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Kristina Markan, Victor Nilsson
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Abstract
In order to meet the environmental goals of 2030 set by the European Union, Sweden
needs to build between 90 000 and 260 000 public charging poles in the upcoming
eight years. In this thesis we have developed a mathematical model that given a
area and time outputs the demand for charging in said area, along with introducing
a redundancy value intended to show the tendency of vehicles in the area to stay
plugged in to a charging station longer than necessary. Areas that show a large de-
mand value and a low redundancy value can be good candidates for where to extend
the charging infrastructure and build additional public charging poles. A proto-
type was built to test the model with real-world historical vehicle movement data
provided by WirelessCar Sweden AB. The prototype was tested in three different
areas: a supermarket parking area, a residential area, and an office area. Arranging
the prototype output on a timeline for a regular weekday shows demand that cor-
responds with expected traffic in each area, and relative peak demand/redundancy
between areas also follows expected patterns. However, assessing the precision of
the output values would require more data and refinement of auxiliary functions
used in the model, primarily by attaining a true State of Charge value provided by
the vehicles.

Keywords: Electric vehicles, plug-in hybrid electric vehicles, charging infrastructure,
vehicle data, mathematical modelling.
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1
Introduction

The size of the electrical vehicle fleet is ever increasing. In Sweden, the amount of
electrical vehicles grew by over 80% in 2020 to surpass 200,000 in the beginning of
2021 [1]. As the numbers continue to grow, so does the demand for charging poles
– the number of which also increase steadily, in Sweden seeing an increase of over
25% public charging poles in the same time period [2].

Previous studies has been done to determine the allocation and cost optimization
of electrical vehicle (EV) charging facilities [3][4] as the need of the extension of
infrastructure for EV battery charging has steadily increased. In this project, we
will propose a model for determining the demand of charging poles by area based
on real-life vehicle movement data. The goal of this model is to be useful as an
aid when assessing where to spend resources on extending charging infrastructure,
for which the aforementioned data may be of great help in order to capture the
behaviour of electric vehicle owners.

1.1 Background

The European Union has set a goal of reducing emissions by 90% in 2050 (compared
to 1990 levels), and having at least 30 million zero-emission vehicles on the road by
2030, with the intent that there will be 3 million public charging poles to support
these vehicles is one of the stated measures to accomplish this [5]. The statistics
at the time of writing (November 2021) for Sweden shows that there are 284
365 battery electric vehicles (BEV) and plug-in hybrid electric vehicles (PHEV)
registered, but the current number of public charging poles is only 14 123 [1]. As
EU intends to reach a charging points per electric vehicle (CPEV) value of 0.1,
i.e one charging pole per ten BEVs och PHEVs, Sweden is lacking about 14 000
charging poles to meet the demand today, as the current CPEV value is 0.05. A
mere 3 407 charging poles has been built in 2021 so far, which results in a 30%
reduction in CPEV value from last year, as the value in 2020 was 0.07 [1].

The lack of charging poles is not only a problem pertaining to reducing emissions,
as it also affects the phenomenon range anxiety, which occurs when a driver worries
about the battery running out of power before reaching a charging destination
[6]. A driver of a combustion fuel vehicle may feel anxious when the fuel level is
low, but once a gas station is found the whole process of refueling takes at most a
few minutes (not accounting for waiting in line, buying something at the station

1



1. Introduction

shop and so forth). A full charge on an BEV and PHEV depends on battery
capacity and available effect on the charging pole, and can take anywhere from 20
minutes (ultra-fast direct current) to 16 hours (single phase alternating current).
This generates another type of behaviour than drivers of fuel combustion vehicles
have, who can expect to be able to refuel when at a gas station, whereas drivers of
electric vehicles will find charging poles to be occupied for longer periods of time.

We have been granted access to a sizable set of anonymized data from the company
WirelessCar, a service provider of Volvo Car Corporation. This data set contains
information about recent trips made by all connected Volvo brand vehicles. In this
context, a trip is a representation of a vehicle moving from point A to point B, with
the beginning and end of this trip being marked by the engine being turned on and
off, respectively. Of note is that the vehicle set, in regards to EV vehicles, contains
only PHEV’s as the company does not manufacture any BEV’s at this time.
This data allows us to consider historical vehicle movement patterns from real-life
scenarios, and provides insight into multiple aspects of private vehicle transport.
Tying this information into the context of EV charging infrastructure, this work
will propose a use of this information with the purpose of aiding planning efforts of
where to build new EV charging facilities.

1.2 Goals

The question that this project aims to answer is ’By making use of historical vehicle
data, how can we model the demand of charging infrastructure in a specific area at
a specific time?’. The goal is to develop a mathematical model for this, and if time
allows, a prototype using the provided data set. The model should be generalized
and thereby not representing a single brand of vehicles; while the data available
to us is limited to a single brand, we expect most brands are able to provide data
points similar to what is available for this work.

Formally, the objectives of the project are as follows:

Model development: Construct a model that presents the electrical charging
demand in a specified location.

Prototyping: Develop a prototype using the WirelessCar data set to assess the
viability of the proposed model.

Evaluation: Evaluate the model by using the prototype to run simulations and
analysing the result.

2



1. Introduction

1.3 Limitations
The data set only contains data from two vehicle manufacturers, Volvo and
Polestar, with the vast majority of data entries coming from Volvo vehicles. The
variables in the model will be generalized, but any result of prototyping the model
will be limited to these two brands of vehicles only simply due to the fact that this
is the data available to us.

A few limitations will be present during the prototype implementation. As not
all model parameters are known, some need to be simulated. The dataset contains
millions of data entries in a vast number of locations, therefore we will select a couple
of locations to use in order to not having to run an extreme amount of simulations.
Also, since crowd-sourced data will be used in the prototype, the locations of choice
will be locations that we personally know and can categorize accordingly – this is
to make sure that categorization is not flawed due to human error.

1.3.1 Risks
Out of all passenger vehicles in Sweden in 2020, 10% is manufactured by Volvo. In
other words, the other 90% of vehicle data is "missing" in the data set. Missing
is put in quotation marks because it for one may not be so that all other car
manufacturers collect these type of trip data entries from their vehicles, but even
if they did the data is not available to us. Due to a large part of the actual data
being unavailable, the risk of bias increases when the data set is used to create
a prototype of the model. There could be a risk of Volvo vehicle drivers acting
different than other drivers and thereby creating other patterns than what is
present in the data set, for example, by having different patterns of parking in
different areas. However, as we aim to generalize the model as much as possible
and always have a point-of-view of vehicle behaviour rather than Volvo vehicle
behaviour, the model should be sound in theory and hopefully be able to describe
electrical charging demand for any type of passenger vehicle, rather than just Volvo
vehicles.

Another, similar risk is the fact that the EVs present in the data set is only
PHEVs. While drivers may be assumed to be willing to charge their vehicle when
possible, there is a large difference between requiring to charge a BEV for it to
be operational, and preferring to charge a PHEV to save on fuel cost; it should
be expected that this difference leads to differing behaviours between drivers of
the respective vehicle category. As described in the previously mentioned risk, the
design of the model should not suffer due to this as available data points are shared
between PHEVs and BEVS. However, any results of prototyping in particular
would of course be affected by a lack of data originating from BEVs, which is unfor-
tunate due to the aforementioned expectation of differing behaviour between drivers.

Some other risks that are involved is that we are working on actual, live data that
due to GDPR may change due to requests for data removal or similar. While this

3



1. Introduction

risk is small, the best way to mitigate this risk is to discuss this scenario with
WirelessCar in order for us to refresh data dumps or prune data that we should no
longer have right to use. We can also mitigate the risk of lacking data to test on by
simulating data in similar amounts to what would be expected in a real-life scenario.

1.4 Contribution
As a continuous expansion of the charging infrastructure is expected to take place
in the coming years, finding relevant locations for new charging facilities is of high
importance in order to efficiently spend resources. We argue that due to the sheer
scale of this effort, any methods used to aid with determining such locations will
be useful, and that a model using historical vehicle data would be highly relevant
to include the behaviour of drivers in real world situations in these considerations.
Matching charging infrastructure with said behaviour is likely to increase the rate
of electrical vehicle adoption overall, as ownership of electrical vehicles will seem
more attractive as obstacles to their operation (in this case the need for charging)
are eliminated.

1.5 Contents
This thesis is structured as follows: first, we dive into the theory of the dataset and
electrical vehicles, and also some background about electrical charging poles and the
current state and planned future of the electric charging infrastructure in Sweden.
The method section describes the construction of the model and its different parts
in detail, as well as the prototype process. The results section presents the finished
model and results after prototyping and simulation. A discussion about the model,
the methods used, and the result can be found in the final chapter.
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2
Theory

In the upcoming sections we provide a further look into the WirelessCar data set
that will be used for the project, following with context and background for a couple
of APIs that will be utilized in the model. Moreover, information about electrical
vehicles, their batteries, the current status and plans for the electric charging in-
frastructure in Sweden, and different types of charging poles is also provided in this
chapter.

2.1 The WirelessCar Dataset
Vehicles of today are able to collect data of their operation and provide this data
to relevant parties. The vehicle data used in this work consists of data collected
exclusively by the vehicle itself, without any third-party hardware or software, and
is arranged on a per-trip basis. A trip is defined as a vehicle starting the motor and
then moving from point A to point B, where the motor is turned off. From this it
follows that there exists a possibility to create a collection of parking events for
a vehicle, which is the time between the end of one trip and the beginning of the
next trip made by the vehicle. As the exact timestamp for when a trip starts and
ends is known, so is also the total time elapsed during the parking event.

While a trip entry does contain some additional data besides the starting/ending
location and the corresponding timestamps, such as electrical consumption for the
trip, there are also data that is collected by the vehicle but is for several reasons
not available in the data set. An example of such data is the State of Charge (SoC)
at the time of the trip, which is an EV equivalent to a combustion vehicles fuel
level indication. This is data that is simply not saved historically – owners may,
however, see current SoC in their phone app or on the vehicle dashboard. Another
example is that of trip waypoints – intermediate geographical locations showing
the path taken by a vehicle. This data is available for some vehicle models, but is
not consistently available for all data.

The dataset that used in this project is provided by the company WirelessCar. As
a data processor for Volvo Car Corporation, WirelessCar has access to trip data
spanning over the last three months. Earlier data is not available as it is deleted
when older than three months due to privacy reasons, in accordance with GDPR.
Even though the data provided is solely from Volvo and Polestar brand vehicles,
the trip data is saved in a general-purpose format which is common for several
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other brands also handled by the company. It is, therefore, reasonable to expect
that other brands provide similar data points to what is available in this data set,
as their respective data is saved in the same format.

It should be noted that the data contained in the data set is not completely raw,
vehicle-sourced data. Some enriched data is included with each trip entry. This
enrichment is done by WirelessCar in the interest of making the data more human
readable and able to be presented to customers (the owners or drivers of the vehicles).
This data mainly pertains to the location of the vehicle expressed in a street address,
which is gained from reverse geocoding services. In short, we can summarize a trip
entry as a description of where and when a vehicle starts and ends a trip, how long
the trip was, and how much fuel/electricity was consumed over the course of the
trip.

2.2 H3 Hexagonal System
H3 is a grid system developed by Uber to process spatial data. The system divides
the earth’s surface area into hexagons that are tiled over the surface, which come
in different resolutions depending on the need of the user [7]. Every hexagon has a
unique, static identifier, allowing the grouping of different but closely located geo-
graphical locations (as expressed in the geographic coordinate system) to a single
hexagon – with ’close’ being a matter of choosing an adequate resolution of said
hexagons. Resolutions are defined as 16 different sizes of hexagons, ranging from
average hexagon size of 4,250,546.8477000 km2 (for a total of 122 unique hexagon
indices), to 0.0000009 km2 (for a total of 569,707,381,193,162 unique hexagon in-
dices). Simply put: given an arbitrary coordinate, H3 is able to return an index
for a hexagon the coordinate is located in, with there being one unique hexagon for
each of the 16 different sizes.

2.3 Open Street Map
Open Street Map (OSM) is a free, crowd-sourced map service that can be used
with the feature-rich API Overpass. OSM together Overpass provides information
about different elements that exists in an area, such as roads, buildings, and
neighbourhoods exist in an area. Furthermore, the elements themselves can have
tags, a key-value pair that provide more context about them. For example, if an
area was tagged as residential, one could expect there to be apartments or houses
in the area, and parking for the residents. There might even be private charging
poles at these parking spaces, where residents can charge their car overnight.

There is a vast amount of tag key-value pairs available to choose from in OSM,
making it possible to describe the elements in an area in great detail. Worth noting
is that a tagger can choose to select a more general tag for an element, such as
tagging something as simply building rather than the, in this example, more correct
tag for an apartment building: building:apartments.
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2.4 Electric Vehicles
Electric vehicles can generally belong to one of three categories: BEVs, PHEVs or
Hybrid Electric Vehicles (HEVs). BEVs have no combustion engine whatsoever,
relying solely on electrical power to drive the car and power the amenities such as
the climate control. The vehicle is charged by plugging in a cable to a charging box
or charging pole that is connected the power grid. PHEVs have an electrical engine
as well as a internal combustion engine, running on stored electricity until it runs
out at which point the car is instead brought forwards with the combustion engine.
As the name implies, the battery in a PHEV is charged similarly to BEVs.

HEVs also have two different engines, but unlike the PHEVs, the electrical engine
is only possible to recharge by driving the car and mainly by breaking - at the
time of breaking, the electrical engine doubles at a generator and stores energy
from braking in order to use it for driving the vehicle later. The electrical engine
in HEVs is mainly intended to aid the vehicle at low speeds, and using electricity
for more extended periods or higher speeds in an HEV is not feasible. As HEVs
does not require an external charger, these vehicles should not be included in the
demand for public charging poles, and they are also not allowed to park at parking
spots that have a charging pole [8].

2.4.1 Batteries
The battery in a BEV or PHEV is typically a lithium-ion rechargeable battery.
The capacity of the battery is measured in kWh, and differs between PHEVs,
which can be expected to have a battery capacity of around 10 kWh, and
BEVs, which battery capacity ranges between about 30 - 100 kWh. With larger
capacity comes longer time to fully charge the battery, but also longer driving range.

Vehicle Model Battery Capacity Maximum Charge Effect
Volvo V60 11.2 kWh 3.7 kW
Volvo V90 10.4 kWh 3.7 kW
Volvo XC40 9.7 kWh 3.7 kW
Volvo XC60 10.4 kWh 3.7 kW
Volvo XC90 9.2 kWh 3.7 kW
Volvo S60 11.7 kWh 3.7 kW
Volvo S90 10.4 kWh 3.7 kW
Polestar 1 34 kWh 11 kW

Table 2.1: The different PHEV models present in the data set, their battery
capacity, and maximum charge effect. Note that battery capacity can differ a bit
between older and newer generations of the same vehicle model.
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The battery capacity is permanently affected by the age and usage of the vehicle.
The exact range of degradation differs between vehicle models, but an average
annual decrease was found to be 2.3% by the Amerian tech company GeoTab [9].
A common warranty given by vehicle manufacturers is that the battery should keep
70% of its original capacity up to 8 years or 160 000 km.

The battery capacity may also temporarily decrease with temperature. According to
GeoTab, battery capacity was found to be at its best when the ambient temperature
is 21°C [10]. The decrease in capacity is mainly due to the electrochemical reaction
in the battery being slower in colder weather.

2.5 Electric Charging Infrastructure
As previously mentioned in the introductory chapter, the EU has decided on
attaining a goal to have at minimum 30 million zero-emission vehicles and 3 million
public charging poles to support them by the year 2030. In 2014, the Alternative
Fuels Infrastructure Directive (AFID) was adopted by the EU, which states that
member states should have an "appropriate" amount of charging stations accessible
to the public by the end of 2020 [11]. The appropriate amount was to be decided
by each member state and influenced by the projected number of electric vehicles
by 2020, the states national framework, as well as recommendations set by the
Commission, such as the CPEV value. Most member states, therefore, set a goal
for the number of charging stations that should be ready in 2020, and the union as
a whole reached and surpassed the plan with the number of charging stations being
at almost 140% of the set amount [12].

Sweden, however, did not set a goal for number of charging stations and is therefore
not a part of the reason the union as a whole reached the goal. As already
mentioned in the introduction, the CPEV for Sweden today is 0.05 while the
recommended value by the EU is 0.1, Sweden is thereby missing about 14 000
charging poles to meet the demand of today.

The Swedish government published an official report in June 2021 on policy instru-
ments for electric charging infrastructure, and while the report mentions the CPEV
ratio recommended by the EU, the primary strategy seems to be to ensure that there
is a sufficient amount of private charging poles, i.e. by reducing the cost to install
charging devices, as well as implementing charging infrastructure requirements
for new constructions and extensive renovations [13]. Following this strategy, in
January 2021, the Swedish Tax Agency implemented the current 50% cost reduction
on material and labour for owners of single-household houses that install either a
charging pole or a charging box for their own private EV on their property [14].
Another measure that the report deemed necessary is to ensure a sufficient number
of charging poles with fast charging along the Swedish road network, where a
shortage could be found mainly in the northern parts when the report was published.

The CPEV metric is not the only available metric that is used for measuring

8



2. Theory

the sufficient number of supporting charging poles for all EVs in a state; another
example is presented in the Recharge EU report by the organization Transport &
Environment [15]. Their model uses weighted values when calculating the sufficient
amount, where BEVs have twice the weight of PHEVs, and charging poles with
faster charging speeds have a greater weight than charging poles with slower speeds.
Individual charging poles are also weighted based on if they are public or semi-public.

According to the T&E model, the sufficient amount of public charging poles in
Sweden in 2030 would be 90 000. A report published in 2020 by Stockholm’s
Chamber of Commerce presented three different scenarios for the number of EVs
in Sweden 2030, where the low-value scenario was 1.4 million EVs, the mid-value
scenario was at 2.6 million EVs, and the high-value scenario was 3.4 million EVs
[16]. Using the mid-value at 2.6 million expected EVs in 2030 and the EU model
with a 0.1 ratio, the number of charging poles in 2030 should be at 260 000 to be
sufficient. If instead using the T&E value with 90 000 charging poles, the CPEV
value would be about 0.03, which is worse than today’s value of 0.05.

Regardless of which one of the two models is considered, somewhere between 76
000 and 246 000 public charging poles needs to be built in order to have a sufficient
coverage for all EVs in Sweden in the 8 years leading up to 2030. This demonstrates
a need for considering new locations to provide with charging infrastructure, as
well as evaluating current locations for possible extensions.

2.5.1 Charging Poles
While BEVs and PHEVs may be charged from standard wall outlets, there also
exists stations dedicated for the charging of vehicles in different places around the
country. In Sweden, there is roughly 2600 charging stations with about 14 000
unique charging poles dedicated for this purpose [2]. Stations may differ in both
plugs and wattage, but are generally able to serve any vehicle when taking adapters
into account.

Type of Charger Effect Time to Charge
Single Phase AC 3-7 kW 7-16 hours
Tri-Phase AC 11-22 kW 2-4 hours
Fast DC 50-100 kW 30-40 minutes
Ultra-Fast DC 100+ kW 10-20 minutes

Table 2.2: Different type of chargers for EVs, their effect and the time it takes to
fully charge an EV battery using each charger.

While public charging poles may be equipped with fast and ultra-fast DC chargers,
the chargers installed in homes are single-phase or tri-phase AC chargers. The effect
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is further decided by the available ampere, where a lower ampere amount (16 A)
gives the lower effect output, 3.7 kW for single phase and 11 kW for tri-phase, while
a higher ampere (32 A) gives the higher effect output at 7.4 kW for single phase and
22 kW for tri-phase, respectively. Worth to note is that many PHEVs in particular
are unable to receive more effect than 3.7 kW, even if using a charger that is able
to output higher effect [17].
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Methods

This chapter defines and outlines the parameters required to create the model includ-
ing motivations of why the parameter is relevant for our model and how to feasibly
construct it with the help of either our provided data, external data, previous studies
or the combination thereof.

3.1 Model Overview
At the most abstract level, the model aims to answer a single question for an arbi-
trary geographical boundary – is the current number and capacity of the electrical
charging poles currently in the area matching the demand of electrical vehicles
in said area? From the questions posed, one may possibly spot a well-known
general concepts: supply and demand. With only this level of abstraction, the
answer to the question becomes simple; if the available demand is higher than the
available supply in an area, then the area should be a candidate for extension of
charging infrastructure. If not, resources for this purpose are better spent elsewhere.

The follow-up question then becomes how to, in this context, express supply and
demand in a way that would allow us to answer the question? The following sections
aims to provide a more in-depth argument for how to model these concepts.

3.2 Model Parameters and Concepts
The following section lists parameters that will be used in the model, some only
using the help of the base data, and some with the help of APIs to fetch and use
external data.

3.2.1 Geospatial Indexing
As the end goal of the model is to answer the question if the electrical charging
poles present in an area is adequate, a key point is to identify what constitutes
an area. For the proposed model we will be using H3 indexing, and as such, the
terms hex and area will be used interchangeably going forward. The choice of this
indexing in particular is that it provides complete geographical coverage, indexed
areas are uniform and easily adjustable in size. The hex resolution used for the
indexing is 9, but could be changed to either a smaller or larger resolution if that
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would fit the need better.

However, assuming that movement data uses typical longitude and latitude posi-
tioning, and expresses end-of-drive sessions on this format, any form of indexing can
be used depending on need. Formally, what is required is some indexing function
that given a coordinate returns a unique index for a corresponding geographical
area. The requirements for a geospatial indexing usable in the model are forgiv-
ing: Any geospatial indexing system that given a latitude and longitude returns a
single, unique index of the area containing the given coordinate is usable for this
purpose. By definition, the model will be able to be applied to any area included
in the chosen geospatial index, but results will likely be more useful when working
with well-bounded areas of comparable sizes.

3.2.2 Area Categorization
In order to get a better understanding of the area in question, the next step after H3
indexing is to categorize the individual hexes in further detail. The categorization
allows more relevant assumptions about the data, which in turn benefits the model.
Indexing by hexes specifically is not needed to implement the categorization as it
could be done with any arbitrary indexing, however, as H3 hex indexing is the
method of choice in this project this is what will be explained in this section.

To implement the categorization, we use the Overpass API to fetch data from
OSM. The following tags are deemed relevant to use in the process:

Key Value(s)
Amenity Parking.
Landuse Commercial, Industrical, Retail.
Highway* Residential.
Building Apartment, House (Single Household), Office.

Table 3.1: Key-Value pairs of Open Street Map tags that are used for area cate-
gorization in the model. *Note: Highway is the tag used for any type of road, street
or path. Examples range from motorway to sidewalk.

Assuming that we can query Overpass for an area corresponding to the target
area for our model, we are able to categorize each hex within the total area. In
order to do so, we begin by sending an API query to Overpass that requests all
elements with any of the tags listed above within the total target area. The API
returns a JSON object with a list of each element. Some elements are single
points (nodes), while a combination of nodes creates others (ways or areas). No
matter the element type, each has a centre point represented by a latitude and
longitude value. The centre points are extracted, and their corresponding H3 hex
is found. If a corresponding hex exists in our list of hexes, i.e. historical trip
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data is reported there, a point for the element tag is given to the hex. A hex
will be assigned the same category as the one for which most centre points reside
in that hex – as an example, a hex containing the centre point of two parking
lots, three apartments and one office space, will be categorized as an apartment area.

When a hex has been categorized, assumptions about the electrical charging supply
can be made for where there is no data about public charging stations, which mainly
is the case for residential areas and office areas. This is explained in more detail in
Section 3.2.3.1.

3.2.3 Area Data
Other than what is directly available in the data set, some auxiliary data is required
for the model. For any given indexed area, there is a need to add a set of parameters
which will be connected to each such area and serve to model behaviours that are
specific to certain areas. Areas must be considered separately for natural reasons
– as an example, considering two different parking lots, it should be expected for
vehicles to generally stay longer on a parking lot close to office areas than a lot closer
to a supermarket. The following sections outline parameters used by the model and
how they may be determined.

3.2.3.1 Charging Stations

The amount of charging stations currently in a given area is, not surprisingly, the
base factor of the charging capabilities of said area. For commercial and public
areas, data regarding the location and capacity of charging stations is readily
available, both as open data and as proprietary service offerings. In this project
we will use the NOBIL dataset API for public charging poles, which is free to use
for anyone after applying for and receiving an API key. Important to note is that
electric vehicles may also be charged by other means than public stations; a driver
charging their vehicle at their residence may come to mind.

For charging stations not covered by available data, determining the available points
of charge is not as straight forward but may be estimated with the help of the
previously mentioned area categorization. As an example, in a residential area
consisting of exclusively single-household houses we could assume that any EV’s
parked overnight in the area belongs to a residence owner and would at the very
least have a outlet available for low-effect charging. Office parking areas are harder
to make clear-cut assumptions about, but charging outlets may be available for
employees or similar.

3.2.3.2 Average Parking Duration

For a given area, the average parking duration in it may determine how efficient
use of resources a potential addition of charging poles would be. For each trip
ending in a certain hex, the total parking time may be determined by looking at
the average time until the same vehicle begins a trip anew. Not all trip starts may
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signify the vehicle leaving however – if a trip is made with a length that is less than
some value ϵ, it will not be considered and the next significant trip is considered
to be trip concluding the parking duration. For each hex, it is straight-forward to
find the average parking duration by simply sorting starting and leaving events by
timestamp and averaging the time between a vehicle ending a trip in a hex and the
following significant trip.

The choice of area separation could give rise to a potential edge case that could occur
whenever any uniform division of area is used, such as H3 indexing. Should a vehicle
be parked very near the boundaries of an area, it is possible that any movement less
than ϵ would result in the vehicle ending up in a different area. A more categorical
division of areas would alleviate this issue as we would then expect a single parking
lot to be considered a single area – assuming that the GPS is accurate enough.
Currently, we will move forward accepting this risk.

3.2.3.3 Charging Redundancy

When parked and plugged in to a charging pole, it is not a given that vehicles leave
shortly after they have been charged to full. Rather, it may be assumed that a
vehicle parked and plugged in will occupy that space until the driver is leaving the
area. This may affect charging efficiency. The time difference between how long a
vehicle needs to stay at a certain charging pole to be fully charged and the time it
actually stays there results in loss of potential charging, something that needs to
be taken into account when considering the supply of vehicle charging in an area.

Given that the parking duration is available with the historical trip data, it is
possible to model this redundancy. Under the assumption that a vehicle is plugged
in over the full duration of a parking – which is very feasible as the driver is most
likely doing something else in the vicinity – we are able to calculate the theoretical
time to full charge depending on the effect of the charging pole and the capacity of
the vehicle. Any time spent parked exceeding that time will be considered to be
charging redundancy.

Charging redundancy could be calculated on a vehicle-to-vehicle basis, but we
argue that the location plays a larger role in the charging redundancy than
the driver – it is likely that charging poles placed in office area parking lots
would see more redundancy than those placed outside a supermarket due to the
expected time for someone to be standing in each place. Furthermore, given
that the question is where charging poles should be placed based on historical
data, expressing charging redundancy by certain areas would certainly help in
determining where new charging poles are both desirable and less likely to be
occupied by a single vehicle for longer periods, which as a metric complements de-
mand which is not as likely to cover this particular aspect of charging infrastructure.
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3.2.4 Vehicle Data
Assuming vehicle movement data in general can be expected to include the data
points as described in Section 2.1, each trip entry includes information of the
electrical consumption for the trip. This data does not provide much information
in itself, and it is unknown if the vehicle uses charging poles, the current SoC, and
to find out anything regarding the charging habits of the drivers. Nevertheless,
using the vehicle movement data together with other available information and
introducing variables based on findings in previous studies enables the definition of
a model for the demand of a vehicle.

The following sections outlines the parameters used in the model that originate from
the vehicle data in the provided data set, as well as auxiliary data directly connected
to vehicle use.

3.2.4.1 State of Charge

SoC of the vehicle refers to the remaining charge in the battery, usually expressed
as a percentage of the total capacity. While the SoC at time of a completed trip
is not reported, it is, of course, visible in the vehicle for the driver. While SoC
could be estimated by taking into account the capacity of the vehicle model and
the electrical consumption historically, there would have to be some assumptions
made regarding the SoC at some point. For instance, it might be a reasonable
assumption that a vehicle leaving a residential area with mostly houses at morning
would have been charged overnight.

Although estimates would be possible, the model will assume that the vehicle
reports SoC at the time of a completed trip. For this work it is motivated by the
fact that it is a readily available value in the car which would only slightly increase
the volume of data sent from each car – while the raw amount of data from a large
number of vehicles may not be negligible, it would serve as a very minor increase
in relation to the volume already being sent.

As data is available regarding which vehicle model is performing each trip, a
baseline model for demand can be built as a foundation before looking at other
factors that may affect total demand. As the demand for charging must at some
point originate from the current SoC of a vehicle, there is a need to include some
estimation of this value as it is not reported from the vehicle itself.

While SoC would be reasonable data to include from the vehicle as part of any trip
entry, the current lack thereof requires some way to make an estimate. For the
purposes of our prototype, we will make some very broad assumptions and let the
SoC of a vehicle at any given time follow a normal distribution µ = 50, σ2 = 20,
as drivers would tend to avoid sinking to low charge due to range anxiety, but also
tend not to look to charge their vehicle when it is not necessary. Some proposals for
more elaborate methods for estimating the SoC are listed in Section 5.8.1.
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3.2.4.2 Charging Probability Density

When a vehicle stops by an area with a charging pole, it is not certain that the
driver will use it – all available poles could be occupied, or the driver might deem
the current SoC sufficient for the time being and opt not to charge the vehicle even
when given the opportunity. Previous work shows that in general, the majority of
charging events take place when the SoC is between 25% and 75% [18], indicating
that drivers tend generally tend not to let the charging level of the vehicle decrease
too much. It should be noted that these findings are based on BEV’s, and that
the behaviour of PHEV drivers are likely to differ as while driving electrical is
economically sound, it is not a necessity making it possible for drivers to skip
charging in favor of convenience.

For the purposes our model, the SoC will use a simple table based on earlier findings,
in which we model the probability of a driver opting to charge their vehicle to be
dependent on the SoC when stopping the vehicle.

3.2.4.3 Battery Capacity

All of the different vehicles in the dataset are not equipped with the same drive
train, nor the same battery. Information about exactly which battery the vehicle
has is not available in the dataset, and has thereby been added manually by
matching vehicle model to its respective battery according to information from
Volvo. This is a time consuming task, but it ensures that the model final represents
each vehicles electrical demand with higher accuracy.

According to several studies made on battery capacity in electric vehicles, the battery
capacity decreases with both age and use [19, 20]. The exact range of degradation
differs between vehicle models, but an average was found to be 2.3% decrease annu-
ally by the American tech company GeoTab. Therefore, a variable bage is introduced
to represent this decrease in capacity:

bage = (1− 0.023)y

where y is the age of the vehicle in years.

The battery capacity also decreases with temperature. According to GeoTab, bat-
tery capacity was found to be at its best when the ambient temperature is 21°C
[10]. The decrease in capacity is mainly due to the electrochemical reaction in the
lithium ion battery being slower in cold temperatures. The previously mentioned
study presents a range curve of battery capacity over temperature, and a curve
fitting was done to find the following equation:

btemp = 0.65 + 0.02263276 ∗ x + 0.0001167148 ∗ x2 − 0.00001703223 ∗ x3−

1.856662e− 7 ∗ x4 + 5.194805e− 9 ∗ x5

Where x represents degrees in Celsius and is limited to the range between -25 and 21.
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We will assume that a PHEV behaves in the same way as a BEV, i.e. uses 100%
electricity when it is available, although the reality might be more complex. For
example, the air conditioning in a BEV will be powered by the battery, when a
PEHV may use the combustion engine for it instead.

3.2.5 Modelling Demand Per Area
In order to determine the current demand in a defined area, an aggregate of the
vehicles in said area needs to be considered. For the purposes of our modelling, the
demand in an area d at time t is completely reliant on the demand of the charging
vehicles parked in the area at time t.

3.3 Creating a Prototype
The model as described above will be implemented as a prototype using Python
and suitable libraries, where a few chosen areas are selected for simulations and key
metrics are extracted. Results should be compared with known and existing data in
order to have some sort of baseline towards which to evaluate the model – it should
be expected for charging demand in an area to somewhat follow the expected traf-
fic in the area (assuming that it is an area in which drivers tend to park their vehicle).

To evaluate the prototype we will run simulations with the WirelessCar dataset.
The maximum charging demand and redundancy, as well as the mean, standard
deviation and standard error, will be calculated for 20 samples. In order to see how
the demand value changes over times, we will present a demand over time graph
showing the mean demand for a selected hex for each hour during 24 hours. Finally,
a sensitivity analysis will be made to understand how the different variables effect
the result of the prototype.
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4
Results

In this chapter we present the proposed model, using the factors and parameters
described in the previous chapter. There are two primary factors in the model –
the available supply in an area, and the current demand of the vehicle(s) that are
parked there. These two factors will be described separately before presenting the
results of prototyping.

4.1 Area Supply Modelling
The area supply is expressed as the couple (e, n) where e is the total effect of
charging poles in the area expressed in kWh, and n is the number of available
charging stations. n is the sum of two terms, n = npub + npriv, where the former
is the amount of charging stations represented in relevant data sets. npriv is an
estimate of privately available charging poles based on the area categorization. The
estimate may vary on how the categorization is done and what categories are consid-
ered. For some simple assumptions on different area categories, refer to Appendix B.

For an area, we define two sets of charging poles, Npub and Npriv:

Npub = [pub1, pub2...pubk]

Npriv = [priv1, priv2...privn]

For Npriv, private charging poles, we assume them have the effect of 3.7 kWh. The
effect of public charging poles, Npub is known. The total effect in an area is thereby
gained through:

e =
∑

i∈Npub

f(pubi) +
∑

j∈Npriv

3.7

Where the function f(pub) given a public charging pole pub returns the effect value
of that charging pole.

4.2 Area Demand Modelling
Vehicle demand in an area is expressed as a couple (d, r) where d is the energy
demand expressed in kWh and r is the redundancy, i.e. the excess charging of
vehicles parked in the area expressed in kWh. Demand is defined as the sum of
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demand of the individual vehicles in the area at the input time t. Redundancy is
similarly defined as the sum of redundancy of individual vehicles in the area at the
time t.

4.2.1 Vehicle Demand Modelling
A vehicle v stopping in a bounded area A will contribute its demand at that point
at time t to the total demand of the area. The demand dv of a vehicle is the
difference between the current charge left at the time of stopping in the area and
the capacity cmax of the battery, adjusted for decay of age and temperature at that
time. SoC is assumed to be given as a percentage of full capacity.

Battery capacity is influenced by temperature and age of battery, which may be
expressed as a coefficient to the maximum capacity, cmax which is the theoretical
capacity as stated by the vehicle manufacturer. The effective capacity c is given by

c = cmax ∗ bage ∗ btemp

where

bage = (1− 0.023)y

where y is the age of the vehicle in years, and

btemp = 0.65 + 0.02263276 ∗ x + 0.0001167148 ∗ x2 − 0.00001703223 ∗ x3−
1.856662e− 7 ∗ x4 + 5.194805e− 9 ∗ x5

where x is the temperature at the time of the parking event expressed in degrees
Celsius, −25 < x < 40.

The energy necessary m to completely recharge the battery for vehicle v at the time
of the parking event may then simply be expressed as:

m = c− SoC ∗ c

4.2.2 Average Area Parking Duration
Average area parking duration will mainly be used to model the redundancy in an
area, and represents a simple estimate of how long a vehicle can be expected to
stay in a particular area.

To begin with, fetch all electrical vehicle trips E from the data set of trips D:

E = {t ∈ D : electrical_consumption(t) > 0}

Build the set of unique vehicles Velectric in E, fetch all trips made by vehicles with
electric engine Te :

Te = {t ∈ D : vehicle(t) ∈ Velectric}
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We consider a specific area, in our case hex h, and find all trips t ∈ Te where all
tstop, the timestamp for when a trip ended, and the next tstart, the timestamp for
when a trip started, are in h.

Th = {t ∈ Te : tstop == h ∨ tstart == h}

We define a function time(tstop, tstart) that accepts a pairwise stop and start time
and returns the length of this time span.

Lastly, the average time difference between all tstop and tstart in hex h will be found
and set as a variable oh.

oh =
∑

i∈Th
time(ti,stop, ti,start)
|Th|

4.2.3 Vehicle Charging Probability
The probability of a driver looking to charge a vehicle may be modelled as a function
of the current SoC of a vehicle. Building this model on the findings of Smart and
Shey [21], we express the final demand of a single vehicle to be dv = m ∗ u(SoC),
with u(SoC) being the probability of a charging event taking place depending on
the SoC at the time of the stop according to Table 4.1 below.

SoC % Probability of Charging SoC % Probability of Charging
0-10% 0.04 50-60% 0.15
10-20% 0.06 60-70% 0.06
20-30% 0.14 70-80% 0.03
30-40% 0.23 80-90% 0.02
40-50% 0.25 90-100% 0.01

Table 4.1: Probabilities for a charge event to take place depending on the vehicle’s
current State of Charge.

4.2.4 Redundancy per Vehicle
Charging redundancy may be calculated in an area at any time a vehicle leaves
an area. By knowing current energy missing for a full charge m, we can use the
time(tstop, tstart) function to get the length of a parking occurrence, and define re-
dundancy w as difference between the theoretical energy a station could supply
during the full parking duration and the missing capacity from the battery:

w = u(SoC) ∗ (tpark ∗ e− (1− SoC) ∗ c)
where tpark = time(tstop, tstart) for the timestamps which mark the start and stop of
the parking occurrence. Note that we use the probability of charge here as well.
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For simplicity, we assume that all vehicles support all charging effects as redundancy
is intended to model the theoretical charge that could have been gained from vehicles
in the area if charging poles were unoccupied.

4.2.5 Area Specific Demand Reduction

For the purposes of this model, namely to estimate the current use and need of
charging stations in specific areas, certain vehicles may not exert any general demand
under some circumstances. The most common example would be residential areas
with single-household housing – vehicle owners parked here overnight is likely to
have a private charging facility for their own use, which would result in the demand
of their vehicle in that particular area being 0. Formally, we can define a function for
each area that given a vehicle returns either the standard demand dv of the vehicle
as described above, or for some specific vehicles returns some other value. For some
example functions, refer to Appendix C.

4.3 The Model

Read previous sections in Chapter 3 for details on each step.

Algorithm 1: Pre-Process Area Data
Data:
Area which to apply model to.
divide_areas(): An function that accepts a total area as argument and returns
a set of areas A after arbitrary division.

categorize_areas(): An function that accepts an area a and returns the
arbitrary categorization of that area.

Result:
A: The set of all categorized areas
a: A single categorized area a ∈ A
begin

Apply divide_areas(A) for division of total area into the set of arbitrary
areas A.

end
for a ∈ A do

Apply categorize_areas(a) to give area a a categorization.
end

The result after running the full list of algorithms is a list of hexes with a supply
and demand at a specific time t, as well as a redundancy value r. Areas with high
difference d − e and low redundancy r would be more likely to see efficient use of
new charging stations for the given time t. Re-run model using different times t for
making statistics over time.
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Algorithm 2: Model Area Supply
Data:
A: The set of all categorized areas
Na: The set of all public charging poles in area a ∈ A
en: The energy supply in a single charging pole n ∈ Na

Result:
ea: The total energy supply in area a ∈ A
ēa: Average energy supply in a single charging pole in area a ∈ A
for a ∈ A do

ea ←
∑

n∈Na
en

ēa ← ea

|Na|
end

Algorithm 3: Create List of Parking Events
Data:
A: The set of all categorized areas
time(startp, stopp): A function that returns the total time between parking
event p’s start and stop time.

u(SoC) : A function modelling if a vehicle is in a charging state or not,
returning 1 and 0 with probability dependent on SoC.

Result:
Pa: A sorted list of parking events and their properties for each area a ∈ A.
p: A single parking event in Pa that includes: {

vp: The vehicle that created parking event p.
cp: The battery capacity for vehicle vp at time of parking event p.
mp: The energy needed to recharge battery in vehicle vp at time of parking

event p.
dp: The demand of vehicle vp during parking event p.
wp: Redundancy

}
oa: The average parking time in area a ∈ A.
for a ∈ A do

Create list Pa that contains every parking event in a.
Sort Pa in ascending order based on time of event.
for p ∈ Pa do

cp ← cmax ∗ bage ∗ btemp

mp ← cp − (SoC ∗ cp)
dp ← u(SoC) ∗mp

wp ← u(SoC) ∗ (time(pstop, pstart) ∗ ēa − (1− SoC) ∗ cp)
end

oa ←
∑

p∈Pa
(time(pstop,pstart))

|Pa|
end
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Algorithm 4: Model Area Demand
Data:
a: A single categorized area a ∈ A
Pa: A sorted list of parking events and their properties for area a.
t: A specific time.
has_relation(a, vp): A function that returns true or false if a vehicle vp has a
relation to area a.

specific_demand(a, vp): A function that returns a demand value for vehicle vp

that is tailored to area a based on the relation between them.
Result:
da: The energy demand in area a.
ra: The charging redundancy in area a.
begin

for p ∈ Pa do
ra ← ra+ = wp

end
Pt ← p ∈ Pa : pstart < t < pstop

for p ∈ Pt do
if vp not has_relation(a, vp) then

da ← da+ = dp

else
da ← da+ = specific_demand(a, vp)

end
end

end
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4.4 Prototype
The above algorithms were implemented in a prototype using Python, alongside
the pandas library for data processing. The prototype was limited to a few,
cherry-picked areas in an effort to decrease the unknown variables, namely the
efficiency and correctness of any area categorization method.

As such, the prototype was applied to three areas which the authors are able to
manually categorize. The three areas are H3 hexagons which contain, respectively:
a residential area in Askim, Göteborg (hex id 891f2504e13ffff ), a supermarket
parking lot (hex id 891f250693bffff ), and the parking lot of an commercial office
area (hex id 891f2515923ffff). These areas have been cherry picked for a couple of
reasons, most importantly that the authors have prior knowledge of them, as in
knowledge of expected amounts of traffic during different hours of the day and the
currently available charging infrastructure. As the authors have easy access to the
areas distance wise, it would be possible to visit them to collect real-life data if
needed. The chosen areas are visualized on a map in figure 4.1. More details about
the selection can be found in Section 5.5.

Figure 4.1: Map of the areas chosen for prototyping. The northwestern area is an
office area, eastern area is a supermarket parking lot, and southern is a residential
area.

The chosen areas are of H3 resolution 9, which translates to a size of approximately
0.1 km2. Due to the nature of H3 hexagons, the areas do not exclusively contain the
aforementioned parking lots, but the overwhelming majority of the area in which
vehicles may be expected to stop is covered by said lots. Conversely, the residential
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area is big enough to require several H3 hexagons to cover, of which one completely
nested in this area was picked arbitrarily.

As charging poles available in a certain area tend to be static compared to the
vehicle traffic, their supply is calculated once based on the information found on
public APIs, which in this case applies only to the supermarket area. The data
regarding existing charging poles here are taken from the crowd-sourced API hosted
att uppladdning.nu – the NOBIL API did at time of prototpying not contain any
information regarding these charging stations, which were known to exist by the
authors beforehand. Any implementation looking to either increase the covered
area or look over longer periods of time should consume the API programmatically
to check the supply at the relevant time, keeping in mind that charging pole APIs
are not guaranteed to be complete.

Figure 4.2: Histogram graph showing maximum electrical charging demand for
the month of October 2021 in a supermarket parking area, 20 samples.

4.4.1 Maximum Calculated Demand per Sampling

The following histograms show the maximum value of demand as calculated by the
model for 20 random samplings of SoC and the subsequent sampling of u(SoC) for
the three chosen areas; a supermarket parking lot area, a residential area, and a
commercial office area in Figures 4.2. 4.3 and 4.4, respectively.
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Figure 4.3: Histogram graph showing maximum electrical charging demand for
the month of October 2021 in a residential area, 20 samples.

Figure 4.4: Histogram graph showing maximum electrical charging demand for
the month of October 2021 in an office parking area, 20 samples.

Metric Supermarket Area Residential Area Office Area
Mean 45.17 18.88 105.19
Standard Deviation 7.11 3.63 11.71
Standard Error 1.59 0.81 2.62

Table 4.2: Statistical measures (mean, standard deviation, and standard error)
from sampling of maximum demand in three different areas (expressed in kWh).
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For the samples visualized in the histograms, the mean, standard deviation and
standard error were calculated and is presented in Table 4.2. The maximum value
of demand tend to fluctuate between samplings, but all areas show consistency
in terms of overall demand in relation to other areas in that demand tends to be
highest in the office parking area and lowest in the residential area.

In the resulting graphs above, area supply is not included in the final result. This
is for comparative purposes, as the evaluation of the output is made easier when
considering the more fluctuating values of demand. For the chosen locations, the
only one with existing charging poles (according to public information) is the su-
permarket area. These charging poles would total an effect 14.8kWh, meaning that
the maximum demand in the supermarket area when also considering area supply
should be decreased accordingly.

4.4.2 Maximum Calculated Redundancy per Sampling

The following histograms show the values of redundancy for the same sampling as for
the demand results above. We can see that the office parking area shows the highest
redundancy values, while lower redundancy values are found in the supermarket
parking area and residential area. Both the office parking area and supermarket
parking area there are a few outliers but mostly a consistent output, where the
residential area have a larger spread of values with similar amount of occurrences.

Figure 4.5: Histogram graph showing maximum electrical charging redundancy
for the month of October 2021 in a supermarket parking area, 20 samples.
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Figure 4.6: Histogram graph showing maximum electrical charging redundancy
for the month of October 2021 in a residential area, 20 samples.

Figure 4.7: Histogram graph showing maximum electrical charging redundancy
for the month of October 2021 in an office parking area, 20 samples.

Metric Supermarket Area Residential Area Office Area
Mean 174.56 159.40 493.96
Standard Deviation 172.54 46.68 275.27
Standard Error 38.58 10.44 61.55

Table 4.3: Statistical measures (mean, standard deviation, and standard error)
from sampling of maximum redundancy in three different areas (expressed in kWh).

For the samples visualized in the histograms, the mean, standard deviation and
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standard error were calculated and is presented in Table 4.3. For redundancy, the
consistent ordering as seen in the demand is not present. Moreover, the standard
error for redundancy results are also higher.

4.4.3 Demand and Redundancy over Time
As the previous histograms only show the maximum demand over the whole month
of October 2021, we have chosen another option to present demand for the three
areas. The three following graphs show the mean demand during every hour of Oc-
tober 20th 2021 for a supermarket parking area, a residential area and an office area.

The mean demand for the supermarket parking area can be seen to follow the
opening hours 6.00-23.00, with some variances in demand over the day. For the
residential area, the highest demand is during the evening and night, times when
most people are expected to be at home. The demand is instead low during working
hours, beginning at 6 and ending at 18. For the office area, demand is at its peak
during working hours, here between 6 and 16, and very low during the hours of the
night.

We find that the graph for the residential parking area and the office parking area
resembles opposites of each other, which seems to be reasonable as most people
leave their home to go to work and vice versa. Note that time zone is UTC format,
resulting in a 1 hour difference from local time.

If we were to consider supply in the context of these results, one interesting obser-
vation to make is that the existing charging poles in the supermarket area would be
perfectly sufficient to decrease the mean demand to 0 for the whole period. Again,
the supply is omitted when visualizing the results in order to provide better grounds
for evaluation.

Figure 4.8: Line graph showing mean demand per hour for October 20 2021 in a
supermarket parking area, 20 samples.
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Figure 4.9: Line graph showing mean demand per hour for October 20 2021 in a
residential area, 20 samples.

Figure 4.10: Line graph showing mean demand per hour for October 20 2021 in a
office parking area, 20 samples.

4.5 Sensitivity Analysis
Other than the above results, a simple sensitivity analysis was performed, in which
we observed the impact of sampled/estimated values on the final result of the model.
Table 4.4 below outlines the difference of mean output when adjusting different
input, one value at a time, in order to determine the influence of the unknown
variables on the final result, with the result in this case being the mean max demand
dmax and mean max redundancy rmax over 20 samples. Values for SoC are for the
sake of the analysis given and manually adjusted, while u(SoC) will estimate a
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charging event taking place twice as often when under test. Trip records for the
commercial space was used for this analysis.

Tested Input SoC u(SoC) Factor dmax rmax

Baseline 60% 1 38.96 279.08
SOC 30% 1 194.5 866.75
u(SOC) 60% 2 173.28 1202.45

Table 4.4: Resulting outputs from the sensitivity analysis, done by artificially
adjusting the inputs SoC and the u(SoC) factor one-by-one.

Both demand and redundancy outputs are, as shown in Table 4.4, heavily influenced
by changes to SoC and u(SoC).
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5
Discussion

In this chapter we present a discussion about the presented results, the chosen
methods, and the different data that has been used in the simulations. The choice
of auxiliary functions, as well as ethical considerations are also considered. The
chapter ends with a summary of the work done in this thesis.

5.1 Evaluation of Prototype Simulations
First and foremost, one can see that the demand follows the general flow of traffic
one could expect to see in each area, in that commercial areas see employees arrive
at morning and leave later during the afternoon, supermarkets being visited mainly
during opening hours and increase after working hours, and people returning to
home in residential areas. The output of the model does correspond to these
traffic patterns, indicating some correlation with real-life scenarios – not completely
unexpected as the trip data is sourced from real vehicles.

Moreover, demand can be seen (as expected) to be lowest in residential areas, and
other areas to have a higher demand. This result is in line with expectations –
partly because the model is intended to disregard vehicles whose owners live in
the area and are expected to have private charging solutions, and partly because
the amount of parked vehicles in a residential area likely is lower than on equally
sized well-visited parking lots. In the same manner, one would expect people to be
parked longer in office areas when disregarding overnight parking, which is reflected
in the redundancy output.

The output redundancy in supermarket areas and office areas is somewhat more
consistent than the residential areas when looking at the histograms in Section
4.4.2. Since many vehicles are being excluded in the latter area due to area-specific
considerations, we believe that the redundancy variations are larger in the res-
idential area because of the relatively few vehicles contributing to the demand
and redundancy there, meaning that the sampling of u(SoC) heavily impacts the
resulting output.

The sensitivity analysis indicates that both SoC and u(SoC) has a large impact
on the output of the model. We argue that this shows that the inclusion of charge
levels and charging behaviour are of high relevance and therefore a sound inclusion
in any model using historical trip data in this manner. On the other hand, the
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large differences in output also tells us that the current assumptions and methods
for estimating these values are likely to require further refinement in future work.
We can imagine a few approaches for this purpose, which are discussed more
extensively in Section 5.8.

Finally, an interesting result is that of the demand in the supermarket parking lot
over the course of a single day. The demand is almost perfectly matched by the
supply, meaning that according to model output, the area is currently sufficiently
supplied with charging poles without any excess.

5.2 Reliance on PHEV Data
As mentioned in Section 1.3.1, only PHEV data is present in the data set. We
believe that this does not affect the general theory behind the basic model, however
– all parameters used in the model are data points that could easily be expected to
be present in data sets sourced from BEVs as well as PHEVs. The data structure
used by WirelessCar is expected to be relevant for combustion vehicles, fully electric
vehicles, and everything in between, and data from fully electric vehicles are stored
and utilized in this format already today. In other words, nothing from a technical
standpoints restricts the model from being applied to BEVs, PHEVs, or a mix of
both.

However, it would be prudent to look into possible ways to expand the model
to consider PHEVs and BEVs differently. Right now, the model does assume
all vehicles, or drivers rather, to be equal in terms of when they look to charge
the vehicle given the same SoC. For BEVs, this may be somewhat true – the
vehicle needs electricity to run, after all. For PHEVs, this is not necessarily the
case. While owning a PHEV without using the on-board battery might not be
a common occurrence, it is very simple to imagine different drivers may value
charging opportunities differently. With the given format of the trip data, it would
be possible to take this into account - given that a vehicle is a PHEV, taking a look
at previous trips may give insight about how often the vehicle tends to be driven
on electricity in contrast to combustion fuel.

One way to do this could be to consider the electricity consumption in relation
to fuel consumption and model the proportions of the total distance driven using
each. While feasible to do with the data present in the data set, there were also
some caveats that resulted in the exclusion of the value. Longer trips made which
by necessity required use of fuel could skew results heavily, for instance. While it
is possible to consider such factors in the model, time restraints and computational
times did limit us from finalizing a satisfactory method of PHEV consideration.
Exclusion of this factor was thus deemed the reasonable, if somewhat unfortunate,
choice.

To summarize the matter of PHEV data being the only available input, we did make
a conscious decision to construct a model that was general enough to apply to all
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electrical vehicles, regardless of the presence of a combution engine or not. We would
like to stress yet again that we do expect a different behaviour between drivers of
the two variants, and that expansion and improvement of the model should take
this into account; perhaps by looking into our proposed method above, a refinement
thereof, or by some completely different method.

5.3 Area Categorization
As users worldwide work together to build the OSM database, it can lack com-
pleteness in some areas, while larger cities, such as New York City, have more
accurate tags. An excellent example of this is residential areas, identified by their
roads (highway: residential) and the buildings (building: apartment, house). When
manually sampling data in known places in Gothenburg on OSM, there were several
occurrences where apartment and house buildings had no tags that indicated this,
instead only a general building tag (building: yes). Only having general tags
makes the categorization of hexes more difficult, as there are significant differences
between residential areas that could be of use in the model. An example is the
number of available charging poles, as we assume that a driver in a single household
house would install a personal charging pole while a driver living in an apartment
would have to make do with the number of charging poles that the property owner
decided to install.

If the tags in OSM were more complete (or if there was another data set for
this purpose available), the area categorization could be given more thought and
made more complex. The current model simply categorizes areas based on the
most number of buildings present in that area, but a improvement would be to
extend categorization even further. An example would be residential areas with
single-household housing, where we expect that if a vehicle belongs to a hex, i.e.
it is parked there more than 50% of the hours in a day, then the vehicle has a
private charging pole that supports it. However, as the tags for buildings, especially
residential, are lacking in quality, it is not possible to tag an area in more depth
than simply residential without manually looking at the buildings in the area or
having a personal knowledge about it.

Another possibility would be to give different type of tags different weights. The
benefit would pertain to parking spaces in particular, as some parking spaces
are tagged individually. Imagine an area where you have three large apartment
buildings that each are ten stories high, and withing the same area lies the
accompanying parking lots with one parking spot per two apartments. If these
parking spaces were individually tagged, the total amount would far surpass the
three apartment building tags, which would skew the categorization for the area.
Given a situation like described, giving individual parking spaces a lower value
than 1 could help combat this and ensure a better categorization.

Nevertheless, we have chosen to not put any extra focus on making the area
categorization better as this is not the primary objective of the project but rather

35



5. Discussion

an aid to the proposed model. Since we are manually picking out areas to run
simulations on, we ensure that the areas picked we have personal knowledge of
and can vouch for their categorization to be correct. If the model was to be used
in a real-life scenario, the area categorization would be a component requiring
some care in order to be useful; improvements could be done either by applying a
more correct categorization method or improving the data set, or by limiting the
use of the model to in areas which could be categorized manually as in the simulation.

Area categorization does not need to be limited to the different categorized as shown
in this work – the chosen variations of areas is mainly used to provide an example
of how driver behaviour may differ between certain areas and how this feature of
the model attempts to include these differences. It would be reasonable for any
application of this model to adjust area categorization based on prior observations
and data of the modelled area when striving for higher accuracy.

5.4 Area Division
The usage of H3 hexes in our prototype and model is not a necessity – much like the
area categorization, area division may be done in a way that fits the applications. In
our case, H3 hexes are an easy and portable alternative to more complex geofences,
which could be used to more accurately covering areas of interest and, if done with
enough detail, simplify area categorization by virtue of dividing an area into a
single-purpose area, such as enclosing a residential area in a geofence and leaving
out areas used for any other purpose.

The area division does come with some caveats, however – in particular, we noticed
that it is not uncommon for vehicles to report differing positions for two sequential
trips, something that is may very likely be attributed to GPS inaccuracy. This
causes some problems when a starting trip positions happens to be reported outside
the boundary of a modelled area, as a single vehicle would be expected to start from
the same area as it previously stopped, barring some very special circumstances.
There are some ways to get around this – for our simulation, we opted to filter out
any sequences of start/stop actions so that any given vehicle "stop" event in a area
would also be followed by an corresponding "start" event. Another option could be
to not consider the location of a starting position for a vehicle and simply use the
latest stopping positions, assuming no movement at time of engine off. Whichever
method is chosen to alleviate the issue, it is likely that any complex area division
needs to consider erroneous GPS positioning when defining boundaries.

5.5 Prototype Area Selection
As previously mentioned, 3 areas were cherry picked to use in the implementation
of the prototype. This was mainly done to be able to have an understanding if
the results were feasible, as choosing an area of size 0.1 km2 in Sweden at random
would leave us with little room for analyzing the results without first learning more
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about the area itself. As only about 3% of the total area in Sweden is measured
to be built-up land (i.e. not forests, agricultural land and similar), the chance
of choosing a urban area at random is very small [22]. We decided to omit the
previously mentioned specific area categorization from this process, as any method
of area categorization could be used, and the model itself was the main thing to be
tested. Therefore, we proceeded to look at the whole city of Gothenburg to find
suitable areas.

Before selecting specific areas, we decided that we wanted to include 3 different
types of areas in the selection, as we expected the traffic patterns in these to differ
from each other. First, we wanted a residential area and a workplace area, to see
if the traffic in these would mirror each other, as people leave home to go to work
and vice versa. We also wanted to find a commercial area, the primary challenge
here was selecting an area with a broad scope of visitors. The area chosen was a
supermarket parking area, which was deemed as a good choice as everyone needs to
buy food, while a spa, for example, would have a much smaller clientele. It should
be mentioned that the supermarket is a large store located in central Gothenburg,
which may mean that most of the shoppers there live in the vicinity or passes by
on their way home or to work. This would be true for most areas, and could be
a factor that should be taken into account if wanting to consider socio-economic
differences between areas.

To make the final selection of areas, we looked for hexes where the bounded area
consisted of as much of the type of relevant area as possible. Some of the other
areas considered were not chosen due to them being split into two or more hexes.
This could of course affect the results of prototyping, as the intended target areas
did not perfectly match the hexagon boundaries, but we considered the areas to be
relevant and well-defined enough for our purpose. Constructing our own geofences
could certainly help alleviate this issue.

If there was more time available, we would like to have several different areas of the
same type and make comparisons between them. Another possibility would be to
"build" areas from sets of higher resolution hexagons. In the interest of maintaining
the same size of compared areas, we opted to simply pick single hexagons – as a
part of evaluating the results, we wanted to see if areas of similar size would result
in differing demand dependent on the expected level of traffic in each such area,
without the need of considering size differences.

Overall, there are a set of improvements and considerations to be made for further
prototyping. We deemed the few handpicked areas a good start to begin looking at
the result, and argue that the chosen areas allow us to compare traffic over time and
intensity of said traffic as described in the beginning of the chapter. Furthermore,
these areas allowed us to verify the existing supply and, if necessary, visit them.
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5.6 Available Data
In this section, we discuss the merits of the data available to us, as well as other
data points that could prove useful but are non-existent within the provided data
set. Refer to the appendix for complete lists of available data used for prototyping.

While the data set is proprietary data, the company handles several brands and opts
to use the format described in the appendix to store vehicle trip data in a general
format. This indicated that it is not unreasonable to assume that vehicles tend to
be able to report their position and the time of which such readings are made – the
data required is in that regard quite basic and the model should therefore be usable
for any actor with access historical vehicle data, as the non-vehicle related data is
either open or available as a service offering.

We have previously mentioned that the data set contains data from the last three
months only, as older data is removed due to privacy reasons. Having only recent
data to analyze provides both benefits and disadvantages. A benefit with using
recent data is that it raises the confidence about the data correctly representing the
current state of the areas in question, as many changes can happen in three months
time. Owner of vehicles can change jobs, or they can move, and thereby change
their vehicle movement patterns and areas where they add to the demand.

Using solely recent data could also be a disadvantage; by only considering the
vehicle movements during the last three months we increase the risk of presenting a
model that is accurate during one part of the year, but highly inaccurate during the
rest. An example of this could be a parking area near a popular beach. During the
summer months, the parking spaces can be expected to be filled to the brim with
vehicles during the whole day. The months leading up to summer and the early fall
months may also have a higher frequency of parking events. But during the winter
months, we can probably expect there to be close to no vehicles parked there at all.

With this in mind, an idea to possibly work around this is to run the model as often
you see fit, with the latest data as input, and save each result in order to collect
historical data. This could, for example, be done once a month with the result being
saved for a year until it is updated with the new result from the latest data. This
ensures that there is historical data over all the months of the year, even though the
input data from each of the months may not be available, which in turn will take
seasonal differences in parking events into account.

5.7 Public Charging Infrastructure Data
A difficulty that we encountered early on in the project was the lack of official
Swedish data on publicly available charging poles. We opted to use the public
NOBIL database since it had an API that the data could be accessed from. NOBIL
is the product of a cooperation between Norwegian Electric Vehicle Association
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and Enova, a state-owned norwegian company that brings financial aid to environ-
mentally friendly actions. Another reasonable data source could be Open Charge
Map, a crowd-sourced service in the like of Open Street Map, which actually lists
NOBIL as a data provider. However, the problem with these sources are that they
lack data about some existing charging poles, and that they depend on the public
to add this data. To add a charging pole, you need to supply information about
the exact location in coordinates, as well as the available charge types and more,
meaning that the person needs to put in some effort.

We experienced the issue about missing charging poles for one of our three chosen
areas, the supermarket parking lot, where we personally know that there are a
number of charging poles installed and working, and has been for at least a year
prior. The supermarket is one of the largest in the Gothenburg area, so if these
charging poles have not been registered in the named databases, how can we expect
there to be a complete registry of available charging poles in less frequently visited
places? We did, however, find that at least one provider (uppladdning.nu) had
the charging poles at the supermarket listed, and opted to use this data instead.
This issue exemplifies the importance of having complete and correct data for the
model, but as the adoption rate of EV’s increase, it should be expected the quality
of these API’s to improve with time. It might also be possible that there exists
other sources that are more complete, publicly accessible or otherwise.

All in all, for a more extensive use of the model, the source of data for public charging
infrastructure needs to be thoroughly evaluated to ensure that the data is correct
and complete.

5.8 Choice of Auxiliary Functions
As one might notice, there are several occurrences of simplified functions and as-
sumptions used in the model. In general, these functions and features are handled
this way as the scope of the project does not grant the time required for complex
modeling of all these aspects. With the main goal being to explore and propose
uses of the vehicle data for the purpose of evaluating charging infrastructure, these
auxiliary functions are one of the ways the model may see improvement.

5.8.1 State of Charge
As we have mentioned in Section 2.1, there are several data points that are collected
by the vehicle but not available in the dataset. The most important example of
this is the vehicles SoC. For an EV, the SoC metric is equivalent to a combustion
vehicles fuel level metric. As the Soc value is not available, we are currently giving
vehicles a value by random sampling from a normal distribution. Since there are
important components of the model that are dependent on the SoC value, having
the true SoC value would be a significant improvement for the model.
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With the SoC value unavailable and requiring an estimate, we would like to propose
some future options for improving said estimation; the normal distribution is after
all a very naive solution, but more elaborate methods would most likely require a
fairly intricate model in and of itself which put these options out of scope for this
project. We can suggest two different approaches; SoC could be more reasonable
estimated either through the development of a more intricate distribution for this
purpose, which could be used to more accurately represent the patterns of EV
drivers, or through the use of the electricity consumption data available for each trip.

In the first case, looking at the work of Quirós-Tortós et al., we see the development
of a statistical model for some key metrics of EV use [18], creating Gaussian
Mixture Models (essentially combinations of several normal distribution) in order to
represent the charging seen in real-life scenarios. The obvious caveat in attempting
this method is that it would most likely require correct SoC readings to begin with
to allow for its creation. Regardless, if such a representation was to be developed,
the naive normal distribution used for sampling a SoC in our prototype could be
replaced with a (hopefully) more accurate distribution.

A second possible way of more accurately estimating the SoC of a vehicle would
be to use the historical data for this purpose, as the electrical consumption per
trip of a vehicle is included in the data. The major disadvantage in doing this is
of course that the historical trip data in itself does not grant any knowledge of
when the vehicle recharges the batteries, still requiring some baseline estimates to
be made about the SoC. However, these estimates could be made more limited.
An example of how to do so would be to assume that any PHEV parked overnight
in a residential area is fully charged in the morning; the assumption is that the
driver parks on private property with access to a outlet, and that the capacity
of the PHEV is low enough for it to be likely to be fully charged overnight even
with slow charging. By looking at the electrical consumption over the course of
the day, it might be possible to draw some conclusions based on the actual data;
if the total consumption of electricity for a given day is larger than the capacity,
then the vehicle must have been charged at least one, for instance. Similarly, if a
vehicle were to report no electrical consumption for a trip, it would be reasonable
to believe that the battery was empty when starting the trip.

Finally, the most viable solution would be to just include SoC in the historical data.
For this particular data set, we know that SoC is actually a metric that is sent to
WirelessCar today. It is not included in this work as it is saved as a snapshot value
which is not put in a historical context (i.e. the trip data). So in theory, the data is
present to include SoC in trip entries going forward, which would eliminate the need
for assumptions and estimations of SoC. It would not be unreasonable to assume
that vehicles using electrical propulsion in some manner are able to report their SoC
in the context of trips, regardless of manufacturer – the suggested way forward for
producers and data processors alike would be to simply arrange for this addition.
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5.8.2 Charging Probability Density
While the probability of a vehicle beginning a charging session given a certain
SoC tends to resemble a normal distribution, the main points of improvement
regarding this function is twofold: the resolution of the discrete probability used in
the prototype could be higher, and there could be separate distributions depending
on if the vehicle in question is a BEV and PHEV. It would be reasonable to
assume that a driver of a PHEV could at times forgo charging for convenience
while this is not a possibility for a BEV driver. It would then be reasonable to
believe that PHEVs have an increased probability of charge at lower SoCs rather
than the middling values. Given available data for this disparity, the model could
be adjusted to account for this. Even more so, this could be considered on a
vehicle-per-vehicle basis.

Similarly to SoC, u(SoC) would not require estimation with the right data available
– both vehicles and charging stations alike are able to report their status given a
time, but unlike SoC the relation to trip data is not as apparent. As the parking
events we use are a derivative from trip data which could be enriched with a
starting SoC or ending SoC, charging events happen when the vehicle is not in
motion and would either require some work to pair with trip data as it is saved
today, or beginning to log parking events as well.

If the SoC is made available there is another option – inferring charging events using
the difference in SoC between trips. If vehicles were to report their SoC at both
start and end of trips, this could generally indicate if charging takes place or not.
There could be some edge cases where the vehicle has only charged for some part
of the parking duration and used battery for e.g. heating after that which would
result in false negatives, but in general a trip starting with higher SoC than the
same vehicle had at the last stop would indicate that charging took place when the
vehicle was parked.

5.8.3 Alternate Charging Probability Considerations
After evaluation of the prototype, a need for a different model for charging
probability has become apparent. The main issue is that the u(SoC) as it is used
on the model is deriving a probability of charging from trends of driver charging
behaviour. The issue becomes clear when we consider an example case. Assume a
driver of a BEV with a SoC of 5% SoC. The probability of the driver charging the
vehicle should be expected to approach 1 as the SoC continues to approach 0, as
the vehicle is simply inoperable at 0% SoC.

By looking at trends of when drivers are most likely to charge, we do not consider
the probability of an individual driver who is running low on charge. The charging
probability distribution should therefore be changed to reflect this behaviour. We
may argue that such a distribution should approach a charging probability of 1 as
the SoC approached 0 as alluded to above, and that the probability of charge at high
SoC should be significantly less, even more so when taking into account that good
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battery maintenance involves avoiding unnecessary charging. The issue is further
exacerbated when we consider that PHEVs and BEVs likely experience different
charging patterns. While studies exist that show general trends of EV usage (like
the one that the original u(SoC) is based on), we have been unable to find data
that accounts for individual drivers. Any alternate probability distribution for this
purpose should be based on such data. Such data may be collected by surveying
PHEV and BEV owners. Nevertheless, we now consider this to be one of the main
usages of reporting SoC on trip beginning and end – it would allow for this problem
to be bypassed as there would no longer be a need for a probabilistic model at all,
instead inferring charging events from increased SoC after a parking event.

5.9 Ethical Considerations
The primary ethical consideration of this work and the potential outcome is that
of privacy. While consent of data collection is given by owners already today, that
consent likely does not extend to the usage of historical vehicle movement analysis,
and as such, any future implementation of the developed method should require
consent from drivers to have their data collected. Of course, the development of
the method should be done with the intent that all data used should consist of
anonymous data aggregates and should not require the exposure of any particular
individual.

Similarly, we have worked with anonymised data for the development of the
prototype and simulations as well. While the data has been anonymised, we
have kept the possibility to differentiate unique vehicles. This is solely due
to the functions specific_demand() and has_relation(), which both require the
ability to identify a unique vehicle. These functions are tied to residential areas,
and does not currently affect any other types of areas. This also means that
if area categorization was done differently, or if the model was used to investi-
gate commercial areas only, the need to differentiate unique vehicles would not exist.

Since aggregate data is preferable from a privacy standpoint, some care should also
be taken in chosen which area to apply the model to – it is desirable to have a
reasonable sample size to work with, even if vehicles are not able to be identified
directly. This is due to the fact that drivers habits and schedules should not be able
to be identified, which means that in order to apply the model one should strive to
include at least some variety in order to obscure individual drivers.

5.10 Summary
In this thesis we have developed a mathematical model for calculating the electrical
demand and redundancy in a given area and time. A prototype of the mathematical
model was created and historical vehicle movement data provided by WirelessCar
was used as input for the relevant areas. In prototyping the proposed model for
three different areas, a residential area, a office area, and a supermarket parking
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area, the results show that the output follows expected traffic patterns in said areas,
while still being heavily impacted by our proposed additions to the existing data.
The most important additions of auxiliary data was State of Charge and Charging
Probability Density, and results from a sensitivity analysis on these parameters
showed that changing these input values had large effect on the output.

As the two aforementioned values pertaining to the state of the battery are
estimated using stochastic variables, the resulting output between samplings varies.
Because of the impact these parameters have, more sophisticated methods of
estimating them would be the best way to further improve on the model. There is
in fact feasible methods for determining these values without the need to estimate,
making the acquisition of the true State of Charge value the best way forward for
any future prospects of improving the model.
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A
Appendix 1

This appendix describes the format of the data used in this thesis, in the same
groupings as it is gathered and stored today. It follows no particular standard as it
is proprietary data.

A.1 Datapoints of Vehicle Configurations
A vehicle configuration data object contains some basic information about the ve-
hicles performing the trips in the data set.

A.1.1 id
A unique identifier for the vehicle.

A.1.2 yearmodel
The year of make of the vehicle. Not necessarily the year it was made - model years
start early and are often one year ahead of the current year (meaning year model
2022 may be manufactured already in 2021, for instance).

A.1.3 gearboxid
A simple id for gearbox type. Not used in the model.

A.1.4 gearboxtype
Readable description of gearbox type, e.g. ’Automatic’. Not used in the model.

A.1.5 colourid
Internal identification number of colour of vehicle. Irrelevant for this work.

A.1.6 colourname
The name of the colour denoted by colourid. Irrelevant for this work.
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A.1.7 vehiclehandle
An identifier for the vehicle. Usually equal to the VIN (vehicle identification num-
ber), but for this work the data is hashed for privacy purposes.

A.1.8 country_iso2
Two-letter country code of the vehicle’s country of registration.

A.2 Datapoints of Trips
A trip data object is a top-level data container that contains some very basic infor-
mation about the trip. The data in these objects are not overly informative, but
serve as a root of trip-related data. The data points in these object are as follows:

A.2.1 id
A unique identifier for the trip.

A.2.2 category
A category of the trip - trips may be classified as private trips or business trips, or
as "unassigned" if not specified.

A.2.3 starttime
UTC Timestamp denoting start of trip. In practice, the point of time in which the
engine is turned on.

A.2.4 endtime
UTC Timestamp denoting end of trip. In practice, the point of time in which the
engine is turned off.

A.2.5 vehiclehandle
An identifier for the vehicle. Usually equal to the VIN (vehicle identification num-
ber), but for this work the data is hashed for privacy purposes.

A.3 Datapoints of Trip Details
Trip details are supplementary data points connected to a trip. It contains several
details regarding the location and fuel consumption of the trip and is the main data
object used for analysis in this project.
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A.3.1 id
A unique identifier for the trip details. This is not the same id as for the trip data
outlined above (see trip_id).

A.3.2 trip_id
The identifier of the trip which this data object pertains to.

A.3.3 startlongitude
The longitude coordinate of the trip starting point, with 6 decimal precision.

A.3.4 startlatitude
The latitude coordinate of the trip starting point, with 6 decimal precision.

A.3.5 endlongitude
The longitude coordinate of the trip ending point, with 6 decimal precision.

A.3.6 endlatitude
The latitude coordinate of the trip ending point, with 6 decimal precision.

A.3.7 starttime
UTC timestamp denoting starting time of trip, precise to the second.

A.3.8 endtime
UTC timestamp denoting starting time of trip, precise to the second.

A.3.9 startodometer
Odometer reading from the vehicle at time of departure. Expressed in meters.

A.3.10 endodometer
Odometer reading from the vehicle at time of arrival. Expressed in meters.

A.3.11 fuelconsumption
Total consumption of liquid fuel over the course of the trip. Diesel or gasoline.
Expressed in centiliters.
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A.3.12 electricalconsumption
Total onsumption of electricity (for propulsion purposes) over the course of the trip.
Expressed in Watt/hours

A.3.13 startstreetaddress
The address from which the trip started, as given by the Google Reverse Geocode
API when provided with starting coordinates.

A.3.14 endstreetaddress
The address on which the trip ends, as given by the Google Reverse Geocode API
when provided with starting coordinates.

A.3.15 startregion
The region in which the trip started, as given by the Google Reverse Geocode API
when provided with starting coordinates.

A.3.16 endregion
The region in which the trip started, as given by the Google Reverse Geocode API
when provided with ending coordinates.

A.3.17 startcity
The city in which the trip started, as given by the Google Reverse Geocode API
when provided with starting coordinates.

A.3.18 endcity
The city in which the trip started, as given by the Google Reverse Geocode API
when provided with ending coordinates.

A.3.19 starttime
UTC Timestamp denoting start of trip. In practice, the point of time in which the
engine is turned on. Same timestamp as in the trip data object.

A.3.20 endtime
UTC Timestamp denoting end of trip. In practice, the point of time in which the
engine is turned off. Same timestamp as in the trip data object.

A.3.21 startpostalcode
The postal code of the area from which the trip begins.
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A.3.22 endpostalcode
The postal code of the area in which the trip ends.

A.3.23 startregion
The region in which the trip started, as calculated by the Google Reverse Geocode
API when provided with trip starting coordinates.

A.3.24 endregion
The region in which the trip started, as calculated by the Google Reverse Geocode
API when provided with trip ending coordinates.

A.3.25 startiso2countrycode
Two-letter ISO country code of the country in which the trip begins.

A.3.26 endiso2countrycode
Two-letter ISO country code of the country in which the trip ends.

A.3.27 electricalregeneration
How much electricity is regenerated by vehicles over the course of the trip. Value is
0 for all non-HEVs.

A.3.28 tripwaypointsnbrof
Number of saved waypoints as part of the trip. A waypoint is a timestamped
longitude-latitude pair that corresponds to a location the vehicle passed at some
point over the course of the trip. Used for re-tracing the route taken. Actual
waypoint data not provided as part of this project and stated to not be used for all
vehicle models.

A.3.29 tripwaypointsminlongitude
The minimum longitude of all trip waypoints, if any.

A.3.30 tripwaypointsmaxlongitude
The maximum longitude of all trip waypoints, if any.

A.3.31 tripwaypointsminlatitude
The minimum latitude of all trip waypoints, if any.

V



A. Appendix 1

A.3.32 tripwaypointsmaxlatitude
The maximum latitude of all trip waypoints, if any.

A.3.33 tripwaypointsnbrof
The number of waypoints logged as part of the trip.
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This appendix lists a few naive suggestions on how to estimate the number of private
charging stations in an area depending on what category the area belongs to. In
this case, the OpenStreetMap Overpass API was used to categorize areas and the
suggestions are thus based on the features used in this data set. More sophisticated
or complex estimations may be used in the model, given that as there for each
category exists some function that estimates the number of non-public charging
stations in the area. If the modelled area is known, then this modelling may be
superfluous and adjusting according to knowledge of the area instead.

B.1 Amenity: Parking

An area designated as a parking area is assumed to mainly consist of (public) parking
lots. The estimated number of private charging stations in these areas are 0 - it is
assumed that charging poles in these areas are public and exists in the data set of
public charging stations.

B.2 Land use: Commercial

An area is designated as commercial if there mainly exists offices and non-consumer
company facilities within the area. The number of private charging stations in these
areas are likely to vary, but a naive way to estimate charging stations is to start
with estimating the number of parking spots in the area. This may be done by
calculating the average number of all vehicles parked in the area at weekdays at
10.00; it is assumed employees have arrived at this time and have yet to leave for
lunch. Then, we can make a very rough estimate of the proportion of parking spots
that have charging stations installed. In Sweden, a resolution from 2020 states
that newly produced non-residential buildings with connected parking lots require
charging outlets for at least one fifth of the spaces, suggesting that the current
proportion of such spaces is significantly smaller than 20%. A naive guess would put
our suggested estimate at 5%, meaning that we would assume there to be charging
opportunities for the same number of vehicles. Of
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B.3 Land use: Industrial
An area is designated as industrial area if the area mostly consists of factories and
warehouses. The same estimate as for commercial land is used here.

B.4 Land use: Retail
An area with mainly shops and stores. For these areas, we assume 0 non-public
charging poles – we expect parking areas for customer use to be present in nearby
areas, and any charging stations in these areas to be public.

B.5 Highway: Residential
Residential areas are where people generally live – for the areas covered by the
prototype, they generally correspond to single household building and will be used
as such in this example. The amount of non-public charging stations in this area
is estimated as 0 - not because no charging opportunities exist, but because the
charging possibilities of house owners in the area is better modelled as a decrease
in demand for some particular vehicles rather than an increase in supply, as the
existing supply is tied to the respective houses (and the vehicles that tend to be
parked there) and not expected to be available to anyone in the area.

B.6 Building: Apartment
Apartment areas (or rather, areas with mainly apartment buildings) and their mul-
tiple households are difficult to estimate, as parking spaces may be either dedicated
or public. For public spaces, it should be expected that charging poles are available
in place. Similarly to residential areas, dedicated spaces are not expected to be ac-
cessible to everyone, and thus any existing charging points on those spaces are better
modelled as a demand decrease for specific vehicles, described more in appendix C.

B.7 Building: House
An area mainly filled with this feature is a residential single household area, see
section B.6.

B.8 Building: Office
An area mainly filled with this feature is a commercial space, see B.2.
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This appendix list a few suggestions on how to model a vehicle-specific reduction of
demand in specific areas. Functions could be specific to particular areas, or apply
generally to a category of areas as exemplified in B. In the following examples, we
define functions that apply to areas with certain categories only, along with a default
function for any areas not of the aforementioned categories.

C.1 Residential Areas
In areas categorized as residential (both for single houses and apartment), vehicle
demand will be using the default model for demand unless the vehicle spends more
than 50% of its total parked time in this particular area, indicating that the owner
lives in a building in the area. It may then be assumed that the owner has access
to private charging station which is likely dedicated to that particular vehicle, with
the motivation that it is not economically feasible to buy an EV without access
to reliable charging today. 50% is a rough estimate of the time an average person
spends at home in general. For vehicles matching these criteria, their demand dv

for these particular areas are 0 for the purpose of the model.

C.2 Default Demand by Area
Default demand in an area applies to all vehicles in area other than residential areas
as described above, and to vehicles in residential areas spending less than 50% of
their parked time there; in other words, simply dv = m ∗ p(SoC).
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