorrelate the data by
removing second order dependencies. The fECG and the mECG are normally not
orthogonal in the observation domain (the domain before BSS has been applied,
consisting of the raw abdominal recordings), so to look for independence instead
of decorrelation could potentially be a more effective criterion when separating the
fECG from the AECG. ICA addresses these two limitations of PCA. Classical ICA
methods (for example JADE[78] and FastICA[79]) assume that the source signals are
statistically independent and non-Gaussian and apply higher order statistics than
PCA to split the signal into its subcomponents[3]. There are also variants where
the sub-components are assumed to be periodic rather than independent.

3.2 Temporal methods

A common approach for fECG extraction is to model the mECG contribution to the
abdominal mixture in some manner and then subtract it from the latter. The only
remaining signal, save for a small maternal residue depending on the accuracy of
the model, in the AECG with “ECG characteristics” (see Part I, chapter 3) should
then be the fECG. This modelling can be conducted in various ways. A few notable
examples are described below.

3.2.1 Template subtraction

There have been various attempts and versions of template subtraction (TS) within
the field of fECG extraction, see for instance [80, 81, 82, 83] for thorough descrip-
tions. The algorithms have had varying degrees of adaptability, but they all share
the same foundation; construction of an mECG template cycle to be subtracted
from the subsequent mECG cycle within the AECG. The procedure is conducted
for each abdominal channel.

In the simplest TS method, an mECG template cycle is centered on the maternal R-
peaks with fixed durations for the P, QRS, and T waves respectively. Other adapta-
tions include e.g. scaling of the whole template mECG cycle or the individual waves
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with a constant. The scaling was based on minimization (in the mean square error
sense) of the mismatch between an average of multiple selected cycles/individual
waves (the template) and each individual incoming mECG cycle/wave. In the case
of individual waves, the problem may be written[82]:

e
2 = min

�
||Ta�m||2

�
, T =

2

4
tP 0 0
0 tQRS 0
0 0 tT

3

5

=) a =
�
T

T
T
��1

T
T
m.

Here e2 denotes the mean square error (MSE), a the scaling vector, m the individual
mECG cycle, and tP , tQRS, and tT are the template parts adhering to the P, QRS,
and T wave respectively.

In another implementation[84], the template mECG was instead assembled by weight-
ing the previous cycles so the MSE was minimized (as opposed to the other versions
where the weights were equal for all the involved cycles). Common to all the meth-
ods, however, is that the number of cycles used for the template construction is
the most crucial parameter to optimize. Taking the non-stationary behavior of the
ECG into account, the template may be updated by replacing the contribution from
the oldest cycles with the incoming ones. New cycles that mismatches the template
can be rejected in order to avoid misdetections. To that end, Pearson’s correlation
coefficient between an incoming cycle and the template cycle has been used[3]:

r =

Pn
i=1

�
ti � t

�
(ci � c)

qPn
i=1

�
ti � t

�2qPn
i=1 (ci � c)2

,

where t and c are the template and incoming mECG cycles respectively, and t and
c are their respective means.

The central issue with TS based techniques is their dependence on accurate mQRS
detection (state-of-the-art adult QRS detectors usually have a 99 % accuracy over a
variety of diverse databases[3]). In most cases (unless in the refractory period of the
fQRS), a missed mQRS detection will end up yielding a false positive when the fQRS
detection is applied. TS methods are also intrinsically sensitive to ectopic beats,
since the template approach by its nature assumes that there are great morphological
and temporal similarities between nearby heart beat cycles. One way to handle this
issue would be to construct templates for different beat types (e.g. normal sinus
rhythms and premature ventricular contraction) and then switch template based on
the currently most probable beat type. Similar attempts have recently been made
for templates based on Kalman filters[85].

3.2.2 Adaptive filtering

Two kinds of linear adaptive filters, see Part III Section 1.1, will be considered here,
the least mean square (LMS) and the recursive least square (RLS) adaptive filters.

73



They are widely used, including multiple attempts related to fECG extraction, but
one of their main disadvantages in the context of fECG extraction is their suscepti-
bility to reference thoracic signals of poor quality.

3.2.2.1 Least mean square adaptive filter

The LMS filter was implemented in NI-fECG extraction methods already in 1975[65],
although no quantitative results were reported. LMS searches for filter coefficients
that minimizes the mean square error e

2(n) between the output of the filter ⌘̂(n)
and the desired response y(n). Consider the N last samples of the input signal,
u(n) = [u1(n�N + 1), . . . , u1(n)]

T
, 8n > N , let w(n) = [w1(n), . . . , wN(n)] be the

filter weights and e(n) = y(n)�w
T
u(n) the error rate at time step n. The optimal

weight vector is then obtained through the so-called Wiener solution wo = R
�1
P,

where R is the correlation matrix of the input u(n) and P is the cross correlation
between u(n) and y(n).

However, calculation of the optimal solution is rarely practical in practice[86]. It
requires computation of the auto correlation and cross correlation matrices and
matrix inversion, which is computationally expensive (and thus time consuming).
Furthermore, if the signals are non-stationary both R and P will be time depen-
dent and therefore have to be recomputed more or less continuously. In real time
applications, an update of the weights on a sample by sample basis update that
still converges towards the optimal Wiener solution is required. This can be done
through a steepest gradient descent based technique that adaptively regulates the
weight values every time step[65]. The new estimate of the weight vector w(n+ 1)
is then equal to the current estimate w(n) plus a term proportional to the neg-
ative gradient of the error at the nth iteration[87]. The weight update rule then
becomes w(n + 1) = w(n) � µrE [e2(n)]. By making the assumption that the
true gradient of the error can be estimated by the momentary gradient of the error,
i.e. rE [e2(n)] ⇡ re

2(n) = �2e(n)u(n), the update rule can then be rewritten
w(n + 1) = w(n) + 2µe(n)u(n). If the factor 2 is included in µ, the LMS adaptive
algorithm may be summarized as:

⌘̂(n) = w
T (n� 1)u(n),

e(n) = y(n)� ⌘̂(n),

w(n) = w(n� 1) + µe(n)u(n).

Here the first equation yields the filter prediction, the second equation the error eval-
uation, and the third equation updates the filter weights at time step n. Note how
the filter length N and the gradient descent step size µ needs to be set, preferably
through optimization on a training set.
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3.2.2.2 Recursive least square adaptive filter

The RLS method aims to minimize the total squared error between the filter output
and the desired response, i.e. as opposed to the LMS algorithm, it takes the total
error from the beginning of the signal to the incoming sample into account. A forget-
ting factor, � 2 [0, 1] regulates to what extent old data contributes to new updates
of the filter coefficients. For � = 1 all past samples would have the same impact,
and for � ! 0 merely the most recent samples contributes. The objective may be
defined as finding the parameters that minimizes the “loss-function” ✏(n):

✏(n) =
nX

i=1

�(n, i)e(i)2 =
nX

i=1

�(n, i)[y(i)� ⌘̂(n, i)]2.

Here ⌘̂(n, i) = w
T (n)u(i) and �(n, i) = �

n�i (for the exponentially weighted least
squares solution). The RLS method employs the following update procedure at each
time step[88, 89]:

e(n) = y(n)�w
T (n� 1)u(n),

k(n) =
P(n� 1)u(n)

�+ u(n)TP(n� 1)u(n)
,

P(n) =
�
I� ku(n)T

�
P(n� 1)

1

�
,

w(n) = w(n� 1) + k(n)e(n),

where I is the identity matrix and P = '(n)�1 with '(n) =
Pn

i=1 �
n�1

u(i)u(i)T .

The filter length N and the forgetting factor � has to be chosen carefully, prefer-
ably through optimization on a training set. Normally, RLS converges faster than
LMS and yields more accurate results, but it is also more computationally demand-
ing.

3.2.3 Kalman filtering

In recursive Bayesian filtering, the posterior distribution P (x|y1:k) of a hidden state
random variable x at time k is recursively estimated using measurements {yk} and a
prior estimate of x based on knowledge of the system. The parameters are assumed
to be random variables, evolving in accordance with an evolution equation (the prior
estimate model), and are observed via measurements related to the current state x

through a measurement equation. The system dynamics are formulated as

(
xk = Gk�1xk�1 +wk�1 (evolution equation),
yk = Hkxk + vk (measurement equation).
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Here Gk�1 denotes the state transition matrix and Hk the observation matrix, which
are the noiseless connections between the current and previous state vector and
the measurement vector and the state vector respectively. {wk} and {vk} are the
respective associated noises, which are assumed to be white, zero-mean, uncorrelated
(E[vk,w

T
j ] = 0), and have the stationary covariance matrices Qk = E[wk,w

T
k ]

and Rk = E[vk,v
T
k ] respectively. Furthermore, it is assumed that Qk and Rk are

diagonal, i.e. that the components of the noise models are uncorrelated.

A Kalman filter (KF) makes an estimation of the state xk based on the noisy mea-
surements {yk} and knowledge about the dynamics of the system. In 2003, Mc-
Sharry et al. introduced a dynamical model of the ECG[90] that uses a set of
Gaussian functions to approximate ECG cycles. In a discretized form with a small
sampling period � ! 0, it was used for a KF[3]:

(
✓k+1 ⌘ (✓k + !�) mod 2⇡

zk+1 = zk �
PN

i=1 �
↵i!
b2i

�✓i,k exp
⇣
��✓2i,k

2b2i

⌘
+ ⌘k.

Here ✓k and zk denote the discrete phase and amplitude, ↵i, bi, and �i the peak
amplitude, width, and center parameters of the N Gaussian functions, �✓i,k =
✓k � �i, and ⌘k is a perturbation term representing random additive noise that
models the error of the ECG model as compared to a real ECG. A version of KF for
non-linear systems, the extended Kalman Filter (EKF), was implemented in order
to filter the mECG from e.g. the fECG, which was regarded as noise. The filtered
mECG could then be subtracted from the AECG. To find the Gaussian parameters,
non-linear curve fitting in combination with a random search was conducted until
the RMS error between a template mECG cycle and the cycle obtained through the
Gaussian functions was below 5%.

Both for the TS and the EKF frameworks an estimated mECG cycle is subtracted
from the AECG. Unlike TS, however, there are no constraints on P, QRS, and
T wave lengths for the EKF. While TS methods subtract the mECG cycle on a
window around the mQRS with a specified length, the EKF continuously estimates
the mECG. Moreover, the EKF is more adaptive and would better handle cases with
a very high level of non-stationarity. Similar to TS, however, EKF requires prior
and (particularly) precise information about the location of the mQRS. This makes
it especially vulnerable to a noisy mECG.

3.3 Performance

Unfortunately, direct comparison of the respective performances of different fECG
extraction methods is in many cases very difficult since various evaluation methods
and data sets have been used. However, the “PhysioNet Computing in Cardiology
Challenge 2013 - Noninvasive Fetal ECG”[91] was held in an attempt to compare and
evaluate current methodologies and remediate the deficiency of public high standard
databases with expert annotations and/or reference signals. Although a lot of the
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data used in the challenge is still not open to public, variants of some of the methods
listed in this chapter were implemented and benchmarked during the challenge and
ensuing studies. In both cases below, a Pan-Tompkins (concept described in Part
III Section 5.1) based fQRS extraction method was used.

When comparing various TS methods, a technique where it was combined with
PCA[80], outperformed the others[3]. It was definitely the most adaptive, suggest-
ing that the mECG cycle was subtracted to a greater extent with more adaptive
methods.

In a comparison of the best performing TS version, LMS, RLS, and an echo state
neural network (the concept is described thoroughly in Part III Section 4.3.3) on a
commercial database, the results presented in Table 3.1 were obtained[3]. Note that
the ±5 BPM criterion was used for F1 during this comparison.

Method F1 (%)
TSpca 89.32
LMS 87.88
RLS 88.23
ESN 90.17

Table 3.1: List of methods and their respective performance on a commercial database.
The results are reproduced from Behar[3].

As seen in Table 3.1, the relative performances were fairly even, making it difficult
to draw confident conclusions on whether it was the specific content of the data
set or the quality of the respective methods that led to the moderate variations in
outcome. When the methods were applied to another database (basically the same
as the one used in this thesis), similar levels of performance were obtained once
more, yet again with a slight victory for the ESN (F1 ⇠ 97% compared to F1 ⇠ 95%
for the others)[3]. Since one of the core differences is that ESNs, as opposed to
LMS and RLS, can handle non-linear relationships between the chest and AECG,
the quite even results implies that the mapping was mainly linear. However, looking
into the performance on each record of the commercial database, the ESN achieved
a much higher F1 score than the RLS and LMS techniques on two of them. Further
inspection indicated that this pronounced difference was due the ESN being better
at removing the mECG and not due to the signal quality. It appears reasonable that
the mapping is mostly (but not always) linear, and that the more complex nature
of the ESNs mainly pays off when that is not the case.

In the 2013 challenge, the results listed in Table 3.2 were obtained (on another data
set, but also with the ±5 BPM criterion) for implementations of a regular TS, the
TS-PCA, Extended Kalman filter (denoted TSEKF ), PCA, and ICA[3].
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Method Se (%) PPV (%) F1 (%)
TS 81.8 81.7 81.6

TSpca 88.1 84.5 86.1
TSEKF 83.0 81.1 81.9
PCA 57.4 47.9 51.6
ICA 69.1 60.0 63.7

Table 3.2: List of methods and their respective performance in the PhysioNet Computing
in Cardiology Challenge 2013. The results are reproduced from Behar[3].

Clearly, based on the results presented in Table 3.2, PCA and ICA do not seem to
be viable alternatives on their own. Moreover, TSEKF did not outperform simpler
TS methods (some of which are not displayed in the table). This could potentially
be a result of the automated Gaussian initialization procedure that was employed
(examples were found where the different waves were not well matched by the Gaus-
sian fitting), or because the covariance matrices were set as stationary. It was found
that gain factors governing the relative trust in the ECG model and the observa-
tions was of paramount importance to the EKF performance. The best results were
obtained for a much higher trust in the ECG model than the observations, which
resembles a TS technique with the additional perks of some further adaptability and
no constraints on the P, QRS, and T wave lengths[3].

It is also noteworthy that it has been estimated that a representation of a typical
ECG signal requires 4-6 statistically uncorrelated dimensions[92]. Consequently, it
is probable that the four abdominal channels available during the benchmarking are
not sufficient for optimal BSS performance.

Another important result from the challenge was that certain combinations of meth-
ods (e.g. TS and ICA) outperformed single methods. It is clear that one should not
necessarily focus entirely on finding the perfect single fECG extraction method, but
rather also look into combinations of methods in order to take advantage of their
respective strengths and weaknesses.
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Chapter 4

Experimentally evalutated methods -

FECG extraction

The feasibility of three different fECG extraction methods has been scrutinized more
thoroughly in this thesis. In the case where no maternal chest reference electrode is
available, the viability of different kinds of ICA have been investigated. For the case
where one has access to a thoracic signal, two kinds of recurrent neural networks
have been evaluated, LSTMs (long short-term memory) and ESNs (echo state neural
networks). Useful preprocessing steps are also discussed briefly in this chapter.
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(a) Raw AECG signal
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(b) Preprocessed AECG signal

Figure 4.1: A typical result of applying the preprocessing steps on an AECG signal.

4.1 Preprocessing

Preprocessing within the field of NI-fECG extraction has been investigated to a fair
extent in earlier studies. For instance, as compared to adult ECG filtering, it is
not unusual to apply a higher low frequency cutoff when solely considering fQRS
extraction and not other morphological features[82, 93]. The digital preprocessing
steps applied to the signals in this thesis followed the procedure in Behar[3], although
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the values of the upper and lower cutoff frequencies were optimized (in the fQRS
extraction sense) during the GA procedure, see Part III Section 4.3.4.

To remove baseline wander and irrelevant high frequency content on each of the
abdominal channels, two zero phase Butterworth filters were applied: a third order
high pass filter and a fifth order low pass filter. Normalization of the thoracic
and abdominal channels was conducted by: 1) using the first five seconds of each
recording to determine the amplitude range of the ECG and then divide the signal
with this amplitude, 2) subtract the mean of the first five seconds from the signal,
and 3) transform the signal through the hyperbolic tangent to avoid that reservoir
states in the ESN assumed unexpected values due to outliers. The last, non-linear
step may not be suitable for morphological studies, but improves the robustness of
the fQRS detection procedures.

An example of the result of the preprocessing procedure on an AECG signal is
showed in Figure 4.1.

4.2 No maternal chest reference

This section considers the case where the fECG extraction method has to rely com-
pletely on information from abdominal channels. Since no mECG reference signal
is available, one might instead try to take advantage of spatial differences in the ap-
pearances of the two ECGs as governed by their respective ECG net dipole map (see
Part I Section 2.4. The signals of all the abdominal channels can be mapped onto a
multidimensional domain where each axis corresponds to one of the electrodes, before
BSS (in this case different versions of ICA) is applied to find independent/periodic
components of this signal.

4.2.1 Variants of ICA

Linear ICA is formulated as given an observation vector x = x1, x2, ..., find the
mixing matrix A and sources s = s1, s2, ... that transforms

x = As (4.1)

given some measure on the sources s. In other words, the observations x are con-
structed from a linear combination of sub-components from the sources, using a
constant mixing matrix A. This an underlying issue with linear ICA based methods.
The observations and sources are related through a time dependent linear transform
which can be seen in Figure 2.4. Large loops arise from the mECG and small loops
from the fECG. A linear transform can not transform this data in such a way that
the sources are independent.
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Figure 4.2: Typical independent components from abdominal electrodes. The figures
to the left shows three independent components and the figures to the right shows three
abdominal leads. The yellow stars are maternal QRS annotations and the red stars are
fetal QRS annotations. Looking at the independent components, the ICA algorithm does
not separate the fECG and mECG well.

Attempts were made using linear ICA on abdominal signals. A typical result is
shown in Figure 4.2. On the left side are three independent components, IC1, IC2
an IC3. On the right side are the leads that were used in the ICA. As can be seen,
the algorithm does not manage to separate the fECG and mECG well. However,
it should be noted that the ICA was applied directly to preprocessed data, and
better results can be obtained by first reducing the mECG through e.g. TS, see
Part III Section 3.3. Nevertheless, due to this fundamental discrepancy between the
problem at hand and the algorithm, linear ICA algorithms were deemed unappealing
and thus disregarded in the choice of signal separation methods to evaluate further
experimentally.
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4.3 Maternal chest reference

Similarly to many temporal methods, see Part III Section 3.2, the following tech-
niques will also rely on removal of the maternal ECG component within the AECG
mixture. However, these methods will utilize the signal from a maternal thoracic
(chest) reference electrode in doing so. The core principles are that the thoracic
signal should be fECG free and that there is some relationship between the chest
and abdominal mECG signal. Thus should the mapping of the thoracic signal that
best matches the AECG correspond to the maternal ECG contribution in the lat-
ter, which then could be subtracted from the composite abdominal signal. This
mapping could be performed in multiple ways. In this thesis two different kinds of
recurrent neural networks are investigated; Echo state neural networks and LSTM
neural networks.

4.3.1 The long short-term memory network

Figure 4.3: Figure showing the standard LSTM cell. ct, xt and ht are vectors with cell
state, input and output. The yellow boxes are neural network layers with sigmoid or tanh
activation functions. Red circles are point-wise operations. The two sigmoid units to the
left control the information flow to the cell state and are called the forget gate and external
input gate. Data from the current input xt and previous output xt are presented to the
input gate through a tanh activation layer. The sigmoid unit to the right is called the
output gate and controls to what extent the current cell state is presented to the output.

A challenge with recurrent neural networks is solving the issue that gradients tend
to either vanish or explode as they are back-propagated in time, making it difficult
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to learn long time dependencies. This issue has been addressed by many authors
and include units that skip layers and leakage units where the state of the unit is
integrated over time[94]. One such networks is the LSTM network. This network has
proven to be very successful in a range of applications, e.g. speech recognition[95]
and machine translation[96], and are fit for sequence to sequence mapping. The
standard LSTM unit is shown in Figure 4.3. In contrast to the regular recurrent
network unit, Figure 1.3, the unit has two recurrent connections. These are the cell
state ct and output ht at time t. The information in the cell state is regulated by two
gates, the forget gate and the external input gate. The forget gate (left-most sigmoid
unit in Figure 1.3) combines information about the previous output and current
input to decide how much of the cell state that should be forgotten. The input
gate (middle sigmoid unit) decides to what extent information presented through
the tanh activation layer should be added to the cell state. Finally, the output
gate (right-most sigmoid unit) regulates what information that should presented
to the output from the cell state. Using this architecture, the network can learn
when to forget information and when to keep information, and to learn long term
dependencies in data[94].
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where fi is the state of the forget gate, gi the state of the external input gate, x(t)
j

the current input, bi is the bias and Uij is the connection between other LSTM units
in the net. The forget gate is updated according to
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where hj is the state of all other LSTM units in the network. The activation of the
external input gate
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the output of the unit
h
(t)
i = tanh(s(t)i )q(t)i . (4.5)

where q
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i is the activation of the external input gate, which is updated as
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As the LSTM network can learn long time dependencies in the data it might be
appropriate for tracing the transformation between thoracic and abdominal electrode
in time.
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Figure 4.4: Figure showing the MSE between the LSTM prediction and an abdominal
lead as a function of the number of units in the LSTM network. The number of units
govern how much information that is remembered between each time step. As seen, the
networks reaches a small MSE at only 10 units.

4.3.2 Application and optimization of LSTM network

A simple LSTM network was implemented with one input, a thoracic lead, connected
to a dropout layer and fully connected layer with one output, an abdominal lead. In
a dropout layer, input elements are randomly set to zero with a given probability.
This effectively modifies the underlying network architecture between iterations and
is used to prevent the network from over-fitting. The mean squared error (MSE)
between the abdominal lead and network output was used as loss function. In this
way, the networks removes as much as possible from an abdominal lead using a
thoracic lead, which contains no information from the fECG. If the network does
not over-fit, the prediction at the abdominal lead should contain the contribution
from the maternal heart and no contribution from the fECG. The networks were
trained on the first 10 seconds and validated on the remaining 80 seconds for each
file. The networks were trained until the validation error reached a minimum and
the adaptive moment estimation (Adam) optimization algorithm was used.

The first file in the data-set was used to find an appropriate number of units, an
intrinsic property of the LSTM cell governing how much information that is remem-
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bered between each time step. The number of units and the final validation MSE is
shown in Figure 4.4. As can be seen, the network learns to approximate the trans-
form well with as little as 10 units. However, the validation error keeps reducing
and have not reached a minimum at 120 units. Unfortunately, the time it takes to
train the network increases substantially with more units. 60 units were used as a
compromise between time and performance. Each training session was completed
in approximately 11 min on an Intel(R) Core(TM) i5-4690 3.5 GHz CPU.

4.3.3 Echo state neural networks

Echo state neural networks, ESNs, are a fairly recent subclass of recurrent neural
networks. Originally introduced in the beginning of this millennium by Jaeger[97],
ESNs quickly proved to offer a very practical approach to understanding and train-
ing of RNN networks. One of their key merits was that they showed that RNNs
can perform tasks in an efficient and accurate manner without training all network
weights. For a classic ESN, the RNN part (denoted reservoir) is generated randomly
and sparsely, and merely the output from the reservoir is trained. The reservoir con-
stitutes the dynamical system that maps the system input to a higher dimension[98].
As a side note, this concept was first introduced in a neuroscientific model of the
corticostriatal processing loop[99].

While being both computationally inexpensive and conceptually simple, ESNs still
achieved superb performance levels in various benchmark tasks within many different
fields such as finance, energy conservation, and speech recognition, see for instance
[100, 101, 102, 103].

Although being ostensibly simple, it can be difficult to apply ESNs in a success-
ful manner. In particular, the initial construction of the reservoir is governed by
multiple hyperparameters that have to be chosen sagaciously.

The versatile and computationally cheap non-linear modelling of dynamical systems
offered by ESNs has attracted attention also within the field of fECG extraction. In
fact, some of the organizers of the PhysioNet Computing in Cardiology Challenge
2013 implemented a version of it that achieved promising results[104]. Obtaining
an F1 score of around 97 %, the ESN appeared to be quite successful in removing
the mECG contribution from the abdominal mixture. However, as mentioned above,
determining the optimal values for the numerous global parameters in an ESN is not
a trivial task, especially since the size of the total search space rules out attempts of
exhaustive, multidimensional searches. In the competition entry random and grid
searches were tested, where the latter had to be done in an iterative manner with
most parameters kept fixed at presumptively reasonable values while one or two
parameters were optimized at a time. In this thesis, an echo state neural network
based upon the competition entry and a seminal ESN tutorial written by the orig-
inator Jaeger[97] is developed, where the hyperparameters are optimized using an
evolutionary algorithm with F1 as a fitness function. The intention of the choice
of optimization method is to successively drive the parameter values towards vari-
ous local maxima of F1 in order to investigate most interesting regions in the total
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search space in a fraction of the iterations required to cover them with a random or
a multidimensional grid search.

The purpose of the ESN is to find the (potentially non-linear) mapping of the input
function u(n) (the thoracic signal) that best matches the target signal y(n) (the
AECG), where n denotes the time step. The reservoir, passively excited by the in-
put signal, acts as a memory and offers temporal context by preserving a nonlinear
transformation of the input history in its state vector. Propagating through the
nonlinear reservoir, the chest recording gives rise to a high-dimensional dynamical
“echo response” from the former. The response is regarded as a projection of the
thoracic signal onto a set of non-orthogonal basis functions which are used to re-
construct the desired output. [105]. The output signal is obtained by passing the
reservoir output through a linear readout layer, which maps the reservoir states to
the desired output (the AECG) through weights trained by linear regression.

The network architecture consisted of K inputs that shaped the input signal u(n) =
[u1(n), u2(n), ..., uK(n)], M internal units composing the reservoir state vector x(n) =
[x1(n), x2(n), ..., xM(n)], and L output units forming the output signal ⌘̂(n) =
[⌘̂1(n), ⌘̂2(n), ..., ⌘̂L(n)]. Commonly, the internal units in ESNs are updated accord-
ing to

x(n+ 1) = x(n) + f (Wx(n) +Wiu(n+ 1) +Wb⌘̂(n)) ,

where W 2 <M⇥M makes up the reservoir weight matrix and Wi 2 <M⇥K con-
stitutes the input weight matrix. Both are randomly generated initially and kept
fixed. Wb 2 <M⇥L is the back projection weight matrix that links previous network
outputs to future internal unit states and f is the activation function of the reservoir
neurons, taken to be the hyperbolic tangent. This is a typical and practical choice
since it is a strictly increasing bijection from < to (�1, 1).

However, considering the dynamical pattern recognition task at hand as purely
input-driven (the processed version of the mECG signal in the network output should
not have any impact on future reservoir states), the rule may in this case be simplified
by setting Wb to zero. Furthermore, due to the impulse-based nature of the input
signal, it makes sense to limit the temporal memory span of the internal states. In
other words, very old states should not have a significant impact on future ones.
This can be achieved with the leaky integrator neuron model[97], which includes
a leakage rate (forgetting factor) ↵ 2 [0, 1]. Implementing these changes, the new
update rule becomes

x(n+ 1) = (1� ↵)x(n) + f (Wx(n) +Wiu(n+ 1)) . (4.7)

As seen in (4.7), ↵ = 1 would mean that the neurons would not retain any infor-
mation about their earlier states, whereas ↵ = 0 would return the ordinary update
rule (except for the Wb term).
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The network output, in turn, is calculated through

⌘̂(n+ 1) = g (wo(n)z(n)) , (4.8)

where z(n) = [x(n),u(n)] is the extended system state and g is the output activation
function (also set to the hyperbolic tangent). Note how the extended system state
enables the input states to have a direct impact on the network output without
going through the RNN (the reservoir). The extent of the impact of specific elements
within z(n) is governed by the weights of the readout layer, wo(n). These weights
may be adaptive, but are kept fixed in this ESN adaptation.

W and Wi are both initialized sparsely from a uniform distribution on the interval
[�1, 1], where the sparsity parameter  2 [0, 1] determines the fraction of matrix
elements to be non-zero. However, W is then scaled to a spectral radius ⇢ in the
range [0, 1], which has been shown empirically to more or less guarantee the existence
of echo states. The echo state property basically states that for every internal signal
xi(n) there exists an echo function ei that maps input/output histories to the current
state. This property has been shown to be crucial for the function and performance
of ESNs[97].

For each 90 second recording in the data set (and each abdominal channel sepa-
rately), the first 30 were used for training the readout layer weights. This was done
through linear regression, which aimed to find the vector wo that minimized the
difference between the RHS of (4.8) (the predicted maternal contribution to the
AECG) and the AECG itself. In the rare cases where a solution could not be found,
the beginning of the training span was moved by one second until convergence.

Multiple parameters have significant effects on the performance of the network. For
instance, an excessive number of internal units M increases the risk of overfitting, i.e.
it impairs the networks ability to generalize to slightly varying inputs. In addition
to ensuring the echo state property by a very high probability, spectral radius ⇢
influences the time scale over which an earlier excitation keeps “echoing” in the
reservoir; a small ⇢ makes the output more dominated by recent inputs[97].
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Figure 4.5: The mean and maximum F1 values of the population for each generation.
Both measures had seemingly converged properly after the 30 generations that the GA was
run for. The fact that the mean F1 value did not converge immediately indicates that the
chosen values of the crossover and tournament operators did not favor stronger individuals
excessively, which could have got the whole population stuck in a local maximum almost
instantly.

4.3.4 Optimization of ESN performance using a genetic al-
gorithm

To optimize the ESN, a genetic algorithm was implemented that used the obtained
F1 score, see Part III Section 2.2, of 10 of the 14 recordings in the database (randomly
selected initially and then kept fixed for all evaluations) as fitness measure. Since the
main goal of the signal processing endeavor in this thesis is to develop an algorithm
with a very high beat detection reliability, the F1 score with a 50 ms acceptance
tolerance was used. The continuous wavelet transform method described in Part
III Section 5.2 was used for QRS detection. As previously mentioned, the first 30
seconds of every recording was used for training of the ESN readout layer, and the
last 60 seconds for fECG extraction. Consequently, only the latter part of each
recording was used for the fitness measure. The used GA parameters are listed in
Table 4.1. The total search space and the obtained optimized configuration of the
variables are specified in Table 4.2. Note that the lower and upper cutoff frequency
are part of the preprocessing applied to the AECG before it is fed to the ESN.
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For the best performing set of variables, an F1 score of 0.9968 was acquired for
the training data. Figure 4.5 displays the convergence procedure of the mean and
maximum F1 values of the individuals of each generation. Considering the successive
convergence of the average F1 value, it seems like the values of the crossover and
tournament operators did not impede initial exploration of the search space to an
excessive extent.

To check whether substantial overfitting had occurred, the remaining four recordings
of the database were used as a test set containing previously unseen data. The test
set comprised ⇠ 29% of the total data. The F1 score on the test set for the optimized
variables was 1, i.e. there were no misdetections at all on the test set according to
the used figure of merit.

Parameter Value
Population size 40
Number of genes 60
Crossover probability 0.4
Mutation probability 1/60
Tournament selection parameter 0.75
Tournament size 3
Number of variables 6
Number of generations 30
Number of copies of best individual 1

Table 4.1: List of used parameter values in the GA.

Variable Search range Optimized value
Lower cutoff frequency, fb 0-40 Hz 26
Upper cutoff frequency, fh 47-142 Hz 104
Leakage parameter, ↵ 0-0.8 0.7554
Neurons in reservoir, M 45-225 149
Sparsity parameter,  0.05-0.25 0.1851
Spectral radius, ⇢ 0.2-1 0.4604

Table 4.2: List of preprocessing and ESN parameters that were optimized by the GA and
their respective search ranges and obtained optimized values.
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Chapter 5

Experimentally evalutated methods -

fQRS extraction

Once the mECG (presumably) had been removed from the AECG through an fECG
extraction procedure, two different fQRS extraction methods were tested to acquire
the fHR. The Pan-Tompkins (PT) method[106] was developed in the 1980s to detect
adult QRS complexes and performs digital analyses of slope, amplitude, and width.
A simple adaptation of it, based upon the one done by Behar[3], was considered
here. The second method, a continuous wavelet transform based QRS extraction
method, was developed as part of this thesis and looks for impulses of frequency
packets with certain characteristics.

Figure 5.1: A block diagram describing the main features of the Pan-Tompkins QRS
detection algorithm, as applied to an AECG where the maternal contribution has been
removed.

5.1 Pan-Tompkins

In short, the original PT algorithm begins with a band pass filter to reduce noise
and then takes the derivative of the signal to enhance the R wave slopes. There-
after the square of the signal is computed to further emphasize the high frequency
characteristics of the QRS complex and convert all data points to positive values.
Finally, a window (with a size slightly greater than or equal to the widest QRS
complex) is sweeped along the signal looking for regions above a specified energy
threshold. A block diagram of these main features of the algorithm is displayed in
Figure 5.1.
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In the fQRS adaptation used in this thesis, a refractory period of 150 ms was used.
Given the detected energy peaks, the position of each R-peak was adjusted so that
the sign of all R-peaks was all either positive or negative (based upon the average
of the local optima of each high energy segment). This was performed in order to
avoid undesirable fHR changes as a result of some R-peaks being negative and some
being positive. It is also crucial if one would like to use TS based methods for the
fECG extraction, since construction of a template mECG cycle to subtract from
subsequent cycles entails same sign peaks.

In this thesis, Pan-Tompkins was applied and considered separately for each of
the electrodes and no efforts were made to combine the detections of the different
electrodes into a combined detection based on e.g. detection similarities, differences,
and some electrode reliability measure.

Figure 5.2: Flowchart of the algorithm that makes predictions of the QRS peak positions
(the red circles) from a CWT of a signal.
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Figure 5.3: Flowchart of the algorithm that combines predictions of the QRS peak posi-
tions of multiple channels into a final set of predictions for the given time period.
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(a) Electrode 1 (b) Electrode 2 (c) Electrode 3

(d) Combined predictions

Figure 5.4: a) to c) show an example of QRS peak predictions (red circles), based
upon the procedure described in Figure 5.2, made on CWTs of the signals from the three
abdominal channels for a chosen five second period with an erroneous prediction (the
leftmost in b)). The combined, final predictions based upon the predictions for each
channel and the algorithm described in Figure 5.3 are shown in d). The dotted vertical
lines denote the corresponding annotations that are used as reference. Note how the
erroneous prediction from the second electrode has been omitted in the combined version
because the algorithm deemed it as unreliable.

5.2 QRS detection from a scalogram of a continuous

wavelet transform

After the removal of the mECG component in each of the three abdominal electrode
channels of a recording, roughly five seconds of the AECG residual of each electrode
are transformed by a CWT at a time and plotted in a scalogram. This simulates an
online setup, where only the signal during the last couple of seconds should have an
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impact on the momentary beat-to-beat detection. Once transformed, QRS detection
is performed on each channel through a series of steps summarized in Figure 5.2.
In short, the algorithm searches for high-intensity regions of the CWT scalogram,
whilst taking e.g. size, shape, and frequency content of the region and the refractory
period of the fetal heart into account. The QRS “predictions” of each channel are
then combined to form the final set of predicted QRS peak times. The combination
is based on ranking of the electrodes, intensity maxima in the respective delineated
regions of each channel, and whether multiple electrodes make the same prediction
and is described briefly in Figure 5.3. The reliability ranking system of the electrodes
is based on the relative variances in frequency and in time between the preliminary
predicted QRS positions in the CWT. The variance values are calculated before most
of the steps intended to manage erroneous/missing detections have been applied,
thus supposedly conveying a flavor of how prominent the important features of the
CWT of the signal from the respective electrode are.

An example of the tentative and final results of the CWT-based QRS extraction
procedure can be seen in Figure 5.4.
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Chapter 6

Results

Figure 6.1: Figure showing the potential from an abdominal lead (blue) and the LSTM
mapping from thoracic to abdominal electrode (red). The red circles show annotations
for the fQRS complexes. The maternal R peaks (i.e. the high peaks) are more or less
completely mirrored by the mapping (the tip of the blue underlying line can be seen
slightly for the second peak). Meanwhile, as desired, the fetal QRS complexes are not
included in the mapping.

6.1 Removal of the mECG from the AECG mix-

ture

The task of removing the mECG contribution from the abdominal mixture appeared
to be solved quite successfully by both LSTM and ESN. An example can be found in
Figure 6.1, which shows the measured potential at an abdominal lead and the LSTM
mapping from the thoracic to the abdominal electrode. It also includes annotations
of the fQRS positions. Note e.g. how the maternal R peaks (i.e. the high peaks) are
more or less completely mirrored by the mapping, whereas the fetal QRS complexes
are not included in the mapping.
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6.2 LSTM and ESN in combination with Pan-Tompkins

This section presents the results of the LSTM and ESN networks when the Pan-
Tompkins implementation was used for fQRS detection.

6.2.1 LSTM

The positive predictive value and sensitivity for all test files and electrodes are shown
in Table 6.1 and 6.2. The average predictive value was 0.9847 and average sensitivity
0.9723. The corresponding F1 measure is 0.9785.

File \ Electrode 1 2 3
154 0.9437 0.9864 0.9932
192 0.9933 1.0000 0.9932
244 0.9934 0.9935 0.9934
274 0.9379 0.7877 1.0000
290 1.0000 0.9793 0.9862
323 0.9936 0.9936 1.0000
368 0.9797 0.9797 0.9795
444 1.0000 1.0000 1.0000
597 0.9871 1.0000 0.9870
733 0.9873 0.9935 0.9936
746 0.9932 0.9932 1.0000
811 0.9935 0.9871 0.9868
826 0.9871 0.9871 0.9872
906 0.9926 1.0000 1.0000

Table 6.1: Positive predictive value for the case of LSTM in combination with Pan-
Tompkins. Mean over all electrodes and used files is 0.9847.
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File \ Electrode 1 2 3
154 0.9054 0.9797 0.9797
192 0.9933 0.9933 0.9800
244 0.9869 0.9935 0.9869
274 0.8531 0.6497 0.9548
290 1.0000 0.9660 0.9728
323 1.0000 1.0000 1.0000
368 0.9864 0.9864 0.9728
444 1.0000 1.0000 1.0000
597 0.9871 1.0000 0.9806
733 0.9750 0.9563 0.9750
746 0.9932 0.9932 1.0000
811 0.9935 0.9871 0.9613
826 0.9745 0.9745 0.9809
906 0.9926 1.0000 1.0000

Table 6.2: Sensitivity for the case of LSTM in combination with Pan-Tompkins. Mean
over all electrodes and used files is 0.9723.

6.2.2 ESN

The positive predictive value and sensitivity for all test files and electrodes are shown
in Table 6.1 and 6.2. The average predictive value was 0.9635 and average sensitivity
0.9667. The corresponding F1 measure is 0.9651.

File \Electrode 1 2 F1
154 0.9122 0.9669 0.9726
192 0.9671 0.9548 0.8675
244 0.9934 0.9935 0.9934
274 0.7102 0.5682 0.9886
290 1.0000 0.9726 0.9865
323 1.0000 0.9936 0.9935
368 0.9799 0.9864 0.9730
444 1.0000 1.0000 1.0000
597 1.0000 0.9936 1.0000
733 0.9810 0.9554 0.9936
746 0.9866 0.9866 0.9932
811 0.9808 0.9872 0.9623
826 0.9565 0.9500 0.9809
906 0.9853 1.0000 1.0000

Table 6.3: Positive predictive value for the case of ESN in combination with Pan-
Tompkins. Mean over all electrodes and used files is 0.9847.

97



File \Electrode 1 2 F1
154 0.9122 0.9865 0.9595
192 0.9800 0.9867 0.9600
244 0.9869 0.9935 0.9869
274 0.7062 0.5650 0.9774
290 1.0000 0.9660 0.9932
323 1.0000 1.0000 0.9935
368 0.9932 0.9864 0.9796
444 0.9938 0.9812 0.9875
597 0.9935 1.0000 0.9935
733 0.9688 0.9375 0.9688
746 0.9932 0.9932 0.9932
811 0.9871 0.9935 0.9871
826 0.9809 0.9682 0.9809
906 0.9853 1.0000 1.0000

Table 6.4: Sensitivity for the case of ESNin combination with Pan-Tompkins. Mean over
all electrodes and used files is 0.9723.

6.3 LSTM and ESN in combination with a CWT

based fQRS detection

This section presents the results of the LSTM and ESN networks when the CWT
based method was used for fQRS detection.

6.3.1 LSTM

The PPV, sensitivity, and F1 score for all test files are shown in Table 6.5. The
average predictive value was 0.9939 and the average sensitivity 0.9835. The corre-
sponding F1 measure is 0.9885.
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File PPV Se F1
154 0.9801 1.0000 0.9900
192 1.0000 1.0000 1.0000
244 0.9869 0.9869 0.9869
274 0.9888 0.9944 0.9916
290 0.9932 0.9932 0.9932
323 1.0000 1.0000 1.0000
368 0.9797 0.9864 0.9830
444 1.0000 0.9938 0.9969
597 1.0000 1.0000 1.0000
733 1.0000 0.9750 0.9873
746 1.0000 1.0000 1.0000
811 1.0000 0.9290 0.9632
826 0.9862 0.9108 0.9470
906 1.0000 1.0000 1.0000
Mean 0.9939 0.9835 0.9885

Table 6.5: Table showing the positive predictive value, sensitivity and F1 measure for
LSTM as the fECG extraction technique and the CWT method for the fQRS detection.

6.3.2 ESN

The PPV, sensitivity, and F1 score for all test files are shown in Table 6.6. The
average predictive value was 0.9976 and the average sensitivity 0.9968. The corre-
sponding F1 measure is 0.9972.
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File PPV Se F1
154⇤ 1.0000 1.0000 1.0000
192⇤ 1.0000 1.0000 1.0000
244 0.9869 0.9869 0.9869
274 1.0000 1.0000 1.0000
290 1.0000 1.0000 1.0000
323 1.0000 1.0000 1.0000
368 0.9865 0.9932 0.9898
444 1.0000 1.0000 1.0000
597 1.0000 0.9935 0.9968
733 1.0000 0.9938 0.9969
746 1.0000 1.0000 1.0000
811⇤ 1.0000 1.0000 1.0000
826 0.9936 0.9873 0.9904
906⇤ 1.0000 1.0000 1.0000
Mean 0.9976 0.9968 0.9972

Table 6.6: Table showing the positive predictive value, sensitivity and F1 measure for
ESN as the fECG extraction technique and the CWT method for the fQRS detection. Files
marked with ⇤ were part of the test set, and thus not included in the GA optimization
procedure. Despite being previously unseen by the network, flawless performance was
obtained for these files.

6.4 Performance with ±5 BPM condition

As mentioned in Part III Section 2.2, to comply with industry standards a heart rate
tolerance of ±5 BPM would be desirable. Due to issues discussed in that section,
this measure was not prioritized in this thesis. However, the current performance
of the different techniques, abiding by this tolerance level, can be seen in Table
6.7.

Method Se (%) PPV (%) F1 (%)
LSTM - PT 0.7493 0.7570 0.7693

LSTM - CWT 0.8781 0.8691 0.8736
ESN - PT 0.7690 0.7664 0.7677

ESN - CWT 0.8808 0.8815 0.8812

Table 6.7: The positive predictive value, sensitivity and F1 measure for the different
fECG and fQRS extraction method combinations when the rule of a maximum heart rate
difference of ±5 BPM is applied as tolerance during the grading procedure. The evaluation
was performed on the full database.
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Chapter 7

Discussion

Both the LSTM and ESN in combination with the CWT achieved excellent detec-
tion percentages on the database considered in this thesis, even though only three
abdominal electrodes were used (the electrode combination part of the CWT based
method is expected to improve with the number of electrodes). For the former,
around 1 in every 100th heartbeat was misdetected and even fewer misdetections
were made for the ESN. That level of reliability should be more than enough in
an online implementation, since a single, rare error is quickly corrected by the sub-
sequent beats. Furthermore, efforts to define and implement metrics that give a
confidence measure based upon the detection performances have been initiated, al-
though further work is required within this subject.

However, the data used in this thesis, although of varying signal quality, is not
sufficient for a general claim about the reliability of the methods to be made. This
since it merely contains recordings of fairly healthy fetuses and does not include
samples of the various abnormal and potentially very dangerous conditions that
might occur during gestation or labor. Consequently, one might conclude that the
developed methods would perform well during normal conditions, but more and
different data would be required in order to prove that reliable detection also would
occur during abnormal circumstances.

The Pan-Tompkins method did not fully achieve the same level of accuracy as the
CWT method, but it is important to emphasize that the electrodes were treated
independently for this technique and their detections were not combined in any
way to allow the final detections to be based upon a weighing of the information
from multiple sources. Future methods that enable e.g. electrode ranking based
upon information in the time domain could potentially increase this performance,
although this was not prioritized in this thesis.

In general, even though Pan-Tompkins has achieved high performance levels (in
particular for QRS extraction of adult ECGs), it is based upon a couple of empirical
rules and operations. Supposedly there should be non-linear transforms and decision
trees that outperform this manually developed method. Consequently, e.g. a regular
FFNN or an RNN would presumptively be able to conduct an even better signal
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pattern recognition, even in noisy areas, in order to detect the QRS complexes,
provided that it is trained on enough data of various character. Personally the
authors of this thesis believe that such a detection method, if applied after the
CWT algorithm has detected the regions of each heart beat, would be able to set
accurate time stamps of each beat in a very reliable way. This provided that a
sufficient amount of data with correct and accurate annotations is available, which
unfortunately was not the case during this thesis. Multiple examples were found
where the exact positions of the annotations seemed inconsistent, even though they
were placed in the right region. It has also previously been reported that some
annotations of the manually annotated parts of the NI-FECG database should be
discarded since inadequate accuracy has been found during visual inspections[3].
If data with correct and accurate annotations could be made accessible by using
both abdominal electrodes and SECG (as reference) simultaneously, we believe that
sufficient performance also for the ±5 BPM condition should be within reach with
a CWT-FFNN or an CWT-RNN combination.

Regarding robustness of the methods, the different algorithms were tested indepen-
dently in this thesis. One could however imagine that usage of a combination of
multiple QRS detectors relying on different detection methods (such as CWT and
PT) potentially could improve the total extraction method’s ability to handle big-
ger variations in the signal shape and also reliably detect declines in signal quality.
This has not been evaluated in this thesis, but could turn out to be rewarding if
investigated in the future.

Looking into improvability of the assessed methods, the weights of the readout layer
of the ESN were kept fixed after the initial training. It is however also possible to
allow them to evolve continuously in an online adaptation. A non-adaptive approach
was chosen in this thesis for simplicity and because it actually performed slightly
better when a comparison was made in the PhysioNet Computing in Cardiology
Challenge 2013[104]. However, there is no guarantee that the same would be true
for the ESN implementation developed in this thesis. Furthermore, there are multi-
ple ways to implement such adaptive methods, so further investigation of adaptive
output weight updates in the future could prove fruitful.

In general, the ESN and its hyperparameters appear to have been sufficiently opti-
mized for the problem at hand, although it needs to be evaluated on more data of
varying character to safely conclude that the hyperparameters do not need further
optimization to improve the networks ability to generalize to new input patterns.
In terms of computational expensiveness, no optimization has been performed with
regard to this. However, full evaluation (training of the ESN and subsequent fQRS
detection made through the CWT method with one thoracic and three abdomi-
nal electrodes) of the whole database, i.e. analysis of 14 ⇥ 90 = 1260 seconds of
recordings, took on average around 150 seconds on a 3.1 GHz Intel Core i5 proces-
sor. It thus appears as if the current algorithmic efficiency is sufficient for online
applications, even though it should still be optimized in order to reduce power con-
sumption and possibly enable the computation to be integrated into an embedded
system instead of an external computer.
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The LSTM was not optimized in any way with respect to the F1 performance on the
database. Instead, only the effects of the number of units and the training time was
studied. By varying the low pass and high pass filters, which were fixed at 95 and 20
Hz respectively, the network might have achieved a better performance. Note that
information regarding movement of the electrodes due to e.g. breathing was filtered
out in the high pass filter.

Also, the networks were quite computationally heavy to train. A network with
60 units took approximately 11 min to train on the 10s signal. This would be
significantly lower if a modern GPU was used instead of a CPU. However these can
be quite expensive, which would revoke the benefit that the electrode system would
be cheap. To resolve this issue, one could use a pre-trained network on specific
electrode positions and slightly adapt the model for each specific case.

One could also imagine applying the LSTM architecture for a completely different
purpose. During experimentation with the LSTM nets, it was noted that the net
performed well at predicting the next value at an abdominal signal given the current
value in a thoracic signal. This could serve as an improved and time adaptive model
in e.g. a Kalman filtering network.

Revisiting ICA methods, it was concluded in Part III Section 4.2.1 that stand-alone
linear ICA methods had intrinsic drawbacks that made it unappealing to the problem
at hand. Furthermore, it had insufficient detection levels in the performance review
in Part III Section 3.3. That being said, there have recently been several reports
on ICA methods that utilize temporal information to separate subsignals using a
non-linear transform, e.g. Hyvärinen[107]. Such extensions of regular ICA methods
might be promising for separation of the fECG and mECG.

Another future improvement is to take pregnancies with more than one fetus into
account. This thesis solely considers single pregnancies, but the prevalence of mul-
tiple pregnancies has been estimated to be around 3%[108] which cannot be deemed
as negligible. The mECG removal methods of this thesis would probably still be suc-
cessful, but the fQRS detection techniques would have to be adapted for such cases
since the AECG residual still would comprise heart beats from multiple sources.
Moreover, the refractory period condition could not be used in the same way as for
the current methods. Intuitively, a BSS algorithm would probably be suitable to
distinguish the sources based upon spatial information. As mentioned previously,
the performance of a BSS based algorithm is expected to improve with the number
of abdominal electrodes. A case study of multiple pregnancies has been conducted
by Sameni[20], where different versions of linear ICA were applied for the fECG
source separation after the mECG had been removed.
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Chapter 8

Conclusion

Multiple fECG extraction and fQRS detection methods from previous works have
been reviewed and compared in terms of performance, advantages, and disadvan-
tages. Inspired by key ideas and findings from earlier works, novel methods have
been developed that for the data available detect fetal heart beats with the same
level of reliability as state-of-the-art QRS detectors do for adult ECGs. Merely
one thoracic electrode and three abdominal electrodes were used during the evalua-
tion, but the robustness and reliability of the methods is expected to improve even
more for a higher number of electrodes. Additional measurement data with reliable
annotations is required to work towards the desired resolution of ±5 BPM for a
commercial application. The performance of the developed methods also needs to
be assessed on data that includes abnormal cardiac behavior.
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Part IV

Conclusion and future work
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This thesis has mainly consisted of two different parts. The first part looked into the
development and assessment of a high impedance non-contact electrode, the second
part into the development and assessment of fECG extraction and fQRS detection
methods. Some of the highlights, key findings, and areas of further improvement
are listed below.

• A non-contact electrode was designed and optimized with respect to noise,
stability and resistance to artifacts.

• The electrode can reliably measure an ECG signal and should be able to
measure the fECG with similar signal to noise ratios as state of the art contact
electrodes.

• The electrodes are suitable for stationary implementation in stretchy fabric,
which facilitates an easy application procedure, re-usability and long term
fECG monitoring.

• A full measurement setup has been implemented and is ready to make record-
ings on the abdomen of pregnant women, although further improvements are
still possible.

• The total production cost of an array of electrodes should be a fraction of the
cost of current CTG apparatuses.

• In the future, input neutralization should be implemented to reduce noise and
to make the electrode more stable with respect to variation in input capac-
itance. Also, changing the front end amplifier would most certainly reduce
both noise and the price of the electrode.

• The issue of large DC offsets on the output could be mitigated by referencing
the instrumentation amplifier input to a high passed version of itself rather
than to ground.

• Either contact or non-contact right leg drive should be added to the system
to reduce common mode signals such as PLI.

• Multiple fECG extraction and fQRS detection methods from previous works
have been reviewed and compared in terms of performance, advantages, and
disadvantages.

• Inspired by key ideas and findings from earlier works, novel methods have been
developed that for the data available detect fetal heart beats with the same
level of reliability as state-of-the-art QRS detectors do for adult ECGs.

• Different kinds of recurrent neural networks, LSTMs and ESNs, have displayed
good abilities to mirror time-dependent transformations of the thoracic mECG
to the mECG component of the AECG mixture.

• The hyperparameters of the ESN network were successfully optimized using a
genetic algorithm.

• Special care has not been taken to optimize the algorithmic efficiency, but the
ESN-CWT combination already has a low enough computation time for online
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monitoring through an external computer. Further optimization is however
desirable to lower energy consumption and enable online computation in an
embedded system.

• Merely one thoracic electrode and three abdominal electrodes were used during
the evaluation, but the robustness and reliability of the methods is expected
to improve even more for a higher number of electrodes.

• Multiple fQRS extraction of different characters, e.g. Pan-Tompkins and the
CWT based method, could be combined in the future for additional robustness
and easier detection of leads with poor signal quality.

• The NI-fECG in combinations with the developed algorithms would suitable
for quantifying beat-to-beat variations.

• Additional measurement data with reliable annotations is required to work
towards the desired resolution of ±5 BPM for a commercial application. The
performance of the developed methods also needs to be assessed on data that
includes abnormal cardiac behavior.

• An FFNN or an RNN that considers QRS regions in the time domain that
have been pre-detected by the CWT based method could probably be used
for accurate determination of the exact time of the R peak. Hopefully this
additional step should be sufficient to make the total algorithm reach the
desired resolution.

• Cases of multiple pregnancies occurs too often (around 3% of all births) to
ignore completely and should be considered in the future. A blind source
separation based method is probably required.
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