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Abstract
Age-related diseases and conditions give rise to societal challenges and pose a threat
to healthy ageing. At the same time, the more recent evolutionary theories of
ageing hypothesise that the process of ageing is a consequence of living rather than
an evolutionary strategy. Consequently, it is implied that ageing is not as inevitable
as many might believe and, as a consequence, it is of interest to study this biological
process and its underlying mechanisms.
On a cellular level, accumulation of damage is often regarded as the main cause

of ageing. Since the basic properties of ageing between unicellular and multicellu-
lar organisms are similar on this level, it is common to use the unicellular yeast
Saccharomyces cerevisiae as a model organism in the field of ageing research.
The aim of this project is to validate a mathematical damage accumulation model

of replicative ageing in yeast. The model represents a cell by intact protein and
damage and describes how these quantities change as the cell grows. In addition
to cell growth, the model takes asymmetric division, retention and cell death into
account.
For the purpose of validating the model of replicative ageing, structural and nu-

merical identifiability methods are applied and continuous optimisation is performed
using single-cell area data. The model is fit to experimental data obtained for wild-
type yeast and the two deletion strains sir2∆ and fob1∆. Moreover, replicative
lifespan data of 4,698 single-gene deletion strains is analysed and, in conjunction to
this, it is investigated how the model parameters affect the replicative lifespan of
the simulations.
The results show that the parameters in the model of replicative ageing that

describes the rate of change of intact protein and damage in the cell, are structurally
identifiable. In spite of this, they are not numerically identifiable based on the
experimental data available; the parameter estimates obtained have high variances
and are moderately or highly correlated with each other. Likewise, it is possible to
generate parameter sets that make the mathematical model reproduce the replicative
lifespans of the investigated strains, if a replicative lifespan constraint is inferred on
the optimisation.
For future work, it is suggested that new experimental data is generated as to

fit the model of replicative ageing to growth curves belonging to cells of later life
stages. Ultimately, the data should be sufficient enough for the optimisation to
generate parameter sets that make the model adapt to the characteristics of the
investigated strains, without having additional constraints added to the objective
function.

Keywords: systems biology, ageing, yeast, damage accumulation, optimisation, pa-
rameter estimation, parameter identifiability
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Chapter 1
Introduction

Demographic changes in terms of an increasing percentage of elderly people in the
population and an increased expected lifespan give rise to several societal challenges
[1]. Among those challenges are age-related diseases and conditions, posing a threat
to healthy ageing. As a consequence of this, it is of interest to study ageing and to
understand the underlying mechanisms of this biological process.
A commonly used model organism in the study of biological processes is the baker’s

yeast Saccharomyces cerevisiae. It has the advantage of being well-studied, having a
short generation time and of using cell mechanisms that are similar to those used by
human cells [2]. In addition to this, it is relatively easy to introduce gene alterations
inside of a unicellular microorganism like S. cerevisiae [2], making it convenient to
obtain experimental data from it. S. cerevisiae is also a good organism in which
to study ageing, since the basic properties of ageing on a cellular level are similar
between unicellular and multicellular organisms [3].
The development of new measurement techniques in the field of biology has led

to the generation of a great amount of experimental data. However, to interpret
the data and to understand how the sub-components of a biological system give rise
to emergent properties, other tools than the human intellect need to be employed
[3]. The field of systems biology integrates mathematical modelling and computer
simulations with biology in order to get a better insight into biological processes [4].
Previous knowledge based on experimental data is used to construct mathematical
models of biological systems. The models can then be used as tools to gain further
insight into the systems and their underlying mechanisms as well as for making
predictions regarding the biological processes in question.
In the context of systems biology, a mathematical damage accumulation model

of replicative ageing in yeast was developed with the purpose to study the ageing
process [5]. The model represents a cell by intact protein and damage and describes
how the amounts of these variables change with time as the cell grows. Apart from
cell growth, the model takes asymmetric cell division, retention and cell death into
account.
This project aims to validate the model of replicative ageing. The investigation

includes structural and numerical identifiability analyses, to determine if the param-
eters of the model are identifiable, as well as parameter estimation. The parameter
estimation is performed using single-cell area data generated for wild-type S. cere-
visiae and the two deletion strains sir2∆ and fob1∆. The sir2∆ deletion strain
has been shown to have a shortened replicative lifespan compared to wild-type S.
cerevisiae while the fob1∆ strain has a prolonged replicative lifespan [6]. In addition
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1. Introduction

to the parameter estimation, replicative lifespan data of 4,698 single-gene deletion
strains is analysed and, in conjunction to this, it is investigated how the parameters
of the model affect the replicative lifespan of model simulations.

2



Chapter 2
Theory

This chapter gives a biological and mathematical background to the project. The
biological background consists of an introduction to evolutionary theories of age-
ing and the ageing of unicellular organisms. For a mathematical background, the
damage accumulation model of replicative ageing in yeast is explained in detail. In
addition, the parameter estimation and identifiability analysis methods applied in
this project are presented.

2.1 Evolutionary theories of ageing
The more recent evolutionary theories of ageing has cast aside the belief that ageing
is a programmed process, selected for during the course of evolution since it was
beneficial for the fitness of a population. These theories indicate that ageing is a
side effect of living rather than a strategy used to adapt to the environment. It can
be hypothesised that deleterious genes that give an effect only at later stages in life
have been surpassed by natural selection as a consequence of a decreasing selection
pressure with age [7]. In another perspective, these deleterious genes might in fact
have increased the fitness of an individual at an early life stage and therefore have
propagated in the population [7]. The basis for the disposable soma theory is that an
organism has limited resources and needs to allocate them between maintenance and
reproduction [8]. Ageing is then a result of a trade-off where translation accuracy in
germ cells are favoured over accuracy in somatic cells, why the latter group of cells
will accumulate errors over time.

2.2 Ageing of unicellular organisms
The yeast S. cerevisiae is commonly used as a unicellular model organism in the field
of ageing research. One standard measurement used to access the age of a yeast cell
is the replicative lifespan (RLS). The replicative lifespan of a cell is equal to the
number of times that the cell divides during the course of its life [9]. Typically, the
RLS of wild-type S. cerevisiae is 20-30 [10].
On a cellular level, damage accumulation is a generally accepted fundamental

cause of ageing [3]. In yeast, oxidatively damaged proteins and extrachromsomal
ribosomal DNA circles (ERCs) are part of the damage that have a higher abundance
in ageing cells. These are grouped as ageing factors, partly since they accelerate
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2. Theory

ageing [3].
There are mainly two mechanisms by which yeast handles damage accumulation.

Firstly, it divides asymmetrically, giving rise to a mother cell that is larger than the
daughter cell [5]. Secondly, it has been observed that some unicellular organisms,
including yeast, have a retention mechanism that enables them to retain a larger
amount of damaging factors in the mother cell during cell division [5]. In this way,
the age of a newly formed daughter cell is reset.
The retention of some ageing factors, such as ERCs, seems to be dependent upon

the protein sir2p [11]. It has been shown that sir2∆ S. cerevisiae mutants have
a reduced replicative lifespan compared to wild-type yeast, with one explanation
being the accumulation of ERCs [12]. The mean RLS of the sir2∆ strain has been
found to be 14.0 with a standard deviation of 4.80 [6]. In contrast to this, a deletion
of the gene FOB1 in wild-type S. cerevisiae increases the yeast replicative lifespan,
resulting in an RLS of 31.8±11.8 [6], in part due to the reduction of ERC formation
[13].

2.3 Model of replicative ageing
A mathematical model of replicative ageing in S. cerevisiae based on the accumu-
lation of damage has been developed [5]. The model describes the rate of change of
intact or functioning proteins, denoted P , and damage, D, inside of a cell, taking
cell growth, damage formation and repair into account [5]. Included in the model
are asymmetrical cell division and retention together with cell death. Cell division
and death occurs if the amount of intact protein or damage in the cell, respectively,
reaches a threshold. The system is described by the following equations.



dP
dt = µ(S)P

(
g ·Ddeath −D

Ddeath

)
− k1P + k2D

dD
dt = k1P − k2D

P (0) = fP (s, re), D ∈ [0, DDeath], P ∈ [0, Pdiv]
D(0) = fD(s, re), t ∈ R+, g ∈ (1,∞), k1, k2 ∈ R+

(2.1)

In System (2.1), k1 is the damage formation rate, k2 the repair rate, s the relative
size of the mother cell after cell division and re a retention factor [5]. Pdiv and Ddeath

are the thresholds for cell division and cell death. The term µ(S)P
(
g ·Ddeath −D

Ddeath

)
in System (2.1) models the cell growth, where the growth rate µ(S) is described by
the Monod equation.

µ(S) = µmax
S

KS + S
(2.2)

In Equation (2.2), µmax is the maximum specific growth rate, KS the Monod con-
stant and S is the concentration of substrate [5]. The maximum specific growth
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2. Theory

rate of S. cerevisiae has been found to be µmax = 0.5h−1 [14]. The second part of
the growth term,

(
g ·Ddeath −D

Ddeath

)
, has been included in the model to account for

a declining growth rate with age, where the parameter g is larger than 1 [5].
The model of replicative ageing has a continuous and a discrete part. The contin-

uous part consists of the two differential equations describing the rate of change of
intact protein, P , and damage, D. The discrete part of the model takes into account
cell division and cell death, that are both described by instantaneous events. When
the amount of damage in the cell reaches the threshold Ddeath, the cell dies and the
simulation is terminated [5]. Similarly, when the amount of intact protein in the cell
reaches the threshold Pdiv, the protein and damage content of the cell is reset based
on the functions fP (s, re) and fD(s, re).

P (0) = fP (s, re) =

sPdiv − re(1− s)D [Mother]
(1− s)Pdiv + re(1− s)D [Daughter]

(2.3)

D(0) = fD(s, re) =

(s+ (1− s)re)D [Mother]
(1− s)(1− re)D [Daughter]

(2.4)

In Equations (2.3) and (2.4), D is the amount of damage in the cell prior to division
[5].
The non-dimensionalised version of the model of replicative ageing is shown below.



dP̃

dt
= µ̃(S̃)P̃ (g − D̃)− k̃1P̃ + k̃2QD̃

dD̃

dt
= k̃1

Q
P̃ − k̃2D̃

P̃ (0) = fP (s, re), D̃ ∈ [0, 1], P̃ ∈ [0, 1]
D̃(0) = fD(s, re), τ ∈ R+, k̃1, k̃2 ∈ R+, Q ∈ (0, 1]

(2.5)

fP (s, re) =

s− re(1− s)QD̃ [Mother]
(1− s) + re(1− s)QD̃ [Daughter]

(2.6)

fD(s, re) =

(s+ (1− s)re)D̃ [Mother]
(1− s)(1− re)D̃ [Daughter]

(2.7)

In System (2.5), the following non-dimensional states and parameters has been in-
troduced: P̃ = P

Pdiv
, D̃ = D

Ddeath

, τ = µmax · t, Q = Ddeath

Pdiv
, k̃1 = k1

µmax
, k̃2 = k2

µmax
,

S̃ = S

Sin
, K̃S = KS

Sin
, µ̃(S̃) = S̃

K̃S + S̃
. The parameter Sin is the substrate concen-

tration in the inflow [5].
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2. Theory

The model of replicative ageing was used to formulate three parameter constraints
that need to be fulfilled in order for the cell to age. The first constraint is the
starvation constraint that relates ageing to substrate uptake [5].

k̃1 + k̃2 < µ̃(S̃) · g (2.8)

The two other constraints, the clonal senescence constraint and the immortality
constraint, are based on the lethal initial damage threshold, DT . If a cell has a
damage proportion that is smaller than DT after cell division, it should divide at
least once more [5]. Based on a daughter cell with maximal fitness, the clonal
senescence constraint is formulated as follows.

DT (k1, k2)|P=(1−s) > 0 (2.9)

The immortality constraint ensures that the cell has a finite replicative life span. A
cell that has a larger damage proportion than DT after cell division should undergo
cell death [5]. The immortality constraint is based on a mother cell of minimal
fitness.

DT (k1, k2)|P=(s−re(1−s)Q) < s+ (1− s)re (2.10)

The above mentioned constraints form a triangle in the (k1, k2) parameter space,
the triangle of ageing, within which the cell ages [5].

2.4 Parameter estimation
In order for the model of replicative ageing to be biologically relevant, values of
the model parameters need to be determined. One way to find values of model
parameters is by literature search. However, a higher biological relevance is obtained
if the model is fit to experimental data with the help of optimisation. For this
purpose, experimental data of single-cell area of growing S. cerevisiae has been
generated. In addition to this, data of a large-scale analysis of the replicative lifespan
of 4,698 S. cerevisiae single-gene deletion strains [15] is at hand.

2.4.1 Optimisation
Optimisation is the process of finding, or getting close to, an optimum of an objective
function that depends on the parameter values that are to be determined [16]. In
continuous optimisation, the objective function and the constraints are continuous
and the ground set is closed and convex [16].
When the purpose of an optimisation problem is to minimise the objective func-

tion, one approach is to take successive steps in a descending direction in the solution
space until a stop condition is reached [16]. In this case, the parameter values are
initialised at a chosen point in the solution space and updated according to the
equation below.

6



2. Theory

xk+1 = xk + α · p (2.11)

In the equation, xk is the set of parameter values at step k and α is the step size
[16]. The step size is used to ensure that f(xk+1) < f(xk), where one of the simpler
update rules is to start with α = 1 and then continuously bisect α until the condition
is satisfied. The last parameter in Equation (2.11), p, is the descent direction [16].
In Newton’s method, the descent direction is based on that the objective function,

f , is twice differentiable and is defined as p = − ∇f(xk)
∇2f(xk)

, where ∇2f(xk) is the

Hessian of f [16].
In cases where the Hessian is computationally costly, it can be approximated by a
matrix Bk in a quasi-Newton method [16]. Based on a first-order Taylor expansion
of the Hessian, Bk can be calculated from the gradient of f [16].

Bk(xk − xk−1) = ∇f(xk)−∇f(xk−1) (2.12)

In the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, Bk is updated as follows.

Bk+1 = Bk −
(Bksk)(Bksk)T

sTkBksk
+ ykyTk

yTk sk
(2.13)

In Equation (2.13), sk = xk+1 − xk and yk = ∇f(xk+1)−∇f(xk) [16].
A number of different termination criteria can be applied to an optimisation algo-
rithm in order to decide when to terminate the search. It is common to observe
the changes in the gradient, the function value and the parameter values from one
iteration to the next and stop if one or several of them are small or close to zero
[16].
In the case of fitting a mathematical model to experimental data, the objective

function depends on the values of the model parameters. If it is assumed that
the residuals between the experimental data points and the estimated data points
obtained from the model, ei = zi−yi, are normally distributed, the objective function
can be based on a likelihood function.

f(e|p) =
N∏
i=1

1
σi
√

2π
e

− 1
2σ2
i

((zi−yi)−µi)2

(2.14)

Here, e is the vector of residuals ei, while σi and µi are the variance and mean,
respectively, of residual ei [17]. The objective is to find the set of parameters p that
maximises the likelihood function. Observe that if the means, µi, of the normal
distributions are assumed to be zero and wi = 1/σ2

i , this is the same as to minimise
the weighted least squares criteria.

LS(p) =
N∑
k=0

wk(zk − yk(p))2 (2.15)

7



2. Theory

In Equation (2.15), p is the set of parameters, N is the number of data points, zk
is the kth measured data point and yk is the kth estimated data point [17].
When the purpose of the optimisation is to find parameter values within a defined

region, constrained optimisation can be applied. Interior point algorithms visually
adds a barrier in the parameter space to keep the solution within the feasible set.
This is achieved by the addition of a penalty term to the objective function.

χs(x) ≈ νχ̂s(x) :=

ν
∑m
i=1 φ[gi(x)], if gi(x) < 0, i = 1, ...,m

+∞, otherwise
(2.16)

The function χs is called the indicator function of the set S where S is the feasible
set [16]. In Equation (2.16), x is the parameter vector, ν is a penalty parameter,
gi(x) is constraint i and m is equal to the number of constraints [16]. The function
φ is characteristic for the type of interior point method applied.

2.5 Parameter identifiability
When it comes to the estimation of parameters in the modelling of a biological
system, an identifiability analysis is performed to determine if the parameters can be
uniquely estimated based on the available input-output data [18]. An identifiability
analysis can be either a priori or data-based. In an a priori approach, it is determined
whether a parameter is structurally identifiable or not, meaning that its value can
be estimated based on an ideal set of noise-free input-output data [17]. When
the identifiability analysis is data-based, it is instead investigated if a parameter
is numerically identifiable. A numerically identifiable parameter is a structurally
identifiable parameter that can be estimated given real data with noise [17].

2.5.1 Structural identifiability
There are several approaches available that can be used to determine if a parame-
ter is structurally identifiable. Approaches used for this purpose are either global,
meaning that the identifiability holds for all possible values of the parameter, or
local [18]. A package was developed for Mathematica that can be used to determine
the structural identifiability of model parameters given a measured model output
[19]. In this package, the method used is local and is based on the rank-test for
structural identifiability. The basic idea is that a set of parameters are structurally
identifiable if they can be uniquely determined based on the time derivatives of the
inputs and outputs of the system.

2.5.2 Numerical identifiability
To determine if a parameter is numerically identifiable, a sensitivity analysis can be
performed. The sensitivity analysis is used to decide which parameter values affect
the model output, and thereby give a high relative parameter sensitivity, and which
do not [17]. If the model output is not significantly affected by the variation of a

8
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parameter, the sensitivity of that parameter is low and its value hard to identify [17].
To check this, it is common to observe the variance of the parameter estimate and
to investigate how it correlates with other model parameters. A parameter estimate
with a small variance and with low correlation with other parameter estimates is
likely to be a good estimate [17]. The variances and correlations of parameters can be
obtained from the covariance matrix where the non-diagonal elements can be used to
calculate the correlations and the diagonal elements are the variances [17]. In order
to get a relative measure of the variance of a parameter estimate, the coefficient of
variation can be calculated. The coefficient of variation for a parameter, pi, is equal
to the quotient between the standard deviation, σi, and the parameter value.

cv(pi) = σi
pi

(2.17)

A lower bound on the covariance matrix can be found with the Fisher Information
Matrix.

COV(p̂) ≥ F−1(p̂) (2.18)

In Equation (2.18), p̂ is the vector of parameter estimates and F is the Fisher
Information matrix [17].

F (p) =
(
∂Y
∂p

)T
W

∂Y
∂p

(2.19)

The Fisher Information matrix is calculated with the Jacobian, ∂Y
∂p

, and the data

covariance matrix, W . The data covariance matrix have diagonal entries wii = 1
σ2
i

where σ2
i is the variance of data point zi [17]. The non-diagonal elements of the

matrix are the covariances of the data points. It can be noted that the Hessian of
the objective function can be approximated using the same calculation as for the
Fisher Information matrix [17].

Ĥ '
(
∂Y
∂p

)T
W

∂Y
∂p

(2.20)

The Jacobian is calculated as shown below.

∂Y
∂p

=


∂y1
∂p1

∂y1
∂p2

. . . ∂y1
∂pm

∂y2
∂p1

∂y2
∂p2

. . . ∂y2
∂pm... ... . . . ...

∂yn
∂p1

∂yn
∂p2

. . . ∂yn
∂pm

 (2.21)
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2. Theory

Here, yi is the output obtained at time point ti, pj is parameter j, n is the number
of data points and m the number of parameters [17].
The above-mentioned approach to a numerical sensitivity analysis is local since

the Jacobian is evaluated at a given set of parameter values. This means that the
conclusion regarding whether the model parameters are numerically identifiable or
not can only be drawn around a given point in the parameter space. In contrast
to this, there exist global identifiability approaches that allow the investigator to
determine if a parameter is numerically identifiable on the entire set of feasible
parameter values. Variance-based sensitivity analysis approaches aims at resolving
which uncertain parameters that explain the most of the variance in the model
output. One such approach is the calculation of Sobol’ indices. These indices are
based on a decomposition of the output variance into sums of contributions of first-
order, second-order, third-order, and so on, parameter effects [20]. For a set of
parameters u ⊂ 1, ..., d, where d is the number of parameters, the Sobol’ index is
defined by the following equation.

Su = V ar[Gu(Xu)]
V ar[G(X)] (2.22)

In Equation (2.22), G(X) is the model output as a function of X consisting of random
vectors Xj with j = 1, ..., d and Gu(Xu) is the model output of Xu consisting of
random vectors Xj for all j ∈ u [20]. This means that the term V ar[G(X)] is the
total variance of the model output while V ar[Gu(Xu)] is the variance explained by
the parameters in u. Monte Carlo-based estimators can be used to calculate these
quantities. The first-mentioned quantity can be calculated as follows.

V ar[Gu(Xu)] = 1
2N

N∑
i=1

[(G(A)(i) − µ(A))2 + (G(B)(i) − µ(B))2]

µ(A) = 1
N

N∑
i=1

G(A)(i)

µ(B) = 1
N

N∑
i=1

G(B)(i)

(2.23)

In Equation (2.23), A and B are sampling matrices of size N × d where each row is
a sampled point in the parameter space [20].
The variance explained by a single parameter j can be estimated by the following
equation.

Sj · V ar[G(X)] = 1
N

N∑
i=1

G(B)(i)(G(AB({j}))
(i) −G(A)(i)) (2.24)

In the equation, AB({j}) is the sampling matrix A where column j has been replaced
with the corresponding column from matrix B [20].
The rows of matrices A and B in Equations (2.23) and (2.24) are samples from

the parameter space S ∈ Rd, with d the number of uncertain parameters. For the
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2. Theory

construction of sampling matrices, one commonly used method is latin hypercube
sampling. The columns of a Latin Hypercube Sample (LHS) is initialised with
d random permutations of the integers 1,...,n where n is the number of sampled
points [21]. Each element d(i)

j in row i of column j is then transformed to get the
distribution, F , of parameter j.

x
(i)
j = F−1

d
(i)
j − 1
n− 1


Here, x(i)

j is the final element in row i, column j of the LHS [21].
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Chapter 3
Methods

Three data sets were used in the parameter estimation process in order to fit the
model of replicative ageing to the following S. cerevisiae strains: wild-type, sir2∆
and fob1∆. Continuous and constrained optimisation was applied with a quasi-
Newton method in order to fit the model to experimental data. A structural iden-
tifiability analysis was performed as well as numerical sensitivity analysis on a local
and global scale. In addition to this, replicative lifespan data of yeast deletion strains
was analysed and categorised. To connect the RLS data analysis to the model of
replicative ageing, it was investigated how the parameters of the model affect the
RLS of the model simulations.

3.1 Experimental data
The cell area data generated with the purpose of parameter estimation consists of
single-cell growth curves with the area given in µm2 and the time given in minutes.
The data was obtained with holographic microscopy for wild-type yeast and the
sir2∆ and fob1∆ deletion strains. The number of curves and the total number of
data points for each of the data sets are shown in Table 3.1.

Table 3.1: An overview of the data sets available for wild-type yeast and the sir2∆
and fob1∆ deletion strains. The table shows the number of daughter cell and mother
cell curves and the total number of data points in each data set.

Daughter cells Mother cells Data points
Wild-type 6 9 11,188

sir2∆ 12 10 30,221
fob1∆ 27 23 89,391

Examples of a daughter cell curve and a mother cell curve from the wild-type yeast
data set are shown in the figure below.
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Figure 3.1: An example of a daughter cell curve and a mother cell curve from the
wild-type yeast single-cell area data set.

3.2 Optimisation
The built-in MATLAB function fmincon was used to perform constrained continuous
optimisation on the non-dimensionalised version of the model of replicative ageing,
System (2.5). For simplification, all of the variables and parameters in the non-
dimensionalised model will from hereon be denoted as in the original model. An
interior point method was utilised to infer the starvation constraint, Equation (2.8),
on the optimisation. Upper and lower bounds where set on the parameters as follows:
Q ∈ [0, 1], g ∈ [1, 10] k1 ∈ [0, 1] and k2 ∈ [0, 1]. The Hessian of the objective function
was updated with the BFGS method. To solve the system of ODE:s, the ODE-solver
ode45 in MATLAB, that applies a Runge-Kutta method, was used.
For the purpose of the optimisation, three data sets were created; one for wild-type

yeast and one for each of the sir2∆ and fob1∆ deletion strains. Of the available
experimental data over single-cell area, only those curves that were identified as
belonging to daughter cells were used for the optimisation. It was assumed that the
cell area is proportional to the mass of the cell and that the daughter cells have
D ∼ 0. As a result of these assumptions, the cell area was approximated with the
total amount of intact protein, P , in the cell.
The experimental data was non-dimensionalised in order to match the output of

the model. The area of all of the data curves was scaled with the generation time. It
was assumed that the growth curves are approximately linear and that the cell area
at the generation time should be equal to 1, the maximum amount of intact protein
in the non-dimensionalised model. Scaling was performed for each data curve as
follows.
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y = tend
Aend · gt

·A (3.1)

In the equation, y is the vector of scaled data points, tend and Aend are the time
and the area of the last data point of the curve, respectively, and A is the vector
of non-scaled data points. Based on a daughter cell curve from the sir2∆ data set
for which a division was observed, the generation time, gt, of the daughter cells was
estimated to 120 minutes. Since the cells are of an early generation, it was judged
valid to assume that the generation time is the same for all of the three investigated
strains. The time was scaled as τ = t · µmax with µmax = 0.5h−1. The Monod
constant was set to KS = 2/3 and the substrate concentration to S = 1.
The approach was to fit the model to all of the growth curves in a data set

as follows. For each growth curve, a simulation was run with initial conditions
(P0, D0) = (y0, 0) where y0 is the scaled area of the first data point in the curve.
The simulation was terminated when P reached the y-value of the last data point.
Linear interpolation with extrapolation was applied to the model output, P , with
the MATLAB function interp1 to obtain model data point estimates at the time
points of the experimental data. The least-squares equation, Equation (2.15), with
weights wk = 1 was used for the objective function. The objective function was
calculated as a sum over the least squares, averaged over the number of data points
of each individual curve.

3.2.1 Optimisation without RLS constraint
The optimisation approach described above was run for each of the three data sets.
To avoid ending up in a local optimum, the optimisation was run using 150 sets
of initial conditions with Q ranging from 0.2 to 0.4 with step size 0.2, g ranging
from 1.5 to 2.5 with step size 0.5 and k1, k2 ranging from 0.05 to 0.85 with a step
of 0.2. The minima generating the smallest objective function values were selected.
For these, simulations were run to obtain the RLS of the model given the selected
sets of parameters. The RLS was found as follows; initial conditions were set to
(P0, D0) = (1−s, 0) with s = 0.75 and simulations were run until D = 1. Each time
P = 1 was reached, the variables were reset according to Equations (2.6) and (2.7).
The RLS was calculated based on the number of resets made, with the maximum
set to 1,000. The retention constant was set to re = 0.875 for the wild-type and the
fob1∆ strains. For the sir2∆ strain it was assumed that the retention mechanism
is non-functional and re = 0 was used.

3.2.2 Optimisation with RLS constraint
In order to select for parameter values that generate replicative lifespans close to
those of the investigated strains, a penalty term was added to the objective function.
The penalty term was formulated as |RLSmean −RLS(p)|

RLSmean
, where RLSmean is the

mean experimental RLS of the strain and RLS(p) is the replicative lifespan obtained
from simulation as explained in the previous subsection. The optimisation was
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performed as in the preceding case. However, the parameter Q was set to a fixed
value of 0.33, and only the values of g, k1 and k2 were optimised for. A total of 75
initial conditions were tested.

3.3 Parameter identifiability

3.3.1 Structural identifiability analysis
The structural identifiability package developed in Mathematica [19] was used to
determine which parameters in the continuous part of the model of replicative ageing
that are structurally identifiable given that y = P is the measured output. The
initial conditions were set as (P0, D0) = (1− s, 0) with s = 0.75.

3.3.2 Numerical identifiability analysis
For the minima found with optimisation, a numerical identifiability analysis was
performed. A lower bound on the covariance matrix of the parameter estimates
was found with Equation (2.18). Based on the experimental data, the variance of
the data points was estimated to σ2

i = 0.04 for the wild-type yeast data set and
σ2
i = 0.01 for the other two data sets. It was assumed that the data points are non-

correlated. The rate of change of the sensitivities were found by derivation of the
model using ∂

∂t
( ∂P̃
∂pi

) = ∂
∂pi

(∂P̃
∂t

). For the full derivations and ODE:s, see Appendix
1. The ODE:s were solved with the built-in MATLAB function ODE45 with initial
conditions (P0, D0, (

dQ

dt
)0, (

dg

dt
)0, (

dP

dt
)0, (

dD

dt
)0) = (y0, 0, 0, 0, 0, 0) where y0 denotes

the value of the scaled area of the first experimental data point in a data curve. The
sensitivities were interpolated to obtain values at the time points of the experimental
data. The entries of the lower bound on the final covariance matrix were taken as
averages over the values obtained for each of the curves in a data set. Correlation
matrices were calculated from the lower bounds on the covariance matrices. The
coefficient of variation for each model parameter were calculated from the diagonal
of the covariance matrix according to Equation (2.17).
A global sensitivity analysis was performed in order to investigate how insecuri-

ties in the values of the model parameters affect the value of the objective function.
Individual Sobol’ indices were estimated for the investigated parameters with Equa-
tions (2.23) and (2.24). LHS sampling was used to construct sampling matrices of
1,000 observations. The parameters were assumed to have uniform distributions
with Q ∈ [1 · 10−5, 1], g ∈ [1, 10] and k1, k2 ∈ [0, 1]. A total of 10 indices for each of
the model parameters were estimated for all of the three data sets investigated.

3.4 RLS data analysis
A summary of RLS experiments performed on S. cerevisiae gene-deletion strains was
available [15]. Each experiment consisted of a set of RLS measurements obtained on
a given gene deletion strain as well as a set of measurements obtained on wild-type

15



3. Methods

yeast. The experiments used for analysis were selected as follows. Only the ex-
periments on strains with single gene-deletions were investigated. The experiments
with a sample size of five cells or smaller and those where the reference strain had
a mean RLS outside of the normal range of wild-type yeast (20-30) were removed.
Experiments obtained on the same gene-deletions strains regardless of mating type
were merged and new mean replicative lifespans were calculated for the gene-deletion
strains as well as the reference measurements. P-values were calculated using the
Wilcoxon signed rank test and experiments yielding a p-value smaller than 0.05 were
kept for further analysis. Out of the gene-deletions strains that were left, strains
were grouped as short-lived if they had a decrease in RLS of 30 % or more compared
to the reference strain. Strains that had an increase in RLS of 30 % or more were
grouped as long-lived. For the purpose of investigating the gene products of the
deleted genes of the two groups, a cell map tool [22] was used to group the gene
products based on cellular function.
In conjunction to the analysis of the RLS data, it was investigated how the param-

eters Q, g, k1, k2, s and re influence the variance of the RLS of model simulations.
Sobol’ indices were estimated for the model parameters over 10 samples with 1,000
observations. The sampling matrices were constructed with latin hypercube sam-
pling and the distributions of the parameters were taken as uniform distributions
with Q, k1, k2, re ∈ [0, 1], g ∈ [1, 3] and s ∈ [0.5, 1]. Simulations were performed
with the non-dimensionalised model of replicative ageing to find the RLS, using the
sampling points of the constructed matrices, given that the initial amount of damage
in a cell is equal to zero. The maximum RLS of the simulations was set to 1,000,
assuming that a cell is immortal if the RLS is equal to or larger than that.
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Chapter 4
Results

This chapter presents the outcome of the optimisation, including parameter esti-
mates for all of the three investigated strains. The results of the identifiability and
sensitivity analyses are used to evaluate the certainty of the estimates and the two
optimisation approaches applied are compared. Lastly, the results from the RLS
data analysis are presented.

4.1 Optimisation

4.1.1 Optimisation without RLS constraint
The minima and objective function values obtained with optimisation for each in-
vestigated strain are shown in Table 4.1. Shown in the table are also the replicative
lifespans found with model simulations using the given sets of parameters.

Table 4.1: Minima found with optimisation. Shown in the table are the objective
function and parameter values at the minima and the RLS obtained with model
simulations using the given sets of parameters.

LS value Q g k1 k2 RLS
Wild-type 0.06826 0.04946 7.285 0.9999 0.9999 0

sir2∆ 0.03942 0.04097 7.977 0.9683 0.9920 0
fob1∆ 0.09692 0.04493 7.353 0.9999 0.9999 0

The differences between the values of the parameter estimates obtained for the
three strains are minor, Table 4.1. For all three strains, the estimated values for the
parameter Q are small, which would mean that the cells barely have any resilience
to damage accumulation. In addition, the values of g are higher than expected;
the prediction would be that the parameter should have a value above, but still
close to, 1. The reasoning behind this is that an old cell with a damage amount
of D ∼ 1 should have a slow growth, such that the growth term µ(S)P (g − D)
is close to zero. Moreover, the values of k1 and k2 are close to their upper limits
and almost equal for all strains. As a consequence of this, in combination with the
assumption that D ∼ 0, more damage will form than will be repaired since the
damage formation is proportional to P while the repair of damage is proportional
to D. It is indeed expected that damage will accumulate with age. However, a
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higher damage formation in combination with a low damage resilience, Q, leads to
the violation of the clonal senescence constraint, equation (2.9).
In order to visualise how the model fits to the experimental data given the obtained

minima, Table 4.1, model simulations were run and the output, P , was plotted
together with the data curves, Figure 4.1. The simulated curves were initialised at
(P0, D0) = (yi0, 0) and terminated at P = yiend where yi0 and yiend are the values of
the scaled cell area of the first and the last data point, respectively, of experimental
curve i.
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Figure 4.1: Plots of the experimental data together with simulated output P .
Simulations were run with initial conditions (P0, D0) = (yi0, 0) and terminated at
P = yiend where yi0 and yiend are the values of the scaled area of the first and the last
data point, respectively, of experimental curve i. The colours represent individual
curves, where curve i has the same colour in both the experimental and the simulated
case. Parameter values were set according to the minima obtained with optimisation.
Top panel: wild-type. Middle panel: sir2∆. Bottom panel: fob1∆. To the left in
each panel: all curves in the data set and their simulated correspondences. To the
right: a representative example.
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The cells in the model simulations die before they have time to divide, Figure 4.1.
The reason for this is that the damage content becomes too large. This, in addition,
renders the assumption of zero damage invalid. The objective function used in the
optimisation does not take into account what happens in the simulations beyond the
last experimental time point, hence the bad fits beyond this point are overlooked
during the parameter estimation process.

4.1.2 Optimisation with RLS constraint
The results from the optimisation with the RLS constraint are shown in Table 4.2.

Table 4.2: Minima found by optimisation with the addition of an RLS constraint to
the objective function. Shown in the table are the objective function and parameter
values at the minima and the RLS obtained with model simulations using the given
sets of parameters. The parameter Q was set to 0.33.

LS value g k1 k2 RLS
Wild-type 0.1975 4.230 0.3569 0.7471 23

sir2∆ 0.4832 6.056 0.8596 0.2043 9
fob1∆ 0.2596 4.185 0.2356 0.4336 32

Next, the values of the parameter estimates obtained with the two optimisation
approaches, Tables 4.2 and 4.1, are compared. The estimates found with the RLS
constrained optimisation approach are judged as more reasonable. The estimates for
the parameter g are still higher than expected, but at least smaller in comparison.
The most difference is seen in the estimates for k1 and k2, which are no longer close
to their upper limits. For wild-type yeast and the fob1∆ strain, the value of k2 is
approximately twice as large as that of k1. This means that the repair rate is large
enough to compensate for the damage formation. In addition to this, with Q set to
0.33, the cells have some damage resilience, meaning that they can proliferate even
in the presence of damage inside of the cell.
In the case of the sir2Delta strain, the estimated value of the damage formation

rate, k1, is larger than the estimate for the repair rate, k2. This implies that the
sir2∆ strain does not repair damage to the same extent as the other two investi-
gated strains do. However, note that it was assumed that the sir2∆ strain have
a malfunctioning retention mechanism, with re = 0. As a consequence, less dam-
age accumulation occur inside of the mother cell and the need for damage repair is
seemingly smaller. On the other hand, with a non-functional retention mechanism,
daughter cells are formed with more damage and therefore get a possibly shorter
replicative lifespan than their mothers. It would as a result have been of interest to
evaluate the RLS of the model as an average over a whole population where not all
daughter cells were born with zero damage. In parallel to this, the assumption of
zero damage might not be valid for the sir2∆ strain. For further investigations, the
assumption that D ∼ 0 should be removed so that the model could be fit to mother
cell data or to data generated on cells of older generations.
The replicative lifespans found by simulations using the minima obtained with

optimisation, Table 4.2, shows that it is possible to fit the model to experimental
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data and at the same time generate parameter estimates that give a model RLS close
to that of the investigated strain. For the wild-type yeast and the fob1∆ strain, the
replicative lifespans found by model simulations are close to the experimental mean
values. However, the RLS obtained for the sir2∆ strain is slightly outside of the
range 14.0± 4.80 found by experiments.
The fit of the model output P , using the found minima, to experimental data was

visualised, Figure 4.2.
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Figure 4.2: Plots of the experimental data together with simulated output P .
Simulations were run with initial conditions (P0, D0) = (yi0, 0) and terminated at
P = yiend where yi0 and yiend are the values of the scaled cell area of the first and
the last data point, respectively, of experimental curve i. The colours represent
individual curves, where curve i has the same colour in both the experimental and
the simulated case. Parameter values were set according to the minima obtained by
optimisation with an RLS constraint. Top panel: wild-type. Middle panel: sir2∆.
Bottom panel: fob1∆. To the left in each panel: all curves in the data set and their
simulated correspondences. To the right: a representative example.
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The fits obtained with the RLS constrained optimisation procedure are not as good
as the ones obtained with the first approach, considering only the time span of the
experimental data. This is reflected in the fit plots, Figures 4.1 and 4.2, as well as in
the objective function values at the minima. Specifically, the experimental growth
curves seem to have a logarithmic shape while the simulated growth curves are more
close to being exponential.

4.2 Parameter identifiability

4.2.1 Structural identifiability
The local evaluation of the structural identifiability was performed for the parame-
ters in the continuous part of the model of replicative ageing. It showed that all of
the parameters Q, g, k1 and k2 are structurally identifiable given that y = P is the
measured output.

4.2.2 Numerical identifiability

4.2.2.1 Optimisation without RLS constraint

The coefficients of variation for Q, g, k1 and k2, Table 4.3, were calculated as the
quotients between the estimated lower bounds on the standard deviations and the
values of the parameter estimates.

Table 4.3: Coefficients of variation for the parameter estimates obtained by opti-
misation without RLS constraint.

Q g k1 k2
Wild-type 5.440 1.123 5.426 2.476

sir2∆ 2.941 0.5515 2.999 0.8451
fob1∆ 2.131 0.4358 2.114 0.6819

All of the coefficients of variation calculated for the estimates of Q and k1 are larger
than 1, Table 4.3, indicating that these parameters are locally non-identifiable based
on the experimental data. However, for the two deletions strains, the coefficients of
variation of g and k2 are smaller than 1. This implies that g and k2 are numerically
identifiable for the deletion strain data sets.
The correlation matrices for the parameter estimates, Tables 4.4 to 4.6, were found

from the lower bounds on the covariance matrices.
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Table 4.4: Correlation matrix for the parameter estimates obtained for wild-type
yeast by optimisation without RLS constraint.

CORRwild−type(p̂) =
Q g k1 k2

Q 1
g 0.9939 1
k1 0.9933 0.9998 1
k2 -0.6468 -0.5621 -0.5551 1

Table 4.5: Correlation matrix for the parameter estimates obtained for sir2∆ by
optimisation without RLS constraint.

CORRsir2∆(p̂) =
Q g k1 k2

Q 1
g 0.9973 1
k1 0.9976 0.9999 1
k2 -0.5782 -0.5194 -0.5205 1

Table 4.6: Correlation matrix for the parameter estimates obtained for fob1∆ by
optimisation without RLS constraint.

CORRfob1∆(p̂) =
Q g k1 k2

Q 1
g 0.9977 1
k1 0.9984 0.9997 1
k2 -0.8530 -0.8202 -0.8232 1

The correlation matrices indicate a high correlation between the parameter estimates
for all of the data sets. An exception can be observed for the damage repair rate,
k2, in the cases of the wild-type yeast and the sir2∆ strain. The estimates of this
parameter are in these cases only moderately correlated with the other parameter
estimates. Likewise, for the wild-type yeast, the estimate for k2 has a large coefficient
of variation, Table 4.3.
The Sobol’ indices for parameters Q, g, k1 and k2 were estimated for each of the

three strains investigated, using the objective function as the output. The values of
the indices are visualised in a boxplot, Figure 4.3.
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Figure 4.3: Estimated individual Sobol’ indices, Sj, for the model parameters with
the objective function as the output. The values were obtained for 10 samples of
size 1,000, generated with LHS sampling.

The estimated Sobol’ indices, Figure 4.3, show that the parameter g explains most
of the variance in the objective function. All of the other parameters explain only
a small fraction of the variance observed. This holds especially for parameters Q
and k2, that explain less than 1% of the observed variance for all of the three data
sets. As a result, g is supposedly the parameter that is the easiest to identify on a
global scale in the optimisation problem. Note that the results might be affected by
the broader span of investigated values for g. In addition, there might be significant
second-order, or higher, effects not investigated here.

4.2.2.2 Optimisation with RLS constraint

The coefficients of variation for the estimates of g, k1 and k2 are shown in Table 4.7.

Table 4.7: Coefficients of variation for the parameter estimates obtained with
optimisation inferring a constraint on the RLS.

g k1 k2
Wild-type 0.2177 1.803 4.248

sir2∆ 0.3967 1.905 11.20
fob1∆ 0.2725 3.286 9.719

Although the coefficients of variation for the parameter g are smaller than 1, Table
4.7, the coefficients for k1 and especially k2 are large. This indicates that only g is
numerically identifiable.
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The correlation matrices for the three sets of parameter estimates, Tables 4.8 to
4.10, were obtained from the lower bounds on the covariance matrices.

Table 4.8: Correlation matrix for the parameter estimates obtained for wild-type
yeast by optimisation with an RLS constraint.

CORRwild−type(p̂) =
g k1 k2

g 1
k1 0.9417 1
k2 0.3324 0.6290 1

Table 4.9: Correlation matrix for the parameter estimates obtained for sir2∆ by
optimisation with an RLS constraint.

CORRsir2∆(p̂) =
g k1 k2

g 1
k1 0.9944 1
k2 0.9046 0.9442 1

Table 4.10: Correlation matrix for the parameter estimates obtained for fob1∆ by
optimisation with an RLS constraint.

CORRfob1∆(p̂) =
g k1 k2

g 1
k1 0.9757 1
k2 0.6216 0.7770 1

The correlations between the parameter estimates are moderate to high, Tables 4.8
to 4.10. As in the previous case, less correlation is observed for the estimates of
the damage repair rate, k2, but only for the wild-type yeast and the fob1∆ deletion
strain. Likewise, the coefficients of variation obtained for the estimates of this
parameter are large, Table 4.7.
The estimated individual Sobol’ indices for the objective function with an RLS

constraint are displayed in a boxplot in Figure 4.4.
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Figure 4.4: Estimated individual Sobol’ indices, Sj, for the model parameters. The
investigated output is the objective function with an inferred RLS constraint. The
values were obtained for 10 samples of size 1,000, generated with LHS sampling.

If the estimated Sobol’ indices obtained for the objective function with and without
an RLS constraint are compared, it can be deduced that the parameter g has a
smaller relative effect on the objective function when an RLS constraint is added to
it. On the other hand, the damage formation rate, k1, explains a higher percentage
of the variance observed in the output with the constraint inferred. However, the
variance explained by the parameter k2 is still small in comparison. This implies
that the damage repair rate, k2, is hard to identify with the given objective function
and experimental data. The individual Sobol’ indices does not sum to one for any
of the data set, indicating that there are second-order, or higher, effects present.

4.3 RLS data analysis
Out of the replicative lifespan data, a total of 668 single-gene deletion strains were
used for analysis [15]. Of these strains, 136 were grouped as short-lived (a decrease
in RLS of 30 % or more compared to wild-type yeast) whereof one was the sir2∆
strain. A total of 40 deletion strains were grouped as long-lived (an increase in
RLS of 30 % or more compared to wild-type yeast). The fob1∆ strain had a mean
increase of 25 % in RLS and was therefore not classified as long-lived in this analysis.
Cell maps over the gene products of the deleted genes are presented in figure 4.5,
where the cell map on the top shows all of the gene products (yellow) and the one in
the bottom displays the gene products whose deletions resulted in short-lived (red)
and long-lived (green) strains.
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Figure 4.5: Cell maps over the products of the deleted genes of investigated single-
gene deletions strains. Top: cell map over the products of all the deleted genes.
Bottom: cell map over the gene products whose removal led to a significant decrease
(red) or increase (green) in RLS.
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It can be concluded that not all of the areas of the cell map are represented by
the gene deletions investigated, top cell map in Figure 4.5, meaning that no general
conclusions can be drawn about the gene product distribution. However, a distinc-
tion can be observed between the long-lived and the short-lived groups, bottom cell
map in Figure 4.5, which is not likely to be a result of insufficient representation.
Two main areas are revealed where either the short-lived or the long-lived group
dominates; DNA replication and repair and Ribosome biogenesis.
There is one intuitive explanation to why the deletion of genes involved in DNA

replication and repair leads to a decrease in the RLS. If the replication or the DNA
repair process is faulty, errors will be surpassed. This will lead to the production of
damaged proteins and, ultimately, to the accumulation of damage. In the perspec-
tive of the model of replicative ageing, this would be the same as to have a high
damage formation rate, k1. Since a high damage formation rate will lead to a faster
increase in the amount of damage D inside of the cell, the damage threshold will be
reached at an earlier stage in the yeast lifespan and the cell will undergo premature
death. In the case of the sir2∆ strain, the sir2 protein (sir2p) is believed to stabilise
ribosomal DNA, leading to a decrease in the formation of ERCs. The removal of
this protein would therefore result in an increase in damage formation [23]. Note
that this is apart from sir2p being involved in the retention mechanism.
That the deletion of genes involved in ribosome biogenesis extend the RLS of

yeast cells has been found previously [15]. It is proposed that the cells have evolved
to have a high fitness rather than a long lifespan [15]. This is connected to the
evolutionary theory of ageing where a decreasing selection pressure with age lead to
the occurrence of deleterious genes that have an effect only at later life stages.
The conclusion that can be drawn from the RLS data analysis is that there exist

cellular processes that are fundamental in order for a cell to have a normal lifespan
and that partly seem to be connected to the damage control of the cell. At the same
time, there are gene products that, on the contrary, seem to reduce the replicative
lifespan when present in the cell, indicating that the cells have not evolved to live
as long as possible. Instead, it is argued that, during the course of evolution, the
fitness of the population has been of greater importance than the lifespan of the
individual.
In order to connect the replicative lifespan data analysis to the model of replica-

tive ageing, it was investigated how the model parameters affect the RLS of the
model. Individual Sobol’ indices were estimated for the model parameters with the
replicative lifespan of the model as output, Figure 4.6.
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4. Results

Figure 4.6: Estimated Sobol’ indices, Sj, for the model parameters, with the RLS
of the model as the output. The values were obtained for 10 samples of size 1,000,
generated with LHS sampling.

The estimated Sobol’ indices, Figure 4.6, indicate that the damage formation rate,
k1, explains most of the variance in the replicative lifespan of the model, followed
by the damage resilience parameter, Q, and the damage repair rate, k2. What
these three parameters have in common is that they are all connected to how the
individual cell handles damage. This is in accordance with the three strategies for an
increased individual RLS established previously; to decrease the damage formation
rate (k2) and to increase the repair rate (k1) or the damage resilience (Q) [5]. In
comparison to this, parameters s and re, determine how much damage the daughter
cell inherits from the mother cell and thus might explain the variance in the RLS
on a population basis rather than on an individual basis.
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Chapter 5
Discussion and conclusion

In the field of systems biology, the level on which an analysis can be performed is in
part determined by the experimental data. On the one hand, there is the large-scale
population data; like the replicative lifespan data analysed in this project. This kind
of experimental data allows for the observation of general trends and patterns, and
conclusions can be drawn regarding, for example, a whole population or genome.
On the other hand, it is possible to zoom in and record data on a single-cell level,
in order to get a more detailed understanding. This was exploited in the parameter
estimation, where microfluidics data was used to fit the damage accumulation model
of replicative ageing to the behaviour of individual cells. To take the research further,
the next step would be to merge the inferences made from investigations on several
levels to create a bigger picture; the details of the small-scale analysis can be used
to better understand the general trends observed in the large-scale analysis and vice
versa. The following discussion and conclusion will mainly concern the parameter
estimation.
The analysis performed on the damage accumulation model of replicative ageing

indicate that the continuous model parameters Q, g, k1 and k2 are structurally
identifiable given that the output is y = P . This means that it is theoretically
possible to determine the values of these parameters with optimisation, assuming
zero or negligible damage inside of the cells.
The parameter estimates obtained by optimisation without the RLS constraint

are judged as unreasonable given the structure of the model of replicative ageing.
Specifically, the estimates for the damage resilience parameter Q are small, generat-
ing an environment where the simulated cells die before they have time to divide. In
other words, the clonal senescence constraint is violated. Moreover, the numerical
identifiability analysis indicate that the validity of some of the parameter estimates
is uncertain. The global sensitivity analysis showed that most of the variance in the
objective function used is explained by the parameter g and that only a small fraction
of the observed variance is explained by the three other parameters. This implies
that all of the investigated parameters but g are hard to identify on a global scale
with the implemented objective function. That the optimisation was performed with
daughter cell curves, for which growth is dominant and damage handling secondary,
is likely a reason.
In the second optimisation approach, a replicative lifespan constraint was inferred

on the optimisation and the parameter Q was set to a fixed value. The minima
found with this approach do not violate the clonal senescence constraint. How-
ever, the coefficients of variance obtained for the estimates of k1 and k2 are large
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5. Discussion and conclusion

and the correlations between the estimates for all of the investigated parameters
are moderate to high. This means that, even though the minima found generate
simulations with reasonable replicative lifespans, the parameters are numerically
non-identifiable. The global sensitivity analysis that was performed indicate that
the addition of an RLS constraint induces a shift in the explained variance of the
objective function, where k1 explains more of the variance observed. However, a
majority of the variance is still explained by the parameter g. In addition, only a
small fraction of the variance is explained by k2, indicating that this parameter is
globally hard to identify with the given experimental data and objective function.
In the optimisation without the RLS constraint added to the objective function,

not much difference could be observed between the minima obtained for the three in-
vestigated strains. The results from the second optimisation approach demonstrate
that it is possible to find parameter sets for which the model simulations generate
the desired replicative lifespans, if a replicative lifespan constraint is added to the
objective function. However, optimally, the experimental data should have been
sufficient enough for the model to be adapted to the differences between the investi-
gated strains and, as a result, also reproduce their correct replicative lifespans. With
the aim to achieve this, the next step should be to fit the model of replicative ageing
to data recorded for both mother and daughter cells and to remove the assumption
of zero damage.
The recommendation is to record single-cell mass or area data following one or

several cells from the time when a daughter cell is newly formed and at least for
one or two divisions. If cell divisions can be observed in the data, the constant s
can be estimated based on the differences in cell mass, or area, prior to and after
division. Assuming that a newly formed cell has zero damage, the threshold Pdiv can
be estimated from the first data point y0 of the curve as Pdiv = y0/(1− s) and used
for scaling of the experimental data in place of the generation time. The assumption
that daughter cells are formed with zero damage is less valid for the sir2∆ strain,
due to the loss of the retention mechanism. However, the assumption could still be
judged valid in this context if the cells are of an early generation.
If the constant Pdiv can be estimated from the experimental data, there is no

need to assume that the cells stay damage free. In this way, the cell mass, or
area, can be approximated by y = P + QD, the total amount of intact protein
and damage in the cell. The drawback of this approach is that the parameter Q is
not structurally identifiable. On the advantageous side, if the assumption of zero
damage is removed, the optimisation can be performed including mother cell data,
making the resulting parameter estimates more reliable. This will be valuable, since
the differences between the investigated strains are likely to be more pronounced
when comparing cells of an older age, that have had time to accumulate damage.
As a result, the model could be better adapted to strain characteristics, rendering
it even more useful in the study of the mechanisms behind ageing.
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Chapter A
Appendix 1

A.1 Sensitivities
In the general case, the ODE:s of the sensitivities for P and D are defined as follows.
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Where pi is a parameter, h1 = dP

dt
and h2 = dD

dt
.

The rate of changes of the sensitivities for Q are shown below.
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The rate of changes for the sensitivities for g were derived as follows.
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The rate of changes of the sensitivities for k1 follows below.
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For k2, the ODE:s for the sensitivities were derived as shown below.
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