

Evaluation of open source software
for mobile ad hoc routing in military
tactical networks

Master’s thesis within Computer Systems and Networks

Oscar Holmberg

Department of Computer Science and Engineering
Division Networks and Systems
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2013

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet. The Author warrants that he is the author to
the Work, and warrants that the Work does not contain text, pictures or other material
that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he has obtained any necessary permission from this third
party to let Chalmers University of Technology and University of Gothenburg store the
Work electronically and make it accessible on the Internet.

Evaluation of open source software for mobile ad hoc routing in military tactical networks
Master’s thesis within Computer Systems and Networks

OSCAR HOLMBERG

c© OSCAR HOLMBERG, October 2013

Examiner: PETER LUNDIN

Chalmers University of Technology
Department of Computer Science and Engineering
Division Networks and Systems
SE-412 96 Göteborg
Sweden
Telephone: +46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden October 2013

Abstract

Evaluations of ad hoc routing protocols have been performed in sev-
eral studies, both with hardware and in software simulators. How-
ever, the network topology plays an important role for the protocol
performance. This master thesis evaluates OSPF, OLSR, Babel and
Batman-adv in a tactical network set up. A tactical network is not
a completely ad hoc scenario which makes it different from other
studies. Furthermore, the protocols’ settings are varied and they
are mainly tested against convergence time and generated overhead
traffic. The aim is to find which routing protocol is most suitable in
the tactical network scenario that is tested. The tactical network
set up, consisting of 36 nodes, is created with virtual machines and
software that emulates realistically radio links.

The results show that OSPF can be configured to adapt to a
tactical network. OSPF and Babel shows the best performance
with respect to convergence time and generated overhead traffic.
However, OLSR offers a lot of configuration possibilities which pro-
vides the potential to find a more suitable configuration than those
that are used in the tests. Both Batman-adv and OLSR generates
more overhead traffic than Babel and OSPF for the corresponding
convergence time.

Keywords: Ad hoc routing, tactical network, OSPF, Babel, Batman-
adv, OLSR.

Acknowledgements

I would like to thank my supervisor at Saab, Anders Gunnar, for the opportu-
nity to perform this master thesis and for his valuable input during the project.
I would also like to thank my supervisor at Chalmers, Daniel Cederman, for
his proofreading and comments on the report.

i

Contents

Acknowledgements . i
List of figures . iv
List of tables . v
Abbreviations . vii

1 Introduction 1
1.1 Background . 1
1.2 Objective . 2
1.3 Delimitations . 2
1.4 Methodology . 3
1.5 Related work . 3
1.6 Report structure . 4

2 Literature review 5
2.1 Routing in MANET:s . 5
2.2 Proactive or table-driven routing protocols 5

2.2.1 OSPF . 6
2.2.2 DSDV . 8
2.2.3 OLSR . 10
2.2.4 Batman . 12
2.2.5 Babel . 13

2.3 Reactive or on-demand-driven routing protocols 13
2.3.1 AODV . 14
2.3.2 DSR . 14

3 Test environment 17
3.1 Software . 18

3.1.1 VirtualBox . 18
3.1.2 Radio Link Emulator (RLE) 19
3.1.3 Quagga . 20
3.1.4 Babeld . 20
3.1.5 OLSRd . 20
3.1.6 Batman-adv . 21

3.2 Network set up . 21
3.3 Test definition . 27

4 Results and Discussion 30
4.1 Results with default configurations 30
4.2 OSPF . 34

ii

4.3 OLSR . 35
4.4 Babel . 37
4.5 Batman-adv . 39

5 Conclusion 42

Appendix A - Network topology of test environment 46

Appendix B - Overhead traffic for different configurations, relation
between bytes and number of packets 47

iii

List of Figures

2.1 A mobile ad hoc network where node D moves to a new location.
Changes in the routing tables must always be updated. 9

2.2 The messages sent during a neighbour discovery procedure in OLSR. 10
2.3 The difference of using MPR nodes in the flooding procedure. 11
2.4 Example how an error message is created in order to inform the source

node that the destination can’t be reached 15

3.1 Describes how the communication is allowed in a battalion. The
communication is hierarchical and must follow chain of command. . . 17

3.2 Two virtual machines running on a host computer. The virtual ma-
chines are connected with an internal network inside VirtualBox. . . . 19

3.3 Overview of the routing nodes and how they are connected in a tac-
tical network set up. 21

3.4 Overview of the routing nodes distributed among different radio net-
works. 22

3.5 Example of how the RLE and routing nodes are connected together. . 23
3.6 A layered view that shows a small part of the network and how it is

running inside VirtualBox. 24
3.7 The three physical computers and how they are connected with the

use of VLAN. 25
3.8 A logical view of how the traffic is separated in the three lab computers. 26
3.9 A logical view over the routing nodes where the edges are controlled

by the RLEs. The dotted edges have a packet loss of 100 percent at
some times during the test. Network traffic is logged at all gray nodes. 27

4.1 The ping ratio for all protocols with their default configurations. . . . 30
4.2 Overhead traffic on intermediate nodes when all links have packet loss

from 0 to 25 percent. All protocols have their default configuration. . 32
4.3 Overhead traffic on end nodes when all links have packet loss from 0

to 25 percent. All protocols have their default configuration. 33
4.4 The relation between overhead traffic and convergence time for dif-

ferent settings for OSPF. 34
4.5 The ping ratio for different settings for OSPF. 35
4.6 The relation between overhead traffic and convergence time for dif-

ferent settings for OLSR. 36
4.7 The ping ratio for different settings for OLSR. 37
4.8 The relation between overhead traffic and convergence time for dif-

ferent settings for Babel. 38
4.9 The ping ratio for different settings for Babel. 39

iv

4.10 The relation between overhead traffic and convergence time for dif-
ferent settings for Batman-adv . 40

4.11 The ping ratio for different settings for Batman-adv. 41

v

List of Tables

2.1 Message types of the OSPF protocol 7
2.2 The routing table for node D before moving to the new location. . . . 9
2.3 The routing table for node D after moving to the new location. 9

3.1 How the end nodes send ICMP messages to each other and possible
shortest path between the nodes. 28

3.2 Describes the packet loss on the edges for the five test cases. 28

4.1 Convergence times measured at the node N2RLE3 with default con-
figurations for all protocols. 31

vi

Abbreviations

ANSN Advertised neighbour sequence number
AODV Ad hoc on-demand distance vector
Batman Better approach to mobile ad hoc networking
DSDV Destination-sequence distance vector
DSR Dynamic source routing
EIGRP Enhanced interior gateway routing protocol
ICMP Internet control message protocol
IHU I hear you
IP Internet protocol
MANET Mobile ad hoc network
MDR Manet designated router
MPR Multi-point relay
NIC Network interface card
OLSR Optimized link state routing
OLSRd Optimized link state routing daemon
OGM Originator message
OR Overlapping relay
OS Operating system
OSPF Open shortest path first
OSPFd Open shortest path first daemon
RAM Random access memory
RFC Request for comments
RIP Routing information protocol
SSH Secure shell
TC Topology control
TTL Time to live
VLAN Virtual local area network

vii

Chapter 1

Introduction

1.1 Background

There are many different routing protocols that are designed for different intents and
purposes. Some protocols are designed to cope well with changes while some are
optimized for other objectives. In order to choose the most suitable protocol for your
intents, one has to be aware of the network topology properties. For example, today’s
Internet is a static network with respect to the routers and network infrastructure
that create the backbone of the Internet. Even though new nodes are connected
and others are removed, the backbone network topology is essentially stable. In
contrast, an ad hoc network does not have a fixed network topology and it does
not rely on any fixed infrastructure [1]. This poses new requirements on the routing
protocols that are being used. For the Internet, all routers in the network contain
an up to date routing table in order to select the best route for the traffic. The
routing protocol that ensures that this table is up to date is not designed to cope
with rapid changes in the network topology. The routing protocols for the Internet
are designed for stable and stationary networks. When the routers have found
each other once, there is not much change in the routing table which imposes low
demands on the update frequency for the routing protocol in use. However, because
ad hoc networks does not have a fixed network topology, the nodes in the network
must discover the network topology in order to forward information [1]. In a mobile
ad hoc network (MANET), the nodes do not only have to discover the network
topology once, they have to do so continuously. Because nodes are continuously
moving around, this causes the networks topology to change rapidly. When the
network topology is no longer persistent, the routing of messages between different
nodes in the network gets much more complicated than for a static network. These
properties will significantly increase the demands on the update frequency for the ad
hoc routing protocol [2]. Furthermore, the nodes in a MANET are usually limited
in energy supply, bandwidth and variable connectivity [1]. Therefore, in order to
create a reliable network, the routing protocol must be carefully selected to adapt
to the characteristics of the network [2].

Mobile ad hoc networks can be applied to miscellaneous concepts in both military
and commercial applications. Its concept of building infrastructure-free communi-
cation without any planning can be useful in order to maintain the communication
among a group of soldiers for tactical operations [2]. Even though radio conditions
prevent soldiers to communicate with other nodes directly. The traffic can be for-

1

warded by other nodes and still reach the whole group. However, it is difficult to
find one protocol that will manage all situations well. These types of military net-
works have nodes that are highly mobile and the communication properties of the
radio links are not reliable. The radio link communication is variable in quality and
disruption in the communication often occurs. Therefore, in order to assess how dif-
ferent routing protocols manage with packet loss together with a changing network
topology, a series of simulations is performed in a tactical network environment.

1.2 Objective

The goal of this master’s thesis is to evaluate open source software that implements
different routing protocols for mobile ad hoc networks. Furthermore, the project will
take in to account the different facets that are of importance for military tactical
networks in respect to MANETS. The focus will be on auto configuration of nodes
for establishing, maintaining connectivity as well as routing messages between nodes.
The maturity of code and if there is a working community around the protocol is also
taken into account for the protocols that are selected to be evaluated by simulations.
The protocols are evaluated according to the following main questions:

• How resilient is the protocol against disruptions?

• How much traffic overhead is generated in order to maintain the network topol-
ogy?

This project aims to find a suitable protocol for a mobile ad hoc network that
has the properties of a military tactical network.

1.3 Delimitations

There are a number of routing protocols for ad hoc network. However, only a few
are implemented as open source software and have a working community which
contributes to more stable code. This master thesis includes tests of OSPF, OLSR,
Babel and Batman-adv. OSPF is compared as an alternative against the three ad
hoc routing protocols. Other well known ad hoc routing protocols are explained
in the literature review in order to understand different concepts and problems one
face in ad hoc routing. Furthermore, these protocols have many similarities with
each other and it improves the overall understanding of the routing protocols that
are tested. Nevertheless, these protocols will not be compared against the protocols
that are tested since there are no suitable implementations available as open source.

2

1.4 Methodology

This master thesis consists of three parts. The first part was to perform a literature
review in order to decide which routing protocols that would be most suitable for
the intended application. Additionally, the most common ad hoc routing protocols
were studied to get a more comprehensive understanding of different ad hoc routing
techniques. Most of the information was obtained from research papers and RFC
documents.

The second part of the project was to build the test environment and define test
cases. Saab’s internal documentation was used to get an understanding of tactical
networks and the Radio Link Emulator (RLE) software. The RLE is a software
product developed by Saab which make it possible to emulate realistic radio networks
that control delay, varying bandwidth and packet loss. The RLE runs on Linux and
make use of Linux traffic control to manage the different traffic streams. In order
to create a flexible simulation environment, some modifications were done to the
RLE software. The simulation environment was built using two main components
which was routing nodes and RLE machines. Together with VirtualBox and VLAN
it was possible to create a network with a total of 57 entities that together formed
the complete network. The size of the network was partly decided from limitations
from the physical computers’ RAM which was in total 16GB.

The test cases were designed to provide answer to the problem statement pro-
vided in subsection 1.2. Therefore, the focus of the simulation was to test the pro-
tocols’ resilience against disruption and packet loss but also to compare the amount
of overhead traffic that were generated.

The third part of the project was to run and analyse the simulations for the
selected routing protocols. The test data that was sent during a simulation was
generated with the regular ping command in Linux. To get a full understanding of
what was happening during a simulation, the network traffic was logged at almost
every node. The logging of network traffic was done with a software called Tcp-
dump [3]. However, logging all traffic generated a lot of data to be analysed. In
order to manage all data a Java program was written using the jNetPcap library [4].
The output from this program was used to create different diagrams in order to
evaluate the protocols.

1.5 Related work

There are several papers that evaluate the performance of the protocols that are
tested in this thesis. Some of them run simulation software and some are performed
on actual hardware. [5] evaluates Batman against OLSR in a network that consists
of a 7x7 grid with physical computers inside a 6x12 meter room. The results from [5]
clearly states that Batman-adv is the superior protocol for this environment. An-
other evaluation based on hardware nodes is done is [6] which compares Batman,
Babel and OLSR. Main conclusions is that batman has best packet delivery ratio,
Babel offers best bandwidth and fastest convergence time while OLSR does not per-
form very well compared to the other two. However, none of these tests were done
in a tactical network set up. Moreover, [7] is an evaluation of OLSR in a military
tactical network. The conclusion from [7] is that OLSR is well suited for this type

3

of network and perform relatively well.

1.6 Report structure

Chapter 2 present the literature review which describes different ad hoc routing
protocols. This chapter first introduce the concept of routing in MANETs and it
is further divided into two main categories of routing protocols. The categories are
proactive and reactive routing protocols with the focus on the proactive protocols.

Chapter 3 describes the test environment which includes the network set up, the
test definition and all software that is used. The chapter begins with an overview of
a scenario based on a military tactical network. Furthermore, this chapter explains
how the tests is carried out and what protocols implementations that are used.

The results from the tests are presented and discussed in chapter 4. The main
focus is on overhead traffic and convergence time for various settings for respective
protocol. Moreover, the report ends with a discussion and a conclusion based on
the results.

4

Chapter 2

Literature review

2.1 Routing in MANET:s

Routing protocols for MANETs have higher requirements than protocols designed for
wired communication [8]. This is mainly due to more limited resources in combina-
tion with a continuous topology change. Therefore, a number of MANET protocols
have been developed in order to save resources such as bandwidth or energy con-
sumption [2]. Depending on the application, it is important to choose the most
suitable MANET routing protocol in order to achieve better performance.

The proactive or table-driven protocols are based on the same concept as routing
protocols that are used in wired communication [2]. These routing protocols contain
an up to date table describing the connections in the whole network topology [2].
Ideally, at any point of time, all nodes should have the same table showing the real
time topology of the network. The main advantage with proactive routing protocols
is shorter delay times when two nodes start to communicate. This is because there
should always exist a path to all other nodes in the network.

The other type is the reactive or on-demand-driven routing protocols. In com-
parison with the proactive routing protocols, these protocols do not keep information
about the network topology [2]. When one node wants to communicate with another
node, it broadcasts a request to find the best route to that node in the network [2].
When they are no communication between the nodes, the path is lost and is not
recalculated until further communication is initiated. This saves a lot of overhead
traffic but have a negative effect on the delay time.

There are also some protocols which take advantage of both proactive and re-
active techniques. These protocols are called hybrid protocols. However, it is not
always obvious how a MANET protocol should be categorized. Moreover, in or-
der to select a suitable protocol it is much depending on the type of network and
which resources are most critical to be frugal with. The following sections describe
the techniques that are used in proactive and reactive routing protocols and the
different tradeoffs that must be considered.

2.2 Proactive or table-driven routing protocols

Proactive routing protocols maintain an active route to all other nodes in the net-
work. When a node wants to send data, the path is calculated based on information

5

in the table. The table is updated frequently, regardless of how often the information
is used. However, the benefit comes with short delay times when the data is sent
because of the updated path [8]. The path is calculated using a distance vector or a
link state technique. The distance-vector technique is often based on the Bellman-
Ford algorithm [9] for calculating the shortest path [8]. The Bellman-Ford algorithm
has a dynamic programming approach which means all possible paths are considered
in the optimization. Furthermore, the distance vector information is exchanged to
all the nodes neighbours so the distance information will propagate throughout the
network [8]. In comparison with the distance vector approach, the link state tech-
nique only sends information about the connections to neighbour nodes. In order to
distribute this information to all other nodes, flooding is used [8]. Every node then
calculate the shortest path using Dijkstra’s algorithm [10] or some other shortest
path algorithm. Dijkstra’s algorithm is a greedy algorithm which makes it not as
versatile as the Bellman-ford algorithm.

The following sections will describe how different proactive routing protocols
work. The most important part of the protocols, for example how neighbour dis-
covery and how information is propagated in the network, are explained. The first
protocol is OSPF, which is not developed with ad hoc networks as primary are of
use. However, with its many configuration options it is still possible to adjust OSPF
to better support an ad hoc environment.

2.2.1 OSPF

Open shortest path first (OSPF) is a link-state routing protocol that is often used in
the Internet [11]. The protocol is developed by the Internet Engineering Task Force
(IETF) and is designed to quickly adapt to new topology changes and still send
a minimum amount of routing overhead [11]. However, the protocol is developed
to work in a wired network environment and not a wireless mobile ad hoc network
which result in longer delay times. A wired, more static, network does not need
to adapt to new topologies as often as an ad hoc network. Therefore, it takes
longer time for OSPF to propagate topology changes and it also generates less
overhead traffic. Nevertheless, in this master thesis, the OSPF protocol is used as
an alternative against different ad hoc routing protocols in order to determine if
there are significant performance improvements.

In a link-state protocol, all routers in the network contain a link-state database
that describes the complete network topology. Furthermore, at any point in time,
all routers should have the same link-state database in order to decide how to route
the traffic. Every router collects information about its closest neighbours and floods
this information to the rest of the routers. This is how topology changes propagate
in the network and keep the link-state database up to date. The routing table
in every router is built by information from the link-state database. Furthermore,
the routing table contains the destination to every router in the network together
with the distance and which next hop router the data should be forwarded to in
order to reach the destination. It is always the shortest path that is saved in the
routing table. It is calculated using Dijkstra’s algorithm [10]. OSPF has five types
of messages that are listed in table 2.1. These five messages describe the overall
functionality of the OSPF protocol.

6

Message type Description
1. Hello message For discover and maintain neighbours
2. Database description Description of database and adjacent nodes
3. Link state request Request update from neighbours database
4. Link state update Receive update from neighbours database
5. Link state acknowledgement Acknowledgement of the update

Table 2.1: Message types of the OSPF protocol

The hello message is used to discover and maintain neighbours and are frequently
sent out to all neighbours. However, this process is a bit different depending on which
type of network that is used. In a regular Ethernet network, the broadcast network
type is most commonly used. In a broadcast network, the hello protocol selects a
designated router and a backup designated router in order to minimize the routing
overhead traffic. Moreover, the overhead traffic is only sent to the designated router
that can collect information from several nodes and distribute the information to all
other routers [11].

In a wireless network, there is usually a point-to-multipoint connection between
the nodes. An OSPF network which has a point-to-multipoint configuration does
not select a designated router. Therefore, there is more overhead traffic on this type
of network in comparison with a broadcast network. Moreover, the connections
between the nodes in a point-to-multipoint network are managed as a set of point-
to-point connections. The hello message is frequently sent to all neighbours and it
contains a router priority number, hello interval, router dead interval and a list of all
neighbour routers. The router priority number is used for selecting the designated
router, so for a point-to-multipoint configuration this is not relevant. Furthermore,
the hello interval and the router dead interval specifies how often a hello packet is
sent out and how long time before a node is no longer considered to be active.

The database description packet, message type 2 in Table 2.1, is sent after two
nodes have recognized each other from the hello message. The database description
packet contains information of the database and the adjacent nodes. The two nodes
might need to exchange several database description packets in order to send all
information. When a node has got information of the database it might notice that
some parts are out of date. This is what the link state packets are used for. The node
request an update for a specific part of the database and the other node answer with
a link state update for that part. However, the link state update packet is flooded
in the network which makes is useful for all nodes. The nodes that receive the
information will answer with an acknowledgement either as a multicast or unicast.

There are several attempts to adapt OSPF in order to improve the performance
in ad hoc networks. Three protocols that are an extension of OSPF are briefly men-
tioned below. However, none of these protocols seems to have a solid implementation
with a working community and are not considered in the evaluation.

2.2.1.1 OSPF-MPR

Multi-point relay (MPR) is a concept taken from OLSR in order to create a more
effective flooding procedure [12]. Each node maintains a set called multi point relay
set which contains a subset of all 1-hop neighbours. These nodes are selected so

7

that all 2-hop neighbours can be reached. In this way, the routing overhead data is
minimized in comparison to regular OSPF [12].

2.2.1.2 OSPF-OR

Overlapping relay (OR) is also based on the concept of OLSR but with some further
modifications [13]. The goal for this approach is that a node should only receive
the same data packet once or as few times as possible depending on the network
complexity. If the nodes share information of which node they have in the multi
point relay set they can find overlapping relays and decide that only one node should
keep the overlapping node in the set. In this way the flooding procedure will be more
efficient [13].

2.2.1.3 OSPF-MDR

Manet designated router (MDR) is based on the designated router concept in OSPF
with some modified functionality to make it to work for a MANET [14]. In regu-
lar OSPF an adjacency is formed between two routers only if one of them is the
designated or backup designated router. This is a problem in a point-to-multipoint
wireless network because of the many connections between the nodes. However, this
could be solved by using a spanning tree and let the edges be adjacency and the non
leaf nodes, the nodes that have more than one connection in the spanning tree, be
Manet Designated Router (MDR) nodes. Every router decides if it should be a des-
ignated router based on local information received from hello messages. This means
that a spanning tree is not always created globally but rather several local spanning
trees are created which leads to non-optimal flooding between some regions in the
network [14].

2.2.2 DSDV

Destination-sequence distance vector (DSDV) protocol was developed by[15] in 1994.
DSDV is based on RIP [16] which is a routing protocol designed for wired net-
works [15]. In order to adapt DSDV to an ad hoc network the developer had to deal
with the looping problem that comes with using the Bellman-Ford algorithm [9]
in an ad hoc network environment. The design goal was therefore to preserve the
simplicity of RIP but to solve the looping problem with the Bellman-Ford algo-
rithm [15]. In order to do this, [15] introduced sequence numbers on every entry
in the routing table which made it possible for the nodes to determine stale routes.
When the distance vector information is exchanged the receiving node will always
know if the table should be updated or if the information is outdated. If all nodes
have an up to date routing table, there should not be any loops. All nodes must fre-
quently broadcast the table entries to its neighbours in order to propagate changes
in the network topology. When a node receives an update containing the distance
information and a sequence number, it compares the sequence number in its own
table in order to decide what to do with the information. If the sequence number in
the received information is higher than the one already saved in the table, the new
information will replace the old one in the table. If the received sequence number
are lower the information will be ignored [15]. However, if they are equal the node
must compare the distance information and the shortest route will be saved [15].

8

To explain how this works Figure 2.1 shows an example ad hoc network. The initial
routing table for node D is shown in Table 2.2.

A
B

C

D

E

A
B

C

D

E

Figure 2.1: A mobile ad hoc network where node D moves to a new location.
Changes in the routing tables must always be updated.

Destination Next hop Distance Sequence number
A A 1 A-103
B B 1 B-235
C B 2 C-87
E B 2 E-201
D D 1 D-196

Table 2.2: The routing table for node D before moving to the new location.

When node D detects that the link between node D and node A has failed,
node D will update the distance information to node A to infinity and increment
the sequence number by one. The information will be broadcasted to the other
neighbours in order to propagate the information through the network. Moreover,
that means that no node will have a route to A that goes through D. The link to
node A will be down until some node (node D itself) will send out a message with
higher sequence number that do not have infinity as destination length. As soon
as node D has reached its new location, node A will eventually receive an update
message containing a higher sequence number which means node A will update its
routing table and replace the previous infinity value regarding node D. When all
these are done, the routing table for node D will be as in Table 2.3.

Destination Next hop Distance Sequence number
A A 2 A-104
B B 1 B-235
C B 1 C-88
E B 2 E-201
D D 1 D-198

Table 2.3: The routing table for node D after moving to the new location.

9

DSDV suffers from a fluctuation problem, that is when one node have to change
the table information several times successively because the new information is de-
livered from several nodes in a non-optimal order [17]. However, in order to damp
the fluctuations, the node does not immediately retransmit the new changes in the
routing table. If that was the case, the same problem would propagate through the
network and cause the same problem everywhere. Instead, the node waits to see if
it will receive more possible routes, to the same destination, that are shorter than
the one previously added. This behaviour is good with respect to the traffic overlay
that otherwise would be created. However, the network might suffer from the delay
times that will arrive from the waiting.

2.2.3 OLSR

Optimized Link State Routing (OLSR) is another proactive routing protocol where
every node uses the complete network topology in order to calculate the shortest
path to the destination. OLSR is an improvement on the OSPF [11] routing protocol
that is used for wired networks. However, the distribution of routing information in
OLSR is different compared to OSPF. In order to minimize the overhead flooding in
the same region, the flooding is only done by some special nodes called multipoint
relays (MPR:s) [18]. This will reduce the number of retransmissions that are needed
in order to flood a message to all nodes in the network. The nodes that are selected
to be MPR nodes must keep track of which nodes that have chosen it to be an
MPR node. Furthermore, this set of nodes are called selector nodes and must be
continuously updated by the MPR node [18]. This is the minimal information that is
needed in order to determine the topology of the network [18]. However, to explain
the OLSR protocol more thoroughly, the protocol can be divided in three core
functionalities. These are; link state flooding, multipoint relaying and neighbour
discovery. The neighbour discovery process is described in Figure 2.2 where node A
has just moved in the area of node B.

A B

Hello (empty message)

Hello (Neighbor list: A:asym)

Hello (Neighbor list: B:sym)

Hello (Neighbor list: A:sym)

Figure 2.2: The messages sent during a neighbour discovery procedure in
OLSR.

10

Node A and B frequently sends out hello packets to discover if there are some
other nodes within reach [18]. When node B receives the first hello packet it does not
contain any information about other nodes than A. Therefore, node B will announce
itself as a neighbour to A and send a hello packet containing this information [18].
When node A receives the packet it will notice that its address is included in the
message and will therefore set B to a neighbour [18]. From this point the hello
packets sent from A will include an address to B specifying that B is a neighbour
to A.

The multipoint relay process starts with that each node selects a set of MPR
nodes that are in its 1-hop neighbourhood. The nodes that are selected should
together reach all 2-hop neighbours from the initial node. Now it is only this MPR
set that will retransmit a broadcast from the initial node. The other nodes that
are in range from the node will only receive the broadcast and use the information,
but not retransmit. This is illustrated in Figure 2.3 where the comparison between
having a MRP set and using a regular flooding approach.

Figure 2.3: The difference of using MPR nodes in the flooding procedure.

Figure 2.3 shows that the number of transmissions is significantly less in the use
of a MPR set. In order for a node to keep track of which other nodes that have
selected it in a MRP set, all nodes maintain a Multipoint Relay Selector set (MPR
selector set) that contains this information [18]. Furthermore, a hello message is used
to tell the node that is has been selected in a MPR set. The hello message is sent
frequently and is also used to for neighbour discovery as previously described [18].

As OLSR is a link state protocol it will frequently flood the network with informa-
tion about the links. However, this will be done according to the MPR optimization.
Every node maintains a set that contains information about links to its neighbours,
this set is called the link set. The link set information is distributed to other nodes
in a topology control (TC) messages [18]. The TC messages contain the addresses
to all neighbours of the node together with a advertised neighbour sequence number
(ANSN) [18]. The ANSN is a sequence number generated by the node that sent the
TC message [18]. It will not be increased for every TC message but instead only
when the data is changed in the message [18].

11

When a node receives a TC message the following will be done. If there is no
entry for the node that first created the TC message this will be created and all the
addresses in the TC message will be added with a validity time together with the
ANSN. If it already exist an entry, the first thing to be done is to compare the ANSN
to determine if the data should be replaced or not. It is only when the ANSN is
higher than the already stored ANSN that the addresses are replaced with the new
data. However, if the ANSN is equal to the stored ANSN the data is not changed.
In this case the validity time, that determines for how long time a link is valid, is
increased.

Even though OLSR got much functionality to make it efficient, the implementa-
tion of OLSR differs from the RFC [18]. Some of the proposed solutions does not
seem to work as well as expected. Therefore, the developers at olsr.org have been
working on improvements in order to create a fully function ad hoc routing proto-
col [19]. Some of these improvements are explained in the software section where
the implementation from olsr.org is explained.

2.2.4 Batman

The Batman protocol [20] (better approach to mobile ad hoc networking) is another
proactive routing protocol that is developed for mobile ad hoc networks. In Batman,
the nodes do not keep track of the complete network topology as in OLSR. The
nodes only know the best next hop to all other nodes in the network. In this way,
the best end-to-end path should be used when two nodes are communicating. The
batman-adv algorithm makes use of only one message type called originator message
(OGM). This message is used for both neighbour discovery and to determine the best
next hop node to a specific destination. A node first broadcast an OGM to all its
neighbours which will then be aware of the node existence. The OGM contains the
address of the originator (the node that first created the message), the address of the
sender, TTL value and a sequence number. After the neighbours have received the
OGM they will rebroadcast the message to their neighbours. This time the address
of the sender is changed and the TTL value are decreased. The originator address
and the sequence number remain unchanged. Because every node is retransmitting
the message, the OGM will be flooded to all nodes in the network. In order not to
starve the network, the node makes use of the sequence number to be sure that the
OGM is only broadcasted once.

In order to choose the best next hop neighbour, the node will simply choose the
first OGM that arrives from the originator node. This is based on the assumption
that other OGM that may arrive later have travelled on unreliable links and might
have been exposed to delays or packet loss. If a new OGM from the same initiator
arrives from another neighbour and this OGM has a higher sequence number, the
current next hop neighbour will be replaced by the new one. In this way the current
best next hop neighbour will always be updated if there are any changes in the local
topology. Note that this information is not propagated to all nodes in the network
which saves a lot of overhead traffic.

12

2.2.5 Babel

The Babel protocol [21] is a proactive routing protocol that is developed with prop-
erties from DSDV, AODV and EIGRP. Therefore, Babel is usually described as
a loop-avoiding distance-vector protocol. Babel is designed to work well in both
wired networks as well as wireless mesh networks. The distance-vector approach is
obtained from DSDV with the Bellman-Ford algorithm. However, some additional
properties are implemented in order to increase performance. The loop avoiding
properties is obtained from EIGRP and the diffusing update algorithm [22]. This
algorithm make use of feasibility condition that must be met before a new route is
added to the routing table. Therefore, it can guarantee that only loop-free routes
are selected. A detailed description of this algorithm is explained in [22].

In order to find neighbours, Babel periodically sends out hello packets. When a
neighbour receives a hello packet it will answer with an IHU (I Heard You) packet.
This will confirm that the two nodes now know about each other. The hello and
IHU packet are only transmitted to the closest neighbours and are never forwarded.
In order to distribute the network topology information every node sends out its
routing table information to all its neighbours. These update messages are sent
out periodically but they can also be triggered. If a node has made changes to its
routing table that other nodes should know about a triggered update should be sent
out. In order to be sure that the update is received by the neighbours, the node can
require acknowledgements from the neighbours. However, this is only a good choice
if the number of neighbours is fairly small. Otherwise, the best option could be to
resend the same packet a reasonable number of times to make it likely to reach the
neighbours without sending to much traffic on the network.

When an update message is received, all new routes are checked against routing
loops before they are accepted. If there are significant changes to the routing table,
the node must also send an update message to its neighbours. This is how topology
changes propagate throughout the network. A node can also send a request message
for a specific node. If the node that receives the request has the specific node in its
routing table and the sequence number is higher than the one sent in the request it
must send an update.

2.3 Reactive or on-demand-driven routing proto-
cols

Reactive or on demand routing protocols have a very different approach to find the
routing path in comparison with proactive or table driven protocols. Because routes
are only produced on demand, and only maintained as long as requested, this would
let us ignore non used links completely. If there are no request of communication
between nodes there should be no overhead traffic sent in the network. This will
result in both minimizing energy consumption and traffic overhead compared to
a proactive routing protocol [2]. However, the lack of communication also result
in a disadvantage against proactive routing protocol with longer delay times as a
result [1]. If the network is large, the long waiting times might preclude the use of
a reactive routing protocol.

13

2.3.1 AODV

Ad hoc on-demand distance vector (AODV) is a reactive protocol which means it
will only find routes on demand [23]. However, AODV has many similarities with
the previously mentioned proactive protocol DSDV. Both protocols use the distance
vector technique to calculate the shortest path to a node. Furthermore, AODV
makes use of sequence number, in order to avoid the looping problem, in the same
way as DSDV does.

AODV has three main types of messages in order to deal with route calculations,
these three types are; route request, route reply and route error [23]. AODV only
maintains routes that are in use, all other routes will eventually be deleted in the
routing table [23]. If a node request a new route, that node will broadcast a route
request packet to all neighbours that will retransmit the broadcast [23]. A node
will only retransmit the same route request once in order not to flood the network
several times. All nodes on the way to the destination will add the source node in a
new table entry in order to be able to answer with a route reply that might be sent
later. If the source node already exists in a table it might be updated depending on
the sequence number that is included in the route request packet. The table entry is
updated if the sequence number in the route request packet is higher or equal than
the already saved sequence number and the hop count to the source is less than the
previously stored value. Before retransmitting the route request, the hop count field
is increased by one in order to keep track of how many nodes the packet has passed.

Once the request packet is received by the destination node, or a node that has
an up to date route to the destination, a route can be established. This is done by
sending a route reply packet back to the initial sender node. The route reply is a
unicast reply and will only traverse through the shortest path in the network. When
a node receives the route request packet it knows it is now part of an established
route that has to be maintained until it is no longer in use. If there are no packets
travelling along that path it will time out and the table entry will be deleted. The
time out value is included in the route reply packet.

If a node discovers that a neighbour is no longer in reach it will create a list of
all unreachable destinations that comes as a result of the lost neighbour. A route
error message will be transmitted to all neighbours that are part of a route that
are affected of any unreachable destination from the created list. These neighbours
will retransmit the route error message to the effected neighbours making the error
message to eventually inform the source node about that the rout is no longer valid.

A node can share routing table information with its neighbours by sending pe-
riodical hello messages. When a neighbour node receives a hello message it must
create an active route to that node in order to maintain its neighbour set. The hello
message is actually a route reply message with the destination IP and destination se-
quence number from the node itself. The message has a time to live (TTL) value set
to 1 in order to only send it to the 1 hop neighbours. Furthermore, by sending these
messages frequently, the neighbour nodes can determine when the connection to the
node is lost and should then broadcast an error message as previously described.

2.3.2 DSR

Dynamic source routing (DSR) [24] protocol is another reactive or on demand rout-
ing protocol for mobile ad hoc networks. There are two main parts of the protocol,

14

route discovery and route maintenance. In contrast to AODV, that sends frequent
hello messages in order to keep track of close by neighbours, DSR does not send
anything when it is not requested. Therefore, when no links are maintained and no
new links are requested, the traffic overhead is zero [24].

Every node maintains source cash with all known destinations together with the
complete path. If a node wants to send data to a destination that it does not already
know the path to, the discovery process is invoked. The route discovery process
starts with the node sending a request message to all its neighbours containing the
destination address, the source address, an ID of the request message and a list
with all intermediate nodes between the source and destination. All receivers of this
message will add itself to the list in the request message in order to form a route
and then retransmit a broadcast. The nodes will only retransmit the same request
message once because of the request ID that is included in the message. Once a
node finds itself as the destination address, the destination is reached. If this is the
first time the node receives this message it will answer with a request reply message
to the initial source node. If the node does not already have a route to the initiator
in the node source cash, the node will perform its own route discovery. In order to
not create an infinite route discovery loop between these two nodes, the route reply
will be encapsulated in the route request message. When the initiator has received
the route reply the route will be added to the source cash and can now be used for
communication.

However, the network topology will change so there is no guarantee that the
route will be valid when the node wants to send data. Therefore, every node along
the path must confirm that they have managed to forward the data that is sent
from the initiating node. In Figure 2.4 there is an example where one node along
the route is no longer in reach.

A B C D

Error message (D is no longer active)Error message (D is no longer active)

Node D is no longer in reach of
node C. It is C's responsibility
to inform A that the message
was not delivered.

Figure 2.4: Example how an error message is created in order to inform the
source node that the destination can’t be reached

Node A wants to send data to node D using the source route produced by the
route discovery procedure. The route is A->B->C->D, but node D is no longer
active. Node C is the one responsible for the delivery to node D. When C does
not get a response it must inform node A about the broken link with a route error
message so that A can change its source cash regarding this route.

Any link can collect information to its source cash by listening to the traffic
that is received, even though the traffic is not intended for that node. It could be
route requests or route replies that give the node additional information about the
network. Moreover, a node is allowed to reply to a route request packet if it has
a route to the destination in the source cash. But before sending a route reply to

15

the initiator, the node must verify that there are no duplicates in the route list. If
that was the case, it would create an unnecessary long route where the traffic was
forwarded by the same node twice. Furthermore, it can create even more serious
problems when answering to someone else’s route request. Imagine the case when
there are several close nodes together and all of them know about the destination,
and therefore all of them want to answer the route request. If all nodes were to
answer at the same time, it would create collisions and some packets might be lost.
In order to solve this problem, the DSR protocol does not allow every node to
answer at the same time. This is achieved by a randomized function that calculates
a waiting time before the node sends the reply. Moreover, this function is based on
the number of hops from the sending node which means that the close by nodes will
always answer first. Overall, a major disadvantage with DSR is that the header size
is not fixed. It grows with the number of hops because of the list that describes the
path.

16

Chapter 3

Test environment

The network set up is based on tactical network scenario. Therefore, in contrast
with a complete ad hoc scenario, all nodes are not able to communicate with all
other nodes directly. Even if they are close enough so it is technically possible,
the traffic is limited to a few predetermined routes. The hierarchical structure in a
military battalion corresponds to the allowed flow of traffic. A battalion is a military
unit that consists of several companies. The number of companies varies depending
on country, but it is usually between five and ten. Figure 3.1 describes a part of a
battalion and how the different units are allowed to communicate with each other.

Platoon

PRR

UHF

Company Officer

UHF

Platoon

PRR

UHF

UHF

Company

Platoon

PRR

UHF

Platoon

PRR

UHF

Platoon

PRR

UHF

Platoon

PRR

UHF

UHF

Company

Platoon

PRR

UHF

Platoon

PRR

UHF

Platoon

PRR

UHF

Platoon

PRR

UHF

VHF/UHF VHF/UHF

Part of a battalion

Figure 3.1: Describes how the communication is allowed in a battalion. The
communication is hierarchical and must follow chain of com-
mand.

The three largest vehicles in Figure 3.1 are the highest ranking officer in each
company. All information that comes in or is sent out from the company must pass
through this vehicle. The chain of command must not be broken which makes a full
ad hoc scenario irrelevant.

The company vehicles represented by the three largest vehicles in Figure 3.1,
share one common radio network and can therefore communicate with each other.

17

Furthermore, these vehicles have another radio network which can communicate with
the platoon leaders. The platoon leaders are the first vehicle in every platoon in
Figure 3.1. In the same way, the platoon leaders are connected to two radio networks,
one that includes the other platoon leaders and the company leader and one that
includes the rest of the platoon. A vehicle in a platoon can also communicate with
the soldiers in the same platoon. This is done via a personal role radio (PRR)
which all soldiers are equipped with. However, this master thesis is not considering
the soldiers and the communication with PRR because of the increasing number of
nodes.

The test environment is based on a battalion with four companies that each
has eight vehicles. The allowed communication routes are the same as Figure 3.1
describes. The ad hoc scenarios are created between the platoon leaders where traffic
can be routed within the same company. It is also created between the company
leaders which are using a common radio network. A more detailed description of
the test environment is describes in the network set up section.

3.1 Software

This sections describes which software products that is used in the network set
up. First, the virtualization software that is used to create the virtual network is
explained. Second is the RLE software that is used to emulate the characteristics of
a radio network. Then, there is a overview description of the selected software that
implements the routing protocols that are used in the test.

3.1.1 VirtualBox

VirtualBox is an open source software product which can be used for creating virtual
machines (VM) [25]. The first step is to create a virtual machine image where the
new operating system can be installed. The new operating system that is running
inside the virtual machine is called a guest operating system (guest OS) while the
operating system running outside VirtualBox is referred to as the host OS. If one
need to have several virtual machines that looks the same, one can create a clone
once the guest OS is installed on the first virtual machine. There is two possible
ways to make a clone, either a full clone or a linked clone. A full clone is a complete
copy of the original virtual image, so there will be two identical virtual machines.
After the clone is created, the new clone is not dependent on the original image in
any way. The other possibility is to create a linked clone which means that the clone
will use the parent virtual machine image as a base point when it creates the new
machine [25]. This will require less disk space than creating two identical copies. If
one need to have several machines that are going to use the same operating system,
the best solution is to create linked clones in order to save computer resources.
As any regular computer, the virtual machine can be connected to one or several
networks. To illustrate how this works Figure 3.2 shows two VM:s running inside
VirtualBox on a host computer.

18

Host OS

Virtualbox

NIC1Lab computer 1

eth0

Internal Network 1

VM2 NIC1

Guest OS

eth0

VM1 NIC1 NIC2

Guest OS

eth0 eth1

Figure 3.2: Two virtual machines running on a host computer. The virtual
machines are connected with an internal network inside Virtual-
Box.

Moreover, the virtual machine has several virtual network interface cards (NIC:s)
that can be configured in different ways depending on the user needs. In figure 3.2,
VM1 has two NIC:s and VM2 has one NIC. NIC1 on VM1 is configured as a bridged
connection to the host OS. This means that VM1 and the host OS can operate on
the same subnet. Furthermore, this allows other computers to access the guest OS
on VM1 in the same way as they access the host OS.

There is one network option in VirtualBox that is essential to this master thesis,
and that is the possibility to create internal networks. An internal network works
in a very similar way as a bridged network, the main difference is that the created
networks are only accessible inside VirtualBox and not from the outside. In Fig-
ure 3.2, NIC2 on VM1 are connected to an internal network with the name “Internal
Network 1”. In the same way, NIC1 on VM2 is also connected to an internal network
with the name “internal Network 1”. It is possible for different virtual machines to
access the same internal network if they enter the same name of the internal net-
work. Therefore, one is able to connect different virtual machines to each other and
create a large virtual network consisting of virtual machines.

3.1.2 Radio Link Emulator (RLE)

To be able to simulate a radio network it is necessary to use a software product that
can handle all the natural events that can occur in wireless communications. The
software that is used for the simulation in this thesis is called Radio Link Emulator
(RLE) and is developed by Saab. It is developed in order to emulate characteristics
in radio networks such as delay, varying bandwidth and packet loss. The RLE is
running in a separate virtual machine and is connected to the other nodes using
VirtualBox internal networks. This makes it very flexible because it can make any

19

traffic stream get the characteristics of a radio network. The RLE is based on Linux
and its main functionality makes use of Linux traffic control. Linux traffic control
consist of a queuing system where packets gets into different queues depending on
if they are marked with a specific token [26]. In the queue it is possible to drop,
rearrange and also determine the dequeue rate of the packets [26]. This makes it
possible to create different types of traffic flow on different interfaces. It is important
to add that the RLE does not provide any routing; the traffic will only be forwarded
from one interface to one or several others according to the specification of the user.

3.1.3 Quagga

Quagga is an open source routing platform that supports various routing protocol.
The core component in Quagga is the zebra daemon which communicates with the
Unix kernel. The zebra daemon also works as an interface to the implemented
routing protocol. For example, OSPF is implemented in the OSPF daemon called
ospfd. In order to run ospfd, the zebra daemon must be running and configured
with the proper settings.

The Quagga version that is used in this thesis is version 0.99.20.1. Although it
supports implementations of Babel, this implementation is not used. According to
the Babel homepage, the Babel implementation in Quagga suffers from many bugs.
OLSR support is under development for Quagga but in this stage it seems to be
best to go for the standalone daemons instead which are independent from Quagga.
Thus, for the tests, Quagga is used only for running the OSPF daemon.

3.1.4 Babeld

The Babel implementation that is used in the tests is the standalone daemon ver-
sion 1.3.0-1. The Babel daemon is easy to configure and run. However, the software
suffers from some bugs that appeared during testing and configuration. One expla-
nation to this could be that Babel is still a quite new protocol and the community
working with the implementation has still thing to improve. However, the commu-
nity seems to be active and releases new versions of Babel regularly.

3.1.5 OLSRd

The implementation of OLSR that is used in the tests is olsrd which is a standalone
daemon developed by the community at olsr.org [19]. The version of olsrd that
is used is 0.6.1-5. Olsrd differs in some ways from the suggested implementation
described in the RFC. For example, in order to decrease the overhead traffic a new
feature called fish eye was introduced. It is based on limiting the impact of a sent
TC message. A close by neighbour should get a TC message more frequent than
a node that is more distant from the initiating node. To make this happen, the
fish eye mechanism change the time to live (TTL) value for the TC message. TC
messages with a small TTL are sent more frequent than TC messages with a high
TTL. In this way, the most up to date information are only sent to the close by
nodes. However, if the TC message is sent less frequent, the probability of routing
loops may increase if the topology changes. In order to prevent routing loops, the
TC messages must be sent more frequent than the hello messages.

20

3.1.6 Batman-adv

There are two main implementations of the Batman protocol, one which is working
on the network layer and another working on the link layer [27]. The one working
on the link layer (OSI layer 2) is called Batman-adv and it is this protocol that is
used in this master thesis. The other implementation, Batmand (OSI layer 3), is
not developed any further and is therefore not that interesting for this project. The
version of Batman-adv that is used is 2011.4.0.

Routing on the link layer differs quite a lot from routing on the network layer.
One thing is that the protocol cannot make use of the IP address and the kernel
routing table because these are both layer 3 entities. Instead, Batman-adv has
to make use of a kernel module to directly handle the Ethernet frames on layer
2. This comes with both advantages and disadvantages. The main advantage is
performance improvements. It is much less costly to process a frame on layer 2 than
a packet on layer 3. Furthermore, because the routing is done on layer 2, one can run
any other protocol above batman-adv on layer 3 such as IPv4, IPv6 or some other
protocol. However, there are some disadvantages as well. Because of the kernel
module that handles the layer 2 frames there is no routing information forwarded
up to layer 3. This means that outside of the kernel module, one is unaware of the
network topology. From the OS view, all computers in the network are link local
and can be accessed within one hop. This might not be a problem, but one should
be aware of that the kernel module handles everything in terms of routing and the
only information that goes up to layer 3 is the protocol running above batman-adv.

3.2 Network set up

In order to conduct the tests in a credible environment a tactical network set up
is used [28]. The tactical network is created with the use of several radio networks
where each node is limited to one or two radio networks. Figure 3.3 describes the
logical structure between all 36 nodes that are used in the tests. The 36 nodes are
together forming a battalion with 4 identical companies.

Lab computer 1 Lab computer 2

Company leader connected
to two radio networks.

Platoon leader connected
to two radio networks.

Section connected to
one radio network.

Figure 3.3: Overview of the routing nodes and how they are connected in a
tactical network set up.

Each company has a leader which is represented by the dark grey nodes. These
4 nodes are sharing one radio network with each other. This means the traffic can

21

be routed in any way within these four nodes depending on the current connectivity
of the network. Each company consists of 4 platoons which consist of 2 sections.
Each section has a platoon leader, represented by the light gray nodes. The platoon
leader is connected to two radio networks. One radio network with the rest of the
platoon and one radio network in order to communicate with the company leader.
All platoon leaders in the same company are sharing one radio network. That
means this radio network include five nodes where traffic can be routed through
each other. A clear representation of the different radio networks and which nodes
that are sharing the same radio network are presented in Figure 3.4. Furthermore,
each platoon is forming a radio network that connects the two sections together.
Moreover, the traffic that is sent by the sections represented by the white nodes in
Figure 3.3 must go through the platoon leader nodes in order to reach the rest of the
network. This becomes clearer in figure 3.4 where on node in a red radio network
only has one communication path.

Figure 3.4: Overview of the routing nodes distributed among different radio
networks.

Every node in the network is running on a separate virtual machine where the
routing protocols are configured. The network set up makes use of three physical
computers which are referred to as lab computer 1, 2 and 3. Lab computer 1
and 2 are illustrated in Figure 3.3 which shows the distribution among all routing
nodes. However, it is not only the routing nodes that are running in Virtualbox.
The RLE software which simulates the radio networks are also running in different
virtual machines, one virtual machine for each radio network. All RLE are running
on lab computer 1 and 2 except for one that is running on lab computer 3. Lab
computer 3 is used to connect these two computers together by running the RLE
that are connecting the four company lenders together. Furthermore, this RLE is
not running in Virtualbox but directly in the host operating system. How this is
done will be described in more detail later.

Because of the need of a credible test environment, all links between all nodes
must be controlled in manageable way. Therefore, one RLE is used in order to
emulate one radio network. As previously described, the network set up in Fig-
ure 3.4 consists of 36 nodes and 21 radio networks. Thus, there are a total of 56
virtual machines running on lab computer 1 and 2 plus one RLE running on lab
computer 3 in order to connect the computers together. To describe how the RLE
machines works, Figure 3.5 shows the network topology of one company consisting
of 9 nodes and 5 RLE machines. The nodes are named according to which RLE
they are connected to. Thus, the node that is connected between RLE1 and RLE5 is
named N1_RLE3_RLE5 as showed in Figure 3.5. In order to be able to control the
RLE from the physical computer, all RLE machines have a bridge on eth0 through
VirutalBox. This makes it possible to connect to the RLE machines and change the
link’s connectivity. However, it is important to underline that eth0 in the RLE is

22

not part of the RLE bridge that forms the connection between the nodes. If that
was the case, traffic might be routed in an undesirable manner. In the same way, all
routing nodes have a bridged connection to the physical computer. This makes it
possible to access the routing directly from the physical computer. A full network
topology is provided in Appendix A.

RLE5
eth1

192.168.05.0/24

eth6 eth5
eth4

eth2

eth0

eth3

eth7

.21

.21

N1_RLE2_RLE5

RLE2
eth3

192.168.02.0/24

eth1 eth4
eth5

eth7

eth2

eth6

eth0

.22

.11

.11

N1_RLE1_RLE5

RLE1
eth3

192.168.01.0/24

eth1 eth4
eth5

eth7

eth2

eth6

eth0

.12

N2_RLE1

.31

.31

RLE3
eth3

192.168.03.0/24

eth1 eth4
eth5

eth7

eth2

eth6

eth0

.32

.41

.41

RLE4
eth3

192.168.04.0/24

eth1 eth4
eth5

eth7

eth2

eth6

eth0

.42

N2_RLE2

N1_RLE3_RLE5

N2_RLE3 N2_RLE4

N1_RLE4_RLE5

N1_RLE5_RLE21

.01 .01
Bridge to lab computer 1

Router node

To RLE21

Figure 3.5: Example of how the RLE and routing nodes are connected to-
gether.

Figure 3.5 shows 5 RLE machines and 9 nodes which are forming one fourth of the
complete network. Each RLE is configured with its own subnet. Therefore, the nodes
that are connected to two RLEs are also connected to two subnets (two different
radio networks as previously mentioned). In order to define an understandable IP-
address distribution among the nodes, the last 8 bits are always the same for one
specific node. For example, node N1_RLE3_RLE5 that are connected to both
RLE3 and RLE5 have two interfaces, one to each radio network. The IP-addresses
for these interfaces are 192.168.05.31/24 for the RLE5 subnet and 192.168.03.31/24
for the RLE3 subnet. Bit 17-24 describes which RLE the address belong to. The
last 8 bits is in this case the decimal number 31, this will be the same for both
interfaces. Because this node is node nr 1 to connect to RLE 3, the IP-address ends
with a 1. In the same way, node number 2 that are connected to RLE3 has the
IP-address 192.168.03.32/24.

In order to connect a node to the correct RLE, VirtualBox internal networks
are used. As described in Section 3.1.1, if several virtual machines connect to the
same internal network, they can communicate. However, two routing nodes will

23

never be connected to the same internal network because the traffic must always go
through a RLE first. Otherwise the ability to emulate a realistic radio network is
lost. Figure 3.6 describes how RLE1 and N1_RLE3_RLE5 are connected together
on lab computer 1. Note that this is just 2 of 28 virtual machines that are running
in VirtualBox on lab computer 1.

Host OS

Virtualbox

NIC(eth0)Lab computer 1

eth0.100 eth0.10 eth0.20

Internal Network 1
RLE1

Internal Network 2
RLE1

Internal Network 1
RLE5

To RLE5

To
N2_RLE1

RLE1

eth0 eth1 eth2

VM NIC1 NIC2 NIC3 VM NIC1 NIC2

N1_RLE1_RLE5

eth0 eth1

eth0.50

NIC3

eth2

Figure 3.6: A layered view that shows a small part of the network and how it
is running inside VirtualBox.

RLE1 has 3 network interfaces, the first of which is the admin interface (eth0)
that is connected to the host OS interface eth0.100. The eth0 interface on RLE1 is
not part of the RLE bridge, so there can never be a connection between eth0 and
one of either eth1 or eth2. However, eth1 and eth2 are part of the RLE bridge which
means that all traffic that goes through eth1 and eth2 can be modified in terms of
packet loss and longer delay times. It also means that the traffic can be redirected
to other interfaces that are part of the RLE bridge.

In the settings for the virtual machine, which RLE1 is running in, NIC2 is
designated to be connected to “Internal Network 1 RLE1” which is the name of one
of the internal networks. In the same way, NIC1 on N1_RLE3_RLE5 is designated
to be connected to the same internal network as described in Figure 3.6. This simply
corresponds to connect two physical computers with an Ethernet cable. In the same
way, NIC3 on RLE1 is connected to internal network 2 RLE1 which goes on to NIC1
on N2_RLE1 (N2_RLE1 is not included in the figure).

As RLE1, every other RLE on lab computer 1 has its NIC1 connected to eth0.100.
This is the admin network for the RLE machines where commands to the RLEs
will be sent during simulation. The connection in VirtualBox between NIC1 and
eth0.100 is a bridge connection. In the same way, the routing nodes have a bridged
connection to the host OS eth0.50 interface. This is the admin network for the
routing nodes. It is used in order to change the configuration between different
routing protocols, configure the nodes before a simulation and download network
data after a simulation is run.

24

If one now look back to Figure 3.5, one can understand how VirtualBox internal
network helps building up the network environment. Every line in figure 3.5 is an
internal network in VirtualBox. All internal networks connected to RLE5 will have
a names like “Internal Network X RLE5” where x goes from 1 to 5, hence there are
five internal networks connected to RLE5.

There is one radio network which is a bit different in the configuration and that
is the one connecting the four companies together. The four nodes that are coloured
dark grey in Figure 3.3. One different thing about this radio network is that it exists
on all three physical computers. In lab computer 1 and 2, there are two routing
nodes in each computer that are connected to the RLE that runs in lab computer 3.
For example, in Figure 3.5, there is the routing node N1_RLE5_RLE21 which is
connected to RLE5 and RLE21. RLE21 is running in lab computer 3 so the traffic
has to go from lab computer 1 to 3. Because there are three more connections just
like this the traffic must be separated in a logical way since all traffic is sent in
the same cable. This is why VLAN is used for all traffic that is sent between the
physical computers. For example, to make it possible to know which traffic that is
sent from node N1_RLE5_RLE21, one of its interfaces has a bridged connection to
the host OS interface eth0.10. This interface is also illustrated in Figure 3.6. So all
traffic sent from this node to RLE21 are marked as VLAN10 traffic. In the same
way, one interface on lab computer 3 is configured for VLAN10 which will receive
the traffic. This interface is added to the RLE bridge so that the traffic can be
changed according to the simulation. The fact that the RLE is running directly in
the host OS on lab computer 3 makes it easier to add the incoming interface from
another physical computer to the RLE bridge.

Figure 3.7 describes the physical network set up with the three lab computers.
It also describes all VLAN interfaces and bridges that are configured on respective
computer. Note that these are just the configurations in the host OS and not in
Virtualbox. One important part of this interconnection is that lab computer 3 has
two physical network cards which make this set up possible.

eth0

VLAN10 (eth0.10)

VLAN20 (eth0.20)

eth0

VLAN30 (eth0.30)

VLAN40 (eth0.40)

Lab computer 1 Lab computer 2

eth1eth0

Lab computer 3 (RLE)

VLAN100 (eth0.50) VLAN50 (eth0.50)

VLAN100 (eth0.100)

VLAN10 (eth0.10)

Bridge (br0) 192.168.21.0/24

VLAN20 (eth0.20)

VLAN30 (eth1.30)

VLAN40 (eth1.40)
Bridge (br1) 192.168.100.21/24

VLAN100 (eth1.100)

192.168.100.100/24 192.168.100.200/24

Bridge (br2) 0.0.0.0
VLAN50 (eth0.50)

VLAN50 (eth1.50)

VLAN100 (eth0.100) VLAN100 (eth0.100)
192.169.100.200/16192.169.100.100/16

Figure 3.7: The three physical computers and how they are connected with
the use of VLAN.

As previously said it is very important to be able to separate the data traffic with
VLAN in order know what to do whit the traffic. The two admin networks, VLAN50
for the routing nodes and VLAN100 for the RLE machines are running over all three
physical computers. This traffic must not be affected by the RLE that is running on

25

lab computer 3, even though all traffic is going through lab computer 3. That is why
there are three different bridges configured on lab computer 3. Bridge br0 is the RLE
bridge which means the RLE controls the traffic between all included interfaces. Br1
and Br2 is where the admin network interfaces are included. Therefore, the traffic
is clearly separated and to illustrate this even further Figure 3.8 describes the traffic
flow and how it is separated on each physical computer.

RLE21
Lab computer 3
(RLE)

eth0.10

eth0.20

Lab computer 1 Lab computer 2

N1_RLE5_RLE21

N2_RLE10_RLE21

To RLE5

To RLE10

eth0.100

VirtualBox

N4_RLE20_RLE21

N3_RLE15_RLE21

To RLE20

To RLE15

VirtualBox

eth0.40

eth0.30

eth0.100

Admin network
to routing nodes

.

.. eth0.50

et
h0

eth0.50

et
h0

Br2
eth0.50 eth1.50

Br1
eth0.100 eth1.100

Br0
eth0.10

eth0.20

eth1.40

eth1.30

et
h1

et
h0

Admin network
to RLE nodes

Admin network
to routing nodes

Admin network
to RLE nodes

.

..

Admin network
to RLE nodes

.

..

.

..

Admin network
to routing nodes

RLE bridge

Figure 3.8: A logical view of how the traffic is separated in the three lab com-
puters.

In Figure 3.8 one can see the four routing nodes that are connected through a
common radio network. All of these nodes are connected, through VirtualBox, to its
own VLAN in order to separate the traffic on the physical Ethernet cable between
the computers. When the traffic reaches lab computer 3 it is divided according to
the VLAN tag. For example, if there is a connection between eth0.10 and eth1.30
in the RLE on lab computer 3, then N1_RLE5_RLE21 and N3_RLE15_RLE21
are able to communicate with each other. The configurations for Br1 and Br2 on
lab computer 3 are always static which means that the connectivity on the admin
networks should be consistent. The simulations do not affect the traffic on these two
networks. Because of the admin networks, it is possible to access all routing nodes
and all RLE machines from the host OS from any of the lab computers. Furthermore,
because of all nodes and all RLE machines has a SSH server installed, this makes it
easy to write scripts that can do everything that is needed for the simulation. The
source code for the scripts is not included in this report but the network environment
can be totally automated in terms of loading different routing protocols on all nodes,
change the configurations for these protocols on all nodes, set up the nodes for a
routing simulation scenario, collect network data on preselected nodes and perform a
simulation scenario by sending various commands to all RLE machines. This makes
it easy to test different scenarios with different routing protocols and configurations.

26

3.3 Test definition

The network set up of 36 routing nodes makes it possible to perform a versatile test
with different scenarios. The configured routing protocol has to maintain connectiv-
ity and find new routes when the RLE simulates that a link goes down. Moreover,
the data traffic that is generated by the routing protocol in order to communicate
with the other nodes is referred to as overhead traffic. Besides this overhead traffic
there is regular ICMP data traffic that is generated with a ping program in order to
measure current connection status.

Figure 3.9 shows a logical connection diagram over all routing nodes in the
network. The edges between two nodes represent the connection over the radio
network and are therefore controlled by the RLEs. Furthermore, during the test,
the packer loss varies on some of the links in order to simulate disruptions.

N2_RLE1 N2_RLE2 N2_RLE3 N2_RLE4 N2_RLE6 N2_RLE7 N2_RLE8 N2_RLE9 N2_RLE11 N2_RLE12 N2_RLE13 N2_RLE14 N2_RLE16 N2_RLE17 N2_RLE18 N2_RLE19

Figure 3.9: A logical view over the routing nodes where the edges are con-
trolled by the RLEs. The dotted edges have a packet loss of 100
percent at some times during the test. Network traffic is logged
at all gray nodes.

Some of the edges in Figure 3.9 are dotted lines and some are plain. The plain
edges have a fixed packet loss value during a complete test case. However, the dotted
edges have a packet loss that varies between 0 and 100 percent. Therefore, when
these edges have 100 percent packet loss, the connectivity is completely lost which
force the protocol to find a new route.

Network traffic is logged by all gray nodes in Figure 3.9. The four gray nodes
that are in the middle of the network is referred to as intermediate nodes while the
nodes that only have one possible connection is referred to as end nodes. The name
of the end nodes are stated in Figure 3.9. Moreover, it is between the end nodes
that the ICMP traffic is sent during a test in order to utilize the entire network.
To capture different scenarios but still be able to get rid of deviation, Table 3.1
describes how the nodes are paired with source and destination.

27

Nr Source Destination Shortest path,
full connectivity

Shortest path,
edges are down

Isolated

1 N2_RLE1 N2_RLE19 5 5 No
2 N2_RLE2 N2_RLE18 5 5 No
3 N2_RLE3 N2_RLE17 5 7 No
4 N2_RLE4 N2_RLE16 5 7 No
5 N2_RLE6 N2_RLE14 5 N/A Yes
6 N2_RLE7 N2_RLE13 5 8 No
7 N2_RLE8 N2_RLE12 5 8 No
8 N2_RLE9 N2_RLE11 5 N/A Yes

Table 3.1: How the end nodes send ICMP messages to each other and possible
shortest path between the nodes.

The first column in Table 3.1 describes the source nodes which sends ICMP
traffic to the destination node stated in column two. When the dotted edges in
Figure 3.9 are available for communication the shortest number of hops between
source and destination is stated in column three. This can be verified from Figure
3.9. Furthermore, when the dotted edges are set to 100 percent packet loss the
shortest path might change which is stated in column four. Column five clarifies
if the node gets isolated from the rest of the network which means at some point
during the simulation the node does not have any neighbours.

Note that the first and second source and destination pair in Table 3.1 always
have 5 hops as the shortest path. This is because the dotted lines in Figure 3.9
do not affect the shortest path for these nodes. Furthermore, these two pairs are
expected to deliver the same result which is a safety to avoid erroneous deviations
during the simulation. In the same way, the other source and destination nodes
have been selected in a way that they have one other source and destination pair to
compare it to.

There are two nodes which is slightly different from the other nodes. Node
N2_RLE6 and N2_RLE11 gets disconnected from the entire network when the
dotted edges in Figure 3.9 reach 100 percent packet loss. Therefore, no ICMP traffic
is able to be sent or received to these nodes during the connectivity loss.

The plain edges in Figure 3.9 are static during a test case. However, they are
different test cases where these edges have different values. One objective is to
measure how much overhead traffic that is generated from the different protocols
and how that changes with higher packet loss on the links. Therefore, the packet
loss for the plain edges is varied from 0 to 25 percent as seen in Table 3.2.

Test Plain edge Dotted edge
1 0% Varies between 0-100%
2 2.5% Varies between 2.5-100%
3 5% Varies between 5-100%
4 10% Varies between 10-100%
5 25% Varies between 25-100%

Table 3.2: Describes the packet loss on the edges for the five test cases.

Table 3.2 describes the five different test cases that are run for each protocol

28

in order to measure the amount of overhead traffic that is generated. Ping ratio
and convergence time is only measured in the first test case where the plain edges
have 0 percent packet loss. This is because the ICMP messages that are used to
measure these parameters get dropped which complicates the measurement. The
convergence time is defined as the time it takes to register and manage an interrupt
until the protocol has established a new route. The ping ratio is defined as the ratio
between sent and received ping packets on a preselected node.

Each protocol has different parameters that can be modified to make the protocol
behave in a different way. When these options are varied the protocol is only tested
with test case 1. Test case 1 is designed to only focus on 100 percent disruptions on
preselected links. This makes it possible to measure how fast the different protocols
change routes and how they behave in different situations.

29

Chapter 4

Results and Discussion

4.1 Results with default configurations

The protocols are initially tested with their default configuration. In order to com-
pare the protocols against each other, different settings are used for each protocol.
Figure 4.1 shows the ping ratio for test case 1 with the protocols configured with
their default settings. The x-axis describes the eight nodes that sends ping request
according to the test case described in the previous chapter. The y-axis describes
the ratio between sent and received ping messages.

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

0,900

1,000

N2 RLE1 N2 RLE2 N2 RLE3 N2 RLE4 N2 RLE6 N2 RLE7 N2 RLE8 N2 RLE9

Ping ratio, default configurations

Batman-adv OLSR Babel OSPF

Figure 4.1: The ping ratio for all protocols with their default configurations.

In this figure, batman-adv has the best performance because of the highest ratio
on most of the nodes. With the default setting, Batman-adv has a convergence time

30

around 10 seconds for this test case. That is by far the fastest of the four protocols.
The convergence times for node N2RLE3 are listed in Table 4.1.

Protocol with default settings Convergence time on N2RLE3
Batman-adv 10s
OLSR 20.5s
Babel 18.5s
OSPF 38s

Table 4.1: Convergence times measured at the node N2RLE3 with default con-
figurations for all protocols.

Note that OLSR has a higher convergence time than Babel but still gets a better
ping ratio. This is because OLSR is slower to change back to the shortest path when
this path is available.

For all nodes in the figure, except for N2RLE6 and N2RLE9, there is always a
path to the host that they are sending ping messages to. At first, all protocols will
find the shortest path. However, after some time the shortest path are affected by
disruption forcing the protocol to find a new route. The test waits for 60 seconds in
order for the protocol to converge which according to Table 4.1 is enough. After the
60 seconds the shortest path are available again, and there is no other disruption
in the network. The test waits for 30 seconds for the protocols to change back to
the shortest path before it is taken down again. Babel finds the shortest path again
and changes back to it. In contrast, OLSR is not changing to the shortest path,
but is still using the same route. So when the 30 seconds has passed Babel are
experiencing the same procedure again while OLSR is still on the same route and
therefore does not notice any difference. Batman-adv has the same behaviour as
OLSR and is not changing back to the shortest path during the 30 seconds that is
available. OSPF does change back to the shortest path and for node N2RLE3 it
takes about 20 seconds to find the old path again.

The other test cases, where the links are constantly suffering from packet loss,
are more difficult to evaluate with a ping ratio diagram. This is because packets are
continuously dropped randomly which make the statistical variance large from one
test to the other.

Figure 4.2 describes the outgoing overhead traffic for six different test cases with
packet loss from 0 to 25 percent on every link. The diagram shows an average from
the intermediate nodes in the network, that is all nodes connected to more than one
node.

31

0% packet loss 2,5% packet loss 5% packet loss 10% packet loss 25% packet loss

Batman-adv 2515 2233 2225 1958 1408

OLSR 2017 1964 1924 1791 1481

Babel 402 405 431 422 648

OSPF 85 89 103 106 140

0

500

1000

1500

2000

2500

3000

bytes/s Overhead traffic on intermediate nodes

Figure 4.2: Overhead traffic on intermediate nodes when all links have packet
loss from 0 to 25 percent. All protocols have their default config-
uration.

Because all protocols have their default properties in the tests shown in Figure
4.2, the overhead traffic is significantly different. In comparison to Figure 4.1, one
can see that the overhead traffic seems to correlate with the packet ratio for the
different protocols. The protocols with a higher ping ratio have higher overhead
traffic. One interesting point in Figure 4.2 is how the overhead traffic changes with
higher packet loss on the links. With higher packet loss on the links running Batman-
adv and OLSR the overhead traffic decreases with higher packet loss. This seems
correct because none of the protocol use any type of acknowledge message to verify
that a message has been received. Furthermore, when less information is received
by a node, less information is also sent out from a node. However, running the same
scenarios for OSPF and Babel the opposite happens. The nodes generate more
overhead traffic when the packet loss on the links is higher. This can be explained
with acknowledge messages that both OSPF and Babel use. If a packet that should
be acknowledged is dropped by a RLE, this triggers a retransmit of the packet after
a specific timeout value. Therefore, with increasing packet loss on the links, OSPF
and Babel generates an increasing output of overhead traffic from the nodes. This
behaviour with increased overhead traffic when the links experience higher packet
loss might be positive because the probability of a connection increases. However, if
too much overhead traffic is generated, it consumes both more resources and might
lead to congestion.

32

0% packet loss 2,5% packet loss 5% packet loss 10% packet loss 25% packet loss

Batman-adv 1065 977 922 804 484

OLSR 1748 1671 1613 1459 1025

Babel 236 269 271 285 389

OSPF 27 28 29 30 31

0

200

400

600

800

1000

1200

1400

1600

1800

2000

bytes/s Overhead traffic on end nodes

Figure 4.3: Overhead traffic on end nodes when all links have packet loss from
0 to 25 percent. All protocols have their default configuration.

The outgoing overhead traffic from the end nodes are shown in Figure 4.3. The
end nodes are nodes that only have a connection to one other node. The overall
observation is that all end nodes generate less overhead traffic than the intermediate
nodes; this is true for all four protocols. Moreover, this is because the intermediate
nodes communicate with several neighbours while the end nodes only have one
neighbour to send data to. Both Figure 4.2 and 4.3 express the overhead traffic in
bytes per second. However, Appendix B also includes the same test results expressed
in packets per second.

The difference between Figure 4.2 and 4.3 when comparing the protocols indi-
vidually is that OLSR has not decreased as much in comparison with the other
protocols. However, it is important to remember that there are a lot of configu-
ration possibilities for all of the protocols. All protocols are tested with different
configurations in order to see how overhead traffic, ping ratio and convergence time
are affected. Some of the protocols have a lot of configuration opportunities, for
example OLSR. However, only a few of the available parameters are tested, the rest
of them are left as default values. Subsection 4.3 describes results from OLSR with
different configurations. It shows that it is possible to configure OLSR in a way
that reduce the amount of overhead traffic but almost keep the convergence time.
Therefore, it is clearly possible to optimize the configuration for OLSR.

33

4.2 OSPF

For OSPF, the hello-dead and hello interval are varied. The hello interval specifies
how often hello messages are sent out from a routing node. The hello-dead interval
specifies how long time the routing node should wait to receive a hello message
before declaring the link as lost. The convergence time and overhead traffic for the
intermediate and end nodes are illustrated in Figure 4.4.

H = 0.1s, HD = 1s H = 0.25s, HD = 1s H = 10s, HD = 40s

OH intermediate nodes 1040,1 544 85

OH end nodes 836 361 27

Convergence time 3 7 38

0

5

10

15

20

25

30

35

40

0

200

400

600

800

1000

1200

s bytes/s
OSPF

Figure 4.4: The relation between overhead traffic and convergence time for
different settings for OSPF.

The default settings are hello (H) to 10 seconds and hello-dead (HD) to 40
seconds. From Figure 4.4 one can see that these settings had a poor convergence
time of 38 seconds and generated overhead traffic of 27-85 bytes/s on respective
nodes. The lowest hello and hello-dead interval that is possible to set in the Quagga
version of OSPF is hello interval to 0.1 second and hello-dead interval to 1 second
(note that according to the specification it should be possible to select a lower hello
interval but this generated an error message from OSPFd when it was done in this
test).

A convergence time of 3 seconds in combination with overhead traffic between
836-1040 is a good result compared to how the other protocols performed in this test.
In Figure 4.5 the ping ratio for OSPF is displayed for the three different settings.
As expected, the settings which result in the lowest convergence time have the best
ping ratio for all nodes.

34

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

0,900

1,000

N2 RLE1 N2 RLE2 N2 RLE3 N2 RLE4 N2 RLE6 N2 RLE7 N2 RLE8 N2 RLE9

Ping ratio OSPF

Hello-dead = 1s, Hello = 0.1s Hello-dead = 1s, Hello = 0.25s

Hello-dead = 40s, Hello = 10s

Figure 4.5: The ping ratio for different settings for OSPF.

4.3 OLSR

Because OLSR has a large number of possible configuration options only a few of
these where varied. In Figure 4.6 one can see how the overhead traffic and the
convergence time relate to each other when the topology control (TC) and hello
(H) intervals are varied. The default settings are TC to 0.5 seconds and H to 6
seconds. These settings generated an overhead traffic of 1748-2017 bytes/s and a
convergence time of 20.5 seconds which is poor compared to the other protocols.
However, changing the TC to 1 second significantly decreases the overhead traffic
but the convergence traffic remains almost the same. Furthermore, the reason why
the TC interval is much lower than the hello interval in all tests is to avoid the
possibility to create loops. This is especially important when the fish eye setting is
used because that minimizes the amount of TC messages that are sent.

35

TC = 0.5s,
H = 6s

TC = 1s,
H = 6s

TC = 1s,
H = 3s

TC = 2s,
H = 6s

TC = 4s,
H = 6s

OH intermediate nodes 2017 1077 1094 580 320

OH end nodes 1748 935 937 499 276

Convergence time 20,5 21 21 32 33

0

5

10

15

20

25

30

35

0

500

1000

1500

2000

2500

s bytes/s
OLSR

Figure 4.6: The relation between overhead traffic and convergence time for
different settings for OLSR.

As one can see in Figure 4.6, the convergence time for OLSR is not as low as the
convergence time for the other protocols. It might however be possible to get a lower
convergence time if one optimize more of the available settings. However, it does
not seem likely that the overhead traffic should get any significant improvement.

The ping ratio for OLSR is displayed in Figure 4.7. The results does not differ
much between the five configurations. There are two reasons for this, one is that the
convergence times have a relatively small variability between the different configu-
rations. The second, and most important reason, is that the OLSR protocol did not
change back to the shortest path in several cases as described earlier. Furthermore,
this causes the small difference in ping ratio because it is only in the beginning of
the test that the protocol changes to a new route.

36

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

0,900

1,000

N2 RLE1 N2 RLE2 N2 RLE3 N2 RLE4 N2 RLE6 N2 RLE7 N2 RLE8 N2 RLE9

Ping ratio OLSR

TC=0.5s, Hello =1s TC = 1s , Hello = 3s TC = 1s , Hello = 6s

TC = 2s , Hello = 6s TC = 4s , Hello = 6s

Figure 4.7: The ping ratio for different settings for OLSR.

In order to get a better variability of the ping ratio, the test should be sure to
always affect the selected route. This is not the case for the OLSR protocol which
makes Figure 4.7 limited useful.

4.4 Babel

Babel makes use of triggered update messages. Therefore, the only parameter that
is varied is the hello interval. The convergence time and overhead traffic is shown
in Figure 4.8 where the hello interval varies between 0.25 seconds up to the default
value of 4 seconds. Overall, the Babel protocol shows a relatively good performance
with respect to convergence time and generated overhead traffic. For example, a
hello interval of 1 second generate the overhead traffic of 712-853 bytes/s which is
a lot better than OLSR comparing just these two parameters. However, when the
convergence time goes under 6 seconds the overhead traffic increases rapidly. When
changing the default hello interval value of 4 seconds to 2 seconds one gains a lot
in convergence time but does not lose so much in overhead traffic. The opposite
applies when the hello interval goes under 1.

37

H = 0.25s H = 0.5s H = 1s H = 2s H = 4s

OH intermediate nodes 2611 1484 853 542 402

OH end nodes 2535 1345 712 436 236

Convergence time 2,5 4 6 10 18,5

0

2

4

6

8

10

12

14

16

18

20

0

500

1000

1500

2000

2500

3000

s bytes/s Babel

Figure 4.8: The relation between overhead traffic and convergence time for
different settings for Babel.

Unlike OLSR, the Babel protocol did change back to the shortest path when it
became available. Therefore, the ping ratio diagram shown in Figure 4.9 is more
useful than corresponding diagram for OLSR. Note that the default configuration,
with hello interval of 4 seconds, is the worst case with respect to ping ratio. All
configurations with lower hello interval clearly improve the ping ratio.

38

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

0,900

1,000

N2RLE1 N2RLE2 N2RLE3 N2RLE4 N2RLE6 N2RLE7 N2RLE8 N2RLE9

Ping ratio Babel

Hello = 0.25s Hello = 0.5s Hello = 1s Hello = 2s Hello = 4s

Figure 4.9: The ping ratio for different settings for Babel.

4.5 Batman-adv

Like Babel, Batman-adv is also tested with just adjusting one parameter which is
the originator interval. The originator interval decides the time interval for how
often OGM messages are sent out. The default value for this parameter is 1 second.
Figure 4.10 displays the results when the originator interval is adjusted from 0.5 to 4
seconds. Compared to the other protocols, especially compared to Babel and OSPF,
Batman-adv generated a lot of overhead traffic to deliver the equivalent convergence
time.

39

O = 0.5s O = 1s O = 2s O = 4s

OH intermediate nodes 4398 2515 1440 680

OH end nodes 1977 1065 573 306

Convergence time 4 10 16 38,5

0

5

10

15

20

25

30

35

40

45

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

s bytes/s Batman-adv

Figure 4.10: The relation between overhead traffic and convergence time for
different settings for Batman-adv

Batman-adv has the same behaviour as OLSR when the shortest path gets avail-
able after an interrupt. It does not change back to the shortest path for a relatively
long time. When the originator value is increased, this time seems to increase as
well. Therefore, the diagram in Figure 4.11 is not strictly related to the convergence
time as one might expect.

40

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

0,900

1,000

N2RLE1 N2RLE2 N2RLE3 N2RLE4 N2RLE6 N2RLE7 N2RLE8 N2RLE9

Ping ratio Batman-adv

Originator interval = 0.5s Originator interval = 1s

Originator interval = 2s Originator interval = 4s

Figure 4.11: The ping ratio for different settings for Batman-adv.

One interesting observation is to compare the ping ratio of node N2RLE6 and
N2RLE9 for the different protocols. These two nodes are completely disconnected
from the network during some times in the test. All other nodes always have some
neighbour that it is connected to. In comparison with the other protocols, batman-
adv and OLSR have the worst performance on these two nodes. The reason why
Batman-adv get so low ping ratio on these two nodes seems to be because it is slow to
detect interruption. The nodes are still sending out ping packets for some time even
though the connection is lost. However, for the nodes to be able to route ping data,
they are dependent on the kernel routing table. When batman-adv detects that a
route is no longer available, it should immediately modify the kernel routing table.
If this is not the case, the ping program continues to send out ICMP messages.

41

Chapter 5

Conclusion

It is important to emphasize that by changing settings for all the tested routing
protocols, it is possible to achieve better results than the default configuration could
offer. However, there is always a trade off between obtaining a low convergence time
or limit the amount of generated overhead traffic. Furthermore, it should be possible
to optimize these values for the intended use.

With a tactical network set up as the one tested, OSPF is an alternative to Babel,
Batman-adv and OLSR. When configuring OSPF to achieve the lowest convergence
time, the overhead traffic that is generated is still better than the other protocols.
However, with the Quagga implementation of OSPF, it is not possible to configure
OSPF to achieve a lower convergence time.

Abolhasen et al. [6] states that both Batman and Babel performs better than
OLSR. However, the test shows that it is possible to reduce the overhead traffic and
almost maintain the convergence time for OLSR compared to the default configu-
ration. Because there are much more configuration options available for OLSR, it
might be possible to optimize the configuration to better adapt to a tactical network
set up. Moreover, the result does not strictly support the results from [29] and [5]
that claim that OLSR generates more overhead traffic than Batman-adv. However,
none of [29] and [5] used a tactical network set up or varied the settings for the pro-
tocols. With respect to the trade off between convergence time and overhead traffic
Babel is the second best protocol after OSPF. Batman-adv generates more overhead
traffic to achieve the same convergence time. Moreover, even though Batman-adv
takes advantage of routing on layer 2, both Babel and OSPF shows better perfor-
mance with lower routing overhead for corresponding convergence time.

Further work could include optimizing the protocol settings to adapt to the
limitations of what the selected implementation requires.

42

Bibliography

[1] Ad-hoc Networks: Fundamental Properties and Network Topologies. Springer
Netherlands, 2006.

[2] J. Loo, S. Khan, and A. N. Al-Khwildi", “Mobile ad hoc routing protocols,”
in Mobile Ad Hoc Networks: Current Status and Future Trends, J. L. M.
Jonathan Loo and J. H. Ortiz, Eds. CRC Press, 2011, pp. 3–18. [Online].
Available: http://www.crcnetbase.com/isbn/9781439856512

[3] tcpdump.org, “Tcpdump,” http://www.tcpdump.org/, 2013, available 2013-09-
22.

[4] jnetpcap.com, “jnetpcap,” http://jnetpcap.com/, 2013, available 2013-09-22.

[5] D. Johnson, N. Ntlatlapa, and C. Aichele, “Simple pragmatic approach to mesh
routing using batman,” 2nd IFIP International Symposium on Wireless Com-
munications and Information Technology in Developing Countries, October
2008, pretoria, South Africa.

[6] M. Abolhasan, B. Hagelstein, and J. Wang, “Real-world performance of current
proactive multi-hop mesh protocols,” in Communications, 2009. APCC 2009.
15th Asia-Pacific Conference on, 2009, pp. 44–47.

[7] T. Plesse, C. Adjih, and P. Minet", “Olsr performance measurement in a mil-
itary mobile ad hoc network,” in Ad Hoc Networks 3. Elsevier, September
2004, pp. 575–588.

[8] M. Marina and S. Das, “Routing in mobile ad hoc networks,” in Ad Hoc
Networks, P. Mohapatra and S. Krishnamurthy, Eds. Springer US, 2005, pp.
63–90. [Online]. Available: http://dx.doi.org/10.1007/0-387-22690-7_3

[9] R. Bellman, “On a routing problem,” 1958.

[10] E. W. Dijkstra, “A note on two problems in connexion with graphs,” 1959.

[11] J. Moy, “Ospf version 2,” http://www.ietf.org/rfc/rfc2328.txt, April 1998, avail-
able: 2013-06-26.

[12] E. Baccelli, P. Jacquet, D. Nguyen, and T. Clausen, “Ospf multipoint re-
lay (mpr) extension for ad hoc networks,” http://tools.ietf.org/html/rfc5449,
February 2009, available: 2013-06-26.

[13] A. Roy and M. Chandra, “Extensions to ospf to support mobile ad hoc network-
ing,” http://tools.ietf.org/html/rfc5820, March 2010, available: 2013-06-26.

43

http://www.crcnetbase.com/isbn/9781439856512
http://www.tcpdump.org/
http://jnetpcap.com/
http://dx.doi.org/10.1007/0-387-22690-7_3
http://www.ietf.org/rfc/rfc2328.txt
http://tools.ietf.org/html/rfc5449
http://tools.ietf.org/html/rfc5820

[14] R. Ogier and P. Spagnolo, “Mobile ad hoc network (manet) extension of ospf,”
http://tools.ietf.org/html/rfc5614, August 2009, available: 2013-06-26.

[15] P. B. Charles E. Perkins, “Highly dynamic destination-sequenced distance-
vector routing (dsdv) for mobile computers.” [Online]. Available: http:
//dx.doi.org/10.1109/90.554729

[16] G. Malkin and B. Networks, “Rip version 2,” http://tools.ietf.org/html/rfc2453,
November 1998, available: 2013-06-26.

[17] G. He, “Destination-sequenced distance vector (dsdv) protocol,” Networking
Laboratory, Helsinki University of Technology, Tech. Rep.

[18] T. Clausen, P. Jacquet, and S. Das, “Optimized link state routing protocol
(olsr),” http://www.ietf.org/rfc/rfc3626.txt, October 2003, available: 2013-06-
26.

[19] olsr.org, “olsrd an adhoc wireless mesh routing deamon,” http://www.olsr.org,
2013, available 2013-06-10.

[20] A. Neumann, C. Aichele, and M. Lindner, “Better approach to mo-
bile ad-hoc networking (b.a.t.m.a.n.),” http://tools.ietf.org/html/
draft-wunderlich-openmesh-manet-routing-00, April 2008, available: 2013-09-
16.

[21] J. Chroboczek, “The babel routing protocol,” http://tools.ietf.org/html/
rfc6126, April 2007, available: 2013-09-16.

[22] J. J. Garcia-Luna-Aceves and S. Murthy, “A path-finding algorithm for
loop-free routing,” IEEE/ACM Trans. Netw., vol. 5, no. 1, pp. 148–160, Feb.
1997. [Online]. Available: http://dx.doi.org/10.1109/90.554729

[23] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc on-demand distance vec-
tor (aodv) routing,” http://www.ietf.org/rfc/rfc3561.txt, July 2003, available:
2013-06-26.

[24] D. Johnson, Y. Hu, and D. Maltz, “The dynamic source routing protocol
(dsr) for mobile ad hoc networks for ipv4,” http://www.ietf.org/rfc/rfc4728.txt,
February 2007, available: 2013-06-26.

[25] virtualbox.org, “Virtualbox manual,” https://www.virtualbox.org/manual/
ch01.html, 2013, available 2013-08-10.

[26] M. A. Brown, Traffic Control HOWTO, 1st ed., October 2006, available
2013-06-10. [Online]. Available: http://ftp.eenet.ee/LDP/HOWTO/pdf/
Traffic-Control-HOWTO.pdf

[27] open mesh.org, “B.a.t.m.a.n. protocol concept,” http://www.open-mesh.org,
2013, available 2013-08-10.

[28] J. Whitbeck, Y. Lopez, J. Leguay, V. Conan, O. Rosenberg, and O. Tessier,
“Using uhf connectivity to off-load vhf messaging in tactical manets,” in MIL-
ITARY COMMUNICATIONS CONFERENCE, 2011 - MILCOM 2011, 2011,
pp. 961–966.

44

http://tools.ietf.org/html/rfc5614
http://dx.doi.org/10.1109/90.554729
http://dx.doi.org/10.1109/90.554729
http://tools.ietf.org/html/rfc2453
http://www.ietf.org/rfc/rfc3626.txt
http://www.olsr.org
http://tools.ietf.org/html/draft-wunderlich-openmesh-manet-routing-00
http://tools.ietf.org/html/draft-wunderlich-openmesh-manet-routing-00
http://tools.ietf.org/html/rfc6126
http://tools.ietf.org/html/rfc6126
http://dx.doi.org/10.1109/90.554729
http://www.ietf.org/rfc/rfc3561.txt
http://www.ietf.org/rfc/rfc4728.txt
https://www.virtualbox.org/manual/ch01.html
https://www.virtualbox.org/manual/ch01.html
http://ftp.eenet.ee/LDP/HOWTO/pdf/Traffic-Control-HOWTO.pdf
http://ftp.eenet.ee/LDP/HOWTO/pdf/Traffic-Control-HOWTO.pdf
http://www.open-mesh.org

[29] D. Murray, M. Dixon, and T. Koziniec, “An experimental comparison of routing
protocolsin multi hop ad hoc networks,” 2010 Australasian Telecommunication
Networks and Applications Conference.

45

Appendix A - Network topology of test environment

R
LE

5
et

h1

19
2.

16
8.

05
.0

/2
4

et
h6

et
h5

et
h4

et
h2

et
h0

et
h3

et
h7

.0
2

.0
2

.0
3

.0
3

.2
1

.2
1

N
1_

R
LE

2_
R

LE
5

R
LE

2
et

h0

19
2.

16
8.

02
.0

/2
4

et
h1

et
h4

et
h5

et
h7

et
h2

et
h6

et
h3

.2
2

.1
1

.1
1

N
1_

R
LE

1_
R

LE
5

R
LE

1
et

h0

19
2.

16
8.

01
.0

/2
4

et
h1

et
h4

et
h5

et
h7

et
h2

et
h6

et
h3

.1
2

N
2_

R
LE

1

.3
1

.3
1

R
LE

3
et

h0

19
2.

16
8.

03
.0

/2
4

et
h1

et
h4

et
h5

et
h7

et
h2

et
h6

et
h3

.3
2

.4
1

.4
1

R
LE

4
et

h0

19
2.

16
8.

04
.0

/2
4

et
h1

et
h4

et
h5

et
h7

et
h2

et
h6

et
h3

.4
2

N
2_

R
LE

2

N
1_

R
LE

3_
R

LE
5

N
2_

R
LE

3
N

2_
R

LE
4

N
1_

R
LE

4_
R

LE
5

.7
1

.7
1

N
1_

R
LE

7_
R

LE
10

R
LE

7
et

h0

19
2.

16
8.

07
.0

/2
4

et
h1

et
h4

et
h5

et
h7

et
h2

et
h6

et
h3

.7
2

.6
1

.6
1

N
1_

R
LE

6_
R

LE
10

R
LE

6
et

h0

19
2.

16
8.

06
.0

/2
4

et
h1

et
h4

et
h5

et
h7

et
h2

et
h6

et
h3

.6
2

N
2_

R
LE

6

.8
1

.8
1

R
LE

8
et

h0

19
2.

16
8.

08
.0

/2
4

et
h1

et
h4

et
h5

et
h7

et
h2

et
h6

et
h3

.8
2

.9
1

.9
1

R
LE

9
et

h0

19
2.

16
8.

09
.0

/2
4

et
h1

et
h4

et
h5

et
h7

et
h2

et
h6

et
h3

.9
2

N
2_

R
LE

7

N
1_

R
LE

8_
R

LE
10

N
2_

R
LE

8
N

2_
R

LE
9

N
1_

R
LE

9_
R

LE
10

.2
1

.2
1

N
1_

R
LE

12
_R

LE
15

R
LE

12
et

h0

19
2.

16
8.

12
.0

/2
4

et
h1

et
h4

et
h5

et
h7

et
h2

et
h6

et
h3

.2
2

.1
1

.1
1

N
1_

R
LE

11
_R

LE
15

R
LE

11
et

h0

19
2.

16
8.

11
.0

/2
4

et
h1

et
h4

et
h5

et
h7

et
h2

et
h6

et
h3

.1
2

N
2_

R
LE

11

.3
1

.3
1

R
LE

13
et

h0

19
2.

16
8.

13
.0

/2
4

et
h1

et
h4

et
h5

et
h7

et
h2

et
h6

et
h3

.3
2

.4
1

.4
1

R
LE

14
et

h0

19
2.

16
8.

14
.0

/2
4

et
h1

et
h4

et
h5

et
h7

et
h2

et
h6

et
h3

.4
2

N
2_

R
LE

12

N
1_

R
LE

13
_R

LE
15

N
2_

R
LE

13
N

2_
R

LE
14

N
1_

R
LE

14
_R

LE
15

.7
1

.7
1

N
1_

R
LE

17
_R

LE
20

R
LE

17
et

h0

19
2.

16
8.

17
.0

/2
4

et
h1

et
h4

et
h5

et
h7

et
h2

et
h6

et
h3

.7
2

.6
1

.6
1

1

N
1_

R
LE

16
_R

LE
20

R
LE

16
et

h0

19
2.

16
8.

16
.0

/2
4

et
h1

et
h4

et
h5

et
h7

et
h2

et
h6

et
h3

.6
2

N
2_

R
LE

16

.8
1

.8
1

R
LE

18
et

h0

19
2.

16
8.

18
.0

/2
4

et
h1

et
h4

et
h5

et
h7

et
h2

et
h6

et
h3

.8
2

.9
1

.9
1

R
LE

19
et

h0

19
2.

16
8.

19
.0

/2
4

et
h1

et
h4

et
h5

et
h7

et
h2

et
h6

et
h3

.9
2

N
2_

R
LE

17

N
1_

R
LE

18
_R

LE
20

N
2_

R
LE

18
N

2_
R

LE
19

N
1_

R
LE

19
_R

LE
20

R
LE

10
et

h1

19
2.

16
8.

10
.0

/2
4

et
h6

et
h5

et
h4

et
h2

et
h0

et
h3

et
h7

R
LE

15
et

h1

19
2.

16
8.

15
.0

/2
4

et
h5

et
h6

et
h4

et
h2

et
h0

et
h3

et
h7

R
LE

20
et

h1

19
2.

16
8.

20
.0

/2
4

et
h5

et
h6

et
h4

et
h2

et
h0

et
h3

et
h7

N
1_

R
LE

5_
R

LE
21

N
2_

R
LE

10
_R

LE
21

N
3_

R
LE

15
_R

LE
21

N
4_

R
LE

20
_R

LE
21

.0
1

.0
1

.0
4

.0
4

R
LE

21
et

h0
.1

0 19
2.

16
8.

21
.0

/2
4

et
h7

et
h6 et

h1
.4

0

et
h0

.2
0 et

h0

et
h1

.3
0

et
h5

46

Appendix B - Overhead traffic for different configurations,
relation between bytes and number of packets

OSPF
OSPF default settings, Hello-dead = 40s, Hello = 10s

Test case 0% 2.5% 5% 10% 25%

Intermediate nodes packets/s 0.49 0.55 0.66 0.65 0.79
bytes/s 85 89 103 106 140

End nodes packets/s 0.27 0.29 0.30 0.30 0.32
bytes/s 27 28 29 30 31

OSPF test case 1 (0%), Hello-dead = 1s, Hello = 0.25s
Intermediate nodes End nodes

packets/s 5.1 4.2
bytes/s 544 361

OSPF test case 1 (0%), Hello-dead = 1s, Hello = 0.1s
Intermediate nodes End nodes

packets/s 10.8 10.0
bytes/s 1040 836

47

OLSR
OLSR default settings, TC = 0.5s, Hello = 6s

Test case 0% 2.5% 5% 10% 25%

Intermediate nodes packets/s 2.1 2.1 2.1 2.1 2.1
bytes/s 2017 1964 1924 1791 1481

End nodes packets/s 2.1 2.1 2.1 2.1 2.1
bytes/s 1748 1671 1613 1459 1025

OLSR test case 1 (0%), TC = 1s, Hello = 6s
Intermediate nodes End nodes

packets/s 1.1 1.1
bytes/s 1077 935

OLSR test case 1 (0%), TC = 1s, Hello = 3s
Intermediate nodes End nodes

packets/s 1.1 1.1
bytes/s 1094 937

OLSR test case 1 (0%), TC = 2s, Hello = 6s
Intermediate nodes End nodes

packets/s 0.6 0.6
bytes/s 580 499

OLSR test case 1 (0%), TC = 4s, Hello = 6s
Intermediate nodes End nodes

packets/s 0.3 0.3
bytes/s 320 276

48

Babel
Babel default settings, Hello = 4s

Test case 0% 2.5% 5% 10% 25%

Intermediate nodes packets/s 1.4 1.5 1.6 1.6 2.4
bytes/s 402 405 431 422 648

End nodes packets/s 0.6 0.7 0.7 0.7 1.2
bytes/s 236 269 271 285 389

Babel test case 1 (0%), Hello = 2s
Intermediate nodes End nodes

packets/s 1.7 1.1
bytes/s 542 436

Babel test case 1 (0%), Hello = 1s
Intermediate nodes End nodes

packets/s 2.4 1.7
bytes/s 853 712

Babel test case 1 (0%), Hello = 0.5s
Intermediate nodes End nodes

packets/s 3.7 3.0
bytes/s 1484 1345

Babel test case 1 (0%), Hello = 0.25s
Intermediate nodes End nodes

packets/s 6.1 5.5
bytes/s 2611 2535

49

Batman-adv
Batman-adv default settings, O = 1s

Test case 0% 2.5% 5% 10% 25%

Intermediate nodes packets/s 28.1 25.2 25.8 23.5 19.5
bytes/s 2515 2233 2225 1958 1408

End nodes packets/s 11.7 11.2 10.8 10.0 7.0
bytes/s 1065 977 922 804 484

Batman-adv test case 1 (0%), O = 0.5s
Intermediate nodes End nodes

packets/s 33.7 14.6
bytes/s 4398 1977

Batman-adv test case 1 (0%), O = 2s
Intermediate nodes End nodes

packets/s 21.4 8.6
bytes/s 1440 573

Batman-adv test case 1 (0%), O = 4s
Intermediate nodes End nodes

packets/s 12.1 5.5
bytes/s 680 306

50

	Acknowledgements
	List of figures
	List of tables
	Abbreviations
	Introduction
	Background
	Objective
	Delimitations
	Methodology
	Related work
	Report structure

	Literature review
	Routing in MANET:s
	Proactive or table-driven routing protocols
	OSPF
	OSPF-MPR
	OSPF-OR
	OSPF-MDR

	DSDV
	OLSR
	Batman
	Babel

	Reactive or on-demand-driven routing protocols
	AODV
	DSR

	Test environment
	Software
	VirtualBox
	Radio Link Emulator (RLE)
	Quagga
	Babeld
	OLSRd
	Batman-adv

	Network set up
	Test definition

	Results and Discussion
	Results with default configurations
	OSPF
	OLSR
	Babel
	Batman-adv

	Conclusion
	Appendix A - Network topology of test environment
	Appendix B - Overhead traffic for different configurations, relation between bytes and number of packets

