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Abstract 

 

The project focuses on the enhancement of wheel suspension design through the 

utilization of VI-CarRealTime and Reinforcement Learning techniques. The 

primary objective of the study is to improve vehicle dynamics and autonomous 

systems, thereby contributing to the advancement of automotive engineering. 

The development of vehicle suspension systems is a complex and iterative 

process, involving the adjustment of various parameters to meet quantitative 

and qualitative metrics. The report emphasizes the significance of simulating 

different suspension setups to achieve optimal design solutions. It highlights the 

essential collaboration between simulation engineers and design engineers to 

ensure the successful development of suspension systems. 

 

The project group aimed to use optimisation techniques and artificial 

intelligence to streamline the process of developing an optimal suspension in a 

time-saving manner. The use of the VI-CarRealTime simulation tool facilitated 

the analysis and synthesis loops in the suspension design development process 

and enabled the evaluation of kinematic properties and system requirements. 

Furthermore, this report deals with the application of machine learning theory, 

in particular with concepts of reinforcement learning. A comprehensive overview 

of reinforcement learning, its elements, workflows and classification is provided, 

highlighting its potential for suspension design optimisation. A detailed 

comparison of reinforcement learning with other optimisation methods is also 

presented, highlighting its benefits in the context of suspension development. 

 

The development and description of a MATLAB script for the project is 

presented, highlighting the technical aspects of implementing reinforcement 

learning techniques in the context of suspension design. This report concludes 

with a discussion of the potential impact of the research on the automotive 

industry, emphasising the importance of the results for the advancement of 

vehicle dynamics and automotive engineering as a whole. To summarise, the 

project represents a contribution to improving suspension design through the 

integration of VI-CarRealTime and reinforcement learning techniques. The 

findings and insights presented in this report have the potential to significantly 

impact the automotive industry by contributing to the development of more 

efficient and optimised vehicle suspension systems.
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1. Introduction 

 

A vehicle has to fulfil a variety of system requirements to be considered fit for 

production and release. To fulfil all requirements equally and in full, each 

expectation must be quantifiably abstracted so that both the objective and 

subjectively perceptible characteristics can be evaluated using objective 

measurement parameters. Secondly, each requirement must be assigned to the 

individual subsystems so that each can be developed parallelly and by the 

experts for each corresponding subsystem.  

 

The subsystem of a vehicle in this project corresponds to the wheel axle and the 

related suspension design. The development process for the suspension 

subsystem traditionally is an iterative process running in loops at various levels. 

At the beginning of each iteration, the task focuses on finding suspension design 

solutions which fulfils system requirements (“synthesis”). At the subsystem level 

of the wheel suspension, this design consists of so-called “hard points”, the 

locations of the suspension mounting points on the vehicle chassis. Although 

these can often simulate the required kinematic behaviour of the wheel due to 

their free placement, they must also be in areas specified by the design in order 

to prevent an arbitrary, inefficient design of the vehicle (“packaging 

constraints”). If this cannot be guaranteed during the final check, the design 

must be adjusted iteratively in new loops. 

 

This development process is time consuming, and one cannot always be sure 

that the best design is found. Finding out how closely a given suspension design 

with its hard points approximates the desired kinematic characteristics in order 

to fulfil the system requirements describes the development process in reverse. 

This frontloading of the suspension design is called “analysis”. The following 

picture shows the described process. 

 

 
Figure 1: "Analysis" and "Synthesis" loops in the development process of a suspension 

design 
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1.1. Background 

Suspension design for vehicles is a highly iterative process with quick loops that 

involves changing different parameters to reach a set of quantitative and 

qualitative metrics. It is also always a part of the overall vehicle design process, 

which means that the surroundings of the suspension, and the requirement on 

the suspension, often can change between the iterations. To improve the 

suspension development, it is necessary to simulate different suspension setups. 

Therefore, the simulation department has a design matrix which shows the 

complete vehicle behavior for the different target areas based on the 

quantitative and qualitative metrics. To get a good suspension design, the 

simulation engineers and the design engineers must work hand in hand. 

 

1.2. Aim 

This project, in association with Volvo Cars, aims to “front load” the suspension 

design process, by moving to a top-down suspension design approach which 

allows for faster exploration and analysis of design alternatives, enabling the 

reduction in time for iterations required to assess their impact on overall vehicle 

attributes. 

 

This project aims to go away from the iterative approach to developing a 

suspension design and replace it with a novel reinforcement learning (RL) based 

method that can be trained to understand the relations between the specific 

suspension design, the corresponding wheel motion curves and the behaviour of 

the vehicle. Hence, the project aims to prove the concept of making the 

suspension design quicker in each development loop by successfully training and 

testing an RL agent that can generate a design given the requirements. The 

wheel motion curves (referred to as curves, henceforth) can be calculated 

mathematically by integrating the location and orientation of the wheel over 

the entire steering (driver input) and jounce (vertical motions) ranges.  

 

1.3. Methodology 

The methodology for this project is divided into the following sub-processes:  

• Pre-study: Exploration of Reinforcement learning strategies for 

application on suspension design. Set control and noise states, and 

penalty functions. Understand the effect of different parameters on 

suspension curves for use in the optimization function.  

• Implementation: Create an optimization function which cooperates well 

with the current MATLAB script. Quantitative metrics can be obtained 

from the design and performance requirements for the vehicle and 

qualitative metrics can be obtained from the feel of the vehicle in driving 

simulators.  
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• Post-processing: Plotting pertinent graphs to analyze how the virtual 

design parameters influence the complete vehicle measures and assess 

how well the objective targets are met.  

• Subjective Testing: The end goal of the project is to alter kinematic curve 

polynomials. Experienced drivers can assess the suspension design 

subjectively on the driving simulator using VI-CarRealTime, after 

selecting/generating appropriate driving scenarios or “load cases”.  

 

1.4. Stakeholders and participants 

The project is an automotive product development task inspired by research 

and by the cooperation between Chalmers University and Volvo Cars AB. 

 
Table 1: Stakeholders and participants 

Name Organization Role 

Manuel Denneler  Chalmers  Student/Team 

member  

Christoph Heilig  Chalmers  Student/Team 

member  

Abhishek Kolekar  Chalmers  Student/Team 

member  

Vivekanandan Madhuravasal 

Narasimhan  

Chalmers  Student/Team 

member  

Vinayanand Bangalore Venkatesh 

Prasad  

Chalmers  Student/Team 

member  

Yansong Huang  Chalmers  Academic supervisor  

Bengt Jacobson  Chalmers  Academic supervisor 

Max Boerboom  Volvo Cars  Industrial supervisor  

Tobias Brandin  Volvo Cars  Research project 

main supervisor  

 

1.5. Project outcome 

The project seeks the usage of optimization techniques/artificial intelligence to 

enable achieving better suspension design in a time efficient way. In many cases, 

a good performance on one metric may result in a sub-par performance on 

others, requiring a compromise. In this project we aim to find a method by 

which the suspension design can be manifested by updated requirements on the 

suspension and the complete vehicle. 
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1.6. Project deliverables 

• Identify objective requirements on complete vehicle behaviour for 

stability in longitudinal and/or lateral motion scenarios, using vehicle 

dynamics simulation.  

• Identify/create test scenarios for evaluating the influence from different 

suspension designs on complete vehicle measures.  

• A review of numerical methods (optimization/artificial 

intelligence/machine learning methods). Select one method to use in 

present project and identify which have potential for future work.  

• Implement an optimization method for obtaining set objective targets on 

complete vehicle or on suspension. Ensure that the strategy avoids non-

feasible solutions.  

• Demonstrate the optimization method for one axle on one vehicle.  

• Test the optimized vehicle setups on the Volvo Cars Simulator (stretched 

target for project).  

• Improve on the implementation of the optimization strategy for faster 

computation (stretched target for project).  
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1.7. Limitations 

• Facilities not available on time (simulator): Verification of the models on 

the simulator must be done by Volvo and simulator verification phase 

can be delayed or out of the project timeline.  

o Solution: Booking and confirmation of the availability of the 

simulator must be done well in advance and the models must be 

ready.  

• Scope management issues: Twofold problem of not matching required 

scope and addition of extra features that are not required.  

o Solution: Scope and deliverables must be clearly listed and agreed 

upon by all parties.  

• Integration issues: Different optimization or AI tools used while 

developing the optimization strategy might not be compatible with 

existing and accepted programs or software. 

o Solution: Integration testing must be done before spending time 

and effort in developing a program or code using a software. 

Software recommendations from the OEM can be used.  

• Data leaks: Internal data from Volvo (vehicle design, parameters, other 

confidential data), can be unintentionally put on a platform where 

unauthorized access can occur.  

o Solution: Confidential data must be maintained in a central, non-

public location. A list of confidential/internal files can also be 

maintained to track files.  

• Delay due to learning curve: Optimization/AI tools must be used and 

understood which could lead to delays.  

o Solution: Timelines can be established for learning and using new 

tools. Experts in the respective tools can be consulted to smoothen 

the learning curve. 

• Only a limited number of complete vehicle measures and suspension 

design parameters (the coefficients). Only the high fidelity model in VI 

Car Real Time has been used, i.e. not simplified more approximative 

vehicle simulation tools. 

o Solution: It is not included to go all the way to real suspension 

design parameters (such as hard point coordinates), but only to 

the polynomic coefficients. 
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1.8. Ethics assessment 

Ethical Implications for consequences of the project: 

The project’s outcome will not only streamline the design process, but also 

curtail the need for extensive manual iterative phases, leading to notable savings 

in both time and resource consumption. This would not only streamline the 

work of engineers engaged in the design process but also substantially enhance 

overall efficiency. Furthermore, the outcome of this project would integrate with 

established principles of ethically neutral product development, mitigating any 

potential ethical concerns. 

 

Ethical Implications for carrying out the project: 

It is imperative that due credit is accorded to resources that have been created 

by others, whether they are textual references or code snippets, as it is 

paramount in maintaining the team’s integrity. This commitment to proper 

attribution not only upholds ethical standards but also ensures fairness to the 

original creators. 5  

 

Furthermore, it is prudent to address the responsible usage of large language 

model tools like ChatGPT. While these tools undoubtedly expedite development 

and debugging, it is crucial for our team to exercise caution to prevent over-

reliance, preserving our capacity for independent problem-solving and 

innovation. Furthermore, language models usually output erroneous solutions, 

which cannot be relied upon. Thus, information taken from ChatGPT must be 

vetted before it can be implemented. AI models do the same mistakes as the 

human who trained them. Small mistakes from AI at the start of the project 

can produce a chain of events which can lead to unexpected problems at the 

later stages. 
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2. Vehicle development and Simulation 

To design a suspension system that gives optimal suspension characteristics, a 

platform must be created to evaluate these characteristics subject to change in 

design parameters. This chapter describes the method to generate vehicle 

models, simulate driving maneuvers, and evaluate vehicle performance 

characteristics. 

 

2.1. Important definitions 

• Toe - Wheel inclination from X axis measured in X-Y plane of vehicle. 

Unit: [deg] 

• Camber - Wheel inclination from Z axis measured in Y-Z plane of 

vehicle. Unit: [deg] 

• Side View Angle - Angle made by the trajectory of wheel center 

measured from Z axis in X-Z plane. Unit: [deg] 

• X-position - Change in X position of wheel center during wheel motion 

due to jounce and/or steering input. Unit: [mm] 

• Y-position - Change in Y position of wheel center during wheel motion 

due to jounce and/or steering input. Unit: [mm] 

• Jounce - Wheel vertical travel. Unit: [mm] 

• Coefficients – Coefficients of kinematic characteristics expressed as 

polynomials. Unit: [-] 

 

2.2. VI-CarRealTime and Subsystem Modification 

Since it is required to generate various suspension (kinematic) characteristics 

without involving the process of physical design (such as hardpoints 

development), VI-CarRealTime (VI-CRT) was chosen as the tool for vehicle 

performance evaluation. Unlike tools using multi-body based approach for 

conducting driving maneuvers, VI-CRT uses “look-up tables” in the form of 

.XML files for every subsystem to define the vehicle characteristics. Each 

subsystem in the vehicle, such as front and rear suspension, wheels, powertrain, 

braking, is represented by a .XML file, which contains information on all vehicle 

characteristics within the subsystem.  

 

To modify the front suspension and steering kinematic characteristics, a look 

up table is generated which defines the kinematic curves for each jounce and 

steering input. To define these curves, each parameter (such as bump steer, 

bump camber, anti-dive etc.) is expressed as a polynomial curve with respect to 

an input variable (change in jounce or steering input). The coefficients of these 

polynomials are parameterized to obtain the desired kinematic characteristics. 
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Equations of motion are then developed which are used to evaluate the wheel 

position and orientation as a function of jounce input, and as a function of 

steering input to obtain the following wheel characteristics: Toe, Camber, Side 

View Angle, X position, and Y position of the wheel center. The evaluated wheel 

positions and orientations give two datasets- one with steering as input, and the 

other with vertical wheel travel as input. To evaluate the state of the wheel 

subject to both steering and jounce, the wheel positions and orientations 

evaluated for steer input is added to its corresponding position/orientation 

subject to jounce input. This gives an approximation of the state the wheel 

would be for a specific jounce level and steering input. 

 

This combined map of wheel state as a function of steering and jounce inputs 

is then used to generate .XML file for the front steering subsystem using 

MATLAB API functions from VI-CRT. Later in the project, an additional 

parameter, front spring stiffness multiplier, was also added and used to modify 

the front suspension subsystem .XML file to achieve some performance targets. 

 

2.3. Manoeuvres/Simulation load cases in VI-CRT 

After generating vehicle models by modifying their subsystems, it is necessary 

to assess the performance of each vehicle to understand how the design changes 

affect vehicle performance. The results from these assessments are then fed into 

the reinforcement learning agent as observations to tune the characteristics and 

satisfy all the target criteria. It is imperative to understand how the 

modification of specific subsystems would affect the complete vehicle; so that 

some maneuvers can be chosen to assess the degree of change in performance in 

the complete vehicle when a specific design parameter is changed.  

 

Knowing that the modification in the mentioned design parameters affects the 

vehicle dynamics characteristics, the task is to choose maneuvers to assess these 

characteristics. To assess the lateral performance of the vehicle, some handling 

maneuvers were chosen – Constant Radius Cornering (CRC) and Frequency 

Sweep. To assess how the suspension characteristics would affect the 

longitudinal performance of the vehicle, a straight-line raking maneuver was 

also chosen. 

 

After generating .XML files for the maneuver characteristics chosen, a script 

was developed on MATLAB to simulate these maneuvers using the modified 

vehicle model. The simulation results were then post-processed to obtain 

performance characteristics denoted in the table below. 
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Table 2 - Description of Driving Manoeuvres and Evaluated Outputs 

Driving 
M anoeuvre 

M anoeuvre 
Characteristics 

Evaluated Outputs 

Constant Radius 
Cornering 

• Initial velocity 10 
km/h 

• 100m corner radius 
• Final velocity 80 km/h 

Understeer gradient 
[deg/g] and Roll 
gradient [deg/g] (roll 
angle per unit lateral 
acceleration) for lateral 
accelerations 0.1-0.35g's 

Frequency Response 
Sweep 

• Velocity constant at 80 
km/h 

• Steering angle 
amplitude: 42° 

• Steering frequency: 1-4 
Hz  

• Yaw rate gain 
margin [dB] 

• Yaw rate phase 
margin [rad] 

Straight Line 
Braking 

• Initial velocity 90 
km/h 

• Brake ramped to 1 in 1 
sec 

Pitch gradient – pitch 
angle per unit 
longitudinal 
acceleration [deg/g] 
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3. Machine learning theory 

The theoretical background of machine learning methods is necessary to create 

a general understanding of how the reinforcement learning based optimization 

method of this project works.  

 

3.1. Machine Learning concepts 

Some important concepts of Machine Learning which are relevant to this project 

are described briefly in the following section: 

 

3.2. Probabilistic graphical models 

Probabilistic graphical models (PGM) are statistical models that use graphs to 

encode complex probability distributions for multivariate distributions. PGMs 

can be used to capture a set of independences that hold in the specific 

distribution. [1, 2] Similar to graphs, PGMs can be directed (Bayesian models) 

or undirected (Markov Random Fields).  

 

PGMs can be used to find the distribution of one or more random variables 

(inference) and estimate the parameters of the random variables (learning). 

Inference in machine learning is used in classification, detection, regression, and 

identification problems. Learning in machine learning is used in control, 

autonomous vehicles, pattern recognition and language related problems. 

 

3.3. Weights and biases 

Weights and biases are the learnable parameters in a machine learning model. 

In a PGM representation, the weight controls the strength of the signal between 

two nodes of the graph and the bias controls the activation of the node to send 

an output and is a form of a threshold. 

 
Figure 2 - Weight and Bias Affecting the Output of a Node 
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From Figure 2, The output of the node is given by 𝑦 = 𝑓(𝑤𝑥 + 𝑏). The weights 

and biases are used commonly with an activation layer following the output of 

the node. Thus, the output of the node is active only when the activation layer 

is activated (only when the output y is above an activation value). 

 

3.4. Types of machine learning 

Machine Learning can be broadly subcategorized into three main types: 

supervised learning, unsupervised learning and reinforcement learning (RL) [3].  

A common example used to explain the different types of learning is the 

collection of a hundred thousand people and their food buying attributes and 

their social behavior (input).  

 

Unsupervised learning is used to find patterns or hidden structures in unlabeled 

datasets that have not been categorized [3]. Using unsupervised learning could 

group the people or cluster them into similar features (output). Unsupervised 

learning is used to create a model that takes the features of a collection as an 

input and transforms it to a single value or a vector (collection of values). [4] 

In case of the food buying example, unsupervised learning could classify the 

buyers into 2 or more groups depending on what they buy. The classification 

could then be used to predict the future purchases of the buyer based on 

purchases by other buyers with the same group. 

 

Supervised learning allows for the training of a computer to assign a label to a 

provided input (data) [3]. To continue with the example before, there are inputs 

with the food buying attributes, such as the age ranges of our buyers (output).  

Supervised learning can be used to train a mathematical model to categorize 

the food buyers into age ranges based on the inputs. By telling the system 

whether the guessed age range is right or wrong, supervised learning can 

optimize the model. The model can then be used to predict what a age group a 

new customer could belong to. 

 

Reinforcement learning is a combination of those two frameworks. While 

supervised and unsupervised learning work with a static data set, Reinforcement 

Learning (RL) works with a dynamic environment [3]. The objective here is not 

data clustering or labeling, but rather identifying the most favorable sequence 

of actions to achieve the best possible outcome. This essentially translates to 

maximizing cumulative rewards.  

Using the example, reinforcement learning can be used to recommend or 

discourage certain purchases depending on the expected reaction of the buyer. 

In short: 

• Unsupervised learning creates a model that can classify input data to 

different groups or classes. [4] 
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• Supervised learning creates a model that can label input data based on a set 

of features. [4] 

• Reinforcement learning creates a model that can explore and exploit the 

environment to gain the most reward/outcome. [4] 

Thus, RL presents the best approach to optimize a suspension design based on 

existing values and data.  
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4. Reinforcement Learning theory 

4.1. Reinforcement Learning concepts 

Reinforcement learning is a framework that allows an ‘agent’ to learn behaviors 

and actions by receiving ‘rewards’ after interacting with an ‘environment’. The 

agent, rewards and environment hence represent the most important part of the 

RL framework. The most interesting aspect of RL is that the actions do not 

have to be specified explicitly, rather, they are learned over time by interacting 

with the environment and receiving rewards.  

 

Reinforcement Learning is motivated by the way human and animal behavior. 

An inexperienced individual takes action that are random and uninformed. With 

time, the individual learns what actions helps it achieve the goals consistently 

and reliably and a complex understanding of the environment is built up. [5] 

 

There are two ways an agent can learn under RL. The first method involves 

searching the action space for an action that yields a good reward. The second 

method involves using statistical and mathematical measures to judge the value 

of a particular action. [6] 

 

4.2. Exploration vs. Exploitation 

The main point of a reinforcement learning agent is that it must explore the 

environment and take actions to understand the consequences and receive 

rewards. Like animal behavior, the agent has the chance to either explore the 

environment in search of a better action (hence reward) than the one it has, or 

exploit the current state and take the best reward it has till time. 

 

Another factor to consider is the effect of the delayed reward. The reward the 

agent receives in a future state is dependent on the current state of the 

environment as well. If the agent has to take a long sequence of actions to reach 

the final state, then the initial states will affect the final reward the agent 

receives.  

 

4.3. Working of RL 

At the core of the model lies the "agent," which actively explores, interacts 

with, and learns from its environment [3]. The agent's actions influence the state 

of the environment, which, in turn, generates a reward corresponding to those 

actions. The action of the agent not only affects the immediate reward but also 

the subsequent rewards [7] as the current action can affect what actions will be 

available in the future and hence the corresponding rewards. For instance, if an 

agent moves a walking robot towards a corner, its action space, and hence 

rewards it can receive for the next action become limited.  
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By utilizing this feedback and the received rewards, the agent can adapt its 

future actions, thus acquiring knowledge from the environment to maximize the 

reward it earns per action.[3] This is presented in Figure 3. 

 

 
Figure 3 - Overview of the Agent, Environment and Signals involved 

In our application of RL to optimize a suspension design, the different key 

signals are: 

• Actions: Set of numerical values that correspond to coefficients in the spline 

curves. The spline curves describe the motion of the wheel under jounce and 

steering motions. 

• Rewards: A scalar numeric value that is used to quantify how well the 

action fulfils the complete vehicle target subject to several manoeuvres. 

• Observations: Set of numeric values that correspond to the difference 

between complete vehicle targets and the values obtained from the current 

coefficients (actions). As the targets and subsystems are interdependent, this 

helps in establishing relations. 

 

The agent starts with random actions through which it can build up a 

knowledge of how the environment rewards the actions. With time, the actions 

of the agent start to resemble a trained agent such that it can take the best 

actions needed to reach a final state from any starting state. 
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Figure 4 - Policy Update Loop [8] 

The agent learns the best action to be taken using a policy. In every iteration 

of the training loop the policy is updated using an algorithm. The algorithm 

uses the reward and the observations from the environment to decide the 

changes to the policy of the agent. Figure 4 represents the training process in a 

flowchart. 

4.4. Elements of RL 

Agent refers to the algorithm that is trained in the framework by taking actions 

and receiving rewards from the environment. 

Environment refers to everything within the framework that the agent interacts 

with in the training process. The environment receives an action, converts that 

to the next state depending on the current state and returns an observation. 

Policy defines how the agent behaves given a state of the environment. In a 

way, the policy is the mapping from the input (state of the environment) to the 

output (actions taken). [7] 

Action is the output of the agent that is used as the input to the environment 

to decide a future state and the reward. The action taken depends on the current 

state of the environment and the policy of the agent. [7] 

Reward is the goal of the RL. The agent receives a reward as a single value for 

every action taken and is the basis to which the policy is altered. The agent 

aims to maximize the reward achieved by changing its behavior (policy) until 

it achieves the maximum. [7] 

Observations are the information that is sent from the environment to the agent 

so that it can understand the current state of the environment. The observations 

may or may not be used and depends on the type of agent used. [7] 

Value denotes the cumulative reward that the agent can get in the long run. 

The agent has to estimate the value of the current state and take actions that 
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maximize the value as well. Sometimes, the reward for an action may be lower 

than another action but can lead to a higher value. In situations like these, the 

agent must learn to compromise and pick the best option. [7] 

 

4.5. Classification of RL 

Reinforcement leaning can be classified into different groups. Some of the 

classifications can be: 

Discrete and Continuous action spaces describe the type of actions the agent 

can take. Discrete space corresponds to some fixed values of action whereas the 

continuous space corresponds to a range of values for the actions taken by the 

agent. 

Model-based and model-free agents differ on how the environment is used to 

build up a model from experience that the agent uses. Model-based agents build 

up a model of the environment and the rewards it yields based on experience 

and can use it to evaluate future actions. Model-free agents do not have a model 

of the environment and the rewards and use only the current actions and 

previous rewards to evaluate future actions. 

On-policy and off-policy agents differ on how they use the experience to learn. 

On-policy agents use the experience to improve the current policy whereas off-

policy agents use the experience to develop the optimum policy. As a result, on-

policy agents tend to converge faster but tend to be stuck in local minima. 

 

4.6. Reinforcement Learning workflow 

The following diagram (Figure 5) highlights the RL workflow used in this 

project. Reinforcement learning is generally used for control related problems 

and hence not much literature or previous solutions exist on our application. 

 

 
Figure 5 - Workflow of the Reinforcement Learning Algorithm 
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4.6.1 Formulation of the problem 

The problem in the project corresponds to the optimization of a front suspension 

design subject to complete vehicle targets. The objectives of the project are to 

successfully train an RL agent to optimize the suspension design and make sure 

the proposed suspension design satisfies the physical constraints controlled by 

the packaging requirements and mechanical limits. 

 

The complete vehicle targets are calculated from several measures that are 

calculated from manoeuvres described in Table 2 - Description of Driving 

Manoeuvres and Evaluated Outputs 

. Complete vehicle targets are: 

1. Lateral measures 

a. Understeer gradient 

b. Roll gradient 

2. Steering response measures 

a. Yaw rate gain margin 

b. Yaw rate phase margin 

3. Longitudinal measure 

a. Pitch gradient 

The actions (coefficients of the spline curves) represent the following motions: 

1. Bump steer (change of tow with jounce) 

2. Bump camber (change of camber with jounce) 

3. Anti-squat 

4. Anti-lift 

5. Roll center height 

 

4.6.2 Reinforcement Learning environment 

The environment function represents the external world or model that the agent 

interacts with to learn. The agent interacts iteratively with the environment 

using actions for which the environment presents rewards and observations to 

the agent. The system that the agent works with (simulation of a vehicle model, 

in our case) is a part of the environment function. 

 

The functions of the environment can be divided into: 

1. Converting agent action to a system input 

2. Deciding the next system state using the agent input 

3. Converting the system states into observations for the agent 

4. Calculating the rewards for a particular action from the new state 

 

The following flowchart (Figure 6) describes the processes in the environment 

function as pertaining to the project. 
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Figure 6 - Overview of the RL Environment 

 

4.6.3 Reinforcement Learning agent 

It has been decided to use the DDPG (Deep Deterministic Policy Gradient) 

agent as it meets all the requirements: continuous action and observation spaces, 

actor-critic network for memory efficiency and data buffer to learn from 

previous experiences. 

 

The reinforcement learning agent will be used to optimize the values of the 

polynomial coefficients describing the wheel motion. The wheel motion can be 

calculated in jounce and in steering and the combined motion is obtained by 

the superposition of individual motions. There are five polynomials describing 

the wheel motion in jounce and five polynomials for wheel motion under 

steering. Since each polynomial is a third order equation with no constant terms, 

the RL agent will have to find the optimal values for 30 variables. To simplify 

the process, we have decided to optimize the quadratic and linear coefficients 

for only the jounce polynomials. 
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4.6.4 Training of Reinforcement Learning agent 

Training of the RL agent is done in MATLAB using the Reinforcement Learning 

toolbox, [9] and VI-CarRealTime [10] (VI-CRT) from VI-Grade to simulate the 

complete vehicle. 

 

MATLAB was chosen as all the team members had experience using MATLAB 

and the RL toolbox is well-documented and has many different types of agents 

that can be used. There also exists an API (application programming interface) 

for VI-CRT that can be used directly in MATLAB to call the simulation 

routines with the modified data files. Following is the logic flow of the training 

process: 
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Figure 7 - Flow of the Reinforcement Algorithm in Detail 

The purpose and working of the different MATLAB functions are explained in 

Section 6 - MATLAB Script Development and Description. 

.  
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4.6.5 Validation of trained agent 

A separate standalone script was developed to test the outputs of the trained 

agent. Since we were never able to fully train an agent, we used the logged data 

from the training sessions to validate the training process. The environment was 

set up in such a way that coefficients that performed well were logged into a 

test file so that they can later be tested out. 

 

The validation script uses maneuvers that can test the vehicle behavior at 

extreme jounce and steering values to make sure the coefficients agree with 

physical constraints. 
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5. RL vs. Other Optimization Methods 

Traditional optimization methods (gradient based) cannot be used in our 

problem as the system to be optimized cannot be represented as a mathematical 

function. Evolutionary optimization can be used, however they present the 

challenge of requiring large amount of data and iterations to reach the optimum 

value. Since the population of potential solutions in evolutionary optimization 

methods is high and each member of the population needs to tested, the total 

time taken for one iteration goes up proportional to the members in each 

generation.  

 

Another issue with optimization (both traditional and evolutionary) is the need 

to mathematically rewrite and run the optimization of the objective function 

for every new requirement or constraint. With RL, one would simply have to 

add additional requirements to the reward function and constraints to the action 

space.  

 

Another drawback to optimization is that the convergence of solution to the 

optimum depends considerably on the starting point. In a population, many 

starting points may not be feasible and need to be checked before using in the 

simulation.  

 

These concerns are eliminated in a reinforced learning algorithm as the agent 

requires only one evaluation per iteration. Since it can develop policies on the 

solution, it can quickly learn to avoid infeasible points if rewarded and penalized 

correctly. RL algorithms also store previous experiences and build on that. 

Another advantage is that time to convergence to an optimal solution does not 

depend much on the starting point. As a result, the same algorithm can even 

be used to quickly find the optimal solution to similar problems. This allows a 

trained RL agent to be reused for different optimization problems as long as the 

actions and rewards remain the same. 
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6. MATLAB Script Development and Description 

6.1. Development of MATLAB Script 

The RL algorithm has undergone significant changes since the start of the 

project, as the team developed new insights on the working of the RL “black-

box”. The following table briefly summarizes the upgrades that have been 

implemented: 

 
Table 3 - Updates in different versions of the RL Algorithm 

Version Changes 

v1 Basic RL setup to verify error-free training 

v2 Updated rewards function 

v3 Errors in targets added as an observation to the agent 

v4 Action space is the new coefficient, instead of change in coefficient 

which is [ Δ coefficient = new coefficient – old coefficient] 

v5.1 Pre-check implemented, error in pre-check added as observation 

to agent 

v5.2 Updated rewards function (testing with the non-linear 

proportionality type, which is explained in Section 6.3 - Rewards 

Function). Evaluating effect of changing the balance between the 

exploration & exploitation by experimenting with greedy and 

exploratory policies. 

v5.3 Suspension stiffness multiplier added as a new action 

 

6.2. Description of Different RL Functions 

The different functions mentioned in the logic flow in Figure 7 - Flow of the 

Reinforcement Algorithm in Detail are described as follows: 

 

6.2.1 Main Script (RL_script.m) 

This is the main script that serves the purpose of setting up and training a 

reinforcement learning (RL) agent for the project, and it includes the following: 

1. Housekeeping and Log Files Removal: 

• Clears the console and workspace. 

• Deletes previous training log files if activated. 

2. Definition of Observation and Action Spaces: 

• Defines observation space representing the coefficients, errors in 

precheck and errors in simulation. 

• Defines action space as coefficients for polynomial curves affected by 

varying jounce, as well as the spring stiffness multiplier in the later 

training. 
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3. Environment Setup: 

• Configures and initializes the RL environment using observation and 

action space definitions, as well as the reset function and the contents 

of environment file. 

4. Reinforcement Learning Model Setup: 

• Describes the architecture of the actor network responsible for 

generating continuous actions. 

• Describes the critic network that evaluates the quality of actions. 

i. Defines a Deep Deterministic Policy Gradient (DDPG) agent 

using the actor and critic networks. 

5. Hyperparameter Tuning: 

• Sets hyperparameters affecting RL learning and convergence. 

6. Training the RL Agent: 

• Sets training options, including the number of episodes, steps per 

episode, and stopping criteria. 

• Initiates the iterative training process for the RL agent. 

 

6.2.2 Reset Function (ResetFcn.m) 

The reset function is designed to set the initial state of the reinforcement 

learning (RL) environment. It is executed only once during the first iteration of 

training, initializing key variables for the RL environment. 

It initializes the observations for the first iteration as an array called init. The 

first 10 elements of the init array are the jounce related coefficients – considering 

a quadratic equation of the form: 𝑎 ∗ 𝑥2 + 𝑏 ∗ 𝑥 + 𝑐 = 0, the odd elements of the 

array are the linear coefficients of the quadratic equation i.e., the 𝑏 term and 

the even elements are the constant i.e., 𝑐 term. 

 

6.2.3 Environment Function (RLEnv.m) 

This function acts as the external model, representing the "world" with which 

the RL agent interacts. It is akin to a "plant" in control systems. It manages 

interactions between the RL agent and the simulated environment. The working 

of the environment function can be described as follows: 

1. Kinematic Parameter Calculation: 

• Calculates wheel center motion under jounce and steering based on 

coefficients inputted by the agent. 

• Calculates kinematic parameters (e.g., camber, toe) using wheel 

motion data. 

2. Suspension Pre-check: 

• Certain sets of coefficients can give kinematic parameter values which 

are not possible considering the physical constraints of the vehicle. 

Simulating this in VICRT would be a waste of computation time and 
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resources since these sets of coefficients cannot be used in the vehicle 

development process. Therefore, it is beneficial to check whether the 

kinematic parameters are within certain ranges, and then proceed to 

simulation, which is what the pre-check does. This is explained in 

Section 6.2.6 - . 

• Suspension Pre-Check. 

3. System Modification and Simulation: 

• Modifies the vehicle subsystem XML file(s) (front-suspension and 

steering files) if the pre-check is passed. 

• Runs simulations for various load cases using VIRCT. 

• Evaluates the simulation results using a reward function. 

4. Logging and Outputs: 

• Saves the best set of coefficients (with the highest reward) of the 

training session in a file. 

• Logs rewards, coefficients, pre-check pass/fails and iteration 

information in separate files. 

• Outputs the observations (current set of coefficients, errors in pre-

check, and errors in targets). 

 

6.2.4 Calculate Wheel Motion  

(calcJounceMotion.m & calcSteeringMotion.m) 

These functions are derived from calcGeneralMotion.m file which was provided 

to the team at the start of the project. The purpose of these function is to 

simulate the effect of wheel jounce and rebound, as well as steering 

characteristics using coefficients to influence motion. The agent takes an action, 

which is to create a set of jounce coefficients, which is stored in the coeffs array.  

The nomenclature of the coefficients used is as follows: 

 
Jounce Coefficients 
coeffL1 = [0, coeffs(1), coeffs(2)];  % Bump Steer  
coeffL2 = [0, coeffs(3), coeffs(4)];  % Bump Camber 
coeffL3 = [0, coeffs(5), coeffs(6)];  % Anti-squat 
coeffL4 = [0, coeffs(7), coeffs(8)];  % Anti-lift 
coeffL5 = [0, coeffs(9), coeffs(10)]; % Roll centre height 
 
Steering Coefficients – these are frozen and are unchanged by the RL 
coeffL6 = [0, 18/10, 0];        % Hub trail 
coeffL7 = [g2(1), g2(2), g2(3)];      % Kingpin offset  
coeffL8 = [0, 8/10, -25];             % Caster trail  
coeffL9 = [g1(1), g1(2), g1(3)];      % Scrub radius 
coeffL10= [g3(1), g3(2), g3(3)];      % Wheel load lever arm  
 

The working of the functions is as follows: 

1. The function uses coefficients to extract kinematic characteristics. The 

first step is to split all the array of coefficients for each separate spline. 
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2. Formulates equations of motion and evaluates derivatives for wheel 

position and orientation. 

3. Integrates to obtain wheel position and orientation as a function of 

jounce levels and input steering. 

4. Returns the wheel_center and wheel_orientation vectors with X, Y, and 

Z coordinates, camber, side view angle, and toe angle as functions of 

wheel travel (for jounce) and steer angle (for steering) respectively. 

Currently the project scope is limited to optimizing the jounce coefficients. 

However, as seen in Section 7 - Results, considering the limited impact of 

selected coefficients, other parameters (e.g., suspension stiffness) can also be 

added as an action to make the optimization wider in scope. 

 

6.2.5 Generating Kinematic Data for VI-CRT 

(suspensionModification.m) 

This function converts suspension kinematics data from wheel jounce and 

steering simulations into the format required by VICRT – the software requires 

the kinematic parameters as curves, as a function of either steering wheel angle 

or rack travel. This is done as follows: 

1. The function extracts X, Y, Z coordinates, camber, side-view angle, and 

toe angle against jounce and steering from the wheel_center and 

wheel_orientation vectors from the previous function. 

2. It then transforms and adjusts coordinates to VICRT's coordinate system 

and units, and superimposes steering data for every jounce step, creating 

a pseudo-3D map of kinematic parameters. 

3. The 3D map is reduced to steer sweep characteristics at intervals of 5 

data points in jounce travel. This is due to VICRT's limitations on 

handling large datasets. 

4. The output is a suspension_data structure which contains all the data 

which can be used in VICRT. 

6.2.6 Suspension Pre-Check (suspensionCheck.m) 

As described briefly in Section 6.2.3 -  

Environment Function (RLEnv.m), the pre-check function is used to check if 

the static values of the suspension curves lie within the limits defined by 

physical constraints. After integrating the curves over the entire jounce and 

steering action, the extreme values in both directions (compression and 

extension for jounce and lock-to-lock steering) are compared to defined values. 

If the values are exceeded, the model is not simulated. This saves the 

computation time by avoiding simulation of the infeasible sets of coefficients. 

The static limits considered are: 

• Camber: ±15° 

• Side-view angle/Caster: ±15° 

• Toe: ±50° 
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• Wheelbase variation: ±75mm 

• Track variation: ±75mm 

The function works as follows: 

1. The data from suspension_data (output of the previous function) is 

checked if it violates the static limit definitions for the minimum and 

maximum values (compression/extension for jounce, left/right for 

steering) for both the left and right front wheels. The pre-check outputs 

1 if all kinematic parameter values are within range (this is pre-check 

pass condition) and 0 if any value is not in range (this indicates pre-

check fail). 

2. Also calculates the error in pre-check i.e., the difference between the 

boundary of the acceptable range of a kinematic parameter and its 

calculated value. It the pre-check is passed; the errors are set to 0. 

3. The function also maintains a count of consecutive pre-check failures for 

potential RL penalty, which can be used to penalise the agent if required. 

 

6.2.7 XML Modification (xmlModification.m) 

VICRT requires the data to be in separate XML files for different subsystems, 

with a “master” XML file being used to reference the correct subsystem files. 

This function facilitates the replacement of kinematic curve data in the Steering 

subsystem XML and Front Suspension XML files for each iteration of the 

training, and it works as follows: 

1. Data Import and systemStruct Generation: 

• Imports the standard vehicle model as a baseline using VICRT-

MATLAB API and keeps the model as a structure called 

systemStruct. 

• The suspension_data from suspensionModification function is also 

taken in as an input. 

2. Modifying Spline Data: 

• The code modifies data from the suspension_data struct into the 

systemStruct. This facilitates the replacement of data for each 

iteration of the training. 

3. Modifying Other Data: 

• Sets steering type to Simplified. 

• Allows a switch for using either steering wheel angle or rack travel 

as an input. 

• Assumes constant compliance. 

• Modifies suspension stiffness using a multiplier, which can be 

influenced by RL agent actions. 

4. Changing XML Files: 

• The function then finalizes the systemStruct and modifies the 

steering and front suspension subsystem XML files. 
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• It also updates the vehicle model XML file to reference the modified 

steering and front suspension subsystem XML files into the 

simulation. 

 

6.2.8 Run Simulation & Post Process Targets (runSim.m) 

This function initiates simulations in VI-CRT calculates relevant performance 

metrics for calculating the reward for the iteration. 

1. Checking for Simulation Errors: 

• Reads simulation log files and outputs the variable sim_error as 1 

if any log contains the string 'ERROR'. This flags simulations that 

fail to reach a steady-state equilibrium. The sim_error was used 

before the precheck was implemented to penalize the actions which 

cause physically infeasible vehicle wheel splines. However, since the 

precheck is added, the sim_error is obsolete, since iterations having 

infeasible set of coefficients are not simulated in VICRT. It is still 

retained, to have that functionality, in case any simulation error 

occurs even after precheck. 

2. Constant Radius Cornering (CRC) Load case: 

• Calculates Understeer Gradient and Roll Gradient. 

• Evaluates standard deviation of lateral acceleration to check for 

oscillatory behavior, i.e., to check for roll oscillations. Flags 

iterations which cause roll oscillations, for penalizing later. 

3. Frequency Response Sweep (SWE) Load case: 

• Yaw Rate Gain: Computes gain by analyzing peaks in yaw rate and 

steering rack displacement. 

• Steering Response Delay: Determines the phase delay between yaw 

rate and steering rack displacement. 

• Yaw Rate Gain Margin: Identifies frequency at which phase reaches 

-π. 

• Yaw Rate Phase Margin: Analyzes the phase at zero decibel gain. 

4. Straight Line Braking (BRA) Load case: 

• Calculates Pitch Gradient during braking. 

These help to analyze the handling, stability, and ride comfort characteristics 

of the vehicle setup in an objective manner.  
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6.3. Rewards Function 

The reward function is arguably one of the most important functions inside the 

reinforcement learning environment. The reason for this is that this is the only 

signal to the reinforcement learning agent if the actions it is taking leads towards 

desirable outcomes. The agent calibrates the weights and biases inside the 

neural networks depending on the correlation between the observations and the 

rewards. Thus, the rewards have to be made such that is has obvious (to the 

agent) associations with the observations amongst other constraints set by the 

agent and the rest of the environment.  

One of the constraints is that the reward function must be smooth and 

continuous, the benefits of which are described below: 

1. Gradient Continuity: DDPG is a gradient based algorithm, which means 

that it updates the policy according to the gradient of the actions and 

their consequent rewards of the current iteration in relation to the 

previous iterations. Having a smooth reward functions lead to continuous 

gradients, which allows the algorithm to have well-defined gradients 

throughout the state and action spaces. This in turn helps the algorithm 

to converge faster than if the rewards were discontinuous. [11] 

 

2. Gradient Descent Stability: Smooth rewards reduce the likelihood of 

sudden changes or discontinuities in the gradient landscape, which 

improves the stability of the algorithm. [12] 

 

3. Improved Exploration-Exploitation Tradeoff: A smooth reward function 

provides a more gradual transition between good and bad actions. This 

encourages the learning agent to explore a broader range of actions, 

aiding in the exploration-exploitation tradeoff. [13] 

 

4. Better Generalization: Smooth rewards contribute to better 

generalization. The learned agent is more likely to generalize well to 

unseen states, as the smoothness helps the model to understand the 

underlying structure of the environment. 

 

The other constraint is that the agent should be rewarded/penalized in such a 

way that it is easy for it to recognize the consequence of its actions, i.e., the 

reward should help the agent easily acknowledge whether it is moving forward 

in the correct direction or not.  

 

Considering these constraints, two different types of rewards functions were 

tested. The reward for each vehicle level target being achieved is described by 

the functions below. After that is the description of how the reward for an 

iteration is calculated.  
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Both functions are smooth and continuous, but use different mathematical 

equations to describe them: 

 

• Non-linear proportionality: The proportionality, in this case, is described by 

the hyperbolic tan function, with a negative penalty being applied if the 

result is outside the acceptable range. 

 

 
Figure 8 - Reward/Penalty Function - Non-linear proportionality 

• Linear proportionality: The proportionality, in this case, is described by the 

slopes of a straight line. 

 
Figure 9 - Reward/Penalty Function - Linear proportionality 

The different rewards functions were set up differently to evaluate the impact 

of proportionality on how the agent trains. The scaling (actual numeric value) 

of the reward and penalty, as well as the proportionality (slope) was modified 

for different training sessions. 



 

 

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 31 

 

A brief description of the how the total reward is calculated is as follows: 

• Calculating the baseline reward: The reward “curves” described in Figure 8 

and Figure 9 are set for only one target, and their outputs would be a single 

scalar value in relation to how well a target has been achieved, with the 

highest reward being awarded for being within the ideal bounds. This value 

is computed for all the five targets set, the addition of which gives the 

baseline reward. 

• Checking for oscillatory behaviour: In the earlier training sessions, it was 

found that some set of coefficients resulted in getting all targets within the 

acceptable (or even ideal) range but resulted in the vehicle experiencing roll 

oscillations. To avoid this behaviour being rewarded, the reward function 

was updated to check if the standard deviation of lateral acceleration is high, 

in which case, a penalty is applied instead of a reward. 

• Calculating Target In-Range Bonus Rewards: The objective of the RL is to 

get a set of coefficients that gets most (if not all) targets inside the ideal 

range. To incentivize this, a bonus reward is granted based on two conditions 

related to the counts of achieving targets within the acceptable and ideal 

ranges: 

o The function count’s how many targets are within the ideal and 

acceptable ranges each. 

o If the count of acceptable targets or ideal targets is greater than 1, 

then the count is multiplied by a bonus value. 

o This is then added to total reward. 

• Calculating Kinematic Parameter In-Range Bonus Rewards: The acceptable 

range for the kinematic parameters (KPs) such as camber, SVA, toe, etc., 

in the pre-check is quite large (this can be termed as acceptable KP range) 

to get the agent to explore a bigger larger space. However, it is more 

beneficial if the KPs are within tighter bounds (these can be called ideal KP 

range). To adhere to both constraints, there is no bonus or penalty for 

acceptable KP range, but there is a bonus reward for each KP being inside 

the ideal range. This is done by counting the number of KPs in ideal range 

and multiplying the count with a bonus value. 

• Calculating Kinematic Parameter Out-of-Bound Penalty: In contrast to the 

previous case, it is important for the agent to know if the action it takes 

shift the KP outside the acceptable range. Thus, if pre-check is failed, then 

the number of KPs outside the acceptable range is counted and multiplied 

by a penalty value. 

• Computation Expense Penalty: This is an optional penalty added to help 

the agent understand that each cumulative time it fails the pre-check, it 

incurs a penalty. The purpose is to convey to the agent that computation 

time needs to be shortened. If the penalty continues to increase, it indicates 

that the agent should explore a different part of the action space. 

All the above points give a single scalar value each, which is added up to get 

the total reward. 
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7. Results 

Multiple training sessions were done with the agent, each time updating the 

inputs and reward function as per the findings from the previous training. The 

setups and their results are described: 

7.1. Training Agent 1 (v5.1) 

• Training Setup: 

o Observations:  

▪ Coefficients  

▪ Error in simulation  

▪ Error in precheck 

o Actions: New coefficients 

o Reward: Nonlinear proportionality (tanh) 

 

• Takeaways 

o Agent explores only limited range in the action space: By checking 

the logs, it was observed that the agent moved back and forth 

between the same set of coefficients and was unable to explore the 

action space in its entirety. 

o No positive rewards: The agent was unable to get any set of 

coefficients that could get any target within the ideal range. It could, 

however, get one or two targets in the acceptable range, but this is 

not enough to get a net positive total reward. Moreover, it is evident 

from Figure 10 that it could pass pre-check successfully for multiple 

iterations – PP indicates pre-check pass and PF indicates pre-check 

fail. 

o RG and Ku targets were not met with any set of coefficients: While 

the RL agent could find coefficient sets that could satisfy the pitch 

gradient, yaw rate gain and phase margin targets (into its acceptable 

range at least), it could not find any coefficients that could satisfy 

the roll gradient and understeer gradient targets. 

 

• Learnings 

o Reward function (the non-proportional kind) may not be giving agent 

the expected feedback/motivation.  
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Figure 10 - Training of RL Agent 1 (v5.1) 

7.2. Training Agent 2 (v5.1) 

• Training Setup: 

The agent used is the exact same as the previous one, but the reward function 

has been changed, which is why the version number is same. 

o Observations:  

▪ Coefficients  

▪ Error in simulation  

▪ Error in precheck 

o Actions: New coefficients 

o Reward: Linear proportionality 

o Changes: The type of reward has been changed. 

 

• Takeaways 

o Agent explores the action space: By changing the reward function to 

a linear proportionality kind, it was observed that the agent moved 

through the action space quite more as compared to before. 

o Still no positive rewards: The agent showed similar results as last 

training, which is seen in Figure 11. 

o Agent revisits ‘safe point’ after failing to pass precheck: A key 

takeaway from this training was that the agent was able to backtrack 

to its “safe-point”, i.e., the point in the action space which it knows 

passes the pre-check, and it can explore a different part of the action 

space from that safe point. This is seen in the logs of the RL training. 

o RG and Ku targets were not met with any set of coefficients: Shows 

similar takeaway as the last training session. 
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• Learnings 

o Reward function may work as expected but tuning needed to push 

the agent in the right direction. 

o Agent retains memory of past rewards and backtracks. 

 
Figure 11 - Training of RL Agent 2 (v5.1) 

7.3. Training Agent 3 (v5.2) 

• Training Setup 

o Observations:  

▪ Coefficients 

▪ Error in simulation  

▪ Error in precheck 

o Actions: New coefficients 

o Reward: Linear Proportionality (the scaling and the way the 

penalties are applied is changed). 

o Policy: Changed to Greedy/Exploitation Policy: The greedy approach 

selects the action with the highest estimated reward most of the time. 

[14] 

 

• Takeaways 

o Decent number of iterations with high rewards: As seen in Figure 12 

(L), the agent can explore the action space progressively and is able 

to find sets of coefficients that can satisfy multiple targets. 

o Ku and RG values still not satisfied: The logs reveal that none of the 

coefficient sets are able to satisfy the roll gradient and understeer 

gradient targets.  

• Learnings 

o Reward tuning is in the right direction as agent explores high reward 

points 
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o Since the “good” sets of coefficients are not able to make significant 

changes to the understeer gradient and roll gradient, it leads to the 

conclusion that some other suspension constants may have to be 

changed (stiffness/compliance) to affect those targets. 

o Even though it seems like the agent is on a positive trend, it can be 

seen in Figure 12 (R) that the agent starts giving bad sets of 

coefficients and is unable to recover. Thus, maybe stopping and 

retraining the agent might be better than keep it training for a longer 

duration. 

 

 
Figure 12 - Training of RL Agent 3 (v5.2) for ~120 iterations (L); Same agent run 

coninuously for ~1 800 iterations (R) 

7.4. Training Agent 4 (v5.3) 

• Training Setup 

o Observations:  

▪ Coefficients 

▪ Error in simulation  

▪ Error in precheck 

o Actions: New coefficients, spring stiffness multiplier 

o Reward: Linear Proportionality (the way penalty is applied is 

modified again) 

 

Note: The spring stiffness is not directly changed for each iteration. In VI-CRT, 

there exists an option to change a multiplier for the spring stiffness. The 

multiplier is changed for each iteration, varying up to ± 30% of the initial 

stiffness. 

 

• Takeaways 

o Agent explores the action space without ‘oscillating’: It does depend 

on the initial seed in the action space; however, it is seen in Figure 

13 that there is little oscillation in the rewards, which means that the 

agent finds the part of the action space that can successfully satisfy 

multiple targets. 
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o RG and Ku targets can be met by changing stiffness: The logs show 

that changing the stiffness gets the roll gradient and understeer 

gradient targets in the acceptable range, which is a leap forward in 

the right direction. 

 

• Learnings 

o This reward function is more in line with what the agent expects, and 

further tuning may improve it. However, tuning further that this 

would just be getting closer to a point of diminishing returns, where 

the result may not be significantly impacted. 

o The agent starts giving bad sets of coefficients and is unable to 

recover. Tuning hyperparameters such as exploration decay 

parameter influences when the agent can explore no more, and what 

actions it can take at that point is important in further study of the 

RL. 

 

 
Figure 13 - Training of RL Agent 4 (v5.3) 
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8. Session at the car simulator centre at Volvo AB 

The preceding chapters primarily present the theoretical development and 

simulation using the MATLAB and VI-CarRealTime programs. In addition to 

these theoretical components, a comprehensive development involves practical 

verification using real simulators. This allows establishing the connection 

between subjective driving perception and objective measurement parameters. 

The practical application of the previously programmed vehicle parameters 

makes them tangible and quantifiable. 

 

During the implementation of a reinforcement learning (RL) method to enhance 

a suspension design, it was possible to visit and test the physical simulator at 

Volvo Car Corporation. The task involved equipping a predetermined vehicle 

model with different suspension parameters and subsequently perceiving these 

differences on the simulator through a track to be driven. 

 

 
Figure 14: Vehicle Dynamics simualtor at Volvo Car Corporation [15] 

The use of a vehicle dynamics simulator provided valuable insights, highlighting 

a critical aspect: constructing a car based on simulation results does not 

inherently ensure drivability or subjective excellence. The experience 

emphasized that the subjective feel of a car transcends mere kinematic curves. 

It involves a complex interplay of various elements, including springs, dampers, 

anti-roll bars, and numerous intricate factors. The simulator facilitated an 

exploration of vehicle dynamics intricacies, demonstrating that achieving a 

harmonious and subjectively satisfying driving experience necessitates a 

comprehensive understanding of the intricate relationships among diverse 

mechanical components. This underscores the significance of integrating 

theoretical insights from simulations with practical, hands-on exploration to 

engineer vehicles that excel not only in performance metrics but also in 

providing an enjoyable driving experience. 
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9. Observation 

The performance of agents in reinforcement learning is a new complex 

phenomenon in which the starting point and the random decision play an 

important role. The initial condition plays a crucial role in the agent's decision 

making and learning process, influencing its ability to adapt and optimise 

outcomes. Furthermore, the variations in the random initial conditions lead to 

a significant degree of diversity in the learning process, resulting in different 

outcomes and behaviours. 

 

In an attempt to improve the agent's performance, changing and interacting 

with the basic hyperparameters proves to be a practical and effective strategy. 

Manipulating these parameters helps to fine-tune the learning process and 

enables improved efficiency and effectiveness. 

 

A particular observation with different agents is the presence of "oscillating" 

behaviour. This behaviour manifests itself in the form of fluctuations between 

two sets of coefficients and illustrates the dynamic nature of the learning process 

and the continuous adaptation of the agent to its environment. Eliminating 

these fluctuations can contribute to the success of the learning process and 

improve computing time.  

 

Despite attempts to optimise performance, agents, even those that are 

considered promising, may experience "crashes". These crashes occur when the 

agent abandons exploration and chooses one of the boundaries of the action 

space as the final action. Such occurrences hinder further learning and require 

intervention; to counteract crashes and maintain the learning process, a 

practical approach is to stop, save and restart the training in time. This 

intervention interrupts a possible stagnation and enables the agent to resume 

the exploration and avoid a premature cancellation. To summarise, the success 

of the learning system is determined by a strong understanding of the learning 

process and the decisive factors are important for programming a new RL agent. 
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10. Conclusion 

This project represents a first draft that forms the basis for a fully developed 

and multi-dimensional program. The main objective of this project is to improve 

suspension development. The Reinforcement Learning (RL) program is used to 

identify and analyze possible configurations. As there is currently no agent 

designed for this problem on the market, the code is programmed using an agent 

originally developed for the control of robots. 

 

As research and development in this area is still in its infancy, it is difficult to 

solve problems straight away as there is virtually no literature available. 

Therefore, the programming of the RL code is more time-consuming than 

previously thought. The best solution to drive development is to design an RL 

algorithm from scratch to improve the configurations. This allows the interface 

of the programs to be changed at will and any problems that arise to be solved 

more easily. 

 

The multidimensional nature of suspension design presents a challenge that 

involves both objective (numerical) measures and subjective (feeling-based) 

considerations. These dimensions defy accurate modelling by conventional 

neural networks. Therefore, the use of RL, specifically developed for the 

particular requirements of suspension design, is the logical consequence. This 

approach recognises the inherent complexity of the problem and attempts to 

bridge the gap between numerical measurements and subjective assessments, 

paving the way for a more comprehensive and effective suspension design 

process. 

  



 

 

CHALMERS, Division of Vehicle Engineering and Autonomous Systems, Report for TME180 40 

 

11. Future Scope 

Ensuring the drivability of the RL model's output stands as a critical phase in 

this project. Validating the model's performance in real-world driving scenarios 

is essential to affirm its practical applicability and reliability. This validation 

process serves as a pivotal step in gauging the effectiveness of the RL-based 

suspension design and its ability to translate into a drivable and responsive 

system. 

The exploration of various RL agent types adds a layer of adaptability to the 

project. Experimentation with different agent architectures enables the 

identification of the most suitable one for the task at hand. This adaptive 

approach acknowledges the diversity in suspension design challenges and aims 

to tailor the RL model to the specific requirements of optimizing drivability. To 

enhance the comprehensiveness of the RL model, the incorporation of 

coefficients for wheel motion under steering as additional RL actions is 

proposed. This addition recognises the complex relationship between steering 

dynamics and wheel motion and aims to refine the ability of the RL model to 

handle the complexity of real driving scenarios and proposes to investigate input 

parameters such as suspension damping, stabiliser stiffness and others, in 

addition to manipulating spline coefficients. This broader focus on input 

parameters recognises the multi-layered nature of suspension design and aims 

to improve the ability of the RL model to deal with a wide range of optimisation 

variables. Furthermore, the inclusion of coefficients related to rear wheel 

dynamics in the RL action space represents a more sophisticated approach to 

account for the holistic nature of suspensions. Taking into account the 

combination of front and rear wheel dynamics ensures a more comprehensive 

optimisation process and thus contributes to an improved and more complex 

suspension design. A specialised agent aims to exploit the unique challenges and 

intricacies of suspension design, to better match the RL model to the 

requirements of the task and maximise its efficiency in achieving optimum 

handling. 
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