
Generative Adversarial Networks for
Object Detection in AD/ADAS Functions

Global Capstone Project with Chalmers University of Technology,
University of California, Berkeley and Volvo Cars

Bachelor’s Thesis in Department of Electrical Engineering

ROBIN HALFVORDSSON, JONATAN NORDH, ADAM SUHREN GUSTAFSSON,
JOEL WALL, MATTIAS WESTERBERG, ADAM WIREHED

Department of Electrical Engineering
Chalmers University of Technology
Gothenburg, Sweden 2019

Bachelor’s Thesis 2019: EENX15-19-21

Generative Adversarial Networks for
Object Detection in AD/ADAS Functions

Global Capstone Project with Chalmers University of Technology,
University of California, Berkeley and Volvo Cars

Robin Halfvordsson
Jonatan Nordh

Adam Suhren Gustafsson
Joel Wall

Mattias Westerberg
Adam Wirehed

Department of Electrical Engineering
Division of Systems and Control

EENX15-19-21
Chalmers University of Technology

Gothenburg, Sweden 2019

Generative Adversarial Networks for Object Detection in AD/ADAS Functions
Global Capstone Project with Chalmers, Berkeley and Volvo Cars
Robin Halfvordsson, Jonatan Nordh, Adam Suhren Gustafsson,
Joel Wall, Mattias Westerberg, Adam Wirehed

c© Robin Halfvordsson, Jonatan Nordh, Adam Suhren Gustafsson,
Joel Wall, Mattias Westerberg, Adam Wirehed, 2019.

Supervisor: Jonas Sjöberg, Professor, Electrical engineering
Supervisor: Lars Tornberg, Senior Machine Learning Engineer, Volvo Car Group
Examiner: Knut Åkesson, Professor, Electrical engineering

Bachelor’s Thesis 2019: EENX15-19-21
Department of Electrical Engineering
Division of Systems and Control
EENX15-19-21
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Image transformed from daytime to nighttime through the use of a Genera-
tive Adversarial Network. The detections of the object detection system “YOLO”
are also visible.

Typeset in LATEX
Gothenburg, Sweden 2019

iii

Abstract

Traffic sign identification using machine learning algorithms with the help of cam-
era images from vehicles is key towards autonomous path planning and driving.
However, changing e.g. weather and lighting conditions from what is available in
the training domain can lead to deteriorating detection performance and collect-
ing/labelling more data in the new domain is time consuming and expensive. In
this work, we present an image augmentation method based on “Generative Adver-
sarial Networks” (GANs) to augment traffic sign training data. Our method is used
to map a training dataset from one domain into another. We exemplify the proposed
method by augmenting daytime images to nighttime images. Daytime images from
the LISA dataset, containing traffic signs, is used for training and nighttime images
from the BDD-Nexar dataset is used for end to end testing. We also compare against
two alternative augmentation methods which utilizes no machine learning as well as
two methods based on a separate GAN and reinforcement learning respectively. Our
method is able to improve the resulting detection precision/recall from 0.70/0.66 to
0.81/0.70 on night images while also slightly improving the performance on the day
time images.

Keywords: Generative Adversarial Networks, AD, ADAS, Traffic sign, Machine
learning, Object detection.

iv

Acknowledgements

We in the Chalmers team could not have accomplished this project on our own. We
would like to thank Volvo Cars for this opportunity - for inviting us to their office
in Sunnyvale and for sponsoring our trip to the University of California, Berkeley.
We would also like to thank the Berkeley supervisor Sohini Roy Chowdhury (Volvo
Cars) as well as our own supervisors Jonas Sjöberg (Chalmers) and Lars Tornberg
(Volvo Cars) for all the help and support during the project.

This project was done in collaboration with four students from the University of
California, Berkeley. We would like to thank these students for their cooperation on
the project and their hospitality during our visit.

vi

Glossary

AutoAugment

Machine learning method for enhancing

diversity in images through reinforce-

ment learning

BBGAN

(Bounding Box GAN) GAN for un-

paired image-to-image translation us-

ing bounding box specific losses

BDD

(Berkeley Deep Drive) public dataset

mainly developed by Path Institute,

University of California, Berkeley

Blender

Open source 3D-modelling software de-

veloped by the Blender Foundation

CNN

Convolutional Neural Network

GAN

Generative Adversarial Network

IoU

Intersect of Union

LISA

Grouping of the two traffic sign

datasets, LISA-TS and LISA Exten-

sions. Constructed by Laboratory for

Intelligent & Safe Automobiles

Nexar

Dataset of driving scenes in day and

night environments, without annota-

tions

ODS

Object Detection System

SimpleAugment

Python script which uses simple trans-

formations and color adjustments to

simulate nighttime environment

TensorFlow

Open source machine learning library

developed by Google

YOLO

(You Only Look Once) object detection

algorithm introduced in 2015

viii

Contents
1 Introduction 1

1.1 Background . 1
1.2 Contributions . 2
1.3 Collaborators . 3

2 Theory 4
2.1 Generative Adversarial Network . 4
2.2 Convolutional Neural Networks . 5

2.2.1 Convolutional Layers . 5
2.2.2 Leaky Rectified Linear Units 7
2.2.3 Batch Normalization . 7

2.3 Loss Functions . 7
2.4 Adversarial Training . 8

2.4.1 Optimization . 8
2.4.2 Backpropagation . 9

3 Methodology 10
3.1 Datasets . 10

3.1.1 Preprocessing of Datasets . 10
3.1.2 YOLO Training Data . 11
3.1.3 GAN Training Data . 11
3.1.4 Testing data . 12

3.2 Bounding Box GAN . 12
3.2.1 Loss Function . 12
3.2.2 Feed Forward Generator Model 13
3.2.3 Discriminator Model . 14

3.3 Alternative Augmentation Methods 15
3.3.1 Blender . 15
3.3.2 SimpleAugment . 16
3.3.3 CycleGAN . 16
3.3.4 AutoAugment . 17

3.4 Training Networks . 18
3.5 Evaluation . 19

4 Results 20

5 Discussion 24
5.1 Quality of data . 25
5.2 Multiple Domains . 25

6 Conclusion 26

References 27

A Dataset distributions I

B Generated image examples IV

C YOLO detection examples X

ix

1. Introduction

In recent years generative machine learning models like Generative Adversarial Net-
works (GANs), first proposed by Ian Goodfellow in 2014 [1], have become increas-
ingly more advanced and well-understood. These allow for generation and manip-
ulation of realistic images, blurring the line between real and generated data. But
have these algorithms become sophisticated enough to generate images for use when
training an Object Detection System (ODS) which can be used in autonomous vehi-
cles? This project will serve as an exploration for how GANs can be used to augment
images containing traffic signs to improve the performance of an ODS.

1.1 Background

During the last decade rapid developments have been made in the fields of Au-
tonomous Driving (AD) and Advanced Driver-Assistance Systems (ADAS). Features
like lane centering assist and rear-view video systems e.g. are now commonly avail-
able in many commercial vehicles [2]. The step to complete AD technology comes
with many obstacles. One being the processing of camera images for use in an ODS
to detect and classify objects like traffic signs, pedestrians, vehicles etc. This ODS
requires high accuracy as a resulting misclassification may endanger human lives.

The ODS can be implemented using Deep Learning models structured as artificial
neural networks. The principle of such system is explained in Figure 1.1. With
an image as input where a Pedestrian Crossing and Speed Limit 25 sign is visible,
the algorithm “scans” the image looking for known patterns. If the image contains
detectable patterns the network will yield an output containing bounding boxes
(rectangles) of the signs, classifications (class) of the signs (e.g stop or parking) and
the confidence of the prediction quantified as a number between 0 and 1.

Figure 1.1: Example of input and output of an ODS.

1

1. Introduction

To attain the required accuracy a large amount of training data is necessary to
train the neural network. This data is usually collected as video and images with
car-mounted cameras from public roads. These images are then annotated with the
labels of the signs (e.g. stop) and the screen coordinates where the signs are located.
This information is necessary for supervised training as the network will learn from
the coordinates and labels to detect and classify objects. Current supplies of avail-
able training data is not always sufficient to train ODSs. Often the ODSs will be
presented with non-descript real-world examples like low resolution images, partially
occluded signs and/or damaged objects such as vandalized traffic signs. In addition
it may encounter out-of-distribution examples like nighttime and snowy settings.
These non-descript and out-of-distribution examples are usually underrepresented
in the training datasets which leads to the ODS not learning and generalizing for
said examples.

1.2 Contributions

The ODS used in the project is You Only Look Once (YOLO) [3]. The ODS
is trained on daytime images from the LISA Traffic Sign Dataset (LISA) [4] to
establish a baseline model and identify non-descript misclassifications. Most of the
misclassifications are similar to the example showed in Figure 1.2 where a partially
shadowed stop sign is not detected. The shadow makes the stop sign too dark for
the network to detect and classify. More examples of misclassifications are shown in
appendix C.2.

Figure 1.2: Non-descript sign example found in the real world.

For the ODS to classify non-descript signs the training dataset has to contain images
of similar cases. This project’s focus is to improve the object detection of the out-

2

1. Introduction

of-distribution case of traffic signs in low light or nighttime conditions which is not
represented in the LISA dataset.

The method used to produce nighttime examples for the ODS training dataset is
through the use of image-to-image translation using a GAN. This method has shown
promise in generating artificial images that looks convincingly similar to authentic
ones taken by camera or painted by hand [5]. Therefore a GAN is developed with
a tailored loss function for this use case. This GAN is used to convert daytime
scenes with traffic signs to nighttime conditions as can be seen in Figure 1.3. This
augmentation allows for the use of existing labels and sign locations in the resulting
images as both the class and location is preserved. In addition, the loss function
utilizes the bounding box information in the source domain to preserve the content
of the signs during augmentation.

Figure 1.3: Transformation from a real world image on the left to the corresponding
GAN generated image simulating nighttime conditions on the right.

The purpose of the new data is to improve performance of YOLO on nighttime
images compared to the baseline model. YOLO is tested on a dataset containing
both real daytime and nighttime images. In addition, different instances of YOLO
are compared to each other. These instances are trained on unique datasets that are
produced by alternative methods of data augmentation. Evaluation of the results
shows that the generated data from the GAN slightly improves YOLO’s object
detection on nighttime images while maintaining daytime performance.

1.3 Collaborators

This work was done as part of a Global Capstone Project between Volvo Cars,
Chalmers University of Technology and University of California, Berkeley. Volvo
Cars is a car manufacturer with research and development centers in both Sweden
and USA. They are the industrial client and partner in this cooperation. At the
beginning of this cooperation the teams established a benchmark on LISA with
YOLO. It was decided that the Berkeley team would focus on the data augmentation
method AutoAugment [6] while the Chalmers team’s main focus would be the GAN.

3

2. Theory

Developing and evaluating a GAN requires understanding of machine-learning and
neural networks. These networks can be constructed using different mathematical
models, such as convolutions, depending on the use case. These models will be
described in this chapter in order to understand the different GAN models in this
project. The GAN developed by the Chalmers Team is based on the theory presented
here.

2.1 Generative Adversarial Network

GANs are a class of artificial intelligence algorithms used in unsupervised machine
learning. The model consists of two neural networks contesting each other and can
be used to generate artificial images for use as training data for classifiers.

The two neural networks are called the generator and the discriminator, which are
represented by the boxes G respectively D in Figure 2.1. The discriminator operates
as a binary classifier which labels the presented image as real or fake (generated). In
a GAN the discriminator is often a convolutional neural network with an image as the
input and a label (prediction), real or fake, as the output. With a trained network
it will find different features in the image. The network is not necessarily looking
for features that a human would look for, like shapes or colors, but self-learned
features developed during training. With these features the discriminator will find
similarities to images from the training and make a prediction. The generator is a
network that generates artificial images of authentic objects. The input is a vector of
noise, or an image, represented by z in the bottom left of Figure 2.1. The generator
will perform operations on z in order to transform it into the desirable image x.

Figure 2.1: Schematic view of a GAN

4

2. Theory

To learn the generator’s distribution pg over data x, a prior (probability distribution)
on the input variables pz(z) is defined. The mapping to data space is represented by
G(z; θg), where G is a differentiable function represented by a multilayer perceptron
(neural network) with trainable parameters θg. A second multilayer perceptron
D(x; θd) is defined that outputs a single scalar ŷ between 0 and 1. Here D(x) is the
probability that x came from the real data rather than pg. D is trained to maximize
the probability of assigning the correct label to both training examples (the data x in
the top left) and samples from G (x in the bottom right). G is trained to maximize
logD(G(z)). If G and D have enough capacity (unlimited memory), after several
training steps they will reach a point where both cannot improve hence pg = pdata.
The discriminator will then be unable to differentiate between the distribution and
will give the prediction D(x) = 1

2
[1].

GANs does not only have to contain one generator and one discriminator. There
are a lot of different kinds of GANs that extends the base architecture. The reason
behind this is to improve performance in more specific tasks. One example is the
CycleGAN that contains two discriminators and two generators [7].

Modern deep learning algorithms typically require many labeled examples to gen-
eralize well. GANs are a possible solution to these problems. The network can be
trained on data that is underrepresented or not included in the datasets. The GAN
will then generate artificial images of the missing data [8]. This way GANs adds the
missing data necessary to train and develop accurate classification systems.

2.2 Convolutional Neural Networks

Currently there are many different variations of neural networks. Different mathe-
matical models can be implemented as layers in these networks depending on the
use case. In most scenarios the GAN is supposed to generate images represented as
a 2D grid of pixels (raster). Convolutional Neural Networks (CNNs) are currently
the most used network for this task because of their efficiency.

To classify or generate images, one must reduce redundant information and extract
the important features. With a CNN this is done with convolutional layers in com-
bination with activation functions and batch normalizations.

2.2.1 Convolutional Layers

All neural networks consist of layers of nodes (neurons). The number of layers and
nodes differs between networks. Generally the first layer of an image-classifying CNN
has the same number of nodes as pixels in the input image. In traditional neural
networks all layers are fully connected. This means that every node in one layer is
connected to every node in the next layer. In Figure 2.2 the nodes highlighted in
gray are connected to each other, where the first system is a convolutional network
and the second is a standard neural network. Each unique connection has a weight

5

2. Theory

(parameter) assigned to it. The value of the weight is a representation of how much
a specific node will affect another.

Figure 2.2: Difference in node-connections between convolutional neural network
(left) and traditional (right) [9, p. 331]

The fully connected network uses matrix multiplication between the layers. Meaning
that every output unit interacts with every input unit [9]. In many cases the output
connections will not affect the input of the nodes since the value of the weights
after training will be close to zero. This requires unnecessary processing power and
memory for calculations that will not affect the outcome (the generated image).
The convolution aspect of the method is that the regular matrix multiplication
between the layers is replaced by a sparse matrix multiplication, often called a
kernel operation.

The kernel is a multidimensional array of parameters. Similar to the weights in a
traditional neural network, these parameters are used to change how much the nodes
are affecting each other. In Figure 2.3 the parameters in the kernel w, x, y, z also
change their value based on the training. The nodes a, b, e, f and the kernel are
used in dot-multiplication where the output is the connected node in the next layer.
This is why one node is not connected to all the nodes in the previous layer. Using
a CNN for both the generator and discriminator makes GANs more effective.

Figure 2.3: Visual example of a convolution operation in neural networks

6

2. Theory

2.2.2 Leaky Rectified Linear Units

The rectifier is an activation function with the purpose of improving the training
of neural networks. It allows for faster and more effective training of deep neural
architectures on large and complex datasets. More specifically, it helps the network
account for interaction effects when one variable A affects a prediction differently
depending on the value of B [10]. It also makes it easier for the network to account
for non-linear effects. The leaky variant of this activation function is called Leaky
Rectified Linear Units (Leaky ReLU) and defined as:

f(x) =

{
x, if x > 0

αx, otherwise
(2.1)

The parameter x is the value of a node in the network and α is the slope of the
rectified function. The function is often used together with a convolutional layer.
After the kernel operation in the convolutional layer the nodes from that layer is
put through the activation function in order to suppress negative values.

2.2.3 Batch Normalization

In order to increase the stability of a neural network, batch normalization normalizes
the output of a previous activation layer by subtracting the batch mean and dividing
by the batch standard deviation [11]. This results in preventing small changes to
the parameters from amplifying into larger and suboptimal changes in activations
(such as the Sigmoid function) in gradients. Not only does the network become more
stable, but also drastically improves the training speed and reduces overfitting.

2.3 Loss Functions

Loss functions (cost functions) maps variables into numbers representing some form
of loss. This is the function that the network tries to minimize during the training.
In machine learning, these functions are used to measure the difference between the
predicted output and the desired output [12]. For GANs the loss function is used
to measure the discriminator’s confidence in it’s prediction if the image is real or
generated. There are different kinds of loss functions depending on the use case. One
function regularly used in the discriminator is the Binary Cross Entropy (BCE):

L(ŷ, y) = − [y log(ŷ) + (1− y) log(1− ŷ)] . (2.2)

For each prediction D(x) = ŷ ∈ [0, 1] by the discriminator during training, there
will also be a truth y ∈ {0, 1}. Here 0 means fake, and 1 real. If the image is fake
with y = 0 and the discriminator predicts so correctly with ŷ ≈ 0, the value of the
loss in 2.2 is low. If the image is real with y = 1, and the discriminator still predicts

7

2. Theory

the image as fake with ŷ ≈ 0), the loss value of 2.2 will be large. The loss function
will behave similarly for the reversed case.

2.4 Adversarial Training

GANs can generate training data for other neural networks. However, the GAN
itself must be trained first to generate this data. The method used to train a GAN
is called adversarial training. When the discriminator classifies a generated image as
fake it outputs an error signal as mentioned before. This is sent to the generator to
inform that the generated image was not authentic enough. The generator, based on
the value from the error signal, understands that this image is not good enough, and
needs to improve [13]. The adversarial part of the training is that one of the networks
finds the weak points of the other network and exploits them. The weaknesses are
improved upon through the error signal until the network has improved enough in
that area so it can not be exploited anymore. Mathematically the value of the loss
function will be low if the discriminator identifies the generated image and the same
goes for the generator if it fools the discriminator. A low value of the loss function
will not affect the parameters and/or change the way the networks operate.

2.4.1 Optimization

In order for the network to improve and learn from training it needs to optimize
its parameters. To improve the results of the network the value output from the
loss function should be as low as possible. This can be achieved by finding the
global minimum of the loss function using gradient descent. Often it is done by
optimization algorithms such as Adam, which is an extension to stochastic gradient
descent [14]. The algorithm tweaks the parameters in the networks G and D in order
to minimize their respective loss functions. In a GAN this is formulated through
the adversarial objective in (2.3) where the generator wants to minimize the value,
while the discriminator wants to maximize it in a zero-sum game. [1]

min
G

max
D

V (D,G) = Ex∼pdata(x) [log(D(x)] + Ex∼pz(z) [log(1−D(G(z))] (2.3)

With two parameters, the loss function can be thought of as a 3D surface as in
Figure 2.4. The surface represents the value of the loss function depending on the
parameters p1 and p2. Gradient descent, visualized by the red dot and lines in
the image, is used for finding the minimum of a function. In Figure 2.4 finding
the global minimum is not too problematic. However a neural network consists
of a lot more parameters than two and the loss function is not a 3D surface, but
a multidimensional landscape. Having many dimensions makes the finding of the
global minimum using gradient descent almost impossible. Instead the finding of a
local minimum is sought after.

8

2. Theory

Figure 2.4: Loss function value, with 2 parameters, displayed as a 3D surface where
the red dot is the current value. Gradient decent visualized by the red lines.

2.4.2 Backpropagation

Backpropagation is a method to calculate a gradient for training the weights of
nodes. It uses generalization of the delta rule to multi-layered feedforward networks
in order to iteratively compute gradients for the layers in the network [9]. The delta
rule is also referred to as the least mean square root. It uses the value from the
error signal to compute the needed values for the parameters to get closer to the
correct result. In Figure 2.5 is an example of backpropagation where a node in the
final layer should have the value 1.0 instead of 0.2. The optimization algorithm then
uses backpropagation to increase the values of the positive weights, and decrease the
absolute value of negative weights affecting the node in the last layer. This method
propagates backwards throughout the network and recursively applies to all the lay-
ers. Therefore the algorithm calculates the change needed in the parameters starting
in the output layer and going back to the input, hence the name ”Backpropagation”.

Figure 2.5: Visual example of backpropagation of a node in the final layer

9

3. Methodology

This section describes the methods used in order to improve YOLO’s detection
and classification rate. It includes dataset preprocessing and how the augmentation
methods were built and evaluated.

3.1 Datasets

The objective was to improve the detection rate on the test dataset by training
YOLO on the augmented datasets. YOLO was trained on the LISA training dataset
containing 7819 images to set a performance baseline to compare the augmented
datasets with. This LISA dataset contained both the LISA TS dataset and the
LISA Extension dataset [4]. The trained YOLO network was tested on annotated
nighttime images in Berkeley DeepDrive [15] and Nexar [16] to test the nighttime
detection rate. It was also tested on daytime LISA images to evaluate if the daytime
performance was affected by the additional trianing data. The number of images
and traffic signs in each dataset is presented in Table 3.1. The data split aimed
to have 80% of training images and 20% of testing images. The ideal distribution
would be to have the same proportion of training and testing images for each kind
of sign, preferably 80%/20%. However the split was done by track and not by a
random split of the whole dataset. One track is a scene of multiple frames within
a short time period. This was made to ensure that no images from the same track
would be represented in both the training and testing set, to avoid a biased testing
set. This resulted in a skewed representation of some signs. The distribution of
classes in the datasets is represented in appendix A.

Table 3.1: Description of the datasets used for training and testing in the project.

Dataset Description Type Use Signs Images

LISA LISA TS + LISA Extension (256x256) Day - 10503 9924
LISA test LISA test split (20%) Day Test 2161 2105
LISA training LISA training split (80%) Day Train 8342 7819
BDDNex BDD + Nexar (256x256) Night Test 2248 1992

3.1.1 Preprocessing of Datasets

Training the GAN required significant computing power to process large images.
The size of the LISA dataset varied from 640x480 to 1280x960 pixels. In order to
process the images faster they were cropped to 256x256 pixels as seen in Figure 3.1
while retaining the traffic signs. The cropping was made in the area of the image
that contained the most signs (bounding boxes). In addition, random movement

10

3. Methodology

was applied to the x- and y-coordinates of the crop to prevent signs from being
centered in the middle of the crop. This was done to ensure that the training data
was unbiased in regards to the locality of the signs in the image. This reduced the
problem size while images still were subject to localization and classification. Every
method of data augmentation utilized this cropped version of LISA.

Figure 3.1: A full size image of the LISA dataset cropped to 256x256 pixels.

3.1.2 YOLO Training Data

How the augmented datasets created with SimpleAugment, Blender and GAN were
created is illustrated in Figure 3.2. The training sets consists of twice the amount
of images as the LISA training dataset with the addition of the augmented images.
YOLO was retrained on the datasets augmented with Blender, SimpleAugment, and
GAN separately and tested on the same BDD, Nexar and LISA dataset in order to
compare the performance.

Training
YOLO

Daytime dataset:
Annotated LISA 80%

Train

20%
Test

Nighttime dataset:
Annotated

BDD + Nexar

Performance
evaluationAugmented

training set

Augmentation Method

Split

Augmented
images

Test dataset

Figure 3.2: Schematic illustration of iterative process in improving the training
data to improve accuracy.

3.1.3 GAN Training Data

A nighttime dataset was acquired for the training of the GAN to generate night-
time images. For this dataset, both Nexar and the BDD dataset were used. These
datasets contained both night and daytime images in car traffic scenes. To sepa-
rate nighttime images from these sets, a Python script was created to resolve this
automatically. The resulting dataset consisted of 9652 nighttime images.

11

3. Methodology

3.1.4 Testing data

The LISA dataset do not contain any nighttime images. To ensure that there was
not any biased results, an out of distribution night dataset was acquired. The night
dataset used for testing were handpicked BDD + Nexar images containing the same
traffic signs as in the test LISA dataset. These images were manually annotated.
This resulting dataset of 1992 images was used to test YOLO’s performance on
nighttime images. Each augmentation method was also tested on 2105 LISA images.

3.2 Bounding Box GAN

A customized GAN was developed to make a style transfer from daytime to nighttime
while preserving the content in the bounding box of the images. The loss function
consists of two parts, a BCE on the style transfer and a mean square error (MSE)
on the content inside the bounding box. The discriminator was a CNN and the
generator was using a Feed Forward architecture. Due to the nature of the loss
function, the network given the name Bounding Box GAN (BBGAN). Images from
the LISA dataset were mapped from daytime to nighttime using the BBGAN, of
which two examples are shown in Figure 3.3.

Figure 3.3: Cropped LISA image transformed to nighttime using BBGAN.

3.2.1 Loss Function

The loss function consists of one loss for the content and another one for the style.
Constructing a loss function that only considers what is inside the bounding box
will minimize the loss of content in this area. This loss is defined as the mean square
error between the real and generated image:

MSE =
1

n

n∑
i=0

(zi −G(zi))
2 (3.1)

where zi is the pixel values of the real image, G(zi) is the pixel values of the generated
image and n is the number of pixels. The operations acting inside the bounding box
area needs to preserve this content in order to minimize the loss. For each layer the

12

3. Methodology

same kernel was used all over the image and its feature maps. Therefore the loss
function inside the bounding box also improves the preservation of content in the
whole image. In order to generate images in a night style one more loss was needed,
the style loss. This loss is a normal binary cross entropy. The total loss of these two
losses, with respective weights, is presented in Figure 3.4.

Figure 3.4: Visual representation of the custom loss function

3.2.2 Feed Forward Generator Model

The chosen generator model implemented is called Feed Forward which is inspired
by U-net architectures [17]. This method improves the preservation of content in
the image by adding feature maps from previous layers to newer ones. The networks
capability of preserving content in road signs during the transformation from day
to night was crucial to produce realistic nighttime images.

On the left side of Figure 3.5 the image is going through blocks containing con-
volutional layers (green). These blocks are decreasing the image resolution and
increasing the feature maps. The feature maps are saved to be reused later. On
the right side, the image is going through blocks containing deconvolutional layers
(red). These blocks are increasing the image resolution and decreasing the feature
maps. It is in these blocks the saved feature maps are added, as visualized by the
purple arrows.

The reason behind adding old feature maps to the later ones is mitigate information
loss. When the image flows through the network the feature maps are tweaked
by different operations in order to change the day image to a night image. These
operations can lead to content loss. The saved feature maps have fewer operations

13

3. Methodology

affecting compared to later ones, thus still have a lot of information from the original
image. Merging the old feature maps with the new ones are done by concatenation
along the feature axis. How much these feature maps should affect the current image
is determined by two weight parameters, α and β, which are multiplied with the
feature maps. These two parameters are trainable within TensorFlow’s computation
graph and therefore were able to change during the training.

Figure 3.5: Network structure for the Feed Forward generator model.

3.2.3 Discriminator Model

The discriminator model chosen was a custom made CNN with an architecture as
seen in Figure 3.6. An input image is first fed into a hidden layer without any
batch normalization. All following layers consist of a convolutional 2D layer, a
Leaky ReLU with α = 0.2 and a batch normalization. Only the first hidden layer
keeps the dimension and the other seven hidden layers bisect the image size. The
input size of 256 × 256 × 3 is downscaled throughout the network to the final size
2× 2× 1024. Thereafter, three fully connected layers downsizes the 4096 nodes to
100 nodes before going to the final single node. It is the value of this final node that
predicts the probability for fake or real. It is also the input of the loss function and
the subject of the optimizer.

14

3. Methodology

Figure 3.6: Network structure for the customized GAN’s discriminator

3.3 Alternative Augmentation Methods

To evaluate the performance of the BBGAN, several other augmentation methods
were implemented. Two machine-learning based methods, CycleGAN and AutoAug-
ment, as well as two simpler methods not utilizing machine-learning, SimpleAugment
and Blender. These methods were used to compare against the BBGAN implemen-
tation.

3.3.1 Blender

The use of 3D-modelling software like Blender [18] has previously been used to
successfully implement automated pipelines for generation of annotated training
data for classifiers [19]. Inspired by this, 3D-models of the geometries of traffic signs
were first created using the software. Images of traffic signs and cameras panoramas
of nighttime scenes were then collected. A script could then be used to randomly
render traffic signs as in Figure 3.7 from various angles and backgrounds. The world
space coordinates of the sign model were automatically transformed to screen space
and used as annotations for each rendered image.

15

3. Methodology

Figure 3.7: Example of images generated by Blender.

3.3.2 SimpleAugment

The Python script SimpleAugment augments images from LISA using simple oper-
ations. The images were augmented in three sections. The first increased the blue
color values in each pixel as well as lowered the RGB values in the image depending
on the initial RGB value. The pixels with higher values got decreased exponentially
more than the pixels with initially lower values in order to create a darker version
of the input image. The second was a further darkening of the pixels in the top half
of the image to make the sky darker. The last alteration was attaching the traffic
sign from the input image on the exact same location using the coordinates from
the original bounding box but in a lighter tone than the rest of the image, in order
to highlight the traffic sign as illustrated in Figure 3.8.

Figure 3.8: Example of images generated by SimpleAugment.

3.3.3 CycleGAN

One approach at augmenting images with GANs was to use an already existing
GAN implementation. CycleGAN is a type of GAN that takes images as inputs and
outputs the same images with a different style. The key difference from traditional
GANs is that it preserves the content of the data it is fed instead of creating new
content from noise. The goal was to optimize its weights and biases such that
mapping from the daytime domain to the nighttime domain and back again yields
the same image. This should also be true for the reverse mapping [7].

CycleGAN comes with the option of choosing different generative models, either a

16

3. Methodology

Residual network or a U-net. U-net generates different sections of the image at a time
and therefore does not get full context of the image, potentially preventing it from
learning certain features. Instead, a Residual network was used which generates
a whole image at a time with the cost of higher VRAM usage. A day to night
transformation from CycleGAN trained with the GAN training dataset and the
cropped LISA dataset is exemplified in Figure 3.9.

Figure 3.9: Cropped LISA image transformed to nighttime using CycleGAN.

CycleGAN was also implemented with insertions of traffic signs from the daytime
dataset using the coordinates from the original bounding box. Creating a similar
dataset but with brighter signs as can be seen in Figure 3.10.

Figure 3.10: Cropped LISA image transformed to nighttime using CycleGAN with
insertions.

3.3.4 AutoAugment

AutoAugment is a machine-learning method with 20 different policies for augmen-
tation. Each policy applies two transformations to the bounding box area of the
image. In Figure 3.11 examples of augmentations created by using AutoAugment
are illustrated where the policies are shearing, HSV-transformation and adding gray
color as occlusion.

17

3. Methodology

Figure 3.11: Examples of possible transformations by AutoAugment

AutoAugment and BBGAN were two standalone augmentation methods, but were
also combined in a pipeline as a third augmentation method. In this case, the
BBGAN dataset was compiled and then further augmented by AutoAugment. This
method is exemplified in Figure 3.12.

Figure 3.12: Examples of augmenting the BBGAN dataset with AutoAugment.

3.4 Training Networks

The training of the GANs and YOLO was done using a computation instance on
the Google Cloud Platform [20]. The instances used either an Nvidia Tesla P100
GPU or a K80 as well as a quad core CPU for this task.

BBGAN was trained for approximately two hours during which it produced better
and better nighttime images. BBGAN has a breakpoint at which it starts to generate
less accurate night images. The training was therefore terminated before that point.

When training YOLO, 90% of the training dataset was used for training, and 10%
was used for validation. After each epoch (all training examples) the model was
tested on the validation set and the average loss was logged. These losses are visual-
ized in Figure 3.13 to determine if the model was still learning, or if it had plateaued.
At this point the model would not improve it’s performance. When training YOLO,
all layers but two were frozen until epoch 50. After this the rest of the layers were
unlocked and their parameters could be changed during the training. It was evident
that using augmented data allowed for the model to reach lower losses.

18

3. Methodology

0 20 40 60 80 100 120 140

Epoch

101

102
V

a
li

d
at

io
n

lo
ss

Validation loss of YOLO

AAUG

AAUG BBG

BBG

BLEND

CG

CG INS

LISA

SAUG

Figure 3.13: Training losses of YOLO. Some point are outliers which are not
representative of the average loss trend. This is the case around epoch 85.

3.5 Evaluation

After training YOLO with augmented datasets, it was tested on the test set where
both precision and recall were measured. Precision is the ratio of true positives (TP)
and the total number of detected objects, i.e. true positives + false positives (FP).
TP is registered when YOLO detects a sign correctly. FP is when YOLO makes an
incorrect detection. Precision is therefore defined as:

Precision =
TP

TP + FP
. (3.2)

False negative (FN) is when YOLO completely misses a sign. Recall is the ratio of
TP and total number of detectable objects, i.e. TP + FN defined as:

Recall =
TP

TP + FN
. (3.3)

The results gathered were the performance from one single YOLO instance of each
augmentation method. Re-training YOLO for each method was not an option due to
limited time and computation power. One YOLO instance took around 48 hours to
train. To acquire a robust measure of performance, the test set was re-sampled 1000
times with the Bootstrap method. The method gives a mean-average performance
metric of the augmentation methods without retraining YOLO.

In order to determine why the object detection made mistakes when detecting a
traffic sign, the Intersection of Union (IoU) was evaluated. The IoU quantifies how
well the detected area overlaps with the annotated area in the bounding box.

19

4. Results

The results of each augmentation methods dataset is presented using abbreviated
codes found in Table 4.1.

Table 4.1: Codes used for each augmentation method used when training YOLO.

Code Meaning

LISA Only the daytime LISA images
BLEND Daytime LISA + nighttime images rendered in Blender
SAUG Daytime LISA + nighttime images generated with SimpleAugment
CG Daytime LISA + nighttime images generated with CycleGAN

CG INS Daytime LISA + CG with daytime cropped signs inserted
BBG Daytime LISA + nighttime images generated BoundingBoxGAN
AAUG Daytime LISA + daytime images generated using AutoAugment

AAUG BBG Daytime LISA + nighttime images generated using AAUG applied on BBG

The impact of the augmented training data from the various methods on the ob-
ject detection performance of YOLO is evaluated using both the mean precision µp

and recall µr. Bootstrapping is used to visualize the standard deviation σp and σr
with dataset size N , sample size n and number of resamples B. These results are
presented in Table 4.2.

Table 4.2: The precision and recall metrics of the various augmentation models.

Model Test µp σp µr σr N n B

LISA Day 0.897 0.007 0.883 0.007 2105 2105 1000
LISA Night 0.700 0.010 0.662 0.010 1992 1992 1000
LISA All 0.799 0.006 0.770 0.007 4097 4097 1000

BLEND Day 0.898 0.007 0.891 0.007 2105 2105 1000
BLEND Night 0.788 0.009 0.768 0.009 1992 1992 1000
BLEND All 0.842 0.006 0.828 0.006 4097 4097 1000
SAUG Day 0.903 0.007 0.887 0.007 2105 2105 1000
SAUG Night 0.756 0.009 0.708 0.010 1992 1992 1000
SAUG All 0.830 0.006 0.795 0.006 4097 4097 1000
CG Day 0.890 0.007 0.881 0.007 2105 2105 1000
CG Night 0.717 0.010 0.664 0.010 1992 1992 1000
CG All 0.805 0.006 0.770 0.007 4097 4097 1000

CG INS Day 0.910 0.006 0.893 0.007 2105 2105 1000
CG INS Night 0.716 0.009 0.712 0.010 1992 1992 1000
CG INS All 0.811 0.006 0.800 0.007 4097 4097 1000
BBG Day 0.907 0.007 0.895 0.007 2105 2105 1000
BBG Night 0.761 0.010 0.677 0.010 1992 1992 1000
BBG All 0.836 0.006 0.783 0.007 4097 4097 1000
AAUG Day 0.906 0.006 0.903 0.006 2105 2105 1000
AAUG Night 0.786 0.009 0.692 0.010 1992 1992 1000
AAUG All 0.848 0.006 0.795 0.006 4097 4097 1000

AAUG BBG Day 0.916 0.006 0.913 0.006 2105 2105 1000
AAUG BBG Night 0.832 0.008 0.707 0.010 1992 1992 1000
AAUG BBG All 0.877 0.005 0.808 0.006 4097 4097 1000

20

4. Results

The metrics obtained from the bootstrap are visualized in the box plots as seen in
Figures 4.1 and 4.2. From these diagrams and the previous table it is evident that
all methods seem to yield the same, or better precision and recall metrics compared
to the baseline LISA.

D
ay

N
ig
ht A

ll

LISA

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

P
re

ci
si

o
n

D
ay

N
ig
ht A

ll

BLEND

D
ay

N
ig
ht A

ll

SAUG

D
ay

N
ig
ht A

ll

CG

D
ay

N
ig
ht A

ll

CG INS

D
ay

N
ig
ht A

ll

BBG

D
ay

N
ig
ht A

ll

AAUG

D
ay

N
ig
ht A

ll

AAUG BBG

Bootstrap Precision

Figure 4.1: YOLO precision after training using the various models.

D
ay

N
ig
ht A

ll

LISA

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
ec

al
l

D
ay

N
ig
ht A

ll

BLEND

D
ay

N
ig
ht A

ll

SAUG

D
ay

N
ig
ht A

ll

CG

D
ay

N
ig
ht A

ll

CG INS

D
ay

N
ig
ht A

ll

BBG

D
ay

N
ig
ht A

ll

AAUG

D
ay

N
ig
ht A

ll

AAUG BBG

Bootstrap Recall

Figure 4.2: YOLO recall after training using the various models.

In addition, the object detection performance of the various models is visualized
in Figure 4.3. Here the detection rate (number of detected signs) of each instance
of the different classes found in the test dataset is presented for each augmentation
method (markers). The different sign classes on the y-axis are sorted by total number
of occurrences (number in the parentheses) of each class in the test dataset. The

21

4. Results

classes which seem to cause most spread in the detection rate are the noLeftTurn
and speedLimit25 signs. The detection ratio (detection compared to the total in the
class) of each class is shown in Figure 4.4.

0 200 400 600 800

Number of detected occurances

leftAndUTurnControl (1)
yieldAhead (1)

speedLimit55 (2)
intersection (2)

yieldToPedestrian (3)
intersectionLaneControl (3)

rampSpeedAdvisory35 (3)
roundabout (8)

speedLimit65 (8)
rightLaneMustTurn (9)

zoneAhead25 (12)
truckSpeedLimit55 (12)

rampSpeedAdvisory45 (13)
dip (13)

slow (14)
speedLimit15 (15)
speedLimit50 (24)

schoolSpeedLimit25 (31)
speedLimitUrdbl (33)

turnLeft (36)
turnRight (36)

speedLimit45 (41)
noLeftAndUTurn (45)

curveRight (45)
yield (50)

curveLeft (50)
speedLimit40 (52)

noUTurn (53)
addedLane (55)

doNotEnter (67)
stopAhead (68)

noRightTurn (88)
merge (96)

laneEnds (118)
speedLimit30 (121)

keepRight (126)
speedLimit35 (149)

noLeftTurn (213)
signalAhead (306)

speedLimit25 (420)
pedestrianCrossing (516)

school (553)
stop (898)

C
la

ss
(t

ot
al

o
cc

u
ra

n
ce

s)

Number of detected occurances by class and method sorted by total number of occurances

LISA

BLEND

SAUG

CG

CG INS

BBG

AAUG

AAUG BBG

Figure 4.3: Detection rate of the various models by each class found in the test
dataset sorted by total number of occurrences of each class in ascending order.

0.0 0.2 0.4 0.6 0.8 1.0

Ratio of detected occurances

leftAndUTurnControl (1)
yieldAhead (1)

speedLimit55 (2)
intersection (2)

yieldToPedestrian (3)
intersectionLaneControl (3)

rampSpeedAdvisory35 (3)
roundabout (8)

speedLimit65 (8)
rightLaneMustTurn (9)

zoneAhead25 (12)
truckSpeedLimit55 (12)

rampSpeedAdvisory45 (13)
dip (13)

slow (14)
speedLimit15 (15)
speedLimit50 (24)

schoolSpeedLimit25 (31)
speedLimitUrdbl (33)

turnLeft (36)
turnRight (36)

speedLimit45 (41)
noLeftAndUTurn (45)

curveRight (45)
yield (50)

curveLeft (50)
speedLimit40 (52)

noUTurn (53)
addedLane (55)

doNotEnter (67)
stopAhead (68)

noRightTurn (88)
merge (96)

laneEnds (118)
speedLimit30 (121)

keepRight (126)
speedLimit35 (149)

noLeftTurn (213)
signalAhead (306)

speedLimit25 (420)
pedestrianCrossing (516)

school (553)
stop (898)

C
la

ss
(t

ot
al

o
cc

u
ra

n
ce

s)

Ratio of detected occurances by class and method sorted by total number of occurances

LISA

BLEND

SAUG

CG

CG INS

BBG

AAUG

AAUG BBG

Figure 4.4: Detection ratio of the various models by each class found in the test
dataset sorted by total number of occurrences of each class in ascending order.

22

4. Results

The mistakes made by YOLO on each dataset is also presented in Figure 4.5. The
different kind of mistakes are presented on the y-axis and the ratio of these mistakes
are the x-axis. No IoU is when the intersection of union is zero. Low IoU is when its
lower than 0.5. Wrong class is when YOLO lables a sign incorrectly. Low confidence
is when YOLOs classification of a label is correct but the confidence is lower than
0.4. The ratio of the types of mistakes by the various methods is evidently not
the same during daytime compared to nighttime. The mistakes mainly consists of
having no IoU and classifying the wrong class. A method that stand out is AAUG
with a high ratio of no IoU (52%/63%) and a low ratio of wrong class (28%/25%).
Another one is BLEND with No IoU (41%/52%) and Wrong class (44%/34%) for
day/nighttime ratio.

Low confidence

Wrong class

Low IoU

Wrong class and low IoU

No IoU

Day

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Ratio of mistakes

Low confidence

Wrong class

Low IoU

Wrong class and low IoU

No IoU

Night

Ratio of mistakes by test and method
LISA

BLEND

SAUG

CG

CG INS

BBG

AAUG

AAUG BBG

Figure 4.5: Ratio of mistakes of YOLO by each augmentation method and test
dataset.

23

5. Discussion

From the results it can be seen that the baseline model trained using only LISA
produced an average recall rate of 0.883 for day and 0.662 for night. This discrepancy
is expected and supposed to be solved using augmentation of the training data.

All methods seem to retain daytime recall rate with the exception of AAUG and
AAUG BBG where it has improved to around 0.905. Common for these methods
is the use of AutoAugment to apply policies to the sign’s bounding box. While this
does not necessarily provide examples of dark signs, it allows YOLO to further gen-
eralize its identification of well lit signs. In Figure 4.1 it can be seen that nighttime
precision of AAUG and AAUG BBG is high, around 0.82, in relation to the recall
rate. This can be explained by looking at the mistakes of each method in Figure 4.5.
Here it is evident that YOLO fails to detect many signs during nighttime. With
both AAUG and AAUG BBG the No IoU mistakes increases and Wrong class de-
creases compared to LISA (baseline). This leads to fewer false positives, more false
negatives and therefore “improved” precision over the baseline.

In regards to the recall rate, the method which stands out the most with a nighttime
recall of 0.768 is BLEND. This method uses high-quality image textures for each
sign as opposed to low-quality real-world examples used in the other methods. This
allows YOLO to learn intricate details of each sign and distinguish similar signs like
noLeftTurn and noLeftAndUTurn. This specific example can be seen in Figure 4.3
where BLEND manages to identify over 100 more examples of the sign compared
to LISA. While the results are promising, it is important to remember that this
method requires the most manual labor to set up and will not necessarily generalize
well for other types of augmentation.

CG does not seem to improve the recall metric. This is due to the fact that the
content of the traffic signs in the CG dataset are too dark to read in many cases. CG
produces low quality images because it relies on the ability to map back and forth
between the daytime and nighttime domains. The problem is that there is poor
visibility in nighttime images which in turn makes a night to day transformation
difficult.

SAUG and CGAN INS both increased the performance on nighttime environments
even though the bounding box area of was identical to the LISA images. Therefore
it seems the surrounding environment around the bounding box make YOLO gen-
eralize better in regards to performance. It also indicates that the ODS has learned
features other than those of the signs in the image.

BBG provides a modest nighttime recall rate of 0.677 which is barely an improvement
over LISA. While this is not the result that was desired with the GAN there are

24

5. Discussion

some merits with this approach. It is easy to train the GAN on any kind of style
like weather or time of day given image examples of these settings, compared to the
manual labor required by BLEND and SAUG. Given more time and computation
power, the performance of the GAN could be further improved with changes to the
generator and discriminator architecture. The computation power limits the number
of layers and complexity of the GAN. In addition, training the BBGAN takes 1-2
hours on a Google Cloud computation instance with an Nvidia Tesla P100 GPU
before it produces images that start looking like nighttime. After this, the signs in
the images starts to get non-recognizable. This could potentially be improved upon
by changing the architecture and using brighter nighttime images as training data.

5.1 Quality of data

The LISA dataset contains both colored and grayscale images. One ODS could learn
to identify a red stop sign mostly from the characteristics of the color in the sign. A
stop sign without any color will then cause the ODS to learn that the shape of the
sign is more important than the color. This confusing data could affect the network
in a way that makes it less robust to real world usage. It is however important for
an ODS to learn to detect objects in different ways and not rely too much on color
since many traffic signs share the same color.

It is important to take into account the distribution of classes in both the train-
ing and testing datasets. The absence of better datasets resulted in the test set
not being a good representation of the training set in terms of the distribution of
classes. Some traffic signs were over-represented in the training or test data as can
be seen in appendix A. While effort has been made to match the distribution of
signs in both datasets, there are examples of classes where there are imbalances in
the distribution. This introduces an uncertainty factor that makes it more difficult
to make conclusions from the presented results.

The data used to train the GAN is a direct representation of the target domain
for the generated images. If the BDD/Nexar training dataset had better quality
in terms of visibility and clarity the results could potentially be improved. Other
projects prove that it is possible to generate lifelike images if enough resources are
put into development, for example StyleGAN [21].

5.2 Multiple Domains

This project focused on a single domain transformation, daytime to nighttime. How-
ever, to develop a complete solution for use in autonomous driving, the GAN must
be able to transform into other domains as well as combinations of these domains.
A real-world example could be mapping daytime images to snowy conditions dur-
ing nighttime. Several multi-domain image transformation GANs already exists,
e.g. StarGAN [22]. If these GAN solutions were combined with the loss function
introduced in this report, a sufficient augmentation pipeline could be developed.

25

6. Conclusion

Conventional methods of data augmentation, like color manipulation in SimpleAug-
ment and 3D-renders in Blender, offers measurable increase in performance when
learning out of distribution features. Given enough manual labor in the form of
analysis in the target domain of features, these methods can be implemented. How-
ever, due to the required manual labor these methods will have problems scaling up
and generalizing as the target domain of augmentation grows. In order to create
an end-to-end augmenter capable of handling various lighting conditions, weather,
time of year, different locales and more, there is a need for a more robust solution.

To train an ODS like YOLO it is important to preserve identifiable features of
the detectable object when performing augmentations. In the case of day-to-night
transformations it is important not to lose any content by making the traffic sign
too dark. It can be achieved using already annotated data, making it possible to
perform transformations outside the objects bounding box in order to preserve its
features. At the same time it needs to approximate the target domain of nighttime
scenes.

One scalable solution is a variant of an image-to-image GAN with a novel feature-
specific loss utilizing the MSE of the bounding box contents in annotated images.
While this method provides only marginal improvements to nighttime object de-
tection recall of the baseline, it shows some promise. Specifically when combined
with other augmentation methods in an “end-to-end” augmentation pipeline like
AutoAugment.

26

References

[1] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.
Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” Departe-
ment d’informatique et de recherche opérationnelle Université de Montréal,
2014. [Online]. Available: https://arxiv.org/abs/1406.2661.

[2] N. H. T. S. Administration. (2017). Automated vehicles for safety, [Online].
Available: https://www.nhtsa.gov/technology-innovation/automated-
vehicles-safety.

[3] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” Univer-
sity of Washington, Apr. 2018. [Online]. Available: https://arxiv.org/abs/
1804.02767.

[4] A. Møgelmose, M. M. Trivedi, and T. B. Moeslund, “Vision based traffic sign
detection and analysis for intelligent driver assistance systems: Perspectives
and survey,” IEEE Transactions on Intelligent Transportation Systems, 2012.
[Online]. Available: https://ieeexplore.ieee.org/document/6335478.

[5] A. Radford, L. Metz, and S. Chintala, “Unsupervised Representation Learning
with Deep Convolutional Generative Adversarial Networks,” arXiv e-prints,
arXiv:1511.06434, arXiv:1511.06434, Nov. 2015. arXiv: 1511.06434 [cs.LG].

[6] E. D. Cubuk, B. Zoph, D. Mané, V. Vasudevan, and Q. V. Le, “Autoaugment:
Learning augmentation policies from data,” Google Brain, Oct. 2018. [Online].
Available: https://arxiv.org/abs/1805.09501.

[7] J. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image transla-
tion using cycle-consistent adversarial networks,” CoRR, vol. abs/1703.10593,
2017. arXiv: 1703.10593. [Online]. Available: http://arxiv.org/abs/1703.
10593.

[8] I. J. Goodfellow, “NIPS 2016 tutorial: Generative adversarial networks,”
CoRR, vol. abs/1701.00160, 2017. arXiv: 1701.00160. [Online]. Available:
http://arxiv.org/abs/1701.00160.

[9] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
[Online]. Available: http://www.deeplearningbook.org.

[10] DanB. (2018). Rectified linear units (relu) in deep learning, [Online]. Available:
https://www.kaggle.com/dansbecker/rectified-linear-units-relu-

in-deep-learning/log.

[11] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” Mar. 2015. [Online]. Available:
https://arxiv.org/pdf/1502.03167v3.pdf.

27

https://arxiv.org/abs/1406.2661
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
https://ieeexplore.ieee.org/document/6335478
http://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1805.09501
http://arxiv.org/abs/1703.10593
http://arxiv.org/abs/1703.10593
http://arxiv.org/abs/1703.10593
http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1701.00160
http://www.deeplearningbook.org
https://www.kaggle.com/dansbecker/rectified-linear-units-relu-in-deep-learning/log
https://www.kaggle.com/dansbecker/rectified-linear-units-relu-in-deep-learning/log
https://arxiv.org/pdf/1502.03167v3.pdf

References

[12] A. Agrawal. (2017). Loss functions and optimization algorithms. demysti-
fied., [Online]. Available: https://medium.com/data- science- group-

iitr/loss- functions- and- optimization- algorithms- demystified-

bb92daff331c.

[13] Skymind, A beginner’s guide to generative adversarial networks (gans). [On-
line]. Available: https://skymind.ai/wiki/generative- adversarial-

network-gan (visited on 02/05/2019).

[14] J. Brownlee, “Gentle introduction to the adam optimization algorithm for deep
learning,” Jul. 2017. [Online]. Available: https://machinelearningmastery.
com/adam-optimization-algorithm-for-deep-learning/.

[15] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, and T. Darrell,
“BDD100K: A diverse driving video database with scalable annotation tool-
ing,” CoRR, vol. abs/1805.04687, 2018. arXiv: 1805.04687. [Online]. Avail-
able: http://arxiv.org/abs/1805.04687.

[16] Nexar. (2017). Nexar challenge ii, [Online]. Available: https : / / www .

getnexar.com/challenge-2/.

[17] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” CoRR, vol. abs/1505.04597, 2015. arXiv:
1505.04597. [Online]. Available: http://arxiv.org/abs/1505.04597.

[18] blender.org, Home of the blender project - free and open 3d creation soft-
ware, [Online; accessed 14-February-2019]. [Online]. Available: https://www.
blender.org/.

[19] M. Goyal, P. Rajpura, H. Bojinov, and R. Hegde, “Dataset augmentation with
synthetic images improves semantic segmentation,” arXiv e-prints, Jun. 2018.
[Online]. Available: https://arxiv.org/pdf/1709.00849.pdf.

[20] Google cloud platform. [Online]. Available: https://cloud.google.com.

[21] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for
generative adversarial networks,” CoRR, vol. abs/1812.04948, 2018. arXiv:
1812.04948. [Online]. Available: http://arxiv.org/abs/1812.04948.

[22] Y. Choi, M. Choi, M. Kim, J. Ha, S. Kim, and J. Choo, “Stargan: Unified
generative adversarial networks for multi-domain image-to-image translation,”
CoRR, vol. abs/1711.09020, 2017. arXiv: 1711.09020. [Online]. Available:
http://arxiv.org/abs/1711.09020.

28

https://medium.com/data-science-group-iitr/loss-functions-and-optimization-algorithms-demystified-bb92daff331c
https://medium.com/data-science-group-iitr/loss-functions-and-optimization-algorithms-demystified-bb92daff331c
https://medium.com/data-science-group-iitr/loss-functions-and-optimization-algorithms-demystified-bb92daff331c
https://skymind.ai/wiki/generative-adversarial-network-gan
https://skymind.ai/wiki/generative-adversarial-network-gan
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
http://arxiv.org/abs/1805.04687
http://arxiv.org/abs/1805.04687
https://www.getnexar.com/challenge-2/
https://www.getnexar.com/challenge-2/
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
https://www.blender.org/
https://www.blender.org/
https://arxiv.org/pdf/1709.00849.pdf
https://cloud.google.com
http://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1711.09020
http://arxiv.org/abs/1711.09020

A. Dataset distributions
A.1 LISA training and test splits

0.0 0.2 0.4 0.6 0.8 1.0

Ratio

speedLimit55 (2)

speedLimit60 (3)

rampSpeedAdvisoryUrdbl (3)

rampSpeedAdvisory40 (3)

leftAndUTurnControl (4)

speedBumpsAhead (4)

thruMergeLeft (5)

rampSpeedAdvisory35 (5)

thruMergeRight (7)

yieldToPedestrian (8)

noParking (8)

doNotPass (9)

rampSpeedAdvisory20 (11)

intersection (13)

zoneAhead45 (14)

rampSpeedAdvisory50 (16)

zoneAhead25 (19)

thruTrafficMergeLeft (19)

bicyclesMayUseFullLane (20)

intersectionLaneControl (24)

speedLimit15 (26)

rampSpeedAdvisory45 (29)

turnLeft (32)

slow (34)

dip (35)

noRightTurn (38)

doNotEnter (43)

noLeftTurn (45)

roundabout (53)

yieldAhead (57)

truckSpeedLimit55 (60)

noLeftAndUTurn (73)

speedLimit65 (73)

curveLeft (75)

rightLaneMustTurn (77)

turnRight (82)

speedLimit50 (95)

noUTurn (95)

curveRight (96)

schoolSpeedLimit25 (100)

speedLimitUrdbl (109)

speedLimit40 (160)

yield (170)

speedLimit45 (194)

school (199)

speedLimit30 (224)

laneEnds (247)

stopAhead (249)

merge (280)

addedLane (290)

keepRight (445)

speedLimit25 (568)

speedLimit35 (649)

signalAhead (1111)

pedestrianCrossing (1469)

stop (2724)

C
la

ss
(t

o
ta

l
o
cc

u
ra

n
ce

s)

Ratio of classes sorted by total number of occurances

LISA train

LISA test

I

A. Dataset distributions

A.2 LISA training and BDDNEX

0.0 0.2 0.4 0.6 0.8 1.0

Ratio

speedLimit60 (3)

rampSpeedAdvisory40 (3)

leftAndUTurnControl (3)

rampSpeedAdvisoryUrdbl (3)

speedBumpsAhead (4)

speedLimit55 (4)

thruMergeLeft (5)

yieldToPedestrian (5)

thruMergeRight (7)

rampSpeedAdvisory35 (8)

noParking (8)

zoneAhead25 (9)

doNotPass (9)

rampSpeedAdvisory20 (11)

intersection (11)

zoneAhead45 (14)

rampSpeedAdvisory50 (16)

rampSpeedAdvisory45 (16)

thruTrafficMergeLeft (19)

bicyclesMayUseFullLane (20)

intersectionLaneControl (21)

slow (22)

dip (22)

turnLeft (24)

speedLimit15 (41)

roundabout (47)

truckSpeedLimit55 (48)

yieldAhead (58)

rightLaneMustTurn (68)

schoolSpeedLimit25 (69)

turnRight (70)

speedLimit65 (73)

noLeftAndUTurn (74)

curveLeft (77)

doNotEnter (80)

speedLimit50 (97)

noRightTurn (108)

speedLimitUrdbl (108)

curveRight (111)

noUTurn (118)

speedLimit40 (168)

speedLimit45 (175)

speedLimit30 (179)

yield (188)

laneEnds (231)

noLeftTurn (258)

stopAhead (275)

addedLane (289)

merge (334)

keepRight (405)

speedLimit35 (586)

speedLimit25 (606)

school (690)

signalAhead (923)

pedestrianCrossing (1403)

stop (2366)

C
la

ss
(t

o
ta

l
o
cc

u
ra

n
ce

s)

Ratio of classes sorted by total number of occurances

LISA train

BDDNEX

II

A. Dataset distributions

A.3 LISA test and BDDNEX

0.0 0.2 0.4 0.6 0.8 1.0

Ratio

thruTrafficMergeLeft (0)

speedBumpsAhead (0)

noParking (0)

thruMergeRight (0)

bicyclesMayUseFullLane (0)

rampSpeedAdvisory20 (0)

zoneAhead45 (0)

thruMergeLeft (0)

rampSpeedAdvisory40 (0)

doNotPass (0)

rampSpeedAdvisoryUrdbl (0)

rampSpeedAdvisory50 (0)

yieldAhead (1)

leftAndUTurnControl (1)

intersection (2)

speedLimit55 (2)

rampSpeedAdvisory35 (3)

intersectionLaneControl (3)

yieldToPedestrian (3)

roundabout (8)

speedLimit65 (8)

rightLaneMustTurn (9)

truckSpeedLimit55 (12)

zoneAhead25 (12)

rampSpeedAdvisory45 (13)

dip (13)

slow (14)

speedLimit15 (15)

speedLimit50 (24)

schoolSpeedLimit25 (31)

speedLimitUrdbl (33)

turnRight (36)

turnLeft (36)

speedLimit45 (41)

noLeftAndUTurn (45)

curveRight (45)

curveLeft (50)

yield (50)

speedLimit40 (52)

noUTurn (53)

addedLane (55)

doNotEnter (67)

stopAhead (68)

noRightTurn (88)

merge (96)

laneEnds (118)

speedLimit30 (121)

keepRight (126)

speedLimit35 (149)

noLeftTurn (213)

signalAhead (306)

speedLimit25 (420)

pedestrianCrossing (516)

school (553)

stop (898)

C
la

ss
(t

o
ta

l
o
cc

u
ra

n
ce

s)

Ratio of classes sorted by total number of occurances

LISA test

BDDNEX

III

B. Generated image examples
B.1 Blender

IV

B. Generated image examples

B.2 SimpleAugment

V

B. Generated image examples

B.3 CycleGAN

VI

B. Generated image examples

B.4 CycleGAN with insertions

VII

B. Generated image examples

B.5 BBGAN

VIII

B. Generated image examples

B.6 AutoAugment with BBGAN

IX

C. YOLO detection examples
C.1 Correct detections

X

C. YOLO detection examples

C.2 Failed detections

XI

	Introduction
	Theory
	Methodology
	Results
	Discussion
	Conclusion
	References
	Dataset distributions
	Generated image examples
	YOLO detection examples

