
Who changed my browser settings?

Silently modifying the Secure Preferences of Chrome

Master’s thesis in Computer Systems and Networks

Gustav Axelsson

Joakim Sundling

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Master’s thesis 2018

Who changed my browser settings?

Silently modifying the Secure Preferences of Chrome

Gustav Axelsson
Joakim Sundling

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2018

Who changed my browser settings?
Silently modifying the Secure Preferences of Chrome
Gustav Axelsson
Joakim Sundling

© Gustav Axelsson, 2018.

© Joakim Sundling, 2018.

Supervisors: Pablo Picazo-Sanchez, Department of Computer Science and Engineer-
ing and Gerardo Schneider, Department of Computer Science and Engineering

Examiner: Katerina Mitrokotsa, Department of Computer Science and Engineering

Master’s Thesis 2018
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

iv

Abstract
Google Chrome is as of today the most used web browser in the world. With millions
of daily users the security of the browser is of high importance. When using Google
Chrome each user obtains a couple of configuration files for storing information such
as bookmarks, browser history, homepage and a multitude of other settings. One of
these files is the Secure Preferences file in which some of the browsers most sensitive
settings are stored. In order to protect these settings Chrome has added custom
Hash-based Message Authentication Codes (HMACs) that are used to ensure that
no settings are silently modified by third parties. This thesis describes how this
security can be circumvented and implements a versatile script, for Windows, that
is able to alter all the information stored in Secure Preferences without alerting
the browser. This thesis also describes the steps taken in order to reproduce the
hashing mechanism of Chrome as well as how different preferences can be exploited.
An extension is developed which makes it possible to run the script from the Chrome
browser. The script is then evaluated together with the extension by both checking
the correctness of the HMAC calculation and how well it is able to perform a variety
of exploits. This thesis proves that it is indeed possible to break the security of the
Secure Preference file. By reproducing and replacing the HMACs which gives the
user of the script the possibility to alter frequently used functions in Chrome such
as homepage, new tabs, extensions and default search engine.

Keywords: Computer, science, computer science, engineering, project, thesis, Google
Chrome, preferences, secure preferences

v

Acknowledgements
We would like to thank our supervisors Pablo Picazo-Sanchez and Gerardo Schnei-
der. We would also like to thank the examiner of the thesis, Katerina Mitrokotsa.

Gustav Axelsson, Gothenburg, June 2018
Joakim Sundling, Gothenburg, June 2018

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Motivation . 2
1.2 Aims and Challenges . 2

1.2.1 Research questions . 2
1.2.2 Challenges . 3

1.3 Limitations . 3
1.4 Contributions . 4
1.5 Report Outline . 4

2 Background 5
2.1 Browser Settings . 5

2.1.1 Preferences in Google Chrome 6
2.1.2 Secure Preferences in Google Chrome 6

2.2 JSON . 7
2.3 SHA-256 Hashing . 8
2.4 Browser Extensions . 8

2.4.1 Native Messaging . 8
2.5 Browser Hijacking . 9

2.5.1 Examples of Browser Hijacking Software 9
2.6 Chromium . 10

2.6.1 Chrome vs Chromium . 10
2.7 Silently Installing Extensions . 10

3 Related Work 13
3.1 Browser Security . 13
3.2 Browser Extensions . 13
3.3 Preferences . 14

4 Design 17
4.1 Secure Preferences . 17
4.2 The Script . 17

4.2.1 Initialization . 17
4.2.2 Modification . 18

ix

Contents

4.2.3 Calculation . 18
4.2.4 Update . 19

4.3 The Extension . 19
4.4 Design Discussion . 19

5 Implementation 21
5.1 Analyzing Chromium . 21

5.1.1 Exploring the Source Code . 21
5.1.2 Debugging the Source Code 23

5.2 Reproducing the HMAC . 23
5.2.1 Finding the Seed . 23
5.2.2 Creating the Message . 24
5.2.3 Calculating HMAC . 25
5.2.4 Calculating super_mac . 25

5.3 Script Implementation . 26
5.4 Extension Implementation . 27

5.4.1 Setting up a Native Messaging Host 27

6 Evaluation 29
6.1 HMAC Calculation . 29

6.1.1 Discussion . 30
6.2 Implementing Common Hijacking Exploits 30

6.2.1 Toggle visibility of the home button 31
6.2.2 Set the default homepage . 31
6.2.3 Add pinned tabs . 31
6.2.4 Disabling, enabling and removing an extension 32
6.2.5 Allowing an extension in incognito mode 32
6.2.6 Startup page . 32
6.2.7 Default search engine . 32

7 Discussion 33
7.1 Possible Exploits . 33

7.1.1 Toggle visibility of the home button 33
7.1.2 Set the default homepage . 33
7.1.3 Add pinned tabs . 33
7.1.4 Disabling, enabling and removing an extension 34
7.1.5 Allowing an extension in incognito mode 34
7.1.6 Startup page . 34
7.1.7 Default search engine . 34

7.2 HMAC Creation . 34
7.3 Future Work . 36
7.4 Countermeasures . 36
7.5 Ethics and Sustainability . 37

8 Conclusion 39

Bibliography 41

x

List of Figures

2.1 Chrome discovering a faulty change in Secure Preferences when a
value is altered. 7

2.2 Example of a JSON entry. 7

4.1 The four phases of the script and how they interact with Secure Pref-
erences and each other . 18

4.2 Overview of the extension calling the script 19

5.1 Chromium function GetDigestString which calculates an HMAC given
a message and a key. 22

5.2 Debugging of GetMessage for the preference show_home_button. . . 22
5.3 Structure of the header information in resources.pak. 24
5.4 Structure of resource information in resources.pak. 24
5.5 A JSON object and its corresponding path used in the message cre-

ation for the show_home_button preference. 25
5.6 A detailed description of the step by step process performed by the

script when modifying a preference. 26
5.7 An overview of an extension connecting to the native messaging host. 27
5.8 The manifest file used for the configuration of the host. 28

6.1 Results from the test of the HMAC calculations. 29

xi

List of Figures

xii

List of Tables

6.1 The test cases together with the path and value of the preferences
that are to be modified. 31

xiii

List of Tables

xiv

1
Introduction

The Secure Preference file which determines things such as homepage or default
search engine is an important part of the Google Chrome browser. This file is lo-
cated in the Chrome directory and thus it is accessible for everyone. Due to the
amount of sensitive information that this file handles, Chrome implements some se-
curity mechanisms to ensure that no parties apart from Chrome can modify this file.
This is done by using a custom hash-based message authentication code (HMAC)
algorithm [27] which produces a 256 bit Secure Hash Algorithm (SHA-256) given a
key and a message. The problem with this is that this procedure is not as secure
as people might think. Malware in the wild has been known to be able to modify
this file in order to either annoy the user or to generate some kind of profit from the
modifications [2][15]. This type of malware can perform actions such as:

• Changing your default search engine.
• Changing your starting page or homepage.
• Add any number of pinned tabs.
• Uninstalling browser extensions.
• Disabling/enabling browser extensions.
• Allow extensions to be active during incognito mode.

By changing your search engine, information about a users search queries can be
gathered and ads can be tailored to spark the user’s interest. The search engine
could also send you to web pages containing malicious code such as key loggers. In
this way the attacker could get her hands on sensitive information such as usernames
and passwords. The attacker can achieve similar things as mentioned above if the
starting page of the browser is altered. The page could contain malicious code with
the intention of stealing your private information or it could be equipped with a
malicious search bar.

Users could be cheated in order for malicious extensions to be installed, such as
toolbars with pop-up ads or other extensions that aim to lower the security of your
browser. In the same way, extensions that aim to protect the user’s browser ex-
perience could be uninstalled. For example AdBlock could be removed in order to
expose the user to unwanted ads or pop-ups.

By changing values in the Secure Preference file the attackers could also disable or
enable extensions in the browser. The effect is reminiscent of the previous example
since this could be used to disable protective browser extensions such as AdBlock. It

1

1. Introduction

could also be used in order to re enable malicious extensions that has been disabled
by the user.

1.1 Motivation
With the expansion of the Internet and the big role it plays in today’s society,
browser security is a field which affects almost everyone. Over the years we have
seen a steady increase in malicious software (malware) which aim to affect your
computer and also your browser [24]. Because of the increasing number of malware
which is circulating the Internet, browser developers need to be able to protect their
users against such programs. In order to do so, information about how different
kinds of malware operates on the browser is needed.

Browser hijacking is a common issue which affect browser users daily [13]. Many
of these hijackers targets the preferences of a browser [15][2] which are located in
the Secure Preference file. By recreating some of these hijacking attacks, a deeper
knowledge about how they function is obtained and this information could be used in
order to create protection mechanisms. These mechanisms can then be shared with
browser developers in order to make more hijack-resistant browsers in the future.

1.2 Aims and Challenges
The main aim of this thesis is to research and explore the security of the Google
Chrome browser. More specifically, if it is possible to change the preferences of the
Secure Preference file without the browser noticing. The thesis will also reproduce
attacks on the browser in order to get greater understanding of how these attacks
are performed in hopes that it could make for a more secure browsing experience in
the future. This will be made possible by implementing a script that by reproducing
and replacing the HMACs of the Secure Preference file makes these attacks possible.

1.2.1 Research questions
Google Chrome is widely used around the world and millions of users depend on the
built in security functions that it possesses. What if you could break one of these?
In a blog post about the exploitation of the Secure Preference file [25] it is stated
that malware in the wild has been known to exploit the Secure Preferences file for
a while now. But is it really possible to bypass a security mechanism created by a
large company such as Google?

The hashing mechanism of the Secure Preference file is implemented in order to
protect the user from malicious software changing the content of the file. But how
secure is the mechanism? Is there a way to change the content of Secure Preference
without the user or browser noticing?

2

1. Introduction

Is it possible to figure out how these types of malware that is mentioned in [25]
alters the file? The creation of a script that can perform these actions might lead to
a better understanding of how they work and could provide knowledge for further
research about how they could be stopped.

This subject has been discussed on different forums and in a few blog posts such as
[25]. To the best of our knowledge, security concerns regarding the Secure Preference
file of Chrome web browser has not been the subject of any research papers; thereby
motivating the work of this thesis.

1.2.2 Challenges
To the best of our knowledge, there has not been any academic research conducted
on the subject of this master thesis. That is why the biggest challenge that we
are facing is the lack of information. As mentioned before there exists some blog
posts and threads on forums discussing the matter but that is pretty much all of it.
Since there is not a lot to base the project on, most of the information has to be
gathered on our own and what says that the information on these blogs is accurate?
These blog posts were written a couple of years ago and Chrome is constantly being
improved and updated so can we be sure that the functions that worked a couple of
years ago are still viable in the most recent update of Chrome?

Chrome has some security mechanisms to detect modifications of Secure Preferences
and alert the user that a third party tried to change values in the file. But when the
HMAC is recreated this security metric is bypassed. The problem with the security
of the Chrome Secure Preferences file has been known for some time and has been
the base of multiple malicious applications [15][2]. However, this does not mean that
the task of breaking the security of the file is an easy one. A common challenge that
you face when working with hashing, is if one character of the input is different from
the expected one the hash will become completely different and there is no way you
could try to reverse it in order to find the sign that was wrong.

1.3 Limitations
Given the time constraints of this thesis, we will only look at the Secure Preferences
problem in the Google Chrome web browser. We will not cover the possibility of
similar problems in other web browsers since security is handled differently depend-
ing on the browser. Investigating and understanding the security mechanisms of
multiple browsers would require a lot of time and effort and could possibly result in
a very wide scope.

The thesis will only look into solutions on the Windows operating system families.
Since Windows is the most popular family of operating system [26], it feels most
relevant to focus the research on this area.

3

1. Introduction

Countermeasures are not a part of the scope of this thesis. However a short section
with some suggestions and tips concerning the protection against this attack is
provided in Chapter 7.

1.4 Contributions
In this thesis we will show that it is possible to exploit the security of the Secure
Preference file by reproducing the HMAC algorithm that Chrome executes. This
will provide an insight into the way the hashing and protection of a user’s settings
is done in Chrome. This could help developers that are trying to create smart
and safe extensions and applications for Chrome. By figuring out, documenting and
recreating how malware is exploiting the Secure Preference file it is possible to create
ways of protecting your browser. This thesis can act as a guide for further research
in the area and motivate the work towards eliminating ways of browser hijacking.
It might also alert Google about the flawed security in the Secure Preference file,
which could lead to a better and more secure version of Chrome in the future.

1.5 Report Outline
This Chapter gives a brief introduction to the thesis by providing motivation, aim,
challenges, contributions and limitations. Chapter 2 contains the necessary technical
background related to the project. In Chapter 3 we present work that is related to
this thesis together with some comparison. Chapter 4 presents the design of the
script that silently modifies the Secure Preferences and the extension that runs this
script. Chapter 5 breaks down the implementation of the project. In Chapter 6,
an evaluation of both the HMAC creation and some common exploits is performed.
The last two chapters provides a discussion and the conclusion for the thesis.

4

2
Background

This chapter will introduce some technical background that will be necessary for
the understanding of this thesis. The chapter will start by introducing how browser
settings are handled by Chrome and then give more details on how the Secure
Preferences file is structured. This will be followed by a short description of browser
extensions and the role they play in browser exploits. The following section will then
give a description of browser hijacking and present some common exploits and the
malware that makes use of these. Lastly a comparison of Chrome and Chromium
will be presented.

2.1 Browser Settings
When controlling the behavior and functionality of a browser, most focus is on two
different methods, namely policies and preferences. With policies, an administrator
have an easy way of centrally managing the behavior of all browsers in an organiza-
tion. There is, however, different user preferences that do not need to be managed
centrally and preferences are used instead. Even if both of the methods control the
behavior of the browser they have different purposes:

Policies
• Are rules that the browser must abide by.
• Usually applied to groups of users instead of being unique to a single user.
• Are typically not writable by the user.
• Do not keep track of a users browser experience.

Preferences
• Keep state of a users browsing experience.
• Usually unique for each user.
• Are writable by the user, since they are contained in text files on the users

computer.
• Are often technical settings that do not necessarily make sense to pre-set per

user or lock in with policies.

There are also several preferences that are also policies. Homepage is the most
common such preference. If two user preferences are defined by both methods,
policies will always take precedence. If homepage is specified by policies and in the
"Preferences" file, the policy will always override. On Windows all policies are stored

5

2. Background

in the Windows registry. In Chrome, users can view the policies on a the web page
by using the URL chrome://policy/.

2.1.1 Preferences in Google Chrome

To allow for an easy customization of a web-browser, there are usually many con-
figuration parameters that can be modified to fit the needs of the user. Setting the
homepage to a site that a user frequently visits or changing the default search engine
are just two changes that can be performed to make the users experience a little
more pleasant. Most of these changes can be performed very easily by going into
the settings page of the browser.

In the Chrome architecture, these parameters are stored in what is called prefer-
ences. Each preference is identified by a key which in turn points to the value of
the preference. These values can be represented by a number of different data-types
such as booleans, integers, strings, dictionaries or lists depending on the information
that is stored. Preferences can be associated with either a specific browser profile
or with local state. Local state contains everything that is not directly associated
with a user profile but instead represent values that are associated with the host
computer on which Chrome is running.

Most preferences in Chrome are stored locally in a JSON file with nested dictionaries
called "Preferences". This file can be found in the folder of every Chrome profile. If
there is only one profile the file can be found in the "Default" folder.

2.1.2 Secure Preferences in Google Chrome

To improve on the security regarding user preferences, Chrome has added signatures
and validation on a number of preferences. These preferences are stored in a JSON
file called "Secure Preferences". This file is similar to the "Preferences" file but it
also contains HMACs of every entry in the file. In addition to this, the file also has
an HMAC which it calls "super_mac" which is there to check the validity of all the
other HMACs.

Both the "super_mac" and all the other HMAC values are validated when the
browser is started. If Chrome does not detect any anomalies in the HMACs, the
value of each preference stored in Secure Preferences is applied to the browser. In
the event of a faulty HMAC, Chrome will reset the value of that preference to a
default value. In order to alert the user of the unexpected change, Chrome will also
display a pop-up window when the user enters the "settings" menu in the browser.
As can be seen in Figure 2.1, this message notifies the user of the change as well as
giving them the opportunity to reset all settings back to a default state.

6

2. Background

Figure 2.1: Chrome discovering a faulty change in Secure Preferences when a
value is altered.

2.2 JSON
JSON [5] is a lightweight open-standard data-interchange format based on a subset
of the JavaScript language, an example of an entry can be seen in Figure 2.2. It is
easy for humans to read and write while also being easy for machines to parse and
generate. Even if JSON is completely language independent it uses conventions that
are similar to those from languages in the C-family. JSON is built on two structures:

• A collection of name/value pairs. In different languages, this is realized as an
object, record, dictionary, hash table, keyed list, or associative array.

• An ordered list of values which is, in most languages, realized as an array,
vector list, or sequence.

Figure 2.2: Example of a JSON entry.

7

2. Background

2.3 SHA-256 Hashing

A cryptographic hash function is designed to make it easy for the user to compute the
hash but very hard for an attacker to invert it. The hash function maps a message
of arbitrary length into a fixed length and also satisfies the property for collision
resistance. SHA-256 [27] belongs to the SHA-2 cryptographic family which is an
improvement from the older SHA-1. SHA-2 is widely used in security applications,
examples of such applications are TLS [23], SSL [23] and IPsec [16].

2.4 Browser Extensions

In order to improve users browsing experience, many major browsers support a type
of software called extensions which are often created using HTML, JavaScript and
CSS. Extensions are installed in the browser to extend its functionality and there are
thousands of different extensions available [6]. Each extension has its own purpose
and performs different actions depending on what that purpose is. Some extensions
help to integrate the browser with other services that are used by the user such as
Mailtrack [11] which is an extension that informs if the email which the user sent
has been read or not. While others add additional features to the browser such as
LastPass [9] which handles password management. These are just a few examples
of what extensions can do and since there exists such a vast amount of extensions
there is a lot of extra functionality that can be added to the browser.

Browser extensions have been the target of many attacks due to the tight relation
they have to the browser environment [22]. Attackers use the extensions for mali-
cious intent such as private information gathering, password theft or browser history
retrieval. Browsers in the past had little to no security when it came to extensions
but that has changed with the development and improvement of browsers [22]. As
of today all browsers implement defensive countermeasures that, in theory, protects
both the extensions and their resources from third party’s trying to access them
[22].

2.4.1 Native Messaging

An extension in Google Chrome is able to communicate with native desktop appli-
cations using a specific API called native messaging [4]. For this message passing to
work the application needs to be registered as a native messaging host. This means
that the application needs to have a manifest file that specifies that it has native
messaging capabilities as well as which extensions that are allowed to communicate
with it. Each native messaging host is started as a separate process and the only
way of communicating with it is through the standard input/output pipes, stdin
and stdout.

8

2. Background

2.5 Browser Hijacking
Browser hijacking is an attack where the attacker tries to change the behavior of
the web browser without the user noticing [13]. This can be done by altering the
preferences of the web browser, common preference targets are for example search
engine, homepage and new tab page URLs.

A common intention of the attack is either to redirect the user to certain web pages
containing malicious software such as key loggers that will collect sensitive user data
such as passwords, user names or email addresses [13]. Another is forcing the user to
use your services generating more ad revenue and directing the user towards specific
web pages that pay for the service [13].

There exists various ways for the malicious software to enter your system but the
majority of the hijackers are installed by hazardous free applications, ad-supporting
programs or shareware. These often include a variety of toolbars and plug-ins. These
extensions will then access your preferences- and secure preference file in order to
change the values of the desired targets mentioned above [13].

2.5.1 Examples of Browser Hijacking Software
Trotux [15] - Trotux.com is a fishy website that claims to be a legit Internet search
engine. Trotux falsely claims that it generates the most relevant search results
and often tricks user into believing that it is legitimate. It often enters your system
through dubious installations or freeware and targets the most popular web browsers
Internet Explorer, Google Chrome and Mozilla Firefox. Trotux.com is then assigned
as the new tab URL, homepage and default search engine which forces the user to
encounter unwanted browser redirects upon doing things like opening the browser,
opening a new tab or simply trying to search the Internet. Trotux also makes it
hard for the user to roll back these changes, during the installation Trotux adds
a number of "helper objects" which are designed to automatically reassign settings
when the user attempts to change them. Websites visited, search queries, Internet
Protocol addresses and other similar information about the user’s web browsing ac-
tivity is recorded by Trotux. This information might be shared with third parties
who can use the private information to generate revenue. The data tracking that is
performed can lead to serious privacy issues or even identity theft.

WinYahoo [2] - This malware is not related to the legit company that is Yahoo
even though it tries to fool the user with its name and it also sets Yahoo as the
default search engine and homepage in the affected browsers. WinYahoo is bundled
in with a patent installer for Adobe Photoshop Album Starer Edition which fits the
trend for a lot of unwanted software. WinYahoo then recreates the Message Au-
thentication Code (MAC) for the Google Chrome browser which allows it to change
the Secure Preferences thus hijacking the browser. With the help of an extension
called Sale Charger the user’s browser is cluttered with annoying features such as
new tabs with advertisement or tech support scams.

9

2. Background

GoSave [19] - Is an add-triggering software that displays pop-up ads and unwanted
advertisements on web pages that is visited. GoSave injects advertisement banners
into the web pages that are being visited, turns web page text into hyperlinks,
displays pop-ups with recommended fake updates or other software and it might
install other unwanted adware programs without the user’s knowledge. As many
other browser hijackers GoSave is commonly bundeled with other freeware that can
be downloaded.

2.6 Chromium
Chromium is an open-source web browser project that was created by Google in
order to provide the source code for the Chrome browser. The Chromium and the
Chrome browsers share the majority of code but there are some differences mainly
in licensing but there are also a couple of different features.

2.6.1 Chrome vs Chromium
• Automatic updates - Chrome uses Google Update on Windows in order to up-

date the browser to the latest version. Chromium has to be manually updated.
• Crash reporting and usage tracking - Chromium does not report crashes nor

does it send usage statistics. Chrome on the other hand has both of these
features, it includes general data such as Chrome settings, visited websites
containing malware, information about your device and OS, search queries,
etc.

• Chrome Web Store - Web extensions can be installed on Chrome and found
in the Web Store. However the functionality to add extensions outside of the
Web Store is disabled on all Windows Channels. If such extensions are to be
installed it has to be added via developer mode.

• Media support - When it comes to media, Chromium’s is a bit limited. It
lacks some media codecs to support the patent-encumbered H.264 and ACC
formats.

• Adobe Flash Plugin - Chrome supports a Pepper API version of Adobe Flash
which has an automatic update function. Since this is not open source it is
not supported by Chromium.

• Sandbox support - Both Chromium and Chrome have Sandbox support.

2.7 Silently Installing Extensions
In 2012 Google updated the Chrome browser to protect the users from silently
installed extensions since these were causing more and more problems [10]. It was
no longer possible to silently install extensions into Chrome using the Windows
registry mechanism since this feature was widely abused by third parties. Extensions
that were installed by third party programs through external extension deployment
options were disabled by default and only extensions installed from the Google

10

2. Background

Chrome Store were allowed. This however did not mean that Google managed to
eliminate all the malicious extensions from Chrome. There are still a lot of malicious
extensions out there and also ways to detect and protect the user from these [8].

11

2. Background

12

3
Related Work

Research concerning the Secure Preferences file is very limited. However, there are a
lot of papers about browser security in general as well as the security of extensions.
This chapter will start off with some work on browser security and extensions and
then present the work that relates the most to this thesis: Preferences.

3.1 Browser Security
In a paper by Ries et al. [21], the security of the Chrome web browser is discussed
in a more general sense. They summarize how to minimize the danger posed to the
users in three main cases.

• The severity of vulnerabilities. If the browser puts its rendering engine in a
sandbox it is able to limit the damage caused by an attacker.

• The window of vulnerability. One of the biggest threats is users having older
versions of the browser. Attackers constantly create new types of malware,
which leads to browsers having to launch new updates and patches in order
to protect itself. Therefore, it is very important to keep your browser up to
date. One way to achieve this is providing automated updates which will lead
to many users running the up to date version of the browser.

• The frequency exposure. When a user enters a site that is known to contain
malware a warning is displayed before allowing the user to enter. This will
reduce the frequency with which users are exposed to malicious content.

3.2 Browser Extensions
Gaur et al. [3] present the vulnerabilities of browser extensions are described and
discussed. Browser extensions sometimes have the same privileges as the browser
itself and the usage of a malicious extension might expose the browser and system
resources to attacks. An attacker could spy on web applications, launch arbitrary
processes and also access files from the host file system. An extension can together
with already installed extensions cooperate in order to share objects and change
preferences. The paper presents new ways to perform attacks via browser extensions
and divides the vulnerable points in extension development into:

13

3. Related Work

• Object reference sharing.
• Preference overriding.

In their paper, Rana et al. [20] studied which permissions browser extensions asks
for and how these permissions can be used by an attacker in order to perform at-
tacks against the user. They also conduct a study on ten thousand extensions where
they compare how many permissions the extension asks for compared to the ones it
actually uses. Lastly the paper addresses silent installation of browser extensions in
both Google Chrome and Firefox. In Chrome they access the Preferences file in the
user data directory. The file is in JSON format and by creating a fake entry in this
file they are able to show that upon restart, they are able to install an extention
without the browser alerting the user.

Hulk is a dynamic analysis system that detects malicious behavior in browser ex-
tensions created by Kapravelos et al. [8]. By monitoring the execution and network
activity of extensions Hulk is able to detect maliciousness using both HoneyPages
which are dynamic pages that will adapt to an extension’s expectations in web page
structure and content. Hulk also uses a fuzzer in order to drive numerous event
handlers which modern extensions depends upon. Kapravelos et al. discusses a
couple of exploits which is performed by extensions:

• Extension Management - Hulk found several extensions that completely re-
places the Chrome’s extension management page with a page that hinder the
users ability to uninstall these extensions.

• Code Injection - The most commonly detected "maliciousness" within the ex-
tensions was code injection. These extensions used remotely-retrieved code
either through script injections or by evoking eval.

• Ad Manipulation - Attackers use extensions that will replace the advertisement
on websites, robbing the website owner of the revenue. These extensions can
also insert banners and text advertisement into well-known websites such as
Wikipedia. These extensions works as leeches which profits from other peoples
content.

• Information Theft - These extensions has the intention to access the user’s
sensitive information such as: keypresses, passwords, private in-page content
and authentication tokens such as cookies.

• Online Social Network (OSN) Abuse - These extensions typically targets Face-
book in order to spam users with malicious links that can generate profit to
the attacker.

3.3 Preferences
One paper discussing browser preferences is a Master thesis by Venkata Seelam [18].
This thesis explains different ways of exploiting preferences in Google Chrome and
Mozilla Firefox that are usually used in browser hijacking. The thesis also proposes
and describes an extension that can detect the modification of preferences in Mozilla

14

3. Related Work

Firefox by third parties and inform the user. The user can then chose to discard
or approve the changes. The thesis by Naga Siva Seelam puts most of its focus on
Firefox since this browser is claimed to be less secure by the author. The focus is
also only preferences that are very easily modified, in other words they can be seen
as being stored in Preferences. This differs from our thesis since our focus is on
Google Chrome and the protected preferences stored in the Secure Preferences file.

Banescu et al. [1] has researched changeware, which is software that modifies re-
sources of software applications without the user noticing. Comparing this with our
thesis the resource that gets modified is the Secure Preference file. The concept of
changeware is to gain profit from a large amount of end users executing the mali-
cious software. One popular example is to change the web browser settings such as
default search engine and homepage using Browser hijacking malware. The paper
proposes a solution which combines several protection mechanisms such as white-
box cryptography, software diversity and run-time process memory integrity.

Research concerning how browser preferences can be exploited by third parties is de-
scribed in a patent application by Thomas Wespel and Thomas Salomon [12]. They
discuss different ways of exploiting browser preferences and then present a method
and the technology for automatic classification and resetting of browser preferences.
According to Wespel and Salomon, most external changes to browser preferences
occur because of the huge role that browsers play in advertisement and marketing.
One way in which a company can reach a lot of consumers is through the homepage
and search provider of a browser. These are some preferences that a user comes into
contact with very often when using the browser. This has led to a lot companies
using different means to change a users browser to display the pages that will benefit
that specific company.

A very common way in which companies try to modify the preferences is through
slightly hidden offers presented as "opt-out". These offers are usually bundled with
software that has nothing to do with browsers and if a user leaves the boxes checked,
the software will modify the browser settings. The biggest problem with these mod-
ifications is that most browsers do not keep track of any history of browser pref-
erences. This means that if a user wants to reset the preferences the only option
offered by the browser is to reset to certain default values. Another way of resetting
the values is to do it manually but since different browsers handle preferences differ-
ently this could be quite difficult and very time consuming. In the solution presented
by Wespel and Salomon, they propose a Cloud based approach that uses black- or
whitelists to determine if a value is suspicious and then recommends setting that
can be used in the event of a reset.

15

3. Related Work

16

4
Design

This chapter starts by gives an overview of the script that performs the modification
of preferences created for this thesis. The implementation shows how a third party
other than Chrome can make changes to certain preferences of the browser without
the user being notified of the changes. The overall design of the script presented in
this thesis can be seen in Figure 4.1 with more in-depth descriptions of its different
phases presented later in this chapter. Lastly, the extension created for executing
the script from the browser is described.

4.1 Secure Preferences
The Secure Preferences file is a file that keeps track of certain preferences as well
as the signing and validation of these preferences in the Chrome browser. The
preferences are read and validated when the browser is started. Chrome calculates
the HMACs of every preference stored in Secure Preferences and compares them
to the HMACs that are also stored in the file. In the event of two values being
different, the browser will notice that modifications have been performed in the file
by a third party and revert the preferences to their default values.

4.2 The Script
The attack that is implemented consists of a script that goes through four different
phases in order to make changes to the preferences in the Secure Preferences file,
see Figure 4.1. These phases are: 1) Initialization; 2) Modification; 3) Calculation
and 4) Update. In order to modify this file without alerting the browser or user,
the script also calculates the corresponding HMACs. The script we created for this
thesis is written entirely in the programming language Python. The design of the
different phases of the attack and their purpose are described below.

4.2.1 Initialization
The first phase that is entered when running the script is the initialization phase.
It is during this phase that most of the values which are needed for later phases
are gathered or calculated. These include both values that are specific to the user
running the script as well as those that are supplied as arguments to the script.
The purpose of these arguments are to specify which preferences to modify and the
desired values. It is also here that all necessary files are located and read. This

17

4. Design

Figure 4.1: The four phases of the script and how they interact with Secure
Preferences and each other

includes the Secure Preferences file, from which all preferences are read and stored
for later use.

4.2.2 Modification
When the initialization phase is complete the script moves on to the modification
phase. During this phase the supplied arguments are used to determine which
preferences to modify as well as how. These modifications can be of three different
types, namely add, remove or modify. The script then performs the desired actions
on the preferences and moves on to the next phase.

4.2.3 Calculation
The third phase of the script handles all the calculations relating to the preference
values and the signing and validation of preferences. It is here that the HMACs and
the super_mac are calculated.

In order to calculate a corresponding HMAC to a desired preference the hashing
algorithm needs to be supplied with the correct input. If the input is not correct
the result will always be wrong and Chrome will be able to notice the modifications.
The input that is used in the algorithm is called message and can be seen as a simple
text string that has a certain structure. This message is calculated by combining
information about the user running the script with information regarding the prefer-
ence that is to have its HMAC calculated. All this information is computed during
this phase.

After the script is done calculating the HMACs of all the desired preferences, there
is only one value left to calculate. This value is the super_mac, which is the HMAC

18

4. Design

used to validate all the other HMACs.

4.2.4 Update
When everything is modified and calculated, the script enters the final phase. Here
the script makes some small modifications to the entire set of preferences before
updating Secure Preferences with the new values. When this is complete the Secure
Preferences file will be updated with the new preference values and their correspond-
ing HMACs. The updated Secure Preferences file will then by read by Chrome the
next time it is started and a silent modification of Chromes behavior will have been
performed.

4.3 The Extension
In order to execute the script from the browser, an extension is created. The ex-
tension has as its main purpose to run the script with a certain set of arguments
and thereby modifying Chrome, see Figure 4.2. For the purpose of this thesis the
look of the extension is not important, as it only serves as a proof of concept. The
extension therefore consists of only a button that when pressed executes the script.
For the extension to to run the script it has to be located on the users computer. If
this is the case the extension makes use of a Chrome API that allows it to run the
script and alter the Secure Preferences file.

Figure 4.2: Overview of the extension calling the script

4.4 Design Discussion
When deciding on the which programming language to use for the creation of the
script, the choice fell on Python. Python supports a lot of different tools and libraries
to help with a multitude of tasks such as hashing, JSON operations and process calls.
Since the script created for this attack needs to find values that are specific to the
computer on which Chrome is running there would be a need for certain system

19

4. Design

calls. Because of this, languages such as C or C++ could also be used for such calls.
However, Python is able to perform and find all these value on its own so using
different languages would only complicate the implementation of the script.

20

5
Implementation

The following chapter will present the implementation of the script created in this
thesis. The chapter starts off by giving a full description of how the analysis of
Chromium is performed and what this information is used for. It will then proceed
to give detailed descriptions on how to acquire or calculate all the necessary values
needed to calculate the HMACs. The chapter ends by giving a full description of
all the steps performed by the script in order to silently modify the preferences in
Chrome.

5.1 Analyzing Chromium
Manually changing different Chrome preferences that are stored in the "Preferences"
file is a very easy task. The file is a simple text file with a JSON markup so a
preference can be altered by replacing the old value with a new. When it comes to
the preferences stored in "Secure Preferences" this is not the case. In this file every
key/value pair is signed with a custom HMAC so every change in values will result
in different HMACs. This makes the alteration of preferences much harder since the
HMAC belonging to the altered preferences also has to be calculated.

In order for us to reproduce the HMACs used in Secure Preferences, knowledge
about the exact way that Chrome performs its hashing is required. This informa-
tion is hidden deep within the source code of the browser. Since the source code
of Chrome is not open source this information is hard to find. Luckily, Chromium,
which is the project behind the Chrome browser, is open source. The source code
of Chromium contains most of the functions that also seem to exist in Chrome, we
use Chromium version 67.0.3369.0. When looking for information about the HMAC
calculations we use two different methods:

• Exploring the source code and searching for functions relating to HMAC cal-
culations.

• Debugging the code using breakpoints.

5.1.1 Exploring the Source Code
The source code of Chromium contains a lot of files and functions but there are some
functions that are a little more interesting than others when it comes to HMAC cal-
culations. These functions are located in a file called pref_hash_calculator.cc and

21

5. Implementation

handles most of the calculations needed.

Figure 5.1: Chromium function GetDigestString which calculates an HMAC
given a message and a key.

When searching the source code of Chromium for interesting functions, we discover
that the function responsible for calculating the HMACs is called GetDigestString.
As can be seen in Figure 5.1 the hashing algorithm used for the HMAC calculation
is a SHA256 algorithm that takes a message and a key as input and returns a hex-
adecimal string.

Another important function that is also located in this file is the function GetMes-
sage. The purpose of this function is to create the message that is used in the
HMAC calculations. It does this by concatenating three values; device_id, path and
value_as_string. These values and how we are able to obtain them will be explained
further in section 5.2.2.

Figure 5.2: Debugging of GetMessage for the preference show_home_button.

22

5. Implementation

5.1.2 Debugging the Source Code
While the source code can tell a lot about the different values that are used in
the calculations, their exact structure is hard to figure out without actually seeing
the values. This is where debugging is a very helpful tool. To debug the code of
Chromium, we download the entire browser source code and install it. The code is
then debugged using Microsoft Visual Studio. By putting breakpoints on critical
functions such as GetMessage we are able to figure out the exact structure of many
necessary values as illustrated in Figure 5.2.

5.2 Reproducing the HMAC
This section will describe in detail how our implementation is able to find or calculate
the values necessary for correctly reproducing the HMAC used by Chrome to validate
the preferences.

5.2.1 Finding the Seed
As mentioned in Section 5.1.1 the SHA256 algorithm used by Chromium needs a
key to accurately calculate the HMAC. This key is usually called a seed and can be
found in a data pack file called "resources.pak", which is located in the installation
path of Chrome. This file contains packed binary data which makes the content
very hard to read and understand without knowing the exact format of the file.

In order to figure out the format, we start by looking at the code and tools of
Chromium. Since the browser is able to read this file there is most likely a tool
that is able to perform this action. In Chromium there exists a tool called GRIT
which is the internationalization tool used by all the Chromium projects. This tool
contains a python script called "data_pack.py". The purpose of this script is to
provide support for formatting data pack files and therefore contains the necessary
information on the format of these files.

By looking at the code of this script we find that the first part of the file consists of
a header that contains information about the file. The first value in this header is a
4 byte long version number, which is the current version of the data pack file. The
version number is important since this value determines the structure of the header
and its values.

By reading and unpacking the binary data into values that can easily be understood,
we find that the version used for this file is version 5. This version uses a header with
a length of 12 bytes and its structure is illustrated in Figure 5.3. The second value
in the header that is important for finding the seed is the number of resources in
the file. This 2 bytes long value is used to determine where the resource information
ends and the actual resources begin.

23

5. Implementation

Figure 5.3: Structure of the header information in resources.pak.

The values that are located after the header are information about the resources in
the file. As can be seen in figure 5.4 this information is made up of a resource ID
and the location of the resource, stated as an offset from the start of the file.

Figure 5.4: Structure of resource information in resources.pak.

The seed used in Chrome is a 64 character long hexadecimal value. In order to
find the exact seed which is used by Chrome we combine the information about the
number of resources and their offsets to determine the length of each resource. We
then locate the seed by finding the first resource that has a length of 64.

5.2.2 Creating the Message
As mentioned in Section 5.1.1 the message used in the HMAC calculation of Chromium
is created by the function GetMessage, which performs this task by concatenating
three values. These values are sent to the function as string arguments and the
resulting value is also a string. In order for us to recreate the message we have to
know the exact structure of all the strings used in this calculation. We discover
what these strings look like by debugging the code and putting breakpoints around
GetMessage, as can be seen in Figure 5.2.

By evaluating the value of device_id we discover that this value remains the same
during all HMAC calculations. A deeper investigation into the value leads us to its
origin. The value used as device_id in the calculation is the same as the Security
IDentifier (SID) of the computer on which Chrome is running. In order to acquire the
SID of a user we make use of the Windows infrastructure for management data and
operations called Windows Management Instrumentation (WMI) [17]. By creating a
subprocess that runs the command-line utility of WMI we are able to send a query
for the SID of the specific user running the script. The result of this query will
include the Relative ID (RID) part of the users SID so the RID is removed to get
the correct value of device_id.

The second value that is used for the message calculation is path. This value consists
of the JSON keys that are traversed in Secure Preferences to reach the preference

24

5. Implementation

Figure 5.5: A JSON object and its corresponding path used in the message
creation for the show_home_button preference.

for which the HMAC is to be calculated. As can be seen in figure 5.5 the path
used in the calculation uses the (.) notation to separate the JSON keys that are
traversed. Since we know the exact structure of Secure Preferences the path for a
specific preference is very easily constructed.

Value_as_string is the third and last value that is used in the message creation.
The content of this string is the value of the preference for which the HMAC calcula-
tion will be performed. Since preference values can be of many different data-types
the exact structure of value_as_string will differ between preferences. By looking
at the message creation of different data-types we find two modifications that are
performed on the preference values before they are used as value_as_string. To
correctly create a string to be used in the message creation we first find the value
of the desired preference and then remove all of its empty arrays and objects. We
then replace all "<" characters with their unicode representation, "\u003C".

When all the values have been collected or created we combine them to create our
own message that is used in the HMAC calculation. By taking the values presented
in figure 5.2 the resulting message would be:

S−1−5−21−1234567890−1234567890−1234567890browser.show_home_buttontrue

5.2.3 Calculating HMAC
Having both the seed and a the messages created for a set of certain preference
we are able to correctly calculate their corresponding HMACs. We perform these
calculations by using a SHA256 HMAC function which takes the seed and message
as input. The result of this function is a 32 bytes hexadecimal value which is used
to validate the preference.

5.2.4 Calculating super_mac
The final step in correctly modifying the preferences in Secure Preferences is calcu-
lating the HMAC called super_mac, which is there to validate all the other HMACs.
The super_mac is calculated in the same way as all other HMACs with some slight
differences in the values used. Since the seed is used as the key for all calculations

25

5. Implementation

this value remains the same. This is also true for device_id since the SID of the
computer will not change. The differences appear in path and value_as_string. The
value of path is an empty string instead of the path to where in Secure Preferences
the the super_mac is located. The value of value_as_string is a JSON entry called
macs which contains all of the HMACs.

5.3 Script Implementation
The script we implement in this thesis is a versatile python script that when sup-
plied with the desired preferences and their values can silently change the behavior
of Chrome. In order to correctly modify the preferences in Secure Preferences the
script only needs to be given arguments in the form of the preferences that are to be
modified. All other values are automatically gathered or calculated by the script.
The step by step process performed by the script when supplied with the desired
preferences is described below. A graphical illustration of this process can be found
in Figure 5.6.

1. Locates the Secure Preferences file and reads all the preferences stored in the
file.

2. Locates the resources.pak file and uses it to acquire the seed.
3. Modifies the preferences that are specified in the arguments with the desired

values.
4. Calculates the message of all the modified preferences.
5. Calculates the HMAC of all modified preferences.
6. Calculates the super_mac to validate all the other HMACs.
7. Updates the Secure Preferences file with the new preferences.

Figure 5.6: A detailed description of the step by step process performed by the
script when modifying a preference.

26

5. Implementation

5.4 Extension Implementation

In order to show how the script can be executed from the browser it is trying to
hijack, we also create a proof of concept extension which performs this action. The
extension in itself is a button that when clicked executes the script created for this
thesis and thereby changing the behavior of Chrome. For the extension to be able
to do this it makes use of the native messaging API that is available in Chrome.
This API allows the extension to communicate with applications that are considered
native messaging hosts. In this thesis, the native messaging host consists of the script
together with a Windows batch file as illustated in Figure 5.7. The batch file sets
the desired preferences as arguments and then runs the script.

Figure 5.7: An overview of an extension connecting to the native messaging host.

5.4.1 Setting up a Native Messaging Host
An extension in Chrome can only communicate with applications that have a native
messaging host. To be able to be a host there are certain requirements that have to
be fulfilled by the application:

• The application needs to have a manifest file with certain values that specifies
the configuration, see Figure 5.8. The location of this manifest file depends on
the platform. On Windows this location can be anywhere in the file system.

• The application also has to be added as a Windows registry key
HKEY_CURRENT_USER\SOFTWARE\Google\Chrome\NativeMessaging
Hosts\name_of_host
or

27

5. Implementation

HKEY_LOCAL_MACHINE\SOFTWARE\Google\Chrome\NativeMessaging
Hosts\name_of_host with a default value of the full path to the manifest file.

Figure 5.8: The manifest file used for the configuration of the host.

28

6
Evaluation

The chapter will describe the evaluation performed to show that the script created
in this thesis work as intended. The evaluation was performed in two steps with the
first evaluation being performed on only the HMAC calculation part of the script
and the second evaluation on the script as a whole when used to modify preferences.

6.1 HMAC Calculation
In order to silently alter the behavior of Chrome through the modification of pref-
erences the most important part of the implementation is the HMAC calculation.
Without a correct way of reproducing the HMACs created by Chrome the imple-
mentation is never going to be successful and Chrome will be able to detect that
something has been altered every time the script is executed.

Figure 6.1: Results from the test of the HMAC calculations.

29

6. Evaluation

The HMAC calculation is evaluated by reproducing the HMAC of all preferences
stored in Secure Preferences. Doing this allows us to test the calculation of HMACs
belonging to multiple values of different data-types. This test does not modify the
preference before calculating the HMAC to be able to compare the result with the
HMAC created by Chrome. In other words, this test is only used to test the HMAC
calculation part of the implementation and not the functionality of the entire script.

After all the reproduced HMACs have been calculated they are compared with the
HMACs that are created by Chrome and stored in the Secure Preferences file. The
test of an HMAC is considered successful if the two HMACs are identical.

As can be seen in Figure 6.1, the result of the evaluation is very positive with the
implementation being able to correctly calculate the HMACs of all preferences as
well as the super_mac. This gives our implementation of the HMAC calculation a
success rate of 100% in this test.

6.1.1 Discussion
The test is performed by taking all the HMACs that are stored in the Secure Prefer-
ences file and trying to reproduce them. There are cases where there exists HMACs
for preferences that are not present in the file. In the event of a preference hav-
ing an HMAC but not a preference value, that value is represented by an empty
string. Using an empty string will give a correct result most of the time but there
are situations when this is not the case. For preferences where the value is an array
of different values, the value would instead be an empty array. It is however hard
to know the structure of the value if the preference is not present in the Secure
Preferences file.

Because of this, the result of this test will differ depending on the Secure Preferences
file that is used for the test. Even if this might result in some HMAC calculations
being wrong when running this test, it will not have any impact on the overall func-
tionality of the script. When running the script to modify a preference, only the
HMAC for that preference is calculated which means that the preference will always
be stored in the file and have a value.

6.2 Implementing Common Hijacking Exploits
The second evaluation performed is an evaluation of the entire functionality of the
script. In other words, this test aims to show how well the script is able to success-
fully alter certain preferences without alerting the user or browser.

The test was performed by implementing a number of common exploits and doc-
umenting the behavior of Chrome before and after the implementation. For this
evaluation we used both exploits that are well known to be used by malware in the
wild such as changing the startup page and default search engine as well as exploits

30

6. Evaluation

Exploits Path Value
Toggle visibility of the home button browser.show_home_button True/False

Set the default homepage homepage
homepage_is_newtabpage

http://www.example.com
True/False

Add pinned tabs pinned_tabs Array[http://www.example1.com]

Disabling extension
extensions.settings.extensionID.disable_reasons
extensions.settings.extensionID.last_activated_ime_engine
extensions.settings.extensionID.state

1
False
0

Enabling extension
extensions.settings.extensionID.disable_reasons (remove)
extensions.settings.extensionID.last_activated_ime_engine
extensions.settings.extensionID.state

None
False
1

Removing extension extensions.settings.extensionID (remove) None
Allowing extension in incognito mode extensions.settings.extension.incognito True/False

Startup page session.restore_on_startup
session.startup_urls

4
http://www.example.com

Default search engine default_search_provider_data list{search provider data}

Table 6.1: The test cases together with the path and value of the preferences that
are to be modified.

that to the best of our knowledge are new and creative such as enabling or disabling
extensions.

In order to make sure that Chrome does not interfere with the outcome, all tests
are performed when Chrome is not running. After running the script, the browser
is started in order to validate the results. In order for a test to be considered suc-
cessful the intended preferences and their HMACs should be modified and alter the
behavior of the browser without Chrome noticing and alerting the user.

The different test cases that were used during this test can be found in Table 6.1 with
more in depth descriptions of each exploit being presented in Sections 6.2.1-6.2.7.

6.2.1 Toggle visibility of the home button
In the default setting of Chrome the Secure Preference file lacks the field
"show_home_button" so the first step is to check if it exists. If it does not exist
it is added and activated by setting its value to True. It is then sorted to in order
to end up in the correct place. If it already exists it is just a matter of choosing
whether to set it to True or False.

6.2.2 Set the default homepage
In order to set a default homepage the two fields in the Secure Preference that have
to be changed is "homepage" and "homepage_is_newtabpage". The "homepage"
field is the url of the website and "homepage_is_newtabpage" simply decides if
your homepage also should be the default url for when a new tab is opened in the
browser. If it does not exist in it is added and sorted in order to end up in the
correct spot of the Secure Preference file.

6.2.3 Add pinned tabs
When adding pinned tabs to the browser the field that has to be changed is conve-
niently called "pinned_tabs". It consists of an array with the urls to the websites

31

6. Evaluation

that should be pinned upon starting the browser. If the browser does not have any
previous pinned tabs this field has to be added and sorted in order to end up in the
correct spot.

6.2.4 Disabling, enabling and removing an extension
These three functions are performed in the "extension" dictionary inside Secure Pref-
erence. Here, all the extensions installed on the browser can be accessed and altered.
When disabling an extension the three fields "disable_reasons", "last_activated_ime
_engine" and "state" have to be added. The "disable_reasons" is set to 1, "last
_activated_ime_engine" is set to False and "state" is set to 0. When enabled again
you simply remove the "disable_reasons" field entirely and set the "state" field to
1. In the matter of removing an extension completely two things needs to be done.
First you need to remove the extension from the "extension" dictionary and then the
HMAC belonging to it from the dictionary "protection".

6.2.5 Allowing an extension in incognito mode
By changing the field "incognito" inside of an extension to True, that extension is
allowed to still be active when the user is browsing in incognito mode in Chrome.

6.2.6 Startup page
Two fields have to be altered here as well, "restore_on_startup" and "startup_urls".
They are located in the "session" dictionary where if you want a specific website to
be your startup page you need to set "restore_on_startup" to 4 and "startup_urls"
to your desired url.

6.2.7 Default search engine
The field that has to be added and altered in order for this to function is called
"default_search_provider_data". A list is added to the field containing the data for
the chosen search provider. The dict is then sorted in order for the field to end up
in the correct position.

32

7
Discussion

This chapter will start off by explaining how the possible exploits mentioned in this
thesis can be used by an attacker and what impact that can have on the user. Then
we discuss what was the inspiration of the thesis and how our work has evolved from
a couple of blog posts. Future work is then discussed as well as countermeasures,
ethics and sustainability.

7.1 Possible Exploits
The attack makes it possible to alter every field of the Secure Preference file, seen
below we discuss some interesting exploits and how an attacker can use these for
malicious intent.

7.1.1 Toggle visibility of the home button
This is more like a proof of concept than an actual attack, by recreating the HMAC
we are able to either have the value of the home button as True or False. This
single exploit is pretty harmless in the hands of an attacker but the fact that the
HMAC has been recreated poses a big threat towards the user. With the home
button activated the attacker could together with setting the default homepage of
the browser send the user to a web page with malicious intent.

7.1.2 Set the default homepage
An attacker could set the default homepage to a malicious one and lure the user
into using it, for example it could look like that user’s online banking page. Upon
using the malicious banking page the attacker can obtain sensitive information and
even gain access to the user’s bank accounts. The attacker could also set the default
homepage any advertisement web page or other pages with financial gain as inten-
tion. If the page contains advertisement revenue would be generated, the site could
also contain fake offers with the intention to trick to user into making a purchase.

7.1.3 Add pinned tabs
The previously mentioned attack can also be applied when adding pinned tabs, an
attacker can fill up the browser with ads and other malicious web sites. The attacker
could also fill up the browser completely with a huge number of pinned tabs which
overwhelms the browser and consumes a lot RAM from the computer.

33

7. Discussion

7.1.4 Disabling, enabling and removing an extension
Disabling/removing extensions can be used by an attacker in order to weaken the
security of the browser. By disabling/removing an extension such as AdBlock the
user will be exposed to unwanted advertisement and pop ups. Other extensions
preventing monitoring of the browser activity can also be disabled/removed. If
the user disables an unwanted extension the attacker can enable it again. Even
if extensions have to go through the Chrome Web Store there still exists a lot
of malicious extensions. These can have different malicious intentions such as code
injection, ad manipulation, affiliate fraud, information theft and OSN (Online Social
Network) abuse [8].

7.1.5 Allowing an extension in incognito mode
An attacker could abuse this in order to still monitor the activity of a user through
an extension even when the user clearly does not want that since it is using the
incognito mode which is designed to not create any browser history. The icon of the
extension is however still visible which means that if the user is aware he/she can
disable the extension but most users will not bother to make sure that no extension
is active in incognito mode which plays in favor for the attacker.

7.1.6 Startup page
Changing of the startup page or pages can be used by an attacker in the same way
as setting the default home page and adding pinned tabs which is discussed in the
sections above.

7.1.7 Default search engine
An attacker could replace the default search engine with a malicious one such as
Trotux [15] which will display popup ads, hijack the browser, infect the user’s desktop
shortcuts and insert ads to the web pages. Changing the search engine can be very
profitable for an attacker since the user’s search results can be tailored in such a way
that she is sent to websites that can generate ad revenue or malicious websites with
the intention to steal the user’s personal information such as credit card information
etc.

7.2 HMAC Creation
As we mentioned before in this report, information about how malware in the wild
such as WinYahoo [2] that can alter values of the Secure Preference file is very
limited. They main inspiration for the attack is the blog post which a user named
Tigzy [25] has posted on the www.adlice.com web site. In this post Tigzy gives a
somewhat detailed description of how how these malware performs the recreation of
the HMAC and at the end Tigzy suggests a scan that he/she claims deals with this

34

7. Discussion

problem.

In the references of Tigzy’s blog post we also found another interesting blog post [7]
by the user named Kaimi on the web site kaimi.io which also addresses the HMAC
creation in Secure Preferences. This post is in Russian so some serious Google
Translating had to be performed. Kaimi goes into more details of how the HMAC
creation is performed and also provides some code which gave a better insight into
what exact steps that has to be performed in order to get the attack to function
properly.

A third post that touches on the Secure Preference attack is one by an author at
Malewarebytes LABS [14] named Joshua Cannell. He does not go into any details
regarding how the attack is performed, instead he gives an example of malware that
is out there and can alter your Secure Preference file. The malware he talks about
is WinYahoo and has some of the same abilities as our attack such as changing the
default home and start page it can also change the default search provider.

With the information provided by these blog posts we started to build our script
but we realized pretty quickly that the way the HMAC was created was not fully
viable anymore and adjustments had to be made in order to get it to work. The first
thing we encountered that was different was the seed, in Tigzy’s post it states: "The
seed is unique to a machine". But when comparing the seed of different machines
we found out that the value of the seed was the same on every machine. This poses
a threat to the security of Secure Preferences since the attacker does not need to go
the extra mile and obtain the seed if it always is the same. However in our attack
we made sure to fetch the seed in the proper way from the file "resources.pak" which
leaves no room for error.

When creating the HMAC, Tigzy uses the following steps:

1. Obtain machine SID.
2. Obtain volume ID.
3. Create machine ID.
4. Obtain the message.
5. Create the HMAC.
6. Replace the old HMAC with the new.

But when using Chromium to debug we noticed that all of these values was not nec-
essary or outdated. The HMAC of the current version of Chrome is created using
three values namely: device_id, path and Value_as_string the process and values
are described in detail in the Implementation chapter.

After debugging and researching in order to fully understand the way which HMAC
was created in the Secure Preference file we managed to create an attack that not
only manages to recreate the HMAC but also replace it in order to perform numerous

35

7. Discussion

exploits in Chrome. Our attack is fully dynamic both in the way which we gather
the necessary data and in the way that every field in the Secure Preference file can
be altered to the users liking. It was known that exploits like changing the start
page, home page and default search engine was possible. But in our thesis we prove
that there is so much more that can be altered, for example extensions both in
regular and incognito mode. To the best of our knowledge this thesis is the only one
giving a complete and detailed look on the way which Secure Preference file works
and which ways it can be attacked and exploited.

7.3 Future Work
The work presented in this thesis will hopefully raise awareness towards the flaws in
security concerning the Secure Preference file which is being exploited by malware
in the wild. It could provide information that helps eliminating malware such as
Trotux [15] and WinYahoo [2] which targets users browsers by changing settings like
start page and default search engine.

This thesis has provided an insight into a number of exploits which has been tested
and explained. But due to the lack of information regarding the Secure Preference
file we have not been able to cover all possible exploits. There are a lot of fields
that are not visible by default in Secure Preferences and research regarding what
possible exploits can be performed is something we see a lot of potential in.

The intention of the thesis is not to provide a guide that can enable attackers to be
able to exploit the Secure Preferences file. The intention is that by being able to
reproduce the HMAC and show that Secure Preferences does not really live up to
the "Secure" in its name and thereby show the developers that some changes to the
file and HMAC procedure is in order. Therefore Google is being alerted and given
the chance to fix this issue before the publication of this thesis.

7.4 Countermeasures
We find it hard to completely erase the attack since as long as the Secure Preference
file is accessible to the user, with the right information, the attacker will probably
be able to alter the file and carry out the exploits. One can however make it more
difficult for the attacker with for example the handling of the seed for the HMAC.
We found out that the seed is not a random string, it is in fact the same for every
computer we tested our script on. If the seed were random and unique for each
individual machine it could complicate things for an attacker who expects that the
seed should be the same. This would not stop our attack since we retrieve the seed
from the file "resources.pak" where it is located. If this retrieval was to be negated
the seed’s location in "resources.pak would have to be random as well.

Venkata Naga Seelam Siva has created a proof of concept add-on which can detect
unexpected changes of the user’s preferences and reverts them to their old values

36

7. Discussion

[18]. This only works when the browser is running but if such an add-on is created
for Chrome it would be very usefull for users targeted by preference-changing mal-
ware.

Since it might be hard to find the ultimate countermeasure to the attack it might
be a good idea to instead focus on protecting your computer against the intrusion of
these types of malware that targets the preferences of a browser. A common theme
is that the malware enters through the downloading of free software from suspicious
web sites. Being careful and selective of what software you download will help you
against these types of malware and also malware in general.

7.5 Ethics and Sustainability
In order to show that the preferences in Secure Preferences are not as secure as it
seems, a script that reproduces the actions of many different kinds of malware have
been implemented. Because of this, this thesis can be used as a guide for creating
more malware. This was not the intention of this thesis, as we only set out to prove
that the modification of Secure Preferences is possible and not in any way wanted
to help people with ill intent to exploit others.

Because of this risk and since this thesis concerns the security of one of the most
used browsers in the world this company is alerted and given time to update the
browser before our finding are made public, this will hopefully prevent the scenario
where our script can be used as an real world attack. We do not aim to frame a
company in order to make it look bad, the aim of this thesis is simply to show and
explain that the security of the Secure Preference file is flawed and that is being
abused by malware in the wild. Our hopes is that the security becomes flawless and
malware which is exploiting this file are disarmed for good.

37

7. Discussion

38

8
Conclusion

Google Chrome’s Secure Preferences has proven not to be as secure as one might
think. In this thesis we explore different ways of abusing the preferences stored in
Secure Preferences and silently modify the behavior of Chrome. In chapter 4 we
present the design of a script that is able to successfully recreate and replace the
HMACs for the different preferences in the Secure Preferences file. With the help of
this script we show how different attacks can be performed in real life scenarios. We
also give a detailed description of the implementation of the script in chapter 5. In
this chapter we present the different parts of the script and how all necessary values
are obtained. With these values we show how to recreate the HMACs and by doing
so allowing us to modify Chrome without alerting the user or browser. To show
how attacks could be performed from the browser we also create an extension that
is able to execute the script and perform attacks. We then evaluate the correctness
and functionality of the implementations by testing both the HMAC calculation as
well as how well the script is able to reproduce common exploits. These tests show
that the script is able to successfully perform all the common exploits that were
tested. This proves that the security mechanisms of Chrome preferences are fairly
easy to bypass and can therefore be exploited by attackers.

39

8. Conclusion

40

Bibliography

[1] Sebastian Banescu et al. “Software-Based Protection against Change-
ware”. In: Proceedings of the 5th ACM Conference on Data and Appli-
cation Security and Privacy - CODASPY ’15 (2015), pp. 231–242. doi:
10.1145/2699026.2699099.

[2] Joshua Cannell. “WinYahoo” PUP Modifies Chrome Secure Preferences.
2015. url: https://blog.malwarebytes.com/threat-analysis/2015/
05/winyahoo-pup-modifies-chrome-secure-preferences/ (visited
on 05/23/2018).

[3] Hiten Choudhury, Basav Roychoudhury, and Dilip Kr Saikia. “Security
extension for relaxed trust requirement in non3GPP access to the EPS”.
In: International Journal of Network Security 18.6 (2016), pp. 1041–1053.
issn: 18163548. doi: 10.1007/978-3-319-13841-1.

[4] Chrome. Native Messaging. url: https://developer.chrome.com/
extensions/nativeMessaging (visited on 06/05/2018).

[5] Douglas Crockford. Official JSON website. url: http://www.json.org/
(visited on 05/08/2018).

[6] Google. Google Chrome Web Store. url: https://chrome.google.com/
webstore/category/extensions?hl=sv (visited on 06/05/2018).

[7] Kaimi. Google Chrome and Secure Preferences. 2015. url: https : / /
kaimi.io/2015/04/google-chrome-and-secure-preferences/ (vis-
ited on 05/23/2018).

[8] Alexandros Kapravelos, Chris Grier, and Neha Chachra. “Hulk: eliciting
malicious behavior in browser extensions”. In: Proceedings of the 23rd . . .
(2014), pp. 641–654. doi: 10.13140/2.1.1324.2249.

[9] LastPass: Free Password Manager. url: https : / / chrome . google .
com / webstore / detail / lastpass - free - password - ma /
hdokiejnpimakedhajhdlcegeplioahd?hl=sv (visited on 06/05/2018).

[10] Peter Ludwig. No more silent extension installs. 2012. url: https://
blog.chromium.org/2012/12/no-more-silent-extension-installs.
html (visited on 04/26/2018).

41

https://doi.org/10.1145/2699026.2699099
https://blog.malwarebytes.com/threat-analysis/2015/05/winyahoo-pup-modifies-chrome-secure-preferences/
https://blog.malwarebytes.com/threat-analysis/2015/05/winyahoo-pup-modifies-chrome-secure-preferences/
https://doi.org/10.1007/978-3-319-13841-1
https://developer.chrome.com/extensions/nativeMessaging
https://developer.chrome.com/extensions/nativeMessaging
http://www.json.org/
https://chrome.google.com/webstore/category/extensions?hl=sv
https://chrome.google.com/webstore/category/extensions?hl=sv
https://kaimi.io/2015/04/google-chrome-and-secure-preferences/
https://kaimi.io/2015/04/google-chrome-and-secure-preferences/
https://doi.org/10.13140/2.1.1324.2249
https://chrome.google.com/webstore/detail/lastpass-free-password-ma/hdokiejnpimakedhajhdlcegeplioahd?hl=sv
https://chrome.google.com/webstore/detail/lastpass-free-password-ma/hdokiejnpimakedhajhdlcegeplioahd?hl=sv
https://chrome.google.com/webstore/detail/lastpass-free-password-ma/hdokiejnpimakedhajhdlcegeplioahd?hl=sv
https://blog.chromium.org/2012/12/no-more-silent-extension-installs.html
https://blog.chromium.org/2012/12/no-more-silent-extension-installs.html
https://blog.chromium.org/2012/12/no-more-silent-extension-installs.html

Bibliography

[11] Mailtrack for Gmail & Inbox: Emailtracking. url: https://chrome.
google . com / webstore / detail / email - tracking - for - gmail /
ndnaehgpjlnokgebbaldlmgkapkpjkkb?hl=sv (visited on 06/05/2018).

[12] Masahiro MAKINO. “(12) Patent Application Publication (10) Pub
. No .: US 2006 / 0222585 A1 Figure 1”. In: 002.15 (2017), p. 7. issn:
13871811. doi: 10.1037/t24245-000. arXiv: 0403007 [arXiv:physics].

[13] Malwarebytes. Malewarebytes: Browser Hijacking. url: https://blog.
malwarebytes.com/threats/browser-hijacker/.

[14] Malwarebytes LABS. 2018. url: https://blog.malwarebytes.com/
(visited on 05/23/2018).

[15] Tomas Meskauskas. How to eliminate browser redirects to trotux.com?
2017. url: https://www.pcrisk.com/removal-guides/10142-trotux-
com-redirect (visited on 05/28/2018).

[16] Microsoft. IP Security (IPSec). url: https://technet.microsoft.com/
en-us/library/cc179879.aspx (visited on 06/04/2018).

[17] Microsoft. Windows Management Instrumentation. 2018. url: https:
//msdn.microsoft.com/en-us/library/aa394582(v=vs.85).aspx
(visited on 05/30/2018).

[18] Venkata Naga Seelam Siva. “Settings Protection Add-on : A User-
Interactive Browser Extension to Prevent the Exploitation of Preferences
settings protection add-on : a user-interactive browser extension to pre-
vent the”. PhD thesis. 2017.

[19] Stelian Pilici. How to remove “Ads by GoSave” adware (Virus Removal
Guide). 2017. url: https://malwaretips.com/blogs/remove-gosave-
virus/ (visited on 05/29/2018).

[20] Abhay Rana and Rushil Nagda. “A Security Analysis of Browser Exten-
sions”. In: CoRR abs/1403.3235 (2014). arXiv: 1403.3235.

[21] Charles Reis, Adam Barth, and Carlos Pizano. “Browser Security: Lessons
from Google Chrome”. In: Queue 7.5 (2009), p. 3. issn: 00010782. doi:
10.1145/1536616.1536634.

[22] Iskander Sanchez-Rola, Igor Santos, and Davide Balzarotti. “Extension
breakdown: Security analysis of browsers extension resources control
policies”. In: 26th USENIX Security Symposium (USENIX Security 17)
(2017), pp. 679–694.

[23] Symantec. What is SSL, TLS and HTTPS? url: https : / / www .
websecurity.symantec.com/security-topics/what-is-ssl-tls-
https (visited on 06/04/2018).

[24] AV-TEST - The Independent IT-Security Institute. Malware. 2018. url:
https://www.av- test.org/en/statistics/malware/ (visited on
06/19/2018).

42

https://chrome.google.com/webstore/detail/email-tracking-for-gmail/ndnaehgpjlnokgebbaldlmgkapkpjkkb?hl=sv
https://chrome.google.com/webstore/detail/email-tracking-for-gmail/ndnaehgpjlnokgebbaldlmgkapkpjkkb?hl=sv
https://chrome.google.com/webstore/detail/email-tracking-for-gmail/ndnaehgpjlnokgebbaldlmgkapkpjkkb?hl=sv
https://doi.org/10.1037/t24245-000
http://arxiv.org/abs/0403007
https://blog.malwarebytes.com/threats/browser-hijacker/
https://blog.malwarebytes.com/threats/browser-hijacker/
https://blog.malwarebytes.com/
https://www.pcrisk.com/removal-guides/10142-trotux-com-redirect
https://www.pcrisk.com/removal-guides/10142-trotux-com-redirect
https://technet.microsoft.com/en-us/library/cc179879.aspx
https://technet.microsoft.com/en-us/library/cc179879.aspx
https://msdn.microsoft.com/en-us/library/aa394582(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394582(v=vs.85).aspx
https://malwaretips.com/blogs/remove-gosave-virus/
https://malwaretips.com/blogs/remove-gosave-virus/
http://arxiv.org/abs/1403.3235
https://doi.org/10.1145/1536616.1536634
https://www.websecurity.symantec.com/security-topics/what-is-ssl-tls-https
https://www.websecurity.symantec.com/security-topics/what-is-ssl-tls-https
https://www.websecurity.symantec.com/security-topics/what-is-ssl-tls-https
https://www.av-test.org/en/statistics/malware/

Bibliography

[25] Tigzy. Google Chrome: Bypassing Secure Preferences. https : / / www .
adlice.com/google-chrome-secure-preferences/ [Accessed: 2017-
12-19]. 2016. url: https://www.adlice.com/google-chrome-secure-
preferences/.

[26] W3schools. OS Platform Statistics. 2018. url: https://www.w3schools.
com/browsers/browsers%7B%5C_%7Dos.asp (visited on 05/28/2018).

[27] Wikipedia. Hash-based message authentication code. https : / / en .
wikipedia.org/wiki/Hash- based_message_authentication_code
[Accessed: 2017-12-19]. url: https://en.wikipedia.org/wiki/Hash-
based_message_authentication_code.

43

https://www.adlice.com/google-chrome-secure-preferences/
https://www.adlice.com/google-chrome-secure-preferences/
https://www.adlice.com/google-chrome-secure-preferences/
https://www.adlice.com/google-chrome-secure-preferences/
https://www.w3schools.com/browsers/browsers%7B%5C_%7Dos.asp
https://www.w3schools.com/browsers/browsers%7B%5C_%7Dos.asp
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code

Bibliography

44

	List of Figures
	List of Tables
	Introduction
	Motivation
	Aims and Challenges
	Research questions
	Challenges

	Limitations
	Contributions
	Report Outline

	Background
	Browser Settings
	Preferences in Google Chrome
	Secure Preferences in Google Chrome

	JSON
	SHA-256 Hashing
	Browser Extensions
	Native Messaging

	Browser Hijacking
	Examples of Browser Hijacking Software

	Chromium
	Chrome vs Chromium

	Silently Installing Extensions

	Related Work
	Browser Security
	Browser Extensions
	Preferences

	Design
	Secure Preferences
	The Script
	Initialization
	Modification
	Calculation
	Update

	The Extension
	Design Discussion

	Implementation
	Analyzing Chromium
	Exploring the Source Code
	Debugging the Source Code

	Reproducing the HMAC
	Finding the Seed
	Creating the Message
	Calculating HMAC
	Calculating super_mac

	Script Implementation
	Extension Implementation
	Setting up a Native Messaging Host

	Evaluation
	HMAC Calculation
	Discussion

	Implementing Common Hijacking Exploits
	Toggle visibility of the home button
	Set the default homepage
	Add pinned tabs
	Disabling, enabling and removing an extension
	Allowing an extension in incognito mode
	Startup page
	Default search engine

	Discussion
	Possible Exploits
	Toggle visibility of the home button
	Set the default homepage
	Add pinned tabs
	Disabling, enabling and removing an extension
	Allowing an extension in incognito mode
	Startup page
	Default search engine

	HMAC Creation
	Future Work
	Countermeasures
	Ethics and Sustainability

	Conclusion
	Bibliography

