
Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Göteborg, Sweden, July 2009

Editor for application modelling and simulation
Master of Science Thesis

LINDA ERLENHOV
ANNA SÖDLING

������������������ ������������������

��

���

���

������������������

�������������

���������������

���������������

������������

���

��������

The Author grants to Chalmers University of Technology and University of
Gothenburg the non-exclusive right to publish the Work electronically and in a
non-commercial purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the
Work does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this
agreement. If the Author has signed a copyright agreement with a third party
regarding the Work, the Author warrants hereby that he/she has obtained any
necessary permission from this third party to let Chalmers University of
Technology and University of Gothenburg store the Work electronically and make
it accessible on the Internet.

Editor for application modelling and simulation

Linda Erlenhov
Anna Södling

© Linda Erlenhov, July 2009
© Anna Södling, July 2009

Examiner: Rogardt Heldal

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

The cover picture shows the system developed in this thesis and its relation to the
system developed by Mecel.

Department of Computer Science and Engineering
Göteborg, Sweden July 2009

Abstract

This master thesis is carried out at Mecel AB, a company situated in Gothenburg
that develops systems and software for the automotive industry. One problem that
they have been facing is that the human-machine interfaces that a user can create
with one of their products, Mecel Populus, can not be tested in a convenient way by
a non-programmer.

The task of the thesis was to create system for testing purposes where a user can
build a graphical statechart that represents an application, for example a radio or a
CD player, which can then be simulated. By connecting this system with an existing
human-machine interface for the application, the interface could be tested against
the simulation.

The primary focus of the thesis work has been an implementation phase which has
resulted in the Renegade Simulator, a prototype of an editor with simulation capabili-
ties and an associated interface to be able to communicate with Mecel Populus. The
development has been based on a feasibility study of domain-specific languages
and of already existing systems. Today, the system does not require a user to have
the ability to write any programming code, and with its graphical interface it aims to
be easy to use for different types of users.

i

Sammanfattning

Det här examensarbetet är utfört på Mecel AB, ett Göteborgsbaserat företag som
utvecklar system och mjukvara för användning inom fordonsindustrin. Ett problem
de ställts inför är att de användargränssnitt som en användare kan skapa med en av
deras produkter, Mecel Populus, inte kan testas på ett smidigt sätt av icke-program-
merare.

Uppgiften bestod av att skapa ett testsystem där en användare kan bygga ett gra-
fiskt tillståndsdiagram som representerar en applikation, t ex en radio eller en CD-
spelare, för att sedan kunna simulera denna. Genom att koppla ihop detta system
med ett befintligt användargränssnitt för applikationen skulle man sedan kunna testa
detta mot simuleringen.

Den primära fokuset inom examensarbetet har varit en implementeringsfas som re-
sulterat i Renegade Simulator, en prototyp av en editor med simuleringsmöjligheter
och ett tillhörande interface för att kunna kommunicera med Mecel Populus. Utveck-
lingen har baserats på en förstudie av domänspecifika språk och redan befintliga
system. I nuläget kräver systemet inga kunskaper i att kunna skriva programme-
ringskod av en användare och med sitt grafiska gränssnitt syftar det till att vara lätt-
använt för olika typer av användare.

ii

Preface and acknowledgements

This master thesis was done by two students, Linda Erlenhov and Anna Södling,
at the department of Computer Science and Engineering, Chalmers University of
Technology. The work was done in cooperation with Mecel AB in Gothenburg. Both
students have taken part in the original development of a basic statechart editor. In
addition to that, Anna has been responsible for further developing the editor in order
to be user-friendly and to suit the project’s needs, and Linda has been responsible
for developing the interface between the statechart editor and Mecel’s HMI engine.

We would especially like to thank:

Mecel AB - who gave us the opportunity to do this master thesis.

Stefan Gustavsson and Christopher Olofsson - our supervisors at Mecel AB, for their
support and for answering questions regarding the project.

Rogardt Heldal, our supervisor at Chalmers University of Technology - for feedback
and guidance through the thesis work.

Alex Shatalin, GMF developer - for really making it easier for us to get started and
using Eclipse GMF.

Rahul Akolkar, co-editor of the State Chart XML specification - for helping us un-
derstand SCXML and the Apache Commons SCXML engine.

Daniel Martinsson and Henrik Edsparr - for their constant support.

iii

Contents

1. Introduction

2. Background
 2.1 Mecel Populus
 2.2 Domain-specific languages
 2.2.1 What is a domain-specific language?
 2.2.2 Why use a domain-specific language?
 2.2.3 Domain-specific languages in the thesis work.
 2.3 Statechart UML

3. Feasibility Study
 3.1 Existing tools and systems
 3.1.1 SCXML
 3.1.2 Rational Software Architect
 3.1.3 UniMod
 3.1.4 Graphical Modeling Framework
 3.1.5 Apache Commons SCXML
 3.2 Discussion and final decisions

4. Prerequisities
 4.1 Problem domain
 4.2 Project model
 4.3 Requirements
 4.3.1 System requirements
 4.3.2 Developer requirements
 4.4 Simulator structure

5. Implementation
 5.1 Renegade Editor
 5.1.1 Basic design
 5.1.2 Graphical design
 5.1.3 User interaction
 5.1.4 Simulation feedback

1

5
5
6
6
7
8
8

11
11
11
11
12
12
13
14

17
17
17
18
18
19
19

21
21
21
23
25
27

iv

- -
- -

- - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - -

- - - - - - - - - - -
 -

 -
- -

 -
- -

- -
- -

- - - - - - - -- - - - - - - - - - - - - - - - - - - -

- -
- -
 -

- -
 -

 -

 -
- -

 -
 -

 -

 5.1.5 SCXML Transformation
 5.2 ODI Interface
 5.2.1 ODI Message description
 5.2.2 Populus Java Interface
 5.2.3 ODI Message handling
 5.3 System verification

6. Analysis
 6.1 Renegade Editor
 6.2 ODI Interface

7. Conclutions
 7.1 Result
 7.2 Discussion
 7.3 Future work
 7.3.1 General
 7.3.2 Renegade Editor
 7.3.3 ODI Interface

References

Appendix A: Requirements Specification

Appendix B: Project Plan

Appendix C: Test Specification and Results

Appendix D: System Architecture

Appendix E: User Manual

v

27
28
28
30
31
34

35
35
36

37
37
37
39
39
39
41

43

47

55

63

69

73

 -
 -

- -
- -
- -

 -

 -
- -

- -
 -

- -
 -

- -
- -

List of Figures

The architecture of the current Mecel Populus system
A simple example of a statechart
An example of an extended statechart
Screenshot of the GMF dashboard
The architecture of the current Mecel Populus system, with the addition of
the Renegade Simulator
The ecoremodel, in form of a class diagram, used for the
Renegade Editor
A very basic diagram editor
A more developed version of the diagram editor, showing canvas and
palette.
An unconfigured diagram drawn in the Renegade Editor
A configured diagram drawn in the Renegade Editor
An example of a window displaying a wizard page in the Renegade Editor
An example of a course of events that include an ODI Action message
An example of a course of events that include an ODI Event message
An example of a course of events that include an ODI Indication message
An example of a course of events that include an ODI Dynamic Data
request subscribe message
An example of a course of events that include an ODI Dynamic Data
response message
An example of a course of events that include an ODI Dynamic Data
request unsubscribe message
An example that shows how the ODI Interface receives an event and turns
it in to an ODI Event message
An example that shows how the ODI Interface receives a Notification and
turns it in to an ODI Indication message
An example that shows how the ODI Interface receives a Notification and
turns it in to an ODI Dynamic Data String Response message
An example of an extended statechart, showing nested states

1.
2.
3.
4.
5.

6.

7.
8.

9.
10.
11.
12.
13.
14.
15.

16.

17.

18.

19.

20.

21.

5
8
9

13

20

22
22

23
24
25
26
28
29
29

30

30

30

32

32

33
39

vi

- - - - - - - - - - - - - - -
- -

 -
- -

- -

 -
 -

- -
 - - - - - - - - - - - - -

- - - - - - - - - - - - - - - -
 -

 - - -
 - - -

 -

 -

 -

- -

- -

 -

 - - - - - - - - -
- - - - - - - - -

1

1 Introduction

Mecel is a systems and software development company situated in Gothenburg. The
company, which was founded in 1986, has just over 100 employees today, most of
them working at the office at Mölndalsvägen. About 10% are out working in the field,
as consultants at the customers companies. Mecel’s primary customers are leading
companies in the automotive industry, such as General Motors and Volvo.
Mecel’s tagline, ”We make vehicles communicate”, pretty much states what their
goal is; developing dependable automotive software. In addition to engineering ser-
vices, they also develop a number of products, mainly within the area of in-vehicle
communication, Bluetooth and engineering tools [35].

There are three primary product suites at Mecel. The first is Mecel Betula, which
deals with implementation of Bluetooth connectivity in automotive systems [36]. The
second is Mecel Picea, which specializes in efficient development of in-car commu-
nication technologies [37] And last but not least, there is Mecel Populus, a series of
products used to simplify the development of Human-Machine Interfaces [34].

Mecel’s Populus suite is a series of tools for designing and developing user interfa-
ces for distributed embedded systems in the automotive industry. The suite consists
of an editor to create a Human-Machine Interface, from now on referred to as HMI,
as well as specifying the interfaces to the functional units, or FUs, run by the HMI. An
FU is for example a GPS navigator, a CD player or similar devices that can be found
in a car. The suite also consists of an engine to run the HMI and to communicate with
all FUs via the Open Display Interface, or ODI, protocol.

Today, the HMIs created in the Mecel Populus HMI Editor has to be tested against
a C or C++ implementation of an FU. This, however, implies that the HMI developer
has the programming skills to create such an implementation which is not always
the case. Another way to test the HMI is to connect it to an actual FU in its target
environment, for example in an embedded system in a car, in order to make sure it
is working properly and in the way the client wants it to. If the HMI is faulty or if the
client is not satisfied for some other reason, the product needs to go back to the de-
veloper, be corrected as to fit the clients needs and then be put back in the right en-

2

vironment and be tested again. Since this procedure might, in a worst case scenario,
be repeated several times, this is an unnecessarily time consuming and expensive
way to develop the final HMI.

The problem is that the current Populus suite lacks a simple way to test the HMI
outside its target environment. To further complicate matters, there is little or no pos-
sibility for the same person to develop and test the HMI, both because of the different
working environments they are set in and the different areas of knowledge needed to
perform the two tasks. There is a need for a solution that makes it possible to create
simulations of FUs that can communicate with the HMI. In order for this communica-
tion to work there must also exist some sort of interface between an FU and the HMI
Engine in Populus used to execute an HMI, using the ODI protocol.

This is both a challenging and interesting problem in several ways. The editor must
be as user friendly as possible to be able to be used by non-programmers and to
minimize the learning curve for the product. At the same time, it must also contain
support for all the functions that might be specified for the FU. The communication
interface must be general enough to be able to handle all different types of FUs since
it can never know beforehand which FU the user wants to simulate. It is also a chal-
lenge to separate the communication interface from the editor and simulation part as
much as possible to make it standalone and hopefully reusable in other products.

The aim of this thesis is to find a way to test an HMI without first inserting it into the
target environment, by using a statechart based simulation of the desired FU, rather
than the FU itself. The project is going to be developed in two different parts which
together will constitute the complete simulator made to solve the problem at hand.
The first part consists of the editor used to create a graphical representation of the
FU that is going to be simulated. According to a requirement from Mecel this repre-
sentation should be done as a statechart. It is important that the editor should be
easy to use even for users who are not familiar with programming. The second part
is dealing with the communication interface between the simulated FU and the HMI
Engine. This interface should be standalone from the editor so that it is possible to
reuse it in other applications, should the company need or want to. It is also impor-
tant the final product behaves realistically meaning the HMI and HMI Engine must
not be able to distinguish it from a real FU during runtime. If possible, the simulator
should be able to be built in to the existing Populus editor.

The remainder of this report starts off with a background chapter describing the Me-
cel Populus project from which this thesis has spawned along with a brief introduc-
tion to domain-specific languages and Statechart UML. It continues with a feasibillity
study carried out to investigate any existing systems and tools that could be used in
solving the thesis problem. Following this is a chapter stating the prerequisites of the
implementation which is described in the chapter after that. Next there is an analysis

3

of the implemented system and the report is then concluded with discussions about
the work performed and some possible futire extension to it. The thesis also comes
with five appendices, the first two containing the requirements specification and the
project plan. The third contains the test specification as well as a compilation of the
test results and the fourth gives a short description of the system architecture to
simplify any further development. The fifth and last appendix is a user manual for the
implemented Renegade Simulator.

4

5

2 Background

2.1 Mecel Populus

The Populus suite provides a set of tools for designing and developing Human-
Machine Interfaces for distributed embedded systems without having to write any
software. Its goal is to make HMI development different from the traditional approach
of writing code, making it possible to remove the barriers between the people wor-
king with requirements, system engineering, HMI design and implementation.

The Populus suite consists of three parts; the Populus HMI Editor, the HMI Database
and the Populus HMI Engine, shown in figure 1 and explained below.

������������������ ������������������

����������������

��

���

��

���

������������

���

��������

Figure 1: The architecture of the current Mecel Populus system

6

Populus HMI Editor is used to create both HMIs and FU classes and while the HMI
can be thought of as a control panel for functional units the FU classes are textual
representations of those FUs. An FU class describes for instance the different ope-
rations an FU can perform as well as any data it can store. When created the HMIs
are stored in the HMI Database which is deployed together with the Populus HMI
Engine. Once deployed the Populus HMI Engine runs the HMI and communicates
with the FUs using the ODI protocol [34, 38].
plications and does not need to change when the HMI changes [34, 38].

2.2 Domain-specific languages

The aim of the thesis’ implementation phase was to develop a prototype for a simu-
lator tool that would allow for easy testing of a HMI without the presence of an actual
FU to drive it. Since the FUs may be almost any kind of device the users, who may
not have any programming skills, must be able to configure the simulator to behave
as the desired FU and to send and receive different types of information to and from
the HMI being tested. In cases like this a DSL, a Domain-Specific Language, may be
a good solution to the problem.

2.2.1 What is a domain-specific language?

The concept of a DSL, what defines it and what its boundaries are, is somewhat
unclear and one might find different definitions of it in different parts of the relevant
literature, but one definition offered by Martin Fowler is:

From this definition we get that a DSL is a computer programming language in the
same way as for example Java or C is. What separates a DSL from such general
purpose languages (GPLs) is its focus on a particular domain and that it trades ge-
nerality for expressiveness in that particular domain [24]. While Java or C may be
a general solution to many different software problems a DSL is aimed at a specific
domain and cannot be used to solve problems that fall outside of the boundaries of
this domain [10].

A DSL may be either textual or graphical and it will also fall into one of the two
categories external or internal DSL. The difference between textual and graphical
should be self explanatory, but what distinguishes an internal DSL from an external
may require some more explanation. DSLs are often used within larger applications

Domain Specific Language (noun): a computer programming language
of limited expressiveness focused on a particular domain [19]

7

and while an internal DSL uses the same GPL as the application it is contained in,
although in a more limited style, the external one is written using a custom syntax.
This custom syntax may be unlike any other existing syntax or it can be based on
an already exiting syntax, like for instance XML. Both categories of DSLs have their
advantages and disadvantages when it comes to their creation and use. While an
external DSL allows the author the flexibility and freedom to design as he or she
pleases it also charges the author with the responsibility of creating a compiler that
can parse the grammar and symbols of the DSL, thereby making it a useful tool.
An internal DSL on the other hand is a subset of an already existing language and
as such enjoys the benefits of existing compilers and parsers. The downside is that
the author is constrained by the host language which may, should it not be flexible
enough or the author not skilled enough, prevent him or her from creating a truly ef-
ficient DSL [45, 46].

2.2.2 Why use a domain-specific language?

When DSLs are used there is always a clearly defined problem domain within which
the DSL is to be used. If there is no such domain then the language in question is,
as per the definition in the previous section, not a DSL, but more likely a GPL. Within
this domain, which may vary in size, people may be working who have a very good
understanding of the domain. These are the domain engineers or domain experts.
As an example, let’s assume there exists a problem within this domain and that this
problem is to be solved by creating a new tool. The experts may lack the program-
ming skills needed to create this tool and the programmers who are to implement the
tool lack the domain knowledge to fully understand the problem. This situation is not
uncommon in software projects and this might lead to collaboration issues between
the two groups of people. Collaboration issues like this have the potential to become
a major source of problems when it turns out that the programmers and the experts
are not really understanding each other. By creating a DSL that defines the behavi-
our of the tool in terms familiar to the experts they can be involved in the develop-
ment process, validating the programming (within the limits of the DSL) done by the
programmers and hopefully spotting mistakes before they become real problems. In
short, the use of a well written DSL may greatly improve the communication between
programmers and domain experts and thereby shortening the development process
[9, 19, 39, 47].

8

2.2.3 Domain-specific languages in the thesis work

The simulator developed in this thesis work is driven by a statechart created using
a DSL based on Statechart UML. The fact that it is made up of a subset of existing
syntax defines this DSL as an internal DSL.

2.3 Statechart UML

Statechart UML is used to create diagrams that depict the different states a system
can be in and how the system behaves in response to different events. The ex-
ample in figure 2 shows a very simple statechart representing something that could
be built and simulated with the system developed within this thesis work, namely
a CD player. The system has two states called Stopped and Playing and there are
two transitions that make it possible to move between them. In this case the upper
transition is triggered by the event issued when someone presses the play button,
thereby moving the CD player to the Playing state. However, the transition will only
be taken if a certain guard, a boolean expression, is true. In this case the guard is
named ”cdInserted”, meaning that there should be a disc inserted into the player. If
not, the system will remain stopped. When the transition finally is taken an action will
occur which in this example means that the CD will be played. Once playing the CD
player can again be placed in a stopped state by an event caused by the pressing
of a stop button.

��������������

����

������������������������

Figure 2: A simple example of a statechart

A UML statechart also offers the possibility to perform actions upon entering or exit-
ing a state. These actions are atomic and can for example be the updating of a data
value or the starting of a timer.

The example below of an extended version of the earlier CD player shows how it is
possible to make a more elaborated statechart for an application while still using the
same set of elements. There are more states and several ways to travel between
them, giving the application more functionality. Some of the transitions are triggered
by manual signals, like the one marked ”Play[cdInserted]/Sound” going from Stop-
ped to Playing, while others are triggered when a certain timer has expired. An ex-

9

ample of this type of timer is the transition marked ”100ms[isStopped]” which leads
from Skip Rew to Stopped and will be taken after 100 ms assuming that the ”isStop-
ped” guard is true [8, 15, 33, 41, 44].

�������

�������

��������

������

�������

����

����

�����������������������

��
��

��
��

��
��

��
�

�

��

��
��

��
��

��
��

�
�

��
�

�����

���

��
��

��
��

��
�

�
�

��
�

�����

����
���

��
�����

��

���

����
������������

��

Figure 3: An example of an extended statechart

10

11

3 Feasibility Study

3.1 Existing tools and systems

3.1.1 SCXML

Statechart XML or SCXML for short is published by W3C and is an XML based
language used for representing UML statecharts [48]. It uses a set of XML tags and
a terminology that is focused specifically on the statechart domain. Although still a
work in progress and thereby lacking some of the functions found in UML statecharts
it offers a construct called custom action (not to be confused with the UML action),
that can be created to represent any function that can be used in a statechart. As
many custom actions as is needed can be created in order to close the gap between
SCXML and Statechart UML functionality.

3.1.2 Rational Software Architect

One of the larger existing products found was Rational Software Architect, RSA,
created by IBM. It is a tool made for building UML statecharts via a simple graphical
point-and-click interface and transforming them to ordinary programming languages
[30]. Out of the box it does not transform into SCXML, but with the help of an addi-
tional plugin that could be achieved too.

RSA is built on the Eclipse platform, but it is not open source software and can the-
refore not be developed any further. It is possible to create other standalone features
to use in addition to the ones provided in the original system though [25, 26, 27].

12

3.1.3 UniMod

Another already existing product was UniMod, short for Unified Modeling, which is
a project focused on designing and implementing applications such as FUs [17]. It
contains two environments, one for designing the application in a sort of class dia-
gram where the connectivity between the elements of the application is defined, and
one runtime environment where the user can build a statechart corresponding to the
application and run a simulation of it. Along with the class diagram, appropriate Java
classes corresponding to the different elements are created automatically. Often the-
se files must be manipulated by hand in order to achieve the required behaviour of
the application. After building the application diagram, the user can generate an XML
representation of the statemachine and then run it using a runtime framework that
is part of Java Finite State Machine Framework [16]. It also has a debugging mode,
making it possible to track where you are in the statemachine during runtime.

UniMod is an open source plugin to Eclipse and uses the GNU Lesser General
Public License, LGPL [20]. This means that it is allowed to use the code freely, but
the parts of the developed product that uses it also becomes open source under the
same license rules. It is possible to extend and modify the existing Java code, the-
reby equipping the system with any functions that might be needed [18].

3.1.4 Graphical Modeling Framework

The Graphical Modeling Framework, GMF, is a framework for the Eclipse platform
used to develop graphical editors that are primarily used for diagrams such as sta-
techarts [12]. A developer starts by creating a model, for example a class diagram or
an XML schema, from which GMF can auto generate Java classes that make up an
editor. This means that there is no need for any Java code to be manually written in
order for the editor to function. With a model that is detailed enough and by adding
diagram parts defined by ordinary image files like JPEG or GIF GMF can create a
tailored diagram editor to suit a specific project. If more advanced features are requi-
red it is also possible to modify the generated code by hand in order to make further
changes to the editor.

Figure 4 shows the GMF dashboard, used in Eclipse as a guide through the develop-
ment process of a GMF editor. It distinguishes all the models that have to be created
and combined to create an editor. Just as a DSL is defined by its metamodel a GMF
editor is defined by its domain- or ecore model which is also the first thing created
by the developer. This ecore model contains definitions for all the entities and rela-
tionships that will be part of the editor, such as states and transitions [21, 40]. From
the ecore model the developer can then derive a domain generator model. This mo-

13

del takes the definitions in the ecore model and generates parts of the editor code,
mainly for the modelling parts like the interfaces of the transitions and states.

The graphical and tooling models are very much alike, since they both contain in-
formation about the visual elements in the editor. The first one is used to define the
graphical elements used when drawing in the editor and the second one to define
the different tools in the editors palette. By binding the graphical and tooling models
to the ecore model, the developer receives the mapping model containing all the
information about the GMF editor. This can then be transformed into the final model,
the diagram editor generator model. This model provides validation support, pointing
out the occurrence of any errors in the previous models, as well as containing all the
properties needed for generating the source code for the diagram editor.

Figure 4: Screenshot of the GMF dashboard

An editor created with GMF can be made to be a standalone product rather than ha-
ving to be run within Eclipse. GMF is rather new but was found to be quite well docu-
mented with an API as well as several examples and tutorials [13, 14, 22, 28, 43].

3.1.5 Apache Commons SCXML

Apache Commons SCXML is aimed at creating and maintaining a Java based engi-
ne capable of executing a statemachine defined in an SCXML file [5]. It is part of the
Commons project which is an Apache project focused on reusable Java components
[1]. Commons SCXML is a rather new product, having been around for less than two
years, but it is very well documented with an extensive API. Some tutorials and ex-

14

amples are also provided, although, at least to this date, not very many or detailed.
Just like UniMod, Commons SCXML is open source and placed under LGPL. This
makes it possible to adjust the code to fit the specific target system but the resulting
product, or at least the parts that uses the Commons code, must be open source
too.

3.2 Discussion and final decisions

Directly after the study, the initial thought was to use one of the researched systems.
That way any redundant implementation would hopefully be reduced to a minimum,
allowing more time to be spent on extending the developed system with more ad-
vanced functions. This meant using either UniMod or RSA as they both contained
diagram editors and functions that could perform a transformation to runnable code.
In UniMod, it was also possible to actually run the resulting code.

RSA was quite quickly dismissed from the proposals as it was not free to use, which
was important for being able to use it in the thesis work. It was also not sure how
easy it would be to expand and complement the existing editor since it was not open
source. The system also had another large flaw which was the lack of support for
timers, the ability to move from one state to another after a certain time given by the
user. Being able to use timers was a requirement from Mecel since timers are quite
common when using statecharts and especially when simulating FUs.

For a while, UniMod seemed to be a good choice of system to work with. It contained
almost all the basic features needed for the graphical part of the thesis project along
with its own internal engine to run the statechart. However, a closer look showed
that the code base was very large and not too well documented, and it was decided
that it would take too much time to comprehend it well enough to be able to modify
it. Another negative was that the construction of the initial class diagram required
too much programming time and skills from the user. Finally, the current version of
UniMod was designed for an older version of Eclipse and there was some issues
with getting it to work correctly on the newer version that was already chosen for the
thesis project.

As all candidates were dismissed the only remaning and viable option was to build
the statechart editor from scratch. Since it was already stated that the programming
part of the thesis work would be done in Eclipse, GMF was the obvious choice for
this development. It provided an easy way to create an editor with the most basic
functions for drawing diagrams and it was also the suggested choice by Mecel.

15

There was still a need for a way to represent the graphical statechart in code so that
it could be run by an engine. The natural choice in this case became using SCXML.
The other possible option, and also the initial suggestion from Mecel, was to use
XML, but since the editor should be designed only for statecharts, it seemed like a
much better idea to go with SCXML, a subset of XML adapted especially for this pur-
pose. It was still easy to use and comprehend based on the knowledge of XML and
considering the time frame for the thesis work the learning curve was considered to
be acceptable.

When the decision to use SCXML was made, the following decision to use the engi-
ne from Commons SCXML was not a hard one to make. It was designed to run sta-
techarts defined with SCXML and as it was built in Java it could easily be adapted to
suit the needs of the project. Also, it removed the need to implement an engine from
scratch, thereby saving both time and trouble. One possible negative was the fact
that it was open source, but after getting the green light from the supervisors it was
decided to use the Commons SCXML Engine anyway.

16

17

4 Prerequisites

4.1 Problem domain

In order to develop a good and usable system the boundaries of the problem domain
had to be identified along with the intended users. As the intention was to use the
developed simulator together with the Populus Suite it followed that the problem do-
main would fall within the domain of HMI development. Following the same logic the
intended users would be users with good knowledge of the Populus tools provided
by Mecel. In addition to this Mecel also suggested that the simulator would use UML
to represent FU behaviour as statecharts and as a result the intended users also had
to have some knowledge of Statechart UML.

4.2 Project model

Once the feasibility study was completed the development phase could begin. First
off requirements were gathered and compiled into the requirements specification
found in Appendix A. Next the project plan, Appendix B, was reworked so that the
time plan that was initially created at the start of the project also included the itera-
tive development process that was about to start. Once these steps had been taken
along with some initial discussions about the design of the system the actual imple-
mentation started.

Throughout the implementation phase continuous testing has been performed to
ensure a working system. Also weekly meetings were held with the project supervi-
sors to make sure the system prototype was progressing according to their require-
ments.

18

4.3 Requirements

The requirement specification consists of two groups of requirements where the first
deals with system requirements and the seconds with developer requirements. The
system requirements are based on discussions with the project supervisors and
aims to ensure that the system functionality will be according to their wishes. The
developer requirements are there to ensure that the work on the simulator can be
continued after the thesis project comes to an end.

The following sections describes some of the more important requirements and the
full requirement specification can be found in Appendix A.

4.3.1 System requirements

GI1: The drawing of a statechart shall be done using a simple point-and-click
method.
Simple point-and-click shall be used to allow non-programmers to easily use the
system.

NGI1: The interface shall communicate with the HMI Engine via the ODI protocol
over TCP/IP.
A real FU would communicate with an HMI using the ODI protocol over a TCP/IP
connection and as it is important that an HMI cannot distinguish between a real FU
and a simulated one the simulator must utilize the same communication methods as
a real FU.

F4: The simulator shall be able to handle simple, non-nested statecharts.
As any FU, simple or complex, can be represented by a non-nested statechart the
simulator must be able to handle any such statechart.

F13: The user shall only be able to use the elements predefined in a FU class file.
As HMIs are constrained by the FU class they are based on it is important that the
simulator statecharts created for an HMI cannot contain data or functions that cannot
be handled correctly in in the HMI.

CO1: The ODI Interface shall be separated from the editor.

19

Mecel wants the option of reusing the ODI interface created for the simulator in fu-
ture applications.

4.3.2 Developer requirements

Eclipse shall be used for development
The Eclipse IDE [11] is already used at Mecel and shall therefore, and because it
supports GMF, be used for the development in this project.

ClearCase shall be used for version control
Mecel uses the Rational ClearCase [29] and as version control was required for the
thesis project ClearCase shall be used to store any developed code.

4.4 Simulator structure

It was decided early on that the system was going to have two distinct parts, one
graphical and one non-graphical. The first would present the user with the editor and
tools used to create statechart diagrams while the second would contain the engine
driving the simulator along with the communication interface. Developing the system
like this would comply with Mecels requirement to have the communication interface,
the ODI Interface, reusable and it would also allow for the development of the two
parts simultaneously, reducing the time used for the implementation and making it
easier to test the individual parts during development. The final system was made to
consist of three parts where the non-graphical part was made up of the ODI Interface
and the Renegade Engine and the graphical part made up of the Renegade Editor
as depicted in figure 5 on. An overall description of the system can be found in Ap-
pendix D.

In order to provide the user with a familiar GUI it was important that the terminology
used in the Renegade Editor did not differ too much from the terminology used in
the Populus suite. However, some of the terms used in Statechart UML also exist in
Populus but there they have a completely different meaning. For instance, an action
in Populus is described as an operation on an FU like pressing the play button on
a CD player. This function would however correspond to what is called an event in
Statechart UML. To avoid any confusion the Populus terminology is used in the Re-
negade Editor and also throughout this report if not otherwise stated.

20

������������������ ������������������

��

���

���

������������������

�������������

���������������

���������������

������������

���

��������

Figure 5: The architecture of the current Mecel Populus system,
with the addition of the Renegade Simulator

21

5 Implementation

5.1 Renegade Editor

The implementation task was to create a system consisting of an editor for the mo-
delling of a statechart that in turn is used for simulating an application (for example a
radio or a CD player) using a simulation engine. This simulator is referred to as Re-
negade Simulator and the application is the previously mentioned FU. This together
with Mecel’s existing Populus HMI editor, used for defining an HMI, and their HMI
Engine, used for running the HMIs defined in said editor, will be used to simulate a
complete system.

5.1.1 Basic design

In order to create an editor in GMF, there was a need for an ecore model from which
the creation process could start. For the purpose of this project this model was made
up of the class diagram depicted in figure 6. The ecore model describes the different
types of objects that can be used in the Renegade Editor, the attributes defined for
these objects and the different relations between the objects. As shown in the figure
a statechart can contain at most one initial state, zero or more final states and any
number of ordinary states and transitions. Each of the three state types has a name
attribute, zero or more transitions and zero or more data elements connected to it.
When a transition is connected to a state the transition must be aware of both the
state from which it originated and the state to which it is leading. A data object on the
other hand is simply a data carrier with no knowledge of the state to which it is con-
nected. Each class in the class diagram has one or more attributes defined for them
and in the Editor these attributes are given values through the use of configuration
wizards which are further described in section 5.1.3.

Using this class diagram as a foundation the editor could be developed using the
dashboard tool provided by GMF. In the first iteration, no extra design choices were
made and the creation process was more or less just run through from start to finish.
This resulted in a rather plain editor, not at all adapted to the demands of the thesis

22

project apart from providing functions for drawing nodes and vertices. Beside its
unimpressive look and features which can be seen in figure 7, this editor had all the
necessary files and packages needed for any working editor.

Figure 6: The ecore model, in form of a class diagram, used for the Renegade Editor

Figure 7: A very basic diagram editor

23

The next steps, concerning graphics, internal functions and user interaction, were
iterated several times before reaching the finished editor. The result of these itera-
tions can be seen in figure 8, showing a diagram that is somewhat similar to that in
figure 7, but more pleasing to the eye. Although this can not be shown in a picture,
this diagram is also easier to manipulate for a user and contains support for more
functions than the previous one.

Figure 8: A more developed version of the diagram editor, showing canvas and palette.

By using this iterative development process, small amounts of functionality could
be added in each iteration. This allowed for testing and approving new functionality
before adding further features, which is in sharp contrast to an all-at-once type of
development, which most likely would have resulted in more time spent on redesign
and corrections. This way, it was possible to always have a working version of the
Renegade Editor to use in demonstrations.

5.1.2 Graphical Design

Since this was going to be an editor for statecharts, it was decided that the various
graphical parts should be modelled to look like the ones in Statechart UML. This
was also chosen in order to let a user work with shapes that was familiar to him or
her. The original nodes and vertices were remodelled to look like UML states and
transitions, the states shown as boxes with rounded corners and the transitions as
arrows. Also, the nodes for the special states, the initial and final states, were desig-

24

ned according to the UML standard as a black circle for the initial state and a black
and white circle for the final state. These design choices are depicted in figure 9.

Figure 9: An unconfigured diagram drawn in the Renegade Editor

There were also some constraints defined for the transitions. There can be no transi-
tions going in to an initial state, since it should never be possible to return there once
a simulation has started, and there can be no transitions going out of a final state,
because when a final state is reached the simulation is finished and should not be
able to proceed into a new state.

Both the similarities as well as the differences between the Populus terminology and
the Statechart UML terminology became somewhat of a dilemma when designing
the Renegade Editor. For that reason the decision was made to abandon the UML
way of naming functions and use the Populus terminology instead. It was considered
to be better to stay with this terminology since the Renegade Editor was supposed to
be a complement to, and possibly even a part of, the Populus suite. Using two diffe-
rent terminologies within the same program would be confusing to the users, so this
deviation from UML standards was decided to be an acceptable one. The elements
of the created diagrams would still be labelled according to UML as to not cause any
further confusion when looking at a diagram. The actions are displayed in plain text,
the indications are enclosed in brackets, and the events are shown with a forward
slash in the beginning as shown in figure 10.

25

The Renegade Editor also had to allow the user to update data and indication values
during the simulation and there was a discussion about where these settings should
be performed. The two options were either when entering a state or when travelling
to said state. From the existing FU classes it was found that the most natural choice
would be to set these values upon entering a state. For example it is more correct
to say that a CD player is playing only after it has actually begun playing than it is
saying it just before it begins to play.

Even though data and indications were to be set in the different states of a statechart
it was decided that neither the data values nor the indications were to be visible di-
rectly in the state element in the diagram. The reason for this was that it was found,
even for the small example diagrams used during development, that as the number
of values grow the size of the state element must be increased to accomodate them
all. This in turn would lead to large and cluttered diagrams that would be hard to
overview and grasp.

5.1.3 User interaction

All the information that can be placed in the statechart in the Renegade Editor is
predefined in an FU class. The expected user of the system was supposed to have
knowledge of how to create these files, so it could be understood that he or she could
read them and would know from the start what information was set in the current file.
Even though this would make it possible for the user to enter the appropriate state

Figure 10: A configured diagram drawn in the Renegade Editor

26

names, actions, indications and so on, using text boxes connected to the different
diagram parts, this was not considered to be the best approach. It was rejected for
two reasons, the first being that allowing users to enter the information on their own
would result in a higher risk of errors, since the text might be spelled incorrectly and
therefore not be matched to the FU class file. The second was that since all the infor-
mation concerning a certain FU was already available in a file it seemed like a waste
of resources not to use it rather than having it as a reference on the side. Hence, a
link between the diagram and the FU class was implemented.

There was still the issue of entering the information in the correct places in the sta-
techart. A first proposal was to use drop-downboxes in the states and on the transi-
tions. The information was to be loaded into these boxes and the user could then
choose for example what action would trigger a certain transition. This seemed like
a good idea in the beginning, but as the development progressed it became obvious
that it would be too muddled and confusing to use this design and it ended up being
rejected.

Figure 11: An example of a window displaying a wizard page in the Renegade Editor

27

The proposal that ended up to be the final solution was to create two configuration
wizards, one for states and one for transitions. By selecting a certain state or transi-
tion, a wizard is made available from the context menu of the selected diagram part
to guide the user through the configuration, as seen in figure 11. On each wizard
page there is one or more drop-down boxes with information loaded from the FU
class file, where the user can choose for example one of the predefined state na-
mes, or what event should be sent out when taking a certain transition. This step-by-
step solution was deemed to be the most user friendly, since it could contain some
explanatory text on each page in order to make the statechart configuration even
easier and it also allowed the user to concentrate on one part of the configuration at
a time. In addition to this it was also possible to save the user’s choices so that if he
or she needed to reconfigure for example a transition, the chosen action, indications
and event would already be chosen in the wizard. This way the configuration did not
have to be done all over again, the user could just click through the pages that were
not supposed to be changed without having to make the same choices again.

5.1.4 Simulation feedback

In order to provide information about the progress and outcome of the simulation,
there was a need for a feedback mechanism in the Renegade Simulator. This feed-
back is provided in two different ways where the first is presented visually in the
Renegade Editor and the second is given as a textual log. The use of a text log was
convenient because SCXML has a built-in support for creating such logs. This log,
implemented using log4j [2], can give the user information about when a state is en-
tered or exited, when data is set and indications sent and so on. Depending on how
it is configured it can also provide more detailed system information making debug-
ging and error correction easier. The visual feedback is given through the graphics
of the statechart diagram. It shows the user which state the simulation is currently in
by marking it with red border making it possible to follow the movement through the
statechart during the simulation.

5.1.5 SCXML Transformation

When a statechart diagram is created in the Renegade Editor two files are created.
One is the actual graphical diagram file and the other is a textual representation of
the diagram in the form of XML Metadata Interchange, XMI [49]. To be able to run the
simulation using the Renegade Engine the XMI had to be translated into runnable
SCXML. Since both files, the XMI and the SCXML, are based on XML, the transfor-
mation was to be done using XSLT.

28

In the Renegade Editor the transformation process can be done in two different
ways. The user can either choose to start a simulation and by doing so the applica-
tion creates an SCXML file which is sent to the engine as input. It is also possible
to only perform the transformation and saving the SCXML file to disk. By being able
to actually look at the SCXML file the user could possibly be helped in a debugging
process or could, presuming that he or she has the necessary skills, make manual
changes to the statechart behaviour.

5.2 ODI Interface

The purpose of the ODI Interface is to handle the communication between the Po-
pulus HMI Engine and the Renegade Engine which is an extension to the Commons
SCXML Engine. The two engines can not communicate directly since their messa-
ges are on different forms. The ODI Interface receives the different messages sent
between them and translates them into the correct form in order for the receiving
engine to understand them. In this thesis four basic types of ODI messages, descri-
bed below, are used.

5.2.1 ODI Message Description

When something has happened in the HMI, for instance when a user has selected
an item in a menu or pushed a button, information about this is sent to the simulator
as an ODI Action message. When the ODI Interface receives this message from the
HMI Engine it triggers the corresponding transition in the statechart. Figure 12 dis-
plays such a flow of events.

��� ���������� ������������� ������������
������������� ���������� ������������������

��������������

Figure 12: An example of a course of events that include an ODI Action message

29

��� ���������� ������������� ������������
�������� ��������� ���������������

Figure 13: An example of a course of events that include an ODI Event message

Populus indications are booleans used in the HMI to keep track of how the HMI
should be presented in different states, like ”the play button should be enabled
when in the stopped state” or as a guard inside the statechart allowing the use of a
transition. Whenever an indication is changed in the statemachine the ODI Interface
should send a message, called an ODI Indication message, to the HMI Engine. This
message contains all of the indications present in the system, whether they have
been updated or not. An example of a course of events that include an ODI Indica-
tion message can be viewed in figure 14 below.

��� ���������� ������������� ������������

���������������������
������������������ �������������� ������������������

Figure 14: An example of a course of events that include an ODI Indication message

The ODI Dynamic Data message is actually two different types of messages, the
ODI Dynamic Data Request Message and the ODI Dynamic Data Response mes-
sage. The HMI Engine sends a request message on behalf of the HMI to the ODI
Interface in order to register or unregister a subscription to data updates. As long as
an HMI has subscribed to a certain set of data it should receive a message whene-
ver this data has changed. This is done by sending a response message containing
the updated value to the HMI Engine. The message itself can be a single frame mes-
sage or a multi-frame message and the difference between them lies on the different
data types they can carry. A frame is a block of data with fixed size and the larger
the message the more frames are needed. There are 22 different types of data that
the ODI protocol can handle and they can represent among other things the speed
value of the car or the title of a song being played. Figures 15 to 17 illustrate example
scenarios where data request and response messages are sent.

The ODI Event message is used to tell the HMI to perform things like displaying a
popup window or in some other way notify the user of changes in the FU. The ODI
Event message is triggered when a taken transition is configured with an event. An
example could be when moving from a stopped state to a playing state a pop up
window saying ”Playing” should be displayed. A course of events that include an ODI
Event message can be viewed in figure 13 below.

30

The messages received from the HMI Engine are on serialized form and the mes-
sages sent to the HMI Engine should also be on serialized form. The collection of
classes and interfaces created to accomodate this functionality was collectively re-
ferred to as the Populus Java Interface (PJI) and included functionality for input and
output streams, serialization and deserialization of request and response messages
and different enumeration types used in the ODI protocol. A basic but incomplete im-
plementation of the PJI had been developed by Mecel as part of a previous project,
the aim of which was to create Java representations of functional units and from this
foundation a working version of the PJI was created and called the ODI Interface.
The developed package does not cover all aspects of the ODI protocol but it does
provide enough functionality to cover the requirements of this project.

5.2.2 Populus Java Interface

As stated before the basis for the PJI implementation was incomplete and in many
ways lacking the functionality necessary for this project. This proved to be a grea-
ter challenge than expected for several reasons, the main one being integration
problems with the HMI Engine. The root of these integration problems was a diffe-
rence between the documented ODI specification and how this had been realized

��� ���������� �������������

�������������������

������������
������������ ����������������

�������������������

Figure 17: An example of a course of events that include an
ODI Dynamic Data request unsubscribe message

��� ���������� �������������

�������������������

������������

������������������������
����������������� ����������������

���������������
������������

Figure 16: An example of a course of events that include an ODI Dynamic Data response message

��� ���������� �������������

����������������

������������
������������ ����������������

�����������������

Figure 15: An example of a course of events that include an
ODI Dynamic Data request subscribe message

31

in the HMI Engine. It turned out to be quite difficult to identify this error as the HMI
Engine never really reported any errors. It simply accepted the, as it viewed it, faulty
message from the PJI and discarded it without complaints. The problem was only
pinpointed once the HMI Engines logger application that was used to monitor what
happened on the HMI Engine side had been reworked to display all messages re-
ceived, even the faulty ones. Once this new logger was introduced the cause of the
problem could be determined. At this point it was decided that the implementation of
PJI should be changed to not follow the documented ODI specification but instead
match the implementation used in the HMI Engine.

This process of debugging the communication, reworking existing code and finally
solving the issues was a lengthy process but once completed the ODI Interface
included working serialization and deserialization functionality for actions, events,
indications and nine different types of data messages.

5.2.3 ODI Message handling

When the ODI Interface first receives a message from the HMI Engine it needs to
determine what type of message it is. To do this all of the incoming and outgoing
messages from and to the HMI Engine implements an interface called Message.
Message is defined in PJI and contains only one function which returns the message
type. When this is determined the message is then cast to the specific type of mes-
sage so that the ODI Interface can get the information needed to continue. To check
whether the message is sent from a HMI that is built for the running simulated FU,
the ODI Interface keeps track of which simulation it is currently running by storing the
ID of the FU class the simulation is based upon. By comparing this stored ID to the
incoming messages FU class ID the ODI Interface can determine if the HMI is build
on the same FU class as the simulation. Otherwise errors could occur like when the
HMI wants to subscribe to data that does not exist in the statemachine, or when the
HMI sends ODI Actions that do not correspond to any actions that can be triggered
on the statemachine.

As the Commons SCXML Engine in itself has no link to the ODI Interface this had to
be created in the Renegade Engine. The link was vital in order to provide the HMI
with information about events from the statechart. A number of different solutions
were considered where the first was to develop an event notification mechanism
[42]. However, since events are predefined values that never change there is not-
hing to trigger the notification and the idea was discarded. As events are configured
for transitions another solution was to create a listener on the transition instead of
the actual event. When a transition is taken the listener checks whether there is an
event present and if so forwards it to the ODI Interface which turns it into an ODI
Event message which is sent to the HMI. Figure 18 shows this setup.

32

Whenever an indication value is changed in the statemachine the new value needs
to be sent to the HMI in order for it to be updated accordingly. The original imple-
mentation of the Commons SCXML Engine did not provide functionality that made
this possible and so it had to be extended. The extension consisted of a notification
mechanism that provided the ODI Interface with the updated indication value which
could then be transformed into an ODI message and sent to the HMI. An example of
the solution can be viewed below in figure 19.

��� ���������� �������������

��������������

������������

��������������
�������� ���������

���������
������

�����������

�����

 Figure 18: An example of how the ODI Interface receives an event
and turns it in to an ODI Event message

��� ���������� �������������

��������������

������������

������������������
������������������ ��������������

���������
������

�����������������

������������

Figure 19: An example of how the ODI Interface receives a Notification
and turns it in to an ODI Indication message

When the ODI Interface receives a request message for ODI Dynamic Data it first
checks whether it is a request to subscribe to a certain data value or to unsubscribe
said value. If the request is for a subscription the data value in question is added
to the collection of subscribed data values and if the request was to unsubscribe a
data value that value is removed from the same collection. Whenever a data value is

33

changed in the statechart the HMI should be notified. Although no action is required
for unsubscribed data, for subscribed data the ODI Interface needs to compose a
Dynamic Data message and send this to the HMI. For each supported data type a
specific message class has been implemented.

A problem that arose when implementing the data handling functionality was how to
let the ODI Interface know that data had been updated in the statechart. Because of
how the Commons SCXML Engine was implemented there was no obvious best so-
lution for this problem and a number of different solutions were considered. The first
idea was to create a thread that would poll for subscribed data in the statemachine
after a certain time interval. This idea was rejected because there was an uncertainty
on how long this pause would have to be in order not to miss any data or use un-
necessary CPU power.

A second proposal was to implement a mechanism that on each state entry would
compare the data in the state to the data that was previously sent to the HMI. To
avoid sending incorrect data this mechanism would use a semaphore lock [7] to pre-
vent the statemachine from moving on. While this lock was in place a polling thread
would check all the data values and if any had been updated this would be sent to
the HMI. Once this procedure had been completed the lock would be released and
the statemachine could move on. The proposal was discarded as it would always
check all subscribed data values which could lead to a lot of unnecessary proces-
sing.

The third idea, which was eventually chosen, was to have the statemachine notify
the ODI Interface whenever a data value was changed. This is basically the same
solution as the one used for indications and the existing implementation only had
to be changed slightly in order for it to be used for both indication and data values.

��� ���������� �������������

��������������

������������

������������������������
����������������� ���������������

���������������

���������
������

�����������������

������������

Figure 20: An example of how the ODI Interface receives a Notification
and turns it in to an ODI Dynamic Data String Response message

34

However, in order for the ODI Interface to distinguish between the two notification
types a special class, containing both the value and its type, was created and used
as a data carrier. This solution, depicted in figure 20, was considered to be the most
effective out of the three and it also avoided the synchronization problems that was
associated with solutions involving threads.

5.3 System Verification

In addition to the continuous testing performed during the implementation phase the
system was also presented to group of outside testers. These testers were, after
having received a brief introduction to the system, asked to perform a set of tasks
in a simple test scenario. The aim was to gauge the system’s usability and to see
if it was as user friendly as intended. The result of these tests can be found in the
test specification (Appendix C). These user tests were carried out in the developed
prototype while the earlier testing was done using the verification and test functions
provided by the tools used in the project.

35

6 Analysis

6.1 Renegade Editor

Even though the Populus terminology was adopted for the Renegade Editor the fact
that this differs from the UML terminology can still cause confusion and errors. There
are several possible ways to avoid having this risk turn into a real problem. One
would be to simply educate the users, another to change the terminology in Populus
to match that of Statechart UML or to something all together different from Statechart
UML. While the first may be the easiest to realize the last one is what would most
likely remove the problem completely.

The system has a flaw concerning the naming of the statecharts made in the Re-
negade Editor; it is not possible to change the name of a statechart diagram once it
is created. Or rather, it is technically possible, but when it has been done the confi-
guration is lost from the diagram and can not be replaced. This is of course rather
annoying from a usability point of view. Unfortunately, after doing some research, it
was established that this was a quite common problem when using editors created
with GMF and nothing that could easily be fixed. It is a negative aspect of using GMF,
but it was considered not to be necessary to reject it as a tool because of this, as the
advantages with it outweighed the disadvantages. Hopefully, this will be solved in a
later version of GMF. It might also be possible to solve by changing the automatically
generated code but it was estimated that this would not fit in the timeframe of the
thesis work as there were other more important issues were more important to solve.
For now, it will be pointed out in the user manual (Appendix E) that a name change
is not recommended.

As it is now, some information is hardcoded into the system. For example, the state
name is always chosen from an enumeration set in the FU class file called ”Player
State”, which of course means that this enumeration set has to be present in the file.
This choice was made after having studied several different FU class files provided

36

by Mecel. This enumeration set was present in all the files that represented the kind
of functional units that the thesis work was supposed to deal with. In a future ver-
sion, this choice should perhaps be changed to a textbox allowing the user to enter
a custom state name, provided the care is taken to prevent misspellings and other
human-made errors.

6.2 ODI Interface

Though it is considered to be the best of the three different solutions presented
in section 5.2.3, the handling of Dynamic Data messages could have been solved
more neatly. The reason for keeping the current solutions was that it turned out to
be an acceptable way to fullful the requirements of a working system within the time
frame of the project.

As a result of a limitation in Populus the implemented simulator is limited to one single
HMI display and all the Dynamic Data Request subscription messages concerns that
particular display. If these limitations are overcome and more displays are connected
to the same FU, the subscription messages cannot distinguish from which display a
certain message is coming. This could for instance lead to the adding or deletion of
subscriptions for the wrong display.

Java is unfortunately not a very flexible language when it comes to bit handling. Still,
since one of the early decisions in this project was to use Java, the solutions to the
different problems related to this had to be solved. This turned out to be more difficult
than expected because of inconsistencies between the ODI protocol specification
and how it has been implemented in the HMI Engine which caused the development
to become very error prone. As an example, if you set a Java byte that is part of
an ODI Indication message to the number 1 the indication interpreted as number 8
would be set to true, which might not be what would be logically expected.

37

7 Conclusion

7.1 Result

The result of this thesis project is a working prototype of a simulator used to test
HMIs. The simulator allows a user to create statecharts representing the workings
of any FU defined by an FU class and to do this without writing a single line of code.
Once created and configured the progress of running simulations is easily monitored
through a visual feedback mechanism. The simulator connects to an HMI through a
standalone communication interface which ensures that an HMI cannot distinguish a
simulated FU from a real one.
The simulator fulfils all the listed shall-requirements except for one (S2) which was
considered to be of little importance to the overall functionality of the system.

7.2 Discussion

Even though the thesis work has generated a runnable system, it is important to
understand that it is still not complete. The time limit of the project had to be taken
into consideration when it was decided how much of the implementation was ac-
tually possible to accomplish. It was obvious from the start that it was not possible
to create the whole fully functional product fulfilling all the shall- and should requi-
rements of the requirements specification. Instead, the aim has been to produce a
working and well documented prototype that can be further developed should so be
required. As a result of this, some requirements have been down prioritized and left
for implementation later on.

The Renegade simulator can only be run as an Eclipse plugin application. While this
is acceptable as long as the system is still under development, this is no longer the
case if the simulator is going to be marketed to a potential customer. Not only does
this solution make the system too complicated and time consuming to use in the long
run, it is also not an option to require that the customer acquires and learns Eclipse
in addition to the new simulator system.

38

Today, the system can indeed handle simulations of functional units, but so far it is
only made for very simple applications with few functions and a limited amount of
data. It is possible to create a simulation of a very simple music player that can hand-
le functions like play, stop and the displaying of the current track number, but there
is for instance still no support for displaying a running clock to show the track time.
A complicated FU like a GPS would most probably be impossible to create with the
current system. The simulator has to be extended with more, and more advanced,
functions before it can be said to fulfil all the needs that a user might have.

The original idea of the thesis work was that the system would be even further deve-
loped than it is right now, but this turned out to be impossible in the end. The reason
for this was that a lot of time that was originally meant to be spent on the implemen-
tation of the Renegade Simulator instead had to be spent on finishing and improving
already existing components in Mecel Populus. One improvement that was made
was the one of the ODI logger used to see what was sent and received through the
ODI protocol. To be able to use this effectively in the debugging process it had to be
changed and upgraded to show more detailed information. Also, the Populus HMI
Engine had to be rebuilt several times since there were a lot of difficulties integrating
the Renegade system with the Populus system, mainly because of the ODI specifi-
cation being interpreted differently in the two projects.

As the implementation phase had to be extended in order to complete a working
prototype the user testing had to be down prioritized. Despite this a few user test
were still performed in order to try to define what should be done if the development
were to continute. Because there was not enough time to find actual customers to
perform the test scenarios these had to be done by other people. Although it might
not be considered an optimal approach effort has still been made to select testers
that fulfilled the user demands as closely as possible.

One purpose of the thesis work was to create an easy way for non-programmers to
test HMIs. Unfortunately since there have not been any testing on actual customers,
there is no possibility to clearly state whether this goal has been reached or not. Ho-
wever, the system does not require a user to write any code by hand but mostly gets
the input from pointing and clicking. The only manual text input that has to be fed to
the simulator is that of data values. When asking the testers and other people (both
programmers and non-programmers) it was also the main opinion that a graphical
image was indeed easier to grasp for a mixed group of employees than written lines
of code. Because of this, even though it cannot be said that the present system is a
perfectly satisfactory solution to that problem, the conclusion is that the Renegade
simulator is a solution that is at least well on the way towards that goal.

39

7.3 Future work

If the system is to be marketed and sold, there are still some important things that
need to be done before it can be considered a finished product. This chapter does
not aim to give any final solutions to the remaining problems, but to point out com-
ponents and functions that have yet to be developed and in some cases give a few
suggestions.

7.3.1 General

In the finished system, the simulator can no longer be a part of Eclipse. As the simu-
lator does not depend directly on any of the functions in the other Populus products it
would be possible to have it as a standalone application separated from both Eclipse
and Populus. Another alternative would of be to actually integrate the simulator in the
current Populus suite and although both solutions are technically possible, this latter
one would probably be considered the most user friendly.

7.3.2 Renegade Editor

�������

�������

����

������������������������

�������

������������������������

����������

����

����

����

������

������
���

����
���

 Figure 21: An example of an extended statechart, showing nested states

40

Simple non-nested diagrams can be created in the Renegade Editor, but in order to si-
mulate more complex functional units without having to create very large statecharts,
the editor should be extended to enable the user to draw nested statecharts. This
would allow a user to place several substates (or sometimes several statecharts)
inside a larger superstate. This could be proven useful, for instance when an device
has an active and an inactive state, and behaves differently in these two superstates.
The Commons SCXML Engine already provides support for this type of statechart,
meaning that only a minor changes to the Renegade system would be neccessary.

The system should include a debugging function, allowing the user to place break-
points at arbitrary positions in the statechart. When the simulation runs in debug
mode it should be suspended whenever one of these breakpoints is reached, giving
the user time to examine logs and data to assure that everything about the simula-
tion and HMI testing works as planned.

With the introduction of a debugging function that allows a user to suspend a simu-
lation it becomes more valuable to improve the visual feedback to also show the
transitions that are taken. In its current form the simulator never lingers long enough
on a transition to warrant highlighting it but once breakpoints are available the simu-
lation may come to a halt while on a transition. Without highlighted transitions the
exact state of the simulation will be unknown.

In the Renegade Editor it is possible to have several diagrams open but only one at
a time can be active and in use. During the testing it was revealed that the system
contains a bug which causes the visual feedback from the simulation controller to
be sent to whatever diagram is currently active. If the user starts the simulation with
one diagram and while running the simulation switches to another open diagram
that contains all or some of same states this new diagram will be updated when the
statemachine reaches a new state. This could definitely lead to confusion end errors
and should be corrected in a future version of the system.

The Renegade Editor can only handle indications defined in an FU class and these
indications are for the most part used to control visual aspects of an HMI. As a future
improvement a user should be able to create new indications in the editor which will
only serve as guard expressions in the statechart and thus never sent to the the
HMI.

When the user wants to stop an active simulation he or she has to exit the Eclipse
application completely and before another simulation can be started a new instance
of the application has to be run. This is time consuming and would also not work
when the system is moved out of Eclipse since this would most likely cause the en-
tire program to have to be restarted. A stopping function has to be implemented and
made available in the GUI.

41

7.3.3 ODI Interface

The ODI specification contains 22 different types of data that can be sent using the
ODI protocol and the developed simulator supports nine of these. The ones that are
supported are all single frame data types, with the exception of the string type, while
an FU class may contain multi-frame data types such as lists. The remaining 13 must
be implemented along with support for list data before the system covers the full ODI
specification.

In the ODI specification there are two types of actions messages: simple actions and
value actions. Both types contain a regular action message but in addition to this the
value action also contains a data value which can be of any of the different types of
dynamic data. The current implementation of the system handles all the ODI Action
messages in the same way and does not distinguish between simple and value ac-
tions. In a future development phase this should be changed so that the data in a
value action can be saved and used during the simulation.

In order for an HMI to receive notifications of data changes in the FU it must be re-
gistered as a subscriber to those data values it has an interest in. This subscription
mechanism has been implemented in Renegade but due to a known problem in Po-
pulus it does not work fully. The problem is that the subscription requests are sent to
the FU, in this case the simulator, upon startup which occur before the connection to
the FU has been established and then again each time an event has been sent from
the FU. As a result of this issue the HMI may miss several updates to data because
as long as no event has been triggered the FU does not know that the HMI wants
to subscribe to data changes in the system. In order for the simulation, or rather the
complete system, to work as expected this problem needs to be fixed. Mecel are
discussing possible solutions to the problem but as of yet none of them has been
realized.

A future extension to the subscription mechanism is to allow several HMIs to subs-
cribe to the same set of data in the same FU. In its current implementation the sys-
tem only allows for one subscription per data value. As multiple HMIs may be driven
by the same FU a natural way forward is to bring this multi-display support into the
subscription mechanism.

When using the basic implementation of the Commons SCXML Engine it becomes
rather cumbersome to handle changes to data values in such a way as was required
for the simulator. The solution became a bit messy and should be reworked in future
implementations, possibly using the SCXML Engine custom actions mechanism [5].

42

43

References

Apache Software Foundation, Apache Commons, March 2009.
http://commons.apache.org/

Apache Software Foundation, Apache log4j, August 2007
http://logging.apache.org/log4j/1.2/index.html

Apache Software Foundation, Commons EL, March 2008
http://commons.apache.org/el/

Apache Software Foundation, Commons JEXL, March 2008
http://commons.apache.org/jexl/

Apache Software Foundation, Commons SCXML, May 2009.
http://commons.apache.org/scxml/

Apache Software Foundation, Commons SCXML Usage - Five minute SCXML
Tutorial, May 2009.
http://commons.apache.org/scxml/guide/scxml-documents.html

A. Burns, Concurrent Programming, Addison-Wesley, 1993, ISBN: 0-201-
54417-2.

L. Copeland, State-Transition Diagrams, 2008.
http://www.stickyminds.com/sitewide.asp?Function=edetail&ObjectType=ART
&ObjectId=6232

A. van Deursen, P. Klint and J. Visser, Domain-Specific Languages. ACM SIG-
PLAN Notices, Vol. 35, No. 6, pp. 26-36, June 2000.

Domain-specific language.
http://en.wikipedia.org/wiki/Domain_Specific_Language

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

44

Eclipse Foundation, Eclipse.org home, 2009.
http://www.eclipse.org/

Eclipse Foundation, Graphical Modeling Framework, 2009
http://www.eclipse.org/modeling/gmf/

Eclipsepedia, GMF Tutorial, August 2008.
http://wiki.eclipse.org/index.php/GMF_Tutorial

Eclipsepedia, Graphical Modeling Framework FAQ, August 2008.
http://wiki.eclipse.org/Graphical_Modeling_Framework_FAQ

H-E. Eriksson, M. Penker, B. Lyons and D. Fado, UML 2 Toolkit. John Wiley &
Sons, 2003, ISBN: 0-471-46361-2.

eVelopers Corporation, Java Finite State Machine Framework, January 2007.
http://unimod.sourceforge.net/fsm-framework.html

eVelopers Corporation, UniMod, June 2008
http://unimod.sourceforge.net/

eVelopers Corporation, UniMod 1.3 Introduction, February 2008.
http://unimod.sourceforge.net/wiki/index.php/UniMod_1.3_Introduction

M. Fowler, Using Domain Specific Languages. April 2008.
http://martinfowler.com/dslwip/UsingDsls.html

Free Software Foundation, GNU Lesser General Public License, June 2007.
http://www.gnu.org/copyleft/lesser.html

J.P. van Gigch, System design modeling and metamodeling. Plenum Publishing
Corp, 1991, ISBN: 0-306-43740-6.

R. Gronback, Eclipse Modeling Project - a domain-specific language toolkit. Ad-
dison Wesley, 2008, ISBN: 0-321-53407-7.

J. Hanneman and G. Kiczales, Design pattern implementation in Java and
Aspect J. ACM SIGPLAN Notices, Vol. 37, No. 11, p 161-173, 2002.

P. Hudak, Modular Domain Specific Languages and Tools. Software Reuse, pp.
134-142, June 1998.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

45

IBM Rational Software Architect.
http://en.wikipedia.org/wiki/Rational_Software_Architect

IBM Rational Software Architect - Summary.
http://www.componentsource.com/products/ibm-rational-software-architect/
summary.html

IBM, IBM Modeling and Integration Tools for State Chart XML, March 2007.
http://www.alphaworks.ibm.com/tech/scxml/?open&S_TACT=105AGX59&S_
CMP=GR&ca=dgr-lnxw02aawscxml

IBM, Learn Eclipse GMF in 15 minutes, September 2006.
http://www.ibm.com/developerworks/opensource/library/os-ecl-gmf/

IBM, IBM Rational ClearCase - Software, 2008
http://www-01.ibm.com/software/awdtools/clearcase/

IBM, Rational Software Architect, 2008.
http://www-01.ibm.com/software/awdtools/architect/swarchitect/

Java Community Process, JSR-00152 JavaServer Pages 2.0 Specification
- Final Release, November 2003
http://jcp.org/aboutJava/communityprocess/final/jsr152/

F. Kronlid and T. Lager, Synergy SCXML Web Laboratory, May 2007.
http://www.ling.gu.se/~lager/Labs/SCXML-Lab/

C. Larman, Applying UML and patterns: An introduction to object-oriented ana-
lysis and design and the unified process. Prentice Hall Inc, 2001, ISBN: 0-13-
092569-1.

Mecel AB, A solution for efficient HMI Development and Deployment. 2009.
http://www.mecel.se/products/mecel-populus

Mecel AB, At the forefront of automotive technology. 2009.
http://www.mecel.se/

Mecel AB, Mecel Betula Suite - Automotive Bluetooth® Platform. 2009.
http://www.mecel.se/products/bluetooth

Mecel AB, Mecel Picea. 2009.
http://www.mecel.se/products/mecel-picea

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

46

Mecel AB, Product Brief - Mecel Populus Suite. 2008.
http://www.mecel.se/products/mecel-populus/Product-Brief-Mecel-Populus-
Rev1-08.pdf

M. Mernik, J. Heering and A.M. Sloane, When and How to Develop Domain-
Specific Languages. ACM Computing Surveys, Vol. 37, No. 4, pp. 316–344,
December 2005.

metamodel.com - Community site for meta-modeling and semantic modeling.
http://www.metamodel.com/staticpage/index.php?page=20021010231056977

R. Miller, Practical UML: A Hands-On Introduction for Developers, December
2003.
http://edn.embarcadero.com/article/31863

M. Moran, Notification Pattern.
http://mnmoran.org/hypothesis/notificationPattern.html

J. Richley, GMF: Beyond the Wizards, November 2007.
http://www.onjava.com/pub/a/onjava/2007/07/11/gmf-beyond-the-wizards.html

Sparx Systems, UML 2 Tutorial - State Machine Diagram, 2009.
http://www.sparxsystems.com.au/resources/uml2_tutoria/uml2_statediagram.
html

V. Subramaniam, Creating DSL:s in Java, Part 1: What is a domain-specific
language?, August 2008
http://www.javaworld.com/javaworld/jw-06-2008/jw-06-dsls-in-java-1.html

V. Subramaniam, Creating DSL:s in Java, Part 3: Internal and external DSLs,
August 2008.
http://www.javaworld.com/javaworld/jw-08-2008/jw-08-dsls-in-java-3.html

D. Thomas, The ’Language’ in Domain-Specific Language Doesn’t Mean Eng-
lish (or French, or Japanese, or...), March 2008.
http://pragdave.blogs.pragprog.com/pragdave/2008/03/the-language-in.html

W3C, State Chart XML (SCXML): State Machine Notation for Control Abstrac-
tion, May 2009.
http://www.w3.org/TR/scxml/

XML Metadata Interchange (XMI)
http://www.service-architecture.com/web-services/articles/xml_metadata_inter-
change_xmi.html

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

47

Appendix A

Requirements Specification

48

49

Requirements specification
Version 4.0

Editor for application modelling and simulation

Linda Erlenhov
Anna Södling

1. General

The specification concerns an editor to build a simple statechart that simulates an
application.

A user should be able to choose which part of the application he/she wants to simu-
late and use the editor to build a statechart of that specific part. He/she should also
be able to send actions and handle incoming events between the states. The speci-
fication also includes an interface between the engine and our editor.

2. References

1. Mecel’s homepage about the existing editor, Mecel Populus - http://www.mecel.
se/products/mecel-populus
2. “Programutveckling i liten skala – en praktisk handbok”, Östen Oskarsson
3. The project’s project plan

3. Definitions

HMI: Human - Machine Interface

HMIEngine: Mecels product that executes the HMI in runtime and communicates
with the applications using the Open Display Interface protocol.

Simulator: The complete system, consisting of a statechart editor with an internal
engine and an interface between the editor and the HMIEngine.

50

Populus: Mecels existing editor used for creating an HMI without having to write any
code.

Action: Activity that indicates something being sent to the application, for example a
press on a Play-button or a change of volume.

Event: Activity that indicates something being sent from the application, for example
when a track is changed in a music player or a station is changed on a radio.

Indication: A boolean value to indicate some status of the application, for example
whether a music player is playing or in stopped mode.

Dynamic data: The data (strings, integers, etc.) needed to display information about
what is going on in the application, for example the title or artist of track. Considered
to be dynamic since it might change between states.

ODI: Open Display Interface, the communication protocol between the simulated
applications and the HMIEngine.

.fuclass file: A file containing the HMI:s pre-defined actions, events, indications and
dynamic data.

4. Technical requirements

4.1 Interfaces

4.1.1 Editor interface

There shall be a graphical interface of the editor used to draw up and manipulate
the simulation statechart.

GI1. The drawing of a statechart shall be done using a simple ”point-and-click”-
method.

GI2. The editor shall be able to read a .fuclass file from the Populus editor.

GI3. A newly built or modified statechart shall be able to be saved in the editor
and re-opened on a later occasion.

51

GI4. When the editor is started, the user must choose between building a new
statechart or opening a previously saved statechart.

GI5. The user shall be able to display a list of the different elements (actions,
events, etc.) contained in the .fuclass-file.

4.1.2 Interface between editor and HMIEngine.

There shall be a non-graphical interface between the editor and the HMIEngine.

NGI1. The interface shall communicate with the HMIEngine via an ODI-protocol
over TCP/IP.

NGI2. The interface shall be able to handle incoming ODIActions.

NGI3. The interface shall be able to handle the sending of ODIIndications, ODIE-
vents and ODIDynamicData.

4.2 Functional requirements

F1. The system shall be able to handle simple 32-bit datatypes.

F2. The system should be able to handle more complex datatypes, such as lists
and dynamic pictures.

F3. The HMIEngine should be able to be started from the editor.

F4. The simulator shall be able to handle simple, non-nested statecharts.

F5. The simulator should be able to handle more complex, nested statecharts.

F6. The simulation-engine should be stand-alone.

F7. The system shall be able to handle timers.

F8. The system should be able to handle common data variables (not only ODI-
variables) , for example counters

F9. The application-simulation shall be able to be run together with the HMIEng-
ine to simulate a complete HMI.

52

F10. The editor should contain a debugger-function for the statecharts.

F11. It should be possible to place one or more breakpoints in the statechart
when using the debugger-function.

F12. When a breakpoint is reach, the simulation should become suspended and
the user should then be able to choose whether to continue running or stepping
through the simulation.

F13. The user shall only be able to use the elements pre-defined in the .fuclass-
file for the transitions and data.

4.3 Relations between functions

S2-S3. If the HMIEngine is not started during a simulation, the simulation shall still
run, and continue to try to connect to the engine. If the HMIEngine starts during
a simulation, the simulation shall not be affected, but shall start to send/receive
information to/from the engine.

GI6-F14. In order to prevent the user from making unnecessary mistakes, it shall
only be possible to use the pre-defined elements. The user shall not be allowed
to name the elements him/herself in the editor.

F10-F11-F12. If the requirement F10 is not fulfilled, there is no need to try to fulfil
neither F11 nor F12, since they are dependent on each other. If F10 is fulfilled,
then both F11 and F12 shall be ”shall”-requirements.

4.4 Operational requirements

O1. The system shall be able to run under any operating system that supports
Java.

4.5 Capacity requirements

CA1. The system should be able to run up to 5 simulations at the same time on
the same computer.

CA2. The system should only be able to debug one simulation at a time.

53

4.6 Security requirements

S1. Before the simulator is shut down, the user shall be prompted to save his/her
created statecharts.

S2. Before a simulation is run, the system shall display a warning if the HMIEng-
ine is not started, but the simulation shall still be able to run.

S3. If the HMIEngine is started during the simulation, the simulation should not
be affected.

4.7 Construction requirements

CO1. The interface shall be separated from the editor.

CO2. The simulator shall be able to be built in to the existing Populus editor.

CO3. The HMIEngine shall not be able to tell the difference between a true and
a simulated application.

4.8 The users capacity and capability

UC1. A user shall have basic knowledge of computers and be very familiar with
the Populus editor.

UC2. After 10 minutes instruction, a user shall be able to operate the system’s
basic functions.

4.9 Other requirements

No other requirements exist.

5. Other information

Not applicable

54

55

Appendix B

Project Plan

56

57

Project Plan
Version 2.0

Editor for application modelling and simulation

Linda Erlenhov
Anna Södling

1 Assignment

This project plan concerns the modelling of an editor for statecharts that are used
for simulating a simple application (for example a radio or CD-player) using a simu-
lation engine. This together with Mecels existing Populus editor, used for defining an
HMI, and HMIEngine, used for running the HMI:s defined in the editor, will be used
to simulate a complete HMI. The assignment also includes the task of creating the
interface between the engine and our editor.
The orderer of this project is Mecel AB, Mölndalsvägen 36, Gothenburg.

2 References

1. “Programutveckling i liten skala – en praktisk handbok”, Östen Oskarsson
2. The project’s requirements specification

3 Definitions

See ref. 2 (requirements specification)

4 Project management

4.1 Organization

Both project members will function as software developers and testers. There will
be no pronounced project manager; both members will have equal responsibility in
coming to decisions and planning the project.

58

4.2 Time plan

Activity Nov Dec Jan Feb Mar Apr

Documentation

Obtaining knowledge

Choice of system (s)

Planning and project
managing

Requirement analysis

Sysem design
and implementation

Testing

Report writing

Other

Milestone 1 2 3

4.3 Activity descriptions

Documentation

Refers to the documentation of the current work in the project. The activity can be
considered to be finished when the final product is delivered.

Obtaining knowledge

The time that the project members use to obtain the knowledge needed to develop
the system. The activity can be considered to be finished when we have enough
knowledge to be able to begin each relevant part of the project.

Choice of system(s)

The task concerning the decisions of which platform, language and system to use
for the project. Should be looked upon as a “bridge” between the obtaining of know-
ledge and the system design/implementation. The activity can be considered to be
finished when the decisions have been made and we have enough knowledge to be
able to start the design/implementation phase.

59

Planning and project managing

Mainly the task to draw up the future activities in the project. The activity should be
considered to be finished when the final product is delivered.

Requirement analysis

The task to define the system that should be delivered. Contains the developing of
a requirement specification. The activity can be considered to be finished when the
requirement specification is approved.

System design and implementation

Refers to the developing of the software. The activity can be considered to be finis-
hed when the system meets the requirement specification.

Testing

Means to guarantee the functionality of the system design and implementation. The
activity can be considered to be finished when the system meets the requirement
specification.

Report writing

The final compilation of the results and the design and implementation of the system.
The activity can be considered to be finished when the final report has been turned
in.

Other

Meetings, team building, etc. Anything that does not fit in under any of the other
subjects.

Milestones

The milestones that are defined in section 6 Progress verifications.

60

4.4 Progress reports

The project group should have a meeting with the supervisor at least once a week.
The group should also meet with its examiner as often as is required.

Each project member should also keep a diary to record what has been done each
workday.

5 Software development

5.1 Standards and procedures

5.1.1 Coding

All code and comments should be written in English. The comments should be writ-
ten according to the standard of each programming language. If there are several
standards, the program developers decide together which one to use.

5.1.2 Final report

The final report should be written in English, using Microsoft Word or a Word-com-
patible program. The final version of the report will be put together in InDesign and
should be presented in both in pdf-version and a printed version.

5.2 Existing software

- The program will be developed in Eclipse, using GMF.
- If possible, we should use applicable open source-software.
- The program has to be compatible with Mecel’s existing editor and engine.
- ClearCase will be used as the project’s revision control system.

6 Progress verifications

During the project, the progress in the development process should be reported to
the supervisor continuously. Verification of any written code can be done either bet-
ween project members and supervisor or between the both project members.

61

We have three milestones to verify the progress of the project.

The first one is on the 19th December 2008 to sum up the progress before the winter
holiday. The requirement specification and choice of systems should be finished and
the software development should have begun.

The second one is on the 1st March 2009. We should be well on our way with the
software development. This milestone is only used as a checkpoint to make sure
that everything is moving in the right direction. We should also be able to say what
optional requirements the final system will fulfil.

The last one is on the 30th April 2009. Both the system and the final report should be
ready and approved to be delivered.

During the progress of the project we might also put up some internal, smaller, dead-
lines.

7 Document management

All code documents should be kept in the ClearCase revision control system. All
other documentation (i. e. text documents, pictures and so on) should be kept in a
common mailbox or something similar to that.

8 Time of delivery

The final product should be presented on the 30th April 2009 along with the final
report and all other documents.

62

63

Appendix C

Test Specification and Results

64

65

Test Specification and Results

C1. Test Specification

C1.1 Creating a diagram
Create a new, empty diagram.
Name the diagram file ”mydiagram.renegade_diagram”.
Name the domain model file ”mydigram.renegade”.

C1.2 Load an FU class
Load the FU class ”TestFU.fuclass” into the diagram.
Save the diagram.

C1.3 Basic configuration
Place three ordinary states on the canvas.
Configure each state, naming them State A, State B and State C, respectively.

Place a transition from State A to State B, and place a transition from State B to State
A. Configure the transitions to be ordinary transitions with the actions ToB and ToA,
respectively.

Place a transition from State A to State C, and place a transition from State C to
State A. Configure the transitions to be ordinary transitions with the actions ToC and
ToA, respectively.

Place a transition from State B to State C, and place a transition from State C to
State B. Configure the transitions to be ordinary transitions with the actions ToC and
ToB, respectively.

Place an initial state an a final state on the canvas.

Place a transition from the initial state to State A.
Configure the transition to have a timer set to 10ms.

Place a transition from State B to the final state.
Configure the transition to be an ordinary transition with the action ToEnd.

Save the diagram.

66

C1.4 Advanced configuration
Configure the transitions between State A and State C to have the event Regular
Event. Configure the transition from State B to State A to have Indication2 set to
”true”. Configure the transition to the final state to have Indication1 and Indication2
both set to ”true”, and to have the event Regular Event.

Add a transition from State B to itself.
Configure it to have the action ToB, Indication2 set to ”false” and the event Regular
Event.

Add a transition from State C to itself.
Configure it to have a timer set to 5000ms, and the event Timer Taken.

Configure State A to have Indication1 set to ”true”, NumDat set to decrease the
value, and TextDat set to ”State A”. Configure State B to have TextDat set to ”State
B”. Configure State C to have Indication2 set to ”true”, NumDat set to increase the
value, and TextDat set to ”State C”.

Save the diagram.

C1.5 Running the simulation
Start the appropriate HMI.
Start the TCP Proxy.
Run the simulation from the Renegade menu.

Try to go to State B.
Try to go to State A.
Try to go to State B.
Try to go to State B again.
Try to go to the final state.
Try to go to State C and wait there for about a minute.
Try to go to State A.
Try to go to State B.
Try to go to State B again.
Try to go to State A.
Try to go to State B.
Try to go to the final state.

67

C2. Test Results

The testing has been performed on a small group of people, all with basic computer
knowledge. They were all given a brief introduction to the Renegade system and
were also presented with the user manual, before they were asked to go through the
test scenario specified in C1. The following is a compilation of the comments and
critique that the users gave during the testing phase.

C2.1 Creating a diagram
It was not considered very intuitive that you had to start a new project before creating
your first diagram, neither that you had to choose to create an ”example” from the
menu when starting a new diagram. If you want to build a diagram for simulation in
your everyday work this should not be considered an example, but rather a simula-
tion, or simply a diagram, or something similar to that.

C2.2 Load an FU class
This part was the most simple to go through during the tests. Here we had no possi-
bilities of confusing the user, the loading of the FU class was stated to be simple and
convenient since there really was only one choice that could be made. There were
some issues whether it was too hard to find the actual FU class on the computer, but
that was stated to be more of a responsibility of the user rather than the system.

C2.3 Basic configuration
If the palette was not shown from the start (it could be minimized) it might be hard to
find for an inexperienced user.
While doing the configuration with the wizards it was not considered to be obvious
that you could click ”Finish” without going through all the steps that the wizard pro-
vided. This could cause confusion and insecurity in the user if he/she has to run
through more steps than what is necessary for the desired configuration.
The texts that marks out the possible actions, indications and events run a risk to be-
come too muddled, depending on how the transition is drawn. If two transitions are
drawn close to each other there is also a risk that the configurations for each transi-
tion might be mixed up. However, it was considered a good thing that each text was
bound to its own transition with a broken line. This made it easy for the user to move
the text around to the spot he/she wanted the it to be in for that particular diagram.

C2.4 Advanced configuration
The wizard page where you choose the indications for the transitions is too difficult
too understand. Although the first join box before the first indication is blanked out it
should be removed entirely since it is never used and at the moment only serves as
a confusing element to the user. If a user tries to choose more than one indication.

68

he/she should be warned if trying to place these indications if there are any joins
missing between them. Right now, it is possible to omit the joins, creating errors in
the SCXML file which causes the simulation to be incorrect.

C2.5 Running the simulation
The user always had to be sure to have the correct diagram visible in the editor when
running the simulation, because otherwise, the simulation tried to run whatever dia-
gram was active at that moment.
There was some irritation with not being able to stop the simulation using the stop
button in the menu, since it was not implemented. The simulation had to be stopped
by exiting the application and then it had to be started again for a new simulation to
be run, which was not considered to be neither obvious nor very convenient, since
the start-up was rather slow on the computer used for the testing.
It would have been nice to get an explanation, either by log output or by a text mes-
sage, when a transition can not be taken. The user might not always remember
what indication value is set to what boolean value at a certain time. This lead to the
next critique; it should be possible to see all the indication values from the beginning
instead of them only being shown when they are updated. It might be too messy to
show them in the diagram, but it could be a good idea to show them in the HMI, at
least during the testing phase.

69

Appendix D

System Architecture

70

71

D1. Overall system architecture

Once the simulator, consisting of the SCXML based statemachine and a GUI, has
been connected to the HMI the complete system can be seen as three distinct part
where the Populus HMI and engine is to be considered a black box. This black box
is connected to the simulator through the Open Display Interface that passes infor-
mation from it to the simulator and back again. The simulator is a statemachine ba-
sed on the generic statemachine implementation provided by the Apache Commons
SCXML Engine project.

D2. Renegade system architecture

The Renegade simulator is a GMF based Eclipse plugin with additional functionality
to fulfill the requirements of the simulator. Many of the classes are generated by GMF
and as such are not really relevant for this system review. More information on these
can be found in the GMF documentation. The additional classes can be grouped into
the components shown in the figure below which will be explained in more details in
the following sections. The two exceptions are the GUI, which is made up of Eclipse
and the GMF developed editor, and the SCXML Engine. More detailed information
about these specific components can be found in their respective documentation.

Controller
The GUI supplies the user with a number of buttons and menu item that can be used
to not only configure the diagram components but also to run the actual test simu-
lation. When the user starts the simulation it is the Controller that is invoked. The
Controller is responsible for getting the simulation going and to update the GUI to
reflect the current state of the statemachine. In short, the Controller is what connects
the statechart created and configured by the user to the rest of the simulator.

72

Simulator Initiator
Whereas the Controller is used to start the simulation from the GUI the Simulator
Initiator is what actually initiates and starts the different components that together
compose the full statechart driven simulation. Once all the components have been
stated and connected they will work together without the involvement of the Simula-
tor Initiator. It is, as the name clearly states, only an initiator for the simulation.

Populus Listener
The Populus Listener is run in a separate thread and is the component that is re-
sponsible to receiving information from Populus and hand this off to the Renegade
Statemachine so that it can take the appropriate action.

Renegade Statemachine
The Renegade Statemachine uses the SCXML Engine to drive the statechart, and
the simulation, forward. For each state in which data is updated and for each transi-
tion that triggers an event the statemachine will send this information through the
ODI to the Populus Engine. This may or may not be displayed in the HMI depending
on how this has been created. The statemachine will also be called by the Populus
Listener as a response to user interaction with the HMI. These interaction may or
may not cause the statemachine to move from its current state to some other state
connected to the current one. Whether or not the transition is taken or not depends
on the guard conditions defined for the transition. If the transition is taken the sta-
temachine will call the Controller which in turn will highlight the target state in the
GUI.

73

Appendix E

Renegade User Manual

74

75

User manual
Renegade Simulator

76

77

Contents

1. Getting started
1.1 Starting the application
1.2 Starting a new diagram
1.3 Opening a diagram
1.4 Load an FU class
1.5 Saving a diagram

2. Creating the diagram
2.1 Drawing the statechart
2.2 Configuring a state
2.3 Configuring a transition

3. Simulating a Functional Unit
3.1 Transform diagram into SCXML
3.2 Running a simulation
3.3 Log output
3.4 Stopping and restarting a simulation.

78

79

1. Getting started

This section explains the basics of how to start using the Renegade Simulator.

1.1 Starting the application

1. Start your copy of Eclipse.

2. Make sure you have the Renegade project marked in your workspace.

3. Select ”Run Eclipse Application” from the menu.

80

1.2 Starting a new diagram

If this is your first time using the Renegade Simulator, start with step 1. If you already
have a project folder and would like to create another diagram in it, start with step
3.
1. In your Eclipse Application, right-click in your workspace and select ”New...” ->
”Project...”.

2. Go to the folder ”General” -> ”Project”. Name your project and click ”Finish”.

81

3. Right-click your project folder. Select ”New...” -> ”Example...” -> ”Renegade Dia-
gram”.

4. Make sure you have the correct parent folder and name your diagram. Press
”Next” to proceed to the next step.

5. Name your domain model. This should be the same as the diagram name. Press
”Finish”.
NOTE! Be careful when you choose the names for diagram and domain model as
these cannot be changed later on without causing errors in your diagram.

1.3 Opening a diagram

If you do not want to create an entirely new diagram, you can open a previously
created one.

1. Go to the menu and select ”File” -> ”Open File...”.

82

2. Locate the project folder on your computer.

3. Select the desired diagram file (ending with ”.renegade.diagram”). Double-click on
the file or press ”Open”.

1.4 Load an FU class

1. Right-click anywhere on the canvas and select ”Renegade” -> ”Load FU-class”.

2. Locate the FU class that you want to use for your simulation on your computer.
Double-click on the file or press ”Open”.
NOTE! Before you proceed with creating your diagram, you have to save the dia-
gram in order for it to connect with the FU class.

1.5 Saving a diagram

1. Go to the menu and select ”File” -> Save”, or press Ctrl + S.2. Creating a dia-
gram

83

This section contains an explanation of how to draw the statechart diagram on the
canvas and how to configure it properly to represent the desired functional unit.

2.1 Drawing the statechart

1. Locate the palette to the left of the canvas.

2. To draw a state: choose which type of state you want to draw from the palette and
click on the appropriate place on the canvas.

84

3. To draw a transition: choose the transition from the palette, click and hold the left
mouse button on the transitions starting state, drag it to its stopping state and finish
by releasing the mouse button.

4. If needed, rearrange the markings for actions, indications and events to their desi-
red positions. NOTE! You can always change the shape of a transition by left-clicking
anywhere on the arrow and drag it into its new position.

85

2.2 Configuring a state

1. Right-click on the state that you want to configure. Select ”Renegade” -> ”Confi-
gure State”.

2. Select the appropriate name for the current state.
Press ”Next” to proceed to the next step.
Press ”Finish” to save and end the configuration of this state.
Press ”Cancel” to abort the configuration of this state and discard any choices that
has been made.

86

3. Set any indication values that you want to update in this state (the initial value for
each indication is ”false”). If you do not want to change a certain indication value,
leave the field blank.
Press ”Back” to return to the previous step.
Press ”Next” to proceed to the next step.
Press ”Finish” to save and end the configuration of this state.
Press ”Cancel” to abort the configuration of this state and discard any choices that
has been made.

4. Set any data values that you want to update in this state. Numerical values can be
increased or decreased by 1, or set to a specific value. Textual values can be set to
any string. Time and date values can either be entered manually to any value or set
to today’s date/the current time by pressing the ”Now”-button.
Press ”Back” to return to the previous step.
Press ”Finish” to save and end the configuration of this state.
Press ”Cancel” to abort the configuration of this state and discard any choices that
has been made.
NOTE! Initial and Final states are non-configurable.

87

2.3 Configuring a transition

1. Right-click on the transition that you want to configure. Select ”Renegade” ->
”Configure Transition”.

2. Select the type of transition you desire.
Press ”Next” to proceed to the next step.
Press ”Finish” to save and end the configuration of this transition.
Press ”Cancel” to abort the configuration of this state and discard any choices that
has been made.

88

3. If you chose ”Transition” in step 2, select the action that should trigger this transi-
tion.
Press ”Back” to return to the previous step.
Press ”Next” to proceed to the next step.
Press ”Finish” to save and end the configuration of this transition.
Press ”Cancel” to abort the configuration of this state and discard any choices that
has been made.

4. If you chose ”Timer” in step 2, enter the the time (in milliseconds) that you want to
delay the transition.
Press ”Back” to return to the previous step.
Press ”Next” to proceed to the next step.
Press ”Finish” to save and end the configuration of this transition.
Press ”Cancel” to abort the configuration of this state and discard any choices that
has been made.

89

5. Set the indications that you want to control this transition. Indications can be joi-
ned with ”and” or ”or”-statements.
Press ”Back” to return to the previous step.
Press ”Next” to proceed to the next step.
Press ”Finish” to save and end the configuration of this transition.
Press ”Cancel” to abort the configuration of this state and discard any choices that
has been made.

6. Select the event that you want to be sent out from the simulation on this transi-
tion.
Press ”Back” to return to the previous step.
Press ”Next” to proceed to the next step.
Press ”Finish” to save and end the configuration of this transition.
Press ”Cancel” to abort the configuration of this state and discard any choices that
has been made.

NOTE! When you select two or more indications, they HAVE to be joined with an
”and” or ”or”-statement between each indication. If not, this will cause errors in the
simulation.

90

3. Simulating a Functional Unit

This section describes how to run and monitor a simulation of the statechart diagram
that you have created.

3.1 Transform diagram into SCXML

The SCXML transformation is done automatically when a simulation is run, but it is
possible to only do the transformation if you want to check out the code for debug
purposes, for example.

1. Go to the menu and select ”Renegade” -> ”Transform to SCXML”.

91

3.2 Running a simulation
1. Make sure that the correct diagram is active in the Eclipse application.

2. Start the HMI that you want to test against the simulation.

3. Start the TCP proxy.

4. Go to the menu and select ”Renegade” -> ”Run simulation”.

92

5. Wait for the first state to become active. This will be done when the state turn
red.

6. Manipulate the HMI as desired to test it out against the simulation. You can follow
the progress through the diagram through the visual feedback, always showing the
currently active state in red.

3.3 Log output
In addition to the visual feedback, there are also a textual log mechanism connected
to the Renegade Simulator. It can be set to either showing output from the SCXML
file or pure debug information.
The log can be opened and examined in any text editor when a simulation is finished.
For being able to show the log updates in runtime we recommend a program like
BareTail (can be downloaded for free from http://www.baremetalsoft.com/baretail/).

93

3.4 Stopping and restarting a simulation.
Although there is a stop option in the menu, it is not implemented yet and therefore
the simulation has to be stopped and restarted in another way for now.

1. Close the Eclipse application to stop the simulation.

2. Restart the application according to 1.1

3. Restart the simulation according to 3.2

NOTE! Although it might not be necessary, it is recommended to restart the HMI and
TCP proxy too when starting a new simulation.

