
Evaluation of Adaptive Methods for
Developing Algorithms for Measurement
of X-ray Radiation Properties
Master of Science Thesis in the Master Degree Programme Complex Adaptive Systems

THOMAS LOVÉN

Department of Signals and Systems
Division of Complex Adaptive Systems
CHALMERS UNIVERSITY OF TECHNOLOGY
Performed at Unfors RaySafe
Gothenburg, Sweden, 2013

Evaluation of Adaptive Methods for
Developing Algorithms for Measurement

of X-ray Radiation Properties

Thomas Lovén

Evaluation of Adaptive Methods for Developing Algorithms for Measurement of X-ray
Radiation Properties
Master of Science Thesis in the Master Degree Programme Complex Adaptive Systems
THOMAS LOVÉN

©Thomas Lovén, 2013

Performed at
Unfors RaySafe AB
Uggledalsvägen 29
SE-427 40 Billdal, Sweden
Telephone: +46 (0)31 719 97 00

Examiner
Prof. Bo Håkansson
Department of Signals and Systems
Chalmers University of Technology
SE-412 96 Göteborg, Sweden
Telephone: +46 (0)31 772 18 07

Supervisors
Mattias Gustavsson, Unfors RaySafe AB
Fredrik Oskarson, Unfors RaySafe AB

Abstract

The risks of X-ray exposure to the human body are well documented and its link to
cancer proven. However, X-ray imaging remains an important part of modern medical
science and the risks are in some circumstances considered acceptable. The exposure
should always be kept as low as reasonably achievable, which requires detailed knowledge
of the workings and performance of the X-ray equipment.

Unfors RaySafe develops and markets a range of instruments used for calibrating and
testing X-ray generators and related equipment. One such instrument is the X2 R/F
sensor, which measures radiation using four photo diodes. From the currents generated
in the four diodes, information about several parameters of the machine and set-up can
be extracted. Today, the parameters are calculated with algorithms developed through
a combination of expert knowledge, brute-forcing and guesswork. In this study, an at-
tempt is made to develop new measurement algorithms for one parameter using adaptive
programming methods.

The parameter chosen for the focus of this study was generator acceleration voltage.
Attempts were made to determine acceleration voltage using artificial neural networks
and using a linear genetic programming algorithm. Both methods require a large number
of matched input-output sets for training. Rather than making actual measurements, a
numerical model was constructed to simulate the X-ray generator, radiation filtering and
the X-ray detection device.

The constructed model is shown to be sufficiently accurate for use within this study,
and can be improved for use in actual development through more careful calibration.
Both methods attempted for developing measurement algorithms prove to work, and
both generate algorithms with an output accuracy comparable to the currently used
methods.

In conclusion, while the developed algorithms are not suitable for use in a finished
product, they give some insight as to how the current algorithms or even detector design
can be simplified. The developed numerical model can be generalized and used in future
development projects.

For Anneli

Contents

1 Introduction 1
1.1 Background . 1

1.1.1 Medical X-ray imagery . 1
1.1.2 X-ray protection . 1

1.2 Aim of study . 3
1.3 Scope . 3

2 X-ray system modelling 4
2.1 Theoretic background . 4

2.1.1 X-ray generation . 4
2.1.2 Interaction with matter . 5
2.1.3 Beam quality and the N-series . 7
2.1.4 X-ray detection . 8

2.2 Model construction . 9
2.2.1 X-ray generation . 9
2.2.2 X-ray filtration . 10
2.2.3 X-ray detection . 11

3 Development of algorithms 18
3.1 Adaptive programming methods . 18

3.1.1 Artificial Neural Networks . 18
3.1.2 Linear Genetic Programming . 20

3.2 Evaluation of methods . 22
3.2.1 Neural Networks . 23
3.2.2 Linear Genetic Programming . 25

4 Discussion and conclusion 30

A Source code listing 34

i

Chapter 1

Introduction

1.1 Background
1.1.1 Medical X-ray imagery
The study of X-rays by Wilhelm Röntgen in the late nineteenth century opened a new
path in medical sciences. Suddenly, the insides of a patients body could be seen without
the risks associated with an operation.

The penetrating properties of X-rays are highly dependent of the energy of the radia-
tions photons. Photons with higher energy penetrate deeper and through denser materials
than photons with a lower energy. In medical imaging, this has to be taken into consid-
eration during generation of the X-ray radiation. If the photon energy is too high it may
pass right through bone and flesh alike, and give a highly over-exposed picture. If the
photon energy is too low, it may be absorbed completely in the patients body. In order
to make a high quality image, the photon energy must therefore be selected carefully
with consideration the patient as well as the type of X-ray imagery. For example, in
mammography the photon energy should be just high enough for the radiation to pass
through healthy tissue, but low enough that it is absorbed by cancerous cells, which are
only slightly denser [1].

While the energy of the most energetic photons in the X-ray radiation is important,
a large number of low energy photons may also ruin the image. Those photons also add
to the radioactive skin dose to the patient. Such low energy photons can be filtered away
by passing the radiation through thin sheets of metal[2].

1.1.2 X-ray protection
Very soon after their discovery, it became apparent that X-rays come with their own set
of risks. Today the connection between exposure to X-ray radiation and cancer is well
studied and proven. The United Nations Scientific Committee on the Effects of Atomic
Radiation have compiled several studies and estimate a total 4.3-7.2 % risk of contracting
cancer per Sievert dose[3].

1

Figure 1.1: The X2 platform with Radioscopy/Fluoroscopy sensor.

The benefits of X-rays, both in medicine and other areas, are generally considered
great enough to risk limited amounts of exposure. Several countries have governmental
limits to the X-ray dose an individual may be subject to during a year or a lifetime. A
common rule of thumb is the ”ALARA-principle” – As Low As Reasonably Achievable.

What seems like the easiest way to reduce X-ray exposure is to simply think twice
before making a new X-ray image. Is it really necessary? If it is, the next step is to get it
right the first time, so that you won’t have to remake the exposure later. This involves a
lot of expert knowledge, but also being certain that your machine is well calibrated and
outputs what you expect.

Unfors RaySafe develops and markets a range of measurement instruments for X-ray
radiation. Typical use cases include calibration of X-ray machines in hospital environ-
ments. The X2 platform (seen in fig. 1.1), used in this study, is one such instrument
which is designed to be very easy to use.

The operator or technician places the instruments sensor in the X-ray beam path, sets
up the machine and makes an X-ray exposure. The instrument measures the radiation,
calculates which machine parameters it corresponds to and displays it on the base sta-
tion. It also displays other interesting data, such as the half value layer and combined
radioactive dose.

The basic R/F sensor (for Radioscopy/Fluoroscopy) of the X2 platform gets its
measurements from four photo diodes. In other words, the sensor transforms the space
of machine-parameters, measurement setup and environmental conditions etc. to a four
dimensional space of measurements. The X2 base unit uses those four values to calculate
the wanted machine parameter.

2

1.2 Aim of study
The main purpose of this study is to evaluate whether – and if so, how well – adaptive
optimization methods can be used to develop algorithms for X-ray property measurements
with the X2 platform. Several methods were attempted and their performance evaluated.
The optimization methods and their evaluation is described in chapter 3.

Most adaptive optimization methods require a large amount of data for training and
evaluation. Rather than making a large number of actual measurements, a model should
be developed which can simulate the X-ray setup and measurement device. The model
is further discussed in chapter 2.

1.3 Scope
While the X2 platform and its R/F sensor can be used to measure a number of properties
of the radiation, this study attempts only to solve the problem of measuring the energy
of the most energetic photons.

The model and, by extension, the adaptive algorithms will consider only one detector
– the one supplied by Unfors RaySafe for this study - and not consider differences between
detectors. Likewise only the X-ray machines and tubes available for measurement will be
considered. The model of the measurement setup will not include any simulated noise.

3

Chapter 2

X-ray system modelling

2.1 Theoretic background
2.1.1 X-ray generation

Electrons

X-rays

Filament

Target

Acceleration
Voltage

Cathode

Anode

Figure 2.1: A schematic diagram of an X-ray tube. Electrons are accelerated from a
filament towards the target where they interract with the target atoms to create X-ray
radiation.

Figure 2.1 shows a schematic diagram of an X-ray tube such as might be used in
medical applications. Inside the tube, a focused beam of electrons is accelerated towards
a metal target by an acceleration voltage (AV).

4

X-rays are generated when the energized electrons interact with the atoms of the
target[4]. Most electrons will be deflected one or many times by the electric field of the
nuclei, losing some of their energy in the form of photons in the process. The radiation
generated by this process is – for historical reasons – known as Bremsstrahlung and has
a continuous energy spectrum.

Some electrons may interact by knocking an orbital electron from the lower energy
levels of a target atom. As an electron from a higher energy level the vacancy a photon
will be emitted carrying the excess energy. This energy and thus the frequency of the
photon is characteristic to the target material and the radiation generated by this process
is therefore called characteristic radiation.

0 20 40 60 80 100 120
 0

 2

 4

 6

 8

10

12

Photon energy (keV)

C
ou

nt
 (

ph
ot

on
s/

ke
V

/s
)

× 103

Figure 2.2: A typical X-ray spectrum generated using SpekCalc. The sharp, peaked
characteristic radiation and the smooth Bremsstrahlung are combined into a combined
spectrum.

These two effects combine to form the output radiation. The intensity of the radiation
is directly proportional to the electron current (EC) through the X-ray tube. A typical
X-ray spectrum can be seen in fig. 2.2. X-ray production only accounts for a few percent
of the energy in the electrons, though. Most of the energy is converted to heat.

2.1.2 Interaction with matter
There are several ways in which photons can interact with matter. Which ones are more
likely depends on the photon energy[5]. In the energy range normally used for medical
X-ray imagery, the dominating interactions are the photoelectric effect and Compton
scattering.

5

In photoelectric interaction a photon expends all of its energy to free an electron which
is bound to a nucleus. Some of the energy is used to overcome the binding energy of the
electron to the nucleus and the rest is transformed into kinetic energy of the electron.

In Compton interaction only some of the energy of the incident photon is transfered
into kinetic energy. The rest is emitted in the form of another photon. The emitted
photon will have a lower energy than the incident one and can interact again.

The interactions may remove an electron from the lower energy levels of the atom.
Akin to the generation of characteristic radiation, this vacancy will soon be filled by an
electron from a higher energy level and the difference in energy emitted in the form of a
photon. Radiation emitted in this way is referred to as secondary radiation.

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Photon energy (keV)

A
bs

or
bt

io
n

pr
ob

ab
ili

ty

1 mm Al
2 mm Al
0.2 mm Sn

Figure 2.3: Fraction of incident photons absorbed by 1 mm of aluminum, 2 mm of
aluminum and 0.2 mm of tin respectively. Note the K-edge effect in the tin absorption.

The probability of each type of interaction depends on the energy of the incident pho-
ton, with higher probability at lower energies. The combined probability of interactions
form an absorption or attenuation probability. In fig. 2.3 the absorption probability of
a photon when passing through 1 mm of aluminum, 2 mm of aluminum and 0.2 mm of
tin is shown as a function of photon energy as calculated by the method described in
section 2.2.2.

The sudden increase in absorption probability for tin seen in the figure is called a
K-edge and is an effect of its electron structure. The photon energy of the discontinuity
corresponds exactly to the energy required to excite an electron in the K-shell of tin[6].

Since most of the electron-atom interactions which generate the X-ray radiation take
place inside the anode plate as opposed to on its surface, the radiation exiting the X-ray

6

tube has already passed through and been partially attenuated by some of the anode
material.

The constant bombardment of high energy electrons may over time wear off some
of the target material which may then deposit onto the exit window of the X-ray tube,
causing further attenuation of the beam.

2.1.3 Beam quality and the N-series
The AV of the X-ray tube sets an upper limit to the energy of the photons in the X-ray
radiation, and by placing a filter – for example a sheet of metal – in the beam path the
number of photons with low energy can be limited. In this way it is possible to generate
radiation with a narrow and well defined energy spectrum.

Since measuring the exact energy composition of is difficult, X-ray radiation is gen-
erally classified by way of AV and filtration. Those properties combined form the beam
quality.

Note that the beam quality is not a measure of quality in the way of usability or
purity of the radiation or anything similar. Instead it is simply a collective description
of the conditions in which the radiation was generated.

The International Organization for Standardization have defined a set of beam qual-
ities known as the N-series which can be used to calibrate X-ray machines and measure-
ment devices[7]. The AV and filtrations of the N-series can be seen in table 2.1.

Name Acceleration Voltage Al Cu Sn Pb
[kV] [mm] [mm] [mm] [mm]

N-10 10 0.1 0 0 0
N-15 15 0.5 0 0 0
N-20 20 1.0 0 0 0
N-25 25 2.0 0 0 0
N-30 30 4.0 0 0 0
N-40 40 4.0 0.21 0 0
N-60 60 4.0 0.6 0 0
N-80 80 4.0 2.0 0 0
N-100 100 4.0 5.0 0 0
N-120 120 4.0 5.0 1.0 0
N-150 150 4.0 0 2.5 0
N-200 200 4.0 2.0 3.0 1.0
N-250 250 4.0 0 2.0 3.0
N-300 300 4.0 0 3.0 5.0

Table 2.1: Description of the beam qualities in the N-series as defined in ISO 4037-1.

7

2.1.4 X-ray detection
Both of the described interaction mechanisms result in free electrons inside the target
material. This forms the basis in most modern X-ray detection and measurement de-
vices[8].

A common X-ray detector is the Ionization Chamber in which the X-rays pass through
a chamber filled with a gas such as air or a noble gas. The radiation ionizes some gas
atoms and by applying a voltage over the chamber the free electrons form a current which
can be measured.

Ionization chambers are bulky and require a high voltage to accelerate the free ions,
so the R/F sensor of the X2 platform relies instead on common silicon photo diodes.

S0

S1

S2

S3

 Copper filters

Tin base

Figure 2.4: A schematic diagram of the Radioscopy/Fluoroscopy sensor of the X2 plat-
form. The four diodes are separated by copper sheets and are mounted on a tungsten
base. The radiation source should be above the stack.

The R/F sensor contains four diodes called S0 through S3 which are put in layers with
thin sheets of copper (see fig. 2.4. In this way each sensor receives the same radiation
but with different levels of filtration. The entire stack is placed on top of a tungsten base
plate and each diode is connected to an integrated circuit which measures the generated
current and sends the data to the base unit by means of a USB cable.

8

2.2 Model construction
The aim of this part of the project was to construct a computerized model of the X-ray
measurement setup including generator, filtration and measurement device.

The model input should be an X-ray beam quality in the form of generator and
measurement setup parameters, namely:

• X-ray tube acceleration voltage
• X-ray tube electron current
• X-ray tube anode material and angle
• Additional filtration
• Distance from anode focus point to measurement device.
The model output should be four values equal to the currents generated by the four

measurement diodes in an X2 R/F sensor subject to X-ray radiation of the same beam
quality.

2.2.1 X-ray generation

0 20 40 60 80 100 120
 0

 1

 2

 3

 4

 5

Photon energy (keV)

R
el

at
iv

e
ph

ot
on

 c
ou

nt
 (

1/
ke

V
)

Spectrometer data
SpekCalc
SpekCalc + Filter

× 10−3

Figure 2.5: Normalized spectrometer measurements from a Philips Velara X-ray machine
set at 80 kV AV and with no additional filtering. The figure also shows the SpekCalc
output for the same settings as well as with 7µm of additional filtering.

A computer program called SpekCalc was used to generate the basic X-ray spectra.
SpekCalc is developed at McGill University of Montreal, Canada and is based on a de-
terministic model by Poludniowski and Evans at The Institute of Cancer Research of
London, U.K. It can be used to generate X-ray spectra from tungsten anodes at AV up

9

to 130 kV. It also simulates filtration by some common elements and calculates a num-
ber of useful information about the radiation, such as energy content and administered
radioactive dose[9–11].

Most of the features of SpekCalc were left unused for this project, as it was primarily
used to generate simple unfiltered spectra which were saved and converted for use in
MATLAB. The spectra were generated with a 12 ◦ anode angle and with AV from 10
to 300 kV in 1 kV increments. The spectra were set up as histograms with bin widths of
0.1 keV.

A few spectra from SpekCalc were compared to measurements made with an Amptek
X123 X-ray spectrometer. Figure 2.5 shows a measurement with the spectrometer (dotted
line) at a Philips Velara machine fitted with an SRM 0608 ROT-GS 505 tube. The
measurement is made with with 80 kV AV and no filtering is compared to a SpekCalc
spectra (solid line) with the same settings. The agreement is rather bad, with the most
common photon energy offset and the overall shape of the spectrum being different.

The X-ray machines used in this study were fitted with well used X-ray tubes. Under
the assumption that a layer of tungsten would have deposited onto the exit window
(as described in section 2.1.2), the SpekCalc spectrum was adjusted with a filtration
equivalent of 7µm of tungsten as described in section 2.2.2. It was also adjusted for the
sensitivity of the spectrometer as per the manufacturers specification[12]. The resulting
spectrum (dashed line) agreed much better with the spectrometer measurement. The
remaining difference is limited to energies below 69.525 keV, which is the energy of the
K-edge of tungsten. This leads to the assumption that the some of the disagreement
is due to secondary radiation from the tungsten aperture of the spectrometer itself or
simply a numerical effect due to the finite energetic resolution of the spectrometer.

2.2.2 X-ray filtration
Filtration was modelled using measurements of the photon absorption probability of
several common filter elements from the X-Ray Attenuation and Absorption for Materials
of Dosimetric Interest database (XAAMDI)[13].

XAAMDI is one of three databases provided by the American National Institute of
Standards and Technology. The data for the relevant elements and energy ranges from
all three databases were compared, and the differences were found negligible. In the end
XAAMDI was chosen for its usability and high resolution within the range 10-300 keV.

Data is provided in the form of a table of the photon mass attenuation coefficient
µ/ρ ([cm2/g]) as a function of photon energy. From this the absorption probability can be
calculated as

A = eµ/ρ· ρ·L

where ρ is the filter density and L is its thickness.
This, in turn, is used to calculate the number of photons remaining after filtration

Cout = Cin/A = Cine
−µ/ρ· ρ·L

10

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Photon energy (keV)

M
as

s
at

te
nu

at
io

n
co

ef
fic

ie
nt

 (
m

2 /g
)

XAAMDI data
Interpolation

Figure 2.6: The mass attenuation coefficient of aluminum according to the XAAMDI
database. The solid line shows the interpolation used throughout the project.

Since measurements are only available for a few tabulated energies, a logarithmic
interpolation was used in between, i.e. two-point linear interpolation of log (µ/ρ) as a
function of log (E). This interpolation is illustrated in fig. 2.6.

Figure 2.7 shows the spectrometer measurements of unfiltered 80 kV radiation and
radiation of the N-80 beam quality. The solid line in the figure shows data from SpekCalc
after a simulated filtering to N-80 with data from XAAMDI as well as the extra 7µm
of tungsten described in section 2.2.1. The effect of the presumed secondary emissions
from the spectrometer aperture can still be seen. Besides that, the difference between
measurements and simulation is minimal.

2.2.3 X-ray detection
Definitions

The following section requires a bit of nomenclature to be established.
The following definitions are made with N being the number of energy bins in the

spectrum, Ei being the mean energy and Ci the count of photons in bin i.
The total number of photons is calculated as the number of photons in the spec-

trum. This is used for normalizing spectra (as in fig. 2.7).

Ctot =
N∑
i=1

Ci [1/mAs]

11

0 20 40 60 80 100 120
 0

 2

 4

 6

 8

Photon energy (keV)

R
el

at
iv

e
ph

ot
on

 c
ou

nt
 (

1/
ke

V
)

Unfiltered
N−80
Simulation

× 10−3

Figure 2.7: Normalized spectrometer measurements of unfiltered 80 kV X-ray radiation
and radiation of the N-80 beam quality. The solid line shows simulations from SpekCalc
after filtering with data from XAAMDI. The normalization constant is about 60 times
greater for the unfiltered radiation than the filtered which makes the noise in the latter
signal more prevalent.

The total energy content is a sum of the kinetic energy carried by the photons in
one second of radiation.

Etot =
N∑
i=1

EiCi [keV/mAs]

The mean energy is an ordinary arithmetic mean of the energies of all photons in
the spectrum.

Ē = Etot/Ctot [keV]

The peak count is the number of photons with the most common energy excluding
characteristic radiation.

Cpeak = Cipeak [1/mAs]
ipeak = i : Ci ≥ Cj, ∀j

Finally, the bulk radiation is the radiation with energies limited above and below
the mean energy by bin with a photon count exactly half the peak count.

Figure 2.8 shows an X-ray spectrum for the N-100 beam quality with 1 mA EC and
illustrates the described properties.

12

Photon energy (keV)

C
ou

nt
 (

ph
ot

on
s/

ke
V

/s
)

0 20 40 60 Mean 100 120

Peak/2

Peak

6

8

10

12
Bulk
Peak

× 103

 C
tot

: 1005860 /mAs

E
tot

: 1.36× 10−11 W/mA

Figure 2.8: Illustration of spectral properties for the N-80 beam quality.

Diode sensitivity

The aim of this part of the model is to translate X-ray spectra to a detector output in
the form of an electric current. The simplest way would be to assume that every photon
reaching the detector gives rise to a current which in some way depends on the photons
energy and that this dependence is continuous.

An attempt was made to find the diodes sensitivity by measuring the current output
from one sensor subject to a number of carefully chosen beam qualities. The beam
qualities were chosen to maximize spectral coverage in the common X-ray energy interval
30-300 kV. Assuming that the major contribution to the detector current comes from the
bulk radiation, care was taken to minimize the overlap of bulks between beam qualities.
Finally, the filtration was adjusted to match what was available in the test lab at Unfors
Raysafe. The chosen beam qualities are listed in table 2.2 and their normalized spectra
are shown in fig. 2.9.

13

Number Tube Voltage Al Cu Sn Ē Etot Bulk width
[kV] [mm] [mm] [mm] [keV] [W/mA] [keV]

1 20 1.0 0 0 17.1 1.4· 10−9 4.3
2 30 4.0 0 0 25.2 4.7· 10−9 7.5
3 40 4.0 0.21 0 33.7 6.1· 10−9 9.8
4 50 4.0 0.6 0 42.5 6.3· 10−9 11.5
5 60 4.0 2.0 0 53.3 1.2· 10−9 9.9
6 70 4.0 2.0 0 59.9 7.1· 10−9 15.2
7 90 4.0 5.0 0 77.7 4.4· 10−9 17.1
8 100 4.0 5.0 0 84.2 1.3· 10−8 23.2
9 120 4.0 5.0 1.0 101.5 1.4· 10−8 28.0
10 150 4.0 0 2.5 125.4 2.7· 10−8 38.0

Table 2.2: Beam qualities used in measurements for finding the diode sensitivity.

Figure 2.9: Normalized spectra of the beam qualities used in measurements for finding
the diode sensitivity.

14

Measurements of these beam qualities were made at two different X-ray machines.
Most measurements were made on the Philips Velara previously described. This machine
has a minimum AV of 40 kV, so measurements at lower AV were made on an X-ray
machine for mammography. Care was taken to have similar measurement conditions
during all measurements. However, variations in atmospheric pressure and ambient or
X-ray tube temperature were not measured or accounted for.

The detector used was an Unfors RaySafe X2 R/F sensor and measurements were
recorded using X2Term - a program designed by Unfors Raysafe for internal development
use. X2Term records the exact currents as measured by the four diodes. At least three
measurements were made of each beam quality and the measured currents were averaged.

A spectrum was simulated for each beam quality using SpekCalc and XAAMDI filter
data with an additional 7µm of tungsten added to approximate the deposit on the exit
window. The simulated spectra were also adjusted for the distance between the X-ray
tube and sensor and for the EC used during measurements.

SpekCalc calculates spectra at a distance of 1000 mm from the X-ray tube focus, and
the intensity decreases geometrically such that

Cactual = CSpekCalc

(
1000

d

)2

where d is the distance between focus and measurement in mm. The EC affects the X-ray
intensity linearly, such that a 100 mA EC causes 100 times more photons to be emitted
than a 1 mA EC.

Finally, the mean and total photon energy was calculated (presented in table 2.2)
and used to find the diode sensitivity for photons of a certain energy. The results are
presented in fig. 2.10.

Verification

Since the sensitivity was calculated using measured values from only the topmost diode,
S0, the measured values from S1 - S3 could be used to validate the accuracy of the
simulation. For each measured beam quality new spectra were simulated with added
filtration corresponding to the copper filters between each diode in the sensor stack.
Those spectra were then used to find the expected current from each of the three bottom
diodes through

IS =
N∑
i=1

S(Ei)·Ci

where S(E) is the diode sensitivity to photons of energy E. The gaps in the diode
sensitivity were filled by a logarithmic interpolation in the same way as was done with
the filtration in section 2.2.2.

The results are shown in fig. 2.11. The difference between measured and simulated
values for each diode are also listed in table 2.3.

15

Photon energy (keV)

S
en

so
r

cu
rr

en
t (

A
/W

)

0 50 100 150
10

−11

10
−10

10
−9

10
−8

Bulk
Mean
Interpolation

Figure 2.10: Sensitivity of the topmost sensor diode in the Unfors X2 stack as a function
of incident photon energy.

From the figures one can see that the general trend is followed closely. The table
displays rather large percentual errors – much larger than what was hoped for.

Beam quality S0 S1 S2 S3

see table 2.2 [A/W] [%] [A/W] [%] [A/W] [%] [A/W] [%]

1 2· 10−3 7 2· 10−7 ⋆ 7· 10−16 ⋆ 2· 10−8 ⋆
2 1· 10−3 17 2· 10−5 32 6· 10−8 ⋆ 1· 10−8 ⋆
3 3· 10−4 12 5· 10−5 16 2· 10−6 29 8· 10−8 ⋆
4 4· 10−5 3 2· 10−6 0 2· 10−6 4 4· 10−7 14
5 1· 10−5 2 1· 10−5 3 8· 10−6 6 6· 10−7 3
6 4· 10−5 9 2· 10−5 7 6· 10−6 5 1· 10−6 4
7 4· 10−6 1 5· 10−6 2 6· 10−6 4 7· 10−6 8
8 5· 10−6 2 1· 10−5 6 1· 10−5 8 1· 10−5 12
9 2· 10−5 8 3· 10−6 2 2· 10−6 1 6· 10−6 6
10 7· 10−7 0 7· 10−6 4 4· 10−7 0 6· 10−6 6

⋆: Current was too low for reliable measurements to be made.
Table 2.3: Average absolute and percentual error between measurements and simulation
of diode currents for the beam qualities listed in Table 2.2.

16

S
1

0 50 100 150
0

2

4

6
x 10

−4

Measurement
Simulation

S
en

so
r

cu
rr

en
t (

A
/W

)

S
2

0 50 100 150
0

1

x 10
−4

Mean photon energy (keV)

S
3

0 50 100 150
0

0.5

1

1.5
x 10

−4

Figure 2.11: Measured and simulated currents for the three bottommost diodes in the
sensor stack.

17

Chapter 3

Development of algorithms

3.1 Adaptive programming methods
In the previous chapter, a model of the X-ray measurement setup, including X-ray gen-
erator, filtration and detector was constructed. This model (M) is used in this chapter
to generate data points in the form of input-output pairs (Y,x) where x = M(Y) is
the model output for input Y .

The adaptive programming methods will then be used to create algorithms which
make a prediction

Ŷ = f(x)

of the model input.
Although the model input consists of several parameters, Y will refer only to the

acceleration voltage unless otherwise stated. The aim is to get an accurate prediction of
AV regardless of the other parameters.

This chapter is written with reference to [14, 15] for information on artificial neural
networks and to [16] for information on linear genetic programming.

3.1.1 Artificial Neural Networks
Artificial neural networks (ANN) is a modelling method inspired by the human brain.
Figure 3.1 shows a typical feed-forward ANN. The network is built in layers of one or
more neuron. In the network of the figure there are two neurons in the input layer (the
leftmost column) and one in the output layer (the rightmost column). Between those
are a number of neurons in two hidden layers. Feed-forward means that each neuron
takes input from every neuron in the layer before it and sends its output to every neuron
in the next layer. There is no connection between neurons within the same layer.

All input to the network is passed to the neurons in the input layer and the output
from the network is read from the neurons in the output layer. All other neurons are
inaccessible from outside the network.

18

...

...

Figure 3.1: A typical feed-forward artificial neural network with two input neurons, two
layers of hidden neurons and one output neurons.

The original ANN neuron was proposed by McCulloch and Pitts in 1943. The neuron
assigns a weight to each input and outputs a binary signal if their sum exceeds a certain
threshold level.

In other words, the output of neuron i is given by

vi = g

(
m∑
j=1

wijvj − µi

)

where vj and wij are the value and weight of input j respectively and µi is the neuron’s
threshold level.

g is called the activation function and is given in its simplest form by

g(bi) =

{
−1, bi ≤ 0
1, bi > 0

The activation function governs the network behavior during training. This activation
function makes the network predictable but it is prone to make the training get stuck
at false solutions. It is also discontinuous, which adds further difficulties to training. A
common variation to the activation function:

g(bi) = tanh(βbi)

where β is the noise parameter is continuous, differentiable and able to avoid some false
solutions. It also allows for non-binary output.

The threshold level µi can be expressed as an extra input v0 = −1 with weight
wi0 = µi. By adding this input to every neuron in the network, the equations become
more consistent, and this convention will be used from here on.

19

The ANN can thus be defined by its neuron configuration, the activation function
and the matrix of weights. Training the network then becomes a matter of adjusting the
weight matrices W so as to minimize the error

|Yi − Ŷi| = |Yi −Net(W , xi)|

where (Yi, xi) is a input-output pair of the X-ray measurement model.

Backpropagation

Backwards propagation of errors, or backpropagation for short is an ANN training
method based on the gradient descent method.

In the following algorithm description, the superscript m indicates a neuron or value
belonging to layer m = 1, . . . ,M of the network.

First, go through each layer m = 1, . . . ,M of the network and calculate the output of
each neuron normally.

vmi = g(bmi) = g(
∑
j

wm
ij v

m−1
j)

Next, calculate the errors or the neurons in the output layer according to

δMi = g′(bMi)(yi − vMi)

where yi is the expected output of neuron i.
Calculate the errors in the preceding layers, m = M − 1, . . . , 1

δm−1
i = g′(bm−1

i)
∑
j

wm
ij δ

m
j

And finally, use the errors to update the weights of the network.

wm
ij := wm

ij + η∆wm
ij = wm

ij + ηδmi v
m−1
j

where η is the step size or learning rate.
In order to prevent the training to get stuck on a local minimum, a fraction of the

previous ∆w is added to the new in each iteration, i.e the assignment

∆wm
ij (t) := ∆wm

ij (t) + α∆wm
ij (t− 1)

is performed before updating the weights. α is called the momentum parameter.

3.1.2 Linear Genetic Programming
Basic genetic algorithm

A very basic genetic algorithm is what’s affectionately called the 30-monkeys-in-a-bus
algorithm.

20

Imagine a bus filled with monkeys. Two of the monkeys are randomly chosen to drive
the bus together for ten minutes. Perhaps one takes the steering wheel and one the
pedals. When the ten minutes are up, two new monkeys are chosen to drive. Once all
monkeys have driven the bus in some pairing, the pair which crashed the bus into a tree
the least number of times are allowed to mate with each other, and have two children.
Those children get to replace the two monkeys who crashed the buss the most, who are
thrown off. Pushing the theory of evolution to its extremes, after enough generations the
buss should be filled with monkeys who are all very good bus drivers [17].

While overly simplified, the 30-monkeys-in-a-bus algorithm explains the idea behind
the genetic algorithm used in this study.

In this basic genetic algorithm there is a population of individuals who each have
a number of chromosomes. Those chromosomes can be for example a numerical value
encoded in binary form.

The fitness of each individual is calculated by decoding the chromosomes and applying
the decoded values to the problem to be solved. If the problem is to find the maximum
of a function, the fitness value might be the function value at the point given by the
chromosomes.

Once all individuals of the population has been thus evaluated and assigned a fitness
value, the selection process begins. A number of individuals are randomly selected from
the population and pitted against each other. The winner can be determined either
randomly, with each contestant’s chance of winning adjusted according to their fitness
value, or via a tournament. In tournament selection the contestants are sorted and the
best individual is picked with some probability. If it’s not picked, the second best is
picked with the same probability and so on. This probability is called the tournament
selection parameter.

When two individuals have been chosen in this way, they form two new individuals for
the next generation. In most cases the offspring will be exact duplicates of the parents
but randomly, with a certain probability, crossover is performed. If crossover happens,
the offspring get a combination of the chromosomes of the parents.

The crossover strategy used in this study is the following: For parents A and B with
chromosomes a1, a2, · · · , am and b1, b2, · · · , bn respectively, randomly choose two points
α, β : 1 ≤ α < β ≤ m and two points γ, δ : 1 ≤ γ < δ ≤ n. Then split the chromo-
some chains at those points and exchange the middle parts, so that the first offspring
gets the chromosomes a1, · · · , aα, bγ+1, · · · , bδ, aβ+1, · · · , am and the second offspring the
chromosomes b1, · · · , bγ, aα+1, · · · , aβ, bδ+1, · · · , bn.

Finally, the offspring are subject to random mutation. I.e. with some probability
a random bit in one chromosome is flipped or similar depending on the chromosome
structure.

The selection, crossing and mutation continues until a new population has been
formed. The old population is then deleted and the new one takes its place for the
next generation of the algorithm.

The point of the tournament selection parameter and the random mutations is to keep

21

the diversity of the population high. A high diversity decreases the risk of getting stuck
in a local optimum. However, in order not to accidentally throw away a perfect – or at
least a very good – chromosome configuration, a few exact copies of the best individual
from the previous generation is inserted into every new generation.

Linear genetic programming

What differentiates linear genetic programming (LGP) from the basic genetic algorithm is
the chromosomes.

In LGP the individuals are computer programs and each chromosome is a computing
instruction. The chromosomes used in this study each have four parts: a target, an
operation and two operands.

Execution of the instructions means taking the two operands, performing the opera-
tion on them and storing the result in the target. The target must be one of the program’s
storage registers. The operands may be a register, an input parameter of a predefined
constant. The operation is one of several chosen mathematical operations. No branching
or comparing operations were used in this study.

Evaluation of the individual’s fitness is performed by executing each instruction se-
quentially, and then reading one or more values from the program’s registers.

Mutation of the instructions are performed by replacing the target, the operation or
one operand with a new one picked at random in such a way that the instruction is still
valid.

Besides those modifications, the linear genetic programming algorithm is the same as
the basic genetic algorithm.

3.2 Evaluation of methods
For measuring fitness, an evaluation set of 100 data points was built with input values
chosen randomly and uniformly distributed in the following ranges:

Acceleration voltage (AV): 40–150 kV
Electron current (EC): 100–500 mA
Measurement distance: 100–500 mm

Aluminium filter: 3–5 mm
Copper filter: 0–1 mm

Those ranges are chosen to match the current specification of the X2 platform.
The predictions from the generated algorithms was used to calculate the percentual

root mean square error:

ERMS = 100·

√√√√ 1

100

100∑
i=1

(
|Ŷi − Yi|

Yi

)2

22

Configuration Input neurons Input configuration

1 4 [S0 S1 S2 S3]

2 3
[
S1

S0

S2

S0

S3

S0

]
3 6

[
S1

S0

S2

S0

S3

S0

S2

S1

S3

S1

S3

S2

]
4 6

[
S1

S0

S2

S0

S3

S0

(
S1

S0

)2 (
S2

S0

)2 (
S3

S0

)2]
5 9

[
S1

S0

S2

S0

S3

S0

S1

S0
·S2

S0

S1

S0
·S3

S0

S2

S0
·S3

S0

(
S1

S0

)2 (
S2

S0

)2 (
S3

S0

)2]
6 6

[
S1

S0

S2

S0

S3

S0

√
S1

S0

√
S2

S0

√
S3

S0

]
Table 3.1: Input configurations used for the neural networks.

where Ŷi is the prediction and Yi is the model input for data point i.
The evaluation set is held separate from the training set, which is the data points

used by the adaptive methods to form the algorithms. Keeping the two sets separate
helps to avoid overfitting, i.e. adapting the algorithm very closely to the training data
at the cost of accuracy when it comes to previously unencountered data points.

Finally, the finished measurement functions should be evaluated with respect to:
• Accuracy
• Robustness
• Speed of execution
• Ease of calibration

3.2.1 Neural Networks
First attempt

A feed-forward artificial neural network with 200 output neurons was created. The net-
work was setup with three hidden layers, each with 100 neurons. The activation function
of each neuron was g(b) = tanh(0.1b) and initial weights were assigned randomly in the
range [−1, 1].

The output of the network was interpreted by finding the index of the output neuron
with the highest output value. I.e. if the fifth node had the highest output value, AV was
assumed to be 5 kV.

Several configurations for the network input were attempted with different functions
of sensor currents. Those are listed in table 3.1.

In the model, the sensor currents vary with AV, EC, filtration and the distance be-
tween the X-ray source and the sensor. Therefore it is difficult to predict any single
one of those parameters from a single current or linear combination of currents. The
first configuration listed in table 3.1 was therefore expected to yield predictions with low

23

Configuration ERMS

Mean Standard deviation
1 26 8
2 14 2
3 11 1
4 15 2
5 13 1

Table 3.2: Percentual root mean square errors of the first network attempted.

accuracy.
Varying AV and filtration also changes the relationship between currents. For ex-

ample, the quotient S1

S0
increases with AV since more photons have higher energy and

penetrate deeper into the sensor. This motivates the second and third attempted con-
figuration. The last configurations use some arbitrarily chosen orders and functions of
fractions.

Each configuration was trained for 20000 iterations with a training data set of 100
randomly generated measurements. The training set was generated with the same param-
eters as the evaluation set. The learning rate was set to η = 0.0001 and the momentum
parameter α = 0.9.

Five training runs were made for each configuration and the mean ERMS was found
and is presented in table 3.2. Figure 3.2 shows the network’s predictions of the validation
data set at the end of one training run with input configuration 1.

This first attempt shows that ANNs can be used to predict AV from sensor currents.
Adding more neurons to the layers did not increase the network’s performance. Inter-
estingly, having a larger training set actually hindered training of the network, which
might be a sign of overfitting. However, adding a fourth hidden layer with 100 neurons
increased the accuracy greatly - almost halving the ERMS. Unfortunately, the integer
output of this network brings an inherent error of up to 2.5 %. This inherent error and
the signs of overfitting motivated constructing a new network rather than attempting to
further optimize this one.

Second attempt

A new feed-forward ANN was constructed, this time with a single output neuron. Oth-
erwise, it was exactly like the network in the first attempt.

The prediction from this network was formed by multiplying the output by 200. The
network was trained in the same way as the previous one, with the same learning rate
and momentum parameter.

Like before, five training runs were made for each configuration and the mean ERMS

are shown in table 3.3. Figure 3.3 shows the prediction of the evaluation set from the
end of one training run with input configuration 3.

24

40 60 80 100 120 140 160
0

20

40

60

80

100

120

140

160

180

200

Model input (keV)

N
et

w
or

k
pr

ed
ic

tio
n

(k
eV

)

Figure 3.2: Network prediction Ŷ compared to model input Y of the evaluation set in the
first ANN attempt with input configuration 1. The ERMS is 10.4 %. Note the discrete
steps of the prediction. Those are probably an effect of the indexed output evaluation
method.

This network showed better performance than the first attempt and, unlike the pre-
vious one, was to still visibly improving by the end of the 20000 training iterations.

Like the first network, adding a fourth hidden layer with 100 neurons approximately
doubled the accuracy. Unlike the first network, increasing the size of the training set also
increased accuracy. With a training set size of 1000 data points, ERMS of less than 2 %
were reached in several runs.

It is reasonable to believe that training the network for a longer time would also
increase performance, but no attempts of this were made.

3.2.2 Linear Genetic Programming
An implementation of the LGP algorithm described above was set up in MATLAB. Each
individual had eight registers r0-r3, and the operands were the registers, the four inputs
S0-S3 from the model and three constants, 1, -1 and 3. Before execution, the registers
were loaded with the input values, r0 = S0, · · · , r3 = S3.

Available operations were a subset of:

25

Configuration ERMS

Mean Standard deviation
1 19 0
2 12 4
3 6 1
4 6 1
5 6 0

Table 3.3: Percentual root mean square errors of the second network attempted. Perfor-
mance is almost twice as high as in the first attempt for some input configurations.

40 60 80 100 120 140 160
0

20

40

60

80

100

120

140

160

180

200

Model input (keV)

N
et

w
or

k
pr

ed
ic

tio
n

(k
eV

)

Figure 3.3: Network prediction Ŷ compared to model input Y of the evaluation set in
the secod ANN attempt with input configuration 3. The ERMS is 2.1 %.

26

Addition ri = oi,1 + oi,2
Subtraction ri = oi,1 − oi,2

Multiplication ri = oi,1 · oi,2
Division ri = oi,1/oi,2

Exponentiation ri = o
oi,2
i,1

Square root ri =
√
oi,1

Fitness was evaluated by running the program for each of the data points in the
training set. A least squares fit was then made of a number of the individual’s registers
to 100 random points from the training set. This fit was used to make predictions from
the registers for the rest of the training set and the fitness was calculated from those.

In other words, for a subset L of the training set input-output pairs, register values
were obtained by running the program ri = f(xi) and a vector β was found such that∑

i∈L

(riβ − Yi)
2

was minimized. The predictions were then calculated through

Ŷi = riβ = f(xi)β

The population size was set to 100 individuals, the crossover probability to 0.2 and
the mutation probability to 0.04. Selection was made using a tournament selection of
size 5 with tournament selection parameter 0.75. Five copies of the best individual were
always inserted into the next generation.

Several different sets of available operations and different number of output registers
were attempted and five complete runs of 1000 generations of the genetic algorithm was
made for each configuration.

The configuration and the resulting mean ERMS for the evaluation set are presented
in table 3.4.

Accuracy-wise, LGP yields some very good results. A few runs with configuration
7 yielded root mean square errors of less than one percent for the evaluation set. The
generated algorithms are also easy to calibrate, which is a matter of finding β from
measurements using the least squares method. The accuracy of the calibration depends
roughly on the number of measurements used.

Figure 3.5 shows one equation proposed by the LGP algorithm in configuration 7.
This contains a large number of exponential operations, which might be too slow to
perform on the embedded processor of the X2 base unit. A noteworthy fact is that this
equation contains no reference to S0. In fact, several of the equations from the LGP
algorithm were of three or even two variables.

A much simpler function is proposed in configuration 4.

Ŷ = β1
S2
1S

3
3

S5
2

+ β2
S4
1S

6
3

S10
2

+ β3
S2
1S

2
3

S4
2

+ β4
S1S3

S2

27

Operators Outputs ERMS

Mean Standard deviation
1 rj + rk, rj − rk, rj ∗ rk, rj/rk, rrkj ,

√
rj 4 4 2

2 rj + rk, rj − rk, rj ∗ rk, rj/rk, rrkj ,
√
rj 2 7 1

3 rj + rk, rj − rk, rj ∗ rk, rj/rk, rrkj ,
√
rj 1 13 4

4 rj ∗ rk, rj/rk 4 2 0.2
5 rj ∗ rk, rj/rk 2 7 2
6 rj ∗ rk, rj/rk 1 14 1
7 rj ∗ rk, rj/rk, rrkj 4 1 0.3
8 rj ∗ rk, rj/rk, rrkj 2 6 0.9
9 rj ∗ rk, rj/rk, rrkj 1 9 3

Table 3.4: Input configurations and percentual root mean square error of the different
attempted configurations for the LGP algorithm.

This function gives an ERMS of 2.5 % for the validation set but contains very high orders
of the input variables. This means the gradients are large, and small variations such as
noise have large effects on the prediction. Note that this function also does not depend
on S0.

A more successful run of configuration 4 proposed the following function:

Ŷ = β1
S3
3

S3
2

+ β2
S3

S2

+ β3
S2
3

S1S2

+ β4

This function, which gives an ERMS of 1.4 % for the validation set, has small gradients,
high accuracy, is easy to calibrate and executes quickly assuming multiplication and
division is fast. Its predictions for the validation set are presented in fig. 3.4.

28

40 60 80 100 120 140 160
0

20

40

60

80

100

120

140

160

180

200

Model input (keV)

F
un

ct
io

n
pr

ed
ic

tio
n

(k
eV

)

Figure 3.4: Predictions of the validation set by a function proposed by the LGP algorithm
in configuration 4. ERMS is 1.4 %.

Ŷ =

β127
S3
S2

(
S3

S2

)1+ 3S3
S2

(S1S3

S2
2

)27S3
S2

(
S3
S2

) 3S3
S2

27
S3
S2

(
S3
S2

) 3S3
S2

+β2

(S1S3

S2
2

)27S3
S2

(
S3
S2

) 3S3
S2

27
S3
S2

(
S3
S2

) 3S3
S2

+β3

(S1S3

S2
2

)27S3
S2

(
S3
S2

) 3S3
S2

27
S3
S2

(
S3
S2

) 3S3
S2 ((

S3

S2

)−S3
S2

)S3
S2

+β427
S3
S2

(
S3

S2

) 3S3
S2

Figure 3.5: A function for measuring AV from the diode currents of an X2 R/F sensor as
proposed by the LGP algorithm with configuration 7. This equation gives an ERMS of
1.05 % for the evaluation set for some β. Interestingly, this function has no dependence
on S0.

29

Chapter 4

Discussion and conclusion

Summary

In this study a model for an entire X-ray measurement setup has been proposed, developed
and evaluated. The finished model follows the criteria on input and output and delivers
the expected output with less than 10 % error in most of the input range, which is a bit
larger than what was hoped for. The errors are believed to mainly be caused by errors
in the measurements of the diode sensitivity.

Further, two adaptive methods have been attempted to solve the problem of finding
the X-ray tube acceleration voltage from current measurements in this simulation of the
X2 R/F sensor. Both the artificial neural networks trained through backpropagation as
well as the linear genetic programming algorithm proved to be able to solve the problem.

Results

The similarities between the behavior of simulations and measurements imply that the
model is well suited for research or development use, if not for production in its current
state.

The first attempted ANN, which used an integer valued classification output, had low
accuracy and showed tendencies of overfitting to the training data.

The accuracy of the second attempted ANN was rather good, but the network has
tens of thousands of degrees of freedom. This makes it hard to calibrate for variations
in the sensor diodes and thus unfeasible for a finished product. However, ANNs are very
robust if trained correctly, and it is not unreasonable to believe that this robustness might
overcome the need for calibration.

The LGP algorithm produced some functions with very high accuracy – in some cases
better than the current specification of the X2[18]. Calibrating the functions was shown
to be simple to a certain extent. Speed might be a problem, since the functions generated
by LGP were often long and complex. The generated functions also had large gradients,
making them sensitive to noise.

30

Possible improvements and future research

The X-ray measurement system model could easily be imporoved by more careful mea-
surement of diode sensitivity which could increase its accuracy. Its simmilarity in be-
havior to measurements means it is already usable for research, and could be used for
replacing actual measurement in the early stages of the development process of new sensor
designs.

By adjusting the calculation of fitness value, the LGP algorithm could be made to favor
simple functions which are possible to execute quickly on an embedded device. Likewise
it could be made to favor functions with small gradients or conditional branching could
be added to build entirely different kinds of functions. The last function described in this
thesis proves the ability of the LGP to present functions which perform well according to
all listed criteria.

I believe more can be learned about the modelled measurement system by studying
the behavior of the LGP algorithm. One interesting behavior is the LGP solutions’
tendency to ignore S0. I believe this is caused by the magnitude of S0 drowning the
details contained in the other signals. An other interesting behavior is the very common
occurance of S3

S2
which reminds of a different method for measuring acceleration voltage.

In this method, an ionization chamber is used to measure the radioactive dose with two
different filtrations[19]. The acceleration voltage is then calculated as a function of the
quotient between the two measurements.

31

Bibliography

[1] Harjit Singh and Janet A. Neutze. Radiology Fundamentals, Introduction to Imaging
& Technology. Fourth edition. Springer Science+Business Media, 2012.

[2] Perry Sprawls. Physical Principles of Medical Imaging. Second edition. Medical
Physics Publishing Corporation, 1995.

[3] United Nations Scientific Committee on the Effects of Atomic Radiation. Effect of
Inonizing Radiation, Volume I. Tech. rep. UNSCEAR, 2006.

[4] Kenneth S. Krane. Introductory Nuclear Physics. John Wiley & Sons, Inc., 1988.
isbn: 078-0-471-80553-3.

[5] Carl Nordling and Jonny Österman. Physics Handbook for Science and Engineering.
Studentlitteratur, Lund, 2006.

[6] William R. Hendee, Geoffrey S. Ibbott, and Eric G. Hendee. Radiation Therapy
Physics. Third Edition. John Wiley & Sons, Inc., 2005.

[7] International Organization for Standardization. ISO 4037-1: X-ray and gamma ref-
erence radiation for calibrating dosemeters and doserate meters and for determining
their response as a function of photon energy. International Organization for Stan-
dardization, 1996.

[8] Glenn F. Knoll. Radiation Detection and Measurement. Third Edition. John Wiley
& Sons, Inc., 2000. isbn: 0-471-07338-5.

[9] G Poludniowski et al. “SpekCalc : a program to calculate photon spectra from
tungsten anode x-ray tubes”. In: Physics in Medicine and Biology 54 (2009), N433–
N438.

[10] Gavin Poludniowski and Philip Evans. “Calculation of x-ray spectra emerging from
an x-ray tube. Part I. Electron penetration characteristics in x-ray targets”. In:
Medical Physics 34 (2007), pp. 2164–2174.

[11] Gavin Poludniowski. “Calculation of x-ray spectra emerging from an x-ray tube.
Part II. X-ray production and filtration in x-ray targets”. In: Medical Physics 34
(2007), pp. 2175–2186.

[12] Amptek. Complete X-Ray Spectrometer X-123. url: http://www.amptek.com/
x123.html.

32

http://www.amptek.com/x123.html
http://www.amptek.com/x123.html

[13] National Institute for Standards and Technology. Note on the X-Ray Attenuation
Databases. url: http://physics.nist.gov/PhysRefData/XrayNoteB.html.

[14] Simon Haykin. Neural Networks and Learning Machines. Third Edition. Pearson
Education Inc., 2009. isbn: 978-0-13-129376-2.

[15] Bernhard Mehlig. FFR135 Lecture Notes. distributed in Artificial Neural Networks
at Chalmers University of Technology, Gothenburg. 2011.

[16] Mattias Wahde. Biologically Inspired Optimization Methods - An introduction. WIT
Press, 2008. isbn: 978-1-84564-148-1.

[17] Peter Nordin and Johanna Wilde. Humanoider: Självlärande robotar och artificiell
intelligens. Liber Förlag, 2003. isbn: 9789147051915.

[18] RaySafe X2 Specification. Ray Safe. 2013.
[19] Béla Kári et al. Physical foundations of non-invasive X-ray tube voltage measure-

ment. url: http://physics.nist.gov/PhysRefData/XrayNoteB.html.

Much of the information on workings of X-ray machines, radiation and measurement de-
vices has been provided through personal communication with – among others – Mattias
Gustavsson, Fredrik Oskarson and Anders Fransson at Unfors RaySafe.

33

http://physics.nist.gov/PhysRefData/XrayNoteB.html
http://physics.nist.gov/PhysRefData/XrayNoteB.html

Appendix A

Source code listing

X-ray measurement system model
MeasurementViewer.m

function MeasurementViewer ()
% A to o l f o r v iewing X2 measurements

global measurementFile
measurementFile = ’Measurements . mat ’ ;

OpenControlWindow () ;

end

function controlWindow = OpenControlWindow ()
global measurementFile
load (measurementFile) ;

controlWindow = f igure (’Tag ’ , ’ ControlWindow ’) ;

set (controlWindow , ’ DeleteFcn ’ , @CleanQuit) ;
set (controlWindow , ’ Po s i t i on ’ , [520 , 80 , 240 , 6 0]) ;
set (controlWindow , ’MenuBar ’ , ’ none ’) ;
set (controlWindow , ’Name ’ , ’Measurement␣Viewer ’ , ’ NumberTitle ’ , ’ o f f ’) ;

% Close program
c on t r o l s . quitBtn = uicontrol (’ S ty l e ’ , ’ Pushbutton ’ , . . .

’ S t r ing ’ , ’ Quit ’ , . . .
’ Cal lback ’ , @CleanQuit , . . .
’ Po s i t i on ’ , [2 0 , 20 , 60 , 2 0]) ;

% View o ld measurement
c on t r o l s . viewBtn = uicontrol (’ S ty l e ’ , ’ Pushbutton ’ , . . .

’ S t r ing ’ , ’View ’ , . . .
’ Cal lback ’ , @ViewOld , . . .

34

’ Po s i t i on ’ , [9 0 , 20 , 60 , 2 0]) ;
% Import new measurement
c on t r o l s . addBtn = uicontrol (’ S ty l e ’ , ’ Pushbutton ’ , . . .

’ S t r ing ’ , ’Add ’ , . . .
’ Cal lback ’ , @LoadFile , . . .
’ Po s i t i on ’ , [160 , 20 , 60 , 2 0]) ;

c o n t r o l s . plotWindows = [] ;
c o n t r o l s . data = meas_data ;
set (controlWindow , ’ UserData ’ , c o n t r o l s) ;

end

function LoadFile (handler , ~)
% Import data from a measurement f i l e

p = handler ;
p = get (p , ’ Parent ’) ;
c o n t r o l s = get (p , ’ UserData ’) ;
[f i leName , pathName , f i l t e r I n d e x] = uiget f i l e (’ * . csv . 2 ’ , ’ S e l e c t ␣ f i l e ’) ;
i f (f i leName ~= 0)

newData = importdata (s t r c a t ([pathName , f i leName]) , ’ , ’ , 1 3 0) ;
d . f i l ename = fi leName ;
d . s enso r = sscanf (newData . textdata {2 ,1} , ’%*s ␣%*s ␣%d ’) ;
d . kvp = sscanf (newData . textdata {6 ,1} , ’%*s ␣%d ’) ;
d .ma = sscanf (newData . textdata {7 ,1} , ’%*s ␣%d ’) ;
d . time = sscanf (newData . textdata {8 ,1} , ’%*s ␣%d ’) ;
d . d i s t = sscanf (newData . textdata {9 ,1} , ’%*s ␣%d ’) ;
d . f i l t e r = sscanf (newData . textdata {10 ,1} , ’%*s ␣%s ’) ;
d . kvmeas = sscanf (newData . textdata {105 ,1} , ’%*s ␣%f ’ , 1) ;
d . data = newData . data ;

d . s0 = 0 ;
d . s1 = 0 ;
d . s2 = 0 ;
d . s3 = 0 ;

d . index = 0 ;

newPlot = ViewFile (d , p) ;

c on t r o l s . plotWindows = [c on t r o l s . plotWindows newPlot] ;
set (p , ’ UserData ’ , c o n t r o l s) ;

end
end

function ViewOld (handler , ~)
% View measurement

p = handler ;

35

p = get (p , ’ Parent ’) ;
c o n t r o l s = get (p , ’ UserData ’) ;

% Se l e c t measurement to view from l i s t
l s t r = num2str ([1 : length (c on t r o l s . data)] ’) ;
l s t r = ’ ’ ;
for i =1: length (c on t r o l s . data)

l s t r { i } = s t r c a t ([num2str(i) ’ : ’ num2str(c on t r o l s . data (i) . kvp) ’kVp␣ ’ , c on t r o l s . data (i) . f i l t e r]) ;
end
[S e l e c t i on , ok] = l i s t d l g (’ L i s t S t r i n g ’ , l s t r) ;

i f (ok == 0)
return ;

end

d = con t r o l s . data (S e l e c t i o n) ;
d . index = Se l e c t i o n ;

newPlot = ViewFile (d , p) ;

c on t r o l s . plotWindows = [c on t r o l s . plotWindows newPlot] ;
set (p , ’ UserData ’ , c o n t r o l s) ;

end

function newPlot = ViewFile (d , p)
% Open up a window fo r v iewing a measurement

newPlot = f igure (’Tag ’ , ’DataWindow ’ , ’ Units ’ , ’ Normalized ’) ;
c . c on t r o l s = p ;

c . data = d . data ;
c . time = d . time ;
c . d = d ;
c = AutoData (c) ;
subplot (1 , 2 , 1) ;

h = plot (d . data (: , 5 : 8)) ;
c . f i g = get (h (1) , ’ Parent ’) ;

set (c . f i g , ’ Po s i t i on ’ , [0 . 1 0 .1 0 .4 0 . 8])
h = uipane l (’ Po s i t i on ’ , [0 . 5 5 0 .1 0 .4 0 . 8]) ;

c . AutoBtn = uicontrol (h , ’ S ty l e ’ , ’ Pushbutton ’ , . . .
’ S t r ing ’ , ’Auto ’ , . . .
’ Cal lback ’ , @DoReAuto , . . .
’ Po s i t i on ’ , [1 0 , 20 , 60 , 2 0]) ;

c . SaveBtn = uicontrol (h , ’ S ty l e ’ , ’ Pushbutton ’ , . . .
’ S t r ing ’ , ’ Save ’ , . . .
’ Cal lback ’ , @SaveData , . . .
’ Po s i t i on ’ , [8 0 , 20 , 60 , 2 0]) ;

c . DeleteBtn = uicontrol (h , ’ S ty l e ’ , ’ Pushbutton ’ , . . .

36

’ S t r ing ’ , ’ De lete ’ , . . .
’ Cal lback ’ , @DeleteData , . . .
’ Po s i t i on ’ , [150 , 20 , 60 , 2 0]) ;

c . T i t l e = uicontrol (h , ’ S ty l e ’ , ’ Edit ’ , . . .
’ S t r ing ’ , s t r c a t ([’kV : ’ , num2str(d . kvp) , . . .
’ ␣mA: ’ , num2str(d .ma) , ’ ␣ F i l t e r : ’ num2str(d . f i l t e r)]) , . . .
’ Po s i t i on ’ , [1 0 , 60 , 200 , 3 0]) ;

i f (d . f i l ename ~= 0)
set (c . T i t l e , ’ S t r ing ’ , d . f i l ename) ;

end

uicontrol (h , ’ S ty l e ’ , ’ Text ’ , . . .
’ S t r ing ’ , ’kV : ’ , . . .
’ Po s i t i on ’ , [0 , 110 , 60 , 1 0]) ;

c . kV = uicontrol (h , ’ S ty l e ’ , ’ Edit ’ , . . .
’ S t r ing ’ , num2str(d . kvp) , . . .
’ Cal lback ’ , @EditField , . . .
’ Po s i t i on ’ , [4 0 , 100 , 60 , 3 0]) ;

uicontrol (h , ’ S ty l e ’ , ’ Text ’ , . . .
’ S t r ing ’ , num2str(d . kvmeas) , . . .
’ Po s i t i on ’ , [110 , 110 , 60 , 1 0]) ;

uicontrol (h , ’ S ty l e ’ , ’ Text ’ , . . .
’ S t r ing ’ , ’mA: ’ , . . .
’ Po s i t i on ’ , [0 , 150 , 60 , 1 0]) ;

c .mA = uicontrol (h , ’ S ty l e ’ , ’ Edit ’ , . . .
’ S t r ing ’ , num2str(d .ma) , . . .
’ Cal lback ’ , @EditField , . . .
’ Po s i t i on ’ , [4 0 , 140 , 60 , 3 0]) ;

c .mAs1 = uicontrol (h , ’ S ty l e ’ , ’ Text ’ , . . .
’ S t r ing ’ , [’ * ’ num2str(d . time) ’=’] , . . .
’ Po s i t i on ’ , [110 , 150 , 40 , 1 0]) ;

c .mAs2 = uicontrol (h , ’ S ty l e ’ , ’ Edit ’ , . . .
’ S t r ing ’ , num2str(d . time*d .ma/1000) , . . .
’ Cal lback ’ , @EditField , . . .
’ Po s i t i on ’ , [150 , 140 , 60 , 3 0]) ;

uicontrol (h , ’ S ty l e ’ , ’ Text ’ , . . .
’ S t r ing ’ , ’ f i l t e r : ’ , . . .
’ Po s i t i on ’ , [0 , 190 , 60 , 1 0]) ;

c . f i l t e r = uicontrol (h , ’ S ty l e ’ , ’ Edit ’ , . . .
’ S t r ing ’ , d . f i l t e r , . . .
’ Cal lback ’ , @EditField , . . .
’ Po s i t i on ’ , [4 0 , 180 , 60 , 3 0]) ;

uicontrol (h , ’ S ty l e ’ , ’ Text ’ , . . .
’ S t r ing ’ , ’ Dist : ’ , . . .
’ Po s i t i on ’ , [110 , 190 , 60 , 1 0]) ;

c . d i s t = uicontrol (h , ’ S ty l e ’ , ’ Edit ’ , . . .
’ S t r ing ’ , num2str(d . d i s t) , . . .
’ Cal lback ’ , @EditField , . . .

37

’ Po s i t i on ’ , [150 , 180 , 60 , 3 0]) ;

c . s0en = uicontrol (h , ’ S ty l e ’ , ’ RadioButton ’ , . . .
’ S t r ing ’ , ’ S0 ’ , . . .
’ Value ’ , 1 , . . .
’ Cal lback ’ , @DoRedraw , . . .
’ Po s i t i on ’ , [1 0 , 280 , 100 , 3 0]) ;

c . s0v = uicontrol (h , ’ S ty l e ’ , ’ Text ’ , . . .
’ S t r ing ’ , num2str(d . s0) , . . .
’ Po s i t i on ’ , [5 0 , 283 , 50 , 2 0]) ;

c . s1en = uicontrol (h , ’ S ty l e ’ , ’ RadioButton ’ , . . .
’ S t r ing ’ , ’ S1 ’ , . . .
’ Value ’ , 1 , . . .
’ Cal lback ’ , @DoRedraw , . . .
’ Po s i t i on ’ , [1 0 , 260 , 100 , 3 0]) ;

c . s1v = uicontrol (h , ’ S ty l e ’ , ’ Text ’ , . . .
’ S t r ing ’ , num2str(d . s1) , . . .
’ Po s i t i on ’ , [5 0 , 263 , 50 , 2 0]) ;

c . s2en = uicontrol (h , ’ S ty l e ’ , ’ RadioButton ’ , . . .
’ S t r ing ’ , ’ S2 ’ , . . .
’ Value ’ , 1 , . . .
’ Cal lback ’ , @DoRedraw , . . .
’ Po s i t i on ’ , [1 0 , 240 , 100 , 3 0]) ;

c . s2v = uicontrol (h , ’ S ty l e ’ , ’ Text ’ , . . .
’ S t r ing ’ , num2str(d . s2) , . . .
’ Po s i t i on ’ , [5 0 , 243 , 50 , 2 0]) ;

c . s3en = uicontrol (h , ’ S ty l e ’ , ’ RadioButton ’ , . . .
’ S t r ing ’ , ’ S3 ’ , . . .
’ Value ’ , 1 , . . .
’ Cal lback ’ , @DoRedraw , . . .
’ Po s i t i on ’ , [1 0 , 220 , 100 , 3 0]) ;

c . s3v = uicontrol (h , ’ S ty l e ’ , ’ Text ’ , . . .
’ S t r ing ’ , num2str(d . s3) , . . .
’ Po s i t i on ’ , [5 0 , 223 , 50 , 2 0]) ;

c . saveState = uicontrol (h , ’ S ty l e ’ , ’ Text ’ , . . .
’ S t r ing ’ , ’SAVED’ , . . .
’ Po s i t i on ’ , [5 0 , 310 , 100 , 2 0]) ;

i f (c . d . index == 0)
set (c . saveState , ’ S t r ing ’ , ’Not␣ in ␣data ’)

end

set (c . f i g , ’Tag ’ , ’ f i g u r e ’) ;
set (c . f i g , ’ UserData ’ , newplot) ;
c . s e l e c t edL in e = 0 ;
c = DrawPlot (c) ;

c . savedPos = [0 0] ;

set (newPlot , ’ UserData ’ , c) ;

38

set (h , ’ UserData ’ , newPlot) ;

set (newPlot , ’WindowButtonMotionFcn ’ , @MoveMouse) ;
set (newPlot , ’WindowButtonUpFcn ’ , {@SelectLine , 0 }) ;

RedrawPlot (c) ;

end

function SaveData (handle , ~)
% Save changes to measurement
global measurementFile
c = get (handle , ’ Parent ’) ;
d = get (c , ’ UserData ’) ;
c = get (d , ’ UserData ’) ;

n . f i l ename = c . d . f i l ename ;
n . s enso r = c . d . s enso r ;
n . kvp = c . d . kvp ;
n .ma = c . d .ma;
n . time = c . d . time ;
n . d i s t = c . d . d i s t ;
n . f i l t e r = c . d . f i l t e r ;
n . kvmeas = c . d . kvmeas ;
n . data = c . d . data ;
n . s0 = c . mean0 ;
n . s1 = c . mean1 ;
n . s2 = c . mean2 ;
n . s3 = c . mean3 ;

c t r l = c . c on t r o l s ;
c o n t r o l s = get (c t r l , ’ UserData ’) ;
meas_data = con t r o l s . data ;

i f (c . d . index ~= 0)
meas_data (c . d . index) = n ;

else
meas_data = [meas_data n] ;

end
set (c . saveState , ’ S t r ing ’ , ’ Saved ’) ;
c on t r o l s . data = meas_data ;
set (c t r l , ’ UserData ’ , c o n t r o l s) ;
save (measurementFile , ’meas_data ’) ;

end

function DeleteData (handle , ~)
% Dele te measurement from f i l e

global measurementFile
c = get (handle , ’ Parent ’) ;

39

d = get (c , ’ UserData ’) ;
c = get (d , ’ UserData ’) ;

cho i c e = ques td lg (’Are␣you␣ sure ␣you␣wish␣ to ␣ d e l e t e ␣ the ␣measurement? ’ , . . .
’Measurement␣ d e l e t i o n ’ , . . .
’ Yes ’ , ’No ’ , ’No ’) ;

i f (strcmp (cho ice , ’No ’) == 1)
return ;

end

c t r l = c . c on t r o l s ;
c o n t r o l s = get (c t r l , ’ UserData ’) ;
meas_data = con t r o l s . data ;

i f (c . d . index ~= 0)
meas_data (c . d . index) = [] ;
set (c . saveState , ’ S t r ing ’ , ’ Deleted ’) ;

else
end
c on t r o l s . data = meas_data ;
set (c t r l , ’ UserData ’ , c o n t r o l s) ;
save (measurementFile , ’meas_data ’) ;

end

function DoReAuto(handle , ~)
% Remake au t oa l i gn o f t r i g and meanlines
c = get (handle , ’ Parent ’) ;
d = get (c , ’ UserData ’) ;
c = get (d , ’ UserData ’) ;
c = AutoData (c) ;
set (d , ’ UserData ’ , c) ;
RedrawPlot (c) ;
set (c . saveState , ’ S t r ing ’ , ’Changed ’) ;

end

function c = AutoData (c)
% Automat ica l l y a l i g n t r i g and meanlines

top = sort (c . data (: , 5)) ;
top = top (end−10);
c . t r i g l = find (c . data (: ,5) > top * 0 . 1 , 1) ;
c . t r i g r = find (c . data (: ,5) > top *0 . 1 , 1 , ’ l a s t ’) ;
c . time = ((c . t r i g r−c . t r i g l)/1600)/10 ;

c . mean0 = mean(c . data (c . t r i g l : c . t r i g r , 5)) ;
c . mean1 = mean(c . data (c . t r i g l : c . t r i g r , 6)) ;
c . mean2 = mean(c . data (c . t r i g l : c . t r i g r , 7)) ;
c . mean3 = mean(c . data (c . t r i g l : c . t r i g r , 8)) ;

40

end

function DoRedraw(handle , ~)
% Redraw eve ry t h in g
c = get (handle , ’ Parent ’) ;
c = get (c , ’ UserData ’) ;
c = get (c , ’ UserData ’) ;
RedrawPlot (c) ;

end

function c = DrawPlot (c)
% Draw curren t s

data = c . data ;
f i g = c . f i g ;

top = max(max(c . data (: , 5 : 8))) ;
btm = min(min(c . data (: , 5 : 8))) ;

subplot (f i g)

%HitTest o f f = won ’ t i n t e r f e r e wi th c l i c k and drag
p l o t s . ps0 = plot (f i g , data (: , 5) , ’ HitTest ’ , ’ o f f ’) ;
hold a l l
p l o t s . ps1 = plot (f i g , data (: , 6) , ’ HitTest ’ , ’ o f f ’) ;
p l o t s . ps2 = plot (f i g , data (: , 7) , ’ HitTest ’ , ’ o f f ’) ;
p l o t s . ps3 = plot (f i g , data (: , 8) , ’ HitTest ’ , ’ o f f ’) ;
hold o f f

hold on
% Draw meanlines
p l o t s .m0p = plot (f i g , [c . t r i g l , c . t r i g r] , [c . mean0 , c . mean0] , . . .

’ k−− ’ , ’ LineWidth ’ , 2) ;
p l o t s .m1p = plot (f i g , [c . t r i g l , c . t r i g r] , [c . mean1 , c . mean1] , . . .

’ k−− ’ , ’ LineWidth ’ , 2) ;
p l o t s .m2p = plot (f i g , [c . t r i g l , c . t r i g r] , [c . mean2 , c . mean2] , . . .

’ k−− ’ , ’ LineWidth ’ , 2) ;
p l o t s .m3p = plot (f i g , [c . t r i g l , c . t r i g r] , [c . mean3 , c . mean3] , . . .

’ k−− ’ , ’ LineWidth ’ , 2) ;

% Draw t r i g l i n e s
p l o t s . t l = plot (f i g , [c . t r i g l c . t r i g l] , [btm , top] , ’ k−− ’ , ’ LineWidth ’ , 2) ;
p l o t s . t r = plot (f i g , [c . t r i g r c . t r i g r] , [btm , top] , ’ k−− ’ , ’ LineWidth ’ , 2) ;
hold o f f

% Make l i n e s c l i c k a b l e
set (p l o t s . t l , ’ButtonDownFcn ’ , {@SelectLine , 1})
set (p l o t s . tr , ’ButtonDownFcn ’ , {@SelectLine , 2})
set (p l o t s .m0p , ’ButtonDownFcn ’ , {@SelectLine , 3})
set (p l o t s .m1p , ’ButtonDownFcn ’ , {@SelectLine , 4})
set (p l o t s .m2p , ’ButtonDownFcn ’ , {@SelectLine , 5})

41

set (p l o t s .m3p , ’ButtonDownFcn ’ , {@SelectLine , 6})

c . p l o t s = p l o t s ;
end

function RedrawPlot (c)
% Redraw ev e r y t i n g

% S0
i f (get (c . s0en , ’ Value ’) == 0)

set (c . p l o t s . ps0 , ’ V i s i b l e ’ , ’ o f f ’) ;
set (c . p l o t s .m0p, ’ V i s i b l e ’ , ’ o f f ’) ;

else
set (c . p l o t s . ps0 , ’ V i s i b l e ’ , ’ on ’) ;
set (c . p l o t s .m0p, ’ V i s i b l e ’ , ’ on ’) ;

end

% S1
i f (get (c . s1en , ’ Value ’) == 0)

set (c . p l o t s . ps1 , ’ V i s i b l e ’ , ’ o f f ’) ;
set (c . p l o t s .m1p, ’ V i s i b l e ’ , ’ o f f ’) ;

else
set (c . p l o t s . ps1 , ’ V i s i b l e ’ , ’ on ’) ;
set (c . p l o t s .m1p, ’ V i s i b l e ’ , ’ on ’) ;

end

% S2
i f (get (c . s2en , ’ Value ’) == 0)

set (c . p l o t s . ps2 , ’ V i s i b l e ’ , ’ o f f ’) ;
set (c . p l o t s .m2p, ’ V i s i b l e ’ , ’ o f f ’) ;

else
set (c . p l o t s . ps2 , ’ V i s i b l e ’ , ’ on ’) ;
set (c . p l o t s .m2p, ’ V i s i b l e ’ , ’ on ’) ;

end

% S3
i f (get (c . s3en , ’ Value ’) == 0)

set (c . p l o t s . ps3 , ’ V i s i b l e ’ , ’ o f f ’) ;
set (c . p l o t s .m3p, ’ V i s i b l e ’ , ’ o f f ’) ;

else
set (c . p l o t s . ps3 , ’ V i s i b l e ’ , ’ on ’) ;
set (c . p l o t s .m3p, ’ V i s i b l e ’ , ’ on ’) ;

end

set (c . f i g , ’ Xlim ’ , [0 , length (c . data (: , 1))]) ;

% Draw t r i g l i n e s and meanlines
l i n e s = [c . p l o t s . t l , c . p l o t s . tr , c . p l o t s .m0p, c . p l o t s .m1p, c . p l o t s .m2p, c . p l o t s .m3p] ;
set (c . p l o t s .m0p , ’ Color ’ , ’ b lack ’) ;
set (c . p l o t s .m1p , ’ Color ’ , ’ b lack ’) ;
set (c . p l o t s .m2p , ’ Color ’ , ’ b lack ’) ;

42

set (c . p l o t s .m3p , ’ Color ’ , ’ b lack ’) ;
set (c . p l o t s . t l , ’ Color ’ , ’ b lack ’) ;
set (c . p l o t s . tr , ’ Color ’ , ’ b lack ’) ;

i f (c . s e l e c t edL i n e ~= 0)
set (l i n e s (c . s e l e c t e dL in e) , ’ Color ’ , ’magenta ’) ;

end

set (c . p l o t s . t l , ’XData ’ , [c . t r i g l c . t r i g l]) ;
set (c . p l o t s . tr , ’XData ’ , [c . t r i g r c . t r i g r]) ;
set (c . p l o t s .m0p , ’YData ’ , [c . mean0 c . mean0]) ;
set (c . p l o t s .m1p , ’YData ’ , [c . mean1 c . mean1]) ;
set (c . p l o t s .m2p , ’YData ’ , [c . mean2 c . mean2]) ;
set (c . p l o t s .m3p , ’YData ’ , [c . mean3 c . mean3]) ;

% Update d i s p l a y va l u e s
set (c .mAs1 , ’ S t r ing ’ , [’ * ’ num2str(c . time) ’=’]) ;
set (c .mAs2 , ’ S t r ing ’ , num2str(c . time*c . d .ma)) ;
set (c . s0v , ’ S t r ing ’ , num2str(c . mean0)) ;
set (c . s1v , ’ S t r ing ’ , num2str(c . mean1)) ;
set (c . s2v , ’ S t r ing ’ , num2str(c . mean2)) ;
set (c . s3v , ’ S t r ing ’ , num2str(c . mean3)) ;

drawnow () ;
end

function Se l e c tL in e (handle , ~ , l ine)
% A t r i g− or meanline was c l i c k ed , s e l e c t i t and prepare f o r moving

i f (strcmp (get (handle , ’Tag ’) , ’DataWindow ’) == 1)
g = handle ;

else
g = get (handle , ’ Parent ’) ;
g = get (g , ’ Parent ’) ;

end
c = get (g , ’ UserData ’) ;

c . s e l e c t edL in e = l ine ;
mpos = get (gcf , ’ CurrentPoint ’) ;
c . savedPos = mpos (1 , :) ;

set (g , ’ UserData ’ , c) ;

RedrawPlot (c) ;

end

function MoveMouse(handle , ~)
% Move t r i g l i n e s when moving mouse (i f a l i n e i s c l i c k e d)

c = get (handle , ’ UserData ’) ;

43

i f (c . s e l e c t edL i n e == 0)
return ;

end

mpos = get (gcf , ’ CurrentPoint ’) ;

l i n e s = [c . p l o t s . t l , c . p l o t s . tr , c . p l o t s .m0p, c . p l o t s .m1p, c . p l o t s .m2p, c . p l o t s .m3p] ;

h2 = get (l i n e s (c . s e l e c t edL in e) , ’ Parent ’) ;

i f (c . s e l e c t edL i n e < 3)
% Trig l i n e s
move = c . savedPos (1) − mpos (1 , 1) ;
l im = get (h2 , ’XLim ’) ;
move = move *(l im (2)) ;
d = get (l i n e s (c . s e l e c t e dL in e) , ’XData ’) ;
d = d − move ;
set (l i n e s (c . s e l e c t e dL in e) , ’XData ’ ,d) ;

else
% Mean l i n e s
move = c . savedPos (2) − mpos (1 , 2) ;
l im = get (h2 , ’YLim ’) ;
move = move *(l im (2)− l im (1)) ;
d = get (l i n e s (c . s e l e c t e dL in e) , ’YData ’) ;
d = d − move ;
set (l i n e s (c . s e l e c t e dL in e) , ’YData ’ ,d) ;

end

c . savedPos = mpos (1 , :) ;

% Update measurement
d = get (l i n e s (1) , ’XData ’) ;
c . t r i g l = d (1) ;
d = get (l i n e s (2) , ’XData ’) ;
c . t r i g r = d (1) ;
d = get (l i n e s (3) , ’YData ’) ;
c . mean0 = d (1) ;
d = get (l i n e s (4) , ’YData ’) ;
c . mean1 = d (1) ;
d = get (l i n e s (5) , ’YData ’) ;
c . mean2 = d (1) ;
d = get (l i n e s (6) , ’YData ’) ;
c . mean3 = d (1) ;

c . time = (c . t r i g r−c . t r i g l)/16000 ;

% Mark measurement as unsaved
set (c . saveState , ’ S t r ing ’ , ’Changed ’) ;

set (handle , ’ UserData ’ , c) ;
RedrawPlot (c) ;

44

end

function Edi tF i e ld (handle , ~)
% A f i e l d was ed i t e d .

g = get (handle , ’ Parent ’) ;
g = get (g , ’ UserData ’) ;
c = get (g , ’ UserData ’) ;

% Update measurement
switch (handle)

case c .mA
c . d .ma = str2num(get (handle , ’ S t r ing ’)) ;

case c .mAs2
mas = str2num(get (handle , ’ S t r ing ’)) ;
c . d .ma = mas/c . time ;
set (c .mA, ’ S t r ing ’ , num2str(c . d .ma)) ;

case c . kV
c . d . kvp = str2num(get (handle , ’ S t r ing ’)) ;

case c . f i l t e r
c . d . f i l t e r = get (handle , ’ S t r ing ’) ;

case c . d i s t
c . d . d i s t = str2num(get (handle , ’ S t r ing ’)) ;

end

% Mark measurement and unsaved
set (c . saveState , ’ S t r ing ’ , ’Changed ’) ;

set (g , ’ UserData ’ , c) ;
RedrawPlot (c) ;

end

function CleanQuit (handler , ~)
% Close a l l open windows and qu i t

p = handler ;
i f (strcmp (get (p , ’Tag ’) , ’ ControlWindow ’) ~= true)

p = get (p , ’ Parent ’) ;
end

c on t r o l s = get (p , ’ UserData ’) ;
for i = 1 : length (c on t r o l s . plotWindows)

i f (i shand l e (c on t r o l s . plotWindows (i)))
delete (c on t r o l s . plotWindows (i)) ;

end
end

delete (p)
end

45

FindSensitivity.m

function F indSen s i t i v i t y ()
clear a l l
c lc
close a l l
set (0 , ’ DefaultAxesFontSize ’ ,14)
set (0 , ’ DefaultAxesFontName ’ , ’ He lve t i ca ’)

measurementFile = ’Measurements . mat ’ ;
s e n s i t i v i t y F i l e = ’ Diode .mat ’ ;

% Choose p l o t type
% 1: X ax i s in keV
% 0: X ax i s in nm
p l o t s c a l e = 0 ;

load (measurementFile) ;
sensData = zeros (s ize (meas_data , 2) , 4) ;

for i = 1 : s ize (meas_data , 2) % For each measurement
dd = meas_data (i) ;
d i sp l ay ([’Measurement␣ ’ , num2str(i) ’ : ’]) ;
d i sp l ay ([’ ␣␣ Set ␣␣␣␣ : ␣ ’ num2str(dd . kvp) , ’kV ’]) ;
d i sp l ay ([’ ␣␣Meaured : ␣ ’ num2str(dd . kvmeas) , ’kV ’]) ;
d i sp l ay ([’ ␣␣ F i l t e r ␣ : ␣ ’ , dd . f i l t e r]) ;

% Find spek t ra and p r op e r t i e s f o r measurement
[sp , spd] = S imp l eF i l t e rSpec t r a (round(dd . kvp) , dd .ma , . . .

dd . f i l t e r , dd . d i s t , 0 . 0 0 7) ;
meanCurrent = dd . s0 /spd . photonEnergy ;

% This g i v e s one data po in t . . .
sensData (i , :) = [spd .mean spd . peakMin spd . peakMax meanCurrent] ;

d i sp l ay ([’ ␣␣Mean␣ energy : ␣ ’ , num2str(spd .mean) , ’ keV ’]) ;
d i sp l ay ([’ ␣␣Current ␣␣␣␣ : ␣ ’ , num2str(meanCurrent) , ’A/W’]) ;

end

i f (p l o t s c a l e == 0)
lambda = @(x) 6 .626 e−34*2.998 e8 . / (x *1 .602 e−19.*1 e3) . * 1 e9 ;

else
lambda = @(x) x ;

end

f = f igure (’ c o l o r ’ , ’ white ’) ;

46

% Plot bu l k i n d i c a t o r s
for i = 1 : s ize (sensData , 1)
% To ge t a l i n e a r p l o t , change t h i s ’ l o g l o g ’ to ’ p l o t ’
h = loglog (lambda ([sensData (i , 2) sensData (i , 3)]) , . . .

[sensData (i , 4) sensData (i , 4)] , ’ k−+’) ;
hold on
h2 = plot (lambda (sensData (i , 1)) , sensData (i , 4) , ’ ko ’) ;

% Right c l i c k a c i r c l e to see which measurement i t corresponds to
hcmenu = uicontextmenu ;
dd = meas_data (i) ;
item1 = uimenu(hcmenu , ’ l a b e l ’ , . . .

[num2str(i) ’ : ’ num2str(dd . kvp) , dd . f i l t e r]) ;
set (h , ’ uicontextmenu ’ , hcmenu) ;
set (h2 , ’ uicontextmenu ’ , hcmenu) ;

% This l i n e makes the l egend show the r i g h t t h i n g s
plot ([0 0] , [0 0] , ’ k−− ’ , ’ HitTest ’ , ’ o f f ’)

end

hold o f f

% Find unique mean ene r g i e s (rounded to i n t e g e r)
kvs = unique (round(sensData (: , 1)))
ms = kvs ;
l s = kvs ;
r s = kvs ;
% Average measurements f o r each po in t
for i = 1 : length (kvs)

inds = (round(sensData (: , 1)) == kvs (i)) ;
ms(i) = mean(sensData (inds , 4)) ; % S e n s i t i v i t y
l s (i) = mean(sensData (inds , 2)) ; % Lower l im i t
r s (i) = mean(sensData (inds , 3)) ; % Upper l im i t

end

global diodeSens
diodeSens = [kvs , ms , ls , r s]

% Plot i n t e r p o l a t i o n o f d iode s e n s i t i v i t y
hold on
x = linspace (1 , 300 , 200) ;
plot (lambda (x) , i n t e r p o l a t e S e n s i t i v i t y (x) , ’ k−− ’ , ’ HitTest ’ , ’ o f f ’) ;
hold o f f

i f (p l o t s c a l e == 0)
xlabel (’ Photon␣wavelength␣ (nm) ’) ;

else
xlabel (’ Photon␣ energy ␣ (keV) ’) ;

end
ylabel (’ Sensor ␣ cur rent ␣ (A/W) ’) ;
set (gca , ’ f o n tS i z e ’ ,14 , ’ l ineWidth ’ ,2 , ’ box ’ , ’ o f f ’ , ’ Layer ’ , ’ top ’)

47

% Save the s e n s i t i v i t y
save (s e n s i t i v i t y F i l e , ’ d iodeSens ’)

end

function y = i n t e r p o l a t e S e n s i t i v i t y (x)
global diodeSens
X = log (diodeSens (: , 1)) ;
Y = log (diodeSens (: , 2)) ;
x = log (x) ;

y = interp1 (X, Y, x , ’ l i n e a r ’) ;
y = exp(y) ;

end

48

SimpleFilterSpectra.m

function [spectrum data] = . . .
S imp l eF i l t e rSpec t r a (kV, mA, f i l t e r , mmair , tungsten)
% Input
% kV : the k i l o v o l t a g e s e t t i n g
% mA: the amperage s e t t i n g
% f i l t e r : the name o f a f i l t e r
% mmair : d i s t ance between X−ray tube and sensor
% tungs ten : Extra tungs ten f i l t r a t i o n
% Output
% spek t ra : X−ray spectrum
% data : X−ray spectrum prop e r t i e s

% Get ba s i c spectrum
un f i l t e r e d = GetXRaySpectrum(kV,mA) ;

% F i l t e r spectrum
f = [mmair 0 0 0 0 0 0] ;
i f (nargin == 5)

f (7) = tungsten ;
end
spectrum = FilterXRaySpectrum (un f i l t e r e d , f i l t e r , f) ;

% Reca l cu l a t e f o r d i s t ance
d i s tanceFacto r = (1000/mmair)^2 ;
spectrum (: , 2) = spectrum (: , 2) . * d i s tanceFacto r ;

% Ca lcu l a t e s p e c t r a l p r o p e r t i e s
data = GetSpectraParameters (spectrum) ;

end

49

GetXRaySpectrum.m

function spec t ra = GetXRaySpectrum(kV, mA)
% kV shou ld be a mu l t i p l e o f 10 between 10 and 300
% Returns an u n f i l t e r e d X−ray spectrum with 0.1 keV b ins from 1 to 300 keV

s p e c t r aF i l e = ’ XraySpectra . mat ’ ;

p e r s i s t e n t sp e c t r a s
i f (isempty (s p e c t r a s))

load (s p e c t r aF i l e) ;
end

kVmax = 300 ;
spec t ra = spe c t r a s (: , [1 kV−8]) ;
spe c t ra (: , 2) = spec t ra (: , 2) . *mA;

end

50

FilterXRaySpectrum.m

function specout = FilterXRaySpectrum (spec in , f i l t e rname , f i l t e r s)

% spec in (: , 1) = ene r g i e s [keV
% spec in (: , 2) = # photons
% f i l t e rname = Name of a prede f ined f i l t e r
% f i l t e r s = Extra f i l t r a t i o n
% f i l t e r s (1) t h i c kn e s s o f a i r [mm]
% f i l t e r s (2) t h i c kn e s s o f a l [mm]
% f i l t e r s (3) t h i c kn e s s o f cu [mm]
% f i l t e r s (4) t h i c kn e s s o f sn [mm]
% f i l t e r s (5) t h i c kn e s s o f pb [mm]
% f i l t e r s (6) t h i c kn e s s o f s i [mm]
% f i n t e r s (7) t h i c kn e s s o f w [mm]

numFilters = 5 ;

namedFilter = zeros (1 , numFilters) ;

i f (nargin == 2)
i f (i s c h a r (f i l t e r name))

f i l t e r s = zeros (1 , numFilters) ;
namedFilter = FilterFromName (f i l t e r name) ;

else
f i l t e r s = f i l t e r name ;

end
end
i f (nargin == 3)

namedFilter = FilterFromName (f i l t e r name) ;
end

i f (length (f i l t e r s) > length (namedFilter))
namedFilter = [namedFilter zeros (1 , length (f i l t e r s)−length (namedFilter))] ;

end

f i l t e r s = f i l t e r s + namedFilter ;
p e r s i s t e n t air_xaamdi
i f (isempty (air_xaamdi))

air_xaamdi = importdata (’ F i l t e rData /air_xaamdi . txt ’) ;
air_xaamdi (6 , 1) = air_xaamdi (6 , 1) + 1e−10; % Remove K−edges

end

p e r s i s t e n t cu_xaamdi
i f (isempty (cu_xaamdi))

cu_xaamdi = importdata (’ F i l t e rData /cu_xaamdi . txt ’) ;
cu_xaamdi (4 , 1) = cu_xaamdi (4 , 1) + 1e−10;
cu_xaamdi (13 ,1) = cu_xaamdi (13 ,1) + 1e−10;

end

p e r s i s t e n t al_xaamdi

51

i f (isempty (al_xaamdi))
al_xaamdi = importdata (’ F i l t e rData /al_xaamdi . txt ’) ;
al_xaamdi (4 , 1) = al_xaamdi (4 , 1) + 1e−10;

end

p e r s i s t e n t sn_xaamdi
i f (isempty (sn_xaamdi))

sn_xaamdi = importdata (’ F i l t e rData /sn_xaamdi . txt ’) ;
sn_xaamdi (6 , 1) = sn_xaamdi (6 , 1) + 1e−10;
sn_xaamdi (9 , 1) = sn_xaamdi (9 , 1) + 1e−10;
sn_xaamdi (12 ,1) = sn_xaamdi (12 ,1) + 1e−10;
sn_xaamdi (20 ,1) = sn_xaamdi (20 ,1) + 1e−10;

end

p e r s i s t e n t pb_xaamdi
i f (isempty (pb_xaamdi))

pb_xaamdi = importdata (’ F i l t e rData /pb_xaamdi . txt ’) ;
pb_xaamdi (5 , 1) = pb_xaamdi (5 , 1) + 1e−10;
pb_xaamdi (8 , 1) = pb_xaamdi (8 , 1) + 1e−10;
pb_xaamdi (11 ,1) = pb_xaamdi (11 ,1) + 1e−10;
pb_xaamdi (14 ,1) = pb_xaamdi (14 ,1) + 1e−10;
pb_xaamdi (17 ,1) = pb_xaamdi (17 ,1) + 1e−10;
pb_xaamdi (24 ,1) = pb_xaamdi (24 ,1) + 1e−10;
pb_xaamdi (27 ,1) = pb_xaamdi (27 ,1) + 1e−10;
pb_xaamdi (30 ,1) = pb_xaamdi (30 ,1) + 1e−10;
pb_xaamdi (38 ,1) = pb_xaamdi (38 ,1) + 1e−10;

end

p e r s i s t e n t si_xaamdi
i f (isempty (si_xaamdi))

si_xaamdi = importdata (’ F i l t e rData /si_xaamdi . txt ’) ;
si_xaamdi (4 , 1) = si_xaamdi (4 ,1)+1e−10;

end

p e r s i s t e n t w_xaamdi
i f (isempty (w_xaamdi))

w_xaamdi = importdata (’ F i l t e rData /w_xaamdi . txt ’) ;
w_xaamdi (4 , 1) = w_xaamdi(4 ,1)+1 e−10;
w_xaamdi (7 , 1) = w_xaamdi(7 ,1)+1 e−10;
w_xaamdi (10 ,1) = w_xaamdi(10 ,1)+1 e−10;
w_xaamdi (13 ,1) = w_xaamdi(13 ,1)+1 e−10;
w_xaamdi (16 ,1) = w_xaamdi(16 ,1)+1 e−10;
w_xaamdi (24 ,1) = w_xaamdi(24 ,1)+1 e−10;
w_xaamdi (27 ,1) = w_xaamdi(27 ,1)+1 e−10;
w_xaamdi (30 ,1) = w_xaamdi(30 ,1)+1 e−10;
w_xaamdi (38 ,1) = w_xaamdi(38 ,1)+1 e−10;

end

% Densi ty data f o r each f i l t e r
a i r_dens i ty = 1.225 e−6;

52

a l_dens i ty = 2 . 6941 ;
cu_density = 8 . 9400 ;
sn_density = 7 . 3000 ;
pb_density = 11 . 3 30 ;
s i_dens i ty = 2 . 3200 ;
w_density = 19 . 3 00 ;

e n e r g i e s = spec in (: , 1) ;
specout = spec in ;

i f (f i l t e r s (1) > 0) % Air
atten = ca l cu l a t eAt t enua t i on (air_xaamdi , a i r_dens i ty , . . .

ene rg i e s , f i l t e r s (1)) ;
specout (: , 2) = specout (: , 2) . * atten ;

end

i f (f i l t e r s (2) > 0) % Al
atten = ca l cu l a t eAt t enua t i on (al_xaamdi , a l_dens ity , . . .

ene rg i e s , f i l t e r s (2)) ;
specout (: , 2) = specout (: , 2) . * atten ;

end

i f (f i l t e r s (3) > 0) % Cu
atten = ca l cu l a t eAt t enua t i on (cu_xaamdi , cu_density , . . .

ene rg i e s , f i l t e r s (3)) ;
specout (: , 2) = specout (: , 2) . * atten ;

end

i f (f i l t e r s (4) > 0) % Sn
atten = ca l cu l a t eAt t enua t i on (sn_xaamdi , sn_density , . . .

ene rg i e s , f i l t e r s (4)) ;
specout (: , 2) = specout (: , 2) . * atten ;

end

i f (f i l t e r s (5) > 0) % Pb
atten = ca l cu l a t eAt t enua t i on (pb_xaamdi , pb_density , . . .

ene rg i e s , f i l t e r s (5)) ;
specout (: , 2) = specout (: , 2) . * atten ;

end

i f (length (f i l t e r s) >= 6)
i f (f i l t e r s (6) > 0) % Si

atten = ca l cu l a t eAt t enua t i on (si_xaamdi , s i_dens i ty , . . .
ene rg i e s , f i l t e r s (6)) ;

specout (: , 2) = specout (: , 2) . * atten ;
end
end
i f (length (f i l t e r s) >= 7)
i f (f i l t e r s (7) > 0) % W

atten = ca l cu l a t eAt t enua t i on (w_xaamdi , w_density , . . .
ene rg i e s , f i l t e r s (7)) ;

53

specout (: , 2) = specout (: , 2) . * atten ;
end
end

end

function atten = ca l cu l a t eAt t enua t i on (att , dens i ty , ene rg i e s , t h i c kne s s)
X = log (a t t (: , 1) . * 1 e3) ;
Y = log (a t t (: , 2)) ;
x = log (e n e r g i e s) ;
y = interp1 (X, Y, x , ’ l i n e a r ’) ;

my = exp(y) ;

my = my.* dens i ty ;
my = my. * 0 . 1 ; % Attenuat ion per mm

atten = exp(−my.* th i c kne s s) ;
end

function f i l t e r = FilterFromName (s t r)

f i l t e r = [] ;
i f (strcmp (s t r , ’ ’) == 1)

f i l t e r = [0 0 0 0] ;
return

end
load (’ F i l t e rData / f i l t e r d e f . mat ’) ;

s t r = lower (s t r) ;
s t r = strrep (s t r , ’− ’ , ’ ’) ;

for i = 1 : s ize (f i l t e r s , 2)
i f (strcmp (s t r , f i l t e r s (i) . name) == 1)

f i l t e r = f i l t e r s (i) . f i l t e r ;
break ;

end
end

end

54

GetSpectraParameters.m

function pars = GetSpectraParameters (spec t r a)

energy = spec t ra (: , 1) ;
photonCount = round(spec t r a (: , 2)) ;

% Mean energy
pars .mean = sum(energy . * photonCount)/sum(photonCount) ;

% Find the peak energy
peaks = ([0 ; d i f f (photonCount)]) ;
peakCount = photonCount . * (peaks < 1) ;
[~ , iPeak] = max(peakCount) ;
pars . peakMid = energy (iPeak) ;
pars . ipeakMid = iPeak ;

% Width o f s p e c t r a l peak i s measured as where the his togram va lue s
% are h i gher than widthFactor *peakMax .
widthFactor = 0 . 5 ;
edgeCount = photonCount (iPeak) . * widthFactor ;

for i = 1 : length (photonCount)−1
% Find s t a r t o f peak
i f ((photonCount (i) <= edgeCount) && (photonCount (i +1) > edgeCount))

pars . peakMin = energy (i) ;
pars . ipeakMin = i ;

end
% Find end o f peak
i f ((photonCount (i) >= edgeCount) && (photonCount (i +1) < edgeCount))

pars . peakMax = energy (i) ;
pars . ipeakMax = i ;

end
% Find kVp
i f ((photonCount (i) > 0) && (photonCount (i +1) <= 0))

kVp = energy (i +1);
%break ;

end
end

% Width o f the peak
pars . peakWidth = pars . peakMax − pars . peakMin ;

pars . kVp = kVp ;

% Number o f photons and t o t a l photon energy
pars . photons = sum(photonCount) ;
pars . photonEnergy = sum(photonCount . * energy) ;

end

55

SimulateCurrent.m

function I = SimulateCurrent (kV, mA, d i s t , namedFilter , f i l t e r)
% Input :
% kV : the k i l o v o l t a g e s e t t i n g
% mA: the amperage s e t t i n g
% namedFi l ter : the name o f a f i l t e r
% f i l t e r : Extra f i l t r a t i o n

s e n s i t i v i t y F i l e = ’ Diode .mat ’ ;

f1Thickness = XXX CLASSIFIED ;
f2Thickness = XXX CLASSIFIED ;
f3Thickness = XXX CLASSIFIED ;

global diodeSens

i f (isempty (diodeSens))
load (s e n s i t i v i t y F i l e) ;

end

d i s tanceFacto r = (1000/ d i s t)^2 ;

% Get ba s i c spectrum
un f i l t e r e d = GetXRaySpectrum(kV,mA) ;
u n f i l t e r e d (: , 2) = un f i l t e r e d (: , 2) . * d i s tanceFacto r ;

% Common f i l t r a t i o n
i f (nargin == 4)

i f (i s c h a r (namedFilter))
f i l t e r = [0 0 0 0 0] ;

else
f i l t e r = [] ;

end
end

i f length (f i l t e r) < 7
f i l t e r = [f i l t e r zeros (1 ,7− length (f i l t e r))] ;

end
% 0.007 mm ex t ra tungs ten f i l t e r i n g
f i l t e r = [d i s t 0 0 0 0 0 0 . 0 0 7] + f i l t e r ;

% F i l t e r s p e k t r a s f o r each sensor
spektra1 = FilterXRaySpectrum (un f i l t e r e d , namedFilter , f i l t e r) ;
spektra2 = FilterXRaySpectrum (spektra1 , [0 0 f1Thickness 0 0 0 0]) ;
spektra3 = FilterXRaySpectrum (spektra2 , [0 0 f2Thickness 0 0 0 0]) ;
spektra4 = FilterXRaySpectrum (spektra3 , [0 0 f3Thickness 0 0 0 0]) ;

p e r s i s t e n t s e n s i t i v i t y
i f (isempty (s e n s i t i v i t y))
% Load s e n s i t i v i t y and i n t e r p o l a t e f o r each bin

56

s e n s i t i v i t y = exp(interp1 (log (diodeSens (: , 1)) , . . .
log (diodeSens (: , 2)) , log (spektra1 (: , 1)) , ’ l i n e a r ’)) ;

s e n s i t i v i t y (isnan (s e n s i t i v i t y)) = 0 ;

i l ow = find (spektra1 (: , 1) < 16) ;
i h i gh = find (spektra1 (: , 1) > 125) ;
s e n s i t i v i t y (i h i gh) = exp(. . .

log (diodeSens (end−1 ,2)) + . . .
(log (spektra1 (ih igh ,1))− log (diodeSens (end−1 ,1))) . * . . .
(log (diodeSens (end ,2))− log (diodeSens (end−1 ,2))) . / . . .
(log (diodeSens (end ,1))− log (diodeSens (end−1 ,1))) . . .
) ;

s e n s i t i v i t y (i l ow) = exp(. . .
log (diodeSens (2 , 2)) + . . .
(log (spektra1 (i low ,1))− log (diodeSens (2 , 1))) . * . . .
(log (diodeSens (1 ,2))− log (diodeSens (2 , 2))) . / . . .
(log (diodeSens (1 ,1))− log (diodeSens (2 , 1))) . . .
) ;

end

% Ca lcu l a t e cur ren t s
I (1) = sum(spektra1 (: , 2) . * s e n s i t i v i t y . * spektra1 (: , 1)) ;
I (2) = sum(spektra2 (: , 2) . * s e n s i t i v i t y . * spektra2 (: , 1)) ;
I (3) = sum(spektra3 (: , 2) . * s e n s i t i v i t y . * spektra3 (: , 1)) ;
I (4) = sum(spektra4 (: , 2) . * s e n s i t i v i t y . * spektra4 (: , 1)) ;

end

57

Artificial Neural Network
function ANN
global diodeSens
load diode .mat

clc
close a l l

norm = 200 ;
s t ep s = 20000 ;
eta = 0 . 0001 ;
e p s i l o n = 0 . 9 ;

net = newNetwork ([9 100 100 1 0 0] , 1) ;

% Generate e va l ua t i on data s e t
for i =1:100

evSet (: , i) = getTestData () ’ ;
end
kV = evSet (1 , :) ;

% Generate t r a i n i n g data s e t
for i =1:1000

t r a i n i n gS e t (: , i) = getTestData () ’ ;
end

p r ed i c t i on = norm*runNetwork (net , evSet (2 :end , :)) ;
error = 100* sqrt (mean(abs ((kV−p r ed i c t i on) . /kV) . ^ 2)) ;

% Training graph
f igure (’ Color ’ , ’White ’) ;
e r rP l o t = plot ([0 1] , [error error] , ’ k ’ , ’ LineWidth ’ , 1 . 2) ;
set (gca , ’ f o n tS i z e ’ ,14 , ’ l ineWidth ’ ,2 , ’ box ’ , ’ o f f ’) ;
xlabel (’ I t e r a t i o n ’) ;
ylabel (’E_{RMS} ’) ;

% Performance graph
f 2 = f igure (’ Color ’ , ’White ’) ;
p r ed i c t i onP l o t = plot (kV, norm*runNetwork (net , evSet (2 :end , :)) , ’ kx ’ , . . .

’ LineWidth ’ , 1 . 2 , ’ MarkerSize ’ , 1 5) ;
hold on
plot (kV,kV, ’k−− ’ , ’ LineWidth ’ , 1 . 2) ;
hold o f f
set (gca , ’ f o n tS i z e ’ ,14 , ’ l ineWidth ’ ,2 , ’ box ’ , ’ o f f ’)
xlabel (’Model␣ input ␣ (keV) ’) ;
ylabel (’ Network␣ p r ed i c t i on ␣ (keV) ’) ;
xl im ([4 0 , 1 6 0]) ;
yl im ([0 , 2 0 0]) ;

bes t = 100 ;
for (i = 1 : s t ep s)

58

net = trainNetwork (net , t r a i n i n gS e t (2 :end , :) , . . .
t r a i n i n gS e t (1 , :) . /norm, eta , e p s i l o n) ;

i f (mod(i , 1 0) == 0) % Redraw p l o t s every 10 i t e r a t i o n s to save time
p r ed i c t i on = norm*runNetwork (net , evSet (2 :end , :)) ;
error = 100* sqrt (mean(abs ((kV−p r ed i c t i on) . /kV) . ^ 2)) ;
X = [get (e r rP lot , ’XData ’) i] ;
Y = [get (e r rP lot , ’YData ’) error] ;
set (e r rP lot , ’XData ’ ,X, ’YData ’ ,Y) ;

set (p r ed i c t i onP lo t , ’YData ’ , p r ed i c t i on) ;
drawnow
i f (error < best)

bes t = error ;
end

clc
error
best

end
end

end

function y = g (b)
beta = 0 . 1 ;
y = tanh (beta*b) ;

end
function y = gprim (b)

beta = 0 . 1 ;
y = sech (beta*b) . ^ 2 ;

end

function net = trainNetwork (net , input , s o lu t i on , eta , e p s i l o n)
% Trains a network us ing s imple back−propagat ion
p e r s i s t e n t prevDelta

[output V] = runNetwork (net , input) ;
nLayers = length (net) ;

d e l t a {nLayers } = (so lu t i on−output) ;
d e l t a {nLayers } = de l t a {nLayers } . * . . .

gprim (net {nLayers }* [V{nLayers } ; −1*ones (1 , s ize (V{nLayers } , 2))]) ;

for (i = nLayers :−1:2)
de l t a { i−1} = (net { i } ’* de l t a { i }) ;
d e l t a { i −1}(end , :) = [] ;
d e l t a { i−1} = de l t a { i −1}.* . . .

gprim (net { i −1}*[V{ i −1}; −1*ones (1 , s ize (V{ i −1} , 2))]) ;
end
i f (isempty (prevDelta))

59

for i =1: nLayers
prevDelta { i } = zeros (s ize (d e l t a { i })) ;

end
end
for (i = 1 : nLayers)

d = de l t a { i } ;
d e l t a { i } = de l t a { i } + ep s i l o n * prevDelta { i } ;
prevDelta { i } = d ;
dW{ i } = de l t a { i }* [V{ i } ; −1*ones (1 , s ize (V{ i } , 2))] ’ ;
net { i } = net { i } + dW{ i } .* eta ;

end

end

function [r e s u l t , V] = runNetwork (net , input)
% Run network

nLayers = length (net) ;
prevV = input ;
for (i = 1 : nLayers)

V{ i } = prevV ;
newV = g (net { i }* [prevV ; −1*ones (1 , s ize (prevV , 2))]) ;
prevV = newV ;

end
V{nLayers+1} = newV ;
r e s u l t = newV ;

end

function net = newNetwork (nNodes , s t a r tL ev e l)
% Generate a neura l network wi th random we igh t s

nLayers = length (nNodes) ;
nNodes = [nNodes 1] ;
for (i = 1 : nLayers)

net { i } = (rand (nNodes (i +1) , nNodes (i)+1)−0.5) .*2 .* s t a r tL ev e l ;
end

end

function data = getTestData ()
% Generate data po in t s

kv = 40 + round(110*rand (1 , 1)) ; % 40−150
ma = 100 + 400*rand (1 , 1) ; % 100−500

f i l t e r = [0 3*rand (1 , 1) 2*rand (1 , 1) 0 0] ;
% ai r a l cu sn pb

d i s t = 100 + 400*rand (1 , 1) ; % 100−500

I = SimulateCurrent (kv ,ma, d i s t , ’ ’ , f i l t e r) ;

60

A1 = I (2)/ I (1) ;
A2 = I (3)/ I (1) ;
A3 = I (4)/ I (1) ;
A4 = I (3)/ I (2) ;
A5 = I (4)/ I (2) ;
A6 = I (4)/ I (3) ;

%data = [kv , I] ;
%data = [kv , A1, A2, A3] ;
%data = [kv , A1, A2, A3, A4, A5, A6] ;
%data = [kv , A1, A2, A3, A1^2 , A2^2 , A3^2] ;
%data = [kv , A1, A2, A3, A1*A2, A1*A3, A2*A3, A1^2 , A2^2 , A3^2] ;
data = [kv , A1 , A2 , A3 , sqrt (A1) , sqrt (A2) , sqrt (A3)] ;

end

61

Linear Genetic Programming
function LGPTest

clc
close a l l hidden
warning (’ o f f ’ , ’MATLAB: rankDef i c i entMatr ix ’) ;

global mutationProb
global outputReg i s t e r s
global tournamentSize
global tournamentSelect ionParameter

popu la t i onS i z e = 100 ;
tournamentSize = 5 ;
tournamentSelect ionParameter = 0 . 7 5 ;
c r o s sP r obab i l i t y = 0 . 2 0 ;
mutationProb = 0 . 0 4 ;
numGenerations = 1000 ;
bestCopies = 5 ;
outputReg i s t e r s = 4 ;

% Generate e va l ua t i on data s e t
for i =1:100

evSet (i , :) = getTestData () ;
end
kV = evSet (1 , :) ;

% Generate t r a i n i n g data s e t
for i =1:100

t r a i n i n gS e t (i , :) = getTestData () ;
end

% Prepare f i g u r e s
f 1 = f igure (’ Color ’ , ’White ’) ;
set (f1 , ’ Color ’ , ’White ’) ;
plot (evSet (: , 1) , evSet (: , 1) , ’ k−− ’ , ’ LineWidth ’ , 1 . 2) ;
hold on
p r ed i c t i onP l o t = plot (evSet (: , 1) , evSet (: , 1) , ’ kx ’ , . . .

’ LineWidth ’ , 1 . 2 , ’ MarkerSize ’ , 1 5) ;
hold o f f
set (gca , ’ f o n tS i z e ’ ,14 , ’ l ineWidth ’ ,2 , ’ box ’ , ’ o f f ’)
xlabel (’Model␣ input ␣ (keV) ’) ;
ylabel (’ Best ␣ p r ed i c t i on ␣ (keV) ’) ;
yl im ([0 , 2 0 0]) ;

f 2 = f igure (’ Color ’ , ’White ’) ;
f i t P l o t = plot (0 , 0 , ’ k−− ’ , ’ LineWidth ’ , 1 . 2) ;
hold on
f i t P l o t 2 = plot (0 , 0 , ’ k ’ , ’ LineWidth ’ , 1 . 2) ;
hold o f f

62

legend (’Mean ’ , ’ Best ’) ;
set (gca , ’ f o n tS i z e ’ ,14 , ’ l ineWidth ’ ,2 , ’ box ’ , ’ o f f ’)
xlabel (’ Generation ’) ;
ylabel (’ Root␣mean␣ square ␣ e r r o r ␣ [%] ’) ;

f igure (f 1)
h = waitbar (0) ;
o l d f i t = 0 ;
f i t n e s s = zeros (popu lat ionS ize , 1) ;

% I n i t i a l i z e popu la t i on
populat ion = I n i t i a l i z eP o pu l a t i o n (popu la t i onS i z e) ;

out = DecodeIndiv idua l (populat ion {1} , evSet (: , 2 : end))
out = [out , ones (s ize (out , 1) , 1)] ;
f a c = (out\ evSet (: , 1)) ’ ;
r e s = out* fac ’ ;
set (p r ed i c t i onP lo t , ’YData ’ , r e s) ;

pause

% Main loop
for i = 1 : numGenerations

% Update progre s s bar
waitbar (i /numGenerations , h ,num2str(i)) ;

b e s tF i tn e s s = i n f ;
best Ind = 0 ;

% Evaluate f i t n e s s o f each i n d i v i d u a l
for j = 1 : popu la t i onS i z e

ind = populat ion { j } ;
f i t = TestF i tne s s (ind , t r a i n i n gS e t) ;
f i t n e s s (j) = f i t ;
% Keep t rack o f very b e s t i n d i v i d u a l
i f (f i t < be s tF i tn e s s)

best Ind = j ;
b e s tF i tn e s s = f i t ;

end
end

% Check b e s t i n d i v i d u a l wi th the e va l ua t i on data s e t
c o r r e c t = evSet (: , 1) ;
out = DecodeIndiv idua l (populat ion { best Ind } , evSet (: , 2 : end)) ;
out = [out ones (s ize (out , 1) , 1)] ;
f a c = (out\ evSet (: , 1)) ’ ;
r e s = out* fac ’ ;
b e s t f i t n e s s = sqrt (nanmean(abs ((co r r e c t−r e s) . / c o r r e c t) . ^ 2)) * 1 0 0 ;

% Update output

63

i f (b e s t f i t n e s s ~= o l d f i t)
clc
o l d f i t = b e s t f i t n e s s ;
ReadOut (populat ion { best Ind }) ;
d i sp l ay ([’ Best : ␣ ’ , num2str(b e s t f i t n e s s)]) ;

end

% Uppdate p l o t s
set (p r ed i c t i onP lo t , ’YData ’ , r e s)

X = get (f i tP l o t , ’XData ’) ;
Y = get (f i tP l o t , ’YData ’) ;
Y2 = get (f i tP l o t 2 , ’YData ’) ;
f i t n e s s 2 = f i t n e s s ;
f i t n e s s 2 (i s i n f (f i t n e s s 2)) = nan ;
set (f i tP l o t , ’XData ’ , [X i] , ’YData ’ , [Y nanmean(f i t n e s s 2)])
set (f i tP l o t 2 , ’XData ’ , [X i] , ’YData ’ , [Y2 b e s t f i t n e s s])
drawnow

% Create new popu la t i on
newPopulation = populat ion ;

for (j = 1 : 2 : popu la t i onS i z e)
% Se l e c t two winners
iWinner1 = TournamentSelect (f i t n e s s) ;
iWinner2 = TournamentSelect (f i t n e s s) ;
c1 = populat ion { iWinner1 } ;
c2 = populat ion { iWinner2 } ;

% Crossover (p o s s i b l y)
r = rand ;
i f (r < c r o s sP r obab i l i t y)

newPair = Cross (c1 , c2) ;
else

newPair = {c1 , c2 } ;
end
newPopulation{ j } = Mutate (newPair {1}) ;
newPopulation{ j+1} = Mutate (newPair {2}) ;

end

% Make some cop i e s o f the b e s t i n d i v i d u a l
for j = 1 : bestCopies

newPopulation{ i } = populat ion { best Ind } ;
end

for (j =1: popu la t i onS i z e)
populat ion { j } = newPopulation{ j } ;

end

% main loop

64

end
end

function f i t n e s s = TestF i tnes s (ind , testData)
% Ca lcu l a t e f i t n e s s f o r an i n d i v i d u a l in the popu la t i on

c o r r e c t = testData (: , 1) ;
out = DecodeIndiv idua l (ind , testData (: , 2 : end)) ;

% Ca lcu l a t e f a c t o r s from 25 random po in t s
i = randperm(s ize (testData , 1)) ;
i = i (1 : 2 5) ;
f a c = (out (i , :) \ testData (i , 1)) ;

r e s = out* f a c ;
c o r r e c t = testData (: , 1) ;

f i t n e s s = 100* sqrt (nanmean ((abs (co r r e c t−r e s) . / . . .
max(abs (c o r r e c t) , abs (r e s))) . ^ 2)) ;

i f (isnan (sum(r e s)))
f i t n e s s = i n f ;

end

end

function output = DecodeIndiv idua l (chromosome , input)

% In s t r u c t i o n s
% 1 = +
% 2 = −
% 3 = *
% 4 = /
% 5 = ^
% 6 = lo g

% Targets
% 1 = r e g i s t e r a
% 2 = r e g i s t e r b
% 3 = r e g i s t e r c
% 4 = r e g i s t e r d

% Sources
% 5 = input 1
% 6 = input 2
% 7 = input 3
% 8 = input 4
% 9 = const 1
% 10 = const 2
% 11 = const 3
% 12 = const 4

65

global outputReg i s t e r s
chromosomeLength = s ize (chromosome , 1) ;

r e g i s t e r s = [input input ones (s ize (input , 1) , 1) * [1 , 3 , −1]] ;

% Step through each gene
for i = 1 : chromosomeLength

i n s t r u c t i o n = chromosome (i , 1) ;
t a r g e t = chromosome (i , 2) ;
input1 = r e g i s t e r s (: , chromosome (i , 3)) ;
input2 = r e g i s t e r s (: , chromosome (i , 4)) ;

r e g i s t e r s (: , t a r g e t) = . . .
((i n s t r u c t i o n == 1) . * (input1+input2)) + . . .
((i n s t r u c t i o n == 2) . * (input1−input2)) + . . .
((i n s t r u c t i o n == 3) . * (input1 . * input2)) + . . .
((i n s t r u c t i o n == 4) . * (input1 . / input2)) + . . .
((i n s t r u c t i o n == 5) . * (input1 .^ input2)) + . . .
((i n s t r u c t i o n == 6) . * (sqrt (input1))) ;

end

% Return some r e g i s t e r s
output = r e g i s t e r s (: , 1 : outputReg i s t e r s) ;
output (isnan (output)) = 0 ;

end

function populat ion = I n i t i a l i z eP o pu l a t i o n (popu la t i onS i z e)
% I n i t i a l i z e randomized popu la t i on

populat ion = c e l l (popu lat ionS ize , 1) ;
for i = 1 : popu la t i onS i z e

populat ion { i } = NewChromosome(5+randi (2 0 , 1)) ;
end

end

function newGene = NewChromosome(numGenes)
% Create one new chromosome

numInstruct ions = 2 ;
numOutputs = 8 ;
numInputs = 11 ;
newGene = [] ;
for i = 1 : numGenes

i n s t r u c t i o n = randi (numInstruct ions , 1) + 2 ;
output = randi (numOutputs , 1) ;
input1 = randi (numInputs , 1) ;
input2 = randi (numInputs , 1) ;
newGene = [newGene ; [i n s t r u c t i o n output input1 input2]] ;

end

66

end

function gene = Mutate (gene)
% Mutate a gene
global mutationProb

nGene = s ize (gene , 1) ;
for i = 1 : nGene

r = rand ;
i f (r < mutationProb)

gene (i , :) = NewChromosome (1) ;
end

end

end

function genes = Cross (chr1 , chr2)
% Cross two chromosomes

nGene1 = s ize (chr1 , 1) ;
nGene2 = s ize (chr2 , 1) ;

cp1 = sort (randi (nGene1 , 1 , 2)) ;
cp2 = sort (randi (nGene2 , 1 , 2)) ;

genes {1} = [chr1 (1 : cp1 (1) , :) ; . . .
chr2 (cp2 (1) : cp2 (2) , :) ; . . .
chr1 (cp1 (2) : end , :)] ;

genes {2} = [chr2 (1 : cp2 (1) , :) ; . . .
chr1 (cp1 (1) : cp1 (2) , :) ; . . .
chr2 (cp2 (2) : end , :)] ;

end

function ind = TournamentSelect (f i t n e s s)
% Tournament s e l e c t i o n
global tournamentSize
global tournamentSelect ionParameter

inds = randi (length (f i t n e s s) , tournamentSize , 1) ;

for i = 1 : tournamentSize −1
i f (f i t n e s s (inds (i)) > f i t n e s s (inds (i +1)))

t = inds (i) ;
inds (i) = inds (i +1);
inds (i +1) = t ;

end
r = rand ;
i f (r < tournamentSelect ionParameter)

ind = inds (i) ;
return

67

end
end
ind = inds (end) ;

end

function ReadOut (chromosome)
% Print chromosome in human readab l e format

disp (’ Best ␣ i nd i v i dua l : ’) ;
s t r s = { ’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ , ’ e ’ , ’ f ’ , ’ g ’ , ’ h ’ , ’ 1 ’ , ’ 3 ’ , ’−1 ’ } ;
i n s t r = { ’+’ , ’− ’ , ’ * ’ , ’ / ’ , ’ ^ ’ } ;
r e s = { ’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ , ’ e ’ , ’ f ’ , ’ g ’ , ’ h ’ } ;
lGene = s ize (chromosome , 1) ;
for i = lGene :−1:1

for j = 1 :8
i f (chromosome (i , 1) == 6)

r e s { j } = strrep (r e s { j } , s t r s {chromosome (i , 2) } , . . .
sprintf (’ Sqrt [%s] ’ , s t r s {chromosome (i , 3) })) ;

else
r e s { j } = strrep (r e s { j } , s t r s {chromosome (i , 2) } , . . .

sprintf (’(%s%s%s) ’ , s t r s {chromosome (i , 3) } , . . .
i n s t r {chromosome (i , 1) } , s t r s {chromosome (i , 4) })) ;

end
end

end
s t r s = { ’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ , ’ e ’ , ’ f ’ , ’ g ’ , ’ h ’ , ’ ln ’ , ’−− ’ } ;
subs = { ’ s0 ’ , ’ s1 ’ , ’ s2 ’ , ’ s3 ’ , ’ s0 ’ , ’ s1 ’ , ’ s2 ’ , ’ s3 ’ , ’ Log ’ , ’+ ’ } ;
for j = 1 :8
s t r i = r e s { j } ;
for i = 1 : length (s t r s)

s t r i = strrep (s t r i , s t r s { i } , subs { i }) ;
end
disp (s t r i)

vars = ’ ’ ;
i f (~ isempty (f indstr (s t r i , ’ s0 ’)))

vars = s t r c a t (vars , ’ s0 ␣ ’) ;
end
i f (~ isempty (f indstr (s t r i , ’ s1 ’)))

vars = s t r c a t (vars , ’ s1 ␣ ’) ;
end
i f (~ isempty (f indstr (s t r i , ’ s2 ’)))

vars = s t r c a t (vars , ’ s2 ␣ ’) ;
end
i f (~ isempty (f indstr (s t r i , ’ s3 ’)))

vars = s t r c a t (vars , ’ s3 ␣ ’) ;
end
disp ([’ Inc luded ␣ v a r i a b l e s : ␣ ’ vars])
end

end

68

function data = getTestData ()
% Generate data po in t s

kv = 40 + round(110*rand (1 , 1)) ; % 40−150
ma = 100 + 400*rand (1 , 1) ; % 100−500

f i l t e r = [0 3*rand (1 , 1) 2*rand (1 , 1) 0 0] ;
% ai r a l cu sn pb

d i s t = 100 + 400*rand (1 , 1) ; % 100−500

I = SimulateCurrent (kv ,ma, d i s t , ’ ’ , f i l t e r) ;

data = [kv , I] ;
end

69

	Introduction
	Background
	Medical X-ray imagery
	X-ray protection

	Aim of study
	Scope

	X-ray system modelling
	Theoretic background
	X-ray generation
	Interaction with matter
	Beam quality and the N-series
	X-ray detection

	Model construction
	X-ray generation
	X-ray filtration
	X-ray detection

	Development of algorithms
	Adaptive programming methods
	Artificial Neural Networks
	Linear Genetic Programming

	Evaluation of methods
	Neural Networks
	Linear Genetic Programming

	Discussion and conclusion
	Source code listing

