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Modelling, design and optimisation of connected array antennas
ERIK PAYERL
Department of Signals and systems
Chalmers University of Technology

Abstract
Wideband and widescan array antennas are attractive since they offer multi-function
capabilities with a single aperture. In particular, connected array antennas are
interesting as they provide broad-band operation in combination with low cross-
polarisation. In this thesis, we present a electrically thin connected slot array with
dielectric superstrates. The antenna is analysed with the finite element method,
where the computational domain is the unit cell of an infinite array antenna. An
optimization of the connected array design is performed based on a finite-difference
gradient of an objective function with respect to the design parameters. The pro-
posed design achieves more than one octave bandwidth (6.5 − 14.5 GHz) within a
scanning range of ±60◦ in all azimuth planes.
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1
Introduction

1.1 Wideband and widescan array antennas

Array antennas are receiving great attention, both for military and commercial ap-
plications. The possibility of the array antenna to steer the beam electronically is
one of the key points to tackle the exponential increase of data traffic in mobile
communication system [1]. Wideband and widescan array antennas are further at-
tractive since they offer multi-function capabilities with a single antenna aperture.
They can simultaneously accommodate multiple frequency bands, beams and polar-
izations in order to consolidate multiple antenna functions into a antenna. This can
be especially useful in situations where space and weight are major constraints. The
ideal antenna would be one that is thin and easy to manufacture with wideband,
widescan and good polarization purity properties.

Common antenna designs for wideband and widescanning arrays are stacked
patches, tapered slot (Vivaldi) antennas [2] and connected arrays. In particular,
connected array antennas are interesting as they provide broad-band operation in
combination with low cross-polarisation. A connected array antenna consists of
antenna elements (typically dipoles or slots) that are strongly coupled to each other,
which can be realised by electrical connection. Thus, a connected array antenna can
be considered to be a single antenna that is periodically fed, which allows for currents
that are nearly constant with frequency. (In contrast, a conventional array antenna
is composed of resonant antenna elements that are separated from each other, which
limits the frequency range of operation.) The radiating currents mainly flow along
the aperture plane with no substantial vertical component, which allow for good
polarization purity.

A backing reflector is necessary to ensure unidirectional radiation. However, this
degrades the bandwith of the antenna due to resonances and inductance introduced
by the ground plane. The inductive ground plane loading can be mitigated with
strong capacitive coupling between the elements such as the exhibited in a tightly
coupled dipole array. A planar dual-polarized antenna that utilises this concept is
presented in Refs. [3] [4] and it achieves a voltage standing wave ration (VSWR)
< 2.6 in the frequency range 3.53 − 21.2 GHz within a scanning range of ±45◦.
Another way to mitigate the performance degradation due to a backing reflector
is to introduce lossy materials to suppress resonances from the introduction of a
ground plane. An example of this is presented in Refs. [5] where connected slots
loaded with artificial dielectric superstrates demonstrate a performance of VSWR
< 2 for 6.5− 14.5 GHz within a scanning range of ±50◦ in all azimuth planes. Both
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1. Introduction

concepts of tightly coupled dipoles and dielectric superstrates has been combined
in Ref. [6] to achieve a dual-polarized antenna with VSWR less than 2 for the
frequency band 3.25− 18 GHz with scan angles up to 50◦ in all planes.

1.2 Purpose
The purpose of this thesis is to study a connected array antenna design with dielec-
tric superstrates, where its feeding structure is incorporated. The connected array
antenna should feature broad frequency-band operation and, simultaneously, allow
for large scanning angles.

1.3 Scope
• The antenna analysis is restricted to a unit cell, i.e. the antenna is be modelled

as an infinite array.

• The antenna is fed by a coaxial waveguide.

• The analysis is restricted to linear electromagnetic phenomena.

• The antenna is modelled from its port to its radiated wave.

• Only one antenna design is optimised.

1.4 Objective
The objective is to find a connected array antenna design with its feeding structure
such that it is possible to realise the antenna on layered substrates.

2



2
Antenna description

2.1 Planar rectangular array antennas
Consider a planar array antenna with M × N identical antenna elements. The
antenna elements are placed on a rectangular grid in the xy-plane with element
spacing Lx in the x-direction and Ly in the y-direction. The elements are translated
relative each other with the positions given by rmn = x̂mLx + ŷnLy with m =
1, . . . ,M and n = 1, . . . , N . Such an array antenna is shown in Figure 2.1.

m

n

Figure 2.1: A planar rectangular array antenna with M × N identical antenna
elements. The elements are translated with respect to each other.

2.2 Radiated electromagnetic field
One of the most important properties of planar array antennas is the capability
to change the form and direction of the radiating field by steering the phase and
amplitude on the ports of the antenna elements. At large enough distance r from
the antenna, in the so-called far-field region, the radiated electric field becomes
separable according to

E(r, θ, φ) = e−jkr

r
G(θ, φ) (2.1)

where G(θ, φ) is the complex radiation field function. For the planar rectangular
array antenna described in section 2.1, the radiation field of element (m,n) at point
r is

Emn(r, θ, φ) = e−jkr

r
G(θ, φ)ejkrmn·r̂ (2.2)

where G(θ, φ) is the radiation field function when referred to the phase reference
point rmn of the individual element. The factor ejkrmn·r̂ shifts the phase reference
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2. Antenna description

point to the origin of the coordinate system of the whole antenna. By superposition
of the field contributions from the individual elements, we get the radiation field
function for the array

GA(θ, φ) =
∑
mn

G(θ, φ)AmnejΦmnejkrmn·r̂ (2.3)

where Amn and Φmn are the amplitude and phase excitation of element (m,n). The
array radiation field function can be written as a product or the element radiation
field function and the array factor AF , according to

GA(θ, φ) = G(θ, φ)AF (θ, φ) (2.4)

where
AF (θ, φ) =

∑
mn

Amne
jΦmnejkrmn·r̂ (2.5)

To see how the array factor AF (θ, φ) varies with the scan angle (θ, φ), we can
write AF (θ, φ) in terms of the Fourier transform of the amplitude excitation, i.e.
as an infinite sum of so-called Floquet modes. To do this, we first need to write
amplitude excitation Amn as continuous and smooth distribution

A(r) = Amn for r = rmn (2.6)

Similarly we introduce a smooth and continuous phase excitation distribution Φ(x, y)
that we assume varies linearly as

Φ(x, y) = Φc − ks
xx− ks

yy (2.7)

where ks
x and ks

y are the propagation constants for the phase in the x- and y-
directions. Φc is a constant phase offset.

The array factor can now be written as a double integral by using the sampling
properties of the delta function

A(r) =
∫ ∞
−∞

∫ ∞
−∞

{ ∞∑
n=−∞

δ(y − nLy)
∞∑

m=−∞
δ(x−mLx)

}
A(x, y)ejΦ(x,y)ejkr·r̂ dx dy

(2.8)
where r = xx̂ + yŷ. It is posible to extend the element by element sums to infinity
as A(x, y) is zero where n < 1, n > N , m < 1 and m > M . The delta series in
both the x- and y-directions are periodic with respect to Lx and Ly and can thus
be expanded in Fourier series. This allows us to finally write the array factor as an
infinite sum of the so-called Floquet modes

AF (θ, φ) = ejΦc
1

LxLy

∞∑
p=−∞

∞∑
q=−∞

Ã(kx − kxp, ky − kyq) (2.9)

where
Ã(kx, ky) =

∫ ∞
−∞

∫ ∞
−∞

A(x, y)ejkxxejkyy dx dy (2.10)
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2. Antenna description

is the Fouries transform of the amplitude excitation and

kxp = ks
x + 2πp

Lx
(2.11)

kyq = ks
x + 2πq

Ly
(2.12)

are the phase difference between neighbouring elements.
Each term in the sum (2.9) has a maximum at (kx = kxp, ky = kyq). The first

maximum at p = q = 0 corresponds to the main radiating antenna lobe and the
other maxima are grating lobes. If the array spacing Lx and Ly are smaller than
λ0/2 no grating lobes occur. The array factor for the main lobe has its maximum
for

kx0 = ks
x, ky0 = ks

y (2.13)
It is thus possible to steer the main lobe at a scan angle (θs, φs) through the phase
propagation constant. The wave vector of the main lobe is

k = x̂ks
x + ŷks

y + ẑkz (2.14)

with

ks
x = k0 cos(φs) sin(θs) (2.15)
ks
y = k0 sin(φs) sin(θs) (2.16)
kz = k0 cos(θs) (2.17)

and k0 = ω/c0.

2.3 Active reflection coefficient
Impedance mismatch between the feed line and the antenna leads to unwanted
reflections and power loss. The active antenna element impedance (as seen by the
feed line) does not only depend on the element itself, but also on the mutual coupling
between the elements. The reflected wave amplitude on the port of array element i
can be expressed as

V −i = V +
i · Sii +

∑
j 6=i

V +
j · Sij (2.18)

where V +
j is the excitation of array element j and Sij are the scattering parameters.

To simplify the notation we use a linear index i ↔ (m,n) for the array elements
where i = N(n− 1) +m. The active reflection coefficient for element i is given by

Γi = V −i
V +
i

= Sii +
∑
j 6=i

V +
j

V +
i

Sij (2.19)

Another often used measue of the impedance mismatch is the so called voltage
standing wave ration defined as

V SWR = 1 + |Γ |
1− |Γ | (2.20)
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2. Antenna description

2.4 Co- and cross-polarization
The radiating far-field has two orthogonal components along θ and φ. The co-
polarisation vector is defined as the desired polarisation of the electric field. The
cross-polarisation vector represent undesired polarisation and is orthogonal to the
co-polarisation vector. For an antenna with a transmitted field polarized in the ŷ-
direction at θ = 0, the co- and cross-polarizations vectors are according to the third
definition from Ludvig [7] defined as

îco = sin(φ)îθ + cos(φ)îφ (2.21)
îcross = cos(φ)îθ − sin(φ)îφ (2.22)

with

îθ = x̂ cos(θ) cos(φ) + ŷ cos(θ) sin(φ)− ẑ sin(θ) (2.23)
îφ = −x̂ sin(φ) + ŷ cos(φ) (2.24)

The co-polarized and cross-polarized components of an electric field E are thus
defined as

Eco = E · îco (2.25)
Ecross = E · îcross (2.26)

2.5 Material characterization of antennas

2.5.1 Metal
In a perfect electric conductor, the field penetration is zero for all frequencies. Per-
fect electric conductors can thus entirely be excluded from the calculation domain
when boundary value problem of the electric fields is solved. While no truly perfect
conductors exists in nature, good conductors can still be excluded from the com-
putational domain if appropriate boundary conditions are applied. We derive such
boundary conditions by assuming the following:

1. The loss tangent of the material is high (i.e. a high loss dialectic or a conduc-
tor). As a consequence the wave length and skin depth inside the material is
small.

2. The radii of curvature must be large compared to the skin depth. The fields
vary thus only slowly from point to point on the surface.

3. There are no sources within the medium.

Under these conditions, as a first order approximation, the fields inside the medium
relate to each other as in any plane wave and both the E and H field are parallel
to the surface of the material [8]. From continuity at a planar boundary we get

n̂×E = −η(n̂× (n̂×H)) (2.27)
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2. Antenna description

where η is the surface impedance. This can be taken as a boundary condition and is
often called impedance boundary condition or the Leontovich condition [9]. Ohmic
losses due to the finite conductivity of metals will be denoted Pm.

2.5.2 Dielectric medium
Losses in dielectric media are accounted for by a complex relative permittivity

ε = ε′ − jε′′ (2.28)

The imaginary part can also be expressed with

ε = ε′(1− j tan δ) (2.29)

where tan δ = ε′′/ε′ is called dissipation factor or loss tangent. The power dissipated
due to dielectric losses will from here on be denoted Pd and calculated as

Pd =
∫
V
Re{E · J} (2.30)

2.5.3 Artificial dielectrics
Layers of dielectric media can support surface waves and a significant amount of
power can be lost in such waves. This loss may be reduced with artificial dielectric
layers (ADLs) [10]. An ADL consists of metallic structures embedded in a host mate-
rial. If these structures and the spacing between such structures are small compared
to the wavelength within the resulting dielectric media, the ADL can be described
as an equivalent anisotropic dielectric medium with an effective permittivity εeff .
With an ADL consisting of horizontally placed metal patches, the effective permit-
tivity largely increases for a field with normal incidence to the patches. When the
electric field is orthogonal to the metal patches, the equivalent dielectric approaches
the dielectric constant of the host material. Lower εeff for high angles of incidence
implies much lower surface wave excitation.

2.6 Connected slot array antenna design
In this section, we present the nominal antenna design studied in this thesis. The
antenna is a single-polarized connected slot array antenna loaded with three di-
electric layers. The antenna is placed above a backing reflector (ground plane) to
ensure unidirectional radiation. The purpose of the dielectric layers is to reduce
the performance degradation due to the presence of the backing reflector. Figure
2.2 shows the different layers of the antenna with the respective geometrical pa-
rameters. The dimension of the dielectric slabs are listed in Table 2.1 and other
dimensions in Table 2.2. Figure 2.3 shows a 3D view of the entire unit cell. Two
dielectric substrates occupy the space between the backing reflector and the array
plane, sub1 of relative permittivity εr = 1.4 and sub2 closest to the array plane of
relative permittivity εr = 2.2. The loss tangent in both the dielectric substrates and
the dielectric superstrates is set to tan δ = 0.02.

7



2. Antenna description

hslab3

hgap3

hslab2

hgap2

hslab1

hgap1

hsub1

harray

hsub2

Backing reflector

Dielectric substrate 1

Array plane

Dielectric slab 1

Dielectric slab 2

Dielectric slab 3

Dielectric substrate 2

Figure 2.2: A schematic view of the different layers and distance in the antenna.

Table 2.1: Dimensions of the three dielectric slabs.

Parameter Unit Slab1 Slab2 Slab3
hslab (mm) 0.635 1.998 1.998
hgap (mm) 0.254 0.5 0.33
εr - 16.5 5.5 1.72

8



2. Antenna description

Figure 2.3: 3D view of the antenna unit cell.

The feeding structure is shown in Figure 2.4. A coaxial waveguide port is located
under the backing reflector. This connects to a microstrip line feeding the slot
elements through a coaxial-to-microstrip transition. The microstrip feed line is
terminated with a shorting via. A conducting wall is included between the slots to
suppress common-mode current excitation.

Table 2.2: Dimensions of the array unit cell in Figure 2.2

Lx = 9.31 mm Width of the unit cell, Lx = Ly
Lz = 39.97 mm Height of the unit cell

harray = 0.2 mm Height of array plane
hsub1 = 1.546 mm Height of substrate one
hsub2 = 0.254 mm Height of substrate two
ws = 0.7 mm Width of slot
lfeed = 3.58 mm Length of microstrip feed line

9



2. Antenna description

(a)

(b)

Figure 2.4: The metal parts of the antenna consisting of ground plane, coaxial
port and feeding structure. The array plane is hidden in (a) but included in (b).

10



3
Computational method

3.1 The antenna boundary value problem
The electromagnetic environment for an interior element of a large finite array, can
be well approximated by an infinite array antenna. To compute the electromagnetic
field for the interior elements of a large finite array, it is thus enough to consider a
single unit cell with periodic boundary conditions. Such a unit cell with a coaxial
feed is shown in Figure 3.1.

Lx

Sr

y

Ly

z

x

Sp

Lz

Figure 3.1: A unit cell of an infinite group antenna with coaxial feed. The surface
of the coaxial port is denoted Sp. The surface truncating the computational domain
is denoted Sr.

The electric field of the infinite array can be calculated by solving the correspond-
ing frequency-domain boundary value problem given by equation (3.5) to (3.10). Let
V denote the volume of the unit cell in Figure 3.1 and Vm the volume of the metal
parts of the antenna. To simplify the calculations, the wave equation (3.5) is solved
only in the non-metal domains V \Vm. To model the metal, an impedance boundary
condition (3.6) is used on the surface of the metal domains Sm, which accounts for
ohmic losses. Losses in non-metal domains are accounted for by the complex per-
mittivity εc. The unit cell is repeated to infinity in the x- and y-direction through
the periodic Flouqet boundary conditions (3.7) and (3.8), where the direction of the

11



3. Computational method

main lobe is specified by

kx = k0 cos(φs) sin(θs) (3.1)
ky = k0 sin(φs) sin(θs) (3.2)
kz = k0 cos(θs) (3.3)

(3.4)

and k0 = ω/c0. On the bottom of the unit cell, we find the coaxial port and a
metal ground plane. On the coaxial port surface Sp, we use the Robbin boundary
condition (3.9). The boundary condition (3.10) applied on the top surface Sr of the
unit cell will be derived in section 3.2.1.

∇× (∇×E)− ω2µ0εcE = 0 in V \ Vm (3.5)√
µ0/εcn̂×H + n̂× (n̂×E) = 0 on Sm (3.6)

E(0, y, z)e−jkxLx = E(Lx, y, z) (3.7)
E(x, 0, z)e−jkyLy = E(x, Ly, z) (3.8)

n̂× (∇×E) + jkcn̂× (n̂×E) = Zjkcn̂× (n̂×Ei) on Sp (3.9)
n̂× (∇×E) + jk0n̂× (k̂00 ×E) = 0 on Sr (3.10)

3.2 Finite element method
The electromagnetic field E in Eq. (3.5) – (3.10) can be computed numerically by
the finite element method (FEM). The general recipe to solve a differential equation
L[E] = s by FEM is to divide the computational domain into cells, which is referred
to as a mesh. We approximate the solution by expanding the unknown function E in
a finite number of basis functions. The so-called edge elements Nj(r) are very well-
suited for approximating electromagnetic fields [11]. The electric field is expressed
as

E(r) =
Nedge∑
j=1

EjN j(r) (3.11)

where Nedge is the total number of edges, Ej is the tangential component of E along
the j-th edge and N j is the vector basis function corresponding to the j-th edge.
The edge elements N j are so-called curl-conforming basis functions.

We formulate the residual r = L[E] − s and require it to be zero in the weak
sense, i.e. we set the weighted average to zero according to

〈W i, r〉 =
∫
V

W i · r dV = 0, i = 1, 2, 3, . . . , n. (3.12)

Next, we chose weighting functions W i and solve for the unknowns Ej. Here, we
use Galerkin’s method and thus, the weighting functions are chosen from the set of
the basis funcion.

The boundary value problem specified by Eq. (3.5) – (3.10) is discretized and
solved by FEM by the means of the software COMSOL Multiphysics® [12]. The com-
putational mesh consists of tetrahedral elements and second order curl-conforming

12



3. Computational method

basis functions are used. A direct numerical solver is used to solve the FEM system
of equations.

3.2.1 Finite element mesh truncation
The infinite space above the antenna (z direction) needs to be truncated into a
finite computational domain. We accomplished this by introducing an artificial
boundary surface Sr. This artificial boundary should absorb as much as the radiated
field as possible to emulate the original free-space environment. There are several
approaches to reduce the reflections from such artificial surfaces such as the use of
fictional absorbing material layers and the use of surface integral functions [13]. We
will here use a mathematical absorbing boundary condition. To derive this boundary
condition, we decompose the electric field in plane waves:

E(r) =
∑
pq

EPW
pq e

−jkpq ·r (3.13)

kpq = k0k̂pq = x̂kxp + ŷkyq + ẑkz (3.14)

where
EPW
pq = ejkzz

LxLy

∫ Lx/2

x=−Lx/2

∫ Ly/2

y=−Ly/2
E(ξ, ζ, z)ej(kxpξ+kyqζ) dξ dζ (3.15)

This yields

n̂× (∇×E) = n̂×
(∑
pq

(−jkpq)×
(
EPW
pq e

−jkpq ·r
))

(3.16)

⇒ n̂× (∇×E) + jk0L(E) = 0 (3.17)

and

L(E) = n̂×
[∑
pq

k̂pq ×
(
ejkzz

LxLy

∫ Lx/2

x=−Lx/2

∫ Ly/2

y=−Ly/2
Eej(kxpξ+kyqζ) dξ dζ

)]
(3.18)

In the simple case where only the main lobe propagates, p = q = 0, this simplifies
to the radiating boundary condition given by Eq. (3.10).
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4
Results

4.1 Microstrip patch antenna array
In this section, we consider two different infinite equidistant planar arrays of rect-
angular microstrip patches:

PA. 1 The first problem is an array antenna consisting of 0.3λ0 × 0.3λ0 rectangular
patches with a period of 0.5λ0 both in the x and y-direction. Each patch is
located at a distance h = 0.02λ0 above the ground plane and the substrate
between the two has a relative permittivity of εr = 2.55. The antenna is fed
by a coaxial port placed 0.075λ0 from the center of the patch.

PA. 2 The second problem is an array antenna consisting of 0.3λ0×0.3λ0 rectangular
patches with a period of 0.5λ0 in the x- direction and 0.51λ0 in the y-direction.
Each patch is located at a distance h = 0.06λ0 above the ground plane and
the substrate has a relative permittivity of εr = 2.55. The antenna is fed
by a coaxial port placed 0.14λ0 from the center of the patch. The spacing
between the antenna elements are larger than λ0/2 in the y-direction. Thus,
it is possible for grating lobes to occur.

Both of these problems have previously been studied by Pozar and Schaubert [14]
with a method of moment (MoM) approach. Note that Pozar uses a different defi-
nition of the active reflection coefficient:

ΓPozar(θ, φ) = Zin(θ, φ)− Zin(0, 0)
Zin(θ, φ) + Z∗in(0, 0) (4.1)

4.1.1 Plane-wave representation
The element spacing in PA. 1 is small enough to prevent no grating lobes from
occurring. Thus, only the main antenna lobe is propagating and it can be represented
by a single plane wave in the far-field region.

The radiation boundary condition (3.10), applied to upper surface Sr of the
computational domain, is only valid for a single propagating plane wave. Therefore,
the truncating surface must be placed in the far-field region. It is thus of importance
to know for which height z above the antenna the electric field is well represented
by a single plane wave. To investigate this, we formulate the relative difference

δrel(z) =
[

1
LxLy

∫ Lx/2

x=−Lx/2

∫ Ly/2

y=−Ly/2

|EFE(x, y, z)−EPW(x, y, z)|2

|EPW(x, y, z)|2
dy dx

]1/2

(4.2)
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Figure 4.1: The relative difference between the finite element representation and
the plane wave representation of the electric field for some different scan angels,
as a function of the distance z above the patch: (a) θ = 22.5◦; (b) θ = 45◦; and
(c) θ = 67.5◦.

where EFE(x, y, z) is the finite element representation given by the COMSOL FEM
solver and EPW(x, y, z) is a single plane wave representation calculated from the
finite element solution at a large distance Lz = 8λ0 from the antenna:

EPW(x, y, z) = EPW
00

∣∣∣
z=Lz

e−j(k
s
xx+ks

yy+kzz) (4.3)

where EPW
00 is the plane wave decomposition defined in (3.15).

Figure 4.1a–4.1c show δrel for some different scan angles, where we note that
δrel is large for z < 0.4λ0 due to the decaying evanescent fields and that δrel does
not decrease further for z > 0.4λ. It is worth to notice that the relative error
has a periodic variation in z for large scan angles. The frequency of the oscillations
depends only on θ where as the amplitude depends on both scan angles θ and φ. The
periodicity is explained by reflections due to discretisation errors in the radiating
boundary condition (3.10).

The θ and φ dependence of δrel is further studied in Figure 4.2 at z = 0.43λ0.
We see that the relative difference δrel is less than 2 % for all angles φ when θ < 70◦,
and for scan-angels θ > 70◦, δrel rapidly increases.

Another way to investigate the necessary height of the unit cell is to perform
repeated calculation with different unit cell heights. In Figure 4.3, these results are
compared with known results for the same antenna array design studied by Pozar
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Figure 4.2: The relative difference δrel(z) at z = 0.43λ0 for all scan angles. The rel-
ative difference is less than 2 % for all angles φ when θ < 70◦. For angles θ larger than
70◦, the relative difference rapidly increases. φ = 0◦ ⇔ H-plane, φ = 90◦ ⇔ E-plane.
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Figure 4.3: E-plane, active reflection coefficient as calculated by Pozar [14] and
with COMSOL, FEM simulations for different height of the computational unit cell.

[14]. We see that a unit cell height of at least 1.2λ0 is required to get a good
correspondence for scan-angles θ ≤ 70◦.

4.1.2 Method validation
In order to test and validate the FEM as implemented and used in COMSOL,
we consider the two previously mentioned test problems PA. 1 and PA. 2 that
feature infinite planar arrays of rectangular microstrip patches. The active reflection
coefficient calculated from the COMSOL FEM simulation is compared to the MoM
results from Pozar [14].

In Figure 4.4, the comparison of the active reflection coefficient is shown for
PA. 1. There is good correspondence between the results for all scan angles.

Figure 4.5 shows the results for PA. 2. The active reflection coefficient from the
COMSOL FEM simulation has good agreement to the Mom results form Pozar [14]
up to θ = 70◦. There are large errors in the COMSOL simulation for larger scan
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Figure 4.4: A comparison of the E-plane, active reflection coefficient Γ as defined
in (4.1), for case PA. 1 without grating lobes.
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Figure 4.5: A comparison of the E-plane, active reflection coefficient Γ as defined
in (4.1), for case PA. 2. The non-unity reflection coefficient at θ = 90◦ is explained
by a grating lobe created by the 0.51λ0 unit cell spacing in the y-direction. The
COMSOL FEM simulation is not set up to handle grating lobes.

angles due to the presence of grating lobes, which the radiation boundary condition
(3.10) can’t handle.

4.1.3 Estimation of the numerical error

Numerical tools and simulations never give the exact answer. It is important to
estimate the error to ensure that its magnitude is acceptable. The accuracy of the
numerical solution depends on the resolution of the computational mesh. Especially
sharp corners with singular electromagnetic fields may be problematic and reduce
the accuracy of the solution. In our case, we have such singularities along the sharp
corners and edges of the microstrip patch. A simple method to estimate the error
due to the singular field, is to increasing the resolution of the computational mesh
near the these sharp edges and do a convergence test for the error contribution from
the singular field. The mesh further away from the patch is left unchanged.

To find out the approximate order of convergence we use the average cell height
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havg of the triangular elements along the side of the patch:

havg =
(

2hpatchlpatch

N

)1/2

(4.4)

where hpatch and lpatch is the height and with of the patch and N is the total number
of cells along a side of the patch.

To estimate the error and the order of convergence, the simulation results Inum
are fitted to

Inum = I0 + Iαh
α
avg (4.5)

where I0 is the extrapolated value for zero cell size along the sides of the patch and
α is the estimated order of convergence.

For the active reflection coefficient (Inum = Γ ) this method yields an order of
convergence α ≈ 2.9 for all scan angles φ and θ ≤ 70◦. Figure 4.6 shows |Γnum| and
the extrapolation to zero cell size |Γ0| for the case E-plane and θ = 45◦.

We can now make an estimate of the relative error

erel =
∣∣∣∣Γnum − Γ0

Γ0

∣∣∣∣ (4.6)

As shown in Figure 4.7, approximate three elements along the height of the patch
are needed to get the estimated relative error below 5 %. This mesh resolution near
edges and sharp corners are used for the array antenna studied in the next section,
the connected slot array antenna.
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|
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Figure 4.6: Active reflection coefficient Γ with extrapolated values as a function
of the ratio between the average mesh element side length havg and the length of the
patch. Order of convergence is estimated to 2.9. Scan angle θ = 45◦ in the E-plane.
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Figure 4.7: An estimate of the relative error erel for Γ as a function of scan angle
in the H-plane for the three different computational meshes with approximate 1, 2
and 3 elements respectively along the height of the microstrip patch.

4.2 Connected slot array antenna

In this section we present results from FEM simulations of the nominal connected
slot array (CSA) antenna design described in section 2.6. These results are com-
pared with other similar results in the open literature. Finally, we present some
improvements and optimization of the nominal design.

4.2.1 Active reflection coefficient

The active reflection coefficient of the nominal CSA antenna is shown in Figure 4.8
for the E-plane and H-plane. The antenna has an active reflection coefficient that is
less than −8 dB in the frequency range 5 GHz to 12 GHz for θ < 60◦ in the E-plane
and θ < 70◦ in the H-plane. The reflection increases rapidly for frequencies below
5 GHz and for higher angles of θ. A scan blindness due to surface waves occur for
higher frequencies and scan angles, seen as a dark ridge in the upper right part in
Figure 4.8a and 4.8b.

4.2.2 Radiated fields

The radiated power of the co-polarized field is calculated from the far-field plane
wave representation

Eco = EPW
00 · îco (4.7)

Pco = LxLy
2η |Eco|2 (4.8)

where the plane wave amplitude EPW
00 is calculated at z = Lz. The efficiency ratio

Pco/Pi where Pi is the incident power on the antenna port, is shown in Figure 4.9.
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(a) (b)

Figure 4.8: The active reflection coefficient |Γ | for the nominal connected slot
antenna as a function of frequency and scan angle: (a) E-plane; and (b) H-plane.

(a) (b)

Figure 4.9: The outgoing co-polarized radiated power from the antenna normalised
with incident power, i.e. the power efficiency of the antenna: (a) E-plane; and (b)
H-plane.
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4.2.3 Phase and group propagation
Ideally, both the phase and group delays are constant, i.e. a linear phase shift.
Otherwise, a signal that consists of multiple frequency components suffers from
distortion. The group and phase time delay of the antenna system can be calculated
from the phase shift ϕ as

τg(ω) = −dϕ(ω)
dω

(4.9)

τp(ω) = −ϕ(ω)
ω

(4.10)

The phase shift of the antenna, from the port to the end of the unit cell, is shown
in Figure 4.10 for some arbitrary scan angles. With the exception of the scan
blindness occurring at higher frequencies, the phase shift is nearly linear. The
resulting group delay and phase delay is shown in Figure 4.11 and 4.12. Apart from
the scan blindness region, both the group and phase delay is nearly constant at
τg ≈ τp ≈ 0.1 ns

Frequency (GHz)

0 5 10 15

ϕ

-10

-8

-6

-4

-2

0

Broadside

H-plane, θ = 20◦

E-plane, θ = 45◦

D-plane, θ = 70◦

Figure 4.10: The phase shift ϕ, from the coaxial port to the end of the unit cell,
for some different scan angles. The phase is nearly linear everywhere except at the
scan blindness occurring around 13 – 15 GHz.

4.2.4 Ohmic, dielectric & polarization losses
Previously, we presented losses due to reflection, i.e. impedance mismatch. Further
losses in the antenna are losses due to (i) ohmic resistance associated with metal
parts, (ii) dissipation in the dielectric layers and (iii) power radiated in unwanted
cross-polarization. The simulation predict negligible ohmic losses. They are less
than 3 % of the net power Pp through the port or less than 1.5 % of the incident
power Pi.

Figure 4.13 shows the losses due to dissipation in the dielectric layers. These
losses are much larger than the ohmic losses and are of the same magnitude as the
reflection losses. The dielectric losses increase with higher frequency as expected.
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(a) (b)

Figure 4.11: The group delay τg(ω) = −dϕ/dω is the time delay of the amplitude
envelope. The group delay is more or less constant at ≈ 0.1 ns apart from the scan
blindness region. (a) E-plane; and (b) H-plane.

(a) (b)

Figure 4.12: The phase delay τp(ω) = −ϕ/ω. (a) E-plane; and (b) H-plane.
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(a) (b)

Figure 4.13: The total dielectric losses Pd of the nominal antenna design, as a
function of frequency and scan angle. The losses are normalised with the power
entering the antenna port Pp = Pi − Pr: (a) E-plane; and (b) H-plane.

The cross-polarisation (X-pol) level can be quantified by the relative cross-
polarization level

(XP )dB = 10 log
∣∣∣∣Ecross

Eco

∣∣∣∣2 (4.11)

The X-pol level for a linearly polarized antenna is ideally zero in the H- and E-
planes and nonzero in the D-plane. For the nominal antenna design, the X-pol
levels are indeed very small for the E-plane, less than −80 dB. Figure 4.14 shows
that the X-pol level is somewhat higher in the H-plane and the highest values of
−5 dB are found in the D-plane. This corresponds to a worst case with 25 % of the
total outgoing energy lost in the cross-polarisation which is equivalent to 16 % of
the incident power Pi.

4.2.5 Comparison with similar antennas
An antenna design very similar to the one CSA antenna presented here have been
studied in [5]. The main difference of this antenna is the use of artificial dielectric
layers (ADLs, see section 2.5.3) for the dielectric superstrates. The ADLs consists
of arrays of electrically small metallic patches included in a dielectric host medium.
The analysis method also differ as a spectral method using the analytical spectral
solutions of connected arrays and ADLs are used instead of FEM.

Figure 4.15 shows the voltage standing wave ratio (VSWR) of both antennas
as well as a version of the nominal antenna with anisotropic dielectric layer. The
performance of the ADL antenna and the nominal antenna are similar, but the
VSWR of the nominal antenna is downshifted about 1 Ghz. The largest difference
is the scan blindness the nominal antenna exhibits. A possible explanation for
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(a) (b)

Figure 4.14: Relative cross-polarization level, XP in dB: (a) D-plane; and (b)
H-plane.

the scan blindness is surface waves in the dielectric layers. ADLs are supposed to
reduce such surface waves. As the isotropic dielectric slabs of the nominal antenna
are replaced by anisotropic dielectrics in order to better resemble ADLs, we find
that the antenna performance is somewhat improved but it does not mitigate the
scan blindness problem.

4.2.6 Design improvements and optimization
To get a single valued figure of merit for the antenna performance, we formulate the
following objective function

g(G,p) =
[

1
3

3∑
i=1

1
θ2 − θ1

∫ θ2

θ1

1
f2 − f1

∫ f2

f1
|G(f, θ, φi,p)|2 df dθ

]1/2

(4.12)

where G is an arbitrary antenna parameter that depends on the design parameter
vector p. The azimuth angle φi with i = 1, 2 and 3 represent the E-, D- and H-
plane. To optimize the antenna performance regarding G, we use the finite-difference
gradient dg/dp with respect to the design parameters. Table 4.1 lists the design
parameters included in p. All other design parameters are held constant.

To maximize the power radiated from the antenna, we want to find the minimum
of the objective function g with respect to the total losses, i.e. G = 1 − Pco/Pi.
Figure 4.16 shows parameter sweeps of g(1 − Pco/Pi). It is clear that reducing the
width of the unit cell is the single most effective measure to improve the antenna
performance. A smaller unit cell mitigates the scan blindness problem by shifting
it to higher frequencies. With a unit cell width of 0.35λ0, the VSWR are below 2
for all frequencies 6.5 − 14.5 GHz within a scanning range of ±60◦ in all azimuth
planes. Figure 4.17 shows that the VSWR performance of the antenna with the

25



4. Results

4 6 8 10 12 14

Frequency (GHz)

1

2

3

4

5

A
ct
iv
e
V
S
W
R

ADL antenna, spectral method

FEM, Nominal design

FEM, Anisotropic dielectrics

(a)

4 6 8 10 12 14

Frequency (GHz)

1

2

3

4

5

A
ct
iv
e
V
S
W
R

ADL antenna, spectral method

FEM, Nominal design

FEM, Anisotropic dielectrics

(b)

4 6 8 10 12 14

Frequency (GHz)

1

2

3

4

5

A
ct
iv
e
V
S
W
R

ADL antenna, spectral method

FEM, Nominal design

FEM, Anisotropic dielectrics

(c)

Figure 4.15: A comparison of the active VSWR between the ADL antenna studied
in [5] and the nominal antenna with isotropic and anisotropic dielectric slabs for:
(a) Broadside; (b) θ = 50◦ E-plane; and (c) θ = 50◦ H-plane.

26



4. Results

smaller unit cell is comparable to the ADL antenna [5], but achieved with normal
dielectric superstrates.

Table 4.1: The antenna design parameters spanning the vector p allowed to vary
in the object function g(p). All other parameters are held constant.

hgap1 Height of gap between array plane and first dielectric slab.
hgap2 Height of gap between dielectric slab 1 and 2
hgap3 Height of gap between dielectric slab 2 and 3
hto_array Height from ground plane to the top of the array plane
hslab1 Height of dielectric slab 1
hslab2 Height of dielectric slab 2
hslab3 Height of dielectric slab 3
lfeed Length of microstrip feed line
ws Width of sloth
Lx Width of the unit cell, Lx = Ly
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Figure 4.16: Parameter sweeps of the integrated total losses of the antenna, g(1−
Pco/Pi). The integration limits are 5 − 15 GHz and 0◦ − 70◦. The circles in the
figures mark the nominal antenna design.
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Figure 4.17: A comparison of the active VSWR between the ADL antenna stud-
ied in [5] and the nominal antenna and the antenna with reduced unit cell width:
(a) Broadside; (b) θ = 50◦ E-plane; and (c) θ = 50◦ H-plane.
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5
Conclusion

In this thesis, we have modelled and studied two types of array antennas with the
finite element method. Comparison of the patch antenna with known results shows
that the model is valid as long as the width of the unit cell is less than λ0/2 such
that no grating lobes are present.

Second order curl-conforming basis function have a known order of convergence
of 4. Singularities and sharp corners reduces this order of convergence. Trough local
refinement along sharp edges and corners the order or convergence was restored to
≈ 2.9. The mesh resolution was chosen so that the estimated error from singularities
at sharp corners was kept at approximately 5 %. Preferably, an adaptive mesh
refinement method would have been used. This was unfortunately not possible due
to restrictions in the available computer resources.

The boundary of the far-field region have been investigated to know where to
truncate the unit cell. A distance of 1.2λ0 from the antenna to the truncating surface
is found to be enough to ensure small errors for all scan angle θ ≤ 70◦.

The initial connected slot array antenna design shows problem with scan blind-
ness due to surface waves. Replacing the isotropic dielectric superstrates with
anisotropic ones to simulate ADLs does not suppress the surface waves. Thus, this
approach fails to reproduce the result from [5] where ADLs are shown to suppress
the surface waves.

The width of the unit cell is the single most effective parameter to reduce the
scan blindness. With a smaller unit cell, the surface waves are excited at higher
frequencies, thus extending the bandwith of the antenna. The proposed design
with an array element spacing of 0.35λ0 achieves more than one octave bandwidth
(6.5− 14.5 GHz) within a scanning range of ±60◦ in all azimuth planes.
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