

Division of Vehicle Engineering and Autonomous Systems
Chalmers University of Technology
Gothenburg, Sweden 2024

M ethod To Improve a Wheel Suspension

Design Using VI-CarRealTime and

Reinforcement Learning

Final term report for the TM E180 – Automotive Engineering Project

Manuel Denneler

Christoph Heilig

Vinayanand Bangalore Venkatesh Prasad ´

Vivekanandan Madhuravasal Narasimhan

Abhishek Amit Kolekar

In Collaboration with Volvo Car Corporation

Images by Volvo Car Corporation – ID: 151946 & 149306

Final report for the TME180 course -

Automotive Engineering Project

M ethod To Improve a Wheel Suspension

Design Using VI-CarRealTime and

Reinforcement Learning

Manuel Denneler

Christoph Heilig

Vinayanand Bangalore Venkatesh Prasad

Vivekanandan Madhuravasal Narasimhan

Abhishek Amit Kolekar

Department of Mechanics and Maritime Sciences

Division of Vehicle Engineering and Autonomous Systems

Vehicle Dynamics group

Chalmers University of Technology

 Göteborg, Sweden 2024

Method To Improve a Wheel Suspension Design Using VI-CarRealTime and

Reinforcement Learning

© Manuel Denneler, Christoph Heilig, Vinayanand Bangalore Venkatesh

Prasad, Vivekanandan Madhuravasal Narasimhan, Abhishek Amit Kolekar,

2024-01-07

Final Report

Division of Vehicle Engineering and Autonomous Systems

Department of Mechanics and Maritime Sciences

Vehicle Dynamics group

Chalmers University of Technology

SE-412 96 Göteborg

Sweden

Telephone: + 46 (0)31-772 1000

Examiner:

David Sedarsky, sedarsky@chalmers.se

Volvo Car Corporation Stakeholders:

Max Boerboom, max.boerboom@volvocars.com

 Kenneth Ekström, kenneth.ekstrom@volvocars.com

Supervisors at Chalmers:

Yansong Huang, yansong.huang@volvocars.com

Bengt Jacobson, bengt.jacobson@chalmers.se

mailto:sedarsky@chalmers.se
mailto:max.boerboom@volvocars.com
kenneth.ekstrom@volvocars.com
mailto:yansong.huang@volvocars.com
mailto:bengt.jacobson@chalmers.se

I

Contents

Contents ... I

Preface .. III

Abbreviations ... IV

List of figures ... V

List of tables ... VI

Abstract .. VII

1. Introduction .. 1

1.1. Background ... 2

1.2. Aim ... 2

1.3. Methodology ... 2

1.4. Stakeholders and participants ... 3

1.5. Project outcome .. 3

1.6. Project deliverables ... 4

1.7. Limitations .. 5

1.8. Ethics assessment .. 6

2. Vehicle development and Simulation .. 7

2.1. Important definitions .. 7

2.2. VI-CarRealTime and Subsystem Modification 7

2.3. Manoeuvres/Simulation load cases in VI-CRT 8

3. Machine learning theory .. 10

3.1. Machine Learning concepts ... 10

3.2. Probabilistic graphical models ... 10

3.3. Weights and biases .. 10

3.4. Types of machine learning .. 11

4. Reinforcement Learning theory ... 13

4.1. Reinforcement Learning concepts .. 13

4.2. Exploration vs. Exploitation ... 13

4.3. Working of RL .. 13

4.4. Elements of RL ... 15

4.5. Classification of RL ... 16

4.6. Reinforcement Learning workflow ... 16

4.6.1 Formulation of the problem .. 17

II

4.6.2 Reinforcement Learning environment ... 17

4.6.3 Reinforcement Learning agent .. 18

4.6.4 Training of Reinforcement Learning agent 19

4.6.5 Validation of trained agent ... 21

5. RL vs. Other Optimization Methods ... 22

6. MATLAB Script Development and Description 23

6.1. Development of MATLAB Script ... 23

6.2. Description of Different RL Functions .. 23

6.2.1 Main Script (RL_script.m) .. 23

6.2.2 Reset Function (ResetFcn.m) ... 24

6.2.3 Environment Function (RLEnv.m) .. 24

6.2.4 Calculate Wheel Motion (calcJounceMotion.m &

calcSteeringMotion.m) .. 25

6.2.5 Generating Kinematic Data for VI-CRT

(suspensionModification.m) ... 26

6.2.6 Suspension Pre-Check (suspensionCheck.m) 26

6.2.7 XML Modification (xmlModification.m) 27

6.2.8 Run Simulation & Post Process Targets (runSim.m) 28

6.3. Rewards Function ... 29

7. Results .. 32

7.1. Training Agent 1 (v5.1) .. 32

7.2. Training Agent 2 (v5.1) .. 33

7.3. Training Agent 3 (v5.2) .. 34

7.4. Training Agent 4 (v5.3) .. 35

8. Session at the car simulator centre at Volvo AB 37

9. Observation ... 38

10. Conclusion .. 39

11. Future Scope .. 40

12. References... IX

III

Preface

In this study, simulations for generating wheel suspension designs have been

done with Matlab, VICarRealTime and a physical vehicle dynamics simulator.

The tests have been carried out from September 2023 to January 2024. The

work is a part of a research project concerning the development of a method

making the design process of wheel suspension faster. The project is carried out

at the Division of Vehicle Engineering and Autonomous Systems in the

Department of Mechanics and Maritime Sciences, Chalmers University of

Technology, Sweden. The project is financed through the company Volvo Car

Corporation as the main stakeholder.

This part of the project has been carried out with the examiner David Sedarsky,

Max Boerboom as Volvo Car Corporation supervisor, and Yansong Huang and

Bengt Jacobsen as supervisors at Chalmers University of Technology. All tests

have been carried out in the test simulation center at Volvo Car location in

Gothenburg, Sweden. We are grateful to those involved in the for their help

during the project. We would also like to thank Volvo Car Corporation for their

co-operation, involvement, and the provision of the simulation opportunities.

We extend our sincere gratitude to the VEAP department at Chalmers for

accommodating the team with meeting rooms and fueling our brainstorming

sessions with delightful hot chocolate.

Finally, it should be noted that the tests could never have been conducted

without the sense of high quality and professionalism of the laboratory staff.

There are two different versions of this final report. One as the main version

presented here, the other as a shortened version focused on the results provided

for Volvo Car Corporation and their supervisors.

Göteborg, Sweden 2024-01-07

Manuel Denneler, Christoph Heilig, Vinayanand Bangalore Venkatesh Prasad,

Vivekanandan Madhuravasal Narasimhan, Abhishek Amit Kolekar

IV

Abbreviations

Abbreviation Description

AI Artificial Intelligence

OEM Original Equipment Manufacturer

RL Reinforcement Learning

KP
Kinematic Parameters (chosen) – camber [deg], SVA [deg],

toe [deg], X-displacement [mm], Y-displacement [mm]

SVA Side View Angle [deg]

𝐾𝑢 Understeer gradient [deg/g]

𝑅𝐺 Roll gradient [deg/g]

YGM Yaw-rate Gain Margin

PGM Yaw-rate Phase Margin

DDPG Deep Deterministic Policy Gradient

V

List of figures

Figure 1: "Analysis" and "Synthesis" loops in the development process of a

suspension design ... 1

Figure 2 - Weight and Bias Affecting the Output of a Node.......................... 10

Figure 3 - Overview of the Agent, Environment and Signals involved 14

Figure 4 - Policy Update Loop [8] .. 15

Figure 5 - Workflow of the Reinforcement Learning Algorithm 16

Figure 6 - Overview of the RL Environment .. 18

Figure 7 - Flow of the Reinforcement Algorithm in Detail 20

Figure 8 - Reward/Penalty Function - Non-linear proportionality 30

Figure 9 - Reward/Penalty Function - Linear proportionality 30

Figure 10 - Training of RL Agent 1 (v5.1) ... 33

Figure 11 - Training of RL Agent 2 (v5.1) ... 34

Figure 12 - Training of RL Agent 3 (v5.2) for ~120 iterations (L); Same agent

run coninuously for ~1 800 iterations (R) .. 35

Figure 13 - Training of RL Agent 4 (v5.3) ... 36

Figure 14: Vehicle Dynamics simualtor at Volvo Car Corporation [15] 37

VI

List of tables

Table 1: Stakeholders and participants .. 3

Table 2 - Description of Driving Manoeuvres and Evaluated Outputs 9

Table 3 - Updates in different versions of the RL Algorithm 23

VII

Abstract

The project focuses on the enhancement of wheel suspension design through the

utilization of VI-CarRealTime and Reinforcement Learning techniques. The

primary objective of the study is to improve vehicle dynamics and autonomous

systems, thereby contributing to the advancement of automotive engineering.

The development of vehicle suspension systems is a complex and iterative

process, involving the adjustment of various parameters to meet quantitative

and qualitative metrics. The report emphasizes the significance of simulating

different suspension setups to achieve optimal design solutions. It highlights the

essential collaboration between simulation engineers and design engineers to

ensure the successful development of suspension systems.

The project group aimed to use optimisation techniques and artificial

intelligence to streamline the process of developing an optimal suspension in a

time-saving manner. The use of the VI-CarRealTime simulation tool facilitated

the analysis and synthesis loops in the suspension design development process

and enabled the evaluation of kinematic properties and system requirements.

Furthermore, this report deals with the application of machine learning theory,

in particular with concepts of reinforcement learning. A comprehensive overview

of reinforcement learning, its elements, workflows and classification is provided,

highlighting its potential for suspension design optimisation. A detailed

comparison of reinforcement learning with other optimisation methods is also

presented, highlighting its benefits in the context of suspension development.

The development and description of a MATLAB script for the project is

presented, highlighting the technical aspects of implementing reinforcement

learning techniques in the context of suspension design. This report concludes

with a discussion of the potential impact of the research on the automotive

industry, emphasising the importance of the results for the advancement of

vehicle dynamics and automotive engineering as a whole. To summarise, the

project represents a contribution to improving suspension design through the

integration of VI-CarRealTime and reinforcement learning techniques. The

findings and insights presented in this report have the potential to significantly

impact the automotive industry by contributing to the development of more

efficient and optimised vehicle suspension systems.

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 1

1. Introduction

A vehicle has to fulfil a variety of system requirements to be considered fit for

production and release. To fulfil all requirements equally and in full, each

expectation must be quantifiably abstracted so that both the objective and

subjectively perceptible characteristics can be evaluated using objective

measurement parameters. Secondly, each requirement must be assigned to the

individual subsystems so that each can be developed parallelly and by the

experts for each corresponding subsystem.

The subsystem of a vehicle in this project corresponds to the wheel axle and the

related suspension design. The development process for the suspension

subsystem traditionally is an iterative process running in loops at various levels.

At the beginning of each iteration, the task focuses on finding suspension design

solutions which fulfils system requirements (“synthesis”). At the subsystem level

of the wheel suspension, this design consists of so-called “hard points”, the

locations of the suspension mounting points on the vehicle chassis. Although

these can often simulate the required kinematic behaviour of the wheel due to

their free placement, they must also be in areas specified by the design in order

to prevent an arbitrary, inefficient design of the vehicle (“packaging

constraints”). If this cannot be guaranteed during the final check, the design

must be adjusted iteratively in new loops.

This development process is time consuming, and one cannot always be sure

that the best design is found. Finding out how closely a given suspension design

with its hard points approximates the desired kinematic characteristics in order

to fulfil the system requirements describes the development process in reverse.

This frontloading of the suspension design is called “analysis”. The following

picture shows the described process.

Figure 1: "Analysis" and "Synthesis" loops in the development process of a suspension

design

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 2

1.1. Background

Suspension design for vehicles is a highly iterative process with quick loops that

involves changing different parameters to reach a set of quantitative and

qualitative metrics. It is also always a part of the overall vehicle design process,

which means that the surroundings of the suspension, and the requirement on

the suspension, often can change between the iterations. To improve the

suspension development, it is necessary to simulate different suspension setups.

Therefore, the simulation department has a design matrix which shows the

complete vehicle behavior for the different target areas based on the

quantitative and qualitative metrics. To get a good suspension design, the

simulation engineers and the design engineers must work hand in hand.

1.2. Aim

This project, in association with Volvo Cars, aims to “front load” the suspension

design process, by moving to a top-down suspension design approach which

allows for faster exploration and analysis of design alternatives, enabling the

reduction in time for iterations required to assess their impact on overall vehicle

attributes.

This project aims to go away from the iterative approach to developing a

suspension design and replace it with a novel reinforcement learning (RL) based

method that can be trained to understand the relations between the specific

suspension design, the corresponding wheel motion curves and the behaviour of

the vehicle. Hence, the project aims to prove the concept of making the

suspension design quicker in each development loop by successfully training and

testing an RL agent that can generate a design given the requirements. The

wheel motion curves (referred to as curves, henceforth) can be calculated

mathematically by integrating the location and orientation of the wheel over

the entire steering (driver input) and jounce (vertical motions) ranges.

1.3. Methodology

The methodology for this project is divided into the following sub-processes:

• Pre-study: Exploration of Reinforcement learning strategies for

application on suspension design. Set control and noise states, and

penalty functions. Understand the effect of different parameters on

suspension curves for use in the optimization function.

• Implementation: Create an optimization function which cooperates well

with the current MATLAB script. Quantitative metrics can be obtained

from the design and performance requirements for the vehicle and

qualitative metrics can be obtained from the feel of the vehicle in driving

simulators.

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 3

• Post-processing: Plotting pertinent graphs to analyze how the virtual

design parameters influence the complete vehicle measures and assess

how well the objective targets are met.

• Subjective Testing: The end goal of the project is to alter kinematic curve

polynomials. Experienced drivers can assess the suspension design

subjectively on the driving simulator using VI-CarRealTime, after

selecting/generating appropriate driving scenarios or “load cases”.

1.4. Stakeholders and participants

The project is an automotive product development task inspired by research

and by the cooperation between Chalmers University and Volvo Cars AB.

Table 1: Stakeholders and participants

Name Organization Role

Manuel Denneler Chalmers Student/Team

member

Christoph Heilig Chalmers Student/Team

member

Abhishek Kolekar Chalmers Student/Team

member

Vivekanandan Madhuravasal

Narasimhan

Chalmers Student/Team

member

Vinayanand Bangalore Venkatesh

Prasad

Chalmers Student/Team

member

Yansong Huang Chalmers Academic supervisor

Bengt Jacobson Chalmers Academic supervisor

Max Boerboom Volvo Cars Industrial supervisor

Tobias Brandin Volvo Cars Research project

main supervisor

1.5. Project outcome

The project seeks the usage of optimization techniques/artificial intelligence to

enable achieving better suspension design in a time efficient way. In many cases,

a good performance on one metric may result in a sub-par performance on

others, requiring a compromise. In this project we aim to find a method by

which the suspension design can be manifested by updated requirements on the

suspension and the complete vehicle.

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 4

1.6. Project deliverables

• Identify objective requirements on complete vehicle behaviour for

stability in longitudinal and/or lateral motion scenarios, using vehicle

dynamics simulation.

• Identify/create test scenarios for evaluating the influence from different

suspension designs on complete vehicle measures.

• A review of numerical methods (optimization/artificial

intelligence/machine learning methods). Select one method to use in

present project and identify which have potential for future work.

• Implement an optimization method for obtaining set objective targets on

complete vehicle or on suspension. Ensure that the strategy avoids non-

feasible solutions.

• Demonstrate the optimization method for one axle on one vehicle.

• Test the optimized vehicle setups on the Volvo Cars Simulator (stretched

target for project).

• Improve on the implementation of the optimization strategy for faster

computation (stretched target for project).

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 5

1.7. Limitations

• Facilities not available on time (simulator): Verification of the models on

the simulator must be done by Volvo and simulator verification phase

can be delayed or out of the project timeline.

o Solution: Booking and confirmation of the availability of the

simulator must be done well in advance and the models must be

ready.

• Scope management issues: Twofold problem of not matching required

scope and addition of extra features that are not required.

o Solution: Scope and deliverables must be clearly listed and agreed

upon by all parties.

• Integration issues: Different optimization or AI tools used while

developing the optimization strategy might not be compatible with

existing and accepted programs or software.

o Solution: Integration testing must be done before spending time

and effort in developing a program or code using a software.

Software recommendations from the OEM can be used.

• Data leaks: Internal data from Volvo (vehicle design, parameters, other

confidential data), can be unintentionally put on a platform where

unauthorized access can occur.

o Solution: Confidential data must be maintained in a central, non-

public location. A list of confidential/internal files can also be

maintained to track files.

• Delay due to learning curve: Optimization/AI tools must be used and

understood which could lead to delays.

o Solution: Timelines can be established for learning and using new

tools. Experts in the respective tools can be consulted to smoothen

the learning curve.

• Only a limited number of complete vehicle measures and suspension

design parameters (the coefficients). Only the high fidelity model in VI

Car Real Time has been used, i.e. not simplified more approximative

vehicle simulation tools.

o Solution: It is not included to go all the way to real suspension

design parameters (such as hard point coordinates), but only to

the polynomic coefficients.

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 6

1.8. Ethics assessment

Ethical Implications for consequences of the project:

The project’s outcome will not only streamline the design process, but also

curtail the need for extensive manual iterative phases, leading to notable savings

in both time and resource consumption. This would not only streamline the

work of engineers engaged in the design process but also substantially enhance

overall efficiency. Furthermore, the outcome of this project would integrate with

established principles of ethically neutral product development, mitigating any

potential ethical concerns.

Ethical Implications for carrying out the project:

It is imperative that due credit is accorded to resources that have been created

by others, whether they are textual references or code snippets, as it is

paramount in maintaining the team’s integrity. This commitment to proper

attribution not only upholds ethical standards but also ensures fairness to the

original creators. 5

Furthermore, it is prudent to address the responsible usage of large language

model tools like ChatGPT. While these tools undoubtedly expedite development

and debugging, it is crucial for our team to exercise caution to prevent over-

reliance, preserving our capacity for independent problem-solving and

innovation. Furthermore, language models usually output erroneous solutions,

which cannot be relied upon. Thus, information taken from ChatGPT must be

vetted before it can be implemented. AI models do the same mistakes as the

human who trained them. Small mistakes from AI at the start of the project

can produce a chain of events which can lead to unexpected problems at the

later stages.

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 7

2. Vehicle development and Simulation

To design a suspension system that gives optimal suspension characteristics, a

platform must be created to evaluate these characteristics subject to change in

design parameters. This chapter describes the method to generate vehicle

models, simulate driving maneuvers, and evaluate vehicle performance

characteristics.

2.1. Important definitions

• Toe - Wheel inclination from X axis measured in X-Y plane of vehicle.

Unit: [deg]

• Camber - Wheel inclination from Z axis measured in Y-Z plane of

vehicle. Unit: [deg]

• Side View Angle - Angle made by the trajectory of wheel center

measured from Z axis in X-Z plane. Unit: [deg]

• X-position - Change in X position of wheel center during wheel motion

due to jounce and/or steering input. Unit: [mm]

• Y-position - Change in Y position of wheel center during wheel motion

due to jounce and/or steering input. Unit: [mm]

• Jounce - Wheel vertical travel. Unit: [mm]

• Coefficients – Coefficients of kinematic characteristics expressed as

polynomials. Unit: [-]

2.2. VI-CarRealTime and Subsystem Modification

Since it is required to generate various suspension (kinematic) characteristics

without involving the process of physical design (such as hardpoints

development), VI-CarRealTime (VI-CRT) was chosen as the tool for vehicle

performance evaluation. Unlike tools using multi-body based approach for

conducting driving maneuvers, VI-CRT uses “look-up tables” in the form of

.XML files for every subsystem to define the vehicle characteristics. Each

subsystem in the vehicle, such as front and rear suspension, wheels, powertrain,

braking, is represented by a .XML file, which contains information on all vehicle

characteristics within the subsystem.

To modify the front suspension and steering kinematic characteristics, a look

up table is generated which defines the kinematic curves for each jounce and

steering input. To define these curves, each parameter (such as bump steer,

bump camber, anti-dive etc.) is expressed as a polynomial curve with respect to

an input variable (change in jounce or steering input). The coefficients of these

polynomials are parameterized to obtain the desired kinematic characteristics.

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 8

Equations of motion are then developed which are used to evaluate the wheel

position and orientation as a function of jounce input, and as a function of

steering input to obtain the following wheel characteristics: Toe, Camber, Side

View Angle, X position, and Y position of the wheel center. The evaluated wheel

positions and orientations give two datasets- one with steering as input, and the

other with vertical wheel travel as input. To evaluate the state of the wheel

subject to both steering and jounce, the wheel positions and orientations

evaluated for steer input is added to its corresponding position/orientation

subject to jounce input. This gives an approximation of the state the wheel

would be for a specific jounce level and steering input.

This combined map of wheel state as a function of steering and jounce inputs

is then used to generate .XML file for the front steering subsystem using

MATLAB API functions from VI-CRT. Later in the project, an additional

parameter, front spring stiffness multiplier, was also added and used to modify

the front suspension subsystem .XML file to achieve some performance targets.

2.3. Manoeuvres/Simulation load cases in VI-CRT

After generating vehicle models by modifying their subsystems, it is necessary

to assess the performance of each vehicle to understand how the design changes

affect vehicle performance. The results from these assessments are then fed into

the reinforcement learning agent as observations to tune the characteristics and

satisfy all the target criteria. It is imperative to understand how the

modification of specific subsystems would affect the complete vehicle; so that

some maneuvers can be chosen to assess the degree of change in performance in

the complete vehicle when a specific design parameter is changed.

Knowing that the modification in the mentioned design parameters affects the

vehicle dynamics characteristics, the task is to choose maneuvers to assess these

characteristics. To assess the lateral performance of the vehicle, some handling

maneuvers were chosen – Constant Radius Cornering (CRC) and Frequency

Sweep. To assess how the suspension characteristics would affect the

longitudinal performance of the vehicle, a straight-line raking maneuver was

also chosen.

After generating .XML files for the maneuver characteristics chosen, a script

was developed on MATLAB to simulate these maneuvers using the modified

vehicle model. The simulation results were then post-processed to obtain

performance characteristics denoted in the table below.

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 9

Table 2 - Description of Driving Manoeuvres and Evaluated Outputs

Driving
M anoeuvre

M anoeuvre
Characteristics

Evaluated Outputs

Constant Radius
Cornering

• Initial velocity 10
km/h

• 100m corner radius
• Final velocity 80 km/h

Understeer gradient
[deg/g] and Roll
gradient [deg/g] (roll
angle per unit lateral
acceleration) for lateral
accelerations 0.1-0.35g's

Frequency Response
Sweep

• Velocity constant at 80
km/h

• Steering angle
amplitude: 42°

• Steering frequency: 1-4
Hz

• Yaw rate gain
margin [dB]

• Yaw rate phase
margin [rad]

Straight Line
Braking

• Initial velocity 90
km/h

• Brake ramped to 1 in 1
sec

Pitch gradient – pitch
angle per unit
longitudinal
acceleration [deg/g]

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 10

3. Machine learning theory

The theoretical background of machine learning methods is necessary to create

a general understanding of how the reinforcement learning based optimization

method of this project works.

3.1. Machine Learning concepts

Some important concepts of Machine Learning which are relevant to this project

are described briefly in the following section:

3.2. Probabilistic graphical models

Probabilistic graphical models (PGM) are statistical models that use graphs to

encode complex probability distributions for multivariate distributions. PGMs

can be used to capture a set of independences that hold in the specific

distribution. [1, 2] Similar to graphs, PGMs can be directed (Bayesian models)

or undirected (Markov Random Fields).

PGMs can be used to find the distribution of one or more random variables

(inference) and estimate the parameters of the random variables (learning).

Inference in machine learning is used in classification, detection, regression, and

identification problems. Learning in machine learning is used in control,

autonomous vehicles, pattern recognition and language related problems.

3.3. Weights and biases

Weights and biases are the learnable parameters in a machine learning model.

In a PGM representation, the weight controls the strength of the signal between

two nodes of the graph and the bias controls the activation of the node to send

an output and is a form of a threshold.

Figure 2 - Weight and Bias Affecting the Output of a Node

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 11

From Figure 2, The output of the node is given by 𝑦 = 𝑓(𝑤𝑥 + 𝑏). The weights

and biases are used commonly with an activation layer following the output of

the node. Thus, the output of the node is active only when the activation layer

is activated (only when the output y is above an activation value).

3.4. Types of machine learning

Machine Learning can be broadly subcategorized into three main types:

supervised learning, unsupervised learning and reinforcement learning (RL) [3].

A common example used to explain the different types of learning is the

collection of a hundred thousand people and their food buying attributes and

their social behavior (input).

Unsupervised learning is used to find patterns or hidden structures in unlabeled

datasets that have not been categorized [3]. Using unsupervised learning could

group the people or cluster them into similar features (output). Unsupervised

learning is used to create a model that takes the features of a collection as an

input and transforms it to a single value or a vector (collection of values). [4]

In case of the food buying example, unsupervised learning could classify the

buyers into 2 or more groups depending on what they buy. The classification

could then be used to predict the future purchases of the buyer based on

purchases by other buyers with the same group.

Supervised learning allows for the training of a computer to assign a label to a

provided input (data) [3]. To continue with the example before, there are inputs

with the food buying attributes, such as the age ranges of our buyers (output).

Supervised learning can be used to train a mathematical model to categorize

the food buyers into age ranges based on the inputs. By telling the system

whether the guessed age range is right or wrong, supervised learning can

optimize the model. The model can then be used to predict what a age group a

new customer could belong to.

Reinforcement learning is a combination of those two frameworks. While

supervised and unsupervised learning work with a static data set, Reinforcement

Learning (RL) works with a dynamic environment [3]. The objective here is not

data clustering or labeling, but rather identifying the most favorable sequence

of actions to achieve the best possible outcome. This essentially translates to

maximizing cumulative rewards.

Using the example, reinforcement learning can be used to recommend or

discourage certain purchases depending on the expected reaction of the buyer.

In short:

• Unsupervised learning creates a model that can classify input data to

different groups or classes. [4]

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 12

• Supervised learning creates a model that can label input data based on a set

of features. [4]

• Reinforcement learning creates a model that can explore and exploit the

environment to gain the most reward/outcome. [4]

Thus, RL presents the best approach to optimize a suspension design based on

existing values and data.

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 13

4. Reinforcement Learning theory

4.1. Reinforcement Learning concepts

Reinforcement learning is a framework that allows an ‘agent’ to learn behaviors

and actions by receiving ‘rewards’ after interacting with an ‘environment’. The

agent, rewards and environment hence represent the most important part of the

RL framework. The most interesting aspect of RL is that the actions do not

have to be specified explicitly, rather, they are learned over time by interacting

with the environment and receiving rewards.

Reinforcement Learning is motivated by the way human and animal behavior.

An inexperienced individual takes action that are random and uninformed. With

time, the individual learns what actions helps it achieve the goals consistently

and reliably and a complex understanding of the environment is built up. [5]

There are two ways an agent can learn under RL. The first method involves

searching the action space for an action that yields a good reward. The second

method involves using statistical and mathematical measures to judge the value

of a particular action. [6]

4.2. Exploration vs. Exploitation

The main point of a reinforcement learning agent is that it must explore the

environment and take actions to understand the consequences and receive

rewards. Like animal behavior, the agent has the chance to either explore the

environment in search of a better action (hence reward) than the one it has, or

exploit the current state and take the best reward it has till time.

Another factor to consider is the effect of the delayed reward. The reward the

agent receives in a future state is dependent on the current state of the

environment as well. If the agent has to take a long sequence of actions to reach

the final state, then the initial states will affect the final reward the agent

receives.

4.3. Working of RL

At the core of the model lies the "agent," which actively explores, interacts

with, and learns from its environment [3]. The agent's actions influence the state

of the environment, which, in turn, generates a reward corresponding to those

actions. The action of the agent not only affects the immediate reward but also

the subsequent rewards [7] as the current action can affect what actions will be

available in the future and hence the corresponding rewards. For instance, if an

agent moves a walking robot towards a corner, its action space, and hence

rewards it can receive for the next action become limited.

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 14

By utilizing this feedback and the received rewards, the agent can adapt its

future actions, thus acquiring knowledge from the environment to maximize the

reward it earns per action.[3] This is presented in Figure 3.

Figure 3 - Overview of the Agent, Environment and Signals involved

In our application of RL to optimize a suspension design, the different key

signals are:

• Actions: Set of numerical values that correspond to coefficients in the spline

curves. The spline curves describe the motion of the wheel under jounce and

steering motions.

• Rewards: A scalar numeric value that is used to quantify how well the

action fulfils the complete vehicle target subject to several manoeuvres.

• Observations: Set of numeric values that correspond to the difference

between complete vehicle targets and the values obtained from the current

coefficients (actions). As the targets and subsystems are interdependent, this

helps in establishing relations.

The agent starts with random actions through which it can build up a

knowledge of how the environment rewards the actions. With time, the actions

of the agent start to resemble a trained agent such that it can take the best

actions needed to reach a final state from any starting state.

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 15

Figure 4 - Policy Update Loop [8]

The agent learns the best action to be taken using a policy. In every iteration

of the training loop the policy is updated using an algorithm. The algorithm

uses the reward and the observations from the environment to decide the

changes to the policy of the agent. Figure 4 represents the training process in a

flowchart.

4.4. Elements of RL

Agent refers to the algorithm that is trained in the framework by taking actions

and receiving rewards from the environment.

Environment refers to everything within the framework that the agent interacts

with in the training process. The environment receives an action, converts that

to the next state depending on the current state and returns an observation.

Policy defines how the agent behaves given a state of the environment. In a

way, the policy is the mapping from the input (state of the environment) to the

output (actions taken). [7]

Action is the output of the agent that is used as the input to the environment

to decide a future state and the reward. The action taken depends on the current

state of the environment and the policy of the agent. [7]

Reward is the goal of the RL. The agent receives a reward as a single value for

every action taken and is the basis to which the policy is altered. The agent

aims to maximize the reward achieved by changing its behavior (policy) until

it achieves the maximum. [7]

Observations are the information that is sent from the environment to the agent

so that it can understand the current state of the environment. The observations

may or may not be used and depends on the type of agent used. [7]

Value denotes the cumulative reward that the agent can get in the long run.

The agent has to estimate the value of the current state and take actions that

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 16

maximize the value as well. Sometimes, the reward for an action may be lower

than another action but can lead to a higher value. In situations like these, the

agent must learn to compromise and pick the best option. [7]

4.5. Classification of RL

Reinforcement leaning can be classified into different groups. Some of the

classifications can be:

Discrete and Continuous action spaces describe the type of actions the agent

can take. Discrete space corresponds to some fixed values of action whereas the

continuous space corresponds to a range of values for the actions taken by the

agent.

Model-based and model-free agents differ on how the environment is used to

build up a model from experience that the agent uses. Model-based agents build

up a model of the environment and the rewards it yields based on experience

and can use it to evaluate future actions. Model-free agents do not have a model

of the environment and the rewards and use only the current actions and

previous rewards to evaluate future actions.

On-policy and off-policy agents differ on how they use the experience to learn.

On-policy agents use the experience to improve the current policy whereas off-

policy agents use the experience to develop the optimum policy. As a result, on-

policy agents tend to converge faster but tend to be stuck in local minima.

4.6. Reinforcement Learning workflow

The following diagram (Figure 5) highlights the RL workflow used in this

project. Reinforcement learning is generally used for control related problems

and hence not much literature or previous solutions exist on our application.

Figure 5 - Workflow of the Reinforcement Learning Algorithm

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 17

4.6.1 Formulation of the problem

The problem in the project corresponds to the optimization of a front suspension

design subject to complete vehicle targets. The objectives of the project are to

successfully train an RL agent to optimize the suspension design and make sure

the proposed suspension design satisfies the physical constraints controlled by

the packaging requirements and mechanical limits.

The complete vehicle targets are calculated from several measures that are

calculated from manoeuvres described in Table 2 - Description of Driving

Manoeuvres and Evaluated Outputs

. Complete vehicle targets are:

1. Lateral measures

a. Understeer gradient

b. Roll gradient

2. Steering response measures

a. Yaw rate gain margin

b. Yaw rate phase margin

3. Longitudinal measure

a. Pitch gradient

The actions (coefficients of the spline curves) represent the following motions:

1. Bump steer (change of tow with jounce)

2. Bump camber (change of camber with jounce)

3. Anti-squat

4. Anti-lift

5. Roll center height

4.6.2 Reinforcement Learning environment

The environment function represents the external world or model that the agent

interacts with to learn. The agent interacts iteratively with the environment

using actions for which the environment presents rewards and observations to

the agent. The system that the agent works with (simulation of a vehicle model,

in our case) is a part of the environment function.

The functions of the environment can be divided into:

1. Converting agent action to a system input

2. Deciding the next system state using the agent input

3. Converting the system states into observations for the agent

4. Calculating the rewards for a particular action from the new state

The following flowchart (Figure 6) describes the processes in the environment

function as pertaining to the project.

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 18

Figure 6 - Overview of the RL Environment

4.6.3 Reinforcement Learning agent

It has been decided to use the DDPG (Deep Deterministic Policy Gradient)

agent as it meets all the requirements: continuous action and observation spaces,

actor-critic network for memory efficiency and data buffer to learn from

previous experiences.

The reinforcement learning agent will be used to optimize the values of the

polynomial coefficients describing the wheel motion. The wheel motion can be

calculated in jounce and in steering and the combined motion is obtained by

the superposition of individual motions. There are five polynomials describing

the wheel motion in jounce and five polynomials for wheel motion under

steering. Since each polynomial is a third order equation with no constant terms,

the RL agent will have to find the optimal values for 30 variables. To simplify

the process, we have decided to optimize the quadratic and linear coefficients

for only the jounce polynomials.

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 19

4.6.4 Training of Reinforcement Learning agent

Training of the RL agent is done in MATLAB using the Reinforcement Learning

toolbox, [9] and VI-CarRealTime [10] (VI-CRT) from VI-Grade to simulate the

complete vehicle.

MATLAB was chosen as all the team members had experience using MATLAB

and the RL toolbox is well-documented and has many different types of agents

that can be used. There also exists an API (application programming interface)

for VI-CRT that can be used directly in MATLAB to call the simulation

routines with the modified data files. Following is the logic flow of the training

process:

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 20

Figure 7 - Flow of the Reinforcement Algorithm in Detail

The purpose and working of the different MATLAB functions are explained in

Section 6 - MATLAB Script Development and Description.

.

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 21

4.6.5 Validation of trained agent

A separate standalone script was developed to test the outputs of the trained

agent. Since we were never able to fully train an agent, we used the logged data

from the training sessions to validate the training process. The environment was

set up in such a way that coefficients that performed well were logged into a

test file so that they can later be tested out.

The validation script uses maneuvers that can test the vehicle behavior at

extreme jounce and steering values to make sure the coefficients agree with

physical constraints.

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 22

5. RL vs. Other Optimization Methods

Traditional optimization methods (gradient based) cannot be used in our

problem as the system to be optimized cannot be represented as a mathematical

function. Evolutionary optimization can be used, however they present the

challenge of requiring large amount of data and iterations to reach the optimum

value. Since the population of potential solutions in evolutionary optimization

methods is high and each member of the population needs to tested, the total

time taken for one iteration goes up proportional to the members in each

generation.

Another issue with optimization (both traditional and evolutionary) is the need

to mathematically rewrite and run the optimization of the objective function

for every new requirement or constraint. With RL, one would simply have to

add additional requirements to the reward function and constraints to the action

space.

Another drawback to optimization is that the convergence of solution to the

optimum depends considerably on the starting point. In a population, many

starting points may not be feasible and need to be checked before using in the

simulation.

These concerns are eliminated in a reinforced learning algorithm as the agent

requires only one evaluation per iteration. Since it can develop policies on the

solution, it can quickly learn to avoid infeasible points if rewarded and penalized

correctly. RL algorithms also store previous experiences and build on that.

Another advantage is that time to convergence to an optimal solution does not

depend much on the starting point. As a result, the same algorithm can even

be used to quickly find the optimal solution to similar problems. This allows a

trained RL agent to be reused for different optimization problems as long as the

actions and rewards remain the same.

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 23

6. MATLAB Script Development and Description

6.1. Development of MATLAB Script

The RL algorithm has undergone significant changes since the start of the

project, as the team developed new insights on the working of the RL “black-

box”. The following table briefly summarizes the upgrades that have been

implemented:

Table 3 - Updates in different versions of the RL Algorithm

Version Changes

v1 Basic RL setup to verify error-free training

v2 Updated rewards function

v3 Errors in targets added as an observation to the agent

v4 Action space is the new coefficient, instead of change in coefficient

which is [Δ coefficient = new coefficient – old coefficient]

v5.1 Pre-check implemented, error in pre-check added as observation

to agent

v5.2 Updated rewards function (testing with the non-linear

proportionality type, which is explained in Section 6.3 - Rewards

Function). Evaluating effect of changing the balance between the

exploration & exploitation by experimenting with greedy and

exploratory policies.

v5.3 Suspension stiffness multiplier added as a new action

6.2. Description of Different RL Functions

The different functions mentioned in the logic flow in Figure 7 - Flow of the

Reinforcement Algorithm in Detail are described as follows:

6.2.1 Main Script (RL_script.m)

This is the main script that serves the purpose of setting up and training a

reinforcement learning (RL) agent for the project, and it includes the following:

1. Housekeeping and Log Files Removal:

• Clears the console and workspace.

• Deletes previous training log files if activated.

2. Definition of Observation and Action Spaces:

• Defines observation space representing the coefficients, errors in

precheck and errors in simulation.

• Defines action space as coefficients for polynomial curves affected by

varying jounce, as well as the spring stiffness multiplier in the later

training.

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 24

3. Environment Setup:

• Configures and initializes the RL environment using observation and

action space definitions, as well as the reset function and the contents

of environment file.

4. Reinforcement Learning Model Setup:

• Describes the architecture of the actor network responsible for

generating continuous actions.

• Describes the critic network that evaluates the quality of actions.

i. Defines a Deep Deterministic Policy Gradient (DDPG) agent

using the actor and critic networks.

5. Hyperparameter Tuning:

• Sets hyperparameters affecting RL learning and convergence.

6. Training the RL Agent:

• Sets training options, including the number of episodes, steps per

episode, and stopping criteria.

• Initiates the iterative training process for the RL agent.

6.2.2 Reset Function (ResetFcn.m)

The reset function is designed to set the initial state of the reinforcement

learning (RL) environment. It is executed only once during the first iteration of

training, initializing key variables for the RL environment.

It initializes the observations for the first iteration as an array called init. The

first 10 elements of the init array are the jounce related coefficients – considering

a quadratic equation of the form: 𝑎 ∗ 𝑥2 + 𝑏 ∗ 𝑥 + 𝑐 = 0, the odd elements of the

array are the linear coefficients of the quadratic equation i.e., the 𝑏 term and

the even elements are the constant i.e., 𝑐 term.

6.2.3 Environment Function (RLEnv.m)

This function acts as the external model, representing the "world" with which

the RL agent interacts. It is akin to a "plant" in control systems. It manages

interactions between the RL agent and the simulated environment. The working

of the environment function can be described as follows:

1. Kinematic Parameter Calculation:

• Calculates wheel center motion under jounce and steering based on

coefficients inputted by the agent.

• Calculates kinematic parameters (e.g., camber, toe) using wheel

motion data.

2. Suspension Pre-check:

• Certain sets of coefficients can give kinematic parameter values which

are not possible considering the physical constraints of the vehicle.

Simulating this in VICRT would be a waste of computation time and

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 25

resources since these sets of coefficients cannot be used in the vehicle

development process. Therefore, it is beneficial to check whether the

kinematic parameters are within certain ranges, and then proceed to

simulation, which is what the pre-check does. This is explained in

Section 6.2.6 - .

• Suspension Pre-Check.

3. System Modification and Simulation:

• Modifies the vehicle subsystem XML file(s) (front-suspension and

steering files) if the pre-check is passed.

• Runs simulations for various load cases using VIRCT.

• Evaluates the simulation results using a reward function.

4. Logging and Outputs:

• Saves the best set of coefficients (with the highest reward) of the

training session in a file.

• Logs rewards, coefficients, pre-check pass/fails and iteration

information in separate files.

• Outputs the observations (current set of coefficients, errors in pre-

check, and errors in targets).

6.2.4 Calculate Wheel Motion

(calcJounceMotion.m & calcSteeringMotion.m)

These functions are derived from calcGeneralMotion.m file which was provided

to the team at the start of the project. The purpose of these function is to

simulate the effect of wheel jounce and rebound, as well as steering

characteristics using coefficients to influence motion. The agent takes an action,

which is to create a set of jounce coefficients, which is stored in the coeffs array.

The nomenclature of the coefficients used is as follows:

Jounce Coefficients
coeffL1 = [0, coeffs(1), coeffs(2)]; % Bump Steer
coeffL2 = [0, coeffs(3), coeffs(4)]; % Bump Camber
coeffL3 = [0, coeffs(5), coeffs(6)]; % Anti-squat
coeffL4 = [0, coeffs(7), coeffs(8)]; % Anti-lift
coeffL5 = [0, coeffs(9), coeffs(10)]; % Roll centre height

Steering Coefficients – these are frozen and are unchanged by the RL
coeffL6 = [0, 18/10, 0]; % Hub trail
coeffL7 = [g2(1), g2(2), g2(3)]; % Kingpin offset
coeffL8 = [0, 8/10, -25]; % Caster trail
coeffL9 = [g1(1), g1(2), g1(3)]; % Scrub radius
coeffL10= [g3(1), g3(2), g3(3)]; % Wheel load lever arm

The working of the functions is as follows:

1. The function uses coefficients to extract kinematic characteristics. The

first step is to split all the array of coefficients for each separate spline.

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 26

2. Formulates equations of motion and evaluates derivatives for wheel

position and orientation.

3. Integrates to obtain wheel position and orientation as a function of

jounce levels and input steering.

4. Returns the wheel_center and wheel_orientation vectors with X, Y, and

Z coordinates, camber, side view angle, and toe angle as functions of

wheel travel (for jounce) and steer angle (for steering) respectively.

Currently the project scope is limited to optimizing the jounce coefficients.

However, as seen in Section 7 - Results, considering the limited impact of

selected coefficients, other parameters (e.g., suspension stiffness) can also be

added as an action to make the optimization wider in scope.

6.2.5 Generating Kinematic Data for VI-CRT

(suspensionModification.m)

This function converts suspension kinematics data from wheel jounce and

steering simulations into the format required by VICRT – the software requires

the kinematic parameters as curves, as a function of either steering wheel angle

or rack travel. This is done as follows:

1. The function extracts X, Y, Z coordinates, camber, side-view angle, and

toe angle against jounce and steering from the wheel_center and

wheel_orientation vectors from the previous function.

2. It then transforms and adjusts coordinates to VICRT's coordinate system

and units, and superimposes steering data for every jounce step, creating

a pseudo-3D map of kinematic parameters.

3. The 3D map is reduced to steer sweep characteristics at intervals of 5

data points in jounce travel. This is due to VICRT's limitations on

handling large datasets.

4. The output is a suspension_data structure which contains all the data

which can be used in VICRT.

6.2.6 Suspension Pre-Check (suspensionCheck.m)

As described briefly in Section 6.2.3 -

Environment Function (RLEnv.m), the pre-check function is used to check if

the static values of the suspension curves lie within the limits defined by

physical constraints. After integrating the curves over the entire jounce and

steering action, the extreme values in both directions (compression and

extension for jounce and lock-to-lock steering) are compared to defined values.

If the values are exceeded, the model is not simulated. This saves the

computation time by avoiding simulation of the infeasible sets of coefficients.

The static limits considered are:

• Camber: ±15°

• Side-view angle/Caster: ±15°

• Toe: ±50°

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 27

• Wheelbase variation: ±75mm

• Track variation: ±75mm

The function works as follows:

1. The data from suspension_data (output of the previous function) is

checked if it violates the static limit definitions for the minimum and

maximum values (compression/extension for jounce, left/right for

steering) for both the left and right front wheels. The pre-check outputs

1 if all kinematic parameter values are within range (this is pre-check

pass condition) and 0 if any value is not in range (this indicates pre-

check fail).

2. Also calculates the error in pre-check i.e., the difference between the

boundary of the acceptable range of a kinematic parameter and its

calculated value. It the pre-check is passed; the errors are set to 0.

3. The function also maintains a count of consecutive pre-check failures for

potential RL penalty, which can be used to penalise the agent if required.

6.2.7 XML Modification (xmlModification.m)

VICRT requires the data to be in separate XML files for different subsystems,

with a “master” XML file being used to reference the correct subsystem files.

This function facilitates the replacement of kinematic curve data in the Steering

subsystem XML and Front Suspension XML files for each iteration of the

training, and it works as follows:

1. Data Import and systemStruct Generation:

• Imports the standard vehicle model as a baseline using VICRT-

MATLAB API and keeps the model as a structure called

systemStruct.

• The suspension_data from suspensionModification function is also

taken in as an input.

2. Modifying Spline Data:

• The code modifies data from the suspension_data struct into the

systemStruct. This facilitates the replacement of data for each

iteration of the training.

3. Modifying Other Data:

• Sets steering type to Simplified.

• Allows a switch for using either steering wheel angle or rack travel

as an input.

• Assumes constant compliance.

• Modifies suspension stiffness using a multiplier, which can be

influenced by RL agent actions.

4. Changing XML Files:

• The function then finalizes the systemStruct and modifies the

steering and front suspension subsystem XML files.

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 28

• It also updates the vehicle model XML file to reference the modified

steering and front suspension subsystem XML files into the

simulation.

6.2.8 Run Simulation & Post Process Targets (runSim.m)

This function initiates simulations in VI-CRT calculates relevant performance

metrics for calculating the reward for the iteration.

1. Checking for Simulation Errors:

• Reads simulation log files and outputs the variable sim_error as 1

if any log contains the string 'ERROR'. This flags simulations that

fail to reach a steady-state equilibrium. The sim_error was used

before the precheck was implemented to penalize the actions which

cause physically infeasible vehicle wheel splines. However, since the

precheck is added, the sim_error is obsolete, since iterations having

infeasible set of coefficients are not simulated in VICRT. It is still

retained, to have that functionality, in case any simulation error

occurs even after precheck.

2. Constant Radius Cornering (CRC) Load case:

• Calculates Understeer Gradient and Roll Gradient.

• Evaluates standard deviation of lateral acceleration to check for

oscillatory behavior, i.e., to check for roll oscillations. Flags

iterations which cause roll oscillations, for penalizing later.

3. Frequency Response Sweep (SWE) Load case:

• Yaw Rate Gain: Computes gain by analyzing peaks in yaw rate and

steering rack displacement.

• Steering Response Delay: Determines the phase delay between yaw

rate and steering rack displacement.

• Yaw Rate Gain Margin: Identifies frequency at which phase reaches

-π.

• Yaw Rate Phase Margin: Analyzes the phase at zero decibel gain.

4. Straight Line Braking (BRA) Load case:

• Calculates Pitch Gradient during braking.

These help to analyze the handling, stability, and ride comfort characteristics

of the vehicle setup in an objective manner.

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 29

6.3. Rewards Function

The reward function is arguably one of the most important functions inside the

reinforcement learning environment. The reason for this is that this is the only

signal to the reinforcement learning agent if the actions it is taking leads towards

desirable outcomes. The agent calibrates the weights and biases inside the

neural networks depending on the correlation between the observations and the

rewards. Thus, the rewards have to be made such that is has obvious (to the

agent) associations with the observations amongst other constraints set by the

agent and the rest of the environment.

One of the constraints is that the reward function must be smooth and

continuous, the benefits of which are described below:

1. Gradient Continuity: DDPG is a gradient based algorithm, which means

that it updates the policy according to the gradient of the actions and

their consequent rewards of the current iteration in relation to the

previous iterations. Having a smooth reward functions lead to continuous

gradients, which allows the algorithm to have well-defined gradients

throughout the state and action spaces. This in turn helps the algorithm

to converge faster than if the rewards were discontinuous. [11]

2. Gradient Descent Stability: Smooth rewards reduce the likelihood of

sudden changes or discontinuities in the gradient landscape, which

improves the stability of the algorithm. [12]

3. Improved Exploration-Exploitation Tradeoff: A smooth reward function

provides a more gradual transition between good and bad actions. This

encourages the learning agent to explore a broader range of actions,

aiding in the exploration-exploitation tradeoff. [13]

4. Better Generalization: Smooth rewards contribute to better

generalization. The learned agent is more likely to generalize well to

unseen states, as the smoothness helps the model to understand the

underlying structure of the environment.

The other constraint is that the agent should be rewarded/penalized in such a

way that it is easy for it to recognize the consequence of its actions, i.e., the

reward should help the agent easily acknowledge whether it is moving forward

in the correct direction or not.

Considering these constraints, two different types of rewards functions were

tested. The reward for each vehicle level target being achieved is described by

the functions below. After that is the description of how the reward for an

iteration is calculated.

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 30

Both functions are smooth and continuous, but use different mathematical

equations to describe them:

• Non-linear proportionality: The proportionality, in this case, is described by

the hyperbolic tan function, with a negative penalty being applied if the

result is outside the acceptable range.

Figure 8 - Reward/Penalty Function - Non-linear proportionality

• Linear proportionality: The proportionality, in this case, is described by the

slopes of a straight line.

Figure 9 - Reward/Penalty Function - Linear proportionality

The different rewards functions were set up differently to evaluate the impact

of proportionality on how the agent trains. The scaling (actual numeric value)

of the reward and penalty, as well as the proportionality (slope) was modified

for different training sessions.

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 31

A brief description of the how the total reward is calculated is as follows:

• Calculating the baseline reward: The reward “curves” described in Figure 8

and Figure 9 are set for only one target, and their outputs would be a single

scalar value in relation to how well a target has been achieved, with the

highest reward being awarded for being within the ideal bounds. This value

is computed for all the five targets set, the addition of which gives the

baseline reward.

• Checking for oscillatory behaviour: In the earlier training sessions, it was

found that some set of coefficients resulted in getting all targets within the

acceptable (or even ideal) range but resulted in the vehicle experiencing roll

oscillations. To avoid this behaviour being rewarded, the reward function

was updated to check if the standard deviation of lateral acceleration is high,

in which case, a penalty is applied instead of a reward.

• Calculating Target In-Range Bonus Rewards: The objective of the RL is to

get a set of coefficients that gets most (if not all) targets inside the ideal

range. To incentivize this, a bonus reward is granted based on two conditions

related to the counts of achieving targets within the acceptable and ideal

ranges:

o The function count’s how many targets are within the ideal and

acceptable ranges each.

o If the count of acceptable targets or ideal targets is greater than 1,

then the count is multiplied by a bonus value.

o This is then added to total reward.

• Calculating Kinematic Parameter In-Range Bonus Rewards: The acceptable

range for the kinematic parameters (KPs) such as camber, SVA, toe, etc.,

in the pre-check is quite large (this can be termed as acceptable KP range)

to get the agent to explore a bigger larger space. However, it is more

beneficial if the KPs are within tighter bounds (these can be called ideal KP

range). To adhere to both constraints, there is no bonus or penalty for

acceptable KP range, but there is a bonus reward for each KP being inside

the ideal range. This is done by counting the number of KPs in ideal range

and multiplying the count with a bonus value.

• Calculating Kinematic Parameter Out-of-Bound Penalty: In contrast to the

previous case, it is important for the agent to know if the action it takes

shift the KP outside the acceptable range. Thus, if pre-check is failed, then

the number of KPs outside the acceptable range is counted and multiplied

by a penalty value.

• Computation Expense Penalty: This is an optional penalty added to help

the agent understand that each cumulative time it fails the pre-check, it

incurs a penalty. The purpose is to convey to the agent that computation

time needs to be shortened. If the penalty continues to increase, it indicates

that the agent should explore a different part of the action space.

All the above points give a single scalar value each, which is added up to get

the total reward.

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 32

7. Results

Multiple training sessions were done with the agent, each time updating the

inputs and reward function as per the findings from the previous training. The

setups and their results are described:

7.1. Training Agent 1 (v5.1)

• Training Setup:

o Observations:

▪ Coefficients

▪ Error in simulation

▪ Error in precheck

o Actions: New coefficients

o Reward: Nonlinear proportionality (tanh)

• Takeaways

o Agent explores only limited range in the action space: By checking

the logs, it was observed that the agent moved back and forth

between the same set of coefficients and was unable to explore the

action space in its entirety.

o No positive rewards: The agent was unable to get any set of

coefficients that could get any target within the ideal range. It could,

however, get one or two targets in the acceptable range, but this is

not enough to get a net positive total reward. Moreover, it is evident

from Figure 10 that it could pass pre-check successfully for multiple

iterations – PP indicates pre-check pass and PF indicates pre-check

fail.

o RG and Ku targets were not met with any set of coefficients: While

the RL agent could find coefficient sets that could satisfy the pitch

gradient, yaw rate gain and phase margin targets (into its acceptable

range at least), it could not find any coefficients that could satisfy

the roll gradient and understeer gradient targets.

• Learnings

o Reward function (the non-proportional kind) may not be giving agent

the expected feedback/motivation.

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 33

Figure 10 - Training of RL Agent 1 (v5.1)

7.2. Training Agent 2 (v5.1)

• Training Setup:

The agent used is the exact same as the previous one, but the reward function

has been changed, which is why the version number is same.

o Observations:

▪ Coefficients

▪ Error in simulation

▪ Error in precheck

o Actions: New coefficients

o Reward: Linear proportionality

o Changes: The type of reward has been changed.

• Takeaways

o Agent explores the action space: By changing the reward function to

a linear proportionality kind, it was observed that the agent moved

through the action space quite more as compared to before.

o Still no positive rewards: The agent showed similar results as last

training, which is seen in Figure 11.

o Agent revisits ‘safe point’ after failing to pass precheck: A key

takeaway from this training was that the agent was able to backtrack

to its “safe-point”, i.e., the point in the action space which it knows

passes the pre-check, and it can explore a different part of the action

space from that safe point. This is seen in the logs of the RL training.

o RG and Ku targets were not met with any set of coefficients: Shows

similar takeaway as the last training session.

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 34

• Learnings

o Reward function may work as expected but tuning needed to push

the agent in the right direction.

o Agent retains memory of past rewards and backtracks.

Figure 11 - Training of RL Agent 2 (v5.1)

7.3. Training Agent 3 (v5.2)

• Training Setup

o Observations:

▪ Coefficients

▪ Error in simulation

▪ Error in precheck

o Actions: New coefficients

o Reward: Linear Proportionality (the scaling and the way the

penalties are applied is changed).

o Policy: Changed to Greedy/Exploitation Policy: The greedy approach

selects the action with the highest estimated reward most of the time.

[14]

• Takeaways

o Decent number of iterations with high rewards: As seen in Figure 12

(L), the agent can explore the action space progressively and is able

to find sets of coefficients that can satisfy multiple targets.

o Ku and RG values still not satisfied: The logs reveal that none of the

coefficient sets are able to satisfy the roll gradient and understeer

gradient targets.

• Learnings

o Reward tuning is in the right direction as agent explores high reward

points

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 35

o Since the “good” sets of coefficients are not able to make significant

changes to the understeer gradient and roll gradient, it leads to the

conclusion that some other suspension constants may have to be

changed (stiffness/compliance) to affect those targets.

o Even though it seems like the agent is on a positive trend, it can be

seen in Figure 12 (R) that the agent starts giving bad sets of

coefficients and is unable to recover. Thus, maybe stopping and

retraining the agent might be better than keep it training for a longer

duration.

Figure 12 - Training of RL Agent 3 (v5.2) for ~120 iterations (L); Same agent run

coninuously for ~1 800 iterations (R)

7.4. Training Agent 4 (v5.3)

• Training Setup

o Observations:

▪ Coefficients

▪ Error in simulation

▪ Error in precheck

o Actions: New coefficients, spring stiffness multiplier

o Reward: Linear Proportionality (the way penalty is applied is

modified again)

Note: The spring stiffness is not directly changed for each iteration. In VI-CRT,

there exists an option to change a multiplier for the spring stiffness. The

multiplier is changed for each iteration, varying up to ± 30% of the initial

stiffness.

• Takeaways

o Agent explores the action space without ‘oscillating’: It does depend

on the initial seed in the action space; however, it is seen in Figure

13 that there is little oscillation in the rewards, which means that the

agent finds the part of the action space that can successfully satisfy

multiple targets.

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 36

o RG and Ku targets can be met by changing stiffness: The logs show

that changing the stiffness gets the roll gradient and understeer

gradient targets in the acceptable range, which is a leap forward in

the right direction.

• Learnings

o This reward function is more in line with what the agent expects, and

further tuning may improve it. However, tuning further that this

would just be getting closer to a point of diminishing returns, where

the result may not be significantly impacted.

o The agent starts giving bad sets of coefficients and is unable to

recover. Tuning hyperparameters such as exploration decay

parameter influences when the agent can explore no more, and what

actions it can take at that point is important in further study of the

RL.

Figure 13 - Training of RL Agent 4 (v5.3)

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 37

8. Session at the car simulator centre at Volvo AB

The preceding chapters primarily present the theoretical development and

simulation using the MATLAB and VI-CarRealTime programs. In addition to

these theoretical components, a comprehensive development involves practical

verification using real simulators. This allows establishing the connection

between subjective driving perception and objective measurement parameters.

The practical application of the previously programmed vehicle parameters

makes them tangible and quantifiable.

During the implementation of a reinforcement learning (RL) method to enhance

a suspension design, it was possible to visit and test the physical simulator at

Volvo Car Corporation. The task involved equipping a predetermined vehicle

model with different suspension parameters and subsequently perceiving these

differences on the simulator through a track to be driven.

Figure 14: Vehicle Dynamics simualtor at Volvo Car Corporation [15]

The use of a vehicle dynamics simulator provided valuable insights, highlighting

a critical aspect: constructing a car based on simulation results does not

inherently ensure drivability or subjective excellence. The experience

emphasized that the subjective feel of a car transcends mere kinematic curves.

It involves a complex interplay of various elements, including springs, dampers,

anti-roll bars, and numerous intricate factors. The simulator facilitated an

exploration of vehicle dynamics intricacies, demonstrating that achieving a

harmonious and subjectively satisfying driving experience necessitates a

comprehensive understanding of the intricate relationships among diverse

mechanical components. This underscores the significance of integrating

theoretical insights from simulations with practical, hands-on exploration to

engineer vehicles that excel not only in performance metrics but also in

providing an enjoyable driving experience.

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 38

9. Observation

The performance of agents in reinforcement learning is a new complex

phenomenon in which the starting point and the random decision play an

important role. The initial condition plays a crucial role in the agent's decision

making and learning process, influencing its ability to adapt and optimise

outcomes. Furthermore, the variations in the random initial conditions lead to

a significant degree of diversity in the learning process, resulting in different

outcomes and behaviours.

In an attempt to improve the agent's performance, changing and interacting

with the basic hyperparameters proves to be a practical and effective strategy.

Manipulating these parameters helps to fine-tune the learning process and

enables improved efficiency and effectiveness.

A particular observation with different agents is the presence of "oscillating"

behaviour. This behaviour manifests itself in the form of fluctuations between

two sets of coefficients and illustrates the dynamic nature of the learning process

and the continuous adaptation of the agent to its environment. Eliminating

these fluctuations can contribute to the success of the learning process and

improve computing time.

Despite attempts to optimise performance, agents, even those that are

considered promising, may experience "crashes". These crashes occur when the

agent abandons exploration and chooses one of the boundaries of the action

space as the final action. Such occurrences hinder further learning and require

intervention; to counteract crashes and maintain the learning process, a

practical approach is to stop, save and restart the training in time. This

intervention interrupts a possible stagnation and enables the agent to resume

the exploration and avoid a premature cancellation. To summarise, the success

of the learning system is determined by a strong understanding of the learning

process and the decisive factors are important for programming a new RL agent.

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 39

10. Conclusion

This project represents a first draft that forms the basis for a fully developed

and multi-dimensional program. The main objective of this project is to improve

suspension development. The Reinforcement Learning (RL) program is used to

identify and analyze possible configurations. As there is currently no agent

designed for this problem on the market, the code is programmed using an agent

originally developed for the control of robots.

As research and development in this area is still in its infancy, it is difficult to

solve problems straight away as there is virtually no literature available.

Therefore, the programming of the RL code is more time-consuming than

previously thought. The best solution to drive development is to design an RL

algorithm from scratch to improve the configurations. This allows the interface

of the programs to be changed at will and any problems that arise to be solved

more easily.

The multidimensional nature of suspension design presents a challenge that

involves both objective (numerical) measures and subjective (feeling-based)

considerations. These dimensions defy accurate modelling by conventional

neural networks. Therefore, the use of RL, specifically developed for the

particular requirements of suspension design, is the logical consequence. This

approach recognises the inherent complexity of the problem and attempts to

bridge the gap between numerical measurements and subjective assessments,

paving the way for a more comprehensive and effective suspension design

process.

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 40

11. Future Scope

Ensuring the drivability of the RL model's output stands as a critical phase in

this project. Validating the model's performance in real-world driving scenarios

is essential to affirm its practical applicability and reliability. This validation

process serves as a pivotal step in gauging the effectiveness of the RL-based

suspension design and its ability to translate into a drivable and responsive

system.

The exploration of various RL agent types adds a layer of adaptability to the

project. Experimentation with different agent architectures enables the

identification of the most suitable one for the task at hand. This adaptive

approach acknowledges the diversity in suspension design challenges and aims

to tailor the RL model to the specific requirements of optimizing drivability. To

enhance the comprehensiveness of the RL model, the incorporation of

coefficients for wheel motion under steering as additional RL actions is

proposed. This addition recognises the complex relationship between steering

dynamics and wheel motion and aims to refine the ability of the RL model to

handle the complexity of real driving scenarios and proposes to investigate input

parameters such as suspension damping, stabiliser stiffness and others, in

addition to manipulating spline coefficients. This broader focus on input

parameters recognises the multi-layered nature of suspension design and aims

to improve the ability of the RL model to deal with a wide range of optimisation

variables. Furthermore, the inclusion of coefficients related to rear wheel

dynamics in the RL action space represents a more sophisticated approach to

account for the holistic nature of suspensions. Taking into account the

combination of front and rear wheel dynamics ensures a more comprehensive

optimisation process and thus contributes to an improved and more complex

suspension design. A specialised agent aims to exploit the unique challenges and

intricacies of suspension design, to better match the RL model to the

requirements of the task and maximise its efficiency in achieving optimum

handling.

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 IX

12. References

[1] Graphical model; 2023 [cited 2024 July 1] Available from: URL:

https://en.wikipedia.org/w/index.php?title=Graphical_model&oldid=1188076796.

[2] Holländer B. Introduction to Probabilistic Graphical Models - Towards Data

Science. Towards Data Science 2020 Feb 23.

[3] Douglas B. What Is Reinforcement Learning?; 2019.

[4] PDF The Hundred-Page Machine Learning Book Andriy Burkov - pdf download

free book.

[5] Doya K. Reinforcement learning: Computational theory and biological

mechanisms. HFSP J 2007; 1(1): 30

[https://doi.org/10.2976/1.2732246][PMID: 19404458]

[6] Kaelbling LP, Littman ML, Moore AW. Reinforcement Learning: A Survey. jair

1996; 4: 237–85

[https://doi.org/10.1613/jair.301]

[7] Sutton RS, Barto A. Reinforcement learning: An introduction. Second edition.

Cambridge, Massachusetts, London, England: The MIT Press 2020.

[8] Reinforcement Learning Using Deep Neural Networks - MATLAB & Simulink -

MathWorks Nordic; 2024 [cited 2024 January 7] Available from: URL:

https://se.mathworks.com/help/deeplearning/ug/reinforcement-learning-using-

deep-neural-networks.html.

[9] Reinforcement Learning Toolbox Documentation - MathWorks Nordic; 2024

[cited 2024 January 7] Available from: URL:

https://se.mathworks.com/help/reinforcement-

learning/index.html?s_tid=CRUX_lftnav.

[10] VI-CarRealTime | VI-grade; 2024 [cited 2024 January 7] Available from:

URL: https://www.vi-grade.com/en/products/vi-carrealtime/.

[11] Schulman J, Levine S, Moritz P, Jordan MI, Abbeel P. Trust Region Policy

Optimization. arXiv; 2015.

[12] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep

reinforcement learning. Nature 2015; 518(7540): 529–33

[https://doi.org/10.1038/nature14236][PMID: 25719670]

[13] Haarnoja T, Zhou A, Abbeel P, Levine S. Soft Actor-Critic: Off-Policy

Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. arXiv;

2018.

[14] Epsilon-Greedy Q-learning. Baeldung on Computer Science 2020 Dec 18.

[15] Boerboom M. internal figures/pictures/diagrams/media of Volvo AB.

	Contents
	Preface
	Abbreviations
	List of figures
	List of tables
	Abstract
	1. Introduction
	1.1. Background
	1.2. Aim
	1.3. Methodology
	1.4. Stakeholders and participants
	1.5. Project outcome
	1.6. Project deliverables
	1.7. Limitations
	1.8. Ethics assessment

	2. Vehicle development and Simulation
	2.
	2.1. Important definitions
	2.2. VI-CarRealTime and Subsystem Modification
	2.3. Manoeuvres/Simulation load cases in VI-CRT

	3. Machine learning theory
	1.
	2.
	3.
	3.
	3.1. Machine Learning concepts
	3.2. Probabilistic graphical models
	3.3. Weights and biases
	3.4. Types of machine learning

	4. Reinforcement Learning theory
	4.
	4.1. Reinforcement Learning concepts
	4.2. Exploration vs. Exploitation
	4.3. Working of RL
	4.4. Elements of RL
	4.5. Classification of RL
	4.6. Reinforcement Learning workflow
	1
	2
	3
	4
	4
	4
	4
	4
	4
	4
	4.6.1 Formulation of the problem
	4.6.2 Reinforcement Learning environment
	4.6.3 Reinforcement Learning agent
	4.6.4 Training of Reinforcement Learning agent
	4.6.5 Validation of trained agent

	5. RL vs. Other Optimization Methods
	6. MATLAB Script Development and Description
	5.
	6.
	6.1. Development of MATLAB Script
	6.2. Description of Different RL Functions
	5
	6
	6
	6
	6.2.1 Main Script (RL_script.m)
	6.2.2 Reset Function (ResetFcn.m)
	6.2.3 Environment Function (RLEnv.m)
	6.2.4 Calculate Wheel Motion (calcJounceMotion.m & calcSteeringMotion.m)
	6.2.5 Generating Kinematic Data for VI-CRT (suspensionModification.m)
	6.2.6 Suspension Pre-Check (suspensionCheck.m)
	6.2.7 XML Modification (xmlModification.m)
	6.2.8 Run Simulation & Post Process Targets (runSim.m)

	6.3. Rewards Function

	7. Results
	7.
	7.1. Training Agent 1 (v5.1)
	7.2. Training Agent 2 (v5.1)
	7.3. Training Agent 3 (v5.2)
	7.4. Training Agent 4 (v5.3)

	8. Session at the car simulator centre at Volvo AB
	9. Observation
	10. Conclusion
	11. Future Scope
	12. References

