
.

Practical implementation of information flow in
Paragon

THESIS FOR THE MASTERS DEGREE SECURE AND DEPENDABLE COMPUTER SYSTEMS

JAVED NAZIR

Division of Computer Engineering

Department of Computer Science & Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2012

The Author grants to Chalmers University of Technology the non-exclusive right to pub-

lish the Work electronically and in a non-commercial purpose make it accessible on the

Internet. The Author warrants that he/she is the author to the Work, and warrants that the

Work does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author war-

rants hereby that he/she has obtained any necessary permission from this third party to let

Chalmers University of Technology store the Work electronically and make it accessible

on the Internet.

Practical implementation of information flow in Paragon

Javed Nazir

Copyright c© Javed Nazir, 2012.

Department of Computer Science & Engineering

Division of Computer Engineering

Chalmers University of Technology

SE-412 96 GÖTEBORG, Sweden

Phone: +46 (0)31-772 10 00

Author e-mail: nazir@student.chalmers.se

Printed by Chalmers Library

Göteborg Sweden, 2012

Practical implementation of information flow in Paragon

Javed Nazir

Division of Computer Engineering, Chalmers University of Technology

ABSTRACT
Paragon is a newly developed language by the security research group of Chalmers

University of Technology, Sweden. The major task of my thesis work is practical im-

plementation of a real world problem in Paragon. I have chosen mental poker game to

implement in Paragon. Another part of my thesis work is to compare Paragon with Jif,

with respect to how convenient implementation is in the two languages, and how well

Paragon achieves the goal of improving on the limitations of Jif. After implementating the

case study in Paragon, and comparing Paragon and Jif, I conclude that Paragon is able to

provide more precise guarantees than Jif.

Keywords: Information flow, Paragon, Mental poker implementation, Jif implementation, Jif Vs

Paragon

ii

Acknowledgments

All praises to almighty Allah for the strengths and His blessing for providing me this oppor-

tunity and granting me the capability to proceed successfully. I am grateful to the following

people for what they have done for me, for my career, and for this thesis.

. Niklas Broberg for his supervision and constant support. His inestimable help of

constructive comments and suggestions throughout the thesis works have contributed

to the success of this research.

. David Sands my examiner who has provided great research topic to work on.

. I would like to express my appreciation to all my colleagues and friends for their

kindness, technical and moral support during my study.

. Last but not the least, I would like to thank my family members especially my parents

and Sajid Hussain for always encouraging and believing in me.

Javed Nazir

Göteborg, November 2012

iii

iv ACKNOWLEDGMENTS

Contents

Abstract i

Acknowledgments iii

1 Introduction 1
1.1 Information flow security . 2

1.1.1 Information flow Vs Access control 3

1.2 Noninterference . 5

1.3 Security Policy . 6

1.3.1 Bell and La Padula security model 6

1.4 Language based security . 7

1.4.1 Explicit information control . 7

1.4.2 Implicit information control . 8

1.5 Security typed language . 8

1.6 Objective . 8

1.7 Outline . 9

2 Java Information Flow 11
2.1 Decentralized label model . 11

2.1.1 Principal . 12

2.1.2 Label . 12

2.2 Jif syntax . 13

v

vi CONTENTS

2.2.1 Variable declaration in Jif . 13

2.2.2 Method declaration . 14

2.2.3 Method constraints . 15

2.2.4 Exceptions . 15

2.2.5 Parameterized classes . 15

2.2.6 Array labels . 16

3 Mental Poker Protocol (MP) 19
3.1 Protocol objective . 20

3.2 Protocol Analysis . 21

3.3 Protocol process . 22

3.3.1 Declassification . 23

3.4 Java implementation of mental poker . 24

3.5 Jif implementation . 26

3.5.1 Java signatures Vs Jif Signatures 26

3.6 Declassification in the Jif implementation 27

4 Paragon Background 29
4.1 Actor . 29

4.2 Locks . 30

4.3 Policy . 31

4.4 Modifiers in Paragon . 31

4.4.1 Read policy with variables . 32

4.4.2 Read policy with arrays . 32

4.5 Policy-polymorphic methods . 32

4.6 Parameterized class . 33

5 Implementation Methodology 35
5.1 Mechanical Translation . 36

5.2 Java library . 37

5.3 Paragon Implementation of mental poker 37

CONTENTS vii

5.3.1 Temporal properties and trusted declassification in Paragon imple-

mentation . 38

5.3.2 Jif implementation vs Paragon Implementation 40

5.4 Implementation Conclusion . 42

6 Conclusion and future work 43
6.1 Conclusion . 43

6.2 Future work . 45

Bibliography . 46

viii CONTENTS

List of Figures

3.1 Java implementation of mental poker. 25

3.2 Java signatures Vs Jif signatures for secret and public variables. 27

5.1 Temporal properties and trusted declassification in Paragon. 38

5.2 Jif implementation vs Paragon implementation. 40

5.3 Jif and Paragon Methods and Exception comparison table. 41

ix

x LIST OF FIGURES

1
Introduction

Today, securing sensitive information from malicious use is becoming an increasingly im-

portant problem to overcome. This problem is emphasized as computer and internet tech-

nology becomes more and more prevalent. A user with limited access to a system can

use vulnerabilities to attack the system, to gain or manipulate sensitive information. Often

these vulnerabilities are caused by inadequate implementations of software in the system.

Examples include faulty implementations of security protocols, improper use of crypto-

graphic primitives, or flawed security models.

There are generally three types of attacks[4,5]:

• Confidentiality, which means that the attacker tries to obtain secret data.

• Integrity, which means that the attacker tries to change sensitive data.

1

2 CHAPTER 1. INTRODUCTION

• Availability, which means that the attacker tries to interrupt users who can legiti-

mately access the system.

These three attacks are related to each other in the sense that results from one attack can

also be used to help another attack. During program execution, information flow analysis

tracks how information propagates to ensure that the information is securely handled in

the program. In information flow analysis the confidentially and integrity categories are

typically related.

It is important to apply some policies to data when information is moving from one

place to another for the purpose of secrecy. Consider for example a cryptographic pro-

tocols, where a fresh shared key is used between two peers to prevent an attacker from

stealing information by eavesdropping on network traffic.

In secure information flow illegal flow of data is not allowed. A policy specifies what

flows are legal, and the security levels of the data. A legal path means information can flow

among given security classes.

In a simple example, variables are categorized into two security levels. These two levels

are public, and secret (in other words low, and high). The purpose of this categorization is

to keep secret data away from public variables. In more complex scenarios we could work

with a lattice of security levels, where it is ensured that sensitive information is only flows

upwards in the lattice[6, 7].

1.1 Information flow security

Information flow security [8] means that the computations of programs involves an in-

formation flow analysis. An information leak can occur by an illegal assignment, e.g.

low := high, or through termination or nontermination of a program, for example

while high != 0 do skip

It is also possible to leak information through the program control flow:

1.1. INFORMATION FLOW SECURITY 3

C:\Users\Javed\workspace\test\src\Player.java Sunday, December 09, 2012 12:03 AM

if(high == 0)

{

low=1;

else

low := 1;

}

-1-

Explicit and implicit flow of data is leaked through program variables as described

above. There are also other, so called covert channels which can be divided into different

categories for signaling information[8]:

• Termination or nontermination of a computation in a program, called termination

channels.

• Time at which some actions occur, called timing channels.

• When probability distribution of data is changed, called probabilistic channels.

• By checking the power consumption, called power channels.

• By checking exhaustion of shared resources, called resource exhaustion.

1.1.1 Information flow Vs Access control

Information flow security is a useful complement to traditional security mechanisms like

cryptography and access control because it can enforce different security policies.

Access-control mechanisms grant or deny access to a piece of data at particular points

during the system’s execution. For example, the read-write permissions provided by a file

system prevent unauthorized processes from accessing the data at the point when they try

to open the file. Such discretionary access controls are widely used [10,11] in practice.

A security-typed language can provide end-to-end protection which means that the data

is protected throughout the duration of the computation. To understand the difference be-

tween information flow and access control consider this policy: "the information contained

4 CHAPTER 1. INTRODUCTION

in this e-mail may be obtained only by me and the recipient." Because it controls informa-

tion rather than access, this policy is considerably stronger than the similar access-control

policy: "only processes authorized by me or the recipient may open the file containing the

e-mail." The latter policy does not prohibit the recipient process from forwarding the con-

tents of the e-mail to some third party.

The below examples describe scenarios where access control and cryptography are in-

sufficient to protect confidential data, but information flow control can be used[12]:

1. A web-based auction service is used to bid on merchandise. Anyone may bid on

items with their price, but they are not allowed to see other customer’s bid prices.

Because the customers do not necessarily trust the auction service, the customer’s

machines share information sufficient to determine whether the auction service has

been honest. When the bidding deadline finished, the auction service reveals infor-

mation about the winning bid. Security policies that govern how data is handled in

this auction scenario can potentially be complex. Access control and encryption are

definitely beneficial techniques for enforcing these policies, but the customer auction

server and software can be developed in a security-typed language to ensure that bids

are not leaked.

2. It would be difficult to enforce that a sender of an email regulates how a recipient uses

email via access control because it is an information flow policy. While cryptography

would almost certainly be used to protect confidential email and for authenticating

users, a security-typed language could be used to write the email software.

3. A user who uses accounting software wants an assurance that the accounting soft-

ware doesn’t send her credit information to the Internet whenever it queries a database

on the web. The software company does not want the user to download the database

because then a competitor might get proprietary information. However, the account-

ing software, is available to download from the company’s web site.

Security-typed languages provide the possibility to verify user’s home computer af-

1.2. NONINTERFERENCE 5

ter downloading software. This verification process gives assurance that it will not

leak any confidential data, even though it communicates with the database.

4. Many programs written in C are vulnerable to buffer overrun and format string errors

but, C standard libraries do not check the length of the strings. As a result of it,

if a string obtained from an untrustworthy source is passed to one of these library

routines and parts of memory may be overwritten with untrustworthy data. This

vulnerability can be used to execute an arbitrary program such as a virus.

Security-typed languages can prevent these vulnerabilities by specifying that library

routines require high integrity arguments [13,14].

1.2 Noninterference

Goguen and Meseguer introduced non-interfering in 1982 [9] as the property that "one

group of variables/users/processes by using a specific commands is noninterfering with

another group of users if and only if these commands does not effect on another group".

Noninterference is a basic information flow policy enforced by security-typed lan-

guages. All implicit and explicit flows are prohibited from Secret to Public. Noninterfer-

ence also holds for integrity. Tainted variables should not be able to influence the contents

of Untainted variables. So, security analysis should also rule out implicit and explicit flows

from Tainted to Untainted.

Data confidentiality demands that private information should never be revealed to unau-

thorized users. A program can maintain its data confidentiality property by preserving data

to reveal in public outputs. If public data is influenced by confidential data then variation

on secret data will produce the difference in output, which is observable.

Security-typed languages are designed to ensure noninterference, but noninterference is

often not the desired policy in practice. Many useful security policies can leak confidential

information. For example, passwords are Secret but the operating system authentication

6 CHAPTER 1. INTRODUCTION

mechanism reveals information about the passwords - namely whether a user has entered

the correct password.

Practical security-typed languages include declassification mechanisms that allow con-

trolled release of confidential data, relaxing the strict requirements of noninterference.

1.3 Security Policy

Security policies are sets of rules that describe the sensitivity level of data and how data

should be secured. Therefore, security polices are very important to design and enforce

for secure information flow. The purpose of a policy is to maintain data integrity and data

confidentiality. If the correct policy is designed and enforced on sensitive data then misuse

of sensitive data by an unauthorized intruder can be prevented. Different types of security

policy models are available such as the Military security policy, the Commercial Security

policy and the Bell and La Padula policy model. Each of them resists read/write of data

from unauthorized users.

1.3.1 Bell and La Padula security model

The Bell and La Padula security model provides secure information flow by providing

specifying paths of information flow. Two properties characterize the secure flow of in-

formation. Before understanding properties consider a security system with the following

properties. The system covers a set of subjects S and a set of objects O. Each subject s in S

and each object o in O has a fixed security class C(s) and C(o) where C is a Clearance. A

clearance is an indication that a person is trusted to access information up to a certain level

of sensitivity and that the person needs to know certain categories of sensitive information.

Simple Security Property

A subject s may have read flow to an object o only if C(o) <= C(s). The purpose of the

simple security property is to restrict read flow of an object if the object wants to read

1.4. LANGUAGE BASED SECURITY 7

higher clearance level information.

*-Property

A subject s who has read access to an object o may have write flow to an object p only if

C(o) <= C(p). The * property restricts write flow of data towards those objects which are

lower in clearance level.

1.4 Language based security

Conventional programming languages do not provide security for information flow. In

programs there are different ways to leak information from a running program. Typically

confidentiality and integrity can be achieved by language based security while availability

is dependent at system level security. Language based security uses security type systems

to check flow of program.

Explicit and Implicit flows leak information. Using language based security we can

handle implicit and explicit flow of information. Here is an example for leakage of infor-

mation flow. Let us consider variable secret with a highly secret and leak with a low secret

value. Variable secret should not assign directly to variable leak.

1.4.1 Explicit information control

If value of secret is directly assigned to variable leak then this is an explicit flow and ex-

plicit flows are not allowed in secure information flow.

Leak=secret;

Conventional programming languages permit this assignment, because this is a legal as-

signment, but language based security will not allow this statement as secret data is as-

signed to public data.

8 CHAPTER 1. INTRODUCTION

1.4.2 Implicit information control

Indirect flow of information is called implicit flow. Conventional programming languages

do not catch implicit flows. Implicit flow could be described by the following example.

C:\Users\Javed\workspace\test\src\Player.java Wednesday, December 12, 2012 5:00 PM

if(secret % 2 == 0)

{

Leak=0;

else

Leak=1;

}

-1-

Implicit flows are often controlled by a program counter (pc) in security-typed lan-

guages. This policy tracks dependencies of the program context. In the above example, the

pc in the branches of the if statement captures the dependency on secret. The assign-

ment statement to leak is rejected by the compiler because the affected variable is less

secure than the pc.

1.5 Security typed language

Security-typed languages provide precise ways of describing complex policies. A security-

typed language can help software developers detect security flaws in their programs and

security-typed languages can rule out programs that contain potential information leaks

or integrity violations. Security-typed languages provide more confidence that programs

written in them are secure.

1.6 Objective

JIF is an extension of Java that is used for security-typed programming. Jif supports infor-

mation flow control and access control and enforces them at compile time and run time.

Jif statically checks the information flows in programs. Jif enforces control over the flow

of information throughout the life-cycle of a program. Confidentiality and integrity of

1.7. OUTLINE 9

information can be handle with a static information flow control in a system. The Jif com-

piler translates Jif program to Java program. The Jif compiler produces secure executable

programs by using an ordinary Java compiler. Jif implements information flow through a

policy language called the DLM, which will be described in Chapter 2.

Paragon is a newly developed language by the security research group of Chalmers

University of Technology, Sweden. Paragon came into existence as the result of the re-

search work on Practical, Flexible Programming with Information flow Control by Niklas

Broberg[1]. Like Jif, Paragon aims to overcome problems with information flow, thereby

protecting confidentiality and integrity of sensitive data. Policies and locks are the main

pillars of Paragon. I will describe policies and locks in Chapter 4.

In this Master’s Thesis, I have done a case study of mental poker by implementing it

in the Paragon language. The major task of my thesis work is practical implementation

of a real world problem in Paragon. I have chosen mental poker game to implement in

Paragon. Aslan Askarov has done mental poker Implementation in Jif by the title " Cryp-

tographic Protocols: A Case Study of Mutual Distrust" for his master thesis in 2005. He

has implemented the Java source for mental poker in Jif to show secure information flow.

Another part of my thesis work is to compare Paragon with Jif, with respect to how conve-

nient implementation is in the two languages, and how well Paragon achieves the goal of

improving on the limitations of Jif.

1.7 Outline

In the next chapter i am going to discuss Jif (Java Information Flow), and how the decen-

tralized label model is used in Jif. In chapter 3 I will give an overview of the Mental poker

protocol used by Aslan Askarov along with an analysis of the protocol. I will also compare

the Java and Jif implementations of mental poker done by Aslan Askarov. Chapter four dis-

cusses the basis of Paragon, handling the syntax used in Paragon. It also contains concepts

of different objects used in Paragon. Fifth chapter discusses the main task of my thesis, the

10 CHAPTER 1. INTRODUCTION

methods that I have used to bring out the strength of Paragon. It also discusses the prob-

lems found in the Jif implementation and how I have solved them to show how Paragon can

provide stronger and more expressive rules of information flow. The last Chapter contains

Conclusions and Future work.

2
Java Information Flow

Jif is an extension of Java implementing the decentralized label model (DLM)[16]. Jif adds

information flow annotations in the form of DLM labels.

2.1 Decentralized label model

The DLM hold its own vital properties and each section of data has flow policies added

by principals. Labels provide detailed information about the flow policies of all principals,

policies never to be violated by systems. DLM controls information flow in a system with

mutual distrust. In a DLM there is no any central authority who define and decide security

policies. Security policies are defined and controlled by everyone, who own them, which

are then enforced by the system in accordance with all of the security polices that have

already been defined. A principal can perform data declassification by modifying its flow

11

12 CHAPTER 2. JAVA INFORMATION FLOW

policies in the label, but arbitrary classification is not possible as the policies of other prin-

cipals are not weakened and remain the same. This guarantees the successful working of

the model even when the principals do not trust each other. For the purpose of maintenance

and security, run time checks are done to avoid information leaks and so declassification is

done in a safer way as described by DLM[1,2].

The primary weakness of the DLM (ultimately of Jif) is that it comes without a se-

mantic characterisation of security like eg. the old model by Bell and LaPadula. Since

the DLM allows declassification, it is clear that it cannot guarantee non-interference and

non-interference is too restrictive[1].

2.1.1 Principal

Users and other authorities like roles and groups are Principals in the Jif. Principals own,

and update information. Information is also released to principal in DLM. In Unix both

users and groups are represented by principals.

In the Jif principals can also act for other principals with their full authorization. For

example, if a principal P acts for another principal P’, then principal P possesses all rights

and privileges of P’. This characteristics is transitive and reflexive. For example, if a group

possesses an authorization to act for all principals then a group member can act for group

principals. A role is a restrictive form of user authority which gives permission for an

authorized user to act only on role principal.

2.1.2 Label

A label provides privacy requirements with policy sets[16]. When a program is executed,

the derived and computed value has a related label and the program execution also has its

own label (program counter). The privacy policies have two parts, an owner and set of

readers and which in the following form, {owner: Readers}. The owner of the policy is

a principal, whose data is utilized for constructing the value that the label annotates and

2.2. JIF SYNTAX 13

permits itself to read the data. The readers are the set of principals who are permitted by

the owner only to read the data. Each policy which is in the label must obeyed as data

flows within system. Only owner can release information to other Principals by his/her

permission. A principal which exists in the all policy labels, either as an owner or a reader,

can read the data. This is because the intersection of all policies are enforced and adding

more policies to a label will restrict the propagation of labeled data. The bottom security

level in Jif corresponding to public data has label {}, which is an empty list of policies.

{bob:;}
A policy with no readers and principal means that only the owner of the policy is to be able

to read the data and principal p does not care how the data propagates. An example of such

a policy without reader list and principal is given above.

{bob:alice,charlie}
Above example has bob as owner of policy and two readers. Bob has given read rights to

alice and charlie.

{bob:alice; alice:charlie}
This is an example of an associative label, which contains two policies. A principal who

is available in both label policies can read the data. In this label Alice is the only principal

which is present among the readers of both policies, so only Alice can read the data.

2.2 Jif syntax

This section discusses how variables, methods and exceptions are declared in Jif and how

labels are used with them.

2.2.1 Variable declaration in Jif

A local variable declaration in Jif may contain a label annotation, which is called the de-

clared label of the variable. The label of a local variable is the join of the program counter

label for the declaration, and its declared label. If a local variable is declared without label,

then the local variable’s label is inferred[17]. Here are two variables example with initial-

14 CHAPTER 2. JAVA INFORMATION FLOW

ization expression and label.

For both variables Alice is the owner of the label and can perform operations with these
C:\Users\Javed\workspace\test\src\Player.java Wednesday, December 05, 2012 9:47 PM

int {Alice:} x;

int {Alice:} y=1;

-1-

variables. A local variable declaration may contain an initializing expression. The rules for

label checking require that the normal value label of the initializing expression is no more

restrictive than the label of the local variable.

2.2.2 Method declaration

In Jif a method declaration may be annotated with two labels, the begin label and the end

label. The begin label reflects the lower bound of the methods in terms of side effects on

them. If no begin label is specified in method a declaration, then it is assumed that the

method has no side effects. Methods with side effects must explicitly indicate their begin

label. Labels can also be assigned to the arguments of the method. The label of an argu-

ment denotes the lower bound on the security level of the argument.

The end label of a method carries information about whether the method terminates

normally or raises an exception. End-labels are necessary if the termination path of the

method may give out some information to the caller. Individual exceptions and return

values may be labeled separately as well. An example of a method declaration is

E:\Masters\Thesis report\figures\method.java Wednesday, December 05, 2012 9:35 PM

public boolean{Alice:Bob} Check{Alice:}(String{} name, int{} link):{Alice:}

-1-

In this example, the function Check takes two arguments, both of which are of the

bottom security level. The return value has label {Alice:Bob}. Both the begin and end

labels are {Alice:} .

2.2. JIF SYNTAX 15

2.2.3 Method constraints

Jif allows three different constraints in method declarations:

• authority(p1, , pn) specifies the list of principals that this method is authorized to

act for.

• caller(p1, , pn) specifies the list of principals whose authority the caller of the

method is required to possess in order to run this method.

• actsFor(p1, p2) means this constraint prevents the method from being called unless

the specified p1 acts for p2 relationship holds.

2.2.4 Exceptions

Java exceptions and Jif exceptions are semantically different. In Jif all runtime exceptions

have to be handled otherwise it would be possible to leak information via them. Here is an

example of how runtime exceptions can be maliciously used

If variable secretvalue is zero ArithemeticException is thrown in the method division.
C:\Users\Javed\workspace\test\src\Player.java Monday, December 03, 2012 4:57 PM

public class IntLeak {

private int {Alice:} secretvalue;

public int{Alice:} division(int{} b) { return b/secretvalue;

}

}

-1-

That is why it is necessary to handle runtime exceptions.

2.2.5 Parameterized classes

Jif allows classes and interfaces to be parameterized over labels and principals. This intro-

duces another level of polymorphism. For example, instead of writing two separate Player

classes for Alice and Bob one can write a single class Player[P] parameterized over prin-

cipal variable P. Later in the instantiation the principal parameter is substituted with the

actual principal. An example of a parameterized class definition is:

16 CHAPTER 2. JAVA INFORMATION FLOW
C:\Users\Javed\workspace\test\src\Player.java Monday, December 03, 2012 4:36 PM

public class Player[principal P, label L] {

public String{L} name;

private final KeyPair{P:} keyPair;

public void finishCardDraw{L}():{L} throws MPException where caller(P)

{

statement(s);

}

}

-1-

This class is parameterized over a principal P who owns sensitive information stored in

an instance of this class and a label L is used to denote low data. The variable name,

the name of the player, in this example is low, thus it is labeled as {L}. Sensitive data like

keyPair contains a pair of encryption keys both public and private. Therefore, keyPair

has a {P:}.

2.2.6 Array labels

Arrays in Jif also have two labels: one for the elements of the array, the other for the

length of the array. Only one label for arrays is not enough, since arrays are mutable

data containers. A variable lowArray of type int[]{} could be assigned to a variable

highArray with the labeled type int[]{L} for some more restrictive label L. Then it is

safe to assign a variable secret labeled as {L} to an element of array highArray. Here

are examples to describe legal assignments and information leakage assignments.

C:\Users\Javed\workspace\test\src\Player.java Monday, December 03, 2012 4:41 PM

int[]{} lowArray;

int[]{L} highArray;

int{L} secretValue;

highArray = lowArray; //allowed

highArray[0] = secretValue; //Not allowed leakage now low_array[0] == secretValue

-1-

Here are two examples how to declare array using different labels with them.C:\Users\Javed\workspace\test\src\Player.java Monday, December 03, 2012 4:54 PM

private int{Alice:}[]{} hand;

private boolean{}[]{} available;

-1-

The first array is Alice’s hand of cards. The bottom label {} stands for the size of the

array and the values of the actual cards are secret to others. Therefore, elements of the

2.2. JIF SYNTAX 17

array are labeled as {Alice:}. The second array available is declared with low elements so,

labeled as {}.

18 CHAPTER 2. JAVA INFORMATION FLOW

3
Mental Poker Protocol (MP)

A simple poker game is played using cards among players,but mental poker is played

without the use of cards and verbal communication. The exchange between players is

accomplished by using messages. In this scenario any player may try to cheat other players.

A protocol for mental poker must detect or avoid cheating if a player tries to cheat on

another player. It must guarantee fairness of the game. Protocols for mental poker are

divided into two groups based on security levels.

• Mental poker protocol in the presence of trusted third party (TTP).

• Mental poker protocol without presence of a TTP.

A mental poker protocol in the presence of TTP is efficient and provides fairness of the

game: that no one cheated in the game and game is finished without cheating. On the

other hand protocols without presence of TTP are designed for environments with mutual

distrust.

19

20 CHAPTER 3. MENTAL POKER PROTOCOL (MP)

3.1 Protocol objective

Crépeau formulated the requirement and objectives for the mental poker protocol [3],

which are as follow.

1. Uniqueness of cards: Each card from the deck must appear uniquely either in the

deck or in the hand of a player. In case the same card appears more than once, if is

result of cheating. So each card must appear once and only once to avoid cheating.

2. Uniform distribution of cards: Traditionally in poker one player shuffles cards

while the other players can see it, and the player who shuffles the cards distribute

cards to each player. In MP cards are uniformly distributed between players so that

the card set of a player is not dependent only by opponent player actions. Each hand

of a player must be dependent on a decision made by every player.

3. Absence of trusted third party (TTP): It is not realistic to fully depend on a trusted

third party. This is obvious that any human can be bribed, and no machinery is

completely safe because no entirely tamper-proof device has yet been produced.

4. Cheating detection with very high probability: The probability that a player may

cheat without being detected must be very small, and decrease very fast, and mental

poker protocol must catch those players who try to cheat.

5. Minimal Effect of Coalitions: If two or more players are involved then some player

may start a secret communication to share all their knowledge about the game, the

protocol or any other secret data. A mental poker protocol should reduce the effects

of a coalition, so that any player in the game cannot take advantage of other player’s

hands or cards in the deck.

6. Complete confidentiality of cards: It is very important in a poker game that in-

formation of any card from the deck either partial or total is obtained without the

permission of every opponent. It is also very important for mental poker protocol to

check when a player draws a card then other players must be denied to get informa-

tion of that card without that player’s permission.

3.2. PROTOCOL ANALYSIS 21

7. Complete confidentiality of strategy: In the game the player who loses a game

must not reveal their cards at the end of a game. So, an ideal protocol allows the

players to reveal neither their cards nor any other information leading to some infor-

mation about them.

3.2 Protocol Analysis

Aslan Askarov’s[2] case study of mental poker protocols suggests that Castellá-Roca et

al[4] is the best protocol for mental poker, and achieves the first six goals mentioned above.

This protocol is a TTP-free protocol and it reaches the first 6 required goals for mental

poker. One more reason to choose this protocol by Aslan Askrov was that elimination of

TTP does not increase the computation.

In this protocol, players carry out deck shuffling themselves and cooperate with each

other in shuffling, so that no player coalition can force a particular outcome. Each player

generates a random permutation of the card deck and keeps it secret. After permutation,

cards are encrypted with the player’s key so that no other player can obtain information

about cards until the game is finished. When the game is over then all players reveals their

keys and their permutations for validation.

This protocol introduces a tool called the distributed notarization chain (DNC). The

importance of DNC can be understood by the fact that a new link of DNC is build after

each operation, until game is not finished. DNC contains two fields: a chaining value X

which is a hash of all previously built links, and a datafield D. The datafield D contains three

subfields which are link subject S, timestamp T and another attribute B which dependent

on subject S.

22 CHAPTER 3. MENTAL POKER PROTOCOL (MP)

3.3 Protocol process

Aslan has analysis different protocols for mental poker and on the basis of best results he

chosen protocol described by Castellá-Roca et al[4]. Aslan has selected four best proto-

cols, and I am going to describe protocol 1, 2 and 4 from [6] for mental poker. Description

of protocol 3 is not done here because I am not referring to it in later discussion. These

protocols 1, 2 and 4 are not driven from the mental poker protocol objectives that I dis-

cussed above. These 3 protocols are.

• Initialization

• Card draw

• Game validation

I will describe now purpose of each protocol.

Protocol 1 (Initialization)
Each player has an asymmetric key pair (Pi,Si) whose public key component is certified

by a recognised certificate authority. The initialization protocol is very important because

in this protocol random permutation of cards is generated by each player and each player

keep it secret so that no other player can access it. After permutation each player generates

a symmetric key K which will be used in the signing of cards. Each player chooses a prime

number which is used to create DNC link which contains the value of prime number chosen

by the player. Now a card permutation matrix is built, and the next link to DNC is build

after committing permutation matrix using a bit commitment protocol. Next part of this

protocol is very important because vector representation of cards in deck is generated and

encrypted it with Player’s K. After generating a random permutation of encrypted cards

a new link of the DNC is built which contains all previous processes performed by the

player. In the whole process of the initialization protocol, information flow is controlled

by encryption process and DNC links.

Protocol 2 (Card draw)

3.3. PROTOCOL PROCESS 23

In this protocol each player draws a card. After drawing a card players must be unaware

of other player’s cards. First each player checks the validity of the link by computing her

equivalent card permutation and choose a card to draw and build new link of the DNC

which contains id of next player in the computation. Now all other players also check the

validity of the link sent by the previous player after computing their equivalent card permu-

tation and build a new link of the DNC. Each player encrypt card with their corresponding

symmetric key K and build a new link of the DNC. After each link been computed then

the player checks the validity of the link and obtain the drawn card contained in the link,

by decrypting it with her private key. After this process card draw protocol is finish. In

the whole process of card draw each player checks the validity of the link sent by previous

player, so this validity check will avoid information leakage for those players who intended

to get information about card.

Protocol 4 (Game validation)
Each player check that the permutation which she committed with the bit commitment

protocol in the first step of initialization is the same as revealed, and used by each player.

If the permutation is correct then it decrypts cards which are published by each player in

initialization protocol and checks that the card deck is correct. After this, players decrypt

the card permutation performed in protocol 2 to check that permutations were performed

correctly. Each player checks that during the game those cards which are discarded by

other players have not been used. Each private key is released at end of the game. Other

actions performed in protocol 1 and 2 are validated to check cheating in the game.

3.3.1 Declassification

In this protocol, four parts are very important where declassification has to be considered.

Aslan Askarov has pointed out these four parts in his thesis, which I am referring here.

These points are as follow:

1. Public data declassification
This declassification occurs before the game starts. A player’s key pair contains both

sensitive (Private key) and non-sensitive (Public key) data. Here the sensitive data

should not be available to the other players. Another point occurs when players draw

24 CHAPTER 3. MENTAL POKER PROTOCOL (MP)

cards. Drawn cards are encrypted and contain sensitive data. If declassification is

performed properly with Sensitive data then it should not be leaked because it will

not flow to low level.

2. Declassification related to building links in DNC
As i have discussed before, when a new operation is performed in the protocol then

a new link is added to the DNC. Thus, declassification must be handled when a link

is computed. The signature of DNC link involves a private key so the result becomes

high level. Thus, the cryptographic properties of the signature must be declassified.

3. Finishing Card Draw
When the Card Drawing process is finished then a flag which carries information

about the finished status must be declassified.

4. Declassification for verification’s sensitive information
Protocol 4 (Verification) states that when the game completes then players are re-

quired to exchange their private keys and secret permutations, which they have cre-

ated in the first protocol (Initialization), in order to verify the fairness of each other

in game and to detect cheating. The importance of declassification can be easily un-

derstood at this stage. If data exchange between players is not declassified then any

player can obtain the secret permutation and private key of a player to do cheating in

a game.

3.4 Java implementation of mental poker

The class diagram in figure 3.1 describes the Java implementation of mental poker. All

arithmetic operations in the Java implementation uses the java.math.BigInteger class.

The distributed notarization chain (DNC), its links and data attributes that are used in DNC

are implemented in the classes DNCChain, DNCLink and DataFieldAttribute. DataField-

Attribute is a interface which is implemented by many classes.

3.4. JAVA IMPLEMENTATION OF MENTAL POKER 25

Figure 3.1: Java implementation of mental poker.

PHInteger is an extented class from Integer for storing encrypted values and arithmetic

operations on them. PH stands for privacy homomorphism. The PHCrypto class generates

the cryptosystem keys, and encrypting/decrypting of values. The CardVector class is used

to store the card vector in plain form and EncryptedCardVector is the vector representation

26 CHAPTER 3. MENTAL POKER PROTOCOL (MP)

in encrypted form.

A major and important class in the mental poker java implementation is the Player

class, in which players are initialized and perform actions, and on basis of these actions

new links are added to the DNC.

The class MPTable coordinates the process of the game. In MPTable there is a function

play() which is called when the application starts.The play() function controls the order of

player instructions for protocol 2 (Card draw) and also for protocol 4 (Validation), in which

players perform verifications of links and the permutation matrix.

3.5 Jif implementation

To fulfill the security requirements of mental poker, sensitive information of players car-

ries the labels by their name in Jif. For example {Alice:;} and {Bob:;}. The data passed

between players is downgraded to the bottom level {}.

Java class signatures are as Jif signatures which add labels and principals. The class Player

is parameterized over player principal P and the label of the output channel L. Any vari-

able, method declaration or exception with label {P:;L} corresponds to the high level and

L to a low one.

In figure 3.2 some examples are given for method signature and variable declaration in Jif.

First write the Java signature and then the corresponding Jif signature.

3.5.1 Java signatures Vs Jif Signatures

As I discussed before, PHCrypto handles encrypting/decrypting of values and keys, and all

cryptographic operations must be performed at a high security level. For this reason the

PHCrypto class is instantiated with argument {P:;L}. An array in Jif is declared with two

labels. The p byte array corresponds to the player’s secret permutation so each element of

the array must be secret. That is why the first label of this array keep elements of array

3.6. DECLASSIFICATION IN THE JIF IMPLEMENTATION 27

Java signature Jif signature

PHCrypto ph = null; PHCrypto[{P:;L}]{P:;L} ph = null;

Byte [] p; byte{P:;L}[]{P:;L} p ;

KeyPair keyPair KeyPair{P:} keyPair

Boolean[] available boolean{L}[]{L} available

String name String{L} name

DNCChain chain DNCChain[L]{L} chain

Figure 3.2: Java signatures Vs Jif signatures for secret and public variables.

secret and the second label keeps the array length secret. In the last example the public

component of the KeyPair is not secret, but even so the whole KeyPair has to be labeled as

high.

Boolean variable available, player name and chain in Jif are public and any

player can read them, as they are only labeled with L. The absence of the principal shows

that every user has the right to read these variables. This is how public variables are mod-

eled in the Jif implementation of mental poker.

3.6 Declassification in the Jif implementation

In the Jif implementation of mental poker there are 14 declassification points identified

by Aslan Askarov. These 14 points are divided into four different groups based on their

nature. I will discuss the results of these declassification groups individually.

• Public data declassification
This declassification occurs before game starts. The public and private keys for sig-

28 CHAPTER 3. MENTAL POKER PROTOCOL (MP)

natures are generated using the KeypairGenerator Java class. The key pair contains

both sensitive and non-sensitive data. The sensitive data should not be available to

other players at any time so the program first obtain a separate copy of both keys and

then declassifies it. Now private key will not be accessible before and during game.

In the drawcard method the public parameter of PHCrypto class is extracted from an

instance and again new copy of this parameter is obtained and declassified separately.

In both steps of key pair generation and draw card, sensitive data is declassified be-

cause it contains information sensitive and non-sensitive information. Sensitive data

will not be leaked because it has been declassified and it will be hidden from other

player and it will not flow to low level.

• Declassification related to building links in DNC
As i have discussed before, when a new operation is performed in the protocol then a

new link is added to the DNC. Declassification is needed when the method, which is

used to built links, is called, protocol is initialized, and when cards have been drawn.

The signature of a DNC link involves a private key so the result becomes high level.

Thus, the cryptographic properties of the signature are declassified and the obtained

declassified value is used to build the next link.

• Finishing Card Draw
When the Card Drawing process is finished then it updates a success flag that signals

that the process finished. The success flag is then declassified.

• Declassification for verification’s sensitive information
In Protocol 4 (Verification), when the game completes then the protocol requires

players to exchange their private keys and secret permutations which they have cre-

ated in the first protocol (Initialization) in order to verify the fairness of each other in

game and to detect cheating. At the end of the game permutation matrix is generating

to verify matrix that is generated by players at start of the game.

In his Jif implementation of mental poker, Aslan Askarov [3] has used a "seal", a

boolean flag, to handle and verify game end because the declassification mechanism

of Jif is not powerful enough to support temporal properties.

4
Paragon Background

I will now describe the different concepts, annotations and terminology used in Paragon.

4.1 Actor

Actors are values of a primitive data type, actor. The actor data type neither allows literal

values, nor provides expressions that create new actors. There is no default value (like e.g

0 for int) for actor variables, instead all variables of the actor data type are assigned with

a value implicitly which is unique for each actor variable. Variables of actor data type are

typically declared as final. The purpose of declaring actors final is to ensure consistency in

the analysis. All actors are unique by their value because actors declared with actor data

type cannot be initialized with any type of value. Variables are only declared by their name.

private static final actor bob;

29

30 CHAPTER 4. PARAGON BACKGROUND

Here in the above example actor annotation is used to declare an actor in paragon and the

name of the actor in example is bob. Actors are used in policies and mentioned actors can

obtain information.

4.2 Locks

Locks in Paragon are boolean guards having open or closed state. Locks are not values:

they cannot be stored in variables nor can they be passed as argument to methods. If locks

are being used in a Paragon policy then data is only flowed towards actors if and only if lock

is open. For this reason the lock state (open or closed) controls the flow of information,

either it can flow to actor or not.

private lock Encrypted;

This is how locks are declared in Paragon. Locks can be declared with any access modifier

(public, protected or private). Encrypted is a lock having private access modifier, and

thus can only be accessed within the class where it is declared.

C:\Users\Javed\workspace\test\src\Player.java Tuesday, December 11, 2012 12:52 AM

open Encrypted

{

statement (s);

}

-1-

Locks can be opened by a Paragon open statement. Within the body of lock state-

ment(s) can be written as shown above. There is another way to open lock which is describe

below.

open Encrypted;

In first example the Encrypted lock is open and inside its body statements will be ex-

ecuted. after the lock’s body THE state of the lock will be changed to the state which it

was before opening the lock. In second example lock state is open but the state of the lock

Encrypted will remain open until it is not closed explicitly. The lock can be closed like

this close Encrypted.

4.3. POLICY 31

4.3 Policy

A paragon policy describes the sensitivity level of some data. A policy is built from actors

and locks.

Each policy is a set of clauses separated by semi-colons, where each clause is written with

the head first, possibly followed by a colon and a list of conditions (locks) to be open for the

actor in the head to observe data annotated with this policy. Typically policies are marked

as final to ensure that the policy remains consistent throughout the program.

public final policy publicdata = {’x:};

In the above example a final policy is declared with the name of publicdata. All data

annotated with this policy may flow to everyone, as this includes a polymorphic actor. A

polymorphic actor is marked with a preceding ’ followed by an identified, e.g ’x in above

example.

public final policy bobdata={bob:};

In the above example a final policy is declared with the name bobdata. Data annotated

with policy bobdata can only flow to actor bob. Any actor other than bob tries to obtain

data with this policy will be rejected.

public final policy privatedata = {bob: Encrypted};

In the above policy, privatedata is the name of a policy declaring that bob can access

data annotated with this policy if Encrypted lock is open. If Encrypted lock state is

closed then data flow annotated with privatedata policy will be denied to actor bob.

4.4 Modifiers in Paragon

In Paragon fields, variables, methods and exception have a policy which describe that how

information contained in them may be used. There are two policy modifiers for policy and

three modifiers for locks in Paragon.

32 CHAPTER 4. PARAGON BACKGROUND

Lock Policy

+lock says that method will open the
specified lock(s).

?policy specifies the policy on data in an
information container e.g. a field, variable or
exception. When the modifier is used on a
method then it is called a return policy, as it is
the policy on the value returned by the method.

-lock says that the method may close the
specified lock(s), for some execution.

!policy denotes the write effect and it is used to
annotate methods and exceptions. When a field
or variable with some policy is modified by an
expression, that policy is part of the write effect
of that expression. They are also used to signal
the write effects of throwing an expression and
also to catch implicit flows.

~locks says that the specified lock(s) must
be open whenever the method is called.

4.4.1 Read policy with variables

Private ?privatedata int bitlength = -1;

Variable bitlength is annotated with a policy with read effect on it.

4.4.2 Read policy with arrays

Private ?privatedata int[]<privatedata> val;

In arrays two things are important to handle. One is the length of an array and sec-

ond is the elements of the array. Here the array is annotated with two policies, first

with ?privatedata to describe the policy on the length of the array, and second with

<privatedata> to describe the policy on the elements of the array.

4.5 Policy-polymorphic methods

Method sum takes two parameters a and b. The parameter a has a declared read policy

privatedata while parameter b is not having any policy so by default policy of b is

inferred from the policy of the argument passed for parameter b . Return policy of method

4.6. PARAMETERIZED CLASS 33
C:\Users\Javed\workspace\test\src\Player.java Tuesday, December 11, 2012 1:02 AM

?(privatedata*policyof(b)) public static int sum(?privatedata int a, int b)

{

return a+b;

}

-1-

sum is annotated by joining of parameter’s policies.

If a parameter to a method has no policy declared, then a polymorphic policy is assigned to

that parameter. To access the polymorphic policy of a parameter we use the policyof(b)

method which takes a parameter of method as its parameter and gives the policy of the argu-

ment that method is called on. Here we use policyof(b) because no policy is assigned

to b and for return policies of this method, we need a policy for parameter b.
C:\Users\Javed\workspace\test\src\Player.java Tuesday, December 11, 2012 1:04 AM

public !privatedata static int setX(?privatedata int a)

{

this.x = a;

}

-1-

The write effect of the method in the example above is declared to be privatedata

which means that the method setX has modified value of variable x annotated with

privatedata policy in the class. The purpose of using write effects is to control implicit

flow.

4.6 Parameterized class

A class in paragon can be parameterized with a policy. We can also parameterize a class

with actor and lock. I haven’t implemented class parametrization with locks and actors that

is why I will not write detail about it here. A class with a policy parameter can be declared

as

Any object create this class will require a policy as parameter, i.e

Player<p> newobject= new Player<p>();

This introduces another level of polymorphism and is useful for building reusable data

34 CHAPTER 4. PARAGON BACKGROUND
C:\Users\Javed\workspace\test\src\Player.java Tuesday, December 11, 2012 1:10 AM

public class Player<policy privatedata>

{

}

-1-

structures. For example, instead of writing two separate Player classes with different policy

for Alice and Bob we can write only one class and can pass different policy for both players.

Later in the instantiation the policy parameter is substituted with an actual policy.

5
Implementation Methodology

In this chapter I will discuss the work I have done as part of solving the task, which is to

write a case study in Paragon. I will describe my first implementation, a mechanical trans-

lation, of Aslan’s Jif implementation. I will then describe my Paragon implementation of

mental poker, and problems encountered while doing these implementations. I will also

describe the problems in the Jif implementation of mental poker by Aslan Askarov. The

main purpose of doing a Paragon implementation is to show how Paragon is more expres-

sive and can give stronger information flow guarantees.

Here are three implementation problems which are not handled in the Jif implemen-

taion. The first problem is trusted declassification. Trusted declassification is a concept in

which different kind of data is declassified by different declassifiers and boolean guards,

which are handled by methods and locks in Paragon. Player can achieve secret data after it

has been passed through a specific declassifier to make sure it’s trusted declassification. I

35

36 CHAPTER 5. IMPLEMENTATION METHODOLOGY

will describe later in this chapter that I have achieved trusted declassification.

The second problem which I have noticed is the java library signatures written by hand,

not by compiler, and used in the Jif implementation. This could lead to a serious attack

which I will describe later in this chapter.

The third and last problem is the lack of ability to specify temporal properties. Tem-

poral properties can be used to reflect the state of a game. Jif does not support temporal

properties and Aslan Askarov has implemented the end game analysis by using a so called

"Seal", a programming pattern.

The first and last of the above problems of significant importance not be handled in a

Jif implementation. In this chapter I will discuss how I overcome these problems and what

I have concluded after implementing these in my Paragon implementation.

5.1 Mechanical Translation

By "Mechanical translation", I mean a process of translating code written with Jif annota-

tions into code with Paragon annotations, simply replacing Jif annotations with correspond-

ing Paragon annotations. The purpose of the mechanical translation is to check whether

Paragon is no more restrictive than Jif. If after mechanical translation Paragon is providing

the same results as the Jif implementation then we can say that Paragon is also a strong and

secure language that can be used to implement programs with information flow concerns.

Another purpose of the mechanical translation is to check whether the Paragon compiler is

working properly or not. The compiler is supposed to show errors and warnings if illegal

syntax is used or if a leak is found.

My mechanical translation also helped find a number of bugs in the compiler. These

bugs have been reported to the compiler bug tracker [15] and subsequently removed by the

Paragon team. After the mechanical translation I conclude that this solution is giving the

guarantees as Jif implementation provides. But, during the mechanical translation I found

5.2. JAVA LIBRARY 37

some aspects which were not handled in the Jif implementation, and I decided to perform a

more detailed implementation with more expressive policies and locks that can overcome

these problems.

5.2 Java library

I have translated a number of Java libraries into Paragon code. The purpose of this is to

let the compiler generate correct Paragon signature files for these libraries. Most of the

classes are parameterized over a policy and this policy is used throughout the class. This

introduces another level of polymorphism and is useful for building reusable data struc-

tures. It allows to reuse the class with different policies.

Aslan Askarov has used some Jif signatures written by hand, not generated by the Jif

compiler. We found a bug in one of the these hand written signatures, which leaves the

code vulnerable to leaks. I changed java library signatures into paragon signature to have

the compiler ensure that information flows correctly.

One problem I faced when creating paragon signature files for java libraries is related

to the dependencies of java files. For example, to complete java.util.Random I must create

signatures for all classes which are used by it. The java.util.SecureRandom must be done

first, and to complete SecureRandom I must do SecureRandomSpi, and so on. I created

files for dependencies up to depth 3, and beyond that trusted my hand written versions.

5.3 Paragon Implementation of mental poker

As noted I initially did the mechanical translation to check whether Paragon could provide

sufficient guarantees. I reached the conclusion that the mechanical translation provides

same result as the Jif implementation, but found some aspects that were not possible to

implement in Jif. So, I decided to do a detailed implementation, using more fine-grained

locks and policies for different types of methods and variables depending on their security

38 CHAPTER 5. IMPLEMENTATION METHODOLOGY

level. I did an analysis of such variables and the data returned by the methods, which are

secret and require tight security and policies, to give them precise and descriptive policies.

I will describe the types of locks that i used in my paragon implementation, as well as

the policies that include these locks to make precise policies for variables and data returned

by methods depending on their intended use.

5.3.1 Temporal properties and trusted declassification in Paragon im-
plementation

Locks Policies

Private final lock GameStart Public final policy publicdata={‘x:}

Private final lock GameRunning Public final policy
privatedata={‘x:Encrypted,GameRunning,GameStart}

Private final lock GameFinished

Public final policy policyforkey={‘x:GameFinished}

Private final lock Encrypted

Figure 5.1: Temporal properties and trusted declassification in Paragon.

Figure 5.1 shows the locks used in the Paragon implementation. The first three locks

control the temporal properties of the game. The game process contains different kinds of

data and then, this data is declassified through the use of different locks. Locks make sure

that data is accessed only when the locks are open, and the lock are opened at their required

places. These locks are declared as private so they can be used within declared class and

can not be used or opened in another class or package.

The Encrypted lock is used for trusted declassification in the Paragon. This lock

is declared in the PHCrypto class and is used within the encryption method. The Encrypted

5.3. PARAGON IMPLEMENTATION OF MENTAL POKER 39

lock is declared as private so that it cannot be accessed outside of class PHCrypto. This

assures that all players have access to the data after it has been encrypted by the encryp-

tion method. In my Paragon implementation the encryption method thus acts as a trusted

declassifier.

Figure 5.1 further shows the policies that are being used in my paragon implementa-

tion of mental poker. These polices control the flow of data to actors or players who fulfill

the conditions of the policies. I will describe these policies in detail to understand their

purpose.

Lets look at the policy privatedata from figure 5.1 to understand what it does

and its purpose. This policy is used with the variables and data returned by methods which

are supposed to be kept secret. During the game other players can read this data if and only

if both Encnrypted, and GameRunning locks are open.If either of these locks is

closed then public access to information which is annotated with this policy is rejected.

The second policy is policyforkey. A player’s asymmetric Key contains two

parts: one of them is public and the second is private. The private key must be re-

vealed when the game is finished, but not before, so for this key pair I created a pol-

icy which contains the lock GameFinished. This key is only accessible when the

GameFinished lock is open, and I have ensured that this lock is only going to be

opened after all processes of the game are finished. This policy assures that there is no

attack on the private key and no one can access it before the game is finished. If the private

key is not leaked, consequently cards are safe from cheating as they are encrypted. They

need a key to decrypt them and the key is available only when game is over.

The last policy is publicdata which contains only the ’x polymorphic actor. This

means anyone can access information which is annotated with this policy.

40 CHAPTER 5. IMPLEMENTATION METHODOLOGY

Jif Code Paragon Code

private final DNCChain[L]{L} chain private ?publicdata DNCChain<publicdata>
chain;

private byte{P:;L}[]{P:;L} p private ?privatedata byte[]<privatedata> p;

 private PHEPermutationMatrix[{P:;L}]{P:;L}
matrix_o = null

private ?privatedata
PHEPermutationMatrix<privatedata> matrix_o;

private PHCrypto[{P:;L}]{P:;L} ph = null private ?privatedata PHCrypto<privatedata> ph;

private final KeyPair{P:} keyPair private final ?publicdata
KeyPair<publicdata,policyforkey> keyPair;

private boolean{L}[]{L} available ;

private ?publicdata boolean[]<publicdata>
available;

private String{L} name; private ?publicdata String name;

Figure 5.2: Jif implementation vs Paragon implementation.

5.3.2 Jif implementation vs Paragon Implementation

This is a comparison table of Jif and Paragon policies. Most of the code in figure 5.2 shows

same policies for both languages. For example with the array variable p in both languages

there are equivalent corresponding policies. The main difference is the KeyPair. In Jif

code only P is used but, in Paragon I used different policies for the public and private parts

of the key.

It may appear that Paragon is more verbose, since there are more words in Paragon dec-

laration. This length complexity is not inherent in Paragon syntax, rather, it is my imple-

mentation which has used long and descriptive policy name. We can use any legal variable

name instead of these long name. In the Jif code Aslan has used L and P to describe Label

5.3. PARAGON IMPLEMENTATION OF MENTAL POKER 41

and Principal respectively. This approach is little difficult to understand, what is P and L

here? On other hand in the implementation in Paragon I used descriptive names of policies

clearly, like privatedata and policyforkey, which informs the purpose of these

policies and where thet are to be used.

Jif Code Paragon Code

private byte{P:;L}[]{P:;L}
generatePermutation{P:;L}():{P:;L}

private !privatedata ?privatedata
byte[]<privatedata> generatePermutation()

public void processSelfCardDraw{L}():{L}
throws IllegalArgumentException

~(Player.GameRunning) public !publicdata void
processSelfCardDraw() throws !publicdata
IllegalArgumentException

public void finishCardDraw{L}():{L}

~(Player.GameRunning) public !privatedata
void finishCardDraw()

Figure 5.3: Jif and Paragon Methods and Exception comparison table.

Figure 5.3 describes how methods and exceptions are used in Jif and Paragon. Each

policy in Jif and Paragon correspond to each other. Each label in Jif has a corresponding

policy in Paragon. The Label {P:;L} used after generatePermutation is write

policy of the method in Jif and privatedata is write policy of method generatePermutation

in Paragon. The policy right after the method is used for exceptions in Jif, and a write ef-

fect policy is used with exceptions in Paragon as seen in the processSelfCardDraw

method. In Paragon the write effect is used to assure that when we catch exceptions we

still do not leak. That is why exceptions are annotated with write effect policies.

Methods that return data also have return policies. If a method writes something in its body

then a write effect policy is used with this method to ensure that we can catch implicit flow.

An "expects" lock modifier can also be used to check the status of a lock. Before calling

a method, the lock status must be the same as it is described in the method declaration.

In the above example of processSelfCardDraw method GameRunning lock is

42 CHAPTER 5. IMPLEMENTATION METHODOLOGY

mentioned which says that this lock must be open when this method is called.

5.4 Implementation Conclusion

Paragon is a newly developed language and I have aimed to show a strict and sound im-

plementation of information flow. Therefore, I have implemented mental poker in Paragon

and compared it with Aslan Askarov’s Jif implementation. As discussed before the Jif im-

plementation had some limitations which I have removed in my Paragon implementation.

By implementing Java library signatures in Paragon I have overcome signature problems

of the Jif implementation. By using the Encrypted lock I modeled trusted declas-

sification, and by using locks GameFinished and GameRunning I have modeled

temporal properties.

In short i can now say that Paragon can do better and more expressive work compared

to Jif.

6
Conclusion and future work

This chapter includes conclusion of this thesis and future work related to this.

6.1 Conclusion

Information flow is an important topic that deserves full attention from industries and aca-

demics. Previously much work related to information flow has been done in the context of

Jif. Paragon is a newly developed language, which needs a strong case study that shows

its strength for implementing information flow control. I have evaluated the strength of

Paragon by implementing a real world problem. For this purpose, I choose mental poker

so that I can verify that Paragon is robust enough, and can provide strong and more expres-

sive solutions than other languages, such as Jif. The reason for selecting mental poker is

43

44 CHAPTER 6. CONCLUSION AND FUTURE WORK

that the secure information flow of mental poker has already been checked in Jif by Aslan

Askarov.

As the first step to check whether Paragon can provide the same results as Jif, I did a me-

chanical translation of Jif mental poker into Paragon, which is to change Jif annotations

into Paragon annotations. After this whole process I compiled the Paragon implementation

of mental poker which gave the same result of information flow control.

However, during this process I found some points which have not been covered and I de-

cided to do a more detailed implementation. These problems are listed below:

1. Generation of java libraries into Jif by hand, not by Jif compiler

2. Lack of implementation of temporal properties in Jif

3. Lack of modeling trusted declassification.

In my detailed implementation of mental poker I first did standard java libraries in

Paragon and compiled them that so that I can have checked Java libraries available in

Paragon, which ensured that there is no leakage of information from java libraries. Aslan

Askarov made java library files in Jif manually, not created by the Jif compiler. Jif did not

provide temporal properties of game, which include game running and end. I overcame this

problem of Jif implementation by making different locks and used them to mark particular

states of the game and with particular types of data. Lastly I ensured that different types

of data is declassified with different types of locks which are open in those classes where

they are supposed to be opened and used. The encryption method played the role of

trusted declassifier and Encrypted lock is used to declassify for secret data, and I have

assured that Encrypted lock is only open in encryption method.

After my mechanical translation of the Jif implementation into Paragon the results were

strong enough to prove the strength of Paragon. However the problems found in the Jif

implementation gave a chance to show better results in Paragon. Hence, I solved these

problems in Paragon implementation of poker, which is a proof that Paragon can implement

and provide a better information flow solution.

6.2. FUTURE WORK 45

6.2 Future work

I did mental poker implementation in the Paragon to check information flow constraints,

which I successfully achieved. Besides this implementation Paragon needs more case stud-

ies and practical works to show its strength for other kinds of constraints. JPmail is a secure

email client which uses the Jif to get information flow control guarantees. JPmail has been

fully implemented in Jif and it is a good case study after mental poker to implement in

Paragon to show more strength of Paragon. Besides JPmailm big industries and companies

need a collaboration work with academic research group to keep their data more confiden-

tial, and secure by implementing information flow control on them via Paragon.

46 CHAPTER 6. CONCLUSION AND FUTURE WORK

Bibliography

[1] N. Broberg and Institutionen för data-och informationsteknik (Göteborg), Practical, Flexible

Programming with Information Flow Control, Ph.D. thesis, Department of Computer Science

and Engineering, Chalmers University of Technology and Göteborg University, 2011.

[2] Aslan Askarov and Andrei Sabelfeld, “Security-typed languages for implementation of cryp-

tographic protocols: A case study of mutual distrust,” Technical Report 2005-13, Department

of Computer Science and Engineering, Chalmers University of Technology and Göeborg Uni-

versity, 2005.

[3] C. Crépeau, “A secure poker protocol that minimizes the effect of players coalitions.,” in

Advances in Cryptology: Crypto’85, December. 1986, vol. 218 of LNCS, pp. 73–86.

[4] Dorothy E. Denning and Peter J. Denning, “Certification of programs for secure information

flow. commun.,” July. 1977, vol. ACM, 20, pp. 504–513.

[5] Rajeev Joshi and K. Rustan M. Leino, “A semantic approach to secure information flow,”

Science of Computer Programming, vol. 37, no. 1-3, pp. 113–138, 2000.

[6] D. E. Denning, “A lattice model of information flow,” Communications of the ACM, vol. 19,

no. 5, pp. 236–243, May 1976.

[7] D. Bell and L. La Padula, “Secure computer systems: Unified exposition and multics inter-

pretation,” Tech. Rep. MTR-2997, MITRE Corp., Bedford, MA, July 1975.

[8] Andrei Sabelfeld and Andrew C. Myers, “Language-based information-flow security,” IEEE

Journal on Selected Areas in Communications, vol. 21, no. 1, pp. 5–19, 2003.

47

48 BIBLIOGRAPHY

[9] Joseph A. Goguen and Jos’e Meseguer, “Security policies and security models.,” in IEEE

Symposium on Security and Privacy, 1982, pp. 11–20.

[10] B. Lampson, “Protection,” in Proc. Fifth Annual Princeton Conference on Information Sci-

ences and Systems. Princeton University, 1971, pp. 437–443.

[11] G. S. Graham and Peter J. Denning, “Protection: Principles and practice.,” in In Proc. of the

AFIPS Spring Joint Conference., 1972, pp. 417–429.

[12] Stephan Arthur Zdancewic, Programming languages for information security, Ph.D. thesis,

Ithaca, NY, USA, 2002, AAI3063751.

[13] Jeffrey S. Foster Umesh Shankar, Kunal Talwar and David Wagner, “Detecting format string

vulnerabilities with type qualifiers.,” in In Proceedings of the 10th USENIX Security Sympo-

sium,, 2001.

[14] David A. Wagner, Static analysis and computer security :–new techniques for software assur-

ance, Ph.D. thesis, University of California, Berkeley, Fall, 2000.

[15] “http://code.google.com/p/paragon-java/issues/list,” in Google document for bug reporting,

May 2012.

[16] Andrew Clifford Myers, Mostly-static decentralized information flow control, Ph.D. thesis,

Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science,

1999.

[17] K. Vikram Lantian Zheng Stephen Chong, Andrew C. Myers, “Jif reference manual,” in

http://www.cs.cornell.edu/jif/doc/jif-3.3.0/manual.html, February 2009.

	Abstract
	Acknowledgments
	Introduction
	Information flow security
	Information flow Vs Access control

	Noninterference
	Security Policy
	Bell and La Padula security model

	Language based security
	Explicit information control
	Implicit information control

	Security typed language
	Objective
	Outline

	Java Information Flow
	Decentralized label model
	Principal
	Label

	Jif syntax
	Variable declaration in Jif
	Method declaration
	Method constraints
	Exceptions
	Parameterized classes
	Array labels

	Mental Poker Protocol (MP)
	Protocol objective
	Protocol Analysis
	Protocol process
	Declassification

	Java implementation of mental poker
	Jif implementation
	Java signatures Vs Jif Signatures

	Declassification in the Jif implementation

	Paragon Background
	Actor
	Locks
	Policy
	Modifiers in Paragon
	Read policy with variables
	Read policy with arrays

	Policy-polymorphic methods
	Parameterized class

	Implementation Methodology
	Mechanical Translation
	Java library
	Paragon Implementation of mental poker
	Temporal properties and trusted declassification in Paragon implementation
	Jif implementation vs Paragon Implementation

	Implementation Conclusion

	Conclusion and future work
	Conclusion
	Future work
	Bibliography

