A Study of Concurrent Data Structures

Master of Science Thesis

in the Programme Networks and Distributed Systems

BO LI

Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY
Goteborg, Sweden, May 2013

The Author grants to Chalmers University of Technology and University of
Gothenburg the non-exclusive right to publish the Work electronically and in a
noncommercial purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the
Work does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this
agreement. If the Author has signed a copyright agreement with a third party
regarding the Work, the Author warrants hereby that he/she has obtained any
necessary permission from this third party to let Chalmers University of
Technology and University of Gothenburg store the Work electronically and make
it accessible on the Internet.

A Study of Concurrent Data Structures

Bo Li

©Bo Li, May 2013.

Supervisor & Examiner: Philippas Tsigas
Department of Computer Science and Engineering
Chalmers University of Technology

SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

[Cover:

]

Department of Computer Science and Engineering
Goteborg, Sweden, May 2013

[am very grateful for all the support and advices I have received. This project
could not have been realized were it not for the help and support of a great many
people.

First of all I would express my thanks to Professor Philippas Tsigas and the
Department of Computer Science of Engineering, particularly my project advisor,
Bapi Chatterjee for his guidance throughout the project and his valuable
feedbacks and support.

[would especially like to thank my wife Stella Zhang, who helped me out of many
difficulties in life and provided me with warm encouragement.

Finally 1 would like to dedicate this project to my family who support and
understand me in my overseas study.

II

This Master thesis studies four concurrent data structures but emphasizes on
two concurrent tree data structures, in particular concurrent search trees. We
have studied two concurrent search trees - concurrent AVL tree and concurrent
counting-based tree (CBTree) and two concurrent queues - lock-free concurrent
queue and two-lock concurrent queue. We implemented two variants of
concurrent CBTree as well as the two concurrent queues.

The optimistic concurrency control mechanism used in the concurrent tree data
structures is called hand-over-hand optimistic validation.

We further evaluated the implementations of the data structures coded in Java.
The evaluations we done on an Intel workstation with Linux platform running 24
hardware threads.

Furthermore, the advantages and drawbacks of these data structures are
analyzed. Our study shows that CBTree should be implemented with some
special mechanisms to achieve a better performance. Thus, this thesis achieves to
present important explorations towards better implementation of concurrent
search trees.

Keywords: Concurrent data structure, Concurrent Queue, Concurrent AVL tree,
Optimistic hand-over-hand validation, CBTree, Single adjuster

I

v

ACKNOWLEDGEMENTS ...ttt e 1

ABSTRACT ..ttt ettt b et a e e bt et e st e st bt eb e e b et e st e bt eb et et eneebeebenene 11
CONTENTS ettt ettt ettt b e bbbt e b e bt sbe b v
1. INTRODUCTION. ...ttt ettt sttt ettt ettt et sttt e st e b e e e st besbeeene 1
2. CONCURRENT PROGRAMING........coteiitiiiieietseneceees ettt 5
2.1 SEQUENTIAL AND PARALLEL PROGRAMING.......c.couettiriiiinierenieienenteieniesentereneesesenneneneeneennes 6
2.2 CONCURRENT PROGRAMINGccucutvtateeentieeasaeassesessieessasessessssasssssssssessssssssssssssssssssssssssnces 7
3. CONCURRENT QUEUES ...ttt s 11
3.1 ABA PROBLEM....cociuiiatiaeieiscieiss ettt sttt ssessaeeas 12
3.2 ALGORITHM OF THE LOCK-FREE CONCURRENT QUEUE.........c.cceetnievininieerieieneeneneerenennene 12
3.3 ALGORITHM OF THE TWO-LOCK CONCURRENT QUEUE.......c.covuuiuueirinieieieniaeieieeeneeenene 14
4. CONCURRENT SEARCH TREES.........coo e 17
4.1 ALGORITHMS OF CONCURRENT AVL TREE.......ceutueuiueiieeeimeensseesssesnssessssesessessssesssseens 18
4.2 ALGORITHMS OF THE SEQUENTIAL CBTREE......c.ocecimiiiinieineiiniicrccneenesiee e, 29
4.3 ALGORITHMS OF THE CONCURRENT CBTREE......c.cotuiiuiirimeirimeineseeseeenesieeeeseseeeeeeeneens 33
4.4 SINGLE ADJUSTER.....cuttiteuintetintetetsieitstetentetee bt stese sttt sttt sttt se st et sbe st saebeseebesesbese e 36
5. EXPERIMENTAL EVALUATION. ..ottt sttt 37
5.1 EXPERIMENTAL MACHINE.c.uttiatteteteiateetetststseteestssseseseesssesesesasaesesessssesesasssaesesasaseeseens 38
5.2 IMPLEMENTATIONS OF THE CONCURRENT BINARY SEARCH TREES.......cccvvtriueiiiniiennnes 38
5.3 IMPLEMENTATIONS OF THE CONCURRENT QUEUES......c.veviieiieemiienieeneienceenseenceennees 44
6. CONCLUSION AND FUTURE WORK......c.ooiriiirinineteeseeeteese et 47
BIBLIOGRAPHY ...ttt sttt b et e e st bbb et eneebesbeesenes 51

VI

1. INTRODUCTION

With multicore computers being widely available and unicore computers
disappearing, multithreaded programs are not just an option but the necessity.
When we try to use multithreading in conventional data structure, it essentially
leads us to concurrency among threads and hence the data structures using
multithreading and synchronization among threads become concurrent data
structures.

However, the concurrency makes the algorithm of data structure more complex
and at times less efficient. With multicore processors being norm of the day, even
hand held devices like smart phones being shipped with multicore processors, it
is being increasing necessary to design and improve efficiency of algorithms of
concurrent data structures.

The objective of this master project is to study and implement concurrent data
structures and the comparison of the performance of them in order to indicate
the advantages and drawbacks. Prior to the discussion of data structures, the
basic theory and knowledge of concurrent programing have been studied and
presented in Chapter 2. We have studied concurrent blocking and lock-free
queues and this thesis carries a brief report of that in Chapter 3, with details in
the report of the minor thesis project finished earlier. This thesis emphasizes on
two useful concurrent search trees - (a) concurrent AVL tree [1] and (b)
concurrent CBTree [2].

Concurrent AVL tree [1] is one of the concurrent data structures studied in this
thesis. It uses an Optimistic Concurrency Control (OCC) scheme that uses version
numbers in order to avoid the conflicts among threads that make structural
changes on the tree. In the formation of this tree structure, hand-over-hand
optimistic validation is introduced for correctly searching, and partially external
trees for deleting internal nodes as well. All these schemes are used for managing
concurrency in a relaxed balanced AVL tree (Chapter 4).

Afek’s counting-based Tree, CBTree for short [2], is another tree data structure
studied in this thesis. CBTree is a self-adjusting binary search tree which is
derived from Sleator and Tarjan’s seminal splay tree [3] . Similar to splay tree,
CBTree moves accessed nodes towards the root of the tree, but with different
set of rules for adjusting the structure. It gives a property of “weight” to each
node, which indicates the number of accesses to the node's subtree, and the
rotation of CBTree based on some algorithmic calculations of “weight” values

between several nodes. In addition, CBTree uses the same mechanism as
concurrent AVL tree to manage concurrency. An alternative rule for rotations has
also been described and implemented in this thesis with experiments. The
description of these algorithms is presented in Chapter 4.

In Chapter 5, experimental analysis of both of these two concurrent tree data
structures with operations on random data sets is presented. It shows that under
certain conditions, CBTree outperforms the concurrent AVL tree because it has a
better path length. In addition, the performance and comparison of the
concurrent blocking queue and lock-free queue is presented in this Chapter.

Finally, the conclusion and future work of this thesis is presented in Chapter 6.

2. CONCURRENT PROGRAMING

Moore’s law has been around for almost 50 years, and it has not become invalid
yet. Although a lot of transistors are packed in a chip, their clock speed can not be
increased without overheating [4]. Because of that, multiprocessor and multicore
architectures are developed in order to speed up modern computers. Today’s
computers are able to handle various operations at the same time with effective
performances. With the rising of these technologies, parallelism of hardware and
concurrency of program are developed. Both of them can make threads run
simultaneously though safely, either in physical cores or in logical cores.

2.1 SEQUENTIAL AND PARALLEL PROGRAMING

Process, which is also called a CPU activity [5], is a program’s basic entity that can
be executed in a computer. Moreover, a thread, which is contained inside a
process is the smallest sequence of instructions that operating system can
execute. A program usually contains several processes and a process usually
includes one or more threads. A program in sequential fashion means each of its
processes is with a single thread of control, and these processes are executed one
after another. This kind of program can only perform one task by CPU at a time.
Figure 1 shows that how processes are handled by the time in a sequential
programing fashion.

Process1 Process 2 Process 3

Thread 2

time

—>»(Thread 1 Thread 3| ——

Y

Y

Sequential execution of threads

Processor1

"
—>»(Thread 1 » Thread 34>Ime

Processor 2

time
Thread 4——

\ 4

—> Thread 2

Parallel execution of threads

Figure 1. Sequential and parallel programing fashion

6

Comparing with processes with single thread of control, nowadays almost every
process in computers contains multiple threads, and they share the resources
that the process can access, like the main memory. On a multiprocessor or a
multicore architecture, multiple threads in a process can be executed at the same
time, which is called the parallel execution. This type of architecture allows a CPU
to handle more than one task of a program at a certain point of time. For example,
when a user is browsing a web site, the browser can not only retrieve graphs
from the Internet, but also store the data like cookies of this web site at the same
time. It significantly improves the efficiency of CPU and the performance of the
whole operating system. On the other hand, it also brings the difficulties of
programming on such architectures. Wasting of resources could happen when
there are inefficient codes in the program. The difference between parallel
fashion and sequential fashion of programing are also presented in Figure 1.

2.2 CONCURRENT PROGRAMING

When multiple software threads running at different hardware, threads
(physical/logical) simultaneously try to access same memory location or other
shared resources, it leads to concurrency. However, different from a program
running in parallel way, concurrency in a single processor system is only
“logically” achieved. Single CPU does not really execute multiple threads
simultaneously. It just switches its occupation in different threads of the process
to make it look like they are executed at the same time (Figure 2). While one of
the threads in a process is executing, other threads can be hung up and blocked
to access the shared resources until the current thread finishes. This mechanism
reveals that the pure concurrent programming pattern is achieved by
programing, not hardware. Obviously, running a concurrent program on an
architecture of multicore or multiprocessor that has parallelism in hardware
gives a better efficiency of CPU and also a better performance of the program.

time
—»{Thread 1 » Thread 3 1>
» Thread 2 » Thread 4—t>ime

Figure 2. Concurrent execution of threads

Concurrency leads to the problem of conflict among threads to access shared
resources. This conflict needs to be resolved and hence we need a particular
synchronization scheme. Following are the widely used ones.

In concurrent programing, multiple threads access shared resources. However, it
is impossible that when one thread is using the resource, another thread can also
access it. A general method to prevent such a situation is blocking other threads
when the resource has already been occupied. Mutual exclusion [6] is typically
implemented by means of locks that protect critical sections of codes [7], where
the “critical sections” indicate that threads need to access a shared resource.

Several primitives of synchronization are built based on mutual exclusion, like
semaphore [8] and monitor [9]. In addition, there are various locks techniques,
using which simple lock based concurrent data structures are built. Michael and
Scott [10] presented a two-lock queue algorithm for concurrent enqueue and
dequeue. Bronson et al’s [1] concurrent AVL tree, also blocks other threads
changing the tree structure by using the version numbers mechanism.

When system implements synchronization with blocking, some exceptions might
always be there. Deadlock and livelock (Figure 3) are two typical ones. A
deadlock happens if one thread (T1) tries to access a resource occupied by
another thread (T2), when T2 is also waiting to access another resource that is
held by T1. Both of T1 and T2 only release the resource they are occupying when
they successfully access the objective resource. It makes T1 and T2 getting stuck
so that they can not make any progress. Whereas, a livelock is a mutation of a
deadlock. It makes the threads with regard to each other asking for access to a
shared resource infinitely; however, they are not stuck by each other. Both of the
threads make no progress under such situation. Such failures reduce the
reliabilities of a system.

Thread 1 Thread 2

e

Deadlock: Thread 1 is waiting to access Resource 1, which is
occupied by Thread 2, and Thread 2 is waiting to access
Resource 2, which is occupied by Thread 1. Both the threads
donotrelease the occupied resource until they get the accesses.
None of them make any progresses.

Thread 1 Thread 2

Livelock: both of the threads are asking for the resource but
neither of them can achieve it.

Figure 3. Deadlock and livelock

Designers have to pay attention to these exceptions when they are using blocking
mechanism to develop a program. It is easy to design, and runs usually well. In
that case, non-blocking method is an alternative.

In order to overcome various problems associated with blocking mechanism,
non-blocking techniques are developed. Threads executing a non-blocking
algorithm are allowed to make progress instead of stopping them in order to
simultaneously access the shared resources. Lock-freedom and wait-freedom are
two conditions that guarantee one or more threads to make progress in the
operations.

Lock-free mechanism does not block any thread in its operation. Although
individual thread may starve, lock-freedom pays attention on the global
throughputs. It guarantees at least one non-faulty thread to make progress in a
sufficiently long though finite unit of running time.

Compare-and-swap (CAS) (Figure 4), is a synchronization primitive used in
building lock-free data structures a lot. There are three parameters in CAS: an
address of memory, an expected value and a new value. The expected value is

9

compared with the current value of the address. If they are equal, then the new
value is written to the location [11].

CAS(x, old, new) /*compare-and-swap*/
(if (x == 0/d) {x < new, return (true);}
else return (/z/se);)

Figure 4. CAS primitive.

Trieber [12] represents the stack that is implemented by linked list and the using
of CAS primitive [13]. There is also a lock-free queue based on CAS introduced by
Michael and Scott [10]. This algorithm gives two pointers at the head and the tail
of the queue respectively, and keeps a dummy node in front of the queue. It uses
CAS to update both of the two pointers. Meanwhile, a helping technique [14] is
used for keeping the tail pointer moving to the end of the queue by the remaining
threads, which keeps other threads to make system-wide progress. This
concurrent queue will be discussed in Chapter 3.

Wait-freedom guarantees progress of every non-faulty thread in a finite number
of steps of operations. Consequently, it is difficult to design and implement in
practical. Kogan and Petrank [15] firstly presented a practical wait-free queue by
expanding Michael and Scott’s [10] lock-free queue with CAS primitive. The
discussion of wait-freedom is limited in this thesis project. Follow-up studies
about algorithms of wait-free data structures is possible.

10

3. CONCURRENT QUEUES

11

In this chapter, Michael and Scott’s [10] two kinds of concurrent queue is
presented. One is the lock-free concurrent queue and the other is the two-lock
concurrent queue. The lock-free concurrent queue uses CAS to update its
pointers. In Java, which is the programing language used for implementation in
this thesis, the AtomicReference<v> class can be used to implement the CAS
function. Furthermore, by using the helping technique [14], the queue structure
achieves lock-freedom.

3.1 ABA PROBLEM

A problem called the ABA problem may occur with the CAS primitive [11]. This
problem cannot be detected by CAS and leads a value to be incorrectly written
into a location. The problem is that a value A4 at the expected location is changed
by another thread to Z and then changed back to 4. When the CAS primitive
examines this address it will consider it as equal to the expected value, which is 4,
but be changed twice, and do the update that should not be done. Since Java
language has a garbage collection mechanism, the ABA problem is automatically
fixed. The codes in this thesis do not specifically deal with ABA problem.

3.2 ALGORITHM OF THE LOCK-FREE CONCURRENT QUEUE

The lock-free concurrent queue is basically implemented by singly-linked list.
Two pointers are introduced as “head” and “tail”. The enqueue operation is done
from the tail of the list and the dequeue operation is done from the head of the
list. In order to keep the nodes in the list always being linked when moving the
pointers and safely freeing the removed nodes, this algorithm uses a dummy
node to keep the head pointer always pointing to it, which is the last dequeued
node. The dummy node guarantees either of the head and tail pointers does not
point to NULL. Figure 5 gives the pseudo code of such operations of the lock-free
concurrent queue.

12

1 class LockFreeQueue<E>

2 Node<E> sentinel; //dummy node

3 head = new AtomicReference<Node<E>> (sentinel);
4 tail = new AtomicReference<Node<E>> (sentinel);
5

6 void Enqueue (E elem)

7 newNode = new Node<E> (elem);

8 loop

9 curTail = tail.elem;

10 tailNext = curTail.next;

11 if (curTail == tail.elem)

12 if (tailNext == NULL)

13 if (curTail.next.CAS (tailNext, newNode))
14 tail.CAS (curTail, newNode);
15 return;

16 else

17 tail.CAS (curTail, tailNext);
18

19 E Dequeue ()

20 loop

21 dummy = head.elem;

22 realHead = dummy.next;

23 curTail = tail.elem;

24 if (dummy == head.elem)

25 if (dummy == curTail)

26 if (realHead == NULL)

27 return NULL;

28 tail.CAS (curTail, realHead);
29 else

30 E nodeElem = realHead.elem

31 if (head.CAS (dummy, realHead))
32 return nodeElem;

Figure 5. Enqueue and dequeue of the lock-free concurrent queue

When enqueue a node into the lock-free concurrent queue, two pointers need to
be updated. One is the tail pointer and the other is the next pointer which is
included in the current tail node and pointing to NULL (line 9 - line 10). So two
CAS operations are needed. With this implementation, one thread can know the
status of the queue, and also can help another thread to finish updating this
queue. The current thread firstly checks the consistence of the tail pointer (line
11). If the tail pointer is not moved, the next pointer of the tail node may not be

13

NULL because the other thread has accessed the queue and linked a new node to
the tail of this queue, but has not updated tail pointer yet. That indicates that
thread is running between the line 13 and line 14. In this case, the current thread
directly jumps to the line 17 in order to help the other thread to finish the
pointer-moving step, and then starts over the loop. Otherwise, it enqueues a new
node and updates the pointers with CAS (line 13 - line 14).

When dequeue happens, the current thread first checks the consistence of the
dummy, realHead and curTail (line 24). The checking of line 25 divides into
two situations. One is that the queue is empty, which is verified by line 26. If line
26 returns false, that means the queue is not empty and another thread has
already done a successful insertion but the tail pointer has not updated yet. In
that case, the current thread helps to move the tail pointer to the right location
(line 28). In other situations, the current thread uses CAS to update the pointers
and dequeues the appropriate node (line 30 - line 32).

3.3 ALGORITHM OF THE TWO-LOCK CONCURRENT QUEUE

The two-lock concurrent queue also uses a dummy node to protect the head and
tail pointers of the queue. Instead of using CAS primitive to atomically update the
pointers, the queue gives two locks on the critical sections, where some
operations execute on the head and tail pointers. After one thread has acquired
the access permission to a critical section, other threads are blocked until the
accessed thread finishes its execution and the lock is released.

33 class TwoLockQueue<E>

34 Node<E> sentinel; //dummy node
35 head = new Node<E> (sentinel);
36 tail = new Node<E> (sentinel);
37

38 void Enqueue (E elem)

39 newNode = new Node<E> (elem);
40 newNode.next = NULL;

41 lock

42 tail.next = newNode;

43 tail = newNode;

44 unlock

45

46 E Dequeue ()

47 lock

48 curHead = head;

14

49 newHead = curHead.next;

50 if (newHead = NULL)
51 return NULL;

52 item = newHead.elem;
53 head = newHead;

54 unlock

55 return item;

Figure 6. Enqueue and dequeue of the concurrent two-lock queue

Figure 6 shows the pseudo code of the concurrent two-lock queue. Same as the
lock-free concurrent queue, the two-lock concurrent queue set a dummy node at
the head of the queue to where the head pointer always points. The dummy node
avoids the situation that the head and tail pointer point to NULL after executions
of enqueue and dequeue. The two locks are set at line 41 and line 47 respectively.
The codes lead the updating of the head and tail pointers are considered as the
critical sections, which need the protection by locks.

15

16

4. CONCURRENT SEARCH TREES

17

In this chapter, concurrent AVL tree [1] is presented first. It introduces version
numbers and a hand-over-hand optimistic validation to achieve mutual exclusion
when different threads intend to rebalance the tree after insertions or deletions.
Then CBTree [2] is introduced, which is implemented by also using the same
mechanism as in [1] to achieve concurrency, and also implemented with a
different approach of restructuring the tree.

4.1 ALGORITHMS OF CONCURRENT AVL TREE

An AVL tree (Figure 7) is a balanced binary search tree, which minimizes its
height by rotations when the heights of a node’s left and right subtree differ by
more than one. Such a property of an AVL tree is called “self-balancing’. The
concurrent version of it aims to make multiple threads be able to concurrently
access a particular subtree of the tree in order to do some changes.

(a) An AVL tree (b) An example ofinsertion (c) After self-balancing

Figure 7. An example of AVL tree

18

A concurrent AVL tree stores contents in nodes, which is same as a normal AVL
tree and an additional version number. The structure of the node of the tree is
presented in Figure 8. It shows that each node contains the contents as a generic
type “key” and “value” variations. Since this algorithm uses map object to build
the node structure, “key” and “value” have been combined as an association that
a specific content of “value” can be identified with the “key’. Moreover, this
structure includes the height of the node itself, and the links of its parent, left and
right subtree.

56 Node<K, V> {

57 int height;

58 long ver;

59 K key;

60 V value;

61 Node<K, V> par;

62 Node<K, V> leftC;
63 Node<K,V> rightC;
64

65 }

Figure 8. The structure of class Node [1]

The mechanism of version numbers (Figure 9) is the key to achieve mutual
exclusion in the algorithm. Each of these version numbers represents a status of
the node that is inquired for an access. When changes like insertions or deletions
need to be done in the tree, the algorithm checks the version numbers stored in
the current node, to see if it has been changed. If the version numbers are not the
same before and after the change, the changes are considered to be invalid, then
the inquiring of the access must start over; otherwise the trying of access is
permitted and changes will be validated. Such mechanism only allows one thread
to do a validated changing at a time and other threads are blocked until the last
operation is validated.

19

66 Unlinked = 1L;

67 Growing = 2L;

68 GrowShift = 3;

69 GrowMask = OxfflL << 3;

70 Shrinking = 4L;

71 ShrinkCountShift = 1L << 11;

72 Ignores = ~(Growing | GrowMask) ;

Figure 9. Version numbers [1]

Searching is a basic operation of a tree data structure. In order to achieve
concurrency, during a search operation the concurrent AVL tree uses
hand-over-hand locking to lock the critical sections of the structure.

Hand-over-hand locking aims to decrease the duration of waiting nodes to
release locks. Nodes on the searching path release locks as soon as the
correctness of the search is not affected by rotations. In this thesis, version
numbers are used to achieve this locking mechanism.

A searching in a concurrent AVL tree is almost the same as it is in a normal
binary search tree, except that the contention of multiple threads must be
additionally considered. When a searching starts in a concurrent AVL tree, the
difference is merely that it begins at a special node called root holder. The root
holder is a node that links the actual root of the tree as the right child of itself,
and without the part of key or value. The version number of the root holder is
always zero. The root holder is not affected by any changes in the tree.
Consequently, it significantly simplifies the implementation of the concurrent
AVL tree.

Moreover, in a concurrent AVL tree, before a searching choose the left or right
subtree to go, it must check the nodes’ status. The node that has already been
accessed need to be checked first, and then follows the next node along the
searching path. If anyone of these checks breaks the synchronization, the
searching retries from the node that has been accessed until the restructuring of
the tree is finished. This scheme asks the searching in the tree to validate its
condition before every access of the next node to avoid contentions. The pseudo
code of the searching implementation is showed in Figure 10.

20

73 //search in concurrent AVL tree

74

75 search (K key) {

76 return trySearch (key, rtHolder, 1, 0);
77 }

78

79 trySearch (

80 K key, Node n, int path, long curV) ({
81 while (true) {

82 ch = n.child(path);

83 if (((n.ver®curV) & Ignores) != 0)
84 return RETRY;

85 if (ch == NULL)

86 return NULL;

87 nextPath = key.compareTo (ch.key);
88 if (nextPath == 0)

89 return ch.value;

90 chVer = ch.ver;

91 if ((chVer & Shrinking) != 0) {

92 waitUntilNotChanging(ch) ;

93 } else if (chVer != Unlinked &&

94 ch == n.child(path)) {
95 if (((n.ver”curV) & Ignores) != 0)
96 return RETRY;

97 g = trySearch(key, ch, nextPath, chVer);
98 if (g != RETRY)

99 return q;

100 } } }

Figure 10. The searching method of concurrent AVL tree [1]

At the line 75, the searching begins with a given key. Line 76 shows the searching
is implemented by the method trySearch and starts at the root holder. In line
83, Ignores indicates that the changes that grow the node and its subtrees
should be ignored. In that case, with a rotation to balance the subtree of a certain
node, the subtree is grown by means of the height values of all the nodes in the
subtree added by one. Meanwhile, a shrink happens on the grown subtree’s
parent and its children by the height values of them are all decreased. Such
situation points out that the searching would be still valid with a grown node,
and invalid with a shrunk node as well as their subtrees. Because the path that
leads to an expected node is not misdirected from a grown node, but leads to an
unsuccessful searching from a shrunk node (Figure 11). As a result, if there is a
shrink of node detected in line 83, the searching retries. As well, from line 90 to
line 96, if the status of the next node on the path detected as shrinking, the
thread waits until the changing is finished. Or if the node is temporarily unlinked,
which is discussed later, the searching also retries from the beginning of the loop.

21

After all of these validations, the searching can access to the next node in order to
recursively invoke the trySearch method to return the value of the target node
(line 89), or return NULL in the case of no such node with the given key in the
tree (line 86).

Leads to the path
to find

Grown node, searching is
not misdirected

Leads to the path

to find @ @

Shrunknode@is

_ nolongerfound from it

Figure 11. An example of the grown node and the shrunk node

An AVL tree inserts a new node by comparing the value of the key stored in the
node with other nodes to locate the new node. According to the comparison, the
insertion algorithm decides the path to go down along the tree structure to
continue the insertion until the new node is linked as a leaf or an update of value
occurred in a node. Deriving from this algorithm, an insertion in a concurrent
AVL tree follows the rules of insertion in basic binary search trees but uses
hand-over-hand optimistic validation and locks to guarantee concurrently
operations.

101 insert (K key, V value) {

102 return tryInsert (key, value, rtHolder, 1, 0);

103 }

104

105 tryInsert (

106 K key, V value, Node n, int path, long curV) {
107 g = RETRY;

108 do {

109 ch = n.child(path)

110 if (((n.ver”curV) & Ignores) != 0)

111 return RETRY;

112 if (ch == NULL) {

113 g = doInsert (key, value, n, path, curV);
114 } else {

115 nextPath = key.compareTo (ch.key);

22

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

if (nextPath == 0) {
g = doUpdate(ch, wvalue);
} else {
long chvVer = ch.ver;
if ((chver & Shrinking) != 0) {
waitUntilNotChanging (ch) ;
} else if (chVer != Unlinked &&
ch == n.child(path)) {
if (((n.ver”curVer) & Ignores) !=0)

return RETRY;
g=trylnsert (key, value, ch, nextPath, chVer):;
} bl
} while (g == RETRY);
return g;
}
doInsert (
K key, V value, Node n, int path, long curV) {
synchronized (n) {
if (((n.ver®curV) & Ignores) != 0 ||
n.child(path) != NULL)
return RETRY;
n.setNewCh (path, new Node (
1, 0, key, value, n, NULL, NULL));
}
fixHeightAndRebalance (n) ;
return NULL;
}
doUpdate (Node n, V value) {
synchronized (n) {
if (n.ver == Unlinked) return RETRY;
preValue = n.value;
n.value = value;

return preValue;

Figure 12. The insertion method of concurrent AVL tree [1]

Figure 12 shows the implementation of insertion. As the procedure of search, it
begins at the root holder (line 102) in order to keep an unaffected parent of the
root in the tree. Before accessing in every node, it checks the status of each node.
If the node is shrunk or in the process of restructuring, the current insertion
process retries (line 105 - line 125) until it arrives at the exact position where the
insertion should be done (line 113). It is either a node that has already been in
the tree and only needed to update its value stored in itself, or a leaf of the tree
that must be the inserted node’s parent.

23

The doInsert method from line 131 to line 142 presents the process to insert a
new node into the tree. Because the algorithm involves concurrent operations of
multiple threads, it is highly possible that there are other threads attempting to
insert a new node with the same key at the time as the current thread. To prevent
such conflicts, an insertion acquires a lock on the future parent of the new leaf
(line 133). Meanwhile, to guarantee that no harmful structural changes occur
when an insertion is about to be done, which can lead the new node to be at a
wrong position, a validation as in search method is used (line 134 - line 136). In
contrast, if an insertion happens when the node with the given key has already
showed in the tree, the only thing to do by the insertion is to update the value of
the node with the given key. Since it does not bring a structural change, the
algorithm only acquires a lock to prevent a simultaneous update by other threads
at this node, and does not perform any validations (line 143 - line 148).

AVL tree is a self-balancing tree that is able to adjust the height in order to
rebalance itself. It usually happens after a successful insertion or deletion of node
in the tree. The concurrent AVL tree calls a fixHeightAndRebalance method
(line 140) to recompute the height of each node and to decide how to rotate. This
method is discussed latter.

Deletion is algorithmically more complex than other operations in a binary
search tree. If a node, which is intended to be deleted, is a leaf or only has one
child, it is directly unlinked from the tree and then its child is linked to its parent
if any. If a node has two children, it is called an internal node. Firstly, a node with
the smallest key in the right subtree of the deleted node should be found as an
alternative node. Then the key-value association stored in the alternative node
are copied and moved into the deleted node in order to replace the original
key-value association stored in this node. Finally, the alternative node must be
unlinked from the original position and its children should be linked to its parent.
Since the deletion algorithm of a binary search tree changes the positions of
nodes along the path that is possibly followed by a search executed by another
thread, a concurrent binary search tree must obtain the lock mechanism to
guarantee atomic synchronizations. However, such excessive locking impacts the
performance and scalability [1]. Bronson et al. presented a partially external
trees based on previous research [17] to compensate for the drawback of the
locking scheme.

24

delete delete@ @

Internal node \ Routing node @

@) G{\Q

Figure 13. An example of a routing node in a partially external tree

Figure 13 gives the perspective of partially external trees. When an internal node
is needed to be deleted, it only deletes the “value” field of the key-value
association by setting it to NULL, and keeps the “key” field. If a subsequent
searching heads to this deleted node, the searching can be routed by the
comparison between the reserved key and the target’s key. In this scenario, the
deleted node is called a routing node as it can route a searching in the path.
Moreover, if a subsequent operation makes the routing node an uninternal node,
the routing node needs to be unlinked directly by the hand-over-hand optimistic
validation.

A node with one child or no children is deleted directly, where “delete” means
unlinking the node from the tree and linking its child (if there is one) to its parent.
It is same with how the deletion is done in a normal binary search tree. This
process is showed in Figure 14. Likewise, in order to achieve concurrency, the
operation of deletion follows the same pattern as the insertion. What makes the
differences is that in line 113 of Figure 12 where tryDelete returns NULL, and
inline 117, the tryDelete calls the method deleteNode.

151 delete (K key) {

152 return tryDelete(key, rtHolder, 1, 0);

153 }

154 ... // tryDelete here is similar to tryInsert in Figure 12
155 boolean unlinkOrNot (Node node) {

156 return node.leftC == NULL || node.rightC == NULL;

157 }

158 deleteNode (Node p, Node node) {

159 if (node.value == NULL) return NULL;

160

16l if (!'unlinkOrNot (node)) {

162 synchronized (node) {

163 if (node.ver == Unlinked || unnlinkOrNot (node))
164 return RETRY;

165 preValue = node.value;

166 node.value = NULL;

167 }

168 } else {

25

169 synchronized (p) {

170 if (p.ver == Unlinked || node.parent != p
171 | | node.ver == Unlinked)

172 return RETRY;

173 synchronized (node) {

174 preValue = node.value;

175 node.value = NULL;

176 if (unlinkOrNot (node)) {

177 t =node.leftC ==NULL ? node.rightC : node.leftC;
178 if (p.leftC == node)

179 p.leftC = t;

180 else

181 p.rightC = t;

182 if (t != NULL) t.par = p;

183 node.ver = Unlinked;

184 } } }

185 fixHeightAndRebalance (p) ;

186 }

187 return preValue;

188 }

Figure 14. The deletion method of Bronson et al.s tree [1]

The deleteNode method performs in order to create partially external tree and
directly unlink non-internal nodes. It acquires a lock after it checks the node
whether it is an internal node or not. By implementing OCC, the version number
of the target node is checked before a further operation, either converting it into
a routing node or unlinking it. If the unlinking is not possible, the removal retries.
Meanwhile, it also checks if the node is still internal or not after the lock has been
held in case of other threads restructuring the tree at the same time. At last,
fixHeightAndRebalance method is called to rebalance the tree after an
unlinking, which alters the height of the subtree.

26

After the insertions and deletions, the fixHeightAndRebalance method is
called for recomputing the height value of each node and adjusting the structure
of the concurrent binary search tree by rotations. Meanwhile, this method also
unlinks routing nodes that have less than two children. By checking the condition
of the accessed node, this method updates the height field in each related node
and decides which kind of rotation will be done by verifying that if the balance
factor is smaller than -1 or bigger than 1.

189 fixHeightAndRebalance (Node<K,V> n) {

190 while(n != NULL && n.par != NULL) {

191 status = nStatus(n);

192 if (status == NothingRequired || isUnlinked(n)) {
193 return;

194 }

195 if (status != UnlinkRequired &&

196 status != RebalanceRequired) {
197 synchronized (n) {

198 n = fixHeight (n);

199 }

200 } else {

201 Node<K, V> pa = n.parent;

202 synchronized (pa) {

203 if(!isUnlinked(pa) &&

204 n.par == pa) {

205 synchronized (n) {

206 n = rebalance(pa,n);
207 } } } } } }

Figure 15. The method of fixHeightAndRebalance [1]

Figure 15 shows the code of this method. It indicates that before it proceeds to
recompute or adjust the height, it locks the relevant nodes. In order to prevent
the damage of the links between each node, locks are required both at the
current node and at its parent when there is either a single rotation or double
rotations. The fixHeight method aims to update the height value of each node
after operations. The rebalance is used to decide which kind of rotations should
be done here. Similarly, before implementing both of these methods, the status of
the current node is checked by inspecting its version numbers (line 192, line 195
-196).

The codes about rotations are omitted since the algorithms are similar to the

27

rotations of an AVL tree. Except that they have to lock the nodes that might be
rotated and update the version numbers of the growing and shrinking nodes. The
algorithms of rotations also involve the OCC to retry in a recursive loop if there
are any concurrent updates happen simultaneously.

28

4.2 ALGORITHMS OF THE SEQUENTIAL CBTREE

CBTree is another self-adjusting binary search tree, which is derived from the
splay tree. This section describes details of the algorithm of the sequential
CBTree and its concurrent implementation.

The splay tree [3], which is developed by Sleator and Tarjan, is also a
self-adjusting binary search tree. It moves the accessed node towards the root by
rotations, which is called splaying. The way of rotations is based on the positions
of the involved nodes: the currently accessed node, its parent and its grandparent.
The three types of rotations are presented in Figure 16.

(30) ©
TN

(a) Zig-zig
X

T1 T2 T3 T4

(b) Zig-zag

(c) Zig

Figure 16. Three types of splaying. xis the accessed node.

29

If a node is accessed by operations like insertion, deletion or searching, the
structure of the splay tree is transformed. Unlike an AVL tree, a splay tree does
not balance itself by comparing the height of each subtree of a node in order to
keep the overall running time Of/og,/V). In the worst case of a splay tree, the
nodes are only accessed linearly. That leads to the overall running time of this
tree O(/NV). However, to a binary search tree, the running time of O//V) is not very
bad only if such an operation happens quite infrequently [18]. Considering the
situation that if there are 100 operations running in a certain data structure, only
5 operations are with the running time of /) and the running time of other 95
operations is Oflog,/N), the overall performance of the structure is considered
relatively satisfactory. In such cases, an analysis of the amortized running time of
a data structure or an algorithm is performed [19]. It aims to consider the whole
sequence of operations and establishes average performance of the entire
algorithm.

With amortized analysis, a splay tree has an amortized run time of Of70g,/N) [3].
The particular property of the splay tree is that it moves the recently accessed
node towards the root, which means if a node is accessed very frequently, its
position in the tree is near the root. Such situation is very common in practical
applications. It is highly possible that an item is searched and used again and
again in a period of time. According to this special property, splay trees provide a
better performance in such kind of applications.

The CBTree is a kind of splay tree. The term CBTree is the abbreviation of
counting-based tree. It is invented to achieve a good scalability in concurrency.
According to that, the ways of rotations in the CBTree are altered. The CBTree
only does semi-splaying, which is only parts of the algorithm of rotations in a
splay tree. Figure 17 shows the details of the semi-splaying. The CBTree
examines the current node’s relative positions and the position of its child and
grandchild to decide which type of rotations should be performed. It is similar to
the AVL tree. Unlikely, the CBTree maintains a weight field in each node to
present the number of accesses in its subtrees. This field is divided into three
parts: leftWejght and rightWejght that are used to store the number of accesses in
either subtree respectively, and se/fWejght is the current node’s number of
accesses. The CBTree does a semi splaying by computing the weight values of the
current node and the grandchild along the path to the destination.

30

(a) Single rotation

(b) Double rotation

Figure 17. Semi-splaying. x is the current node. The case when X's parent is the
right child is symmetric.

Let W{v)be the total weight of the current nodes in the subtree rooted at node v
Then Wyv) = vselfWeijght + viefiWeight + v.rightWejght. Sleator and Tarjan
proposed a potential function [3] to analyze the amortized complexity of splaying.
It is also used for analyzing the CBTree. Let 7/v) = log, W{v) be the rank of v. The
potential of a CBTree is @ = X 7/v/ over all nodes vin the tree. Afek et al. [2] gave a
bound for the potential change caused by a rotation, which is represented by an
inequality: 2 # A® = Z(r(z) - r{x)). In this inequality, A® indicates the difference
of the potential of the CBTree before and after a semi-splay. Node zis the current
node and node xis the grandchild of zon the path.

Sleator and Tarjan defined the amortized time & of an operation by a = ¢ + A®,
where ¢ is the actual time of the operation [3]. To make the CBTree efficient, the
amortized time should be decreased after a rotation. Derived from the inequality,
we can get:

2+0AD = 2(r(z) - r(x))
— AD =2(r(z)-r(x)-1)
— rz)-rlx) =1
- log:(W(z)yW(x)) = 1
- WWwk) =2

31

As the Figure 17 presents, a rotation occurs when W(z)/W{(x) < a, while a is a
constant less than 2.

The operations of searching, insertion and deletion in a sequential CBTree are
almost the same as they are in an AVL tree. The difference is when and how to do
the rotations. Assume the current accessed node is z with its child y and
grandchild x as Figure 16 shows, when a searching runs, it follows the path from
the root to the desired item. The searching maintains z and checks the value of
W{z)/W{x) in order to decide whether to perform a rotation. The position of x
decides whether a single rotation or a double rotation should be done. If the
value of Wy(z)/W{x) is less than «, a rotation occurs, and the current node will be
replaced by y or x, which depends on what kind of rotation it does. Otherwise, if
the value of W(z)/W{x) is equal to or bigger than 2, which is out of &'s range, no
rotations would happen and the current node z skips to x. That means the
searching does not check the rule of rotations and hence does not perform any
restructuring at y. After the searching ends on the desired item v, the algorithm
increases W/v) and the weights of all the nodes along the path from the v to the
root by 1.

Before an insertion and deletion in a sequential CBTree, the algorithm firstly
searches for the objective item by doing rotations in the tree. After the searching
finishes, the weight of each node along the searching path is increased, and then
the desired insertion or deletion is performed. An insertion inserts a new item
into the CBTree if the searching returns NULL, or updates the value of a certain
item if the item is successfully found by the searching operation. A deletion
happens if the searching finds the item that is about to be removed. Like a
deletion happens in an optimistic concurrent binary search tree, which has been
mentioned before, if the item has two children, which means it is an internal
node, it is marked as a routing node and only logically deleted. The value field of
this node is set as NULL. When any restructuring leads to the routing node only
has a single child or no children, this node is unlinked by the hand-over-hand
optimistic validation scheme.

32

4.3 ALGORITHMS OF THE CONCURRENT CBTREE

The concurrent CBTree is a concurrent implementation of the sequential CBTree
using Bronson et al’s hand-over-hand optimistic validation mechanism. Version
numbers are used to handle certain operations in critical sections. Differently, the
implementation must decide wether to skip a node when there is no rotation.
The most importantly, the weight value of each node must be updated after a
successful operation or restructuring.

The searching in a concurrent CBTree is implemented almost the same as the
searching in concurrent AVL tree. It recursively looks up the desired node with
the hand-over-hand optimistic validation. Moreover, the tryGet method adds a
skip parameter that is initially set to be TRUE to indicate that if no rotations
needed then skip the child of the current node along the searching path (Figure
18). In this method, the current accessed node is z and the trySemiSpl (Figure
19) method in line 221 checks wether the rule of rotations is satisfied. If there is
a rotation, the structure of the three involved nodes is changed and the algorithm
returns RETRY in order to replace z by the current node after the restructure.
Otherwise, if no rotation happens, the recursive method in line 231 reverses the
skip parameter. According to that, in the next recursive method’s process, the
trySemiSpl method will not be implemented and the algorithm will directly
jump to another recursive method. Line 217 - 218 shows that if y, which is the
child of current node, is the found node, its weight is updated. On the other hand,
the codes of line 232 - 239 describe how to increase the weight after the
recursive method has returned. Figure 19 gives the implementation of the
method trySemiSpl. It runs to check the rule of rotations in the concurrent
CBTree and decides which kind of rotations to do. Obviously, it also adjusts the
weight value of each node after a restructuring.

33

208 tryGet (k, z, path, curv , SKIP) {

209 while (true) {

210 y = z.child(path);

211 if (y == NULL) {

212 if (node.ver != curV)

213 return RETRY;

214 return NULL; // no such node
215 }

216 nextPath = compare (k, y.key)
217 if (nextPath == E) {

218 y.selfNum++;

219 return y.value;

220 }

221 if (!SKIP and trySemiSpl(z, y, nextpath))
222 // validations

223 return RETRY;

224 yVer = y.ver;

225 if (yVer is changing)

226 waitUntilNotChanging (y) ;
227 else if (y == z.child(path)

228 and y is not unlinked) {
229 if (z.ver != curV)

230 return RETRY;

231 g = tryGet (k,y,nextPath, yVer, ! SKIP);
232 if (g != RETRY) {

233 if (g != NULL) {

234 if (nextPath == L)
235 z.leftNum++;

236 else

237 z . rightNum++;

238 }

239 return qg;

240 }

241 } } }

Figure 18. The tryGet method of CBTree [2]

34

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286

trySemiSpl (z, y, nextPath) {

rotate = NONE;

if (z.leftC == y) {
if (nextPath == L) {
x = y.leftC;
if (x != NULL &s& AD (z,x) < a)

rotate = SINGLE;
}

else 1f (nextPath == R) {
x = y.rightC;
if (x !'= NULL &s& AD (z,x) < o)

rotate = DOUBLE;
}
if (rotate == NONE)
return false;
gr = z.par;
synchronized (gr) {

if (gr.leftC == z || gr.rightC == z) {
synchronized (z) {
if (z.leftC == y) {
synchronized (y) {
if (rotate == SINGLE) {

singleRight (gr, z, y, y.rightC);
z.leftNum = y.rightNum;
y.rightNum += z.selfNum + z.rightNum;
} else {
Node x = y.rightC;
if (x != NULL) {
synchronized (x) {
doubleRightThenLeft (grand,
Z,Y,%);
z.leftNum = x.rightNum;
y.rightNum = x.leftNum;
x.rightNum += z.selfNum +
z.rightNum;
x.leftNum += y.selfNum +
y.leftNum;
} } }

return true;

return false;

Figure 19. The trysemiSpl method of the CBTree. It shows when y is a left child;
the right child case is symmetric. It gives the process of the rotation in this case,
which is the same with the process of concurrent AVL tree’s implementation [2].

35

The implementation of the concurrent CBTree’s insertion and deletion follows
the algorithm of the concurrent binary search tree. They both do a searching in
the tree first. If there is no such a node in the tree, it inserts a new node into the
tree; otherwise it updates the value of this node. The deletion procedure
transforms the found node into a routing node in order to build a partially
external tree. After the hand-over-hand optimistic validation in a recursive
method has made the node a single-child node or a leaf, this node is directly
unlinked. In the concurrent CBTree, the algorithm of insertion and deletion
increases the weight value of each node after every successful operation. The
alternative rule of rotation and the skip mechanism have been showed earlier
and used in the insertion and deletion’s navigation part.

4.4 SINGLE ADJUSTER

The CBTree maintains a weight counter in each node. In the process of traversals
or after a successful operation in the tree, the counters have to be updated and
synchronized. Such updates occur in the private cache of some multicore
processors of Intel architectures, which means the core must acquire exclusive
ownership of the cache line. Therefore, when all of the cores of the processor
update the same counters of some nodes, each core has to wait for other cores in
order to acquire the cache line. It degrades the scalability and loses the
performance of the concurrent CBTree.

In order to bypass this limitation, an optimization mechanism, which is called a
single adjuster, is implemented. When multiple threads are running, one of the
threads is set as a dedicated thread. This special thread periodically alters
between doing operations with restructuring the tree and without restructuring.
All other threads only do the read-only operations, which means an item is
searched, inserted or deleted without rotations and updates of the weight
counters. Since rotations in a concurrent CBTree is rare in this mechanism [2], all
other threads’ operations benefit from the single adjuster’s restructuring. In the
chapter 5, the advantages of using such mechanism is showed. Under certain
configurations, the searching path length of the concurrent CBTree is shortened
with the scalability of the tree and so it is optimized as well.

36

5. EXPERIMENTAL EVALUATION

37

The performance of the concurrent AVL tree and the concurrent CBTree is
compared and analyzed in this chapter. We greatly acknowledge the use of the
source code available at [23] as a part of our own implementation. Moreover, the
performance of the concurrent lock-free queue and the two-lock queue is
presented.

5.1 EXPERIMENTAL MACHINE

All of the experiments are run on a work station with two Intel Xeon E5645
(Nehalem) processors. Each processor has six cores running at 2.4GHz. Each core
runs two SMT threads. This makes 24 hardware threads available on the machine.
The machine has 24 GB main memory. It runs on Ubuntu Linux 12.04.

The Intel Nehalem architecture maintains a three-level cache. Each core of the
processor has a two-level private write-back cache and the last level shared
cache. As it has been mentioned in section 4.4, the single adjuster mechanism is
used for implementing the concurrent CBTree to reduce the impact of updating
counters on such architecture. The performance of the CBTree that uses the
single adjuster scheme is compared with the CBTree without the single adjuster
in this chapter, which shows a significant difference between these two
implementations.

5.2 IMPLEMENTATIONS OF THE CONCURRENT
BINARY SEARCH TREES

Three algorithms of tree structures are evaluated in this section. One is the
concurrent CBTree without the single adjuster mechanism, which is referred to
as Cbt in the following sections. By comparing the performance of it with a
concurrent CBTree that uses the single adjuster, the impact of implementing
concurrent CBTree with weight counter on the Intel Xeon architecture is
analyzed. The other algorithm is the concurrent CBTree with single adjuster

38

mechanism, it is referred to as CbtOneAdjuster. The third algorithm for
evaluation is Bronson et al’s concurrent AVL tree, which is referred to as Opt in
the following sections.

In order to reduce the impact of other operations, the experiments only run
“searching” operation in these tree structures. It makes few restructuring and
clearly shows the superiorities of using concurrent CBTree in certain
circumstances. According to Afek et al’s paper of the CBTree [2], the single
adjuster mechanism is implemented as: the dedicated thread running this
mechanism does the searching operations with restructuring for 1 millisecond,
and then alters to do searching operations without restructuring for 20
milliseconds. This thread keeps altering its implementation between such two
patterns until it finishes its running. All other threads only do read-only
searching operations. Every thread repeatedly searches a set of items for 1000
times. Moreover, for initialization, each implementation begins with a maximum
balanced complete binary search tree. To achieve that, we set the median item as
the root of the tree, and the first quartile as the root’s left child and the third
quartile as the root’s right child and so on [2].

In the experiments, 1 million sequential numbers are initially inserted in these
tree structures as the node’s keys for searching. Searching operations are run in
different sections of height and are also run with different range of random
numbers. So through the results of such experiments, performances of different
structures can be evaluated to describe the advantages or drawbacks of each
algorithm, as a direction to improve them in the future.

Since the CBTree is based on the principle of splay tree, it aims to move
frequently accessed nodes towards the root. The aim is to make the searching
faster because the path length of the frequently searched node is decreased by
splaying. This experiment searches nodes in three different sections of height in
each tree structure. They are in the domain of the first, second and third
trisection of the height of the trees, which indicates that the testing nodes
distribute in the deepest part, the middle part and the highest part of each tree.

Since the number of nodes in each initialized tree is 1000000, the height of each
tree structure is /0g,(1000000) + 1 = 19. The searching operations are
implemented in the section of height 0 to 6, 7 to 13 and 14 to 19 respectively.
Figure 20 describes the performance (operations per milliseconds) of each tree
in each section of height.

39

Height: 0-6
80000
70000 /’
2 60000)¢
M~
£.50000 ///
2 40000 / —#=0pt
< .
5 30000 / ==CbtOneAdjuster
(=]
& 20000 =Z/==Concurrent Cbt
10000
0 T T T T T 1
1 2 4 8 16 24
Number of Threads
Height: 7-13
80000
70000
"2 60000
o
= 50000
£ 40000 —#=0pt
= .
£ 30000 / ={=CbtOneAdjuster
[=]
et
& 20000 =f/==Concurrent Cbt
10000
0 T T T T T 1
1 2 4 8 16 24
Number of Threads
Height: 14-19
180000
160000 /—
w 140000
g M
= 120000
[=H
2 80000
=
e l/ =i~CbtOneAdjuster
5 60000 //
£ 40000 /., =i==Concurrent Cbt
20000 J
0 T - T T T T 1
1 2 4 8 16 24
Number of Threads

Figure 20. Results of experimenting with searching in different heights

40

In each section of height, Cbt gives similar performance. When multiple threads
search items in Cbt at the same time, the tree is restructuring frequently. The
performance is much reduced by the restructuring of the tree. Moreover, the
main drawback of this implementation is the limitation of the processor’s
architecture. As it is mentioned in section 4.4 and 5.1, the Intel Xeon E5645
processor updates the counter serially and that leads to the poor scalability of
the concurrent CBTree. Although Cbt has a better searching path length than Opt,
Opt performs much better than Cbt since it does the read-only searching without
any restructuring and its implementation is not impacted by the processor’s
architecture.

With the increase in the height, Opt’'s performance has been improving. Because
the path length is shorter when the search node is higher. However, comparing
with splay trees, Opt has poor scalability of structure when it is doing read-only
searching. Without any restructuring, when the search nodes are in the very deep
locations, Opt takes a long path to get them, even if these nodes are searched
frequently. According to that, from the Figure 20, in the section of height 0 to 6,
Opt performs worse than CbtOneAdjuster. In the section of height 7 to 13, Opt
performs very close to CbtOneAdjuster, and in the section of height 14 to 19,
Opt's performance overpasses CbtOneAdjuster. When the search nodes locate
in a high position, the reduced path length by implementing CbtOneAdjuster is
small. It makes the improvement in scalability of CbtOneAdjuster not so obvious.
On the other hand, CbtOneAdjuster also takes time for restructuring. So the
read-only searching implemented by Opt in high positions of the tree gives a
better performance.

By using the single adjuster mechanism in CBTree, CbtOneAdjuster gives the
best performance when the search nodes are in the very deep positions. It moves
the frequently searched nodes to the root in order to reduce the path length,
which could be very long according to how deep the searched nodes locate.
Consequently, the searching time is shorter after the nodes have been searched
several times. Even in the middle trisection of the tree, CbtOneAdjuster also
performs very similar to Opt. Furthermore, comparing to Cbt, the advantage of
implementing the single adjuster mechanism is distinct, since the mechanism
decreases the impact of restructuring as far as possible.

According to the algorithm of the CBTree, if a node is frequently searched, it
should be moved towards the root. In order to complete this process, the tree is
restructured by several rotations. In the implementation of concurrent CBTree,

41

when multiple searching operations are running in the CBTree, it possibly
happens that the height of one searching node A4 is increased, and the height of
the other searching node 5, which is 4’s sibling, is decreased at the same time. It
drops the advantages brought by the splaying of the CBTree, since the path length
of the searching nodes may not be shortened a lot. Figure 21 shows an example
of such situation.

(a) (b) (9

Figure 21. (a) The current node is x. (b) The current node is x’ (c) The height of
node 35 is lower than before and its searching path is longer.

When the search nodes are distributed in a large range, such affections by
restructuring are aggravated. The path length of a search node may be increased
several times by the splaying implementation of another subtree. Even if its own
splaying shortens its path to the root, the average performance will still be
degraded with such affection brought by concurrently splaying.

42

Range: 1000

70000 /’
50000 ////

z 40000 / —=0pt
'Eﬂ 30000 =~ CbtOneAdjuster

(=]
£ 20000 =i=Concurrent Cbt

1 2 4 8 16 24
Number of Threads

Range: 10000

60000

50000 /
40000 /
==0pt

30000

=f=CbtOneAdjuster

20000
/ =i==Concurrent Cbt
o Wa

1 2 4 8 16 24
Number of Threads

Throughput (ops/ms)

Range: 100000

45000

40000
& 35000
g

=]

— 25000

= +Opt
=f=CbtOneAdjuster

10000 =i==Concurrent Cbt

5000 Au

0 T T T T T 1
1 2 4 8 16 24

Number of Threads

Figure 22. Results of experimenting with searching in different ranges

43

Experiments of searching in different range of nodes are implemented in this
section. Figure 22 presents the distinction of the implementation of each tree
structure with different searching range. The implementation is done on the 0 - 6
section of height in each tree, which is with the longest path of searching. When
the searching range is 1000, CbtOneAdjuster outperforms the others. Even if no
restructuring, Opt also has a worse performance because its average path length
is longer than CbtOneAdjuster. Despite of Cbt also having a shorter path length
since the algorithm of restructuring is same with CbtOneAdjuster, Cbt is limited
with the feature of the architecture used in the experiments. Moreover, from
Figure 22, when the searching range increases to 10000 and 100000, the
performance of CbtOneAdjuster is close to Opt. Even if the path length is
shortened, the advantages of splaying gradually can not cover the loss of
performance brought by the restructuring. As a result, when the searching range
is 100000, CbtOneAdjuster’s performance is almost the same as Opt.

9.3 IMPLEMENTATIONS OF THE CONCURRENT QUEUES

The concurrent lock-free queue and the concurrent two-lock queue are evaluated
in this section. Each thread does 1 million random operations of enqueue and
dequeue. Figure 23 shows the time consumption of each concurrent queue when
multiple threads concurrently run in the implementation.

30000 1

25000 -

20000

15000 -
—#—Lock-free

Time (ms)

10000 ——Two locks

5000 -+

1 2 4 6 8 16 20 24
Number of Threads

Figure 23. Performance of the two concurrent queues

44

Under low contention of threads, the lock-free concurrent queue outperforms the
two-lock concurrent queue. CAS makes the current thread to help another thread
that has accessed the shared resource finish its operation. At this contention level,
CAS usually returns true and new value is written into the shared resource at the
first trying. However, the lock-free concurrent queue has a low performance
under a high contention of threads. Threads executing on the two-lock
concurrent queue do not compete for accessing the critical sections. They just
wait the accessed thread to release the lock. Contrarily, threads may execute CAS
several times in order to update the pointers. The level of competition between
threads are very hight in this case. That makes the throughput of the two-lock
concurrent queue is better than the lock-free concurrent queue under a high
contention level.

45

46

6. CONCLUSION AND FUTURE WORK

47

6. CONCLUSION AND FUTURE WORK

This Master thesis mainly discusses two concurrent tree data structure
algorithms: concurrent AVL tree and concurrent CBTree. Bronson et al.
developed the hand-over-hand optimistic validation mechanism to concurrently
implement AVL tree. It blocks the bad contentions in the tree by checking the
version numbers involved in each node. CBTree aims to concurrently implement
the splay tree by counting the number of accesses to each node. It also uses
Bronson et al’s hand-over-hand optimistic validation to achieve concurrency. By
experimenting the performance of each algorithm based on searching in each
tree, even CBTree has a short path length, its scalability is also affected by the
processor’s architecture. Afek et al. developed a single adjuster mechanism to
bypass this limitation. In addition, a big searching range could make the
searching path be shortened not very prominently, which can not cover the loss
of performance from the restructuring.

Michael and Scott’s two concurrent queue data structure algorithms: lock-free
concurrent queue and two-lock concurrent queue, are briefly discussed in this
thesis as well. By introducing a dummy node, which locates in front of the queue
and the head pointer always points to, the head and tail pointers of both the two
concurrent queue data structures are protected from pointing to NULL. The
lock-free concurrent queue uses CAS operation to atomically update the shared
resource. The two-lock concurrent queue only locks the critical section to achieve
mutual exclusion. Experimental implementation shows that under a low
contention of threads, the lock-free concurrent queue outperforms the two-lock
concurrent queue. But when the contention level is high, the two-lock concurrent
queue has a better performance.

The two tree data structure algorithms respectively provide a method to
concurrently implement the AVL tree and the splay tree. Bronson et al’s
hand-over-hand optimistic validation gives a mechanism that would be useful for
implementing other kinds of concurrent trees. It is also based on the locking
mechanism, which causes the threads that can not access the current nodes to
wait. However, the optimization in implementation of CBTree is stonewalled by
the cache level's arrangement of many popular and widely available processors.
In addition, the lock-free concurrent queue loses efficiency under a high
contention of threads. In future, how to develop a lock-free concurrent
mechanism to implement tree data structure and how to bypass the limitation
brought out by the architecture of a certain processor are the possible directions
of researches, which could improve the performance of concurrent tree

48

algorithms. Moreover, how to improve the performance of the lock-free
concurrent queue could also be a possible direction of following study.

49

50

	ACKNOWLEDGEMENTS
	ABSTRACT
	CONTENTS
	1.INTRODUCTION
	2.CONCURRENTPROGRAMING
	2.1SEQUENTIALANDPARALLELPROGRAMING
	2.2CONCURRENTPROGRAMING

	3.CONCURRENTQUEUES
	3.1ABAPROBLEM
	3.2ALGORITHMOFTHELOCK-FREECONCURRENTQUEUE
	3.3ALGORITHMOFTHETWO-LOCKCONCURRENTQUEUE

	4.CONCURRENTSEARCHTREES
	4.1ALGORITHMSOF CONCURRENTAVLTREE
	4.2ALGORITHMSOFTHESEQUENTIALCBTREE
	4.3ALGORITHMSOFTHECONCURRENTCBTREE
	4.4SINGLEADJUSTER

	5.EXPERIMENTALEVALUATION
	5.1EXPERIMENTALMACHINE
	5.2IMPLEMENTATIONSOFTHECONCURRENTBINARYSEARC
	5.3IMPLEMENTATIONSOFTHECONCURRENTQUEUES

	6.CONCLUSIONANDFUTUREWORK
	BIBLIOGRAPHY

