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Trailer Motion Estimation
Axel Ceder, Jonathan Olsson
Department of Mechanics and Maritime Science
Chalmers University of Technology

Abstract
In automation of vehicles, the pose of the vehicle is very important. For a semitrailer
the articulation angle describes the angle between the trailer and tractor. Having
an accurate estimation of the articulation angle allows fine control of the semitrailer
in intersections, which is essential in reversing, and can prevent jackknifing. The
articulation angle sensors available today do not match the integrity classification
required for safety related signals on a road vehicle. In this work an Inertial Mea-
surement Unit (IMU), which has sufficient classification, is placed in the trailer.
Our goal is to evaluate the feasibility of a virtual sensor using the data from the
sensor information already available on the vehicle combined with the IMU.

A basic kinematic single track model is developed and evaluated. Using this in-
formation a dynamic single track model is later developed. Two articulation angle
estimators are derived using the developed models in a Unscented Kalman Filter
(UKF) and compared to empirical data. By equipping a tractor and trailer with
two highly accurate GNSS-aided inertial navigation systems the ground truth was
obtained.

Both estimators were tested on data from approximately 30 minutes of real-world
driving in varying situations. On this data the estimators manage to achieve a RMS
error of 0.87 deg and 0.69 deg respectively. The maximum error is 6.88 deg and
3.54 deg respectively. A bi-product of the second estimator is an accurate lateral
velocity estimator.

Overall, we conclude that a virtual sensor is deemed feasible but further analy-
sis and extensive testing is required, in part to determine if there are any biases of
the estimators towards the test-data. The accurate estimation of the lateral velocity
gives the dynamic estimator a chance of being feasible.

Keywords: UKF, Kalman, Sensor fusion, Estimation, IMU, Trailer, Truck, Kine-
matic model, Forced based model.

v





Acknowledgements
First we would like to thank our supervisor at Chalmers, Mats Jonasson. For his
assistance, fast responses to our questions and early meetings. We would also like
to thank our supervisors at Volvo Trucks, Leon Henderson, Thorsten Helfrich and
José Vilca who helped us during the entire duration of the thesis. Without these
people, this project would not have been possible. Finally we would like to thank
our examinor and his compendium, Bengt Jacobson.
We would also like to thank Volvo Trucks for the supply of coffee, it was much needed.

Axel Ceder
Jonathan Olsson

Gothenburg, June 2020

vii





Contents

List of Figures xi

List of Tables xiii

1 Introduction 3
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Research Question . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Theory 7
2.1 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Speedometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Wire length to Articulation Angle . . . . . . . . . . . . . . . . 9

2.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Unscented Kalman filter . . . . . . . . . . . . . . . . . . . . . 13

2.4 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1 Kinematic model . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Kinematic Model with Lateral Velocity . . . . . . . . . . . . . 19
2.4.3 Dynamic Based Model . . . . . . . . . . . . . . . . . . . . . . 21
2.4.4 Constitution for axles on 1st unit . . . . . . . . . . . . . . . . 22

3 Method 29
3.1 Kinematics Based Estimator . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2 Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Dynamics Based Estimator . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.1 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Verification Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Manoeuvres . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.2 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.3 Ground Truth . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ix



Contents

4 Performance: Kinematic Based Estimator 41
4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Fast Straight, With Evasion . . . . . . . . . . . . . . . . . . . 43
4.1.2 Small Eights Fast . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.3 Highway Driving with Low Frequency Sine Steering . . . . . . 45
4.1.4 Highway Driving with High Frequency Sine Steering . . . . . . 46
4.1.5 Fast on Low Friction Surface . . . . . . . . . . . . . . . . . . . 47
4.1.6 Uphill With Turn . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.7 Reversing With High Articulation Angle . . . . . . . . . . . . 49

4.2 Conclusion on Error Estimation . . . . . . . . . . . . . . . . . . . . . 50
4.3 Conclusion on Model Accuracy . . . . . . . . . . . . . . . . . . . . . 51

5 Performance: Dynamics Based Estimator 53
5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Fast Straight, With Evasion . . . . . . . . . . . . . . . . . . . 55
5.1.2 Small Eights Fast . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.3 Highway Driving with Low Frequency Sine Steering . . . . . . 57
5.1.4 Highway Driving with High Frequency Sine Steering . . . . . . 58
5.1.5 Fast on low friction surface . . . . . . . . . . . . . . . . . . . . 59
5.1.6 Uphill With Turn . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.1.7 Reversing with High Articulation Angle . . . . . . . . . . . . . 61

5.2 Accuracy of the Dynamics Based Estimator . . . . . . . . . . . . . . 62
5.3 Lateral Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 Estimator without Yaw-Rate on trailer . . . . . . . . . . . . . . . . . 64

6 Discussion 67
6.1 Performance of the Kinematic Based Estimator . . . . . . . . . . . . 67

6.1.1 Accuracy Estimation of Kinematic Based Estimator . . . . . . 67
6.2 Performance of the Dynamic Based Estimator . . . . . . . . . . . . . 68
6.3 Lateral Velocity Estimator . . . . . . . . . . . . . . . . . . . . . . . . 68
6.4 Comparison Between Estimators . . . . . . . . . . . . . . . . . . . . . 68
6.5 Comparison to Similar Work . . . . . . . . . . . . . . . . . . . . . . . 69
6.6 Reflection on Project . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.6.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7 Conclusion 71

A Parameters Estimator:Kinematic I

B Parameters Estimator:Dynamics Based III

C Correlation Between States and Diff Heading:Kinematic V

D Correlation Between States and Diff Heading:Dynamics Based IX

x



List of Figures

1.1 Example of how a human user might use Articulation Angle [19]. . . 4

2.1 Visualisation of a tractor and trailer . . . . . . . . . . . . . . . . . . . 7
2.2 Wheel Speed Coordinate Systemq . . . . . . . . . . . . . . . . . . . . 8
2.3 Setup of the wire sensor. . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Basic Concept of Kalman Filtering[3] . . . . . . . . . . . . . . . . . . 11
2.5 Kinematic model for tractor and trailer. . . . . . . . . . . . . . . . . 15
2.6 A simple force model for tractor. . . . . . . . . . . . . . . . . . . . . 17
2.7 A simple force model for trailer. . . . . . . . . . . . . . . . . . . . . . 19
2.8 Kinematic model for tractor and trailer with lateral velocity. . . . . . 20
2.9 Simplification of axles to one axle. . . . . . . . . . . . . . . . . . . . . 23
2.10 Simplification of axles to one axle. . . . . . . . . . . . . . . . . . . . . 25

3.1 The project’s process. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Distribution of articulation angle in the data set. . . . . . . . . . . . 33
3.3 Fast Straight, with Evasion . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Small Eights Fast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Highway driving with Low Frequency Sine Steering . . . . . . . . . . 35
3.6 Highway driving with High Frequency Sine Steering . . . . . . . . . . 36
3.7 Fast on Low Friction Surface . . . . . . . . . . . . . . . . . . . . . . . 36
3.8 Uphill with Turn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.9 Reversing with High Articulation Angle . . . . . . . . . . . . . . . . . 37
3.10 Setup of the test truck. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Difference between estimated articulation angle and actual articula-
tion angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Results of estimating articulation angle when driving in high speed,
in a straight line with evasion. . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Results of estimating articulation angle when driving in small eights . 44
4.4 Results of estimating articulation angle when driving with sine steer-

ing low frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 Results of estimating articulation angle when driving with sine steer-

ing high frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.6 Results of estimating articulation angle when driving fast on surface

with lower friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.7 Results of estimating articulation angle when driving up a road with

12 degrees slope, continuously turning. . . . . . . . . . . . . . . . . . 48

xi



List of Figures

4.8 Results of estimating articulation angle when driving reversing with
large articulation angle . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.9 Error Estimation for real test versus simulator for similar maneuver . 50
4.10 Comparison between different models. . . . . . . . . . . . . . . . . . . 51
4.11 Distribution of the lateral velocity in the equivalent wheel axle. . . . 52

5.1 Difference between actual estimated articulation angle and actual ar-
ticulation angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Results of estimating articulation angle when driving in high speed
straight with evasion . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Results of estimating articulation angle when driving in small eights . 56
5.4 Results of estimating articulation angle when driving with sine steer-

ing low frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5 Results of estimating articulation angle when driving with sine steer-

ing high frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.6 Results of estimating articulation angle when driving fast on surface

with lower friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.7 Results of estimating articulation angle when driving up a road with

12 degrees slope, continuously turning. . . . . . . . . . . . . . . . . . 60
5.8 Results of estimating articulation angle when driving reversing with

large articulation angle . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.9 Difference between estimated lateral velocity and lateral velocity from

RT3000 on the Trailer. . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.10 Difference between estimated lateral velocity and lateral velocity from

RT3000 on the Tractor. . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.11 Velocities for driving in eights. . . . . . . . . . . . . . . . . . . . . . . 63
5.12 Velocities for driving in reverse. . . . . . . . . . . . . . . . . . . . . . 64
5.13 Results of estimating articulation angle when driving reversing with

large articulation angle without gyro on trailer . . . . . . . . . . . . . 65
5.14 Results of estimating articulation angle when driving with sine steer-

ing low frequency without gyro on trailer . . . . . . . . . . . . . . . . 65

xii



List of Tables

2.1 Variables used in the Speedometer section . . . . . . . . . . . . . . . 8
2.2 Variables used in the Wire Length to Articulation Angle section. . . . 9
2.3 Parameters used in the kalman filter . . . . . . . . . . . . . . . . . . 11
2.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Variables used in the kinematic model. . . . . . . . . . . . . . . . . . 15
2.6 Variables used in the kinematic model. . . . . . . . . . . . . . . . . . 20
2.7 Variables used in the kinematic model . . . . . . . . . . . . . . . . . 22
2.8 Variables for remaining torque. . . . . . . . . . . . . . . . . . . . . . 23
2.9 Variables for remaining torque. . . . . . . . . . . . . . . . . . . . . . 25

4.1 Result table of kinematic based estimator. . . . . . . . . . . . . . . . 41
4.2 Result table for kinematic based estimator on maneuver, Fast Straight,

With Evasion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Result table for kinematic based estimator on maneuver, Small Eights

Fast. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Result table for kinematic based estimator on maneuver, Highway

Driving with Low Frequency Sine Steering. . . . . . . . . . . . . . . . 45
4.5 Result table for kinematic based estimator on maneuver, Highway

Driving with High Frequency Sine Steering. . . . . . . . . . . . . . . 46
4.6 Result table for kinematic based estimator on maneuver, Fast on Low

Friction Surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.7 Result table for kinematic based estimator on maneuver, Uphill With

Turn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.8 Result table for kinematic based estimator on maneuver, Reversing

With High Articulation Angle. . . . . . . . . . . . . . . . . . . . . . . 49
4.9 State contribution to error estimation . . . . . . . . . . . . . . . . . . 50

5.1 Result table of Dynamic Based Estimator . . . . . . . . . . . . . . . 54
5.2 Result table for kinematic based estimator on maneuver, Fast Straight,

With Evasion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3 Result table for kinematic based estimator on maneuver, Small Eights

Fast. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Result table for kinematic based estimator on maneuver, Highway

Driving with Low Frequency Sine Steering. . . . . . . . . . . . . . . . 57
5.5 Result table for kinematic based estimator on maneuver, Highway

Driving with High Frequency Sine Steering. . . . . . . . . . . . . . . 58

xiii



List of Tables

5.6 Result table for kinematic based estimator on maneuver, Fast on low
friction surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.7 Result table for kinematic based estimator on maneuver, Uphill With
Turn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.8 Result table for kinematic based estimator on maneuver, Reversing
with High Articulation Angle. . . . . . . . . . . . . . . . . . . . . . . 61

1



List of Tables

2



1
Introduction

Going into the 2020s more and more focus will be on automation of vehicles. As
stated by Volvo, Automation will revolutionize the transport industry – it will im-
prove productivity, lower fuel consumption, and optimize traffic management and
route planning among other things[2]. To achieve this a precise knowledge of the
vehicles pose is essential.

1.1 Background
Motion estimation for autonomous vehicles is concerned with extracting the dy-
namic characteristics and behavior of the whole vehicle combination. It has the
task to provide accurate values in order to allow the control of motion actuators in a
vehicle to perform safe and efficient maneuvers, e.g., follow the intended path along
the road. One of the major challenges is to guarantee accurate and reliable values
in real time, which is required for vehicles that are operated on public roads. To be
able to make informed decision for controlling the vehicle, knowledge of the vehicles
current pose is required. For a two unit semitrailer the pose mainly concerns the
yaw-angle between the two units, the articulation angle. In the case of a semitrailer
the larger the difference between the trailer’s heading and the tractor’s heading, the
larger articulation angle.

In automotive systems there are areas of hazard involved. The ASIL [8] risk clas-
sification system is used to define integrity requirements on signals that can affect
vehicle safety. ASIL-D is the most demanding rating, which is given to products
using signals and systems that can result in dangerous situations that may be un-
controllable for the vehicle operator[13]. For these products to be considered safe to
use in these environments, signals that have been assigned an ASIL rating need to
be very rigorously tested and precise.

The connection point between tractor and trailer is the fifth wheel. On the trailers
side the connection is called the kingpin. There exists sensors today that could be
mounted on the kingpin to measuring the articulation angle. These sensors however
have some drawback e.g. dead zones, latency in update or signals that are very
noisy. Due to these drawbacks there are currently no sensors of this type matching
the ASIL-D classification, which is typically applied to motion estimation related
signals for highly automated vehicles. Other types of sensors with sufficient clas-
sification are available today. For pose estimation rotational and acceleration data
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1. Introduction

are important. This data is available in Inertial Measurement Units (IMUs). Many
IMUs available are classed as ASIL-D.
Incorrect information of the vehicles state will lead to faulty decisions by the user.
In autonomous vehicles the user is the path planner and motion controller. Accu-
rate, robust and fast estimation are needed in order to provide sufficient information
to the path planner and motion controller. High accuracy on the articulation angle
is important in planning the required road-space, the space that the semi-trailer
will occupy. Another large concern is jackknifing. Jackknifing is when the trailer
pushes the tractor forward and causing it to rotate. This can often be prevented by
detecting risks well in advance and then steered into a safe position. The risk here
being a too large articulation angle.

One example where accurate pose estimation is required is when the semi-trailer
needs to be parked. When parking accuracy is important, as the trailer needs to be
driven into spaces with small margin of errors. Given that the position of the tractor
is known, one degrees error of the articulation angle corresponds to about 10 cm
uncertainty at the rear of the trailer for a trailer of set length. When parking in tight
areas 10 cm is a large but still reasonable uncertainty. As parking will be one of the
first steps in automating trucks an accurate articulation angle will be very beneficial.

In intersections it is not easy for the user to predict how the trailer will behave.
As the front of the trailer tries to follow the tractor and cutting corners, the rear
swings out and may occupy space outside of its own lane. If the user has information
on the articulation angle, dangerous situation might be avoided. No matter if the
user is a human or a autonomous system.

Figure 1.1: Example of how a human user might use Articulation Angle [19].

4



1. Introduction

1.2 Related Work
Previous work has been done to estimate the articulation angle. In [5] a camera is
used to determine the articulation angle. The system matches the image from the
camera with a database containing warped images of the trailer with known artic-
ulation angles. From this the closest match was chosen as the current articulation,
combining this with an Unscented Kalman Filter, maximum errors never exceeds 3
deg and the RMS resulted in 0.69− 0.74 deg. Although this system was not able to
run in real-time it is the best estimator found for estimating the articulation angle.
In [7] a model calculating the articulation angle from yaw-rate of the truck and
steering angle is developed. The resulting error is at most 5.37 deg and has a stan-
dard deviation of 1.27 deg. Another study[6] uses a similar estimator, but does
not present quantified errors. Observing the articulation angle from simulation and
from estimate, the maximum error is around the value found in [7], 5 deg. However
note that this is comparing a 20 DoF simulation, which may not match a real life
situation.

1.3 Purpose
The aim of this Master Thesis is to design an virtual sensor that calculates the
articulation angle. This sensor has to match the safety requirements ASIL-D. This
is achieved by giving data, from actual sensors matching the safety requirements, as
input to an estimator. To ensure accuracy of the estimator it will be compared to
the ground truth from empirical data. A goal is set to maintain the angular error
below one degree at all times.

1.3.1 Research Question
This project answers the following questions:

• How feasible is a virtual articulation sensor based on sensors matching the
signal integrity requirements for safety critical vehicle functions?

• How can the error of such a virtual sensor be quantified?

1.4 Limitations
1. The estimation will only be done for one specific tractor and trailer combina-

tion. If possible, it would be a great asset to Volvo if the developed algorithms
would be able applicable to different semitrailer combinations with a change
in parameters. Limited to one tractor and one trailer.

2. The payload is assumed to be constant and not movable. This because a
payload, like a water tank and will have a much higher complexity and needs
more time to develop.

3. When predicting the state of the truck in the next time-step there are a many
external conditions that may affect the prediction and thereby the performance
of the estimation. A few example of these are wind, temperature, road incline.

5



1. Introduction

If these conditions affects the estimator a decision will be taken on whether
the condition needs to be taken into consideration to develop a robust and
accurate estimation.

4. The estimator is required to run in real-time to give relevant data to the user.
However, this report will not evaluate if the estimator is able achieve this.

6



2
Theory

In the following sections the necessary theory to understand the implementation of
the developed estimators is presented.

2.1 Nomenclature
This thesis uses the vehicle dynamics sign convention according to ISO-8855[9]. This
standard uses the right-handed axis system with the z-axis pointing up. Positive
angles are defined as counter-clockwise around each axis. The articulation angle can
be described as the steering angle of the trailer. A positive articulation angle means
the tractor is to the left of the trailer, as seen in fig 2.1. In the figure below the
most important parameters are shown. More parameters will be presented in this
chapter when relevant.

Figure 2.1: Visualisation of a tractor and trailer
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2. Theory

2.2 Sensor
In this section the mathematical models of two sensors are described. They are later
needed to calculate relevant data.

2.2.1 Speedometer
The centralized velocity of a vehicle can be described from the speed from two wheels
on the same axle. The relevant parameters are visualised in figure 2.2 and presented
in table 2.1.

Figure 2.2: Wheel Speed Coordinate Systemq

vx Speed at the center of the axle
v1 Left wheel hub speed
v2 Right wheel hub speed
θ̇ Yaw-Rate of axle
w Width of the wheelbase

Table 2.1: Variables used in the Speedometer section

The speed of the center of the axle, vx, can be calculated as follows given the yaw
rate, θ̇1 and the hub speed of either wheel.

vx = v1 + θ̇1 · w
2 (2.1)

vx = v2 −
θ̇1 · w

2 (2.2)

(2.3)
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2. Theory

Hence central speed can be calculated as the average of one wheel pair. This assumes
there is no longitudinal slip on the wheels.

vx = v1 + v2

2 (2.4)

2.2.2 Wire length to Articulation Angle
Some of test data given by Volvo is based on a system with two wires connecting the
tractor and trailer. By measuring the length of these wires the articulation angle
can be determined. The concept, with relevant variables, is illustrated in figure 2.3
and described in table 2.2

Figure 2.3: Setup of the wire sensor.

L0 Length of left wire when the articulation angle is zero
R0 Length of right wire when the articulation angle is zero
b Orthogonal distance from articulation point to sensor
cL Diagonal distance from sensor to articulation point
cR Diagonal distance from sensor to articulation point
dL Extension of left-wire from L0
dR Extension of right-wire from L0
φ Articulation angle

Table 2.2: Variables used in the Wire Length to Articulation Angle section.

9
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The articulation angle, φ, can be calculated as follows if looking at the left wire.

φ = π/2− cos−1(TL/NL) (2.5)

Where TL and NL are described below.

TL = b2 + (L0 − dL)2 − c2
L (2.6)

NL = 2 · b · (L0 − dL) (2.7)
(2.8)

The right wire is uses the same algorithms and corresponding variables.

φ = −π/2 + cos−1(TR/NR) (2.9)
TR = b2 + (R0 − dR)2 − c2

R (2.10)
NR = 2 · b · (R0 − dR) (2.11)

(2.12)

2.3 Estimation

This section gives a brief overview of the filters used in the project. These filters
are the Kalman Filter, and its non-linear alternative, the Unscented Kalman Filter
(UKF).

2.3.1 Kalman Filter

Kalman filters[12] uses Bayesian statistics[4] to, from previous knowledge, make a
more accurate estimation of the current state. The state contains all of the vari-
ables that are of current interest, xk−1. From the previous timestep knowledge of
how uncertain the states are is available. These uncertainties are assumed to be
of Gaussian distribution and describe the covariance of that Gaussian distribution.
Through the motion model the state for the next time-step is predicted. By com-
bining the current state and it’s uncertainty with the measurements and knowledge
of their noise a better estimation can be achieved. Under the assumption of the
following.

• Measurement with Gaussian noise.
• The motion model is linear.
• The motion models noise is Gaussian.

Then the Kalman Filter is the optimal estimator.[20]. The relevant parameters are
presented in table 2.3.
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Fk Motion model at time k
Hk Measurement model at time k
x̂k|k−1 Predicted state at time k, given state from time k-1, the prior
x̂k|k Updated state at time k, given measurements from time k, the posterior
ŷk Estimated measurements at time k
yk Measurements at time k
vk Innovation at time k
Sk Innovation Covariance at time k
Kk Optimal Kalman gain at time k

Pk|k−1 Predicted covariance at time k, the prior covariance
Pk|k Updated covariance at time k, the posterior covariance
Qk Motion model uncertainty at time k, normal distributions
Rk Measurement model noise at time k, normal distributions

Table 2.3: Parameters used in the kalman filter

For the Kalman Filter each time-step contains two steps. These are the prediction
step and the update step. A depiction of how the Kalman Filter functions is shown
in figure 2.4.

Figure 2.4: Basic Concept of Kalman Filtering[3]

The prediction step describes what the state at timestep k is predicted to be, x̂k|k−1.
This is calculated from the previous timestep, x̂k−1|k−1, and the motion model, Fk.
The motion is usually based on a physical model and describes how the state changes.
The motion model can additionally use the user’s input for the current state to assist
in the prediction. The uncertainty of the state at timestep k, Pk|k−1, is calculated
from the previous uncertainty, Pk−1|k−1, and the motion model. A process noise,
Qk, is added as no model describes the physical model perfectly. The prediction is

11
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described below.

x̂k|k−1 = Fkx̂k−1|k−1 (2.13)
Pk|k−1 = FkPk−1|k−1F

T
k +Qk (2.14)

The update step uses the measurements from the actual data to refine the state.
Through the measurement model, Hk, the predicted state describes the expected
measurements, ŷk|k−1. The difference between the actual yk and expected mea-
surement is the innovation, vk. For the uncertainty a innovation covariance, Sk is
calculated from the predicted uncertainty, measurement model and measurement
noise, Rk. The Kalman gain, Kk, is calculated and used to get the updated state,
x̂k|k, and its uncertainty, Pk|k. These calculations are described by the equations are
described in 2.15-2.20.

ŷk|k−1 = Hkx̂k|k−1 (2.15)
vk = yk − ŷk|k−1 (2.16)
Sk = HkPk|k−1H

T
k +Rk (2.17)

Kk = Pk|k−1H
T
k S
−1
k (2.18)

x̂k|k = x̂k|k−1 +Kkvk (2.19)
Pk|k = (I −KkHk)Pk|k−1 (2.20)

The Kalman Filter is limited to using linearized models around a certain point. In
this thesis this won’t suffice. A non-linear version of the kalman filter is required.
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2.3.2 Unscented Kalman filter

The Unscented Kalman Filter[1] has the advantage of not requiring linearized mod-
els. When using a non-linear model, simply calculating the uncertainty as done in
the Kalman Filter is not possible. To approximate the uncertainty a few methods
are applicable. The one used in this thesis is the Uncented Kalman Filter, described
in this section. The parameters used are described in Table 2.4.

fk Motion model at time k
hk Measurement model at time k

x̂k|k−1 Predicted state at time k, given state from time k-1, the prior
x̂k|k Updated state at time k, given measurements from time k, the posterior
ŷk Estimated measurements at time k
yk Measurements at time k
vk Innovation at time k
Sk Innovation Covariance at time k
Kk Optimal Kalman gain at time k

Pk|k−1 Predicted covariance at time k, the prior covariance
Pk|k Updated covariance at time k, the posterior covariance
Qk Motion model uncertainty at time k, normal distributions
Rk Measurement model noise at time k, normal distributions
Pi ith column of the covariance matrix
X (i) i:th sigma point
Wi Weight of sigma point i
n Number of sigma points

Table 2.4: Notation

The simplified explanation of this method is as follows. Points, X〉, at the edge of
the uncertainty around the estimated state are collected. Additionally a weight, Wi,
for each point is calculated. Here n is two times the number of states plus one.

X (0) = x̂ (2.21)

X (i) = x̂ +
√

n

1−W0
P1/2
i , i = 1, 2,...,n (2.22)

X (i+n) = x̂−
√

n

1−W0
P1/2
i , i = 1, 2,...,n (2.23)

W0 = 1− n/3 (2.24)

Wi = 1−W0

2n (2.25)

The prediction is done on each of these points. And a new uncertainty is calculated.
The prediction model is here denoted f(x, u, T ). The model takes in x, u and T ,
with x being the current state, u being the control inputs at current state and T
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being how much time has passed between the two time-steps.

x̂k|k−1 =
2n∑
i=0

f(X (i), T )Wi (2.26)

s(i) = f(X (i))− x̂k|k−1 (2.27)

Pk|k−1 = Qk−1 +
2n∑
i=0

(s(i) ·Wi · sT (i)) (2.28)

In the update step, just as in the prediction step, sigma points are calculated. Here
h(x) is the measurement model. Pxy is the measurement uncertainty. Except for
this, the Unscented Kalman Filter is the same as the Kalman Filter.

ŷk|k−1 =
2n∑
i=0

h(X (i))Wi (2.29)

Pxy =
2n∑
i=0

(X (i) − x̂k|k−1)(h(X (i))− ŷk|k−1)TWi (2.30)

Sk = Rk +
2n∑
i=0

(
(h(X (i))− ŷk|k−1)(h(X (i))− ŷk|k−1)T

)
Wi (2.31)

v = yk − ŷk|k−1 (2.32)
x̂k|k = x̂k|k−1 + PxyS

−1v (2.33)
Pk|k = Pk|k−1 − PxyS−1P T

xy (2.34)

2.4 Model

The motion model of a tractor-semitrailer’s yaw motion can be either kinematic or
dynamic. All three models presented in this thesis all depend on two simplifications.
The first simplification being that each wheel pair has been simplified to one central
wheel, a so called single-track model. The second simplification is a replacement of
the three axles on the trailer to one axle, and replacement of the two rear axles on
the tractor to one axle, these replacements are called the equivalent wheel axles. The
replacement axle on the tractor is placed at the distance L1 from the front axle. On
the trailer, the replacement axle is placed at the distance L2 from the articulation
point, P .

2.4.1 Kinematic model

The least complicated of these models is the single track kinematic model. This
model assumes that there is no slip in any of the wheels. Which in turn results in
no lateral velocity at the equivalent wheel base.
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P The articulation point, fifth wheel, where the trailer connects to the tractor.
β Slip-angle at articulation point between tractor and trailer.
δ Steering angle on front axle of the truck.
v(1)
x Longitudinal speed of the tractor.
v(2)
x Longitudinal speed of the trailer.
v(2c)
y Lateral speed of the trailer at the articulation point.
θ̇1 Yaw-rate of the tractor.
θ̇2 Yaw-rate of the trailer.
φ Articulation angle between trailer and tractor.
L1 Distance from front axle to equivalent tractor rear axle.
L2 Distance from articulation point to equivalent trailer rear axle.
Rt Distance from center of trailer to the common pivot point, O2.
a Distance from articulation point to first real axle on trailer.
e Distance between real axles on trailer.
b Distance between equivalent axle and articulation point on tractor.

Table 2.5: Variables used in the kinematic model.

Figure 2.5: Kinematic model for tractor and trailer.

In a paper by B. Källstrand he presents how the variables of one unit can be de-
scribed by variables from the other unit. [11]. This model assumes Ackermann
steering introduced in 1818[15].

The Ackermann steering describes where the rotation point of a vehicle is, based
on its steering angle. To begin with, the yaw-rate of the trailer can be described

15



2. Theory

as the longitudinal velocity, divided by the lateral distance to the rotation point.
Using trigonometry, the articulation angle can be connected to the distances to the
equivalent wheelbase and the lateral distance to the rotation point.

θ̇2 = vx2

Rt

(2.35)

tan(φ+ β) = L2

Rt

(2.36)

Through manipulation of equations (2.35)-(2.36), the yaw-rate of the trailer can be
described as follows.

θ̇2 = v(2)
x

L2
tan(φ+ β) (2.37)

Remaining variable β, is the slip-angle of the vehicle at the articulation point. This
variable can be calculated in at least two methods. Motivation for the first method
is as follows. The slip-angle at a certain point of the vehicle is the angle from the
x-axis of the vehicle to the actual velocity of said point. As described earlier, slip-
angle in the equivalent wheel base is zero. With no slip angle on any of the wheels,
the slip angle at the front of the trailer is the steer angle. As the tractor is a rigid
body, the lateral velocity is linear along the vehicle, depending on the yaw-rate.

κ = tan−1
(
v(κ)
y

|vx|

)
(2.38)

The slip angle is here defined as κ and the lateral velocity at this point is v(κ)
y . With

this equation and previous motivation, a formula for β can be derived.

β = tan−1
(
tan(δ)b
L1

)
(2.39)

The second method is based on that the lateral velocity at a any given point of the
vehicle is dependent on the yaw-rate and distance to the equivalent wheel-base.

β = tan−1
(
θ̇1b

|v(1)
x |

)
(2.40)

The longitudinal velocity is equal along the length of the trailer. Each method
has its drawback. With the first method any slip on the front wheels is discarded,
which might affect the results. The second method relies on a division by the lon-
gitudinal velocity. If this velocity is close to zero, the result becomes very unreliable.

To completely define the yaw-rate of the trailer with variables of the tractor, the
longitudinal velocity, v(2)

x , can be described as a coordinate change from the longitu-
dinal velocity of the tractor. The lateral velocity at the articulation point has been
described earlier. [

v(2)
x

v(2c)
y

]
=
[
cos(φ) −sin(φ)
sin(φ) cos(φ)

] [
v(1)
x

v(1)
x tan(β)

]
(2.41)
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From this rotational coordinate change v(2)
x can be expressed through v(1)

x .

v(2)
x = v(1)

x (cos(φ)− sin(φ)tan(φ)) (2.42)

Using (2.42) in (2.37) gives the following.

θ̇2 = v(1)
x

L2
(sinφ+ cosφtanβ) (2.43)

Using (2.43) and (2.39) θ̇2, can instead be described with θ̇1, vx1, φ.

θ̇2 = v(1)
x

L2

(
sinφ+ cosφ

θ̇1b

v
(1)
x

)
(2.44)

Equation (2.44) depends on two parameters, L2 and b. From analysing the equation
it’s evident that L2 will affect the estimator’s behavior, especially the magnitude of
the articulation angle. The two distances describe the distance from the articulation
point to the equivalent wheelbase. A simple solution is to place the equivalent axle in
the center between the two actual axles. Another way to perform this is to calculate
the torque equilibrium.

Torque Equilibrium at Point P1

The torque equilibrium assumes steady state. This section goes through the neces-
sary equation to calculate where the equivalent wheelbase is in this situation. The
tire model used here is described in the Vehicle Dynamics Compendium [10].

Figure 2.6: A simple force model for tractor.

Figure 2.6 shows parameters used in this section.
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Ci = CCiFzi (2.45)

Ci is the cornering stiffness and Cci is the cornering coefficient. Geometric relation-
ships gives the following.

tan(α1) = L1 − a
Re

, tan(α2) = L1 − e− a
Re

(2.46)

In this case steady state, means there is a constant yaw rate. The change in moment
inertia is zero. The torque equilibrium is calculated in point P1. By calculating the
torque here, any forces on the front axle is canceled out.

x+ P1 = C1tan(α1)(a) + C2tan(α2)(a+ e) = 0 (2.47)

Using equation (2.45) and (2.47):

CC1Fz1tan(α1)(a) + CC2Fz2tan(α2)(a+ e) = 0 (2.48)

Combine equation (2.46) and (2.48):

CC1Fz1
L1 − a
Re

a+ CC2Fz2
L1 − a− e

Re

(a+ e) = 0 (2.49)

As the rear axles of the vehicle are of the same type, it can be assumed that CC1 =
CC2, this allows a few simplifications.

L1a+ L1(a+ e) = a2 + (a+ e)(a+ e) (2.50)

L1 = Fz1a
2 + Fz2(a+ e)(a+ e)
Fz1a+ Fz2(a+ e) (2.51)

If the normal forces are assumed to be equal, Fz1 = Fz2, the resulting equation is
the following. The closer the axles are two eachother, this statement becomes more
realistic.

L1 = a2 + (a+ e)(a+ e)
a+ (a+ e) (2.52)

There are two additional assumptions used in this model, they are, no lateral slip
on the front wheels and that the forces in the articulation point are negligible. A
more developed model is theoretical move front wheel axle forward to match the
steering angle with actual movement [21]. The affect of the two assumptions are not
investigated in this report.

Torque Equilibrium at Point P2

Just as in the calculation for L1, an equation for L2 could be derived with the same
approach.
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Figure 2.7: A simple force model for trailer.

tan(α1) = L2 − a
Re

, tan(α2) = L2 − a− e
Re

, tan(α3) = L2 − 2e− a
Re

(2.53)

Assuming steady state, in this case constant yaw rate. The point P2 is chosen as
the forces on P2 is irrelevant for this calculation.

x+ P2 = C1tan(α1)(a) + C2tan(α2)(a+ e) + C3tan(α3)(a+ 2e) = 0 (2.54)

Using equation (2.54) and (2.54):

CC1Fz1tan(α1)(a) + CC2Fz2tan(α2)(a+ e) + CC3Fz3tan(α3)(a+ 2e) = 0 (2.55)

Assume CC1 = CC2 = CC3 and combine equation (2.53) and (2.55):

Fz1
L2 − a
Re

a+ Fz2
L2 − a− e

Re

(a+ e) + Fz3
L2 − a− 2e

Re

(a+ 2e) = 0 (2.56)

Fz1L2a−Fz1a
2 +Fz2L2(a+e)−Fz2(a+e)2 +Fz3L2(a+2e)−Fz3(a+2e)2 = 0 (2.57)

L2 = Fz1a
2 + Fz2(a+ e)2 + Fz3(a+ 2e)2

Fz1a+ Fz2(a+ e) + Fz3(a+ 2e) (2.58)

Assume Fz1, Fz2 and Fz3 are equal results in the following equation.

L2 = a2 + (a+ e)2 + (a+ 2e)2

a+ (a+ e) + (a+ 2e) (2.59)

2.4.2 Kinematic Model with Lateral Velocity
While the kinematic model assumes no lateral velocity in the equivalent wheel base,
this is not true for an actual vehicle. This model uses the vehicle description in
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section 2.4.1, with the addition of a known lateral velocity. The point O1 and O2
are fixed points on the vehicle. If a angle-rate change from moment equality is to be
added, these points should be placed in the Center of Gravity (CoG) of each unit.
Figure 2.8 presents the parameters, and table

Figure 2.8: Kinematic model for tractor and trailer with lateral velocity.

P The articulation point, fifth wheel, where the trailer connects to the tractor.
v(1)
x Longitudinal speed of the tractor.
v(2)
x Longitudinal speed of the trailer.
vP1
y Lateral speed of the tractor in the articulation point.
vP2
y Lateral speed of the trailer in the articulation point.
vP1
y Lateral speed of the tractor in the O1 point.
vP2
y Lateral speed of the trailer in the O2 point.
θ̇1 Yaw-rate of the tractor.
θ̇2 Yaw-rate of the trailer.
φ Articulation angle between trailer and tractor.
lc1 Distance to the O1 point from the front axle of the tractor
lf1 Distance to the articulation point from the front axle of the tractor
lc2 Distance to the O2 point from the articulation point.

Table 2.6: Variables used in the kinematic model.

vP1
x = vO1

x (2.60)
vP1
y = vO1

y − θ̇1(lp1 − lc1) (2.61)
vP2
x = vO2

x (2.62)
vP2
y = vO2

y + θ̇2l
c
2 (2.63)

(2.64)
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Shown in equation (2.60)-(2.63), along the length of the vehicle, the lateral velocity
changes, the longitudinal velocity does not. The change of lateral velocity is distance
multiplied by the yaw-rate. The point P has the same velocity for each unit, but
with different coordinate systems, rotated φ degrees. Performing the rotation results
in the following relationship.

vP2
x = vP1

x cos(φ)− vP1
y sin(φ) (2.65)

vP2
y = vP1

y cos(φ) + vP1
x sin(φ) (2.66)

vP1
x = vP2

x cos(−φ)− vP2
y sin(−φ) (2.67)

vP1
y = vP2

y cos(−φ) + vP2
x sin(−φ) (2.68)

(2.69)

From the lateral velocity description a formula for the yaw-rate can be derived.

θ̇1 =
vO1
y − vP1

y

lP1 − lO1
(2.70)

θ̇2 =
vP2
y − vO2

y

lO2
(2.71)

(2.72)

Finally, let’s describe the longitudinal velocity and the yaw-rate in terms of the
velocities of the opposite unit.

vP1
x = vP2

x cos(−φ)− vP2
y sin(−φ) (2.73)

vP2
x = vP1

x cos(φ)− vP1
y sin(φ) (2.74)

θ̇1 =
vO1
y − vP2

x sin(−φ) + vP2
y cos(−φ)

lP1 − lO1
(2.75)

θ̇2 =
vP1
x sin(φ) + vP1

y cos(φ)− vO2
y

lO2
(2.76)

2.4.3 Dynamic Based Model
The Dynamic Model described here is a Single-Track Model. The two rear axles on
the Tractor simplified with one axle, and the three axles of the trailer simplified to
one. The simplified axle is placed in the middle of the replaced axles, with an added
torque. The Dynamic Model is based on the Kinematic Model, with additional
equations explaining where each velocity originates from, how the forces affects the
vehicle. With these equations the lateral velocity can be determined and thereby
using the equations from Kinematic Model with Lateral Velocity, from section 2.4.2.
To achieve this a few additional equations are added.

• Constitution for axles on 1st unit
• Compatibility, shifting lateral velocity within 1st unit

21



2. Theory

• Constitution for axles on 2nd unit
• Compatibility, within 2nd unit
• Equilibrium of coupling
• Constitution for coupling
• Dynamic Equilibrium of 1st unit
• Dynamic Equilibrium of 2nd unit

A few new notations are needed.

P The articulation point, fifth wheel, where the trailer connects to the tractor.
δ Steering angle on front axle of the truck.
v(k)
x Longitudinal speed of unit k.
v(k)
y Lateral speed of unit k in CoG.

v(kh)
y Lateral speed of unit k in point h
s

(k)
h Slip-angle in point h of unit k
C

(k)
h Cornering stiffness in point h of unit k

M (k) Torque from simplifying axles in unit k
F (kh)
y Lateral force of unit k at point h
F (kh)
z Vertical force of unit k at point h
θ̇k Yaw-rate of unit k.
φ Yaw angle between trailer and tractor.
Jk Inertia of unit k
mk Mass of unit k

Table 2.7: Variables used in the kinematic model

2.4.4 Constitution for axles on 1st unit
Each axle has it’s own slip-Angle. As small slip-angles are assumed, a ≈ tan−1(a)

s
(1)
f =

v(1f)
y

|v(1)
x |

(2.77)

s(1)
r =

v(1r)
y

|v(1)
x |

(2.78)

The cornering stiffness is linearly dependant on load on each axles, the normalised
cornering coefficient is a constant, that can be assumed to be around Cc ∈ [5, 10]1/rad
[10].

C
(1)
f = F (1f)

z · Cc (2.79)
C(1)
r = F (1f)

z · Cc (2.80)
The lateral forces are then calculated from Cornering Stiffness and slip angle

F (1f)
y = −C(1)

f · s
(1)
f (2.81)

F (1r)
y = −C(1)

r · s(1)
r (2.82)

(2.83)
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Remaining Torque From Simplifying to One Axle

When simplifying the multiple axles into a single axis, there is a resulting force
and a resulting torque. The torque varies depending on where the resulting force is
placed. This torque is calculated from the lateral force shown earlier.

Figure 2.9: Simplification of axles to one axle.

Additional variables used here to explain the torque that are only used within this
section.

v1y Lateral velocity of the first rear axle
v2y Lateral velocity of the second rear axle
F1 Lateral force from first rear axle
F2 Lateral force form second rear axle
lo Distance to the simplified axle, from the first axle
lw Distance between the axles.

Table 2.8: Variables for remaining torque.

First describe the lateral forces.

F1 = −C1rv1y

|vx|
(2.84)

F2 = −C2rv2y

|vx|
(2.85)
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Compatibility within rear axle.

v1y = v(1r)
y + lo · θ̇1 (2.86)

v2y = v(1r)
y − (lw − lo) · θ̇1 (2.87)

Now calculate the torque in the simplified axle.

M (1) = F1lo − F2(lw − lo) (2.88)

M (1) =
C1r · (v(1r)

y + lo · θ̇1) · lo − C2r · (v(1r)
y − (lw − lo) · θ̇1) · (lw − lo)

|vx|
(2.89)

As the axles are close to each other, the load on each axle is similar. From the load
the cornering stiffness is calculated. Assume the difference between the two cornering
stiffness is negligible. Additionally placing the simplified axle in the middle allows
the resulting torque equation to be very simplified.

M (1) =
θ̇1( l

1
w

2 )2

2|v1
x|

(2.90)

Compatibility within 1st unit

Longitudinal velocity is the same over length of the unit. Lateral is linearly depen-
dant on lateral velocity in CoG and yaw-rate

v(1)
ry = v(1)

y − θ̇1l
(1)
r (2.91)

v
(1)
fy = v(1)

y + θ̇1l
(1)
f (2.92)

v(1)
cy = v(1)

y − θ̇1l
(1)
c (2.93)

Constitution for axles on 2nd unit

Each axle has it’s own Slip-Angle.

s(2)
r =

v(2)
yr

|v(2)
x |

(2.94)

The cornering stiffness is linearly dependant on load on each axles, the cornering
coefficient is a constant, that can be assumed to be around Cc ∈ [5, 10]1/rad [10].

C(2)
r = F (2)

zr
· Cc (2.95)

The lateral forces are then calculated from Cornering Stiffness and slip angle

F (2r)
y = −C(2)

r · s(2)
r (2.96)

(2.97)
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Remaining Torque From Simplifying to One Axle

Figure 2.10: Simplification of axles to one axle.

Additional variables used here to explain the torque that are only used within this
section.

v1y Lateral velocity of the first rear axle
v2y Lateral velocity of the second rear axle
v3y Lateral velocity of the second rear axle
F1 Lateral force from first rear axle
F2 Lateral force form second rear axle
F3 Lateral force form third rear axle
lo Distance to the simplified axle, from the first axle
lw Distance between the axles.

Table 2.9: Variables for remaining torque.
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First describe the lateral forces.

F1 = −C1rv1y

|v(1)
x |

(2.98)

F2 = −C2rv2y

|v(1)
x |

(2.99)

F3 = −C3rv3y

|v(1)
x |

(2.100)

Compatibility within rear axle.

v1y = v(2r)
y + lo · θ̇1 (2.101)

v2y = v(2r)
y − (lw − lo) · θ̇1 (2.102)

v3y = v(2r)
y − (lw − lo) · θ̇1 (2.103)

Now calculate the torque in the simplified axle.

M (2) = F1lo + F2(lo − lw)− F3(2lw − lo) (2.104)
(2.105)

As the axles are close to each other, the load on each axle is similar. From the load
the cornering stiffness is calculated. Assume the difference between the two cornering
stiffness is negligible. Additionally placing the simplified axle in the middle allows
the resulting torque equation to be very simplified.

M (2) = 2θ̇2(l(2)
w )2

3|v(2)
x |

(2.106)

Compatibility, within 2nd unit

Longitudinal velocity is same over length of the unit.

v(2r)
y = v(2)

y − θ̇2l
(2)
r (2.107)

v(2c)
y = v(2)

y + θ̇2l
(2)
c (2.108)

Constitution for coupling

The force in the coupling is calculated as a dampener between the two units, where
the force is linearly dependant on the difference in velocity between the two units.

P (2)
x = d · (v(1)

x cos(φ)− v(1)
y sin(φ)− v(1)

x ) (2.109)
P (2)
y = d · (v(1)

x sin(φ) + v(1)
y sin(φ)− v(2)

x ) (2.110)

Equilibrium of coupling

Express the relationship between forces in the two units.

P (2)
x + cos(φ)P (1)

x − sin(φ)P (1)
y = 0 (2.111)

P (2)
y + sin(φ)P (1)

x + cos(φ)P (1)
y = 0 (2.112)
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Dynamic Equilibrium of 1st unit

m1 · (v̇(1)
x − θ̇1 · v(1)

y ) = F (1fv)
x + F (1r)

x − P (1)
x (2.113)

m1 · (v̇(1)
y + θ̇1 · v(1)

x ) = F (1fv)
y + F (1r)

y − P (1)
y (2.114)

J1θ̈1 = F (1v)
y l

(1)
f − F (1r)

y l(1)
r − P (1)

y l(1)
c −M (1) (2.115)

Dynamic Equilibrium of 2nd unit

m2 · (v̇(2)
x − θ̇2 · v(2)

y ) = F (r2)
x + P (2)

x (2.116)
m2 · (v̇(2)

y + θ̇2 · v(2)
x ) = F (r2)

y + P (2)
y (2.117)

J2θ̈2 = F (2r)
y l(2)

r + P (2)
y l(2)

c −M (2) (2.118)
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3
Method

To achieve the goal of this project, to estimate the yaw-angle between tractor and
trailer within one degrees certainty, an initial concept for an estimator is designed
and evaluated. The purpose of this concept being to gain understanding of the prob-
lems faced when estimating the articulation angle. To evaluate in what conditions
the performance is robust and precise the estimator is verified both on empirical
data and on simulated data from Volvo’s in house simulator, VTM, which will be
described in depth in section 3.3.

Verification pointed towards some situations where the performance of the estimator
was not up to standard, which is taken into consideration to develop a second and
improved estimator. Finally their performances are evaluated and compared. Figure
3.1 depicts the work process. The result of the research is presented in the Theory
chapter.

Figure 3.1: The project’s process.
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3. Method

3.1 Kinematics Based Estimator
The first estimator is the Kinematic Based Estimator, it uses the Unscented Kalman
Filter (UKF) described in section 2.3.2 to filter the signals. The UKF requires
a motion model and atleast one measurement model, these are described in this
section. This estimator consists of 4 states and uses 3 sensors for measurements.
The state vector, x, and measurement vector, y, are shown in equations (3.1) and
(3.2). Parts of the filter is linear, but as one of the measurement models is non-linear,
the filter chosen is is the UKF.

x =


v(1)
x

θ̇1
φ

θ̇2

 (3.1)

y =

v
(1)
x

θ̇1
θ̇2

 (3.2)

3.1.1 Prediction
In the Kinematic Estimator’s prediction step a constant velocity model is used. This
means it assumes that the change in velocity and yaw-rates are uncertain, specified
by the process noise, Q. The distribution of this uncertainty is calculated from
changes in each state from the provided data. Given the difference between yaw-
rate of tractor and trailer, the change in articulation angle is calculated. T describes
the time between each time step.

A =


1 0 0 0
0 1 0 0
0 T 1 −T
0 0 0 1

 (3.3)

xk+1 = Axk + qk, qk ∼ N (0, Q) (3.4)

3.1.2 Update
For this estimator two update steps were required, the first update step directly uses
the measurements to update the yaw-rates and velocity.

ŷ =

v1
θ̇1
θ̇2

 =

x(1)
x(2)
x(4)

 (3.5)

In section 2.4.2 a relationship between the tractor and trailer is described. The
second update step’s measurement model utilizes that the trailer’s yaw-rate can
be described as a function depending on the articulation angle as seen in equation
(2.43).

ŷ = θ̇2 = x(1) · sin(x(3)) + x(2) · b · cos(x(3))
L2

(3.6)
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In equation (3.6), θ̇2 is described from 3 states, x(1) = v(1)
x , x(2) = θ̇1 and x(3) = φ.

The two first of these three has been updated to have a lower uncertainty in the
previous update step. By running through the update step described in the UKF,
seen in equations (2.29)-(2.34), all the states used in the measurement model is
changed in the direction of the innovation. This change is scaled by the Kalman
gain. The state with the highest uncertainty is the most affected.

3.2 Dynamics Based Estimator
The Dynamic Based Estimator is an Unscented Kalman Filter, just as the Kinematic
Estimator. However it uses a dynamic model in it’s prediction step. This allows
more accurate estimation of the yaw-rate and a estimation of the lateral velocity.
For this estimator seven states, and the data from four sensors are used.

x =



v(1)
x

v(1)
y

v(2)
x

v(2)
y

θ̇1
θ̇2
φ


(3.7)

y =


v(1)
x

v(2)
x

θ̇1
θ̇2

 (3.8)

3.2.1 Prediction
The motion model for the Dynamic Estimator predicts the next time step by calcu-
lating what the resulting forces are from the current states and inputs. The inputs
here are steering angle, driving torque and brake forces on each axle, found in vector
u. Together they allow for an accurate prediction of the next state. The equations
described in section 2.4.3 can be used to create a function, f , describing the change
in state from state (x), input (u) and length of time step (T ), ẋ = f(x, u, T ). Cal-
culating this f and making the function discrete results in equations (3.9).

xk+1 = xk + T



(F (1v)
x + u(2) + u(3) + P (1)

x )/m1 + xk(5) · xk−1(2)
(F (1v)

y + F (1r)
y + P (1)

y )/m1 − xk(5) · xk(1)
(u(4) + P (2)

x )/m2 + xk(6) · xk(4)
(F (2r)

y + P (2)
y )/m2 + xk(6) · xk(3)

(F (1v)
y l

(1)
f − F (1r)

y l(1)
r − P (1)

y l(1)
c +M (1))/J1

(P (2)
y l(2)

c − F (2r)
y +M (2))/J2

xk(6)− xk(5)


(3.9)

31



3. Method

3.2.2 Update
Just as the Kinematic Estimator, the Dynamic Estimator consists of two update
steps, one direct and one indirect. Both of these update steps uses measurement
models that describes all of the measurements.

Direct Measurement Model

The direct measurement model describes four of the states directly, these states are
the longitudinal velocities and the yaw-rates of each unit. By using these measure-
ments in the Kalman Filter each of these states are directly updated and provides
a more accurate prediction for the following time step.

ŷ =


v(1)
x

v(2)
x

θ̇1
θ̇2

 (3.10)

Indirect Measurement Model

The indirect measurement model uses the same measurements as the direct measure-
ment model, but here the measurements are described with states from the opposite
unit. By including this measurement model the lateral velocities and articulation
angle does not only rely on the integrated value calculated in the motion model.

In equations (3.11) and (3.12) the lateral velocity in the connection point is de-
scribed.

v(1c)
y = v(1)

y − θ̇1l
(1)
c (3.11)

v(2c)
y = v(2)

y − θ̇2l
(2)
c (3.12)

Then the measurements can be described by states of the opposite unit. The deriva-
tion of these equations can be found in section 2.4.2

ŷ =


v1
x

v2
x

θ̇1
θ̇2

 =



v(2)
x cos(−φ)− v(2c)

y sin(−φ)
v(1)
x cos(φ)− v(1c)

y sin(φ)
v

(1)
y −(v(2)

x sin(−φ)+v(2)
cy cos(−φ))

l
(1)
c −l

(1)
f

−v(1)
y +(v(2)

x sin(φ)+v(1c)
y cos(φ))

l
(2)
c

 (3.13)

3.3 Verification
To determine the performance of the estimators a few performance metrics are looked
at. These metrics are:

• A distribution chart for how the error is spread over all available tests.
• The mean of the absolute error determines how far off the average error is.
• Root Mean Square Error, RMSE, with no bias is equivalent to the standard

deviation of the error.
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• Observe the time where the angular error is outside the acceptable error of
one degree.

• The maximum absolute error.
• The 3-Sigma uncertainty will be compared to the error, if the error is within

the uncertainty at 99.7% of the time, the uncertainty is able to capture the
error.

3.4 Verification Data
In a collaboration between Volvo Trucks and Chalmers Revere, vehicle tests with
a tractor-semitrailer combination were conducted. Chalmers Revere’s states "The
aim of Revere is to provide a research platform for the development and verifica-
tion of theoretical models, algorithms and technologies using real vehicles in real or
conditioned traffic environments."[18]. The test vehicles were equipped with a few
very precise sensors to measure the articulation angle, these sensors will be further
described in section 3.4.3. The vehicle tests covered a wide range of different chal-
lenging driving situations. This empirical data is used to both develop and test the
estimators. This data was also used to verify the performance of the estimators.

As a distribution chart for the estimators error for the entire set will be presented,
the distribution of the articulation angles for the entire data set is here presented in
figure 3.2 as a reference.

Figure 3.2: Distribution of articulation angle in the data set.

33



3. Method

In addition to the empirical data a simulator was available. This is an in house
simulator provided by Volvo, called VTM. It has a very high number of degrees of
freedom. However it is hard to use this with roadbank and does not capture all the
discrepencies in a real system.

3.4.1 Manoeuvres

Some driving situations to be evaluated are:
1. Driving in low speed and straight forward and backward, < 20 km/h
2. Driving in high speed and straight forward, > 50 km/h
3. Driving forward and backward with high articulation angle, articulation angle
> 25 degrees

4. Driving on road that with high roughness, e.g. gravel in both high speed and
low speed.

Described in this section are some of the most interesting manoeuvres found in the
data set, these capture the desired driving situations. These include high articulation
angles, fast changes in articulation angle and periodical changes in articulation angle.
Each manoeuvre used is described below, with a graph showing the equirectangular
position from longitude and latitude for the entire time sequence.

Fast Straight, with Evasion

This test shows how the estimator handles sudden jolts in articulation angle. Go-
ing at a average speed of 54 km/h and obstacles are avoided by the driver. This
manoeuvre is relevant when considering driving situation 2.

Figure 3.3: Fast Straight, with Evasion
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Small Eights Fast

This test shows how the estimator handles high lateral forces and scrubbing. Here
the tractor makes very tight curves in the shape of eights with a average speed of
14 km/h. This manoeuvre is relevant when considering driving situation 1 and 3.

Figure 3.4: Small Eights Fast

Highway Driving with Low Frequency Sine Steering

This test shows how the estimator handles periodical turns. From these tests any
phase delays in the estimator will be made clear. The tractor is driven in a periodical
motion. In a controlled and slow fashion the driver alternates between turning left
and right with a frequency of 0.2 Hz at a speed of 50 km/h. This manoeuvre is
relevant when considering driving situation 2. But also gives a introspect into phase
delays of the system.

Figure 3.5: Highway driving with Low Frequency Sine Steering
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Highway driving with High Frequency Sine Steering

This test shows how the estimator handles faster periodical turns. In a faster motion
than Low Frequency Sine Steering the tractor is now alternates between left and right
turn with a frequency of 0.5 Hz at a speed of 50 km/h. This manoeuvre is relevant
when considering driving situation 2. But also gives a introspect into phase delays
of the system.

Figure 3.6: Highway driving with High Frequency Sine Steering

Fast on Low Friction Surface

This test shows how the estimator handles surfaces with lower tyre-road friction. To
test the semi-trailer on low friction, test was done while driving on gravel. Provid-
ing less friction than driving on roads. This manoeuvre is relevant when considering
driving situation 4.

Figure 3.7: Fast on Low Friction Surface
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Uphill with Turn

This test shows how the estimator handle roads with a different inclination. There
is also a stop in the middle of the test. This manoeuvre is relevant when considering
driving situation 2. Also tests the estimator when an unknown inclination and bank
is present.

Figure 3.8: Uphill with Turn

Reversing with High Articulation Angle

This test shows how the estimator handles driving in reverse. The semi-trailer is
driven so a high articulation is achieved. This manoeuvre is relevant when consid-
ering driving situation 3.

Figure 3.9: Reversing with High Articulation Angle
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3.4.2 Sensors

Wheel speed sensors

The velocity of the vehicle needs to be calculated from the wheel speed. On the
trailer the average wheel hub speed and difference between the wheels are available.
In the truck however the individual wheel hub speeds are available. From these, the
vehicle’s longitudinal speed at the centre of each axle can be calculated. Described
in section 2.2.1

IMU - Tractor

From the brake-system in the tractor some measurements are available. One of
these is the yaw-rate. This sensor is however filtered. As the signal is filtered, its
measurements are no longer time-invariant, which is nessecary for a Kalman filter
to operate optimally. This accuracy reduction can be reduced by using a more
advanced filter [14], but this will not be covered in this thesis.

IMU - Trailer

In the trailers of today, IMU is not the standard, a lateral accelerometer is common,
however a gyro for yaw-rate is very rare. In the provided data for this thesis an
IMU was attached to the trailer. The sensor has a 3 DoF accelerometer and a 3
DoF gyroscope.

3.4.3 Ground Truth

The estimated articulation angle is compared to three different ground truths made
available. These thruths will be described in this section.

GPS Heading

On the test vehicle two very precise GNSS-aided Inertial Navigation Systems called
RT3000[17] were installed, one on each unit. Each of these sensors are a combination
of a GNSS and an IMU. The output is improved by using sensor fusion between
the internal components[16]. The RT3000 have very accurate measurements, one
of these measurements is the heading of the sensor. To acquire the articulation
angle the trailer’s heading is subtracted from the tractor’s heading. This resulting
articulation angle is the ground truth used in this report.
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Figure 3.10: Setup of the test truck.

φ = θ1 − θ2 (3.14)

Draw-Wire Based Articulation Angle Measurement

Along each side of the truck a wire has been placed. One end of the wire is connected
to the trailer, the other end is connected to a draw-wire displacement sensor on the
tractor. These sensor are very precise with very high resolution. From the displace-
ment of these wires the articulation angle is calculated, as described in section 2.2.2

Due to issues in higher articulation angles, these sensors are not used for the results
for the estimator. They are used in evaluating the articulation angle from the
RT3000.

Trailer kingpin articulation angle sensor

A commercially available articulation angle sensor was fitted to the trailer, used in
the data provided. This sensor is mounted on the trailer’s kingpin and measures
the relative angle between the kingpin and the tractor’s fifth wheel coupling. This
sensor has a few issues: It is not classified to a high enough signal integrity classifi-
cation and can therefore not be used in safety critical functions. Additionally, with
fast changes in the articulation angle, this sensor is not able to track the true value.
The estimators will be compared to this sensor in the results.
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4
Performance: Kinematic Based

Estimator

This chapter presents the performance of the Kinetic Based Estimator. First the
overall result is presented. Then the estimators result for each manoeuvre described
in section 3.4.1 is presented. The accuracy of this estimator is described. Finally
from these results, the Dynamic Based Estimator is motivated.

4.1 Results

By observing the figure 4.1, a skew towards the left of the figure can be seen. This
shows that the estimator has a negative bias of the articulation angle for this test.
Stated goal for this thesis was to estimate the articulation angle within one degree
of the ground truth. The Kinematic Based Estimator manages to achieve this for
87 % of the time according to table 4.1. However the Root Mean Square Error seen
here is below said goal. Here it is also shown that the uncertainty of the filter does
not capture the error as well as it should do.

Time 1848 s
RMS Err 0.87 deg

Mean Abs Err 0.57 deg
Max Abs Err 6.88 deg
Within 1 deg 87 %

Within 3-Sigma 71 %

Table 4.1: Result table of kinematic based estimator.
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Figure 4.1: Difference between estimated articulation angle and actual articulation
angle.

In the following sections the result of each maneuver will be presented with a figure
and a short description of what can be observed in the figure. Each figure consists
of four plots each. These plots are, in order of up to down and left to right:

1. All articulation angle data.
2. Error in articulation angle estimation, and uncertainties.
3. Yaw rate of the tractor and the trailer.
4. Speed of the tractor.

The articulation angle figure contains three lines: Estimation, this is the estimated
value coming from the Estimator. GPS Heading, this signal is used as the ground
truth described in section 3.4.3. Kingpin Sensor, this sensor used as a comparison
to the estimator as it is a commercially available sensor.
The second plot consists of three lines: Diff heading, this is the absolute difference
between GPS Heading and Estimation. 3-sigma line, this is the uncertainty of the
estimation from the UKF. Estimated error is an error estimation that will be describe
in section 4.2.
The last two plots are self explanatory.
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4.1.1 Fast Straight, With Evasion
The plots presented in this section were acquired by testing the kinematic estimator
on data from the tractor driving at high speed, around a test track while evading
obstacles, the manoeuvre is described in section 3.4.1.

Figure 4.2: Results of estimating articulation angle when driving in high speed, in
a straight line with evasion.

Time 332 s
RMS Err 0.47 deg

Mean Abs Err 0.38 deg
Max Abs Err 2.00 deg
Within 1 deg 98 %

Within 3-Sigma 54 %
Within Error Estimation 99 %

Table 4.2: Result table for kinematic based estimator on maneuver, Fast Straight,
With Evasion.

The estimated articulation angle has an error more than one degree at a very small
portion of the time. It follows the fast changes in the articulation angle well. The
Kingpin Sensor has a bias when driving straight, but matches up in some turns.
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4.1.2 Small Eights Fast
The plots presented in this section were acquired by testing the kinematic estima-
tor on data from the tractor while making hard turns in the shape of eights, the
manoeuvre is described in section 3.4.1.

Figure 4.3: Results of estimating articulation angle when driving in small eights

Time 100 s
RMS Err 2.31 deg

Mean Abs Err 2.01 deg
Max Abs Err 4.60 deg
Within 1 deg 26 %

Within 3-Sigma 28 %
Within Error Estimation 100 %

Table 4.3: Result table for kinematic based estimator on maneuver, Small Eights
Fast.

The estimator is struggling in this maneuver and gives a maximum error that is
higher than 4 degrees. In this test the vehicle was subjected to high lateral forces.
However, it is not always at these points in time that the estimator struggles, observe
the data at 50s.
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4.1.3 Highway Driving with Low Frequency Sine Steering
The plots presented in this section were acquired by testing the kinematic estimator
on data from the tractor while driving straight with a sinusoidal steering angle, the
manoeuvre is described in section 3.4.1.

Figure 4.4: Results of estimating articulation angle when driving with sine steering
low frequency

Time 27 s
RMS Err 0.52 deg

Mean Abs Err 0.48 deg
Max Abs Err 0.86 deg
Within 1 deg 100 %

Within 3-Sigma 45 %
Within Error Estimation 100 %

Table 4.4: Result table for kinematic based estimator on maneuver, Highway
Driving with Low Frequency Sine Steering.

In this situation, the kingpin sensor produces a large error and does not seem to
handle fast changes in the articulation angle. The estimator however manages to
estimate the angle within one degree at all time. The error stems from a phase
delay.
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4.1.4 Highway Driving with High Frequency Sine Steering
The plots presented in this section were acquired by testing the kinematic estimator
on data from the tractor while driving straight with a sinusoidal steering angle, the
manoeuvre is described in section 3.4.1.

Figure 4.5: Results of estimating articulation angle when driving with sine steering
high frequency

Time 19 s
RMS Err 0.48 deg

Mean Abs Err 0.41 deg
Max Abs Err 1.01 deg
Within 1 deg 100 %

Within 3-Sigma 54 %
Within Error Estimation 100 %

Table 4.5: Result table for kinematic based estimator on maneuver, Highway
Driving with High Frequency Sine Steering.

Just as the ”Low Frequency Sine Steering” case, the kingpin sensor produces a large
error. The estimator produces an error that is larger than one degree for a very brief
moment, and with a phase delay.
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4.1.5 Fast on Low Friction Surface
The plots presented in this section were acquired by testing the kinematic estimator
on data from the tractor while driving around a track on gravel, the manoeuvre is
described in section 3.4.1.

Figure 4.6: Results of estimating articulation angle when driving fast on surface
with lower friction

Time 84 s
RMS Err 0.36 deg

Mean Abs Err 0.25 deg
Max Abs Err 2.58 deg
Within 1 deg 99 %

Within 3-Sigma 88 %
Within Error Estimation 98 %

Table 4.6: Result table for kinematic based estimator on maneuver, Fast on Low
Friction Surface.

Just as the ”Fast Straight, With Evasion” manoeuvre, the estimator stays below
one degrees error when the vehicle is driving at higher speed.
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4.1.6 Uphill With Turn
The plots presented in this section were acquired by testing the kinematic estimator
on data from the tractor while driving up a small hill and turning, the manoeuvre
is described in section 3.4.1.

Figure 4.7: Results of estimating articulation angle when driving up a road with
12 degrees slope, continuously turning.

Time 57 s
RMS Err 0.64 deg

Mean Abs Err 0.44 deg
Max Abs Err 3.25 deg
Within 1 deg 92 %

Within 3-Sigma 90 %
Within Error Estimation 91 %

Table 4.7: Result table for kinematic based estimator on maneuver, Uphill With
Turn.

At 30 seconds in the plot, the ground truth, GPS Heading, is giving a faulty value.
This may be due to connection being broken between those. The uncertainty from
Kalman filter, 3-sigma line, is increasing when the speed decrease.
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4.1.7 Reversing With High Articulation Angle
The plots presented in this section were acquired by testing the kinematic estimator
on data from the tractor while driving up a small hill and turning, the manoeuvre
is described in section 3.4.1.

Figure 4.8: Results of estimating articulation angle when driving reversing with
large articulation angle

Time 49 s
RMS Err 1.22 deg

Mean Abs Err 0.95 deg
Max Abs Err 3.63 deg
Within 1 deg 63 %

Within 3-Sigma 91 %
Within Error Estimation 100 %

Table 4.8: Result table for kinematic based estimator on maneuver, Reversing
With High Articulation Angle.

Reversing is a difficult situation for the estimator, resulting in a maximum error
of around 4 degrees and overall large error. With the shifting yaw rate at 38s, the
estimator struggles.
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4.2 Conclusion on Error Estimation
The accuracy of the estimator is very important. In addition to describing the artic-
ulation angle, the estimator needs to know when the error might be larger, and when
the estimator is certain of it’s estimation. A Kalman Filter outputs the uncertainty
for each of it’s state. The estimation should produce an uncertainty that is as small
as possible, but not lower than the actual error at the percent of time the measured
sigma notation describes. In a normal distribution 3-sigma, three standard devia-
tions from the mean, is the value where 99.7% of the error is within. From the table
4.1 it is clear that only using 3-sigma as accuracy is not enough. Therefore, an error
estimation was developed, and a goal was set to capture the error at 95% of the
time.

The correlation between the true error and different state of the vehicle was analysed
to find what kind of situation results in a higher error for the kinematic estimator.
This analysis did not find one state that was the sole source of the error. By
combining different signals that had a correlation to a larger error in some of the
situation the new error estimation could be derived. The raw signals are noisy and
contains spikes, the spikes often correlate to a higher error. A simple algorithm was
developed that looks for spikes, increasing the estimated error at that time instant,
and then converging the error estimation to zero, or until another spike is found.
Table 4.9 shows the gain and threshold for each states that is used. When the state
gives a value over threshold, the error estimator adds the gain value to its output.

State Symbol Threshold Gain [degree]
d
dt

Yaw rate truck θ̈1 0.1 0.5
Yaw rate truck θ̇1 0.28 1.5
Pitch rate truck θ̇p1 2.5 0.55
Steering angle δ 0.005 0.59

Acceleration x times speed ax1vx1 7 0.55

Table 4.9: State contribution to error estimation

Figure 4.9: Error Estimation for real test versus simulator for similar maneuver
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Figure 4.9 shows the result of the estimated error for real test versus a simulation in
the VTM for a similar manoeuvre. In the simulator the signals does not contain any
disturbances, however the surface is assumed to be flat and therefore the manoeuvre
is not equal. The figure shows that this new error estimator manages to estimate
the error almost the entire sequence. After running through the entire data set,
the estimator is shown to overestimate the error with a mean of 1.7 degree but at
98.4 % of the time it encapsulates the error. That meets the set goal for the error
estimation, but there is room for improvement. There might be other manoeuvres
this error estimation does not perform as well, more testing needs to be done.

4.3 Conclusion on Model Accuracy

The estimator manages to be be within one degree of the true articulation angle at
a majority of the time. As seen in figure 4.1 the error of the estimator is rarely over
two degrees, but even with . The estimator is still not correct. This points towards
the model used not being accurate enough. Using (2.76) a new estimator can be
made. Figure 4.10 shows comparison of this new and the previously estimator with
the test where the truck was driven in small eights fast 4.3.

Figure 4.10: Comparison between different models.

This estimator is able to remove some of the error and is not overestimating it is
certainty as estimator concept 1 does. The model of the estimator concept 1 is
assumed zero lateral velocity in the equivalent wheel axle. According to figure 4.11
the actual lateral velocity is not zero.
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Figure 4.11: Distribution of the lateral velocity in the equivalent wheel axle.

This shows that a new estimator should be developed there lateral velocity should
take into consideration. The estimator used for this comparison is however not the
answer as it is very sensitive to noise in vy, which is a very hard variable to estimate.
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5
Performance: Dynamics Based

Estimator

This chapter presents the performance of the Dynamic Based Estimator. First the
overall result is presented. Then the estimators result for each manoeuvre described
in section 5.1 is presented. The accuracy of this estimator is described. As a part
of the dynamic estimator is the lateral velocity, the estimation of lateral velocity is
also presented in section 5.3. Finally the estimator is evaluated when the yaw-rate
of the trailer is excluded.

5.1 Results
The figure 5.1 shows that the estimator has a negative bias of the articulation angle.
The Dynamic Estimator estimates the articulation angle within one degree for 90%
of the time, as shown in table 5.1. While the 3-Sigma encapsulates the error for
98% of the time it does not match what 3-Sigma represents, that will say 99.7%.

Figure 5.1: Difference between actual estimated articulation angle and actual
articulation angle.
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Time 1848 s
RMS Err 0.69 deg

Mean Abs Err 0.49 deg
Max Abs Err 3.54 deg
Within 1 deg 90 %

Within 3-Sigma 98 %

Table 5.1: Result table of Dynamic Based Estimator

Worth to note is loading each file, filtering and producing data for all of the 1848s
of run time takes about 170s on a stationary computer. These results will show
the estimators result, the articulation angle from the RT3000s as GPS heading and
kingpin sensor.
The following sections presents the performance of the Dynamic Estimator on the
manoeuvres described in 3.4.1. The layout of the plots in these subsections are the
same as described in section 4.1.
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5.1.1 Fast Straight, With Evasion
The plots presented in this section were acquired by testing the dynamic estimator
on data from the tractor driving at high speed, around a test track while evading
obstacles, the manoeuvre is described in section 3.4.1.

Figure 5.2: Results of estimating articulation angle when driving in high speed
straight with evasion

Time 332 s
RMS Err 0.44 deg

Mean Abs Err 0.35 deg
Max Abs Err 1.13 deg
Within 1 deg 98 %

Within 3-Sigma 100 %

Table 5.2: Result table for kinematic based estimator on maneuver, Fast Straight,
With Evasion.

The estimator never underestimates the error, but it highly overestimates the error.
This will be present in most of the manoeuvres, but will not be mentioned in the
rest.
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5.1.2 Small Eights Fast
The plots presented in this section were acquired by testing the dynamic estimator on
data from the tractor while making hard turns in the shape of eights, the manoeuvre
is described in section 3.4.1.

Figure 5.3: Results of estimating articulation angle when driving in small eights

Time 100 s
RMS Err 1.77 deg

Mean Abs Err 1.46 deg
Max Abs Err 3.54 deg
Within 1 deg 35 %

Within 3-Sigma 77 %

Table 5.3: Result table for kinematic based estimator on maneuver, Small Eights
Fast.

The estimator performs a lot better when turning in one direction, to the right. And
underestimates the articulation angle when turning left. Here the estimated error is
surpassed by the error.
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5.1.3 Highway Driving with Low Frequency Sine Steering
The plots presented in this section were acquired by testing the dynamic estimator
on data from the tractor while driving straight with a sinusoidal steering angle, the
manoeuvre is described in section 3.4.1.

Figure 5.4: Results of estimating articulation angle when driving with sine steering
low frequency

Time 27 s
RMS Err 0.62 deg

Mean Abs Err 0.58 deg
Max Abs Err 1.10 deg
Within 1 deg 96 %

Within 3-Sigma 99 %

Table 5.4: Result table for kinematic based estimator on maneuver, Highway
Driving with Low Frequency Sine Steering.

A bias and phase delay is present for the estimator on this test. The phase delay is
smaller than the kinematic estimator.
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5.1.4 Highway Driving with High Frequency Sine Steering
The plots presented in this section were acquired by testing the dynamic estimator
on data from the tractor while driving straight with a sinusoidal steering angle, the
manoeuvre is described in section 3.4.1.

Figure 5.5: Results of estimating articulation angle when driving with sine steering
high frequency

Time 19 s
RMS Err 0.34 deg

Mean Abs Err 0.30 deg
Max Abs Err 0.59 deg
Within 1 deg 100 %

Within 3-Sigma 99 %

Table 5.5: Result table for kinematic based estimator on maneuver, Highway
Driving with High Frequency Sine Steering.

The estimator underestimates the articulation angle in left turns, but accurately
estimates the angle in right turns.
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5.1.5 Fast on low friction surface
The plots presented in this section were acquired by testing the dynamic estimator
on data from the tractor while driving around a track on gravel, the manoeuvre is
described in section 3.4.1.

Figure 5.6: Results of estimating articulation angle when driving fast on surface
with lower friction

Time 84 s
RMS Err 0.43 deg

Mean Abs Err 0.33 deg
Max Abs Err 1.01 deg
Within 1 deg 100 %

Within 3-Sigma 100 %

Table 5.6: Result table for kinematic based estimator on maneuver, Fast on low
friction surface.

The estimated angle is more than one degree off at a very brief period of time. It
also manages to estimate the angle at low speeds.
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5.1.6 Uphill With Turn
The plots presented in this section were acquired by testing the dynamic estimator
on data from the tractor while driving up a small hill and turning, the manoeuvre
is described in section 3.4.1.

Figure 5.7: Results of estimating articulation angle when driving up a road with
12 degrees slope, continuously turning.

Time 57 s
RMS Err 0.52 deg

Mean Abs Err 0.35 deg
Max Abs Err 2.81 deg
Within 1 deg 92 %

Within 3-Sigma 99 %

Table 5.7: Result table for kinematic based estimator on maneuver, Uphill With
Turn.

In Figure 5.7 the error visible at 30s is due to a fault in the RT3000 and not in
the estimation. Outside of the time period around the fault, the error is below one
degree.
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5.1.7 Reversing with High Articulation Angle
The plots presented in this section were acquired by testing the dynamic estimator
on data from the tractor while driving up a small hill and turning, the manoeuvre
is described in section 3.4.1.

Figure 5.8: Results of estimating articulation angle when driving reversing with
large articulation angle

Time 49 s
RMS Err 0.60 deg

Mean Abs Err 0.46 deg
Max Abs Err 1.28 deg
Within 1 deg 87 %

Within 3-Sigma 100 %

Table 5.8: Result table for kinematic based estimator on maneuver, Reversing with
High Articulation Angle.

The maximum error is very low, but as previously mentioned the estimated error is
a lot higher.
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5.2 Accuracy of the Dynamics Based Estimator

The model used in dynamics based estimator is closer to reality than the model used
in kinematic based estimator. As the Kalman Filter does not take into account that
the model itself might be inaccurate the error estimation is less accurate the larger
the difference there is between model and reality. The error between the estimated
articulation angle and that measured from the RT3000s is within the 3-sigma 98 %
of the time wish is close to the 99.7 % were it should be.

5.3 Lateral Velocity

A bi-product of the force-based estimator is an estimation of the lateral velocity.
Comparing the lateral velocity estimate at the CoG to that measured by the RT3000s
of each units results in the following histograms.

Figure 5.9: Difference between estimated lateral velocity and lateral velocity from
RT3000 on the Trailer.
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Figure 5.10: Difference between estimated lateral velocity and lateral velocity from
RT3000 on the Tractor.

The lateral velocity error of the tractor is slightly higher than in figure 2.8. That
however measures the lateral velocity in the equivalent wheelbase, where as here the
lateral velocity is described in the CoG.

Looking at some example the estimated lateral velocity can be more directly com-
pared to the real lateral velocity. The green dashed line is the uncertainty from
estimator 3σ.

Figure 5.11: Velocities for driving in eights.
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Figure 5.12: Velocities for driving in reverse.

5.4 Estimator without Yaw-Rate on trailer
Since the trailer are not usually equipped with an IMU it is interesting to see what
result it is possible to get without it. The kinematic model that was used in this
project needs yaw rate of the trailer, but the force based model can run without it.
To test this, the measurement model is adapted. The new measurement will be the
same but without θ̇2 like it is presented in equation (5.1). The result from not using
these measurements are presented in figure 5.13 and 5.14. Worth to note is that
the yaw-rate of the trailer could be estimated with the difference in wheel speed
between left and right side of the trailer.

y =

v
(1)
x

v(2)
x

θ̇1

 (5.1)
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Figure 5.13: Results of estimating articulation angle when driving reversing with
large articulation angle without gyro on trailer

Figure 5.14: Results of estimating articulation angle when driving with sine steer-
ing low frequency without gyro on trailer

65



5. Performance: Dynamics Based Estimator

66



6
Discussion

This thesis covers two models with an estimator for each. The discussion will split
into covering each estimator and then comparing the estimators against each other.

6.1 Performance of the Kinematic Based Estima-
tor

As seen in 4.1 the RMS error of the Kinematic Estimator is below the goal of one
degree’s error set in the Research Questions in section 1.3.1, which is a very positive
result. However, the maximum error is 6.88 deg, which in turns corresponds to the
rear of a 11 m long trailer being 1.38 m offset of estimated position, this result is
not as promising. Looking at the next value in the table, we are back at a positive
result. At only 13% of the time, the estimator is more than one degree off from the
actual articulation angle. With the test being focused on situations with intense
maneuvers it can be argued that the estimator performs very well in low intensity
situations, this can also be seen in figures 4.4, 4.5 and 4.7. Even in figure 4.2, where
quick jolts are applied to the steering to simulate evasion the estimator performs
within the 1 deg. The issues appear when a larger steering angle is applied. This can
be seen in figures 4.8 and 4.3. Due to the higher lateral forces in this situation the
assumption that there is no lateral velocity at the equivalent rear axle is increasingly
inaccurate. Removing the results with large steering angles, will then result in an
even lower mean.

6.1.1 Accuracy Estimation of Kinematic Based Estimator

The Kinematic Estimator cannot by itself give a good value of accuracy with the
model uncertainty. Therefore, an additional accuracy estimator was needed. The
result of the accuracy estimation was that 98.4 % of the time it gives a correct value
but overestimated with a mean of 1.7 degree. Result is meeting the low requirement
with manage to give a correct value higher than 95 % of the time. There was no set
requirement for preventing overestimation.
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6.2 Performance of the Dynamic Based Estimator
The Dynamic Estimator has both a mean and RMS error below the one degree’s
error. This matches the goal that was set in the Research Questions in section 1.3.1.
However, the maximum error is 3.54 deg, which in turns corresponds to the rear of
a 11 m long trailer being 0.68 m offset of estimated position. For 90% of the time
the estimator is within one degree which is an improvement over the Kinematic
Estimator.
The Dynamic Estimator has an advantage of being able to run without the IMU on
the trailer. The error is increasing compare to with IMU but since the trailer are
normally not equipped with IMU this is a good property. Figure 5.13 shows that
the estimator is having a hard time when reversing without the IMU. This might
be due to tuning errors.

Due to unforeseen circumstances, real-time tests was not able to be performed. Both
estimators were developed and tested on only one data-set, with only one occurrence
of each situation. Due to this, it is possible that the estimators could be over tuned
for the data acquired. More vehicle tests would need to be carried out to verify that
the accuracy seen here is realistic.

In an effort to try and define the complexity of the required calculations we looked
at the run time of the filters. As mentioned in section ?? the time it took to run
the filter over the entire data-set is about 170s. This is just under 11 times faster
than the 1848s that the data set consists of. The on board computer on a tractor
would not run this code as fast. But on the other hand, the code is not optimized
and there is a lot of code that runs before filtering in those 170s. A few of these
tasks were to load files, load parameters and save data. With this said, there is a
high chance that the algorithm could be run in real-time on a platform.

6.3 Lateral Velocity Estimator
As the Dynamic Estimator is a force based model, it inherently estimates the lateral
velocity in addition to the articulation angle. The performance of this estimation is
surprisingly precise, it is never more than 0.4 m/s off in either tractor or trailer. This
is more than can be said for the longitudinal velocity when comparing the velocity
from RT3000 and the wheel hub speed. Thanks to the connection between the two
units the lateral velocity is measured as mentioned earlier. Doing this without a
trailer connected to the tractor would not allow these measurements. This should
be explored further, as some of the lateral data was not reliable.

6.4 Comparison Between Estimators
Overall, the Dynamic Estimator outperforms the Kinematic Estimator. In more
difficult maneuver, the Dynamic Estimator is better which the ”Max Abs Err” in
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the tables 4.1 and 5.1 shows. In the maneuver, fast with low and high frequency
sine steering, there is some other improvements. The Kinematic Estimator has a
small phase delay, which the Dynamic Estimator handles better. Looking at the
case with high frequency, figures 4.5 and 5.6, the magnitude is better estimate in
the Kinematic Estimator, but the Dynamic Estimator manages the phase delay bet-
ter. But they both concepts outperform the kingpin sensor that struggle a lot in
this manoeuvre.

The Dynamic Estimator has three additional states, and requires more compu-
tational power. If computational time is a very hard, small limit, the Kinematic
Estimator, with it’s weaknesses shuold be chosen.

6.5 Comparison to Similar Work

The estimators outperforms many of the estimators in similar works. The works
using state observers[6][7] has similar maximum error to the Kinematic Estimator.
The performance here is expected as the models used are similar. The maximum
error of Dynamic Estimator is however a lot lower, indicates that the lateral velocity
is an important variable when estimating the articulation angle. Standard deviation,
RMS, of both Estimators is below the state observers seen in literature. There
is a probability that this improvement is from using a Kalman filter to filter the
signals. In accuracy. both estimators are outperformed by the camera based model
in Christopher de Saxe report[5]. The Dynamic Estimator has similar RMS, but a
higher maximum error. This might be due to chosen manoeuvre. As suggested by
de Saxe, the camera based estimator might be combined with an estimator of our
kind to minimize the computation time.

6.6 Reflection on Project

6.6.1 Method

The method of first evaluating a simple estimator was very beneficial. Not only did
it prove to be an estimator that was within one degree 87 % of the time, but it
allowed us to see what is required to advance the estimator. We did however get
stuck for too long on trying to find if there were any more sources of the error. This
was done by studying the correlation between the error and different state available
to us. These states covered all the states in RT3000 and a few from internally in
the truck, but to no avail.

It was a bit late in the project when the decision to make Estimator Concept 2
a kinetic one. This caused us to not find the most optimal parameters. It also
forced us to not be able to evaluate what the next largest source of error is to the
degree we had hoped.

69



6. Discussion

6.6.2 Results
The results are a bit mixed, the kinematics based estimators perform better than
we expected. It performs well in the situations with low steering angles and handles
the larger steering angles fine enough. Estimator Concept 2 however does not match
our expectations. Even with a rather accurate estimation for lateral velocity, it’s
performance is mostly outdone by Estimator Concept 1 as can be seen in how much
of the time the first estimator is within one degree, the mean and rms of said
estimator. In certain situations, the data of the RT3000 in the tractor appears to
be off, taking a look at figure 5.11, the longitudinal velocity does not match up with
the sensors in the tractor. The lateral velocity also behaves erratically here. The
lateral velocity of the trailer matches, but in the tractor it does not. There is also
the question if the lateral velocity should decrease such an amount while in a sharp
turn? Nothing confirmed but we have a suspicion that the equipment being placed
in the cabin of the tractor may have affected the data. With higher lateral forces
the roll of the cabin will increase and changing the RT3000s reference coordinates.
The springing of the cabin might also have an effect. The wires were ultimately not
giving as good result as was hoped for. As the linear sensor measuring the length
of the wires, our hopes were that this would give very accurate data. But the wires
seemed to be hooked onto some part of the trailer skewing the data.

6.6.3 Future Work
The accuracy estimation can be improve. It depends on several parameters that was
set to match the requirement without any algorithm for finding a more optimized
estimation. To improve the parameters an iterative run of different value could be
done to see what parameter gives the best result. This requires high calculation
power since every iteration has to go through all data and will be time expansive.
But only optimize the parameter will not add or remove any state. Another approach
of estimate the accuracy is using a neural network were input could be several states
and output a value of the error. But to be able to get a good result from this is, lot
of data is needed. This is as well time expensive to try different size of the network
and try different state. Which state that should be used could be determent from
the covariance check of different state and the error.

Going forward with the project, new tests should be run. Both to store new data,
but also to assess whether the estimators can be run in real-time. As mentioned,
we have some suspicions on the validity of the data on RT3000, a better placement
for this equipment would be required. While the wire solution can result in a great
ground truth, but must be improved.
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Conclusion

The research question stated in section 1.3.1 are the following.
• How feasible is a virtual articulation sensor based on sensors matching the

signal integrity requirements for safety critical vehicle functions?
• How can the error of such a virtual sensor be quantified?

These questions have been central during the project.

The error estimation of the estimators is currently not very accurate, neither well
quantified. The special error estimation created for the Kinematic Estimator man-
aged to estimate the maximum error at 98.4% of the time, but it still largely over
estimates the error. For the Dynamic Estimator the inherent uncertainty from the
Kalman Filter is used. This uncertainty over estimates the accuracy and fails to
estimate a high error enough when the estimator has larger errors, some tuning in
retrospect of it’s uncertainty is required. The estimator could benefit greatly from
a method that can change the process noise over time.

We would say that it is feasible to estimate the articulation angle to match the
safety requirements. But more work would have to be done on identifying the errors
in Dynamic Estimator. New tests should be conducted to ensure the estimators
are not over-tuned to the given tests, favorably with a wire solution with higher
accuracy. Doing this would greatly assist in determining the source of error of the
estimator.

The estimators perform well when comparing them to existing sensors, actual and
virtual. Dynamic Estimator was within one degree’s error at 90% of the time. As
seen in the report, it is very possible that this estimator would be able to provide
the required information for a motion controller when parking.
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