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Optimization of Cable Harness Routing
Mathematical Modelling, Lagrangian Relaxation, and Subgradient Optimization
Tobias Karlsson
Department of Mathematical Sciences Chalmers University of Technology and Uni-
versity of Gothenburg

Abstract
The problem of routing several cables, which should be grouped into a compound
structure, can be a time consuming process when done manually. In this thesis,
this problem is modelled as a mixed integer linear programming (MILP) problem.
There are several factors to consider when designing a harness routing, and the
MILP model contains two conflicting objectives which minimize two specific factors:
the length of each distinct cable and the usage of space. A collection of Pareto
optimal solutions is computed by assigning different weights to the objectives. Two
other factors that are considered in the model formulation are minimum clearance to
obstacles, modelled as hard constraints, and preferable zones for the routes as soft
constraints. The problem is a large-scale optimization problem, and Lagrangian
relaxation is utilized in the solution process. A deflected subgradient method is
used to solve the Lagrangian dual problem, and to provide upper and lower bounds
on the optimal objective value. Ergodic sequences of the Lagrangian subproblem
solutions are utilized for branching decisions during the subgradient iterations, and
are also utilized for constructing so-called core problems. Our approach is applied
to an industrial test case and it results in a good harness design with respect to
the factors mentioned above. For the test cases in this thesis, the relative duality
gaps vary between 0.59% and 21.7% for varying objective weights. Our results also
indicate that we can get good solutions within an acceptable time frame, that is in
a few minutes. We suggest a number of possible improvements of our approach to
reduce the computing times.

Keywords: cable routing, harness design, multi-objective optimization, mixed-integer
linear programming, Lagrangian relaxation, subgradient optimization.
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1
Introduction

1.1 Background and aim
Fraunhofer Chalmers Centre (FCC) is a research centre that offers research, software
and services for a broad range of industrial applications. This includes modelling,
simulation, and optimization of products and processes, which can boost technical
development, improve efficiency, and cut costs. One key industrial application for
FCC is quasi-static simulation of flexible cables. In order to set up such simulations,
the cables first need to be routed in a collision-free way. Existing solutions can
automatically route a single cable one at a time with respect to a triangulated
geometry. Design constraints such as minimum bending radius and/or minimum
clearance can also be imposed on the routing. However no solution for routing
several cables simultaneously currently exists.

A cable harness is an assembly of cables or wires. A large number of cables are
used in many different scenarios, such as in aircrafts, automobiles, computers, etc.
There are advantages of having cable harnesses; the amount of space needed for
the cables can be reduced, the increased security, and the time of installation can
be reduced. It is common that routing designs are done manually, and when many
requirements of the routing design have to be considered, this task can become
complicated and very time consuming. By automating the cable harness routing
process, several benefits can be achieved, e.g., the process can become less time
consuming, and by optimizing the routing layout, costs can be reduced.

Figure 1.1 shows an example of how a cable harness layout can look like in an
industrial application.

Figure 1.1: Installation of cable harnesses.
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1. Introduction

1.2 Problem description
The overall goal in this thesis is to investigate how to model and solve a harness
routing problem as an optimization problem. We consider a bounded space in R3,
where there are free space to route in and obstacles that the routes must avoid.
In this space there are start and end points that will be connected with cables. A
route in this scenario means the path of a cable through the space. The problem
will be called the cable harness routing problem (CHRP), and the formulation of
the problem in this thesis is one of several possible formulations. It is specifically
of interest to investigate if one can obtain satisfactory solutions by formulating the
CHRP as a multi-objective mixed-integer linear program (MILP) problem. It is also
of interest to get an understanding of the problem complexity with this approach
and to find good solution methods. The main research questions are formulated as
follows:

• How can a multi-objective MILP model be formulated, resulting in a desired
outcome for a given industrial instance?

• What methods and algorithms can be used to solve the model when regarding,
among other, time complexity and how to handle more than one objective?

Considering the time complexity, an objective is that we should be able to solve
industrial-size problem instances within, at most, a few minutes. The desired out-
come is a bit open-ended. There are many factors that can be considered when
designing harnesses; the ones considered in this thesis are:

• the length of the cables,
• the amount of space used by the cables,
• collision free routes,
• a minimum clearance, and
• preferable zones to route in.

1.3 Methodology overview
An overview of the solution methodology is given here to, early in the thesis, clarify
how the problem is formulated, and motivate why the specific mathematical tools
are presented in Section 2.

The problem is formulated on a graph with nodes and directed edges. The
approach is to discretize a 3D space with grid points as illustrated in Figure 1.2.
The nodes represent the grid points, and the edges represent the physical paths
that a route can take. We want to find paths, or routes, between node pairs with
consideration to the factors mentioned in Section 1.2. A node pair consists of a
start node and an end node. The grid points are uniformly distributed in a bounded
cubic domain in R3 and can thus be identified as points in N3. The start and end
nodes are defined anywhere in R3, and are mapped to their respective closest grid
points. The resulting paths between the node pairs represent the cables. The grid
is always cubic and the grid resolution is homogeneous.

There are two conflicting objectives in the MILP model that is formulated in this
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1. Introduction

thesis. One objective is to minimize the total route lengths of the cables, and the
second objective is to minimize the number of nodes, or grid points, used by these
routes altogether.

(a) (b)

Figure 1.2: Example of a discretized grid space with three start/end node pairs
and a rectangular block obstacle. The paths (white lines) are routed between each
node pair.

The problem is a large-scale optimization problem (for industrial-size instances).
To get satisfactory solutions the grid often has to have a high resolution. Therefore, a
method for handling large-scale problems is utilized, namely Lagrangian relaxation.

1.4 Limitations

The factors and requirements considered in this thesis are in general not enough
for a cable (harness) routing. An important requirement that is not considered is
to satisfy a minimum bending radius of the cable(s). The routing we are doing are
nominal, meaning that it is a first step in a process where the cables later on will be
simulated and where, for example, the effect of deformation due to gravity will be
considered. Other factors and requirements that can be considered are mentioned in
Section 1.5. It can be desirable to be able to specify waypoints of routings, but this
is not considered in this thesis. These limitations are planned to be considered in
future work by modifying solutions given from the model and algorithm developed
in this thesis.

The model in this thesis is just one way to formulate the CHRP; it would be
of interest to try other formulations, built on other decision variables or objective
functions, but this is considered as future work. The grid discretization of the 3D
space is always cubic, which is not always suitable, but which has simplified our
implementation. In the future, the algorithm should be able to handle rectangular
grids, and possibly also a non-homogeneous grid resolution. In zones where there
are no obstacles, the requirement of the grid resolution will probably not be as high
as in zones with a lot of obstacles.

3



1. Introduction

1.5 Related work
This section gives a brief overview of the challenges of cable harness routing, which
factors a harness designer might consider, which methods have been used previously
to automate the process of harness routing, and the mathematical tools that has
been used for the algorithm in this thesis.

There are a lot of factors that can be considered for a cable harness routing. One
factor that first comes to mind is the length of the routing, which is for example
mentioned in [1, 2, 3]. In electrical cables, the cable length is proportional to the
voltage drop, which is another important concern for harness designers [4]. Other
factors that can be considered are acceptable bend radii, position and distribution
of fasteners used to constrain the harness [4], cable hazardous zones, e.g., zones with
high temperature, moist, or vibrations [2].

In 2000, Ng et al. [4] mentioned that efforts have been made to automate the
choice of a cable harness path through the use of Artificial Intelligence (AI), but
with little success. They mention that a problem is that the harness routing problem
is too open-ended and it is difficult to capture the design intent of the activity, and
they imply that human input is required to guide the computer to reach an "optimal"
solution. More recently, in 2016, Pemarathne and Fernando in [5] review proposed
cable and wiring layout systems designed with AI. They state that their analysis
have shown that the evolution of designing from manual trial and error to intelligent
simulation software has proved vast improvement.

Conru in [6] defined the CHRP as a search problem in a graph. The author
used a genetic algorithm to optimize a cable harness configuration by minimizing an
objective function based on the number of cables passing through each edge in the
graph. Conru mentions that the CHRP appears similar to the Steiner tree problem
(STP) [7], although the STP is not really applicable for the problem formulation
in the paper, since the cost corresponding to each edge in the graph is different for
different harness configurations. Fernando and Kalganova in [3] use Ant Systems
for multi-hose routing to find paths that minimizes the total length of the paths and
maximizes the shared lengths of the paths.

Some solutions to the CHRP that is formulated in this thesis resemble Steiner
trees. These solutions occur when the objective to minimize the amount of nodes
that are used, is highly weighted. Steiner trees have been used in routing problems
before, and even in relation to harnessing, Lin et al. in [8] proposes an algorithm for
weight minimization of wires. They formulate the wire routing problem as an STP
where the location of a Steiner vertex is selected for adding a splice connecting more
than two wires. Klein and Haugland in [9] formulate a model for cost minimization
of cable layouts (in the context of offshore wind farms) which has some resemblance
with the STP. Lagrangian relaxation has been used for solving the STP, for example
in [7]. More recently, Leitner et al. in [10] present a dual ascent algorithm for solving
the STP. The STP might be useful to consider because some solutions to the problem
in this thesis resemble a Steiner tree, although the STP is not considered in this
thesis and is considered as future work.

The model developed in this thesis is Lagrangian relaxed, and a dual problem is
formulated, which others have done before for resembling problems (see the discus-
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1. Introduction

sion above on the STP). The algorithm developed in this thesis utilizes, among other
things, a deflected subgradient algorithm, and ergodic sequences for fixing variable
values. Similar algorithms has been proposed before (but not specifically for the
CHRP), for example in [11], [12]. The deflected subgradient algorithm is presented
in [13]. Ergodic sequences are also used to construct so called core problems, as in
[12].
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2
Mathematical tools

This section presents background theory and mathematical tools that are used in
this thesis to build the algorithms presented in Section 4, or that is related to the
model presented in Section 3.

2.1 Shortest path problem
The shortest path problem (SPP) is relatable to the CHRP model in this thesis.
SPP is a network optimization problem, i.e., it is defined on nodes and arcs, and the
linear program (LP) formulation of this problem has integrality property, i.e., there
exists an optimal integer solution [14, p. 216].

To show how the SPP can be formulated as an LP, we define the variables

xij =
{

1 if arc (i, j) ∈ A is part of the shortest path,
0 otherwise.

The node set and arc set are denoted by V and A, respectively, and the arc costs
are denoted as aij, (i, j) ∈ A. The LP model of the SPP can then be formulated as

min
∑

(i,j)∈A
aijxij, (2.1a)

s.t.
∑

i∈V :(i,k)∈A
xik −

∑
j∈V :(k,j)∈A

xkj = 0, k ∈ V \ {s, e}, (2.1b)
∑

i∈V :(s,i)∈A
xsi = 1, (2.1c)

∑
i∈V :(i,e)∈A

xie = 1, (2.1d)

xij ≥ 0, (i, j) ∈ A. (2.1e)

The start node is denoted by s and the end node by e. The constraints (2.1b)
are flow conservation constraints, stating that the flow into every node (that is not
the start or end node) must flow out from it. The constraint (2.1c) makes sure
that the path flows from the start node, and (2.1d) ensures that it reaches the end
node. There is no need for binary constraints on the decision variables because of
the integrality property. The SPP is not generally solved as an LP problem, but
instead by using more efficient algorithms designed for finding shortest paths in a
network, such as Dijkstra’s algorithm, which is a special case of so-called Dynamic
Programming algorithms, see [14, p. 192], [15]. However, these results are useful
later in this thesis.
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2. Mathematical tools

2.2 Lagrangian relaxation for mixed-integer lin-
ear programming

For problems with integer variables, it is common to apply a relaxation to recieve
lower, or optimistic, bounds on the optimal objective function value. The solution
to a relaxed problem can for example be used to prove infeasibility or optimality.
Relaxations can be used in methods that search for an optimal solution, e.g., branch
and bound, or find a good solution fast in cases when the original problem formula-
tion is too complex. One popular relaxation method is Lagrangian relaxation [16],
which approximates a difficult problem with a simpler one.

We have a MILP model when some variables are continuous and others are re-
stricted to integer values. By denoting the continuous and integer variables as xC
and xI , respectively, we can formulate the model in matrix form as:

min cTx, (2.2a)
s.t. Ax ≤ b, (2.2b)

x ≥ 0, (2.2c)
xI ∈ Zn, (2.2d)

where x = [xTC xTI ]T and n is the number of integer variables.
The procedure of Lagrangian relaxation will now be explained; it also can be read

about in [16], [14, p. 455–463]. In Lagrangian relaxation we relax "complicating"
constraints such that the relaxed problem is relatively easy to solve. Let us denote
the feasible set to the problem (2.2) as X := {x |Ax ≤ b, x ≥ 0, xI ∈ Z}, where
the constraints constructing the set X are considered to be "simple" in the sense
that the resulting optimization problem can be solved efficiently. Suppose now that
in addition to these constraints, we have some "complicating" constraints denoted
as gi(x) ≤ 0, i = 1, . . . ,m. The resulting model would then be

min cTx, (2.3a)
s.t. gi(x) ≤ 0, i = 1, . . . ,m, (2.3b)

x ∈ X. (2.3c)

By relaxing the constraints (2.3b) the Lagrangian function for problem (2.3) is
obtained as

L(x,λ) := cTx+
m∑
i=1

λigi(x),

where λi ≥ 0, i = 1, . . . ,m are Lagrangian multipliers, or dual variables, and the
relaxed problem takes the following form:

h(λ) := min
x∈X

L(x,λ). (2.4)

8



2. Mathematical tools

This means that if the constraints (2.3b) are not satisfied, the Lagrangian function
is penalized in the relaxed problem. If x is feasible in the original problem (2.3), we
have that cTx ≥ L(x,λ) ∀ λ ≥ 0, which implies that the Lagrangian function pro-
vides a lower bound on the optimal value of our original problem. The minimization
problem (2.4) is called the Lagrangian subproblem. A solution to (2.4), for given
dual variable values, will be denoted as x(λ).

The problem of finding the best relaxation bound is called the Lagrangian dual
problem. The Lagrangian dual function is denoted by h, and the Lagrangian dual
problem is formulated as

max
λ≥0m

h(λ). (2.5)

The Lagrangian dual problem is always a convex problem, which implies that it can
be solved efficiently [17].

2.3 Subgradient optimization
Subgradient optimization is a popular method for solving the Lagrangian dual prob-
lem. It is an iterative procedure which can solve the problem of maximizing a non-
smooth concave function, such as h. We say that s ∈ Rm is a subgradient of h at
λ ∈ Rm

+ if it is an element of the subdifferential:

∂h(λ) = {s ∈ Rm | h(γ) ≤ h(λ) + sT (γ − λ), γ ∈ Rm
+}.

In the subgradient method the dual variables are updated as

λk+1 =
(

max
{

0, (λk)i + αk(dk)i
})m

i=1
, (2.6)

where the search direction dk := s(λk) and αk > 0 is a step length at iteration k.
One choice of subgradient is s(λ) = g(x) if gi, i = 1, . . . ,m in (2.3b) is linear.

To theoretically guarantee convergence, the step lengths have to fulfill the re-
quirements αk → 0 and ∑k

i=1 αi → ∞, as k → ∞. Step lengths that satisfy these
requirements are given by αk = 1

k
, k = 1, 2, . . . [14, p. 470]. Example of other step

lengths that guarantees convergence are divergent series step lengths [12, p. 512]
and the Polyak step lengths [12, p. 515].

A common choice of step length is

αk = δk
u− h(λk)
‖dk‖2 ,

where u is the best known upper bound on (2.5), and δk ∈]0, 2[. This does not
satisfy the theoretical requirement for convergence, but it works well in practice [14,
p. 470]. If δk = 1, we have theoretical convergence [12, Prop. 15.8].

When the search direction is chosen to simply be a subgradient, the steps towards
the optimal solution can be zigzagging. This zigzagging phenomenon can be reduced,
so that the iterates λk approach an optimal solution faster, by using a so called

9



2. Mathematical tools

deflected subgradient search direction [13]. The deflected subgradient is computed
as

dk = s(λk) + Ψkd
k−1, (2.7)

where d0 = 0 and Ψk ≥ 0 is a deflection parameter. Belgacem and Amir [13]
presents a deflection parameter that is computed as

Ψk =
{ −η(1−β)s(λk)·dk−1+β‖s(λk)‖‖dk−1‖

‖dk−1‖2 , if s(λk) · dk−1 < 0
0, otherwise,

(2.8)

where 0 < η ≤ 2 and β ∈ [0, 1]. This deflection parameter makes dk a convex
combination of two deflected directions; one direction, dMGT, used in an algorithm
called Modified Gradient Technique (MGT), and dADS used in the Average Direction
Strategy (ADS). This means we have that dk = (1− β)dkMGT + βdkADS.

Algorithm 1 shows the subgradient optimization procedure, which follows the
algorithms in [14, p. 461] and [13]. The algorithm terminates when the difference
between the upper and lower bound is satisfactory small, or when a maximum
number of iterations has been reached.

Algorithm 1: Deflected subgradient algorithm

1. Choose initial values λ0. Set k = 0, lower bound l = −∞, upper bound u =∞, δ0 = 2,
p ∈ N, κ ∈]0, 1[

2. Solve the Lagrangian subproblem for given λk. This gives a solution x
(
λk
)
and an

optimistic bound h(λk). Find a feasible solution xfeas using x
(
λk
)
, and compute the

pessimistic bound cTxfeas. Update l = max{l, h(λk)} and u = min{u, cTxfeas}.

3. Determine subgradient s(λk) = g(x) and search direction dk according to (2.7) and (2.8).

4. Update the step length αk = δk
u−h(λk)
‖dk‖2 .

5. Compute λk+1 according to (2.6)

6. Decrease δk as δk := κδk if l has not been improved the last p iterations.

7. Check convergence criterion and terminate if fulfilled.

8. Set k := k + 1 and go to 2

The parameter δk is decreased in step 6 if the lower bound is not improved in
some number of iterations. The reason for this is to decrease the step length and
take smaller steps in the subgradient direction. How big p should be and how δk
is decreased depends on the problem and the instance. Belgacem and Amir in [13]
uses κ = 0.5 and p = 20, in their example. In this thesis, those settings decreases
δk too fast, and κ will instead be closer to 1.

2.4 Primal convergence in subgradient optimiza-
tion with ergodic sequences

When the original problem is nonconvex, such as discrete optimization problems,
there is usually a non-zero gap between the optimal primal and optimal dual objec-
tive values. This makes it more complicated to define the termination criteria, since

10



2. Mathematical tools

we can not assume that the gap will tend to zero. It is also desirable to generate
good primal solutions. Utilizing so-called ergodic sequences might help regarding
this. For a convex program, an ergodic sequence of subproblem solutions converges
to the solution set of that problem [18, p. 293], provided that the step lengths in
the dual subgradient algorithm and the weights defining the ergodic sequence fulfill
certain (natural) requirements. For a mixed binary linear program, it can then be
shown that the ergodic sequence converges to a solution set of a convexified version
of the problem [12, p. 517]. The feasible set in the convexified version is defined as
the intersection of the set defined by the inequality constraints in (2.3b) and the
convex hull of the set X in (2.3c). The difference in optimal objective value of a
MILP model and its LP-relaxation is called integrality gap. The smaller this gap
is, the stronger is the model. When the problem formulation is strong, the con-
vexified version lies close to the solution set of the original problem. So utilizing
ergodic sequences for constructing primal feasible solutions hopefully results in good
solutions.

The ergodic sequence {x̃t} is defined as a convex combination of subproblem
solutions, and can be computed as

x̃t := 1∑t−1
r=0 αr

t−1∑
s=0

αsx
(
λs
)
, t = 1, 2, . . . ,

where the weights αs are the same as the step lengths used in Algorithm 1. The
updates can be done incrementally by the following approach [12, p. 517]:

ᾱ1 := α0, ᾱt := ᾱt−1 + αt−1, (2.9a)
x̃1 := x(λ0), (2.9b)

x̃t := ᾱt − αt−1

ᾱt
x̃t−1 + αt−1

ᾱt
x(λt−1). (2.9c)

Here, ᾱ denotes the cumulative sum of the weights αt. The convergence of the
ergodic sequence of subproblem solutions with updates according to (2.9) is often
slow [12, p. 517], partly because the weights αt are lower for later iterates. An ergodic
sequence, where later iterates are assigned higher weights than the earlier ones, can
be obtained by using the so called sk-rule [12, p. 519]. The ergodic sequence using
the sk-rule is defined by

x̃t :=
t−1∑
s=0

µtsx
(
λs
)
, s = 0, . . . , t− 1,

with weights defined by

µts := (s+ 1)k∑t−1
r=0(r + 1)k

, s = 0, . . . , t− 1, t = 1, 2, . . . , k > 0.

Larger values of k results in weights shifted towards later iterates.
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2.5 Multi-objective linear programming
Multi-objective linear programming (MOLP) is a specific case of general multi-
objective programming (also known as multi-objective optimization), where all func-
tions defining the problem are linear. MOLP is an area in mathematical optimiza-
tion that is concerned about problems with more than one objective to be optimized
simultaneously. Mathematically a MOLP problem can be formulated as

min f1(x), f2(x), . . . , fn(x) (2.10a)
s.t. x ∈ X (2.10b)

where n is the number of linear objective functions and X = {x ≥ 0 | Ax ≤ b} is
the feasible set.

In many cases of MOLP, the objective functions are in conflict, which means that
there is no solution that simultaneously optimizes each objective [19]. The goal is to
find a solution that is optimal in some sense, and with conflicting objectives there
exists so called Pareto optimal solutions. A solution is Pareto optimal, also called
efficient, if none of the objective function values can be improved without worsening
at least one of the other objective function values. Lootsma in [20, p. 230] formulates
the definition as: a feasible solution x̃ ∈ X is an efficient solution if there is no
feasible solution x ∈ X such that

fi(x) ≤ fi(x̃), i = 1, . . . , n,
fk(x) < fk(x̃), for some k ∈ {1, . . . , n}.

Moreover, a feasible solution x̃ is weakly efficient, or weakly Pareto optimal, if there
is no feasible solution x such that

fi(x) < fi(x̃), i = 1, . . . , n.

This means that from a weakly efficient solution, it is impossible to improve all
objective functions, but it may be possible to improve at least one other objective
function without worsening the others. Figure 2.1 illustrates weakly efficient and
efficient solutions on the Pareto front in the objective function space, in the case with
two objective functions. The Pareto front is the set of all Pareto optimal solutions.
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Pareto optimal

weak Pareto optimal

Infeasible

Feasible (not

Pareto optimal)

Figure 2.1: Illustration of a Pareto front with two objective functions to minimize,
i.e., going in the direction of the grey arrows. The black line corresponds to the
Pareto front and black points are Pareto optimal, while points on the dashed line
(the pink ones) are weakly Pareto optimal. f ∗ corresponds to the ideal objective
vector.

There exist different optimal solutions for each of the n conflicting objectives,
which are found by solving

min
x∈X

fi(x),

for i = 1, 2, . . . , n, and obtain the corresponding optimal objective values f ∗i , we get
a so called ideal objective vector

f ∗ = [f ∗1 , f ∗2 , . . . , f ∗n].

In general, the ideal objective vector f ∗ does not correspond to a feasible solution,
but Pareto solutions that are closer (in distance) to this point might be better [21,
p. 410].

MOLP can be divided into two subfields: (1) find a representative set of solutions
on the Pareto front, and (2) find a single solution that satisfies a subjective preference
of a designer [20, p. 230], [19, p. 1106]. Generation of several solutions on the Pareto
front is good for analyzing the problem, but in the end, there will be need for only
one solution. Two different approaches are suggested for this purpose in [21]. One
approach is divided into the following two steps:

Step 1: Find multiple trade-off (efficient) solutions with a wide range of the objective
function values.

Step 2: Choose one of the obtained solutions using higher-level information.

In this approach, several solutions on the Pareto front are found before a final
choice is made. The final choice by using "higher-level information" can often be
non-technical and experience driven, [21, p. 407–408]. When we have two objective
functions, i.e., n = 2, the Pareto front can be visualized in a 2D plot by plotting
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the corresponding solution points in the objective function space, such as in Figure
2.1. This can help to choose a satisfactory solution. The second approach for
finding one efficient solution can be done using a method sometimes referred to as
weighted sum method, which will be discussed in more detail in Section 2.5.1. In this
approach, higher-level information is first used to decide how the objectives should
be prioritized, then a composite function is created into one scalar function. This
composite function is then optimized over the feasible set to find a single trade-off
optimal solution.

In the following subsections, two methods are presented, which are used in this
report to handle the MOLP problem for different purposes. The method presented
in Section 2.5.2 is used to compute all of the Pareto optimal and weakly Pareto
optimal solutions. The weighted sum method in Section 2.5.1 is used to find a single
point, or a few points on the Pareto front, and is also the method used together
with the Lagrangian relaxation of the model described in Section 3.2.

2.5.1 Weighted sum method
For the weighted sum method a vector with positive weights w = [w1, w2 . . . , wn] is
used to create the single objective function

F (x) =
n∑
i=1

wifi(x). (2.11)

A solution that minimizes (2.11) over the set X (defined in (2.10b)) is proven to be
weakly efficient if wi ≥ 0, i = 1, . . . n, and efficient if wi > 0, i = 1, . . . n [22, p. 10].

With prior knowledge of a good preference vector, this is a suitable method to
obtain an efficient solution. This method can be used to find multiple efficient
solutions by using different preference vectors w and resolving the MOLP problem.
A problem is that a uniform choice of weight vectors does not necessarily find a
uniform set of solutions on the Pareto front. Another issue is that solutions lying
on non-convex parts of the Pareto front can not be found with this approach, [21,
p. 420]. When we have binary variables as in the model in this thesis, the Pareto
front can be non-convex, implying there may exist (weakly) efficient solutions that
can not be found with this method.

2.5.2 ε-constraint method
An approach that works better than the weighted sum method is the ε-constraint
method, with respect to the issues mentioned in the end of Section 2.5.1. Here the
MOLP problem is reformulated such that only one objective is optimized, while
the rest are restricted using constraints. The reformulation of the problem looks as
following:

min fk(x), (2.12a)
s.t. fi(x) ≤ εi, i ∈ {1, . . . , n} \ k, (2.12b)

x ∈ X. (2.12c)
An optimal solution to (2.12) is always weakly efficient [22, p. 12].
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3
Model description

So far the main mathematical tools that are used in this thesis have been presented.
In this section, we begin with definitions and notations that are used to formulate
the model. How the nodes and arcs, and their corresponding costs, are defined,
will also be described in Section 3.1. Thereafter, the model is presented, and the
Lagrangian relaxation of the model is described and so is the reformulation for the
ε-constraints method.

3.1 Definitions and notations
Let’s define the following notations:

• V - set of nodes,
• K - set of cables,
• Ak - set of directed arcs (i, j) for cable k ∈ K,
• sk - start node for cable k ∈ K,
• ek - end node for cable k ∈ K,
• ni - cost for using node i ∈ V ,
• aij - cost for traversing arc (i, j) ∈ Ak, k ∈ K.

The problem is defined as a graph in R3 with free space and obstacles. In this
3D space a grid is defined, where the grid-points are nodes in V ⊆ N3. Lets denote
the number of grid-points in x-, y- and z-direction as dx, dy, dz ∈ N, respectively.
A node i ∈ V corresponds to a grid-point in N3. In this thesis, a cubic grid has
been used, i.e., dx = dy = dz. Lets denote the number of grid points in a direction
as d = dx. An example of such a grid can be seen in Figure 3.1. The start and end
positions of a cable k are located in R3, and these positions are mapped to their
respective closest grid points such that sk, ek ∈ V, k ∈ K. From this setting, two
specific questions arises:

1. How should the arcs be defined?
2. How should the node costs and arc costs be defined?

For each cable, there exists arcs from every node i ∈ V to all nodes in a neigh-
bourhood of i. This neighbourhood is defined as

N(i) :=
{
j ∈ V \ i | ‖i− j‖∞ ≤ 1

}
.
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Figure 3.1: Grid points (nodes) as dark dots, in a 3D instance with orange start
and end nodes. The start and end nodes are inside the rectangular box created by
the orange lines.

Figure 3.2 illustrates the neighbourhood of a grid point. The set of all possible
directed arcs for cable k ∈ K is defined as

Ak :=
{

(i, j) | i ∈ V \ ek, j ∈ V (i) \ sk
}
.

In other words, each arc is are going from one node to a node in its neighbourhood,
but for each cable, no arcs start in its end node and no arcs end in its start node.

Figure 3.2: Dark grid points are in the neighbourhood of the red grid point.

This leads to question 2 in this section. The arc cost for arc (i, j) ∈ A, are
defined as

aij = 1
d− 1‖i− j‖2. (3.1)

The factor 1
d−1 normalizes the arc-costs between instances and makes the objective

values end up in similar ranges. We also get that the total length, or cost, for a
straight path from one side of the grid to the opposite side is equal to one. The arc
costs are proportional to the Euclidian distances, which implies that aij = aji.

The node costs can be defined in different ways depending on the instance and
what the designer prefers. For the tests in this thesis, the lowest cost of a node is

nmin = 1
d− 1 , (3.2)
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3. Model description

which is also the lowest arc cost. The highest cost for a node is equal to infinity.
Those nodes are inside (in collision with) or too close to an obstacle. By not using
infeasible nodes with cost equal to infinity, we satisfy collision free routes and mini-
mum clearances. For every node, we have a distance, or a clearance, c ∈ R from the
corresponding grid point in R3 to the closest point in R3 on an obstacle, see Figure
3.3.

Figure 3.3: The red line shows the clearance for the green point.

In Figure 3.4 we can see examples of how the node costs can depend on the
clearance. In the case in Figure 3.4(a), all nodes are equally expensive, except for
the ones with a clearance below some threshold. If one prefer using nodes that are
close to obstacles, the case in Figure 3.4(b) can be used, which penalizes nodes that
are far away from any obstacle.

Clearance

N
o

d
e

 c
o

s
t

(a)

Clearance

N
o

d
e

 c
o

s
t

(b)

Figure 3.4: Two different ways to define node costs, ni, i ∈ V , as a function of
clearance. nmin ∈ R+ is the minimum node cost. ct, ĉ ∈ R+ are thresholds.
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3.2 Model
In this section the model that is formulated to solve the CHRP is presented. We
define the decision variables as

xi =
{

1, if node i ∈ V is used,
0, otherwise,

yijk =
{

1, if arc (i, j) ∈ Ak is traversed by cable k ∈ K,
0, otherwise.

The model consists of two objective functions fh and fSP , defined as

fh(x) =
∑
i∈V

nixi, and fSP (y) =
∑
k∈K

∑
(i,j)∈Ak

aijyijk,

where fh and fSP relates to the harnessing aspect and the shortest paths for the
cables, respectively.

To optimize for one objective function, a composite function is created by having
a weighted sum of the objectives. The weights for fh and fSP are denoted by wh ≥ 0
and wSP ≥ 0, respectively. The model is formulated as following:

min
{
whfh(x) + wSPfSP (y)

}
, (3.3a)

s.t.
∑

i:(i,l)∈Ak

yilk −
∑

j:(l,j)∈Ak

yljk = 0, l ∈ V \ {sk, ek}, k ∈ K, (3.3b)
∑

i:(sk,i)∈A
yskik = 1, k ∈ K, (3.3c)

∑
i:(i,ek)∈A

yiekk = 1, k ∈ K, (3.3d)
∑

j:(l,j)∈A
yljk ≤ xl, k ∈ K, l ∈ V, (3.3e)

yijk ≥ 0, k ∈ K, (i, j) ∈ Ak, (3.3f)
xi ∈ {0, 1}, i ∈ V. (3.3g)

For future reference, define a feasible set S satisfying all constraints (3.3b)−(3.3g).
Also, we will use z := (x,y), and f(z) := whfh(x) +wSPfSP (y). The feasible set of
paths for cable k is denoted Yk := {yk | (3.3b)− (3.3d), (3.3f)}, i.e., the set of paths
from sk to ek for cable k ∈ K. Lastly, we define Y := {y | yk ∈ Yk, k ∈ K}.

By setting wh = 0 and wSP = 1, the problem (3.3) can be viewed as finding the
shortest paths for |K| routes. When also considering the first objective function,
i.e., when wh > 0, the problem is also to consider the amount of space (in terms of
number of nodes used) that is used. The difference between the constraints in this
model and the SPP model (2.1), is the variables xi and the added constraints (3.3e)
and (3.3g). These constraints ensures that xi is equal to one if any route uses node
i ∈ V . With the constraints (3.3e) we still have the integrality property of the set
Yk when x is binary; therefore the variables y can be considered as continuous. The
model (3.3) is a mixed binary linear program (MBLP), a specific case of MILP.

An LP-relaxation of the model (3.3) means that the binary constraints (3.3g) are
relaxed to xi ∈ [0, 1].
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3.2.1 Lagrangian relaxation
The procedure of the Lagrangian relaxation of problem (3.3) will be shown here,
resulting in a formulation of the Lagrangian subproblem and the Lagrangian dual
problem.

By relaxing the constraints (3.3e) we get the following Lagrangian subproblem:

min
{
f(x,y) +

∑
k∈K

∑
i∈V

λik
( ∑
j∈V :(i,j)∈A

yijk − xi
)}
, (3.4a)

s.t. x ∈ {0, 1}|V |, y ∈ Y, (3.4b)

with Lagrangian dual variables λik ≥ 0, k ∈ K, i ∈ V . The objective (3.4a) is
penalized when the constraints (3.3e) are not fulfilled. In other words, we get a
penalization whenever a node variable is equal to zero, but the node is used by some
route.

Expand the relaxed objective function:

f(x,y) +
∑
k∈K

∑
i∈V

λik

( ∑
j∈V :(i,j)∈Ak

yijk − xi
)

=

wh
∑
i∈V

nixi + wSP
∑
k∈K

∑
(i,j)∈Ak

aijyijk +
∑
k∈K

∑
i∈V

λik

( ∑
j∈V :(i,j)∈Ak

yijk − xi
)

=

∑
i∈V

(
whni −

∑
k∈K

λik
)
xi +

∑
k∈K

∑
(i,j)∈Ak

(
wSPaij + λik

)
yijk

For given dual variable values, we can see that (3.4) separates into |V |+|K| optimiza-
tion problems. The Lagrangian subproblem thus reduces to solving the following
problems:

min
∑
i∈V

(
whni −

∑
k∈K

λik
)
xi, (3.5a)

s.t. xi ∈ {0, 1}, i ∈ V, (3.5b)

∑
k∈K

min
∑

(i,j)∈Ak

(
wSPaij + λik

)
yijk, (3.6a)

s.t. yk ∈ Yk. (3.6b)

This means that subproblem (3.6a) is to find |K| separate shortest paths, which
can be done efficiently with Dijkstra’s algorithm. The problems (3.5a) are solved
by setting xi = 0 if (whni −

∑
k∈K λik) > 0 and xi = 1 otherwise. Since the

problems (3.5a) and (3.6a) has integrality property the optimal objective value for
the Lagrangian dual problem and the LP-relaxation of (3.3) are equal to each other.

The Lagrangian dual problem takes the following form:

max
λ≥0

(3.5a) and (3.6a). (3.7)
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An equivalent formulation of the problem (3.7) is

max
λ

∑
k∈K

min
yk∈Yk

∑
i,j∈Ak

(
wSPaij + λik

)
yijk, (3.8a)

s.t.
∑
k∈K

λik = whni, ∀i ∈ V, (3.8b)

λ ≥ 0. (3.8c)

An idea on how to solve problem (3.8) is to use subgradient optimization and project
onto the constraints (3.8b)-(3.8c), and not only the non-negative orthant as for
problem formulation (3.7). However, only the Lagrangian dual problem formulation
(3.7) is consider in this thesis and the alternative formulation (3.8) is left for future
work.

3.2.2 ε-constraint method model
When the ε-constraint method is used, the model (3.3) is reformulated. The objec-
tive weights are wh = wSP = 1, and the objective function f1 is converted into a
constraint. With ε > 0, the reformulation looks like following:

min fSP (y), (3.9a)
s.t. fh(x) ≤ ε, (3.9b)

x ∈ {0, 1}|V |, (3.9c)
y ∈ Y. (3.9d)

The problem (3.9) will be used to compute all Pareto and weakly Pareto optimal
solutions with algorithm 6. The maximal value of ε is obtained by computing the
shortest paths for all cables and evaluating the value of fh(x). ε is then decreased
with the lowest node cost and problem (3.9) is solved in order to find a new solution,
and this is repeated until the problem is infeasible.
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Algorithm description

This section presents the algorithms that have been used and developed in this
thesis. Connections to the mathematical tools in Section 2 are shown. The main
algorithm that has been used for solving the CHRP problem (3.3) is presented in
Section 4.1. The heuristics that have been developed and is a part of the main
algorithm, are described in Section 4.2. Lastly, the algorithms to compute different
Pareto optimal solutions are presented in Section 4.3.

4.1 Algorithm overview
The main algorithm is a deflected subgradient optimization procedure with one-sided
branching in the sense of a diving heuristic; see [23, p. 17]. Heuristics are utilized to
improve upper bounds by searching for feasible solutions with good quality. Ergodic
sequences are used to determine which variables to fix. Similar approaches has been
used before, for example in [11] and [12, p. 533].

In Figure 4.1 and in Algorithm 2, we can see an overview of the main algorithm,
used for solving the CHRP (3.3). The heuristics that are a part of Algorithm (2),
are presented in Section 4.2.

Initialization
of the problem

Feasible?Terminate

Subgradient
iterations and
ergodic updates

Algorithm
3 and 4

Fix variables

Algorithm 5

Return best
solution

yes

no

Figure 4.1: Flowchart of Algorithm 2.
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Algorithm 2: Main algorithm

1. t := 0, λ0 ∈ R|K||V |+ , (tmax, tfix, theur, b, p) ∈ N, δ0 ∈]0, 2], l = 0, u =∞, ε ≥ 0, δmin > 0.

2. Find λt+1, z
(
λt
)
and zfeas

(
λt
)
according to steps 2− 7 in algorithm (1), and update lower

bound l and upper bound u.

3. Compute the ergodic sequence x̃t (of the node-variables) according to (2.9)

4. If t ≥ tfix, fix b x-variables to zero. Choose the variables corresponding to the b smallest
values of x̃t.

5. If theur is a divisor with t, apply Algorithm 3 and 4, to search for a better upper bound.

6. Check termination criteria, i.e., if t ≥ tmax, δt < δmin, or 100 · u−l
u < ε. If any criterion is

fulfilled, go to next step, otherwise set t := t+ 1 and go to 2.

7. Apply Algorithm (5).

In the initialization of the problem, seen in Figure 4.1, feasibility are checked by
making sure that none of the start and end nodes for the cables are in collision, and
that there exists a feasible shortest path for every cable.

When solving the Lagrangian subproblems in step 2 of Algorithm 2, Dijkstra’s
algorithm is used for solving (3.6a). The problem (3.5a) is simply solved by setting
the binary variables to 0 when the cost is positive and 1 when the cost is negative
or zero. Dijkstra’s algorithm and implementation of it can be read about in [15].

For the instances in this thesis, we have seen that that there is a fast improvement
in early iterations. The value of tfix has been chosen such that we start to fix variables
when the rate of improvement has started to decrease.

The complication, mentioned in Section 2.4, about later iterations of the sub-
problem solutions being less weighted with the ergodic updates according to (2.9),
is considered. The method with the sk-rule has not been implemented and tested,
but another simple idea has been tested: every ierg:th iteration, start a "new" ergodic
sequence vector x̃tnew = ξx̃t, ξ ∈]0, 1[. The vector x̃tnew is then updated according
to (2.9). The aim of this approach is not to obtain a primal feasible convergence
directly with x̃tnew, but instead to decrease the weighting of earlier iterates and only
use this vector as information to choose which variables to fix in the "branching"
process in step 4 of Algorithm 2 and in Algorithm 4.

4.2 Heuristics
The heuristics are used to search for better upper bounds on the objective value.
Algorithms 3 and 4 are used in step 5 in Algorithm 2. The last heuristic in section
4.2.2 is used once, in the last step of Algorithm 2.

4.2.1 Local search heuristic
The heuristic presented in Algorithm 3, is a simple but effective and fast heuristic.
The idea is to reroute one cable at a time where it is cheap to use arcs that are used
by other cables. An example of how the heuristic works is illustrated in Figure 4.2.
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Algorithm 3: Local search heuristic

1. Given a feasible solution z = (x,y) to (3.3), define the best objective value fbest := f(z).

2. Set k := 1, corresponding to cable 1.

3. If an arc is used by the cables k̃ ∈ K \ k in the solution z, set the corresponding arc cost
equal to aij , otherwise set the corresponding arc cost equal to aij + ni.

4. Find the shortest path for cable k and denote the solution z̄. If f(z̄) < fbest, save this as a
new solution znew := z̄ and set fbest := f(z̄).

5. Set k := k + 1 and go to 3, until k = |K|.

6. Set z := znew and go to 2 until the objective value has not been improved.

4.2.2 Core problem heuristics
The heuristics presented in this section resembles construction of so called core
problems, as in [12, p. 531]. In the core problem, some of the variables in the
original problem are assigned fixed values, which results in a problem with fewer
variables, and hopefully yields a feasible and near optimal solution to the original
problem.

The idea of Algorithm 4 is to fix variables (the binary variables), such that we
get a simplified LP problem. With good choices of variables to bound we hopefully
obtain a feasible solution with good quality. At each "branching" in Algorithm 4,
variables are fixed to the value zero. An ergodic sequence is used to determine
which variables to fix. It is called "Cheap core problem heuristic" because it is
computationally cheap to execute compared to Algorithm 5.

Algorithm 4: Cheap core problem heuristic
Data: Ergodic sequence x̃t, feasible solution z to (3.3)
Result: Heuristic solution
Initialize set of bounded node variables V0 := ∅;
Set positive number σ̃ < 1 ;
Set a number σ ∈]0, 1[;
l = 0;
while LP-relaxation of (3.3) with nodes V \ V0 is feasible and l < f(z) do

if x̃ti < σ, i = 1, . . . , |V | then
V0 := V0 ∪ i; /*Fixing variable to zero*/

end
Solve a LP-relaxation of (3.3) using only nodes in V \ V0 and obtain
solution zLP;
l := f(zLP);
Find feasible solution zfeas(zLP) using some heuristic;
if f(zfeas) < f(z) then
z := zfeas;

end
σ := σ + σ̃;

end
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(a) (b)

(c) (d)

Figure 4.2: Example of applying Algorithm 3. Each node pair to connect has a
distinct color. (a): Solution after some subgradient steps. (b): First iteration of
Algorithm 3: the route connecting the red node pair has been rerouted. (c): Second
iteration of Algorithm 3: the route connecting the blue node pair has been rerouted.
(d): Fifth and final iteration: the routes connecting the green, turquoise and pink
node pair have been rerouted.

The LP-relaxed problems are solved with Gurobi, and as will be seen in section
6, it will take too long computing time to solve an LP-relaxation of (3.3) for large
instances. Therefore, the initialization of σ in Algorithm 4, should be chosen such
that solving the LP-relaxation problem, using only nodes in V \ V0, is computa-
tionally fast. Finding a feasible solution can be done, for example, by a rounding
heuristic. The rounding of variables should then be done such that we have routes
going from every start/end node pair. Suppose we have a solution zLP = (xLP,yLP)
from solving a LP-relaxed problem, then finding a feasible solution can be done in
the following steps:

• Round up variables that are not zero in yLP, such that there are routes going
from sk to ek, k ∈ K. Denote the resulting solution as yfeas.

• If a node is used in yfeas, set the corresponding node variable to 1, otherwise
set to 0.

The next heuristic finds a local optimum by using information throughout the
execution of Algorithm 1. The idea is that arcs that appear often in the Lagrangian
subproblems are more likely to be a part of the optimal solution. Let us define
a variable that represents the frequency of appearance of arcs from ŝ Lagrangian
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subproblem solutions:

yfreq :=
ŝ∑
s=1
ys(λs). (4.1)

Algorithm 5: Core problem heuristic
Data: yfreq
Result: Local optimal solution (x̃, ỹ) to (3.3)
Set number of nodes ṽ < |V |;
Define set of nodes to be part of problem Ṽ := ∅;
Add nodes, used in the best solution found, to the set Ṽ ;
while |Ṽ | ≤ ṽ do

yijk := argmaxijk{yfreq,ijk};
Ṽ := Ṽ ∪ {i, j};

end
Solve (3.3) using nodes Ṽ resulting in solution (x̃, ỹ);

The reduced dimension problem with node set Ṽ in Algorithm 5, is solved with
Gurobi. The problem (3.3) might be complicated to solve not only because there
are many binary node-variables. If there are many cables, we get a large number
of arc-variables which can result in a big time complexity. The number of these
arc variables is reduced when the number of node variables is reduced. To decrease
the dimension even more, one can choose to use at most narc arcs for every cable.
A good choice could then be to use the variables corresponding to the narc biggest
values in yfreq, for every cable.

It would be possible to use an ergodic sequence for Algorithm 5 instead of (4.1).
The subproblem solutions are equally weighted in yfreq, and does therefore not suffer
from lower weights on later iterates as the ergodic updates according to (2.9) does.
Although, it would be interesting to use an ergodic sequence also for comparison.

4.3 Computing points on the Pareto front

The Pareto front is investigated in two different ways. I present an approach in
Algorithm 6, which utilizes the ε-constraint method for an MBLP and finds all
Pareto optimal, and weakly Pareto optimal solutions. The second algorithm, for
computing Pareto optimal solutions, optimizes with different values of the objective
weights. If the problem is computationally heavy, Algorithm 7 has an advantage
since we can choose how many Pareto optimal solutions to compute; it is the only
one that can be applied when Algorithm 2 is used as solver.
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Algorithm 6: ε-constraint method with binary variables
Result: Set P containing all efficient and weakly efficient solutions for problem

(3.3), with wh = wSP = 1.
P := ∅ y∗ := argminy∈Y fSP (y);
Construct a feasible solution (x∗,y∗) ∈ S, such that fh(x) is minimized given
y∗;
P := P ∪ (x∗,y∗);
nmin := mini{ni};
ε := f(x∗,y∗)− nmin;
while min(x,y)∈S {fSP (y) | fh(x) ≤ ε} is feasible do

(x,y∗) := argmin(x,y)∈S {fSP (y) | fh(x) ≤ ε};
Construct a feasible solution (x∗,y∗), such that fh(x) is minimized given y∗;
P := P ∪ (x∗,y∗);
ε := fh(x∗)− nmin

end

Given a routing solution y∗, we obtain a feasible solution (x∗,y∗) which minimizes
fh by setting all node variables equal to zero, except for those who are used in the
routes corresponding to y∗.

Algorithm 7: Weighted sum

1. Choose some set of weights sw =
{

(w1
h, w

1
SP ), (w2

h, w
2
SP ), . . . , (wm

h , w
m
SP )

}
, wi

h ≥ 0,
wi

SP ≥ 0, i = 1, 2, . . . ,m.

2. Solve problem (3.3) using weights in sw, with Gurobi or Algorithm 2, and obtain
corresponding solutions z∗1 , z∗2 , . . . ,z∗m.

There are several ways to choose different weights to compute (weak) Pareto
optimal solutions. One approach is to have that wh, wSP ∈ [0, 1], wh+wSP = 1, and
solve (3.3) for a uniformly distribution of the weights, e.g., wh = 0.1, 0.2, . . . , 0.9.
This has shown to be a good strategy in this thesis, which can be seen in Section
6.1.3.
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Implementation

5.1 Software
Our algorithms have been implemented in C++, mainly because the software IPS has
an interface to C++. Industrial Path Solutions, or IPS, is a software tool developed
by FCC. The instances are created in IPS.

Gurobi has been used to solve the MILP models (3.3) and (3.9), for small in-
stances. Gurobi is a commercial optimization solver that handles, for example,
MILP problems [24]. The Gurobi solver is also used in our C++ implementation.

5.2 Parameter settings
A not to extensive parameter settings investigation has been made for Algorithm
2. Motivation of some parameter settings are made in Section 6, and some settings
have been directly taken from the literature. If nothing else is mentioned, the tests
were made with the following settings for Algorithm 2:

• wh + wSP = 1, and generally wh = wSP = 0.5,
• λ0

ik = nmin, i ∈ V, k ∈ K,
• δ0 = 2,
• δmin = 10−5,
• ε = 3,
• p = 50,
• κ = 0.995,
• β = 0.75, seen in (2.8),
• η = 1.5, seen in (2.8),
• tmax = 5000,
• theur = 800,
• tfix = 1000,
• b = d|V |/(3tmax)e,
• ṽ = 83, seen in Algorithm 5.

Also, if nothing else is mentioned, the node costs are set according to Figure
3.4(a), with nmin according to (3.2).
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6
Tests and results

In this section different instances, or test cases, are presented. In Section 6.2 the
results from solving an industrial test case is shown, where the essential point is
to investigate if a satisfactory harness routing is obtained, but also to observe the
computation time. We start with two simple test cases in Section 6.1 to investigate
properties of the algorithm and the model, such as time complexity, how close we
get to optimal solutions, and the appearance of the Pareto front.

When the gap is measured in percentage, it is calculated as in Algorithm 2, i.e.,
100 · (upper bound)−(lower bound)

lower bound .
The tests were run using a i7-6700K processor at 4.00GHz with 4 cores.

6.1 Test cases
In Figure 6.1, we can see the two test cases used in this section. The case in Figure
6.1(a) is referred to as test case 1, and the case in 6.1(c) is referred to as test case 2.
They have different numbers of cables, the start and end nodes are located differently,
and they are not used to represent any realistic routing scenario. These test cases
have feasible solutions for relative small dimensions, or grid sizes, compared to the
industrial case studied in Section 6.2. This means that these instances can be solved
to optimality with Gurobi, which is good for investigations.
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6. Tests and results

Test case 1
|K| = 5

(a) (b)

Test case 2
|K| = 8

(c) (d)

Figure 6.1: Two different test cases in (a) and (c), and their corresponding shortest
path solutions (i.e., for wh = 0) in (b) and (d), respectively. There is an obstacle in
these instances in the form of three circles. The start/end node pairs to be connected
have distinct colors.

6.1.1 Time complexity
Three factors that significantly affect the time complexity is the grid size (number
of nodes), the number of cables, and the values of the objective weights. We can see
the computation time plotted against increasing grid size in Figure 6.2, where the
problem (3.3) is solved with Gurobi and Algorithm 2, and the LP-relaxed version
with Gurobi. Solving the problem (3.3) with Gurobi seems to have an exponential
trend, and solving it with Algorithm 2 looks more like a polynomial trend. The same
thing can be said about the time complexity for an increasing number of cables; see
Figure 6.3.

The more objective fh is weighted, or preferred, the longer it takes to solve
problem (3.3), and this applies for both solving the problem with Gurobi and with
Algorithm 2. In figure 6.4, we can see the execution time for Algorithm 2 for test
case 1 and 2, with increasing value of wh.
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Figure 6.2: Test case 2. The plots show the time for solving (3.3), and its LP-
relaxed version, with Gurobi, compared with the computation time when using
Algorithm 2, for increasing grid size. The horizontal axis shows the number of grid
points in one direction (the actual grid size is the cube of that value).
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Figure 6.3: Modified version of test case 2 with more cables, |V | = 103. The
figure shows the computation time and the log of the time for solving problem (3.3),
plotted against the number of cables.

6.1.2 Convergence
In this section we investigate the convergence of the subgradient algorithm, the
resulting gap for different test cases with Algorithm 2, and how close we get to
optimal solutions with Algorithm 2.

Figure 6.5(a) shows the relative gap when applying the subgradient method (Al-
gorithm 1) for test case 1 and 2. Figure 6.5(b) shows the time versus the number of
iterations. This plot motivates the choice of having the maximum number of itera-
tions set to 5000, since at that point the subgradient method improves in a slower
rate, and it is not desirable that the algorithm runs more than around 200 − 300
seconds. We can also observe in Figure 6.5 that the gap is bigger, and that the
solution takes a bit longer time for larger values of wh.

In Table 6.1, we can see the values of the resulting gap when applying Algorithm
2 on test case 1 and 2. The resulting gap depends on the instance and settings, e.g.,
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Figure 6.4: Algorithm 2 applied on test case 1 and 2 for wh = 0.1, 0.2, . . . , 0.9,
wSP = 1− wh. |V | = 303.
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Figure 6.5: The plot shows four tests; two different values of wh for solving test
case 1 and 2 with the subgradient method, i.e., Algorithm 1. (a) shows the relative
gap, plotted against the number of iterations. (b) shows the computing time plotted
against the number of iterations. |V | = 303, κ = 0.999, tmax = 10000.

the value of the objective weights. By comparing Figure 6.5(a) and Table 6.1, we
can see the impact of adding heuristics to the subgradient algorithm, for example;
when we are only performing subgradient iterations, test case 1 and 2 with wh = 0.9,
reaches 50 − 60% after 5000 iterations, but with Algorithm 2, we reach 21.7% and
14.5% for test case 1 and 2, respectively.

By observing the gap, it is not possible to see how close the upper bound is to the
optimal objective value. A comparison of the resulting upper and lower bounds, the
optimal value, and the optimal LP-relaxed value, can be seen in Figure 6.6. Here we
can see that Algorithm 2 actually reaches, or is very close, to the optimal objective
value, for different grid sizes. For the observed test cases, the main contributing
factor to the size of the gap is the lower bound, which can in theory reach the LP-
relaxed optimal objective value. In some cases there is a small integrality gap, as
in Figure 6.6, and in such cases it is possible to reach small gaps, which occurs in
Table 6.1.
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wh : 0.2 0.5 0.9
Gap [%] for test case 1 0.065 6.15 20.8
Gap [%] for test case 2 3.5 · 10−5 0.56 24.1

Table 6.1: The table shows the resulting relative gap, for different tests. |V | = 303,
wSP = 1− wh, ε = 0.
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Figure 6.6: Test case 1. The optimal objective value, the optimal LP-relaxed
objective value and the upper/lower bound from Algorithm 2, plotted for increasing
grid size. The upper bound coincides with the optimal objective value for several
grid sizes.

6.1.3 Pareto front
In Figure 6.7, the Pareto front was computed for test case 1 and 2 with Algorithm
6, using Gurobi. Problem (3.3) was also solved with Gurobi, with weights wh =
0.1, 0.2, . . . , 0.9, wSP = 1 − wh, and the corresponding resulting Pareto optimal
solutions with these weights are also shown in the figure. Sometimes we end up in
the same solution with different weights, the plot shows the lowest value of wh, if
several weights correspond to the same point.

The ideal objective point corresponds to a non-existent feasible solution, where
both objectives has their respective minimum values. It might be interesting to see
which solutions that are close to the ideal objective point in Euclidean distance, to
see if these solutions are "better", or more preferred from a subjective point of view.

Figures 6.8 and 6.9 show some solutions corresponding to the Pareto optimal
solutions seen in Figure 6.7. These test cases do not represent any "real" example,
and there are no concrete preference of how the harness routing should look like,
but it can still be interesting to see how the Pareto optimal solutions differ in these
cases.

We can also see that we get points on non-convex parts on the Pareto front, and
these points can not be captured with the weighted sum method.
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Figure 6.7: Pareto front computed with Algorithm 6, for test cases 1 and 2. The
plots show all efficient and weakly efficient solutions. The green point is the one
closest to the ideal point. The arrows show which point we end up in with weights
(wh, wSP ).
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wh = 0.1

(a)

wh = 0.5

(b)

wh = 0.7

(c)

wh = 0.9

(d)

Figure 6.8: Pareto optimal solutions, corresponding to points on the Pareto front
in figure 6.7(a). (d) corresponds to the Pareto point furthest to the left.

wh = 0.1

(a)

wh = 0.2

(b)

wh = 0.5

(c)

wh = 0.9

(d)

Figure 6.9: Pareto optimal solutions, corresponding to points on the Pareto front
in Figure 6.7(b).
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6.2 Solving an industrial test case
The industrial test case in this section has been manually routed before. We can
see how the manually routed solution looks like in Figure 6.10.

Figure 6.10: A manually routed industrial scene.

First, half of the scene is considered, where six start nodes has been chosen and
joins the same end node, according to Figure 6.11.

(a) (b)

Figure 6.11: The first part of the industrial case to be routed. Six start nodes are
chosen, illustrated with distinct colors, with a common white end node. (b) shows
the shortest paths for the cables. Here, |V | = 403.

6.2.1 Choosing weights for the objective functions
Figure 6.12 shows harness routings for two different objective weight settings. When
comparing with the manually routing in Figure 6.10, the resulting solution with
weights wh = wSP = 0.5 in Figure 6.12(b) is more similar. It looks like fh is
weighted too much in Figure 6.12(a).

The solutions also depend on the grid size, i.e., the number of nodes. We do the
following observations: If |V | is too small, the problem is infeasible, and for larger
grid sizes, it is possible to find paths through spaces with lower clearances. The
latter is exemplified when we compare Figure 6.12(b) and Figure 6.13(a). When
the number of nodes is increased from 303 to 403, the significant change is that the
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cable corresponding to the yellow start node chooses a shorter path, going through
a tighter space.

|V | = 303, wh = 0.8
(a)

|V | = 303, wh = 0.5
(b)

Figure 6.12: Harness routing solutions for different objective weights.

6.2.2 Choosing node costs
Figure 6.13 shows an example on how the node costs affects the harness routing.
The node costs depends on the clearances. In Figure 6.13(a), the node costs are
defined as in Figure 3.4(a), i.e., nodes very close to obstacles are equal to infinity
and the rest are set to nmin. Figure 6.13(b) has node costs according to Figure
3.4(b), where nodes close to obstacles (and satisfies minimum clearance) are cheap,
and nodes with larger clearances increase in cost. As expected, we can observe that
the routing follows paths closer to the obstacles in the latter case.

The harness routing in Figure 6.13(b) is the most similar routing as compared to
the manually routed harness. It took 158.5 seconds and 1144 subgradient iterations
for the test in Figure 6.13(b), and resulted in a gap of 1.52%. The rest of the instance
is routed in Figure 6.14, with the same settings as in Figure 6.13(b).

|V | = 403, wh = 0.5
(a)

|V | = 403, wh = 0.5
(b)

Figure 6.13: Results using different node costs.
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(a) (b)

Figure 6.14: Continued routing from the scene in figure 6.13(b), for |V | =
403, wh = 0.5.
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7
Conclusion

A model of the CHRP has been formulated and a solution methodology has been
proposed and implemented. The methodology consists of a Lagrangian relaxation
of the CHRP model (3.3), and a subgradient optimization procedure for solving
the Lagrangian dual problem and iterating towards a solution of the original prob-
lem. Ergodic primal sequences are utilized in this iterative process for fixing binary
node variables. Two conflicting objectives have been composed into a weighted sum
in the model. The objectives have been to minimize the length of the routes for
each cable, and to minimize the usage of space. The harness routings are collision
free, satisfies minimum clearances, and preferable zones to route in can be adjusted
through settings of the node costs. The Pareto front has been computed for smaller
instances with the ε-constraint method using Gurobi as a solver where the shape of
the Pareto front has been investigated and some representative solutions from this
set have been visualized. We can see that the Pareto front has non-convex parts,
and solutions in these parts can not be found with the weighted sum method.

The results looks promising if the goal is to find a desired harness routing with
respect to the mentioned factors and the approach in this thesis for solving the
CHRP should be further investigated. The resulting solution, or harness layout, for
the industrial test case looks good. However, to examine how satisfactory it is, it is
necessary to have an examination of the routing from someone who has better insight
of what is good or bad with the solution.x This result does not guarantee that the
routing fulfills all necessary requirements. The procedure in this thesis is a first step
towards automating the harness routing. Then modifications and simulations will
continue such that bend radii meet the requirements, and the effect of deformation
due to gravity is implemented, etc.

The resulting harness layout is not the only thing that is important with this
approach, the computation time must also be acceptable. Our results show that it
took 158 seconds for the industrial test case in Figure 6.13(b) with six cables and
|V | = 403, and it took around eright minutes in Figure 6.2(b) with eight cables and
|V | = 35 for test case 2. The algorithm should be able to handle these grid sizes
and number of cables, but as it is for now, the computation time may be too long
to be acceptable. There are several actions that can be made in regard to the time
complexity:

• the code itself needs to be more thoroughly optimized;
• the grid size is unnecessarily large in some of the directions, and has an un-

necessary high resolution in some zones, so the number of variables could be
reduced significantly;

• further parameter tuning and algorithm improvements might be done such
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that the convergence is faster and not so many iterations be needed;
• investigate alternative large-scale optimization methods that might be more

efficient.

7.1 Future work
It has already been mentioned above what can be further investigated regarding the
reduction of the time complexity. One thing that was mentioned was to test other
large-scale methods and see how they perform compared to the approach in this
thesis. Alternative methods could for example be decomposition techniques, such
as Benders decomposition or column generation. Regarding faster convergence to
an optimal solution, the st-rule mentioned in Section 2.4 could be implemented. We
could also use the fact that we can get several optimal solutions to the Lagrangian
subproblem (3.6a), which can be chosen between when computing the subgradients.
One approach to find an ascent direction from the given subgradients is to follow
the procedure described in [25, p. 288], where an ascent direction is found by solving
an LP problem.

The implemented algorithm should be adjusted such that it can handle rectangu-
lar grids. This is expected to decrease the computation time since we would reduce
the number of variables. It might also be of interest to have a dynamic grid where
the grid points are more dense in zones where there are more obstacles.

It needs to be further investigated how satisfactory the resulting harness layouts
are. This requires expertise knowledge about harness routings. Other questions that
should be further investigated concern how to use the resulting solutions to satisfy
more requirements on the routings, and what needs to be done to get a completely
finished harness design. This includes, for example, requirements on the bend radii
of the cables, and where to locate cable fasteners.

It can be desirable for the user to get more than one routing solution, so that a
designer can make a subjective choice between different Pareto optimal solutions.
A more effective solution methodology to generate several solutions with different
objective weights should be investigated. A suggestion is to first compute a solution
with some weights, and then use information from that solution to compute a new
one with different weights. This could decrease the computation time for getting
the second solution.
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