
Using semantic analysis to assist
schedule optimization
Master’s thesis in Computer Science – Algorithms, Languages & Logic

JACOB RIPPE

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Master’s thesis 2018

Using semantic analysis to assist schedule
optimization

JACOB RIPPE

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2018

Using semantic analysis to assist schedule optimization
JACOB RIPPE

© JACOB RIPPE, 2018.

Supervisor: Krasimir Angelov, Department of Computer Science & Engineering
Advisors: Fredrik Altenstedt and Thomas Johnsson, Jeppesen Systems AB
Examiner: K. V. S. Prasad, Department of Computer Science & Engineering

Master’s Thesis 2018
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2018

iv

Using semantic analysis to assist schedule optimization
JACOB RIPPE
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Airline Crew Planning is a complex task often divided into many steps to reduce
complexity. One approach for finding good solutions is to generate a large set of
solutions and determine which combination of solutions satisfy all constraints at the
lowest cost.
We have analyzed a software system for generating solutions that uses rules stated
in a DSL to determine solution legality. The legality is checked during solution
generation, and the legality of the solution in progress affect the generation strategy.
The question this project sought to answer is whether it is possible to determine
certain properties of the rules at compile-time. The approach has been to analyze
the structure of the rules and assign semantic information in a method inspired by
type inference rules.
In an iterative fashion, theories about the system were formed, and tested by imple-
menting checks inside the DSL compiler. After manual verification of the theories
by looking at the output of the implementation, the theories were expanded upon
or revised.
The implementation has been able to automatically identify a few rules with the de-
sired properties, and more may be identified with continued development. Inference
rules were a general approach to deciding properties, and more interesting findings
might be found using more advanced techniques. However, there is a limit to what
can be decided by static analysis.
Aside from analyzing existing rules, some semantic information may be of assistance
when writing new rules, and might even be of assistance at runtime in future projects.

Keywords: computer science, semantic analysis, static analysis, compilers, domain
specific languages

v

Acknowledgements
I am very grateful to have been given this opportunity to do my thesis work at Jeppe-
sen at their Gothenburg office. Jeppesen has kindly provided me with everything
I’ve needed to make this thesis a possibility.
I want to thank Fredrik Altenstedt and Thomas Johnsson for agreeing to be my
technical advisors and provide insight, technical assistance, feedback and many in-
teresting discussions about the project.
Thanks to everyone at Jeppesen who have shown interest and cheered me on.
Thanks to Andreas Westerlund, who made this project a reality by introducing me
to my advisors.
Thanks to Kristoffer Ptasinski for taking care of the administrative details of my
work at Jeppesen.
Thanks to Tomas Gustafsson for assisting with the thesis writing.
Thanks to Michael Spicar for letting me stay in his office and allowing me to claim
all whiteboard space for the past few months.

I want to thank my supervisor Krasimir Angelov and my examiner K. V. S. Prasad
for helping me shaping this project into a reality, and for valuable feedback on my
thesis writing.
I want to say thank you to my family for all the support, and a big thank you to
Anna Norén for always being there for me.

Jacob Rippe, Gothenburg, February 2018

vii

Contents

List of Figures xi

Glossary xiii

1 Introduction 1
1.1 Project Aim . 1
1.2 Problem Description . 2

1.2.1 Crew Planning . 2
1.2.2 The Pairing Generator . 2
1.2.3 The Rule System and Illegal Subchain Rules 2
1.2.4 Rule Classification . 3

1.3 Limitations . 3

2 Theory 5
2.1 Background and Related work . 5
2.2 Rave Language Overview . 6

2.2.1 About the language . 6
2.2.2 The components of Rave code 6
2.2.3 Expressions in Rave . 7
2.2.4 Instances of Levels and Expressions 9
2.2.5 Rules and Legality . 10

2.2.5.1 Valid case . 11
2.3 Model and Domain . 11

2.3.1 Domain to model . 11
2.3.2 Some formalisms . 13
2.3.3 Consequences of Misclassification 14
2.3.4 Conditional rule checking . 15

2.3.4.1 Manual rule classification 15
2.3.4.2 Conditional rule checking example with is_closed . . 16

3 Methods 19
3.1 Classification and Attributes . 19

3.1.1 Approach and Goals . 19
3.1.2 Classification using attributes 20
3.1.3 Attribute rules and propagation 21

3.2 Attributes by category . 22
3.2.1 Range . 22

ix

Contents

3.2.1.1 Range of arithmetic operations 22
3.2.1.2 Time relations and traversers 23
3.2.1.3 Findings as attribute rules 24

3.2.2 Constantness and Dependencies 25
3.2.2.1 Attributes in relation to Instances and Context . . . 25
3.2.2.2 Findings as attribute rules 26

3.2.3 Value direction . 27
3.2.3.1 Monotonic Sums . 28
3.2.3.2 Other findings and rules 29

3.2.4 Direction in Legality . 29
3.2.4.1 Comparisons with monotonic sums 31
3.2.4.2 Attribute rules for Direction in legality 32

3.3 Direction in legality and rule classification 33
3.4 Notes on implementation . 34

4 Results 35
4.1 What has been done in this project 35
4.2 Results of implementation . 35
4.3 Example of attribute propagation for rule 35

5 Conclusion 37
5.1 Findings of this project . 37

5.1.1 Special mention on conditional variables 37
5.1.2 Reflections on expressiveness of classification 37

5.2 Other applications of semantic analysis 38
5.3 Future Work . 39

5.3.1 Explore more attributes and rules 39
5.3.2 Assisting runtime optimization 39
5.3.3 Simplify rule writing . 40

5.4 Conclusion . 41

Bibliography 44

A Appendix 1 I
A.1 Example code with computed attributes I

x

List of Figures

2.1 Rave Levels . 8
2.2 System model . 12
2.3 Generation Search Space Example . 13
2.4 Rule generation in relation to is_closed 16

3.1 Attribute rules for arithemetics . 23
3.2 Relations between keywords with index traversers 24
3.3 NonFinal pattern from boolean connectives and direction in legality.

The rows represent different expressions and the columns represent
instances, where the column to the left is the first instance and the
ones to the right are continuations. 33

4.1 AST of rule final_monotonic_sum with references followed 36

xi

List of Figures

xii

Glossary

AST Abstract Syntax Tree, tree representation of code
DSL Domain Specific Language, a specialized language in a restricted domain
Expression Instruction in a programming language
Leg A flight between two airports
Duty Part of a trip, a sequence of flights in the same working day
Trip A sequence of flights, typically starting and ending in the same airport
Crew Pairing Part of Crew Planning, A procedure with the goal of finding a legal

set of trips for an anonymous crew member
Crew Rostering Part of Crew Planning, A procedure where crew members are

assigned to trips so that all flights are staffed
Deadhead Leg where a crew member is travelling as a passenger instead of working

xiii

Glossary

xiv

1
Introduction

Programming languages and their usage evolve over time. One goal when developing
a language further is to make it easier for a programmer to express what they want
to achieve.
Domain Specific Languages (DSLs) are a sort of programming languages that are
designed to be especially expressive in their own domain but with limited use outside
of that domain, Mernik et al. [24]. This enables a programmer to model problems
without needing to think about the low-level implementation details. Keshishzadeh
and Mooij have discussed semantic analysis of DSLs [19], and DSL design and im-
plementation is described in detail by Voelter et al. [29].
The company Jeppesen supplies Airline Optimization Solutions, one being crew
schedule optimization. To model this domain, they have developed their own DSL,
Rave (Rule And Value Evaluator) [2, 3, 21]. Kasirzadeh et al. describes some chal-
lenges of crew scheduling in general [18], and Goumopoulos & Housos [15] discusses
another DSL and system for trip generation in Crew Pairing.
Rave is used to formally express rules and costs associated with scheduling that can
be used in their optimizing system. To deal with the massive amount of regulations
in Airline - such as government rules, union agreements, company policies, and so
on - these regulations are implemented as Rave code and compiled into rulesets that
can be evaluated when scheduling.
This project will study Rave in an effort to automate the detection of patterns in
the code that can lead to inefficiencies.

1.1 Project Aim

This project aims to develop a method for automatically classifying different types
of rules expressed in the DSL Rave, specifically detecting if a rule is a so called Illegal
Subchain rule or not. Currently, it is up to the programmer to manually classify
these rules, which puts an extra burden on them to have a grasp of the scheduling
process. Improper classifications of rules are not always easy to find, and can lead
to performance issues or worse solutions.
The main theory that this project aims to verify is that it is possible to classify these
rules automatically at compile time.

1

1. Introduction

1.2 Problem Description
Here is a description of the system in use and the problem that this project intended
to solve. A more thorough description of the system is described by Karisch &
Kohl [21]. Other related sources: Hjorring & Hansen [16], Andersson et al. [3].

1.2.1 Crew Planning
The Crew Planning process takes place after a timetable for flights have been con-
structed. Its goal is to assign crews to all flights with a total trip cost as low as
possible. Crew Planning is typically split up into two major phases in order to
reduce the complexity of the task, Crew Pairing and Crew Rostering [2, 3, 18, 21]:

• Crew Pairing deals with finding a set of legal trips that together cover the
crew needs for all flights.

• Crew Rostering assigns actual crew members to the trips using the trips that
were generated in Crew Pairing.

For this project we focus on the Pairing Generator, and the rulesets that are used
to check trip legality. A trip is a sequence of flights that start and end in the same
base.
The Jeppesen Crew Pairing optimizer has two major components, the generator and
the optimizer. First, the generator generates a large number of potential trips that
are legal for some unspecified crew member. Then, the optimizer finds a subset of
these trips that cover all crew needs for all flights.

1.2.2 The Pairing Generator
Somewhat simplified, the generator has a trip in progress that it tries to add flights
to. When adding a flight, the generator checks with the rule system if the trip along
with the new flight is legal according to the rules.

• If the trip is legal, the trip so far is saved as a potential complete trip, and the
generator tries to add another flight.

• If the trip is illegal, the generator removes the last flight and tries adding
another flight.

This is how the process works for most of the rules, but there exist some types of
rules that complicate the matter. These types of rules are called Illegal Subchain
rules, and they need to be handled differently by the generator.

1.2.3 The Rule System and Illegal Subchain Rules
The rule system consist of regulations, which are made available to the system by
the Rave language. The regulations are typically defined on complete trips; when
checking a trip to see if it is legal, the rule system returns a true or false, if it is
legal or illegal respectively. However, when generating solutions, many incomplete
trips will be checked against the rule system, which adds some complexity to the
problem.

2

1. Introduction

In order to check legality of incomplete trips by the generator, the concept of Illegal
Subchains was created.
An Illegal Subchain Rule is a rule that when given a complete trip may be evaluated
to true, but it may evaluate some, or all, sub-trips to false. Example:
A rule stating that a trip must start and end in the same airport.
When building a trip satisfying this rule, the generator starts with one flight, and
checks if it is legal. Assuming that there are no scheduled flights that start and end
in the same airport, there is no flight that alone can satisfy the rule.
Thus, without some changes in strategy, the generator would find no legal trips
when using this rule. To circumvent this, it is possible to state that a rule should
only be evaluated when certain conditions are met.
For a complete trip to be legal it still has to satisfy all rules in the ruleset, but
conditional rule checking can make sure that Illegal Subchain Rules do not interfere
with the generation of otherwise legal trips.

1.2.4 Rule Classification
A distinction is made between Illegal Subchain Rules and Final Rules, and all rules
can be classified as one of the two. An informal way of describing them is this:
If a trip is tested against a rule when generating and the rule is violated, there are
two scenarios:

• The rule is an Illegal Subchain Rule: Then the trip may become legal by
continuing adding flights to the trip.

• The rule is a Final Rule: Then this sub-trip is illegal, and there can exist no
legal trip that can be constructed by only adding flights to the current trip.

Basically, Illegal Subchain Rules need to be satisfied in order for a complete trip to
be legal, but a violated Illegal Subchain Rule should not exclude any legal solution
during the generation process.
As mentioned earlier, it is up to the programmer to manually classify rules. The
goal of this project is to analyze the rules that the programmer writes and determine
whether they are Illegal Subchain Rules or not.
Given some domain knowledge and insight on how the generator works together
with the rule system, the circumstances under which Illegal Subchain rules emerge
will be examined in order to develop a method to classify them automatically.

1.3 Limitations
This project is intended as a proof of concept for possible future development of
optimization of processes using the Rave language. As such it is somewhat experi-
mental, and its main focus is studying the possibility to improve the existing system
with semantic properties to reason about how the evaluation of expressions changes
during Pairing Generation.
Rave is used to model many things in the system, but this project is only interested
in how it is used during the generation phase of Crew Pairing. Therefore, only a
subset of the language is studied, and some of the theories will only apply in this con-

3

1. Introduction

text. The assumptions and simplifications of the system are described in Section 2.3.

The project only implements some static analysis of some existing code, but some
other approaches are considered as well.

4

2
Theory

In the following section, more about the theory is discussed.

2.1 Background and Related work
Compilers and Programming languages are highly relevant to this project. Some
material used as reference include Compilers: Principles, Techniques, and Tools [1],
Implementing Programming Languages [26], and Compiler Design: Syntactic and
Semantic Analysis [30]. Compilation and compiler development is a broad subject
that covers many subproblems, but this project mainly relates to type checking and
semantic analysis.
Type systems and inference rules are covered in depth by Pierce [25].
An important concept is Abstract Syntax Trees (ASTs), which are a way to represent
the expressions in a programming language. These are the target of analysis.
The work done in this project is a form of static analysis, i.e. the analysis is done
without running the program. Abstract Interpretation is a method of reasoning
about the possible outcomes of code, researched in depth by Cousot & Cousot [11–
13]. Bruynooghe [6] has applied some Abstract Interpretation on logic programming,
which is a kind of declarative programming language.
To heighten the confidence in code correctness and to make it easier to write good
code, methods for software verification and validation is an active area of research.
Hovemeyer & Pugh [17] have written an influential paper on finding patterns in code
that may be erroneous. Their experiences of implementing the detection of what
they refer to as “bug patterns” was very positive. Basically, with the knowledge of
the syntactical structure of a bad pattern in program code, it is possible to find sim-
ilar errors with static analysis. They also show some examples how trivial mistakes
can be common in large projects, and how effective rule based error detection can
be. Another important thing mentioned is how mis-interpretation of semantics is a
common source of faulty code.
Flanagan et al. [14] describe their experiences of “extended static checking”, where
they have implemented an additional layer of formal reasoning on top of Java to
ensure correctness of the code. Among other things they extend the syntax to enable
the programmer to formally specify properties that are checked by interpreting the
code.
Chin, Markstrum and Millstein [8, 9] have presented some experiences with adding
“semantic type qualifiers” to an existing language, with subtyping of variables and
enforced additional checking of these new types. This has been an inspiration for

5

2. Theory

the Attributes that were developed during this project.
Solodkyy et al. [27] have also written about extending an existing language with
additional type checking, and describe how these additional checks can be done
without modifying the compiler.
Reasoning about semantics in a specific domain can be used to ensure correctness
and may make certain kinds of optimizations possible.
Some related papers on this subject are written by Mooij & Keshishznadeh [19] who
reason about DSL correctness through formal semantics, and Cire et al. [10] who
describe optimization of operations in a domain model.

2.2 Rave Language Overview
This section contains a short overview of the Rave language parts that are relevant
to this project and how they behave during Pairing Generation.

2.2.1 About the language
Rave is a declarative DSL used to model cost and legality in Jeppesen’s Crew & Ops
management products. The language is designed so that the compiled code can be
executed by external applications. It is the external application that supplies the
input data that can be referenced in the Rave code. For example, the start time
of a flight can be referenced in Rave code, but it has no concrete value until it is
evaluated in a context where flight data exists.
This modular separation of concerns means that a user may make adjustments to the
rules, the external applications, and the input data separately [2, 16]. The external
application in the context of this project is the Pairing Generator, which supplies
the trips that the rules are checked against.
The lack of data during compile-time poses some interesting challenges to this
project, since it is not safe to make assumptions about variables in the Rave code.
However, from how the Pairing Generator uses the Rave code and the data it sup-
plies, some properties and relationships between data are known.
As a side note, the declarative nature of Rave is convenient from an analysis-
standpoint because it is intuitive to write and read the code, and the structure
of the computations are stated rather clearly.

2.2.2 The components of Rave code
Here are a few of the more important components in Rave code referenced in this
project. Two central kinds of definitions are Rule- and Variable definitions. They
both have a name and are defined in terms of Expressions - which are described in
more detail in Section 2.2.3. Expressions are the subject of analysis in this project.
Two other important aspects are Keywords and Levels.
Variable definitions are expressions that have a name, which can be referenced
by other expressions. The name is surrounded by %-characters and the defining
expression is stated after the =-character. Example variable definitions:

6

2. Theory

%one% = 1 ;

%five% = 4 + %one% ;
Keywords are like a special kind of variable that is used to refer to external data,
such as flight times. This data is supplied by the application running the Rave code;
in this case it is the Pairing Generator. The keywords are not assigned values in the
Rave code, but they can be referenced in Rave expressions.
Rules are defined in terms of boolean expressions that describe the legality of input
data. Rule definitions start with the reserved word rule followed by the rule’s name
and the =-character. There exist more constructs to express more complex rules
but, for the scope of this project, what’s interesting is that rules have a defining
expression. Optionally a valid case can be added before the defining expression, to
decide when a rule should be evaluated. The end of a rule definition is marked by the
reserved word end. Rules and legality are described in more detail in Section 2.2.5.
Example rules:
rule rulename =
%rule_expression% ;

end

rule cond_rule =
valid %rule_condition% ;
%rule_expression% ;

end
Levels are a way to partition the trip in progress into smaller parts.
Using levels it is possible to write expressions that refer to “all legs within a working
day”, “all legs in the current trip”, or “all working days in the current trip”. New
levels can be defined in Rave code, but this project will focus on three standard
types: Trip, Duty, Leg. Leg refers to a single flight, duty refers to the flights of
a working day and trip refers to all legs. Legs are automatically grouped into level
instances according to the level’s definition. More on this in Section 2.2.4
Figure 2.1 shows an example of a trip with 6 legs, partitioned into 2 duties.
An example statement: The total flight time of a duty can be described as the sum
of flight times of all legs in that duty.

2.2.3 Expressions in Rave
An expression is a construct for describing how to compute a value. Expressions
can be built up from multiple subexpressions. The following section will describe
some of the expression types.
Variable and Keyword references are ways to reference the expressions of other
named entities. Their value is the evaluation of the expression that they refer to.
Examples:

• %variable%
• leg.%start_utc% ;

Mathematical operations are operations such as addition, subtraction, multipli-
cation, division and modulo. The operands are expressions as well, and are con-

7

2. Theory

Trip

Duty

Leg

Figure 2.1: Illustration of some common levels in Rave. A trip consists of duties,
which consist of legs. The underlying datastructure can be regarded as a list of
legs in chronological order (a trip) with indices that denote where the different level
instances start and end.

sidered subexpressions to the operation. The value of the operations follow the
algebraic laws and is usually an integer. Examples:

• 5 + 5 ;
• -1 ;
• 100 * 100 ;

Comparisons are related to the mathematical operations, but they state the re-
lationship of two expressions in relation to an operator. The operators are Equal-
ity(=), Nonequality(<>), Greater than (>), Less than (<), Greater or equal(>=),
and Less or equal(<=). The value of the operations state whether the comparison
is true of false. Examples:

• 1 > 2 ;
• %sum% <= %limit% ;
• True <> False ;

Value constants are expressions that are simply defined to hold some value, which
doesn’t change during runtime. Parameters are related to constants, as they are
defined in terms of a constant value. The difference is that the value of a parameter
may be changed at runtime, before generation. Optionally, parameters can have a
minimum and/or a maximum value limit(s) that limit the possible value range of
the parameter. Examples:

• 50 ;
• True ;
• "Hello" ;
• %bounded_param% = parameter 7 minvalue 5 maxvalue 12 ;

The last example defines the parameter %bounded_param%, with a default value of
7. This may be changed at runtime, but it can only be set to a value within the
range [5,12].
Boolean operations such as and, or, and not are used to combine boolean ex-
pressions into more complex boolean expressions. Examples:

8

2. Theory

• True or False ;
• not True ;
• (5 > 3) and %boolean_variable% ;

Conditionals are the standard if a then b else c constructs as seen in most
programming languages used when the resulting value depends on some condition.
The value of the expression is the evaluation of b or c, if a evaluates to true or false
respectively. Example:
if %condition%
then 20
else 25 ;

This expression evaluates to 20 if %condition% is true, and 25 if it is false.
Traversers are used to evaluate expressions on one or more level instances. They
can be used to refer to multiple level instances at once or to relate to a specific
instance, and there are many kinds that compute different things. Some central
ones are sum, count, next, prev, first, last, any, and all.
The evaluation of a traverser expression may vary depending on what the trip in
progress consist of, so they can be used to express properties of specific level in-
stances.
Traversers make up the functionality that is made possible by loops and recursion
in many other programming languages and as such, Rave has no other concepts of
loops.

• sum(leg(duty), leg.%time%) evaluates the sum of the leg-expression %time%
for all legs in a duty. This is one way to define the total flight time of a duty.

• count(leg(duty)) counts the number of instances of legs in a duty. Equiva-
lent to sum(leg(duty), 1).

• prev(duty(trip), duty.%time%) evaluates the duty-expression %time% of
the duty before the current duty.

• last(leg(duty), leg.%end_utc%) evaluates the leg-expression %end_utc%
for the last leg in the current duty. This is one way to define the time of the
last landing in a duty.

• any(leg(duty), leg.%is_international%) ; evaluates the leg expression
%is_international% for each leg in a duty. The expression is true if any of
the evaluations is true.

2.2.4 Instances of Levels and Expressions
Expressions belong to a specific level, which is decided depending on how the ex-
pression is defined. The expression level dictates in which context it gets evaluated
as well as how often it may change in value. When a new instance of a level object
is created, then each expression which belongs to that level also has a new instance
created.
For example, each leg has an instance of the leg.%time% expression which tells
the flight duration time because the expression is defined on a per-leg basis. Each
duty has a duty.%time% expression which tells how long the working day for that
duty is. The duty time is defined in terms of the legs in that duty instance, so the
duty.%time% instance changes when new legs are added.

9

2. Theory

Which instance of a level that a new leg belongs to is handled by checking the new
leg against each level’s defining expression.
An important distinction should be made to avoid ambiguity when generating trips.
When regarding level instances, such as duty, generation may either result in a
continued instance or a new instance of that level.
Definition 2.2.1. New Instance: When the generator adds a leg that, according
to a level’s definition, can not be a part of an existing level instance, then a new
instance of that level is created. All expressions belonging to that level have a new
expression instance created and evaluated.
Definition 2.2.2. Continued Instance: When the generator adds a leg that can
be part of an existing level instance, the leg is added to the level instance. The
level instance containing the new leg is then considered a continued instance, or
continuation of the previous instance without the leg. All expression instances
which are affected by the added leg get evaluated to a new value.
Example: The generator tries to add a new leg. The starting time of the new leg is
12 hours later than the last leg of the last duty. According to duty’s level definition,
the new leg should be considered part of a new duty, so a new duty instance is
created containing the new leg.
As elaborated on in Section 2.2.5, rules are expressions - they too have levels and
instances. Furthermore, for a rule to be considered valid, then all existing instances
of that rule must be valid. Because of this, any rule describing legality on, for
example, “a duty” will be checked for all duty instances, relieving the rule writer
from thinking about when to apply rules.
Observation 2.2.1. The fact that expressions have multiple instances means that
any property that is proven about the expression is true for all instances of the
expressions. Conversely, in order to prove something about an expression, it has to
be true for all contexts.
Note: Many expressions only affect one instance of a level object, but it is also
possible to depend on other instances of the same level. For example, the rest time
before the beginning of a new duty is a value specific to one duty instance, but it
depends on two duties in direct succession.
This dynamic makes it possible for later instances to trigger a violation of an earlier
rule instance. However, no matter which instance the rule is violated for, it is
the last added leg that is of interest when deciding whether there may exist legal
continuations. This is true because of the order that solutions are found in, which
is elaborated on in Section 2.3.

2.2.5 Rules and Legality
On a structural level, the legality of a rule in Rave is determined by it’s defining
expression, er. er is a boolean expression which is true when the rule is satisfied by
a trip and false when the rule is violated.
The central concept to classifying rules in this project is to detect properties of er

which can describe how legality changes in relation to generating trips.
Since er is a boolean expression, some of the most important properties for classifica-
tion are those that describe how trip generation affect boolean expressions. Central

10

2. Theory

to this report are the comparison-expressions.

2.2.5.1 Valid case

The Valid case is an optional additional boolean rule expression, ev, that describe
whether er should be evaluated or not during generation. If ev is evaluated to true,
the rule legality is decided by er. If ev is evaluated to false, the Generator keeps
generating regardless if er is true or false. Omitting a ev expression is equivalent to
having ev defined as true.
There are a few cases where one would expect a Valid case to be used:

• To tell that “This rule is only applicable in certain cases, namely under precon-
dition ev”. In this case the rule’s legality is decided by the logical implication
ev → er, i.e. the rule is valid unless ev evaluates to true and er evaluates to
false.

• To tell that “This node may be illegal according to er, but there may exist
legal continuations”.

Combinations of these cases may also exist. The difference between them relate
to how they are handled in the Pairing Generator. This is elaborated on in Sec-
tion 2.3.4.

2.3 Model and Domain
Here is a description of the problem domain and how it is modelled in this project
in order to reason about it. Note that some assumptions and some simplifications
are made in order to reason about the system more easily, but the findings of this
project are still applicable to the full system.

2.3.1 Domain to model
Flight regulations are given to the rule writer, a programmer who translate the
regulations into Rave code that describe them in a formal context. The rave code
is compiled by the compiler into the rule system that the Pairing Generator
can use to check the legality of trips. Figure 2.2 illustrates how the different parts
in the system work together.

The Pairing Generator wants to find a set of trips that are legal for an anonymous
crew member. As input data it has the flight schedule for aircrafts, which can be
regarded as a list of flights (referred to as “legs”), sorted by departure time. The legs
have many properties, some which are data that get supplied at runtime, and some
that are expressions computed from this data. This project and its implementation
will put special emphasis on starting time (departure) and ending time (arrival) of
flights, properties which affect the legality of many rules. Other important properties
of a flight include starting and ending airport.
To illustrate the set of possible solutions (trips), the search space is introduced.
Definition 2.3.1. Search Space: The search space of the Generator is a tree
structure whose nodes represent all possible trips of a flight schedule.

11

2. Theory

Generator

Rule SystemCompiler

Rule Writer

Compiled Rules

Regulations

Rules/Code TripsLegality

Input Data

Legal Trips

Figure 2.2: Illustration of the model of the system.

The root is an empty node which represents an empty trip starting in some airport.
For each leg in the flight schedule starting in that airport, a child node is created.
In this step, these child nodes each represent a potential trip of length 1. Each of
these nodes has a child node created for every future compatible flight in the flight
schedule. Two flights are compatible if the upcoming flight starts in the same airport
that the previous flight ended, and the start of the upcoming flight is later than the
end of the previous flight.
Following this procedure for each node, the entire search space of a flight schedule
can be constructed. Figure 2.3 is an illustration of a small search space example.
Traversing down the search tree from the root, each child node represents adding a
leg to the trip in progress, so each node represents a unique trip in progress.
Note that in practice, there is a limit on how many child nodes are explored for
each node, as the number of nodes grows exponentially with each level in the tree
structure.
Proposition 2.3.1. All possible legal trips are represented by a node in the search
space.

Proof. Consider a trip t. Every trip is a sequence of legs which are compatible with
each other. Starting at the root of the search space, visit the child nodes representing
adding all the legs of t. The search space contain all legal leg-sequences, so either
the node representing t exists, or t is not legal.

Somewhat simplified, the Generator traverses the search space to find legal trips in
what can be described as depth first search with some heuristics. Interfacing with

12

2. Theory

s

a

d e f

b

g h i

c

j k l

Figure 2.3: An illustration of a search space. This example shows three potential
legs in each node, and has a search depth of 2.
The trip represented by node i consist of the two legs added in node b and i.

the rule system, the generator uses the Final Rules to prune the search tree, and
the Illegal Subchain Rules to decide if a trip is complete.
For a trip to be complete and legal, it has to evaluate all rules to true.

2.3.2 Some formalisms
Informally, in the context of pairing, one may say that the difference between Final
and Illegal Subchain rules is how the generator should behave when a rule is violated,
i.e. what happens when the current trip is illegal according to some rule.
In order to reason formally about classification, the classifications also has to be
formally defined. Some notation and definitions:

Definition 2.3.2. Node legality in relation to a rule: A node n in the search
space is legal, or satisfied, according to a rule r if the trip represented by node n is
legal according to r. This is denoted as r(n).
¬r(n) denotes that n is illegal, or violated, according to r.

Definition 2.3.3. Legal Node: A node is considered legal if is is legal according
to all rules.
∀r ∈ Rules.r(n)

Definition 2.3.4. Subnodes: The subnodes of a node n is the set of all nodes
that are reachable by traversing downwards from n. This represents the set of all
possible continuations of the trip represented by node n. This is denoted as s(n).

Here are the formal definitions for the rule classes used in this project:
Definition 2.3.5. Final Rule: A rule r is a Final Rule if, when the rule is violated
for a node n, there exist no legal continuation of n. The following is true for a Final
Rule r:
∀n.¬r(n)→ ¬∃ns ∈ s(n).r(ns)

A rule being a Final Rule can be denoted r ∈ Final
∀n.¬r(n)→ ¬∃ns ∈ s(n).r(ns) ⇐⇒ r ∈ Final
Definition 2.3.6. Illegal Subchain Rule: A rule r is an Illegal Subchain Rule

13

2. Theory

if, when the rule is violated for a node n, there may exist a legal continuation of n.
The following is true for an Illegal Subchain Rule r.
∃n.¬r(n) ∧ ∃ns ∈ s(n).r(ns)

A rule being a Illegal Subchain Rule can be denoted r ∈ Illegal Subchain.
∃n.¬r(n) ∧ ∃ns ∈ s(n).r(ns) ⇐⇒ r ∈ Illegal Subchain
Note on ∃ns ∈ s(n): That there may exist a subnode, or that not all subnodes have
some property depends on the search space. In practice, the possible search space
depends on the input data, but in this model description it’s interpreted as that it’s
possible to for a leg to exist that represents a node with this property. This reflects
the fact that if there is no proof that there is no legal continuation, then generation
should continue.
Here is an proposition that is useful for classification:
Proposition 2.3.2. Final or Illegal Subchain: A rule is either Final or Illegal
Subchain.

Proof. For a rule r, assume r /∈ Final. The Final Rule Property,
∀n.¬r(n)→ ¬∃ns ∈ s(n).r(ns), does not hold, but its negation holds.
¬[∀n.¬r(n)→ ¬∃ns ∈ s(n).r(ns)] Negation of Final Rule Property
∃n.¬[¬r(n)→ ¬∃ns ∈ s(n).r(ns)] ¬∀ϕ ⇐⇒ ∃¬ϕ
∃n.¬[¬¬r(n) ∨ ¬∃ns ∈ s(n).r(ns)] ¬¬ − elimination
∃n.¬[r(n) ∨ ¬∃ns ∈ s(n).r(ns)] De Morgan, ¬(ϕ ∨ ψ) ⇐⇒ (¬ϕ ∧ ¬ψ)
∃n.¬r(n) ∧ ¬¬∃ns ∈ s(n).r(ns) ¬¬ − elimination
∃n.¬r(n) ∧ ∃ns ∈ s(n).r(ns) Illegal Subchain Property
Illegal Subchain Property = ¬Final Property, so
r /∈ Final→ r ∈ Illegal Subchain and
r /∈ Illegal Subchain→ r ∈ Final

This proposition means that if it is proven that a rule is not a Final Rule then it
must be an Illegal Subchain Rule, and vice versa. Note however, that failing to find
proof of a property is not the same as proving that it is false.
In order to classify rules in this project, rules are categorized after the structure
of their defining expression. The intuition is that some patterns can be used to
categorize rules into subsets of Final Rules and Illegal Subchain Rules.

2.3.3 Consequences of Misclassification
Rules that are never violated during Pairing Generation can never prune the search
space. As such, when a Final Rule is misclassified as an Illegal Subchain Rule, then
every violation of that rule implies a subtree in search space that is explored for
which no subnode can represent a legal trip.
Consider an extreme example case where no rules affect the Pairing Generator, for
example if all rules are interpreted as Illegal Subchain Rules. The only way to find
which trips are legal for all rules is to examine all rules for all possible trips, i.e.

14

2. Theory

exhaustive search. Since the amount of possible trips grows exponentially with trip
length, this is extremely inefficient.
On the other hand, if an Illegal Subchain rule is erroneously classified as a Final
Rule and gets to prune the search space when there may exist legal continuations,
then many possible solutions are never found. Omitting solutions carries the risk of
omitting optimal solutions, leading to overall worse results.

2.3.4 Conditional rule checking
The way Rave enables incomplete trip checking in generation is through adding
additional conditions to Illegal Subchain Rules. This is done using the Valid case
described in Section 2.2.5.1. A way to make sure that a rule never prunes the search
space unwantedly is to make sure that it is never violated during generation.
When generating trips, regarding a rule as trivially true implies that that rule will
never prune search space. If a rule’s ev depends on an expression that is always false
during generation, the legality of a rules expression er affects the trip’s legality, but
not the generator.
This functionality is possible through the is_closed keyword. It is false when
checking rules to decide whether to keep generating continuations, and false when
checking rules to decide if a rule is satisfied or not.
An example rule to illustrate how it works:
A rule that makes sure that a trip starts and ends in the same airport can look like
this:
rule same_airport =
valid is_closed ;
last(leg(trip), %arrival_airport%) = first(leg(trip), %departure_airport%) ;

end
Here, is_closed makes sure that only trips starting and ending in the same airport
are considered legal trips, and that even if a trip doesn’t start and end in the same
airport, there may exist a continuation that satisfies the rule.

2.3.4.1 Manual rule classification

The rules in Rave can be said to have two requirements in order to be useful. They
should be validated by all intended legal trips, and they must be written so that the
generator can find the legal trips by traversing the search space.
When translating regulations into Rave code, the first requirement is probably the
most straightforward. The rule should be able to decide whether a trip is legal.
The second requirement demands that the rule writer understands how the generator
works in order to write efficient rules, which is an additional mental overload.
The is_closed is sometimes misused or misunderstood, which can lead to faulty
classification. The consequences of misclassification may be severe, and furthermore
there is no obvious way to actually know that an error has been made.
The valid condition ev can be formulated in many ways, but if it is “dominated” by
is_closed then the rule will never prune search space.

15

2. Theory

%valid_condition% =
any(leg(duty), %is_deadhead%) ;

1 leg 2 legs 3 legs
er F F _
eg

v F T _
ec

v F T _
gen T F _
complete T F _

%valid_condition% =
any(leg(duty), %is_deadhead%) and
duty.is_closed ;

1 leg 2 legs 3 legs
er F F T
eg

v F F F
ec

v F T T
gen T T T
complete T F T

Figure 2.4: Truth tables visualizing the different implications on rule completeness
and generation on rule violation.

2.3.4.2 Conditional rule checking example with is_closed

Here is an example to show how is_closed affects generation in practice:
A deadhead leg is a leg where a crew member is traveling as a passenger without
working, to be able to work on a leg starting in a different flight base.
Experience has shown that short duties containing so called deadhead legs are not
generally part of good solutions, so a rule is to be written to exclude such rules from
possible solutions.
The sentence “Any duty containing a deadhead leg must be at least 3 legs long” can
be represented in Rave code as:
rule heuristic_deadhead =
valid %valid_condition% ;
count(leg(duty)) >= 3 ;

end
Here, er := count(leg(duty)) >= 3 and ev := %valid_condition%.

This rule should be able to allow the following example duty, d: Three legs, where the
second leg is deadhead. This can be modeled by the leg expression %is_deadhead%,
which is true for the second leg and false for the other two.
This rule needs a valid case in order to avoid being violated by every duty with
fewer than 3 legs.
Figure 2.4 illustrates the relation between rule expression legality, generation and
rule completeness. The rows show the boolean values of the evaluation of er, ev,
whether generation should continue, and whether the trip is considered complete
according to the rule. For clarity, ev is split up into eg

v and ec
v to illustrate the

different values that ev holds during generation and completeness checking. Notice
that in the left case eg

v and ec
v are equal, since ev does not depend on is_closed.

The columns represent the sub-trips of duty d.
The difference between the two cases in column 2 effectively show the importance
of using is_closed correctly. In the left case, ev becomes valid when the second leg
is added, but er is violated, which means that the trip in progress violates this rule,
and the Generator will not look for continuations of this trip. As such, the solution
acquired by adding the third leg is never found.
In the right case, the trip containing the first two legs is not a legal (complete) trip,

16

2. Theory

but since the valid case depends on is_closed, the generator continues looking for
legal continuations anyway and can find the solution with three legs.

17

2. Theory

18

3
Methods

In this chapter, the approach and methods used to fulfill the project goals are de-
scribed. The Rave language with its compiler has been studied as well as parts of the
Pairing Generation system in order to formulate the model and theory discussed in
earlier chapters. This chapter will describe the formalia and implementation details
that were developed during this project, along with some of the reasoning behind
the decisions.

3.1 Classification and Attributes
The goal of this project is to develop and implement a method to automatically
decide if a rule should be classified as Final or Illegal Subchain. In order to classify
rules, a method to identify patterns in code was needed.
Typically in compiler optimization and code analysis, this is done on the ASTs of
the code. In order to classify rules, some method was needed to convey additional
semantic information about the expressions. Earlier experiences with type checking
and some literature suggested that semantic analysis could be done by annotating
the ASTs with desired properties [1, 26, 30].
This inspired the introduction of Attributes, which can describe properties that
expressions will have when evaluated. Ultimately, the desired properties to detect
were those that could describe patterns in legality similar to Final or Illegal Subchain
Rules. Such properties were typically observed in traversers or expressions operating
on traversers.
Much like type systems, the properties typically depend on the whole expression-tree
and its subexpressions. For this reason, attributes are inferred in a fashion similar
to typing rules, which is a common way of expressing typing relations [25,26].
When inferring attributes, every expression is checked against the attribute rules,
and if an expression has subexpressions they get checked first. This way, attributes
are propagated bottom up, and the rules need only refer to an expression and the
attributes of its subexpressions, if they exist.

3.1.1 Approach and Goals
The process of defining and redefining attributes and attribute rules have been
done in an iterative fashion, where some commonly occurring rules and patterns
in existing code has been studied. In parallel with this, the implementation of rule
classification inside the Rave compiler has been developed. When new attribute rules

19

3. Methods

were implemented they were tested against some code examples, and the output was
examined and compared against the desired outcome. This helped identify where
rules were not strict enough, or when rules contained logic faults.
In the case that the current attributes were lacking to describe a pattern, the intro-
duction of newer attributes and attribute rules were considered.
One goal that was set early was to find rules that compared growing numerical
expressions against some limit, with defining expressions such as:
%time_sum% <= %limit% ;

%end_time% - %start_time% <= %time_limit% ;

This goal was decided upon because an important part of Crew Pairing is deciding
for how long a crew member may work depending on different conditions. Therefore,
these kinds of expressions were considered a good target pattern to detect. As such,
examining the different kinds of rules that had this “shape” inspired many of the
concepts that were developed.
Furthermore, one of the more easily identifiable Final Rules - comparisons with
monotonic sums, described in Section 3.2.4.1 - has this shape, so this seemed like
an appropriate early goal. However, small and subtle deviations from the patterns
turned out to have consequences on legality patterns, at least what can be guaran-
teed.
This lead to further examinations of what could be assumed about these patterns
and their legality.

3.1.2 Classification using attributes

During this project, different subcategories of rules have been identified, and knowing
that some categories can be considered subsets of Final Rules or Illegal Subchain
Rules, the categories can be used to classify rules accordingly.
The approach to classification was to use the attribute rules to identify legality
patterns of the defining expression of rules, er.
Note that when looking at rule legality, the valid condition ev can also be an im-
portant factor. However, to analyze the interplay between ev and er and their effect
on legality patterns was considered interesting but too advanced for the scope of
this project. Especially considering that it would build upon the theories developed
during this project. Therefore it was not prioritized at this time even though it may
be interesting to study in more detail in the future.
Even though er was prioritized over ev, legality patterns in er alone can show what
patterns in legality the base of the rule has, which is crucial when deciding how to
define ev. For this reason, the legality patterns of er has been considered the most
interesting component for rule classification. This pattern could be an indicator
that a valid case is “missing” or lacking in order for that rule to be useful. Also, if
a rule’s legality pattern looks like a Final Rule, then that may be an indicator that
a valid case should not depend on is_closed.

20

3. Methods

3.1.3 Attribute rules and propagation
Here is a short explanation on how attributes and their rules are written.
e :a A denotes that expression e has attribute A. This is similar to typing rules,
where e : T means that expression e has type T . The attribute rules are written to
match the abstract expressions in order to be general and to apply to the ASTs of
Rave.
Example attribute rule:

e1 :a A2 e2 :a A3
e1 Op e2 :a A1

This is read as: The expression e1 Op e2, where Op is some operator, has attribute
A1 if e1 has attribute A2 and e2 has attribute A3. Informally, if the premises above
the line are true, then the conclusion below the line is true. There may exist rules
without premises, which are a way to say that an expression has a certain attribute
regardless of the properties of its subexpressions.
A convention that makes it easier to get an overview of expressions is that reference-
expressions such as variable references are “followed” in the expression tree. For
example, take the following code:

%one_plus_two% = %one% + %two% ;

%one% = 1 ;

%two% = 2 ;

When checking %one_plus_two% against the attribute rules, the structure of the
analyzed expression is considered to have the following shape:

%one_plus_two%

+

1 2
instead of the three separate trees:

%one_plus_two%

+

%one% %two%

%one%

1

%two%

2
This makes expressions much easier to check against the attribute rules, and to
reason about.

21

3. Methods

Another simplification done in order to not write as many rules has been to consider
some attributes subsets of other attributes, and the proofs of subsets to also act as
proof of the superset. This can be compared to how polymorphism and inheritance
is handled in many programming languages. For example: Positive numbers is a
subset of Nonnegative numbers, so any proof that a number is positive also implies
that the number is nonnegative. The same reasoning is done for “value direction”
and “direction in legality” attributes which are described in Sections 3.2.3 and 3.2.4:
If something is proven to be increasing, that also implies that it is nondecreasing.
In general, attributes that describe what is not true have been more versatile than
those that guarantee something to be true, such as NonNegative in contrast to
Positive and NonDecreasing in contrast to Increasing. This is in part related
to the definition of Final rules, as what’s interesting to prove is that an expression
can not become legal again after being violated. Then it is enough to prove what
direction in legality is not possible, as explored in Section 3.2.4.

3.2 Attributes by category
This section describes attributes introduced in this project along with some descrip-
tion on what they convey and how they are motivated. Some of the central attribute
rules are described as well.

3.2.1 Range
These attributes describe the value range of expressions in very general terms. A
basic but important expression property is knowing whether its evaluation is positive
or negative. These properties are referred to as range attributes. Two central ones
are NonPositive and NonNegative.
Two other related attributes considered are IsZero and NonZero, but there were
no interesting findings relating to rule classification using these attributes in this
project.
Expression-types of interest
Some of the central expression-types to this attribute category are constant values,
arithmetic operations and sums.

• Constant values are simple. The value is clearly stated in code, so the range
of the expression is the range of the value.

• Sums are nonnegative if their subexpression is positive or nonnegative, and
they are nonpositive if their subexpression is negative or nonpositive.

• The range of arithmetic operations depend on both the operator and the
operands. This is discussed in the following section.

3.2.1.1 Range of arithmetic operations

With the range known of the operands some resulting ranges can be deduced without
access to the operands values, as can be seen in Figure 3.1. The implementation of
this project uses these relations as basis for some simpler attribute rules. Not shown

22

3. Methods

pp np pn nn
* p n n p
+ p ? ? n
- ? n p ?
< ? True False ?

Figure 3.1: The attributes of some arithmetic expressions knowing only the range
of the operands. The rows tell which operator is used and the columns show the
range of the operands, pp meaning two positive numbers, np meaning a negative
value as left operand and positive value as right operand, and so on. The cells
tell the range of the result of the operation. The bottom row also includes less
than-comparison with cells telling whether the comparison holds.

in the figure is the simple case of unary negation, which simply changes sign of the
value. Negation of a nonnegative value is nonpositive and vice versa.
This kind of reasoning about the value range of operations in code by looking at the
range of the operands has been discussed by Cousot and Cousot [11,12], and Chin et
al. describe their experiences with extending existing programming languages with
features such as this [8, 9].
Some results are uncertain as they may differ depending on if one of the operands is
larger than the other, such as subtraction of two positive numbers. This is unfortu-
nate since time durations, an important concept to trip legality, are typically com-
puted as end time−start time. Rave, like systems such as UNIX’s time stamp [28],
represent a moment in time to be a positive duration since some starting time.
Even though the range of the subtraction of two positive numbers is generally un-
known, if one of the operands is known to be larger than the other, the resulting
range can be known:
∀a, b ∈ R : a > b→ (a− b) > 0
∀a, b ∈ R : a < b→ (a− b) < 0
Using knowledge of the generation process and traversers in Rave, it is in many
cases possible to be certain of which of the times is largest without having direct
access to the data.

3.2.1.2 Time relations and traversers

The values of times may be unknown at compile time, but all legs in the trip in
progress are in chronological order because of how the Generator works. Traversers
such as first, last, prev, and next can be used to deduce whether a subtraction
of two unknown times is positive or negative.
Figure 3.2 shows the known size relations between times from traversers contexts
and the “current” context. Current is not a traverser, but is used to distinguish that
no traverser is present. These relations are transitive as well, although the imple-
mentation in this project needs further development before being able to guarantee
the relationship between multiple traversers.
Notice that current context and first/last indexed contexts are not guaranteed
to actually be different. This is because, as an example, if the current leg is the

23

3. Methods

current
index keyword departure arrival
first departure ≤ <
first arrival ? ≤
prev departure < <
prev arrival < <

current departure = <
current arrival > =

next departure > >
next arrival > >
last departure ≥ ?
last arrival > ≥

Figure 3.2: Relations between arrival and departure keywords in combination with
traversers. Rows represent traverser and keyword combination, columns represent
the keyword that is compared against. The topmost left cell describes that the first
departure is always ≤ current departure.

first leg in that instance. Then departure ≯ first(arrival). This is not the case for
prev and next traversers, since when prev is evaluated where there exist no earlier
instance, that result is ignored.

3.2.1.3 Findings as attribute rules

Referring back to the rules for arithmetics in Figure 3.1, the attributes rules for the
different cases can be stated like this:

e1 :a NonNegative e2 :a NonNegative
e1 + e2 :a NonNegative

This describes the fact that the addition of two nonnegative expressions result in
another nonnegative expression.
The following rule describes how attributes propagate through conditionals. If all
possible outcomes have the same range, then the conditional also has that range.

e2 :a NonNegative e3 :a NonNegative
if e1 then e2 else e3 :a NonNegative

The following two rules state that the sum-expression have the same range as its
subexpression.

e :a NonNegative
sum(e) :a NonNegative

e :a NonPositive
sum(e) :a NonPositive

Informally, this can be said to be true because sums are a sequence of additions,
and if the range is proven for the subexpression, then that range is true for all in-
stances of that expression. The count expression is a special case of sum with the
subexpression 1, so it is trivially considered nonnegative:

24

3. Methods

count(e) :a NonNegative

Finally, all traversers that return a specific instance of an expression have the same
range as the expression. This includes all traversers dealing with index - first,
prev, next, last - along with max and min. Also, the avg traverser also has the
same attribute of its subexpression, as the average of any number of nonnegative
numbers is also nonnegative. The same also holds for nonpositive.

e :a NonPositive
next(e) :a NonPositive

3.2.2 Constantness and Dependencies
These attributes help describe when an expression instance may be considered con-
stant. An expression is considered constant if it always evaluates to the same value
during generation.
Some central attributes of this kind

ConstVal Tells that an expression is defined by constant value in the Rave code
DepOnlyConst Tells that an expression only has constant subexpressions, and

can be considered constant
LevelConstant Tells that the value of an expression instance does not change in

continued instances
LevelDependent Tells that an expression instance may change in continued in-

stances
RefKeyw Tells if the expression is a keyword or reference to a keyword
ConstBranch For conditionals, tells if all outcomes are defined in terms of con-

stants
Expression-types of interest
Definitions, Constant values, Arithmetics, Traversers, Conditionals

3.2.2.1 Attributes in relation to Instances and Context

The only expression types that can be considered constant in all contexts are those
that are known at compile-time, or at least before runtime. In this project we
simplify matters by also parameter definitions to be constant, since they can not be
changed after generation has started.
Constant value definitions have the attribute ConstVal, and expressions that only
depend on constant values have the attribute DepOnlyConst.
The evaluation of most traverser expressions change during continued instances,
so most traversers imply that an expression has the attribute LevelDependent
regardless of its subexpression.
Important to note is that practically all instances of expressions that are not defined
in terms of traversers are constant. This includes most keywords that are used
to define leg-expressions, such as flight times. However, since which instance of
an expression gets evaluated depends on traversers or the context in which the
expression is referenced, such expressions can not be considered constant under
normal circumstances. Any claims that an expression is constant must be true for

25

3. Methods

all possible instances of that expression, otherwise no reliable conclusions based on
assumptions on constantness can be made.
Other than constant values, it is interesting to know under which conditions an
expression instance can be considered constant, for example if a duty-level expression
always evaluates to the same value in all instances. When the only way to change
a duty is to add legs after the last leg, the starting time of the duty is the same
no matter how many legs are added. This notion inspired the LevelConstant
attribute, which tells that an expression belongs to a level and there may be multiple
instances, but the instances doesn’t change in evaluation in continuations.
This attribute could be considered for many leg-level expressions as well, since leg
is a level that has expression instances. However, since there is no way to continue
leg instances, leg expressions are not considered LevelConstant.
In some sense, constant values can be considered level constant for the trip-level
since they are constant for all continuations of a trip. This serves no real purpose
since it is much more useful information that an expression is constant than level
constant.
Conditionals, if e1 then e2 else e3, have some interesting properties depend-
ing on its three subexpressions. Important to note is that even if all outcomes are
constant, which constant gets evaluated depends on the condition. In order to be
considered fully constant, the condition has to be constant, and the specific expres-
sion that is constantly returned must also be constant. This is not very common
since conditionals are typically used to ensure different outcomes, and a totally con-
stant conditional defeats its own purpose. However, even if the whole expression
can not be considered constant, some interesting properties can be observed in a
conditional when the second and third subexpressions are constant. This is referred
to as ConstBranch, and this attribute can have interesting implications on other
attributes, and perhaps future optimizations. This is briefly discussed in Chapter 5.
Some of these attributes have not aided very much in classifying rules. This is in
part due to the fact that rules by their nature describe dynamic properties, and
constant rules would never contribute to Generation. However, constantness may
still be interesting to study further, since many optimization strategies are possible
where constant values occur. In order to be really useful in this context, more work
on expression instances and levels in relation to each other need to be done. This
project started with a naive approach about level instances that requires further
development to be more accurate.

3.2.2.2 Findings as attribute rules

Some basic rules for constants:
Where n is a rave expression defined as a constant value,

n :a ConstV al
e :a ConstV al

e :a DepOnlyConst

e1 :a DepOnlyConst e2 :a DepOnlyConst
e1 + e2 :a DepOnlyConst

All expressions defined by a constant value are considered constant, and all constants
have constant dependencies. If all subexpressions of an arithmetic operation only

26

3. Methods

depends on constants, then the operation has the attribute DepOnlyConst.
Constantness is a fragile property, and any level-dependency dominates propagation.
This is because constantness is a strong claim, and LevelDependent can be said to
represent “this expression may change in continuations”. It doesn’t exclude constant
expressions, but it is a much more general claim that can not guarantee constantness.

e1 :a LevelDependent e2 :a DepOnlyConst
e1 + e2 :a LevelDependent

e1 :a DepOnlyConst e2 :a LevelDependent
e1 + e2 :a LevelDependent

Dependencies propagate in a similar fashion for all arithmetic operations, so the rest
are omitted.
Some rules on conditionals:

e1 :a DepOnlyConst e2 :a DepOnlyConst e3 :a DepOnlyConst
if e1 then e2 else e3 :a DepOnlyConst

e1 :a LevelDependent
if e1 then e2 else e3 :a LevelDependent

e1 :a LevelDependent e2 :a DepOnlyConst e3 :a DepOnlyConst
if e1 then e2 else e3 :a ConstBranch

Rules relating to traversers:

sum(e) :a LevelDependent
Traversers are by their nature level dependent, since they evaluate expressions on
multiple instances in a level. This rule also applies to avg, min, max, next, prev,
and last.

e :a RefKeyw
first(e) :a LevelConstant

As mentioned, expressions like starting time of a duty is considered LevelConstant,
because for that level instance it is considered constant. Here, RefKeyw refers to
the fact that leg-times are defined by keywords. There may exist a need for a specific
attribute for leg-times in the future, as keyword reference is a little too general.

3.2.3 Value direction
These attributes describe how the numerical value changes for continued instances
of expressions during generation. Examples:

NonIncreasing Tells that the evaluation of an expression can never be greater in
a continued instance

NonDecreasing Tells that the evaluation of an expression can never be lesser in a
continued instance

As a side note, these attributes describe the semantics of these expressions in relation
to generating trips in the model and not the Rave language itself.
Most relevant expression-type: Traversers

27

3. Methods

A very central concept that these attributes were intended to apply to are how time
durations and accumulated time grows with generation.
Two ways to model this is to either:

• Take the ending time minus the starting time of a level instance
• Take the sum of time durations

The first case is handled using the same chronological reasoning about traversers
in 3.2.1.2. In this project’s model, this is simple, since starting times are considered
constant, and ending times are considered nondecreasing.
This can be captured by a rule such as:

e1 :a RefKeywTime e2 :a RefKeywTime
last(e1)− first(e2) :a NonDecreasing

Where RefKeywTime is a reference to a keyword describing a time. This is cur-
rently done with just RefKeyw in the implementation, with some additional filter-
ing of which keywords are considered times.
The second case is referred to as Monotonic Sum, and that is described in the
following section.

3.2.3.1 Monotonic Sums

A large part of the work in this project has been put into looking at monotonic sums,
their properties, and how they affect the legality patterns of rules during Pairing
Generation.
Definition 3.2.1. Monotonic Sum: A monotonic sum is a sum-expression whose
subexpression is known to be either nonnegative or nonpositive.
A monotonic sum with a nonnegative subexpression is nondecreasing.
A monotonic sum with a nonpositive subexpression is nonincreasing.
A sum-expression whose subexpression is not known to be either nonpositive or
nonnegative is not a monotonic sum.
Rules describing the direction of monotonic sums:

e :a NonNegative
sum(e) :a NonDecreasing

e :a NonPositive
sum(e) :a NonIncreasing

This is motivated as follows:
A sum starts at 0 and its value is computed as a sequence of additions of the
evaluation of its subexpression in a number of instances. In a continued instance,
the evaluation of a monotonic sum with a nonnegative subexpression can change in
two ways: either the value of the subexpression is added to the sum, or it is not.
In any case, the continued instance is nondecreasing. If generation results in a new
instance of the expression, the old expression instance is unaffected, which also is
considered nondecreasing.
The similar reasoning is used for monotonic sums with a nonpositive subexpression,
which is nonincreasing.

28

3. Methods

3.2.3.2 Other findings and rules

Some other findings were reasoned about that did not have a great impact on rule
classification. Here are some examples.
The direction is reversed when the expression with direction is negated.

e :a NonIncreasing
(−e) :a NonDecreasing
e :a NonDecreasing

(−e) :a NonIncreasing

Some additions with directed expressions preserve direction.
e :a NonDecreasing e :a NonDecreasing

e1 + e2 :a NonDecreasing
e :a DepOnlyConst e :a NonDecreasing

e1 + e2 :a NonDecreasing

Some other cases were considered where one operand was not considered constant
or had a different direction. For example, e1 + e2 where e1 :a NonDecreasing
and e2 :a NonNegative. There is a clear trend here in evaluation but without
more information available on e2, all that is guaranteed is that e1 may evaluate to
a greater value in continuations. This guarantees that the minimum value of the
expression instance increases during generation, but if e2 decreases more between two
continuations than e1 increases, then the expression as a whole is not nondecreasing.
Another interesting case considered is e1 − e2 where e1 :a NonDecreasing and
e2 :a NonDecreasing. Consider e1 and e2 to be two sums that grows linearly, but
e1 grows at a higher rate; the subtraction is clearly nondecreasing. However, such
examples are quite specific and hard to capture using such a general concept as
inference rules without some more extensive analysis.

3.2.4 Direction in Legality
These attributes describe properties of boolean expressions, and the patterns that
may be observed in continued instances during generation. These are central to
classifying rules in this project, as rules are defined in terms of boolean expressions
whose evaluation changes during generation.
The attributes developed in this project:
NonIncreasingInLegality Tells that a boolean expression instance that evaluates

to false can never have a continuation that evaluates to true
NonDecreasingInLegality Tells that a boolean expression instance that evaluates

to true can never have a continuation that evaluates to false
NonFinal Tells that a boolean expression lacks linear direction between instances

and their continuations
As these attributes describe change in evaluation during generation, traversers are
the most important expression types to this attribute.
To get an intuition of what these expressions could look like, here are some patterns
and code examples that held this property of “linear direction in legality” that this
project aimed to describe with attributes.

29

3. Methods

1. Some threshold must not be crossed
True until violated, then all possible continuations of instance will be violated.
Examples:
sum(leg(duty), leg.%time%) <= %max_time% ;
count(leg(trip)) where (%is_deadhead%) <= 5 ;

2. Some threshold must be satisfied
False until satisfied, then all possible continuations of instance will be satisfied.
Examples:
count(duty(trip)) >= 3 ;
count(leg(trip)) >= 10 ;

3. Some incompatibility must not hold
There can be no incompatibilities in a level or between level instances. True
until violated, then all possible continuations of instance will be violated. Ex-
amples:
all(leg(duty), %connection_time% >= %min_connection_time%) ;
not(any(leg(duty), %prop1%) and any(leg(duty), %prop2%)) ;

4. Some property must hold for at least one object in level
False until some condition is satisfied, then all possible continuations of in-
stance will be satisfied. Examples:
any(leg(duty), %is_international%) ;
not(all(duty(trip), %undesired_prop%)) ;

Here, the patterns in 1 and 2 are tightly related, as are 3 and 4. They can almost
be regarded as opposites, in the sense that they share structure but differ in truth
patterns. Two of them are true until some condition is violated, and two of them
are false until some condition is satisfied.
These patterns are what inspired the attributes “Nondecreasing/Nonincreasing in
legality”.
Definition 3.2.2. Nondecreasing in legality: A boolean expression is nonde-
creasing in legality (NdL for short) if an instance can never be violated in a contin-
uation of a satisfied instance.
Definition 3.2.3. Nonincreasing in legality: A boolean expression is nonincreas-
ing in legality (NiL for short) if an instance can never be satisfied in a continuation
of a violated instance.

Informally, when adding more legs to a trip, the effect of the addition of legs can
only make an expression “more true” and never “less true” if the expression is NdL
and vice versa for NiL.

Of the mentioned rule patterns above, 1 and 3 are NiL, and 2 and 4 are NdL.
Important to note is that the attribute only describes one expression instance at a
time, while the legality of a rule depends on the truth value for all instances of the
rule. For example, consider a duty-level expression being nondecreasing in legality.
When generating trips and the expression eventually becomes true, then all instance
continuations will be true. When a new duty instance is created, the new instance
may be false. This highlights the ambiguity of referring to an expression without
specifying which instance of the expression is mentioned.

30

3. Methods

Looking at the pattern of the conjunction of all rule instances during generation, if
the rule is NiL the pattern of the trip is NiL. If the rule is NdL, the pattern of the
trip is potentially nonlinear.
Any expression with legality pattern that is not strictly “linear” has the attribute
NonFinal.

3.2.4.1 Comparisons with monotonic sums

As mentioned in Section 3.1.1, one goal for this project was to be able to classify
Final Rules that depend on comparisons with monotonic sums.
This kind of rule was used as the standard example of a Final Rule:
rule final_rule =
sum(leg(duty), leg.%time%) <= %time_limit% ;

end

Having identified all necessary attribute rules to prove that the left subexpression of
the comparison is a nondecreasing monotonic sum, two other aspects are important
in order to claim direction in legality for the expression; the comparison operator,
and the attributes of the right subexpression.
First, consider %time_limit% to have the attribute DepOnlyConst, and the com-
parison operator to be <=.
The rule is valid as long as the sum is below the value of %time_limit%. Once
the threshold is crossed, no legal continued instance can exist, since the sum is
nondecreasing. This implies that an expression with these properties is NiL! The
following attribute rule is stated:

e1 : NonDecreasing e2 : DepOnlyConst
e1 ≤ e2 :a NonIncreasingInLegality

The same pattern is observed when the operator and value direction are reversed:
e1 : NonIncreasing e2 : DepOnlyConst

e1 ≥ e2 :a NonIncreasingInLegality

Conversely, when a value with a direction must satisfy a threshold instead of avoiding
crossing it, the opposite direction in legality occurs:

e1 : NonIncreasing e2 : DepOnlyConst
e1 ≤ e2 :a NonDecreasingInLegality

What happens when %time_limit% is not guaranteed to be constant? If it is not
constant, it may change between evaluations. This may be possible if for example,
the threshold depends on come condition that may be level dependent.If the value
of the threshold changes after the left operand has crossed the threshold, nonlinear
legality patterns may emerge. As a consequence, the expression is not linear in
legality, but NonFinal.

e1 : NonDecreasing e2 : LevelDependent
e1 ≤ e2 :a NonFinal

The same holds for the other comparisons between expressions with direction in
value against variables which are not constant.

31

3. Methods

3.2.4.2 Attribute rules for Direction in legality

Similarly to how sum is a sequence of additions, any and all are a sequence of dis-
junctions and conjunctions respectively. This line of reasoning lead to the following
rules:

any(e) :a NonDecreasingInLegality

all(e) :a NonIncreasingInLegality

This is because as long as one of the operands in a sequence of disjunction is true, the
outcome will be true. The opposite holds for conjunction; a series of conjunctions
is false as long as one of the operands is false.
As is true for some other rules, with creative use of traversers it is possible to find
cases where these rules may be too general and as a consequence they might match
some expressions that should not hold these properties. This may be revised in
future iterations.
Similarly to (numerical) negation of a direction in value, (logical) negation of direc-
tion in legality implies the opposite direction of the negated expression.

e :a NonIncreasingInLegality
not e :a NonDecreasingInLegality

e :a NonDecreasingInLegality
not e :a NonIncreasingInLegality

Some patterns emerge when considering direction in legality and boolean connec-
tives. For the same direction, the rules are quite straightforward.

e1 :a NonIncreasingInLegality e2 :a NonIncreasingInLegality
e1 and e2 :a NonIncreasingInLegality

e1 :a NonIncreasingInLegality e2 :a NonIncreasingInLegality
e1 or e2 :a NonIncreasingInLegality

e1 :a NonDecreasingInLegality e2 :a NonDecreasingInLegality
e1 and e2 :a NonDecreasingInLegality

e1 :a NonDecreasingInLegality e2 :a NonDecreasingInLegality
e1 or e2 :a NonIncreasingInLegality

However, two different directions combined result in NonFinal behaviour. Two
examples that explain why “linearity” in legality can no longer be guaranteed are
illustrated in Figure 3.3. Consider the patterns that may emerge in continuations
of boolean expressions ψ and ϕ. In this example, ψ :a NonIncreasingInLegality
and ϕ :a NonDecreasingInLegality. As can be seen, the result of conjunction or
disjunction of two expressions with differing direction in legality can not always be
considered linear. However, an interesting observation is that for conjunction, after
ψ turns false there is no possible continuation that is true. The same can be said
in opposite direction for conjunction after ϕ turns true. Although the resulting
expression is nonlinear, some linear properties remain and the expression has a
“turning point”, after which the pattern is linear.

32

3. Methods

ψ T T F
ϕ F T T

ψ ∧ ϕ F T F

ψ T F F
ϕ F F T

ψ ∨ ϕ T F T

Figure 3.3: NonFinal pattern from boolean connectives and direction in legality.
The rows represent different expressions and the columns represent instances, where
the column to the left is the first instance and the ones to the right are continuations.

e1 :a NonDecreasingInLegality e2 :a NonIncreasingInLegality
e1 and e2 :a NonFinal

e1 :a NonDecreasingInLegality e2 :a NonIncreasingInLegality
e1 or e2 :a NonFinal

3.3 Direction in legality and rule classification

The goal of this project was to examine the possibilities of automatically classifying
rules.
Having found patterns that implies direction in legality, and attribute rules that can
find these patterns, what remains is to make the connection between rule classifica-
tion and attributes.
Referring back to the definition of Final Rules and Illegal Subchain Rules in sec-
tion 2.3.2 and comparing them to the definitions of NiL and NdL, a common pattern
can be observed.
Proposition 3.3.1. Final Nonincreasing A rule that is defined by an expression
that is nonincreasing in legality is a Final Rule.

Proof. A false NiL expression instance can have no continued instance that is true.
If no continuation can be true, then all subnodes in the search space are illegal. This
property matches the definition of a Final Rule.

Proposition 3.3.2. Illegal Subchain Nondecreasing A rule that is defined by
an expression that is nondecreasing in legality is an Illegal Subchain Rule.

Proof. A false NdL expression instance may have a continued instance that is true.
This can be true for no Final Rule so the rule must be an Illegal Subchain Rule.

Using these propositions, direction in legality can be used to classify rules!
A note on rules defined by NonFinal expressions. As the pattern of a NonFinal
expression is nonlinear, it was initially assumed that these were not good candi-
dates for pruning search space. Rules with this attribute are assumed to be Illegal
Subchain Rules, as it is not safe to assume that rule violation implies no legal con-
tinuations can exist, but these patterns can probably be useful to study further.

33

3. Methods

3.4 Notes on implementation
In order to automate rule classification, this project has extended the Rave compiler
with some additional functionality that implements the theories developed in this
project.
The implementation can be likened to an extended type checking pass, and it takes
place after regular type checking during compilation. The ASTs of all expressions
are checked against the attribute rules to infer the attributes. An inspiration has
been the LLVM compiler infrastructure project, and what is referred to as analysis
passes that are used during code optimization [22].
The implementation adds a few notable components.

• The attributes, as a simple enumeration type.
• A datastructure called ExpressionTree which has a reference to an expres-

sion, and a list that keeps track of the inferred attributes of the expression. If
the expression has any subexpressions, then a new ExpressionTree is created
for each of those subexpressions. These new ExpressionTrees are referred to
as the ExpressionTree’s child-expressions.

• A lookup table that keeps track of which variable name refers to which Ex-
pressionTree.

• A function for checking the attribute rules against an expression.
The implementation of the attribute rules is quite straightforward. When checking
for attributes, the expression is pattern matched by its expression type, and the
appropriate rules are applied. As an example, consider the attribute for addition of
two nonnegative integers. The pseudocode for this looks like this:
...
switch exprtype
case e1+e2 :
if (e1.has(NonNegative) && e2.has(NonNegative))
then attrs.insert(NonNegative);

...
The classification, briefly put, checks all ExpressionTrees against the attribute rules
and outputs all inferred attributes for all named expressions in a Rave ruleset. The
defining expressions and their inferred attributes are listed in a separate output for
easy overview.

34

4
Results

In this Chapter, the results of this project will be presented.

4.1 What has been done in this project
During this project:

• The Rave language and compiler has been studied along with some details of
how Pairing Generation is handled at Jeppesen.

• A model has been created to reason about the dynamics of elements in Rave
code when used in Pairing Generation.

• Attributes have been introduced to map the semantics of the model to struc-
tures in Rave code. Some of which are closely related to rule classification.

• Finally, the implementation of attribute checking and rule classification has
been developed inside of the Rave compiler.

4.2 Results of implementation
One measure of the findings of this project is the output the implementation when
run on an existing Rave ruleset. Although a subset of the language has been covered
in this project, around 40%-50% of the named expressions (variable definitions and
rules) have at least some attribute inferred, mostly dealing with range, dependencies,
or direction.
Around 20% of the Rules have inferred attributes relating to rule class, i.e. direction
in legality.
Many of the example expressions and some rules that were considered important
part-goals have appropriate attributes inferred. Some examples can be seen in Sec-
tion A.1 in the appendix.
Some insights on important attributes and how they propagate has been discovered,
as well as some of the dynamics of rule legality depending on expression structure.
Some insights and reflections are written in Chapter 5.

4.3 Example of attribute propagation for rule
Here, a visual presentation of what the classification of a certain Final Rule looks
like will be presented.

35

4. Results

The rule in question and the expressions it depends on looks like this in Rave:

/* The rule */
rule final_monotonic_sum =
%sum_duty_legtime% <= 10:00 ;

end

/* The sum */
%sum_duty_legtime% = sum(leg(duty), leg.%time%) ;

/* The legtime */
leg.%time% = leg.%arrival% - leg.%departure% ;
The AST of final_monotonic_sum as seen during attribute checking is illustrated
in Figure 4.1.

<=

sum

−

leg.%arrival% leg.%departure%

10 : 00

Figure 4.1: AST of rule final_monotonic_sum with references “followed”

When checking this rule, the keyword nodes that define leg.%time% get checked
first. These are keywords known to represent times, and they have the attributes
NonNegative and RefKeyw. The subtraction is checked next, and the operands
are keywords with known relations. The result of the subtraction is NonNegative,
which means that the sum-traverser has the attribute NonDecreasing. The right
operand of the comparison is defined in terms of a constant, so that expression has
the attribute ConstVal. Finally, the comparison <= with subexpression attributes
NonDecreasing and ConstVal matches the rule for NonIncreasingInLegality.
Because the defining rule expression has this attribute, the rule is a Final Rule.

36

5
Conclusion

This chapter reflects on some of the findings of this project and lists some suggestions
for future work.

5.1 Findings of this project
This project approach the problem of classifying rules by static code analysis. Al-
though far from all expression types in the language are covered, and many attribute
rules have yet to be found for the expressions that were covered, some patterns have
been defined and can be classified automatically at compile-time.
The benefits of this is that with some confidence, some rules can be claimed to behave
predictably without the need to run them against actual data, which can save some
time during rule writing. Even when not used for classification at compilation, the
formalia developed can be used as reference when writing new rules.
As an experimental project, there are many potential continuations to explore.

5.1.1 Special mention on conditional variables
One interesting find when examining comparisons with monotonic sums in Sec-
tion 3.2.4.1 is the case where the threshold is not constant.
As mentioned, this might result in NonFinal patterns in legality, which can be
surprising. Without looking at the defining expression of the threshold that is
compared against, the expression has the same “shape” as a typical Final Rule.
Depending on how variable the threshold is, some possible solutions may be omitted
if this is considered a Final Rule. If the threshold is a ConstBranch, and the
condition(s) are constant or has a direction in legality, then it may be possible to
assign the threshold a direction in value.
It may be very interesting to look further into comparing expressions with direction
in value against ConstBranches or other expressions with a direction in value.
Some intuition suggest that in most cases these rules should prune search space, but
not unconditionally. Similar reasoning might be done on other NonFinal expres-
sions with linear properties, as touched upon in Section 3.2.4.2.

5.1.2 Reflections on expressiveness of classification
When developing the formalia for this project, one interpretation of rule classification
is to tell whether the search space is “safe” to prune at rule violation. Safe in this
case means that no valid solution gets discarded.

37

5. Conclusion

The linear approach of using direction in legality-related attributes to differentiate
Final Rules and Illegal Subchain Rules may seem a little limiting at first, but it
could be argued that most Final Rules would have to be linear in some sense in
order to be predictable. Pruning a branch in a search tree without knowing if it
may contain a valid solution is a bit limiting. A rule that does not have a linear
pattern in legality is therefore not a very strong candidate for a Final Rule, meaning
that the suspicion that it is an Illegal Subchain Rule increases.
One important aspect of the attribute rules is that uncertainty dominates propaga-
tion.
Unknown range of any subexpression in an arithmetic operation implies unknown
range. Unknown dependencies of subexpressions makes it impossible to assume that
an expression can be considered constant. Unknown direction means that no claims
of linearity can be made. To generalize a little, an expression is usually at least as
“uncertain” as it’s least “certain” subexpression.
This complicates matters a little for classification considering the implications of
Illegal Subchain Rules; they state that it is not certain that all subnodes are violated
when a node is violated.
Taking this projects cautious approach, if a rule’s pattern in legality is not pre-
dictable, it probably should not be allowed to prune the search space, at least not
unconditionally. As mentioned in section 3.1.2, that a rule’s defining expression is
not considered Final suggests that a valid case is needed in order for the rule to be
useful.

5.2 Other applications of semantic analysis

Can the semantic information developed during this project be of use for more than
rule classification, and what is interesting to continue developing?
Cire et al. [10] mention that semantic information of the computations in a domain
model is a good source for further optimizations.
The system in use at Jeppesen is very resource intensive and performance is impor-
tant. The semantic information provided by this project might not affect runtime
calculations directly, but it can be used in order to assure that the input has certain
properties, or behaves predictably. The more information that can be known about
a problem, the more opportunities for further developments are possible. Further-
more, since the semantic information is gathered before runtime, static analyses
does not impact performance.
Attributes and classification may be somewhat limited in what they can convey, but
they describe an important part of the studied system. Rule class and attributes
are static properties, but the existence of legal continuations is a dynamic property.
The point of Final Rules is to safely discard computations that can not result in a
better solution.

38

5. Conclusion

5.3 Future Work
For continued development of semantic analysis in relation to this project, this
section brings up some potential areas to explore.

5.3.1 Explore more attributes and rules
One idea is to develop more attributes for further rule classification, or for proving
other properties at compile-time.
There are probably many interesting semantic properties than those discovered in
this project, as well as many expression types that have yet to be applied to at-
tribute rules. Some particularly interesting attributes to look into are NonFinal
and ConstBranch. Also, extending the current reasoning to handle multiple level
instances and traversers may lead to interesting discoveries. There may be more
appropriate approaches to instances than attributes however, perhaps some light
interpretation is more intuitive.
Flanagan et al. [14] among others point out that static analysis alone is limited in
what semantic properties it can detect, and suggest that there are more sophisticated
methods for verifying code. However, they also point out that detection of some
semantic properties may be undecidable, and impossible to do statically.
There are many approaches to semantic analysis other than using inference rules
that can be used. Beckert and Hähnle has written an overview of some approaches
to verification of software and code analysis [4].
Attributes, by design, are quite general. An expression attribute has to hold for
all instances of that expression. However, when an expression depends on dynamic
data, especially when multiple outcomes are possible, it may be desirable to express
more specific expression properties than what is “always true for all instances”.
For this project, the reasoning has been quite limited to state “what can be known
to be true at all times, looking at expressions one by one”.
Since all rules in a ruleset have to be valid at the same time in order for a node in
search space to be valid, it could be interesting to try to model what conclusions can
be drawn by assuming that multiple rules are true at the same time. As mentioned
earlier, it may also be interesting to explore the relation between er and ev of a rule
and their combined contributions to rule legality patterns.
Cadar and Sen has written an overview of trends in symbolic execution, a technique
that may be applicable here [7]. Some expressions can be assumed to hold sym-
bolic values during analysis in order to reason about what outcomes are possible at
runtime. The symbolic values of expressions may be decided from other expressions.

5.3.2 Assisting runtime optimization
Aside from assuring that the rules and input data are well formed, the semantic
information could possibly be implemented in order to develop new strategies at
runtime.
Knowels & Flanagan [20] discusses hybrid techniques that combine both static check-
ing and dynamic checking (at runtime) for deducing type information of programs in

39

5. Conclusion

order to gather more specific type information that might not be possible to gather
at compile-time.
Since the attributes in this project have much in common with type systems, it
could be interesting to explore the possibilities of “hybrid” or “dynamic” attributes
that are affected by runtime conditions. It is noted that hybrid techniques such as
these do add some computational overhead, which is undesirable in such a resource
intensive task such as Pairing Generation. However, in some cases this trade-off
may be worth considering.
One interesting approach that was discussed during the developments of the project
is the possibility to filter the search space after a rule violation for potential valid
nodes without having to check every node against the rules. If one can pinpoint the
exact property or expression that caused the rule violation, it may be possible to
formulate exactly what properties that a valid continuation must satisfy. If this can
be expressed in a simple formula that can quickly decide if a leg holds this property,
perhaps this could save time when pruning the search space.

5.3.3 Simplify rule writing
Some modern Integrated Development Environments make use of “semantic aware-
ness” to detect potential errors in code as it is being written. One such example is
described by Logozzo et al. [23].
Applying the attribute rules on Rave code as it is being written, classification might
find is there is a mismatch between rule structure and inferred class. This way,
a rule writer may be notified of the mismatch, and potential logical errors can be
avoided.
Flanagan et al. [14] describe a framework for extending a language for automated
verification of code. One feature included is the possibility to describe properties
that must hold of expressions in the code, which can be verified by code interpreta-
tion.
Annotation may make it easier to spot logic errors, or perhaps infer or manually
assign attributes, but if the goal is for the rule writer to express rules more easily,
this might not be the best approach. Beckert and Hähnle [4] note that specification
is a bottleneck of verification, meaning that it takes great effort to specify everything
that is expected to be true. Having the possibility to annotate does not mean that
it is a necessity though.
An interesting case where formal rules are used during code writing is the functional
language and proof assistant Agda, described by Bove et al. [5]. Agda features grad-
ual refinement of expressions using its rich type system. Looking at attributes as
an extended type system, perhaps Rave could use the attribute rules along with
some additional restrictions in order to assist in writing good rules. This is however
much more advanced than what might be desirable for a rule writer, but for proving
properties about rules it might be interesting to take inspiration from proof assis-
tants. Flanagan et al. [14] also incorporated automated theorem provers for their
verification of Java code.
This project has discussed how the valid case affects generation, but an interesting
question not covered is how to produce a good ev expression.

40

5. Conclusion

A very basic approach is “Illegal Subchain Rules should never prune search space”.
This is simply modeled by having ev defined as is_closed or some other form where
is_closed dominates the truth value during generation. However, a more complex
valid case may result in a rule that doesn’t break generation, but is still able to prune
search space. As mentioned in Section 3.2.4.2, some NonFinal expression have a
turning point where all continuations are linear in legality. Finding these patterns
to allow NonFinal rules to prune search space could be an interesting project.

5.4 Conclusion
This project has developed a model to describe semantic information about expres-
sions in Rave code. The information describes properties that the expressions hold
at runtime - during Pairing Generation.
This model has been implemented as part of Rave’s compilation process, and as a
result it has successfully been able to detect a set of rules with properties that can
be used to reason about the patterns in legality during generation. Some rules are
identified as Illegal Subchain Rules, and some as Final Rules that are guaranteed
not to be Illegal Subchain Rules.
The method of analyzing the code can be compared to type checking, using infer-
ence rules to propagate semantic information in the ASTs of the expressions in the
code. The inference rules look at expressions and the computed properties of its
subexpressions, if available. New rules and properties are easy to implement, and
more coverage is probably possible with continued work. However, inference rules
are somewhat simple and more advanced techniques may be interesting to utilize
when looking at future developments.
Revisiting the question: Is it possible to detect Illegal Subchain Rules at compile
time?
In order to answer this question, some reasoning was done in order to approximate
what would be needed to detect these rules. Some patterns were developed that
have successfully categorized a few rules to have certain properties. Some of these
properties, it has been reasoned, are only true for certain subsets of each of the rule
classes.
A few rules have been classified at compile time, and more can probably be found
by continued development of the methods. Though there is a limit to how much
can be deduced statically, some interesting future work with semantic analysis can
probably lead to interesting findings.

41

5. Conclusion

42

Bibliography

[1] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers: principles, tech-
niques, and tools, volume 2. Addison-wesley Reading, 2007.

[2] Erik Andersson, Anders Forsman, Stefan E. Karisch, Niklas Kohl, and Allan
Sørensen. Problem solving in airline operations. OR/MS Today, April 2005.

[3] Erik Andersson, Efthymios Housos, Niklas Kohl, and Dag Wedelin. Crew pair-
ing optimization. Operations Research in the Airline Industry, pages 228–258,
1998.

[4] Bernhard Beckert and Reiner Hähnle. Reasoning and verification: State of the
art and current trends. IEEE Intelligent Systems, 29(1):20–29, 2014.

[5] Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of agda–a functional
language with dependent types. In International Conference on Theorem Prov-
ing in Higher Order Logics, pages 73–78. Springer, 2009.

[6] Maurice Bruynooghe. A practical framework for theabstract interpretation of
logic programs. The Journal of Logic Programming, 10(2):91–124, 1991.

[7] Cristian Cadar and Koushik Sen. Symbolic execution for software testing: three
decades later. Communications of the ACM, 56(2):82–90, 2013.

[8] Brian Chin, Shane Markstrum, and Todd Millstein. Semantic type qualifiers.
SIGPLAN Not., 40(6):85–95, June 2005.

[9] Brian Chin, Shane Markstrum, Todd Millstein, and Jens Palsberg. Inference
of user-defined type qualifiers and qualifier rules. In ESOP, volume 6, pages
264–278. Springer, 2006.

[10] Andre A Cire, John N Hooker, and Tallys Yunes. Modeling with metacon-
straints and semantic typing of variables. INFORMS Journal on Computing,
28(1):1–13, 2016.

[11] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lat-
tice model for static analysis of programs by construction or approximation of
fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 238–252. ACM, 1977.

[12] Patrick Cousot and Radhia Cousot. Abstract interpretation and application to
logic programs. The Journal of Logic Programming, 13(2-3):103–179, 1992.

[13] Patrick Cousot and Radhia Cousot. Abstract interpretation: past, present and
future. In Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual
Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), page 2. ACM,
2014.

43

Bibliography

[14] Cormac Flanagan, K Rustan M Leino, Mark Lillibridge, Greg Nelson, James B
Saxe, and Raymie Stata. Extended static checking for java. SIGPLAN Not.,
37(5):234–245, May 2002.

[15] Christos Goumopoulos and Efthymios Housos. Efficient trip generation with
a rule modeling system for crew scheduling problems. Journal of Systems and
Software, 69(1):43–56, 2004.

[16] Curt A Hjorring and Jesper Hansen. Column generation with a rule modelling
language for airline crew pairing. In Proceedings of the 34th Annual Conference
of the Operational Research Society of New Zealand, pages 133–142, 1999.

[17] David Hovemeyer and William Pugh. Finding bugs is easy. ACM Sigplan
Notices, 39(12):92–106, 2004.

[18] Atoosa Kasirzadeh, Mohammed Saddoune, and François Soumis. Airline crew
scheduling: models, algorithms, and data sets. EURO Journal on Transporta-
tion and Logistics, 6(2):111–137, 2017.

[19] Sarmen Keshishzadeh and Arjan J. Mooij. Formalizing DSL semantics for
reasoning and conformance testing. In International Conference on Software
Engineering and Formal Methods, pages 81–95. Springer, 2014.

[20] Kenneth Knowles and Cormac Flanagan. Hybrid type checking. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 32(2):6, 2010.

[21] Niklas Kohl and Stefan E. Karisch. Airline crew rostering: Problem types,
modeling, and optimization. Annals of Operations Research, 127(1):223–257,
2004.

[22] Chris Lattner. LLVM. In The Architecture Of Open Source Applications. Cre-
ative Commons, 2011.

[23] Francesco Logozzo, Michael Barnett, Manuel A Fähndrich, Patrick Cousot, and
Radhia Cousot. A semantic integrated development environment. In Proceed-
ings of the 3rd annual conference on Systems, programming, and applications:
software for humanity, pages 15–16. ACM, 2012.

[24] Marjan Mernik, Jan Heering, and Anthony M Sloane. When and how to develop
domain-specific languages. ACM computing surveys (CSUR), 37(4):316–344,
2005.

[25] Benjamin C Pierce. Types and programming languages. MIT press, 2002.
[26] Aarne Ranta. Implementing programming languages. An introduction to com-

pilers and interpreters. College Publications, 2012.
[27] Yuriy Solodkyy, Jaakko Järvi, and Esam Mlaih. Extending type systems in a

library. In Second International Workshop on Library-Centric Software Design
(LCSD’06), page 55, 2006.

[28] Ken Thompson and Dennis M Ritchie. UNIX Programmer’s Manual. Bell
Telephone Laboratories, 1975.

[29] Markus Voelter. DSL Engineering: Designing, Implementing and Using
Domain-specific Languages. CreateSpace Independent Publishing Platform,
2013.

[30] Reinhard Wilhelm, Helmut Seidl, and Sebastian Hack. Compiler design: Syn-
tactic and semantic analysis. Springer Science & Business Media, 2013.

44

A
Appendix 1

This document contain some examples of Rave expressions and their computed
attributes.

A.1 Example code with computed attributes
Here are some example expressions with their computed attributes inside /* ... */
comments.
Here are some simple examples with range-attributes.
%one% = 1 ; /* NonNegative */
%two% = 2 ; /* NonNegative */

%minus_one% = -1 ; /* NonPositive */

%one_plus_two% = %one% + %two% ; /* NonNegative */
%one_minus_minus_one% = %one% - %minus_one% ; /* NonNegative */

%unknown% = 10 - (%two% - %one%) ; /* ??? */

In the case of %unknown%, the current attribute system only check the values of con-
stant expressions. %two% - %one% is nonnegative, but only this attribute is checked
when the other subtraction is checked. The value is “lost” from %two% - %one%,
and all that is known about the other subtraction is 10 - (Something nonnegative).
This is unfortunate, and has led to some constant expressions that are known at
compile time not being recognized by the attribute rules to be NonNegative or Non-
Positive. Especially, a few times that are used in rules are not properly found to be
nonnegative, leading to potentially fewer correct classifications.
The only expressions that have been manually assigned attributes in this project
are the keyword expressions arrival and departure. The time is known to be
NonNegative, because arrival is always later than departure in a flight. Time with
index traversers such as prev are known to be earlier than current leg, meaning
subtractions can have known range.
leg.%start_utc% = keywords.%departure% ; /* NonNegative */
leg.%end_utc% = keywords.%arrival% ; /* NonNegative */

leg.%time% = %end_utc% - %start_utc% ; /* NonNegative */

leg.%start_utc% - prev(leg(duty), leg.%end_utc%) ; /* NonNegative */

I

A. Appendix 1

Here are examples of the traversers sum and count. Both range and direction at-
tributes are inferred.

%trip_legcount% = count(leg(trip)) ; /* NonNegative, NonDecreasing */

%duty_legsum_time% = sum(leg(duty), %time%) ; /* NonNegative, NonDecreasing */

Expressions with conditionals or multiple possible outcomes need additional rules for
proper attribute inference. Attributes are static properties, so the attributes must
be applicable to all possible outcomes of an expression in order for that expression
to have that expression.

%max_time_duty% = /* NonNegative */
if %some_condition%
then 5:00
else 8:00 ;

%max_time_duty% results in a nonnegative expression regardless of the value of
%some_condition%, so the entire expression is considered nonnegative. However,
even though all possible outcomes return a constant value, which constant to be re-
turned depends on %some_condition%. Therefore, the dependency of the expression
is not constant. However, if %some_condition% is constant, then %max_time_duty%
can also be considered constant.
Here is an example rule. It compares a nondecreasing sum against a variable.
rule max_time_duty1 =
%duty_legsum_time% <= %max_time1% ; /* NiL */

end

%max_time1% = 8:00 ; /* NonNegative */

If %max_time1% is a constant value, then the rule is nonincreasing in legality, and
the rule is a Final Rule.
However, since many limits depend on different conditions, limits compared against
may change during generation. If this is the case then, according to the definitions
in this project, the rule is an Illegal Subchain Rule. Consider the following example:
rule max_time_duty2 =
%duty_legsum_time% <= %max_time2% ; /* ??? */

end

%max_time2% = /* NonNegative */
if %condition%
then 12:00
else 8:00 ;

Depending on the variability of %condition%, it may be possible that max_time_duty2
is either a Final or Illegal Subchain Rule.
It may not always be obvious how %condition% is defined either, so it’s not safe to
assume too much. In this project, unless %condition% can be considered constant,

II

A. Appendix 1

the rule is classified as Illegal Subchain.
Another example rule:
rule 3legs =
count(leg(duty)) >= 3 ; /* NdL */

end

The rule expression is NdL, so the rule is Illegal Subchain. Since a valid case is
missing, this rule is misclassified, and will discard valid solutions during generation.
Two examples where the attribute rules are too “unforgiving” and needs more work:
%not_decreasing% = /* NonNegative */
if false
then 10
else %leg_duty_count% ;

%leg_duty_count% = count(leg(duty)) ; /* NonNegative, NonDecreasing */

%not_variable% = /* NonNegative */
if %unknown_condition%
then 20
else 20 ;

Even though %not_decreasing% always returns a nondecreasing expression, this is
not checked in the current implementation.
Also, because its not sure which expression is returned in %not_variable%, it’s
assumed that the expression is not constant even if the result is always the same.

III

	List of Figures
	Glossary
	Introduction
	Project Aim
	Problem Description
	Crew Planning
	The Pairing Generator
	The Rule System and Illegal Subchain Rules
	Rule Classification

	Limitations

	Theory
	Background and Related work
	Rave Language Overview
	About the language
	The components of Rave code
	Expressions in Rave
	Instances of Levels and Expressions
	Rules and Legality
	Valid case

	Model and Domain
	Domain to model
	Some formalisms
	Consequences of Misclassification
	Conditional rule checking
	Manual rule classification
	Conditional rule checking example with is_closed

	Methods
	Classification and Attributes
	Approach and Goals
	Classification using attributes
	Attribute rules and propagation

	Attributes by category
	Range
	Range of arithmetic operations
	Time relations and traversers
	Findings as attribute rules

	Constantness and Dependencies
	Attributes in relation to Instances and Context
	Findings as attribute rules

	Value direction
	Monotonic Sums
	Other findings and rules

	Direction in Legality
	Comparisons with monotonic sums
	Attribute rules for Direction in legality

	Direction in legality and rule classification
	Notes on implementation

	Results
	What has been done in this project
	Results of implementation
	Example of attribute propagation for rule

	Conclusion
	Findings of this project
	Special mention on conditional variables
	Reflections on expressiveness of classification

	Other applications of semantic analysis
	Future Work
	Explore more attributes and rules
	Assisting runtime optimization
	Simplify rule writing

	Conclusion

	Bibliography
	Appendix 1
	Example code with computed attributes

