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Abstract

This master thesis addresses issues in computer vision and pattern classification. More
specifically, we are interested in classification of various object poses from images, for
examples, poses of human faces or cars. Analysis and classification of visual object poses
are important steps towards different applications, e.g., surveillance and traffic safety.
In this thesis work, several feature extraction methods are implemented, including HOG
(histogram of oriented gradients) and Gabor features. A multi-class object classifier based
on multi-class AdaBoost is implemented. Experiments have been conducted on large
numbers of face images and car images with different poses. For human faces, the classifier
contains 5 classes of poses (frontal, left, right, upward and downward), while for car images
the classifier contains 4 classes of poses (frontal, rear, left and right).
Two types of images are tested: one is from the visual band and another is from the
thermal infrared band. Due to different properties and characteristics in these two types
of images, different types of features are extracted. For visual band images, HOG is used
as the main feature descriptor. For thermal IR images, Gabor features are used.
For classification of object poses, classifiers are tested separately by using visual band
images only, and thermal IR images only. Performance is then evaluated for these two
types of classifiers. Attempts are also made on classifiers through fusing these two types
of features in visual and IR images. Results will be presented and future work will be
discussed.
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Chapter 1

Introduction

Computers have been widely used in our daily lives, since they can handle data and
computation more efficiently and more accurately than humans. Therefore, it is natural
to further exploit their capabilities for more intelligent tasks, for example, analysis of
visual scenes (images or videos) or speeches (audios), which is followed by logical inference
and reasoning. For we humans, such tasks are performed hundreds of times every day so
easily from subconscious, sometimes even without any awareness. Take the example of
human visual system in recognizing object poses. Our daily lives are filled with all kinds
of objects in their different poses, where the poses of human faces and cars are two of
the major concerns. For human faces, there are 5 classes of poses, which are frontal, left,
right, upward and downward, while for cars there are 4 classes of poses, which are frontal,
rear, left and right. Each class has a huge within-class variation. For example, the exact
face shape, skin color and hair style of a person vary a lot, not to mention whether the
person has beard, mustache, glasses or hat, etc. Also, the exact type, color and size of a
car are so much diversified. However, these factors are irrelevant to the decision that in
which pose the object appears. Similarly, human beings are able to detect the poses of an
object under widely varied conditions, irrespective of the partial occlusions, illumination
or background clutter. So far, computers are still far behind humans in performing such
analysis and classification tasks.

As a result, one topic of researchers who work in computer vision and machine learning is
to grant computers the ability to see, that is, to analyze and interpret images or videos.
One of the primary tasks is the detection of different classes of object poses in images
and videos. Such a capability would have a wide range of applications, for example,
surveillance in public places and traffic safety on the road.

This chapter introduces the problem of pose classification, in particular the poses of human
faces and cars, discusses the challenges involved, and briefly presents the outline of the
thesis. Section 1.1 gives a general description of the goal in pose classification. Section 1.2
discusses the difficulties in classification of object poses from visual and infrared images.
The structure of this thesis is provided in Section 1.3.
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CHAPTER 1. INTRODUCTION

1.1 The Goal

This thesis work addresses the problem about classification of object poses in images,
which can be considered as a special case in object recognition. In particular, it targets
the issue of designing object pose classifiers from a computer vision point of view, where
the classifiers analyze given images containing objects and identify the pose class of the
object. For a more precise definition of the goal, the object pose classifier is viewed as a
combination of two major building blocks: a feature extraction algorithm that compiles
input images into feature vectors, and a classifier that makes use of the feature vectors
to decide which pose the object has. The compilation of image into feature vectors is
fundamental to building robust object pose classifiers due to the ambiguity of objects
in images. There are many aspects contributing to the ambiguity, such as within-class
variations, background clutter, variations in illuminations, partial occlusions. More details
of the challenges involved are discussed in Section 1.2. If properly selected, the image
feature descriptors can mitigate these negative effects and simplify the classification task,
thus allowing object poses to be discriminated with less training data and less complex
learning methods.

1.2 The Challenges

The most notable difficulties in designing a robust classifier of object poses in visible light
images are the many variations, which include:

• Firstly, almost every class of natural objects have large variations within the class.
For example, for each human face, face shape, skin color and hair style, etc. change
significantly and differences in beard, mustache and wearing glasses and hat result
in further changes. As for cars, the model, the color and the size also change con-
siderably between each other. A robust classifier must try to achieve independence
of these variations.

• Secondly, background clutter is one common issue. The images may be taken from
various background settings like outdoor scenes in cities and indoor environments.
The classifier must be able to distinguish object class from those complex back-
grounds.

• Thirdly, illumination condition varies a lot, ranging from direct sunlight and shad-
ows during the day to artificial or dim lighting inside buildings or at night. Al-
though some solutions for illumination invariance have been adopted, they are still
extremely ineffective when compared to human visual systems in being adaptive
to such changes. Therefore, a robust classifier of object poses should also provide
extensive invariance to the changes of illumination and lighting conditions.
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CHAPTER 1. INTRODUCTION

• Finally, partial occlusions may further degrade the classification performance since
only part of the object in the image is available for processing. However, in this
thesis work, it is assumed that all the objects in the images are fully displayed and
no partial occlusion happens.

For the infrared thermal images, the effect of background clutter and illumination variance
in visual images can be significantly suppressed, since they present the object edges based
on temperature difference. However, this kind of images may still suffer from partial
occlusions. Besides, they also have an inevitable shortage, that is, if the background
temperature is close to the object temperature, the edge information will be completely
damaged. In this thesis, such unfavored situations are avoided.

1.3 The Outline of the Thesis

This chapter introduced the classification problem of object poses, and described the
overall goals of the thesis. The remaining chapters are arranged as follows:

• Chapter 2 reviews the related work and background theories in object classification,
with particular focus on the techniques that have been chosen for classification of
object poses in this thesis work. It first describes some previous work on feature
descriptions of objects in images, and then summarizes the key classification models.
Lastly, image fusion strategies are also looked into.

• Chapter 3 mainly describes the work that has been done in this thesis, for classifi-
cation of object poses from visual and infrared images. Before that, it also presents
the motivations for the selection of feature descriptors for each type of images and
learning algorithms for object pose classification. It describes the overall classifier
framework as well as some implementation details. This includes: (1) implemen-
tation of feature extraction methods using histogram of oriented gradients (HOG)
and Gabor filters, (2) implementation of feature selection using principal component
analysis (PCA) and feature level fusion applying Fisher linear discriminant (FLD),
(3) implementing multi-class AdaBoost classifier.

• Chapter 4 gives an overview of the datasets used, the parameter settings and the
key experimental results. Emphasis will be put on testing and evaluation of pose
classification on face and car databases.

• Chapter 5 provides a discussion of the advantages and limitations of the work. It
then summarizes this thesis and gives some ideas in future work.
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Chapter 2

Background Theories

Analysis and classification of object poses in images and videos have received much at-
tention in the research of computer vision and pattern recognition recently. As shown in
Chapter 1, it is a challenging yet promising task, which has many potential applications.
This chapter makes some literature review on the related works and some background
theories in object classification, from feature extraction, pattern classification models to
image fusion, and emphasis will be placed on the techniques that have been chosen for
classifying object poses in this thesis work. First, some previous work on feature rep-
resentation methods of objects in images will be described. After that, some popular
classification algorithms and fusion techniques will be investigated.

2.1 Image Features

For object detection or classification, the image features should carry enough information
of the object in the image and should not contain any irrelevant and redundant knowledge
from the extraction. They should be easy to compute in order to make the approach
feasible for a large collection of images and rapid extraction. They should relate well with
the human perceptual characteristics since users will finally determine the suitability of
the retrieved images. Besides, the image features should also provide invariance to changes
in illumination, background, etc. To achieve these goals, rather than directly applying
raw image intensities or gradients, one often uses some form of more advanced local image
feature descriptors. Such features can be based on points, blobs, intensities, gradients,
color or their combinations. In a word, the final feature descriptor need to represent the
image sufficiently well for the detection and classification tasks.

There are various kinds of approaches for image feature representation, which in general
can be divided into four categories. One consists of sparse representations based on
points, image fragments or regions, while the other three contains dense representations
using image intensities, gradients or wavelets, respectively.
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CHAPTER 2. BACKGROUND THEORIES

2.1.1 Key Points / Region of Interest Based Approach

This type of methods extract local image features sparsely at or around some distributed
points, also called key points or region of interest. The classification results are thus
based on the feature vectors calculated from these key points or regions. The idea behind
these approaches is that the detected key points are located in relatively more stable and
more reliable image regions, which are especially informative about local image content.
The overall performance in object classification then depends on the reliability, accuracy
and repeatability of key point or region detection for each object class and the amount
of relevant information carried by the detected points or the image regions surrounding
these points. Some common techniques in interest point detection include Förstner [1],
Laplacian [2] or Difference of Gaussians (DoG) [3], scale invariant Harris-Laplace [4] and
also some combinations of them. Then, feature vectors or descriptors can be obtained
by computing over the local image regions surrounding the key points found. The ma-
jor advantage of key point / region of interest based method is the compactness of the
representation, since the dimension of feature descriptors based on key points or regions
are usually much smaller than the total number of image pixels, thus accelerating the
following classification process. However, such methods may have limitations for general
object class because most of them are designed only to handle particular objects. One of
the most popular approaches for this kind of feature extraction is Scale-Invariant Feature
Transformation (SIFT) [3][5].

SIFT (Scale-Invariant Feature Transform)

The SIFT feature detection technique can be used for object recognition. According to
[3], the features extracted from images are invariant to image rotation and scaling, which
can perform reliable matching between different views of an object or a scene. Also,
the features have been shown to be robust against affine distortion, additional noise and
illumination variance. The method is efficient in identifying and computing features.
The stages for SIFT feature extraction are scale-space extrema detection, key point local-
ization, orientation assignment and generation of key point descriptors. In the following
these stages are investigated in detail.

• Scale-space extrema detection

For SIFT features, the interest points correspond to local extrema of Difference-of-
Gaussians (DoG) filters at different scales.

Given a Gaussian blurred image

L(x,y,σ) = G(x,y,σ) ∗ I(x,y) (2.1)

where
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CHAPTER 2. BACKGROUND THEORIES

G(x,y,σ) =
1

2πσ2
exp

(
−(x2 + y2)

σ2

)
(2.2)

is a variable scale Gaussian, and the result of convolving an image with a DoGs
filter

G(x,y,kσ)−G(x,y,σ) (2.3)

is given by

D(x,y,σ) = L(x,y,kσ)− L(x,y,σ). (2.4)

This is just the difference of the Gaussian blurred images at scale σ and kσ.

Figure 2.1: The blurred images at different scales and the resulting DoG images (from
[3]).

As the preparation step for key point localization, the image is convolved with
Gaussian filters at different scales and DoG images are generated from the difference
of adjacent blurred images, as shown in Figure 2.1.

The convolved images are grouped by octave which is set to doubling the value of
σ, and the value of k is selected so that a fixed number of blurred images per octave
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CHAPTER 2. BACKGROUND THEORIES

are obtained. This also ensures that the same number of DoG images per octave
are obtained.

It should be noted that the DoG filter provides an approximation to the scale-
normalized Laplacian of Gaussian (LoG) σ2O2G, so the DoG filter is actually a
tunable bandpass filter.

• Key point localization

Interest points, also called key points in the SIFT framework, are identified as local
maxima or minima of the DoG images across scales. Each pixel in the DoG images
is compared to its 8 neighbors at the same scale, and also to the 9 corresponding
neighbors at neighboring scales. If the pixel turns out to be a local maximum or
minimum, it is selected as a candidate key point, as illustrated in Figure 2.2.

Figure 2.2: Local extrema detection, the pixel marked × is compared against its 26 neigh-
bors in a 3×3×3 neighborhood that spans adjacent DoG images (from [3]).

For each candidate key point, the interpolation of nearby data can be applied to
more accurately determine its position, since the key points with low contrast will
be removed and responses along edges will be eliminated. After that, the key point
is assigned an orientation.

• Orientation assignment

In order to determine the orientation of the key point, a histogram of gradient orien-
tation is computed in the neighborhood of the key point using the Gaussian image

7



CHAPTER 2. BACKGROUND THEORIES

at the closest scale to that of the key point. The contribution of each neighboring
pixel is weighted by the gradient magnitude and a Gaussian window with a σ that
is 1.5 times the scale of the key point.

Peaks in the histogram indicate the dominant orientations. A separate key point is
created for the direction corresponding to the maximum value in the histogram, and
for any other direction that has a value at least 80% of the histogram maximum.

At this stage, all the properties of the key point are measured with respect to its
orientation, invariance to rotation is thus achieved.

• Generation of key point descriptor

Once the orientation of a key point is selected, the feature descriptor can be com-
puted as a set of orientation histograms on 4 × 4 pixel neighborhoods. The his-
tograms are relative to the key point orientations, which derive from the Gaussian
image closest in scale to that of the key point.

Same as above, the contribution of each pixel is weighted by the gradient magnitude,
and by a Gaussian window with σ 1.5 times the scale of the key point.

Figure 2.3: SIFT feature description. Left: image gradients. Right: key point descriptor
(from [3]).

Histograms contain 8 bins each, and each descriptor contains an array of 4 his-
tograms around the key point, as shown in Figure 2.3. This leads to a SIFT feature
vector with 4×4×8 = 128 elements. This vector is normalized to enhance invariance
to changes in illumination.

2.1.2 Image Intensity Based Approach

One of the initial works of feature representation using simple image intensities is the
eigenfaces approach in [6] and [7], where the pixel values of face images are collected into
a high-dimension feature vector and Principle Component Analysis (PCA) is applied to

8



CHAPTER 2. BACKGROUND THEORIES

reduce the dimensions while keeping the most relevant features. Another work using image
intensities is the face detection system in [8] where lighting conditions of the images are
corrected by performing histogram equalization before classification. Here the histogram
of intensities is introduced, with two operators closely connected to it, which are contrast
stretching and histogram equalization.

Histogram of Intensities

The histogram of intensity is the measure of the number of pixels in an image at each dif-
ferent intensity value found in that image. Mathematically, the histogram for a grayscale
image is a discrete function h(rk) = nk, where rk is the k-th gray level and nk is the
number of pixels in the image that have gray level rk.
Histograms can also to applied to color images. For color images, either individual his-
tograms of red, green and blue (RGB) channels can be created, or a 3D histogram can
be produced, with three axes representing the RGB channels and the value at each point
representing the pixel count.
The histogram processing is very simple. The image intensities are considered as random
variables with a probability density function (PDF), and the PDF can be estimated from
the empirical data provided by the image itself. Therefore, every pixel in the image is
scanned and a count of the number of pixels found at each intensity value is kept. In
other words, the frequency distribution of image intensities is recorded. This is then used
to construct a histogram of intensities for the image, as shown in Figure 2.4.

Figure 2.4: Left: sample image. Right: corresponding intensity histogram.

The histogram should be normalized by dividing each bin by the total number of pixels
in the image, in order to give an estimate for the PDF. Then, each element of the array
shows the probability of that intensity occurring at a randomly selected pixel. So the
histogram of intensities contains only global information of the entire image, which can

9



CHAPTER 2. BACKGROUND THEORIES

be used as a very compact feature descriptor for object classification. However, the major
drawback of this approach is that each image has only one histogram, and all spatial
information of the image is discarded. One possible solution could be to integrate the
histogram of intensities with some other feature types to jointly produce some robust
feature representations of the image. Another possible solution could first divide the
image into dense grid of uniformly distributed pixel regions, compute the histogram of
intensities over each cell, and then concatenate all the histograms into one large feature
vector.
The histogram of intensities can be improved by many image enhancement operators. Two
operators which are commonly used are contrast stretching and histogram equalization.
They are both based on the assumption that an image has to use the full intensity range
to display the maximum contrast.

• Contrast stretching

Contrast stretching aims to improve the contrast in an image by stretching the
range of intensity values to the maximumly allowed extent. The process is done by
applying a linear scaling function to the image pixel values.

First of all, it is necessary to specify the upper and lower bound of image intensities
over which the image is to be normalized. In most cases, these limits will be the
maximum and minimum values that the image type allows. Let a and b denote the
upper and the lower limits as , respectively.

The simplest kind of normalization searches for the highest and lowest pixel values
currently present in the image, which are denoted by c and d. Then each pixel is
scaled using the following function

Î(x,y) = (I(x,y)− d)

(
a− b
c− d

)
+ b. (2.5)

Thus, the contrast in the image is improved without distorting relative intensities
too significantly, which is illustrated in Figure 2.5.

• Histogram equalization

Unlike contrast stretching, histogram equalization uses a non-linear and monotonic
mapping. The idea of histogram equalization is that the pixels should be distributed
evenly over the whole intensity range, i.e. the aim is to transform the image so that
the output images has a flat histogram (Figure 2.6).

Consider a histogram of intensities h(rk) = nk, where rk is the k-th intensity level
and nk is the number of pixels in the image that have intensity level rk. The
probability of a intensity rk occurring at a randomly selected pixel is
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CHAPTER 2. BACKGROUND THEORIES

Figure 2.5: Left: contrast-stretched image. Right: resultant intensity histogram.

Figure 2.6: Left: histogram-equalized image. Right: resultant intensity histogram.

p(rk) =
nk
n
, 0 ≤ k < L (2.6)

where n is the total number of pixels in the image and L is the totally number of
intensity levels. In fact, p(rk) is equal to h(rk) if h(rk) has been normalized to [0,1].

Now define the cumulative distribution function (CDF) that corresponds to p(rk)
as

P (rk) =
k∑
j=0

p(rj) (2.7)

which is also the accumulative normalized histogram of the image.

11



CHAPTER 2. BACKGROUND THEORIES

A transformation is created so that the new CDF will be linearized across the value
range:

sk = T (rk) = P (rk) (2.8)

As a result, the transformation T has mapped the intensity levels into the range
[0,1].

2.1.3 Gradient Based Approach

Edge in the images has been one of the most widely used features in object detection and
classification. The basic idea behind this kind of approaches is that edges give dominant
gradient magnitudes over the entire image, so the edge features can be represented in
various ways using image gradients. A popular approach is the pedestrian detection
system using histogram of oriented gradients (HOG) in [9] and [10], where gradients are
used to compute feature descriptors based on histogram of dominant orientations within
dense and overlapping image regions.

Histogram of Oriented Gradients (HOG)

Histogram of oriented gradients can be used as feature descriptors for the purpose of
object detection, where the occurrences of gradient orientation in localized parts of an
image play important roles. This technique is similar to scale-invariant feature transform
(SIFT) but differs in that it operates on a dense grid of uniformly spaced cells and uses
local contrast normalization on overlapping blocks for improved accuracy. HOG feature
descriptors are first described in [9], where great success has been achieved on pedestrian
detection in both images and videos, as well as on a variety of common animals and
vehicles in static pictures.
The basic idea behind HOG is that the appearances and shapes of local objects within
an image can be well described by the distribution of intensity gradients as the votes for
dominant edge directions. Such feature descriptor can be obtained by first dividing the
image into small contiguous regions of equal size, called cells, then collecting a histogram
of gradient directions for the pixels within each cell, and at last combining all these
histograms. In order to improve the detection accuracy against varied illumination and
shadowing, local contrast normalization can be applied by computing a measure of the
intensity across a larger region of the image, called a block, and using the resultant value
to normalize all cells within the block.
Thus, the HOG feature descriptor holds some crucial advantages over other techniques.
For one thing, this method results in significant invariance to geometric and photometric
transformations since it operates on localized cells so that those changes would only appear
in larger spatial regions. For another, according to [9], HOG features are more tolerant
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to the individual body movement of pedestrians as long as they keep a roughly upright
position so this descriptor is particularly suitable for human detection.
In fact, there are four variants of HOG block scheme: Rectangular HOG (R-HOG), Cir-
cular HOG (C-HOG), as shown in Figure 2.7, Bar HOG and Center-Surround HOG [10],
among which R-HOG is the most popular. Regardless of the block type, some crucial
procedures of HOG feature extraction are summarized below (Figure 2.8). More details
can be found in [10].

Figure 2.7: Left: R-HOG block. Right: C-HOG block (from [10]).

• Gradient computation

The first step in HOG feature extraction is the computation of image gradients.
This is done by applying the 1D centered, point discrete derivative mask in both the
horizontal and vertical directions, which in specific are filter kernels of the following
form:

[−1,0,1] and [−1,0,1]T

In fact, there are many more complex masks, such as Sobel, Prewitt, Canny or
diagonal masks, but these masks generally result in poorer performance [9]. Then,
the magnitude and orientation at each pixel I(x,y) is calculated by Gmag(x,y) =

√
G2
x(x,y) +G2

y(x,y)

θ(x,y) = arctan (Gy(x,y)/Gx(x,y)) + π/2
(2.9)

where Gx(x,y) and Gy(x,y) are the gradient values at each pixel in horizontal and
vertical direction, respectively. For color images, the channel with the largest mag-
nitude gives the pixel’s dominant magnitude and orientation. It should be noted
that π/2 is necessary since the arctan operator results in a range between −π/2 and
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Figure 2.8: The processing chain of HOG feature descriptor (from [10]).

π/2, but for unsigned orientation scheme which gives better performance, it ranges
from 0 to π.

• Orientation binning

In this procedure, the histograms for each cell are created. The cells are pixel regions
that are either rectangular or radial in shape, and the histogram bins are evenly
expanded from 0◦ to 180◦ (or from 0◦ to 360◦ in the case of signed orientation), so
every histogram bin has a spread of 20◦. Every pixel in the cell casts a weighted
voting into one of the 9 histogram bins that its orientation belongs to. As for the
weight of votes, it can either be the gradient magnitude itself, or some function of
the magnitude, for example, the square root or square of the gradient magnitude,
or some clipped version of the magnitude. Generally, the gradient magnitude is
directly used.

• Descriptor blocks

To obtain the robustness against various illumination and contrast, the gradient
strengths must be locally normalized. This leads to grouping the cells into larger
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pixel regions called blocks. These blocks overlap with neighboring blocks, so that
each cell can contribute its orientation distribution more than once. As mentioned
before, totally 4 block geometries exist, with one most commonly used: Rectangular
HOG blocks. R-HOG blocks are usually square grids, and the optimal parameters
are found to be 2×2 cell blocks of 8×8 pixel cells (or 3×3 cell blocks of 6×6 pixel
cells). Besides, a Gaussian spatial window can be applied to each block before
histogram voting so that the weight of each pixel around the edge of the block can
be significantly suppressed.

• Block normalization

There are four different way proposed to normalize the blocks. Let v denote the
non-normalized feature vector that collects all cell histograms from a given block,
‖v‖k denote its k-norm for k = 1,2 and eps denote some small constant. Then the
normalization schemes have the following forms:

L2-norm: v̂ =
v√

‖v‖2
2 + eps2

(2.10)

L1-norm: v̂ =
v

(‖v‖1 + eps)
(2.11)

L1-sqrt: v̂ =

√
v

(‖v‖1 + eps)
(2.12)

L2-Hys is computed by re-normalizing the clipped L2-norm. All the normalization
schemes provide much better performance than non-normalized case.

The final HOG feature descriptor is then the vector containing the elements of the
normalized cell histograms from all of the block regions.

2.1.4 Wavelet Based Approach

Wavelets that are created to have different frequencies can be combined and convolved
with many different kinds of data, including audio signals and images, to extract informa-
tion from the data. Mathematically, the wavelet will resonate if the signal being convolved
contains information of similar frequency, which is the core concept for many practical
application of wavelets, e.g., feature extraction based on Haar wavelets [11] and Gabor
wavelets [16].
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Haar-like Features

Haar-like features can be used in object recognition, especially for human face detection.
This kind of features get the name due to their intuitive similarity with Haar wavelets.

The initial type of this feature set is discussed in [12], which is based on Haar wavelets.
Later, this idea of using Haar wavelets was adapted in [11] and was further developed
into the so called Haar-like features. In general, a Haar-like feature sums up the intensity
values of the pixels in each rectangular region all inside a subsection of an image and
computes the difference between the sums. The difference can be then used to identify
subsections of the image. For example, among all human faces the region of eyes is darker
than the region of cheeks. As a result, a Haar-like feature for human faces can be obtained
by placing two adjacent rectangles over the eye and the cheek region.

Figure 2.9: Different types of Haar-like features.

According to [11], a bounding box of proper size slides over the input image, and for
each subsection of the image, Haar-like feature is computed. Each time, the difference is
compared to a learned threshold for object / non-object decision. However, this kind of
classifier works only slightly better than random guessing, so a ensemble scheme is used
to group a large number of Haar-like features in a classifier cascade to jointly produce a
strong classifier which can describe an object with sufficient accuracy.

The major advantage of Haar-like features is the fast calculation speed, which makes it
rather competitive in real-time object recognition. The fast computation of Haar-like
features is achieved by using summed area tables [13], also called integral images. For
improved performance of object recognition in more orientations, tilted and rotated Haar-
like features are also proposed, in [14] and [15]. Figure 2.9 shows how it can be done for
common and tilted Haar-like features.
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Gabor Features

Gabor filter, named after Dennis Gabor, can be used to detect object edges in an image.
In the spatial domain, a 2D Gabor filter is usually considered as a Gaussian kernel function
modulated by a sinusoidal plane wave, as illustrated in Figure 2.10. Gabor filters with
properly selected frequencies and orientations can be assembled to form a filter bank
which is similar to the model of human visual system, thus being found to be particularly
appropriate for pattern classification use. There are more than one representation of 2D
Gabor filters, and here one common definition is introduced [16].

(a) a 2D Gaussian envelope. (b) Real part of a sinusoidal
plane wave.

(c) Real part of the corre-
sponding 2D Gabor filter.

Figure 2.10: A 2D Gabor filter is obtained by modulating a sinusoidal plane wave with a
Gaussian envelope.

As is mentioned above, a 2D Gabor filter g(x,y) is formed from two components, a complex
sinusoidal carrier s(x,y) and a Gaussian envelope w(x,y).

g(x,y) = s(x,y) · w(x,y) (2.13)

The envelope has a Gaussian profile (Figure 2.10a) and is described by the following
equation:

w(x,y) = exp(−1

2

(
x̂2

σ2
x

+
ŷ2

σ2
y

)
) (2.14)

where {
x̂ = x cos θ + y sin θ

ŷ = −x sin θ + y cos θ
(2.15)

θ represents the rotation angle, σx and σy are the standard deviations of the envelope
along x- and y- dimensions. If σx = σy = σ, then the 2D Gaussian function can be
rewritten as:
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w(x,y) = exp(− x̂
2 + ŷ2

2σ2
) (2.16)

The complex carrier takes the form:

s(x,y) = exp(j2πfx̂) (2.17)

The real part of the function (Figure 2.10b) is given by:

<{s(x,y)} = cos(2πfx̂) (2.18)

and the imaginary part of the function is given by:

={s(x,y)} = sin(2πfx̂) (2.19)

where f defines the spatial frequency.
The complex Gabor filter kernel is therefore as follows:

g(x,y) = exp(− x̂
2 + ŷ2

2σ2
) exp(j2πfx̂) (2.20)

and the real component of the Gabor filter is shown in Figure 2.10c.
If the frequency f and the orientation θ are properly chosen, a bank of Gabor filters which
covers the entire frequency domain can be obtained, which can be observed in Figure 2.11
and 2.12.

(a) Real part of Gabor filters
in spatial domain.

(b) Imaginary part of Gabor
filters in spatial domain.

(c) Gabor filters in the fre-
quency domain.

Figure 2.11: A bank of Gabor filters. For each column of the sub-figures from left to
right: θ = 0(π), π/4(5π/4), π/2(6π/4), 3π/4(7π/4), for each row of from top to bottom,
σx = σy = 16, 8, 4, 2, where f = 1/σx.
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(a) 3D view. (b) Corresponding 2D view.

Figure 2.12: A bank of Gabor filters in the frequency domain. For each layer, θ =
0(π), π/4(5π/4), π/2(6π/4), 3π/4(7π/4), for each circle from outer layer to inner layer, σx =
σy = 2, 4, 8, 16, where f = 1/σx.

Commonly, the Gabor representation of an image is computed by convolving the image
with the Gabor filters in the bank [17]. Let I(x,y) be the intensity at the coordinate (x,y)
in a grayscale image, its convolution with a Gabor filter g(x,y) is defined as:

h(x,y) = I(x,y) ∗ g(x,y) (2.21)

where the filter responses are complex valued, so either the real part <{h(x,y)} or the
magnitude

√
<2{h(x,y)}+ =2{h(x,y)} of the filter response is taken, which are then re-

spectively reshaped into 1D vectors and normalized for enhanced robustness against illu-
mination variance. The Gabor feature vector is thus obtained by concatenating these 1D
vectors.

2.2 Classification Methods

All classification algorithms are based on the assumption that the data in question holds
one or more features, each of which belongs to one of several distinct and exclusive classes.

Classification algorithms typically includes two successive procedures: training and test-
ing. In the initial training phase, a unique description of each class is made by learning
with typical features extracted from the training samples and separating them in the fea-
ture space. In the subsequent testing phase, these feature space separations are used to
classify newly input feature vectors extracted from the testing dataset. Therefore, the
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classification problem can also be viewed as determining to which sub-space class each
feature vector belongs.

One of the most popular techniques in machine learning is AdaBoost. It is widely used for
object recognition and classification, due to its outstanding performance and the ease to
use. Moreover, its capabilities to automatically select the most relevant feature descriptors
from large feature sets are also often exploited.

2.2.1 AdaBoost

AdaBoost, short for Adaptive Boosting, is a technique which can be used to improve
the performance of many learning algorithms. Generally, AdaBoost sequentially applies a
given learning algorithm with respect to a set of training samples and adds each prediction
to an ensemble. When being added to the emsemble, the prediction is typically weighted
according to its accuracy. After this, the dataset is also reweighted: samples that are
misclassified gain weights and samples that are correctly classified lose weights. Thereby
each successive classifier is forced to focus on those samples that are misclassified by
previous ones in the sequence. AdaBoost is chosen in this thesis work since its basic idea
is quite simple but still very successful, with performances comparable to more complex
methods such as Support Vector Machines [18].

Original AdaBoost

In fact, AdaBoost is originally intended only for boosting binary classifiers, so it can not be
directly applied to multi-class cases. For multi-class problems, there are many extensions
and modifications of AdaBoost, but all derive from the same kind of model, that is, the
forward stagewise additive modeling.

Forward stagewise additive modeling approaches the optimization problem by sequen-
tially adding new basis functions to the expansion without adjusting the parameters and
coefficients of those that have been already added. AdaBoost is equivalent to this model
and it uses the exponential loss function below for binary case:

L(y,f(x)) = exp(−yf(x)) (2.22)

For binary AdaBoost, training samples are input as feature vectors {xi} with their desired
outputs {yi} ∈ {−1,1}, where i = 1,2,...,N , the basis functions in the forward stagewise
additive model are the weak learners T (m)(x) ∈ {−1,1}. Using the exponential loss
function, the problem becomes solving:

(α(m),T (m)) = arg min
α,T

N∑
i=1

exp[−yi(f (m−1)(xi) + αT (xi))] (2.23)
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for the weak learner T (m) and its corresponding weight coefficient α(m) to be added at
each step. This can expressed as:

(α(m),T (m)) = arg min
α,T

N∑
i=1

w
(m)
i exp(−αyiT (xi)) (2.24)

where

w
(m)
i = exp(−yif (m−1)(xi)). (2.25)

Since w
(m)
i is independent on α and T (xi), it can be regarded as a weight factor that

is applied to each training samples. This weight depends on f (m−1)(xi) so the weight
changes during each iteration m.
It can be easily observed that{

If yi = T (xi), then yi · T (xi) = 1;

If yi 6= T (xi), then yi · T (xi) = −1.
(2.26)

Therefore, the criterion in (2.24) can be expressed as

e−α
∑

yi=T (xi)

w
(m)
i + eα

∑
yi 6=T (xi)

w
(m)
i , (2.27)

which in turn can be rewritten as

(eα − e−α)
N∑
i=1

w
(m)
i I(yi 6= T (xi)) + e−α

N∑
i=1

w
(m)
i (2.28)

Apply gradient descent method to (2.28) and solve for α, by taking partial derivative
respect to α and set the resulting equation is to 0, one obtain α as

α(m) =
1

2
log

1− err(m)

err(m)
(2.29)

where err(m) is the minimized weighted error rate

err(m) =

∑N
i=1w

(m)
i I(yi 6= T (m)(xi))∑N

i=1 w
(m)
i

. (2.30)

As a result, the approximation can be updated as

f (m)(x) = f (m−1)(x) + α(m)T (m)(x). (2.31)

So the weight for the next iteration can be accordingly updated as
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w
(m+1)
i = exp(−yif (m)(xi)) = w

(m)
i · e−α(m)yiT

(m)(xi). (2.32)

Considering the fact that

− yiT (m)(xi) = 2 · I(yi 6= T (xi))− 1, (2.33)

the updating scheme of sample weights becomes

w
(m+1)
i = w

(m)
i · eβ(m)I(yi 6=T (xi)) · e−α(m) (2.34)

where β(m) = 2α(m). The multiplication factor e−α(m) is applied to all weights so it can
be ignored.

At this stage, the original AdaBoost algorithm can be summarized in Table 2.1.

When AdaBoost is asked to classify an previously unknown sample, each classifier in the
ensemble contributes its own weight β(m) to either one of the two classes it predicts, and
in the end, the class with the higher value is chosen as the final prediction. For better
illustration, a two-class problem on a 2D feature space is taken as the example in Figure
2.13.

During each boosting round, the weights of wrongly classified samples are increased. In
this way, the weak learner for the next boosting round will be forced to pay attention
on those misclassified. When combining the predictions after each boosting round, the
training error rate is thus decreased to some extent, as shown in Figures 2.13.

At last, one can see in Figure 2.13 that the training error rate has been significantly
reduced by AdaBoost, where each weak learner are combined together in a smart way,
that is, assigning weights to each prediction made by the weak learners according to their
accuracy.

It should be noted that the weight for each classifier in the ensemble should be a positive
value, that is,

β(m) = log
1− err(m)

err(m)
> 0. (2.35)

The solution to this inequality is

0 < err(m) < 0.5, (2.36)

so each weak learner must have an accuracy greater than 50%, otherwise the weight
distribution for the training dataset would not be updated or to be updated towards the
wrong direction thus causing AdaBoost out of work. This is also the reason why original
AdaBoost algorithm can easily fail to work when facing multi-class classification problems
that are more complicated than binary cases.
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Figure 2.13: Visualization of AdaBoost (from [19]). For each row from top to bottom:
boosting round 1, 2, 3, 4, 5, 6, 7, 40. Right column: corresponding training error rate after
each round.
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1. Initialize the weight for each training sample, wi = 1/N, i = 1,2,...,N .

2. For m = 1 to M :

(a) Fit a classifier T (m)(x) to the training dataset using weights wi.

(b) Compute the weighted training error rate for the classifier:

err(m) =
N∑
i=1

wiI
(
ci 6= T (m)(xi)

)
/

N∑
i=1

wi.

(c) If err(m) ≤ 0 or err(m) ≥ 0.5, then abort loop.

(d) Compute the weight for the classifier in the ensemble:

β(m) = log
1− err(m)

err(m)
.

(e) Update the weight for each training sample:

wi ← wi · exp
(
β(m) · I

(
ci 6= T (m)(xi)

))
,

for i = 1,2,...,N .

(f) Re-normalize the sample weight distribution:

wi ← wi/
N∑
i=1

wi.

3. Output the classification predictions:

C(x) = arg max
k

M∑
m=1

β(m) · I
(
T (m)(x) = k

)

Table 2.1: Algorithm summary of original AdaBoost.

Extensions of Original AdaBoost for Multi-Class Problems

As a result, many extensions of original AdaBoost to the multi-class classification problem
have been designed, however, the weak classifiers are still required to have an accuracy
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higher than 50%. One possible and popular approach is to transform the multi-class
problem into several binary subproblems, which can be done by using one-against-all or
one-against-one strategy [20].

• One-against-all strategy for each class:

The one-against-all strategy constructs one model for each class, where each model
is trained to separate the samples of its corresponding class from the samples of
all remaining classes. When a new sample of unknown class is taken in, it will be
assigned to the class whose model has the maximum output value among all. In
other words, each predefined class has a probabilistic binary classifier to distinguish
its kind from others, and each classifier will make a class prediction for an unknown
sample with some probability for that class. The class prediction of the classifier
that returns the highest probability will thus be chosen for this unknown sample.

• One-against-one strategy for all pairs of classes:

On the other hand, the one-against-one strategy constructs one model for each pair
of classes, so for a multi-category problem with K (K > 2) classes, K(K − 1)/2
models in total are trained to divide the samples of one class from the samples of
the other class in all pairs. When a new sample of unknown class is taken in, it will
be sorted to the class with maximum voting, where each model votes for one class.
This pairwise learning method may sound computational consuming, but in fact it
is not, and if the classes are evenly distributed, it will be at least as fast as any
other multi-class solution. The reason is that each pairwise subproblem only takes
training samples of two classes into consideration, other than the whole training
dataset. For example, if N samples are divided evenly among K classes, there will
be 2N/K samples per subproblem. Suppose the runtime of a binary classification
algorithm is proportional to the number of training samples it learns, then the total
runtime will be proportional to K(K−1)/2·2N/K, which is (K−1)N . That means,
this method only scales linearly with the number of classes.

In a word, if the weak learners boosted by AdaBoost are inherently incapable of producing
multi-class predictions, the above alternatives can be particularly useful.

Multi-Class AdaBoost

However, for this thesis work, an approach that handles multi-class cases directly without
reducing them to multiple two-class problems will be used, known as multi-class AdaBoost.
As mentioned before, AdaBoost is originally designed only for boosting two-class cases.
If using one-against-all or one-against-one strategies, it can be extended to solve multi-
class problems. However, this still requires the weak learners to have a classification rate
higher than 50%, which is quite difficult for multi-class cases, where the number of classes
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K ≥ 3 and the probability for random guessing is 1/(K − 1). As a result, the real multi-
class AdaBoost algorithm, also called SAMME, is proposed in [21], which successfully
avoids reducing the multi-class problems to two-class subproblems and only requires the
classification rate of weak learners better than 1/(K − 1).
In fact, SAMME algorithm is very similar to the original AdaBoost. It is also based on
forward stagewise additive modeling using an exponential loss function. However, this
time the exponential loss function has been modified into a multi-class version.
For multi-class (the number of classes K ≥ 3) classification problem, SAMME encodes
the class prediction (denoted by ci) as yi = (y1,y2,...,yK)T , i = 1,2,...,N , with

yk =

{
1, if ci = k

− 1
K−1

, otherwise
(2.37)

where k = 1,2,...,K.
Then if f = (f1,f2,...,fK)T and

∑K
k=1 fk = 0, the multi-class loss optimized by SAMME is

L(y,f) = exp

(
− 1

K
yTf

)
(2.38)

This time, the basis functions in the forward stagewise additive model become multi-class
weak learners T (m) ∈ Y , where

Y =


(1,− 1

K−1
,...,− 1

K−1
)T

(− 1
K−1

,1,...,− 1
K−1

)T

...

(− 1
K−1

,...,− 1
K−1

,1)T

 (2.39)

Again, the problem becomes solving:

(α(m),T (m)) = arg min
α,T

N∑
i=1

exp[− 1

K
yTi (f (m−1)(xi) + αT (xi))] (2.40)

for the weak learner T (m) and its corresponding weight coefficient α(m) to be added at
each step. This can expressed as:

(α(m),T (m)) = arg min
α,T

N∑
i=1

w
(m)
i exp(− 1

K
αyTi T (xi)) (2.41)

where

w
(m)
i = exp(− 1

K
yTi f

(m−1)(xi)). (2.42)
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Again, since w
(m)
i is independent on α and T (xi), it can be regarded as a weight factor

that is applied to each training samples. This weight depends on f (m−1)(xi) so the weight
changes during each iteration m.
In a similar way to the binary case, it can be obtained that{

If yi = T (xi), then yTi T (xi) = K
K−1

;

If yi 6= T (xi), then yTi T (xi) = − K
(K−1)2

.
(2.43)

Therefore, the criterion in (2.41) can be expressed as

exp

(
− α

K − 1

)
·
∑

yi=T (xi)

w
(m)
i + exp

(
α

(K − 1)2

)
·
∑

yi 6=T (xi)

w
(m)
i , (2.44)

which in turn can be rewritten as

(
e

α
(K−1)2 − e−

α
K−1

)
·
N∑
i=1

w
(m)
i I(yi 6= T (xi)) + e−

α
K−1 ·

N∑
i=1

w
(m)
i (2.45)

Apply gradient descent method to (2.45) and solve for α, by taking partial derivative
respect to α and set the resulting equation is to 0, one obtain α as

α(m) =
(K − 1)2

K

(
log

1− err(m)

err(m)
+ log(K − 1)

)
(2.46)

where err(m) is the minimized weighted error rate

err(m) =

∑N
i=1w

(m)
i I(yi 6= T (m)(xi))∑N

i=1 w
(m)
i

. (2.47)

As a result, the approximation of multi-class problem can be updated as

f (m)(x) = f (m−1)(x) + α(m)T (m)(x). (2.48)

So the weight for the next iteration can be accordingly updated as

w
(m+1)
i = exp(− 1

K
yTi f

(m)(xi)) = w
(m)
i · exp(− 1

K
α(m)yTi T

(m)(xi)). (2.49)

This is equivalent to {
w

(m)
i · exp(K−1

K
β(m)), if ci = T (m)(xi));

w
(m)
i · exp( 1

K
β(m)), if ci 6= T (m)(xi)).

(2.50)

where
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β(m) = log
1− err(m)

err(m)
+ log(K − 1). (2.51)

At this stage, the multi-class AdaBoost algorithm (SAMME) can be summarized in Table
2.2 [21].
One can easily notice the extra term log(K−1) in the update scheme for classifier. It has
been shown that this term derives from the forward stagewise additive modeling which
uses the multi-class exponential loss function. In additional, if K = 2, the algorithm
returns to binary AdaBoost. Moreover, the updating of sample weights seems different
from (2.50), but actually they are equal, since the one in algorithm is the normalized
version.

2.2.2 Weak Learners for AdaBoost

A weak learner is defined to be a classifier which has a classification rate only slightly
better chance, in other words, it can categorize samples better than random guessing.

Stumps

Stumps, also known as decision stump, is a classifier that makes use of one-level decision
tree. It is one-level because it has one root which is directly connected to the terminal
nodes. A decision stump produces a prediction based on a single rule with respect to the
input feature value [22]. Moreover, each decision stump pays attention to only a single
element of the input feature vector.
The type of stumps varies according to the different types of input features. For example,
given nominal features, a stump consisting of terminal nodes for each possible feature
value may be built, or in other cases, a stump can be created with two terminal nodes,
one of which corresponding to one specified class, and the other leading to all the other
classes. For binary features these two examples are actually the same. A missing value is
treated as a legitimate value, which means it is considered as another class.
For continuous features, a threshold for the feature values can be selected. That is, the
stump contains two terminal nodes, one for the values below the threshold and the other
for the ones above the threshold. However, sometimes multiple thresholds may also be
used and the stump therefore contains three or more nodes.
Decision stumps are often used as the weak learners in ensemble models such as bagging
and boosting. For example, [11] employs AdaBoost with decision stumps as weak learners.

Perceptron

Perceptron, being considered the simplest type of artificial neural network, is a linear
classifier which has very good performance as long as the samples being classified are
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1. Initialize the weight for each training sample, wi = 1/N, i = 1,2,...,N .

2. For m = 1 to M :

(a) Fit a classifier T (m)(x) to the training dataset using weights wi.

(b) Compute the weighted training error rate for the classifier:

err(m) =
N∑
i=1

wiI
(
ci 6= T (m)(xi)

)
/

N∑
i=1

wi.

(c) If err(m) ≤ 0 or err(m) ≥ fracK − 1K, then abort loop.

(d) Compute the weight for the classifier in the ensemble:

β(m) = log
1− err(m)

err(m)
+ log(K − 1).

(e) Update the weight for each training sample:

wi ← wi · exp
(
β(m) · I

(
ci 6= T (m)(xi)

))
,

for i = 1,2,...,N .

(f) Re-normalize the sample weight distribution:

wi ← wi/
N∑
i=1

wi.

3. Output the classification predictions:

C(x) = arg max
k

M∑
m=1

β(m) · I
(
T (m)(x) = k

)

Table 2.2: Algorithm summary of Multi-Class AdaBoost (SAMME).

linearly separable. However, if the samples are not linearly separable, Perceptron classifier
becomes weak.
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A simplest Perceptron can be seen as a training model for a single neuron, which is defined
by a logic unit with a weight vector and a threshold (bias). These internal parameters
map input data x to a single binary state output f(x):

f(x) =

{
+1 if wT · x + b > 0

−1 otherwise
(2.52)

where w is the real-valued weight vector, wT ·x computes the weighted sum, and b is the
bias.
With the above function, the problem of Perceptron algorithm reduces to finding the most
suitable weights and bias so that the projection of sample x onto w has the same sign as
its desired output.
Now consider a two-class (K = 2) classification problem, training samples {xi} (i =
1,2,...,N) with feature dimension D need to be distinguished by a decision hyperplane that
divides the feature space into two sub-space. A linear discriminant function is constructed
to fulfill the task:

f(x) = wT · x + b = b+
D∑
d=1

wd · xd (2.53)

where w is the D−dimensional weight vector and b is the threshold or bias.
Let x = [1,x1,...xD]T and w = [b,w1,...wD]T , Then the function can be rewritten as:

f(x) = wT · x. (2.54)

For this binary classification, there are two classes, c1 = +1 and c2 = −1. Given an input
sample xi, if wT · xi > 0, the linear classifier maps xi to c1, otherwise, xi is assigned to
c2.
On the other hand:

if xi belongs to c1, wT · xi > 0.

if xi belongs to c2, wT · xi < 0 or wT · (−xi) > 0.
(2.55)

Replacing −xi by xi if xi belongs to c2, then conclusion can be made:

wT · xi > 0 if xis are correctly classified. (2.56)

The Perceptron criterion function is defined as:

J(w) =
∑

x∈Ψ(w)

−wT · x. (2.57)

where Ψ(w) represents the set of samples misclassified by w. If all the samples are
correctly classified, the criterion J(w) would reach its minimum value 0.
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Then the gradient descent method is applied to find out the updating scheme of w, so
partial derivative is taken with respect to w:

5 J(w) =
∂J(w)

∂w
= −x. (2.58)

As a result, the argumented weight vector w is updated as follows:

wm+1 = wm − ρm · 5J(w) = wm + ρm · x. (2.59)

where ρm is a positive scaling factor (learning rate) usually set to 1 and m represents the
iteration index.

Then the binary Perceptron learning algorithm is summarized in Table 2.3.

1. Initialize the weight vector w and the bias b of the neuron randomly.

2. For m = 1 to M :

(a) Compute i = m mod N .

(b) Present a new sample xi with its desired output c.

(c) Update the weight vector and the bias as:

wm+1 =


wm + xi if wT

m · xi + b ≤ 0 and c = +1,

wm − xi if wT
m · xi + b > 0 and c = −1,

wm otherwise.

bm+1 =


bm + 1 if wT

m · xi + b ≤ 0 and c = +1,

bm − 1 if wT
m · xi + b > 0 and c = −1,

bm otherwise.

(d) If
√
‖wm+1 −wm‖2 + (bm+1 − bm)2 < θ (predefined criterion), then abort the

loop and end the learning process.

3. Return the weight vector w and the bias b.

Table 2.3: Algorithm summary of binary Perceptron.
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The Perceptron learning algorithm is proved to be convergent for linearly separable sam-
ples [23]. Since the classification hyperplane of the Perceptron is linear in nature, the
standard Perceptron algorithm is not so capable to handle nonlinear classification prob-
lems. However, Perceptron still holds many important properties that can be exploited.
First of all, Perceptron is easy to implement, the samples are presented one by one and the
weights are updated only according to the current sample. Second, Perceptron is fast for
its simplicity. The fast learning of Perceptron makes real-time and dynamic development
of a system possible. Last but not least, Perceptron can be modified to fit for multi-class
classification, which will be shown as follows.
Based on the Perceptron algorithm for binary cases, now consider a multi-class (K ≥ 3)
classification problem. Given input D−dimensional feature vectors with desired output
{(xi, yi), i = 1,2,...,N} as the training samples, totally K linear discriminant functions
need to be constructed to classify them into each corresponding categories. The combina-
tion of these linear discriminant functions is also called linear machine, which is defined
as:

fk(x) = wT
k · x + bk = bk +

D∑
d=1

w
(k)
d · xd k = 1,2,...,K. (2.60)

where {wk} are the D−dimensional weight vectors for each class.

Let x = [1,x1,...xD]T and wk = [bk,w
(k)
1 ,...w

(k)
D ]T , Then the K linear discriminant functions

can be rewritten as:

fk(x) = wT
k · x. (2.61)

For multi-class classification, there are K classes {ck}, where k = 1,2,...K. An input
sample x is assigned to class ck, if fk(x) > fj(x) for all j (j 6= k).
So the problem here is to find K solution weight vectors {wk}, where k = 1,2,...K, to
minimize the training error rate, which for linearly separable case can reach 0. In other
words, the problem becomes finding wk such that (wk −wj)

T · x > 0, for all j (j 6= k),
and for all x that belongs to class ck.
Similarly to the binary case, the criterion function is defined as:

J(w1,w2,...,wk,...) =
K∑
k=1

∑
x∈Ψk(wk)

(
−(wk −wj)

T · x
)

(2.62)

where Ψk(wk) is the set of samples which belong to class ck but are misclassified to class
cj, for any j (j 6= k).
Rewrite the criterion:

J(w1,w2,...,wk,...) =
K∑
k=1

Jk (2.63)
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where

Jk =
∑

x∈Ψk(wk)

(
−(wk −wj)

T · x
)
. (2.64)

In fact, each time only one misclassified sample is considered, so only wk and wk will be
involved (j 6= k).
Therefore, when applying gradient descent method, only the partial derivatives of Jk to
wk and wk are respectively taken:

∂Jk
∂wk

= −x and
∂Jk
∂wj

= x, x ∈ Ψk(wk) (2.65)

As a result, the argumented weight vectors {wk} are updated as follows:{
wm+1
k = wm

k + ρm · x
wm+1
j = wm

j − ρm · x
(2.66)

where ρm is a positive scaling factor (learning rate) usually set to 1 and m represents the
iteration index.
As a result, the multi-class Perceptron algorithm that is implemented in this thesis work
can be summarized in Table 2.4.
The convergence property of multi-class Perceptron algorithm can be proved in the same
way as the binary case for linearly separable problems [23].

2.3 Fusion Techniques

In pattern classification systems, image fusion aims to combine difference sources of in-
formation for intelligent tasks. Commonly, image fusion strategies are often categorized
by pixel level fusion, feature level fusion, and decision level fusion.

• Pixel level fusion

Pixel level fusion, also called low level fusion or measurement level fusion, where
the fusion is done on the raw data. In this scheme, the raw images obtained from
different sensors are fused together to produce a new image, which is supposed
to have more complete information. Therefore, pixel level fusion can help human
observers or computers more easily identify potential targets.

As the name suggests, operations in this case are mostly done at pixel level, in
either spatial or frequency domain. Popular pixel level fusion techniques include
pyramid-decomposition-based fusion and wavelet-transform-based fusion.
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1. Initialize the weight vectors {wk} and the bias {bk} of the neurons randomly, where
k = 1,2,...,K.

2. For m = 1 to M :

(a) Compute i = m mod N .

(b) Present a new sample xi with its desired output yi.

(c) If xi is misclassified from its original class ck to the wrong class cj, then update
the involved weight vectors and the biases as:{

w
(m+1)
k = w

(m)
k + xi

w
(m+1)
j = w

(m)
j − xi{

b
(m+1)
k = b

(m)
k + 1

b
(m+1)
j = b

(m)
j − 1

(d) If

√
‖w(m+1)

k −w
(m)
k ‖2 + (b

(m+1)
k − b(m)

k )2 < θ (predefined criterion), for all
k, k = 1,2,...,K, then abort the loop and end the learning process.

3. Output the weight vectors {wk} and the bias {bk}, where k = 1,2,...,K.

Table 2.4: Algorithm summary of multi-class Perceptron.

• Feature level fusion

Feature level fusion is also called medium level fusion or high level fusion. The basic
idea is to compute features from images of each separate sensor, and then combine
these features in a joint feature space.

• Decision level fusion

Decision level fusion, also known as high level fusion and sometimes top level fu-
sion. Approaches of this kind of fusion include voting methods, statistical modeling,
methods based on fuzzy logic theory and theory of incomplete knowledge, etc.
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2.3.1 Feature Level Fusion

Because of the simplicity, feature level fusion is very commonly used and is also chosen
for this thesis work. The feature fusion scheme typically achieves boosted system per-
formance or robustness, which attracts much attention in many research fields especially
for computer vision and pattern classification. Although the importance of feature level
fusion is obvious, there are very few techniques that can manipulate this idea in general-
ized ways. In most cases, the existing techniques are still designed to solve each specific
problems in a specialized manner. As a result, multiple feature fusion remains an open
issue.

The advantage of feature level fusion is obvious. Different feature vectors extracted from
the same object can reflect characteristics of the object from different aspects, that is why
improved reliability and enhanced capability is expected from feature level fusion, since
redundant information and complementary information are provided at the same time.

There are mainly two schemes in feature level fusion, which are serial feature fusion and
parallel feature fusion. Serial feature fusion combines two or more sets of feature vectors
into one union-vector and then extract the final features from the high-dimensional real
feature space. On the other hand, parallel feature fusion groups two sets of feature vectors
to jointly create a complex feature space and then extract the final features from the high-
dimensional complex feature space. For simplicity, serial feature fusion is adopted for the
thesis work.

For either serial scheme or parallel scheme, the basic kind of feature level fusion directly
concatenates or integrates several types of feature together, which is also the conventional
approach. The advantage of this method is obvious, it is simple and can be easily imple-
mented. However, the systems that applies such fusion scheme may not result in better
or more robust performance than using single features, sometimes even worse. This is
probably because the information held by different features is not equally represented or
measured, in other words, the values of different features may be significantly unbalanced.
Therefore, concatenating different features with equal weights can be quite suboptimal,
since in many cases some features will dominate the entire feature ensemble.

The simplest way to weight the features is to normalize the ranges or scales of each
feature so that they are well balanced before integration. For example, the normalized
features could have zero mean and unit variance [24], or they could also have equal sum
of eigenvalues on eigenvector-based features [25]. Though this is one possible solution to
unbalance feature fusion problem, it should still be noted that in most cases each kind
of feature will be extracted from the same dataset, then there will be a great chance
that these features are highly correlated to each other. Thus, the simple normalization
or weighting scheme would not be of much help to make the fused feature effective for
classification purpose. However, in this thesis work, each set of feature is independently
extracted from a different data source, i.e. HOG features from the visual band camera
and Gabor features from the IR thermal sensor, so the correlation problem is well avoided
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and this normalization scheme is still worth trying.
Last but not least, another possible way for the feature weighting is to perform joint
dimensionality reduction or subspace learning by preserving the correlation between dif-
ferent features.
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Chapter 3

Classification of Object Poses

3.1 The Big Picture

Generally, the task of this thesis work is to design a classification system that is able to
analyze and classify different types, activities and events of tracked object, e.g. different
poses of human faces and moving cars. Such multi-class object classification models can be
used to fit in various applications such as surveillance in public places and traffic safety on
the road. For these purposes, this chapter investigates into multi-class object classification
systems using a visual band camera or / and an infrared camera as the sensors to recognize
different poses of objects. First, each type of images are used individually, and then the
possibilities of feature level fusion from visual and infrared images are discussed.

Working under the assumption that the objects have been perfectly tracked with tight
bounding boxes, the systems receive the images of the tracked object, analyze the data
and classify them into each pose classes. The main stages in this whole process is described
as well as some implementation details.

3.2 Classification Using Visual Images

3.2.1 Block Diagram

The cascades of the classification system using only visual images are shown in Figure
3.1. From left to right: The histogram of oriented gradients (HOG) features of visible
light images are obtained, then the feature dimension is reduced by Principal Component
Analysis (PCA), and after that the features are put into AdaBoost classifier for object
pose classification.
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Figure 3.1: Block diagram for classification using visual images.

3.2.2 HOG Features for Visual Images

Given enough visible light, Visual Images in most cases provide sharp and strong edges of
objects. As we know, edges give dominant gradient values in the image, so gradient based
features HOG are especially suitable as the feature descriptor of visual images. Although
HOG is initially intended for pedestrian detection in images and videos, later it is extended
to many other applications and has achieved great success as well. Therefore, this popular
feature descriptor has been chosen to represent the object poses in visual images for this

39



CHAPTER 3. CLASSIFICATION OF OBJECT POSES

thesis work. The HOG algorithm implemented in this thesis work computes the R-HOG
feature descriptor of the input image, which is based on [10].
First of all, the input image is loaded into the system, without any gamma correc-
tion. Then the input image is resized to 32×32 and converted from RGB color space
to grayscale, as shown in Figure 3.2. Also, it is converted into double precision and
normalized to the dynamic range of [0,1] for computation convenience.

(a) Original image. (b) Image after pre-processing.

Figure 3.2: Image pre-processing for HOG feature extraction.

At the second stage, first order image gradients are computed by convolving the image
with mask [+1,0,−1] along x and y-axes with no smoothing, where Gx and Gy are obtained
as the gradient matrices in each direction, as shown in Figure 3.3a and 3.3b. Then the
gradient magnitudes (Figure 3.3c) are calculated by taking the norm of Gx and Gy, i.e.
Gmag =

√
G2
x +G2

y, which capture contour, silhouette and some texture information of
the object and also provide resistance to illumination variations. The resultant gradient
magnitude image is displayed in Figure 3.2, where the object edges are detected because
edges give dominant gradient values. After that, the orientation at each pixel is computed
by taking the inverse tangent function, i.e. arctan(Gy/Gx) +π/2. It should be noted that
π/2 is necessary here since arctan(Gy/Gx) ranges between −π/2 and π/2 and only the
case of unsigned orientation is considered which ranges from 0 to π.
Then the image window is divided into a dense uniformly sampled grid of points. For
each point, the square pixel image region centered on it which is called block is split into
cells, as Figure 3.4 illustrates, and the block steps in both x and y directions are 8 pixels,
which means the overlapping rate is set as 50% so that each cell can contribute more than
once to block histograms.
For each cell, a 1D histogram of gradient or edge orientations over all the pixels in the
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(a) Gradient image along x-
axis.

(b) Gradient image along y-
axis.

(c) Gradient magnitude by
taking the norm of gradient
images along x and y-axes.

Figure 3.3: Edge detected by computing gradient magnitudes.

(a) Image divided into cells of size 8×8. (b) Cells grouped into blocks with 50%
block overlapping rate.

Figure 3.4: Image pre-processing for HOG feature extraction.

cell is accumulated. This combined cell-level 1D histogram divides the gradient angle
range into a fixed number of predetermined bins. For this thesis work, the range is set
from 0◦ to 180◦ with a step size of 20◦, so this makes 9 bins per histogram. The gradient
magnitudes of the pixels in the cell are then used to vote into the orientation histogram, in
the meanwhile, a Gaussian spatial window with σ = 8 pixels (half the block side length),
as shown in Figure 3.5a and 3.5b, is applied to each block, so that the voting weight of
each pixel around the edge of the block can be significantly suppressed. In this way, for
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each block, a vector of length 36 will be obtained (the number of cells in a block times
the number of bins per histogram), as Figure 3.5c shows.

(a) Gaussian spatial win-
dow.

(b) Applying Gaussian spa-
tial window to each block.

(c) Histograms formed by
weighted voting.

Figure 3.5: Orientation binning by weighted voting within each block.

This process is repeated for each block, and the resulting vector is normalized before
being collected into a large HOG feature vector in sequence. As the block window slides
to the right bottom end of the image, the feature vector containing all the block HOG
is then completed. In this thesis work, images are all resized to 32×32 so the totally
number of blocks with 50% overlapping rate is 9, so the final HOG feature vector in this
implementation has a dimension of 324 (9×36).

3.2.3 PCA for HOG Feature Selection

If the dimensions of feature vectors are too high, it may cause the effect of the curse of
dimensionality. That is, the running time of classification is considerably long, and overfit-
ting problem will occur where the trained classifier will have extremely poor performance
when handling new samples. Therefore, to avoid the effect of the curse of dimensionality,
covariance matrix is computed from the feature vectors, and PCA algorithm is used to
select a subset of principal components to obtain lower dimensional features, which keeps
the most relevant feature information and discards irrelevant information and noise.
The basic idea of PCA is to seek the most accurate feature representation in a lower
dimensional space, by projecting the data to the directions of largest variance. As we
know, the directions of largest variance is given by eigenvectors corresponding to the
largest eigenvalues of covariance. That is why PCA makes use of covariance matrix of
the data. By selecting a subset of the eigenvectors as basis vectors for projection, the
dimensions of the data can be thus significantly reduced.
In this implementation, cumulative energy content is chosen as the criterion in select-
ing the subset of eigenvectors. After obtaining the eigenvectors and the corresponding
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eigenvalues from the covariance matrix of the HOG features, the eigenvalues are sorted
in ascending order. By adding the eigenvalues one by one to the cumulative sum and
dividing it by the total sum of eigenvalues, one can get a subset of eigenvectors according
to the eigenvalues that have already been added which eventually make the ratio above
some predefined threshold. For HOG features extracted visual images in this thesis work,
95% cumulative energy content is kept. As a result, the HOG feature after PCA fea-
ture selection has been reduced from 324 to 218. Then, the feature vectors are put into
AdaBoost classifier for classification results.

3.3 Classification Using Infrared Images

3.3.1 Block Diagram

The cascades of the classification system using only infrared images are shown in Figure
3.6. From left to right: The Gabor features of infrared images are obtained, then the
feature dimension is reduced by Principal Component Analysis (PCA), and after that the
features are put into AdaBoost classifier for object pose classification.

3.3.2 Gabor Features for Infrared Images

For extracting the feature of infrared thermal images, Gabor filters are used. The HOG
feature descriptor used for visual images has been replaced because the edges in infrared
thermal images are kind of blurred, so image energies are mainly concentrated at lower
frequency bands other than high frequencies. In this case, gradient based edge detector
will not be so suitable, so instead wavelet based edge detector Gabor features are exploited.
In this way, each point is represented by local Gabor filter responses. As mentioned
before, a 2D Gabor filter can be obtained by modulating a 2D sinusoidal plane wave at
particular frequencies and orientations with a Gaussian envelope. Actually there are many
expressions of Gabor wavelets and in this thesis work the notation follows [16]. Thus, the
2D Gabor filter kernel is defined as:

g(x,y,θk,f) = exp(−1

2

(
x̂2

σ2
x

+
ŷ2

σ2
y

)
) exp(j2πfx̂) (3.1)

where {
x̂ = x cos θ + y sin θ

ŷ = −x sin θ + y cos θ
(3.2)

σx and σy are the standard deviations of the Gaussian envelope along the x and y-axes,
respectively. θk and f are the orientation and the frequency, respectively. The rotation
of the plane by an angle θk results in a Gabor filter at orientation θk, which is defined by
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Figure 3.6: Block diagram for classification using infrared images.

θk =
π

n
(k − 1) k = 1,2,...,n (3.3)

where n denotes the number of orientations.

The Gabor feature at a point (x,y) of the IR thermal image can be viewed as the re-
sponse of all different Gabor filters located at that point. A filter response is obtained by
convolving the filter kernel of specific θk and f with the image. If the frequency f and
the orientations θk are properly chosen, a bank of Gabor filters which covers the entire
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frequency domain can be obtained, as shown in Figure 3.7 and 3.8.

(a) Real part of Gabor filters
in spatial domain.

(b) Imaginary part of Gabor
filters in spatial domain.

(c) Gabor filters in the fre-
quency domain.

Figure 3.7: A bank of Gabor filters. For each column of the sub-figures from left to
right: θ = 0(π), π/4(5π/4), π/2(6π/4), 3π/4(7π/4), for each row of from top to bottom,
σx = σy = 16, 8, 4, 2, where f = 1/σx.

(a) 3D view. (b) Corresponding 2D view.

Figure 3.8: A bank of Gabor filters in the frequency domain. For each layer, θ =
0(π), π/4(5π/4), π/2(6π/4), 3π/4(7π/4), for each circle from outer layer to inner layer,
σx = σy = 2, 4, 8, 16, where f = 1/σx.

However, in this thesis work, Gabor kernels with 8 orientations and only 1 scales/frequency
band is used. Also, unlike conventional Gabor filters, DC component is kept where f = 0.
The basic idea here is that for infrared thermal images, energy is mainly concentrated at
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lower frequency bands and DC part. So there are 9 Gabor filters in the bank, as shown
in Figure 3.9.

(a) 3D view. (b) Corresponding 2D view.

Figure 3.9: Gabor kernels with 8 orientations in 1 frequency and a DC component. For
the outer layer, σx = σy = 2 and f = 1/(

√
2 · σx).

The reason for using 1 frequency band other than more frequency layers is simple. The
number of Gabor filters in the bank has been considerably reduced and still similar per-
formance remains.

The Gabor representation of an image is computed by convolving the image with the
Gabor filters. Let f(x,y) be the intensity at the coordinate (x,y) in a grayscale image, its
convolution with a Gabor filter g(x,y) is defined as

h(x,y) = f(x,y) ∗ <{g(x,y)}. (3.4)

The output of each filter are down-sampled on a 8×8 uniform grid before being reshaped
into 1D vectors and these vectors are each normalized by L2-norm

v̂ =
v√

||v||22 + eps2
, (3.5)

for enhanced robustness against lighting conditions, where eps is a small constant. After
that, these vector are concatenated into the final Gabor feature vector.

For an IR image of size 32×32, the dimension of resultant feature vector will be 576
(8×8×9), which is even higher than that of HOG features for visual images.
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3.3.3 PCA for Gabor Feature Selection

Similarly, for computation efficiency and avoiding the curse of dimensionality, PCA algo-
rithm is applied to reduce the Gabor feature dimensions before they are put into AdaBoost
classifier. In this case, 85% cumulative energy content is kept, which results in a lower
feature dimension of 208.

3.4 Feature Fusion for Improved Classification

3.4.1 Block Diagram

The cascades of the classification system applying feature level fusion are shown in Figure
3.10. From top to bottom: The HOG features of visible image and the Gabor features
of its corresponding infra-red thermal image are obtained respectively, and their feature
dimensions are reduced by PCA individually. Then these two features are fused by Fisher
Linear Discriminant, after that the feature ensembles are detected by AdaBoost classifier.
The only difference in this mode when compared to the previous two classification modes
is the feature fusion part. Therefore, the feature extractions and selections by using HOG
features for visual images and using Gabor features for infrared images and PCA algorithm
are omitted in this case.

3.4.2 Fisher Linear Discriminant for Feature Fusion

Let X1 ∈ RN1 and X2 ∈ RN2 represent the HOG and Gabor feature of an image of
object pose, where N1 and N2 are the dimensionality of the HOG and Gabor feature
spaces, respectively. The covariance matrices of X1 and X2 are C1 ∈ RN1×N1 and C2 ∈
RN2×N2 , and their eigenvector matrices, V1 ∈ RN1×N1 and V2 ∈ RN2×N2 , respectively. To
improve the generalization performance of classification, one should choose only a subset
of principal components to derive the lower dimensional HOG and Gabor features, so that
Y1 ∈ Rm1 and Y2 ∈ Rm2 , where m1 and m2 are the dimensions of the reduced HOG feature
space and Gabor feature space, respectively. In fact, using more principal components
may decrease the performance for object recognition. The reason for this is that the
trailing eigenvalues correspond to high frequency components and mainly contain noise.
Therefore, when these trailing but small valued eigenvalues are used to define the reduced
PCA space, the subsequent Fisher linear discriminant procedure has to fit for noise as
well and as a consequence overfitting will occur.
Then the issue becomes how to determine the dimensions for the reduced HOG feature
space (m1) and the reduced Gabor feature space (m2), respectively. On one hand, as much
relevant information of the original features as possible need to be kept after transforma-
tion from the high dimensional space to the low dimensional space. On the other hand,
the small trailing eigenvalues of the within-class covariance in the reduced feature space
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Figure 3.10: Block diagram for classification applying feature level fusion.

should be eliminated. In this way, more robust projection of Fisher linear discriminant
can be obtained.

In this thesis work, 95% cumulative energy is kept for HOG features and 85% cumulative
energy is kept for Gabor features during PCA feature selection, so that the resulting
feature dimensionsm1 > m2. The aim here is to give HOG features some more dimensional
weights in the subsequence union-feature space.

The low dimensional features are then combined together in a union-vector which now
contains both visual band and infrared band information. Before integration, they both
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are simply normalized to have unit norms, under the assumption that they are equally
important discriminating information. So no weight factors are assigned to the feature
components.

Z =

[
Y T

1

‖Y1‖1

Y T
2

‖Y2‖1

]T
(3.6)

where Z ∈ Rm1+m2 , and m1 and m2 are the dimensions of the reduced HOG and Gabor
feature spaces, respectively.
Fisher linear discriminant (FLD) is a commonly used discriminant criterion which mea-
sures the between-class scatter normalized by the within-class scatter. Let w1,w2,...,wK
and n1,n2,...,nK denote the classes and the number of samples within each class. Let
µ1,µ2,...,µK be the means of each class and µ be the total mean of all classes. The within-
class and between-class covariance matrices Cw and Cb can be defined as follows:

Cw =
K∑
k=1

P (wk)E[(Z − µk)(Z − µk)T |wk] (3.7)

Cb =
K∑
k=1

P (wk)(µk − µ)(µk − µ)T (3.8)

where P (wk) = nk/
∑K

k=1 nk is a prior probability for k-th class.
FLD can find a projection matrix V that maximizes the ratio |V TCbV |/|VTCwV |. This
ratio is maximized when V contains the eigenvectors of the matrix C−1

w Cb, that is,

C−1
w CbV = V D (3.9)

where V and D are the eigenvector and eigenvalues matrices of C−1
w Cb. Thus, FLD has

built the most discriminating feature space from Z for subsequent classification, and the
final fused features F can be derived as

F = V TZ. (3.10)

At this stage, the fused features can be put into AdaBoost classifier for classification,
from which better performance is expected than using single feature type from only visual
images or infrared images.
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Chapter 4

Experimental Results

Classifying human faces and moving cars of different poses from video or images is an
important real-world application for many purposes. As a result, in the experiments, the
implemented classification system is demonstrated mainly by classifying face poses and
car poses. This chapter firstly presents the datasets built or collected during this thesis
work, then it provides experimental results on these datasets, and lastly some evaluations
are made as well.

4.1 Datasets

There are mainly 4 datasets used in the experiments. For simplicity, these datasets are
called Dataset-1, Dataset-2, Dataset-3 and Dataset-4. Before looking into the details of
these datasets, synthetic data for initial tests are introduced.

4.1.1 Synthetic Data

Synthetic data is generated to verify the implementation of pose classification system.
They are geometric graphics in 3 classes, rectangle, ellipse and triangle. Each class con-
tains 200 images, which vary in size, rotation angle, transformation and position in the
32×32 image, etc. The synthetic data can be seen in Figure 4.1.

4.1.2 Dataset-1

This dataset is a mixture of many ready-made databases of human face provided by some
research institutes. They are MIT-CBCL Face Recognition Database [26], CVL Face
Database [27], Stanford Medical Student Face Database [28], GTAV Face Database [29],
FEI Face Database [30]. These face images were captured mostly in indoor environment
with uniform background that clearly shows the object edges.
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Figure 4.1: Synthetic data containing geometric graphics in 3 different classes. For each
column from left to right: rectangle, ellipse and triangle.

The combined visual band face dataset, Dataset-1, contains 771 frontal face images, 593
left views and 469 right views of different persons, so there are 3 classes of face poses.
Face images are automatically aligned, cropped out from the selected images and resized
to 32×32. Figure 4.2 gives some sample images from this dataset.

4.1.3 Dataset-2

This dataset gathers a large number of car images downloaded from Internet. It contains
515 front, 451 left, 595 right, and 993 back views of various kinds of cars. These car
images were mostly captured in outdoor environment, where the backgrounds and lighting
conditions vary a lot. Car images are manually aligned, cropped out from the selected
images. After that, they are automatically resized to be 48×32. Some preview of Dataset-
2 is provided in Figure 4.3.

4.1.4 Dataset-3

This dataset is a part from OTCBVS [31], which contains simultaneously acquired thermal
and visible face images under variable illuminations, expressions and poses. The original
image size is 320×240 for both thermal and visible images. However, during the exper-
iments, only the infrared thermal face images of 3 poses are used. Therefore, 350 front,
443 left and 383 right face images in infrared band only are selected from the original
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Figure 4.2: Dataset-1 containing visual images of face poses in 3 different classes (front,
left and right).

database. These images are automatically resize to 32×24, without cropping. Figure 4.4
shows some sample images of Dataset-3.
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Figure 4.3: Dataset-2 consisting of visual images of car poses in 4 different classes (front,
left, right and rear).

4.1.5 Dataset-4

This dataset is built up during this thesis work, by using the Fluke Ti45 infra-red thermal
imager. The Fluke camera consists of two sensors, one captures visible light images and
the other produces IR thermal images of the same scene, which is especially useful for the
topic, that is to fuse the features extracted from both the visual band image and the IR
thermal image of objects to perform robust multi-class classification. The capture work
lasted for about two weeks, for which over 500 persons at Chalmers are involved, including
many teaching staffs and students at all levels.

This visual / infrared face dataset, which is called Dataset-4 here, contains face images
of 5 poses at both visual and IR bands, where 506 front, 500 left, 500 right, 456 upward
and 460 downward views are collected. These face pose images were captured in many
different environments, e.g. group and computer rooms, cafes and corridors in E-Building,
A-Building, M-Building, Library, Student Union, etc. and the streets on campus, so
the backgrounds and lighting conditions vary significantly. All the images are manually
aligned, cropped with tight bounding boxes and then automatically resized to 32×32.
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Figure 4.4: Dataset-3 containing infrared thermal images of face poses in 3 different classes
(front, left and right).

Each sample of the visual band images and their corresponding IR thermal images are
given in Figure 4.5.

4.2 Results and Discussions

All the experiments are divided into two phases, the training procedure and the testing
part. For each dataset, 20% of the samples are kept only for testing purpose. The
remaining 80% of the samples are used to perform 10-fold cross validation, where the
remaining samples are randomly partitioned into 10 subsets. Of the 10 subsets, a single
subset is retained as the validation data for validating the classification model, and the
remaining 9 subsets are used as the training data. The cross validation process is repeated
10 times, with each of the 10 subsets used exactly once as the validation data. The 10
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Figure 4.5: Dataset-4 consisting of visual and infrared images of face poses in 5 different
classes (front, left, right, upward and downward).

results from the folds then can be averaged to produce a single estimation.

The classifications are generally aimed at achieving the best possible accuracy in prediction
of the object class. The idea is that the best prediction has the lowest misclassification
rate, which is measured in terms of proportion of misclassified cases.

Let Rmiss denote the misclassification rate, N0 denote the number of misclassified samples
in one dataset, and N denote the total number of samples being classified. Then, the
misclassification rate can be defined as

Rmiss =
N0

N
. (4.1)

Accordingly, the classification rate Rc can be obtained by

Rc = 1−Rmiss. (4.2)

Type-I and type-II errors are also worth investigating in the experiments, since they
provide some more details of the classification performance. Type-I error, also called false
positive, occurs if a sample does not belongs to class 1, but a classification prediction
wrongly states that the sample belongs to class 1. Type-II error, also known as false
negative, happens when a sample indeed belongs to class 1, but a classification result
wrongly shows that the sample belongs to a class other than class 1.

So, let N01 be the number of samples wrongly classified to the given class, and N02 be the
number of samples that belongs to the given class but are misclassified to another class.
Thus, the type-I error rate and type-II error rate for a given class are defined as follows
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α =
N01

Nk

and β =
N02

Nk

, (4.3)

where Nk is the totally number of sample within the given class. In fact, 1−α and 1− β
give the specificity and sensitivity of the experiment for that class, respectively.

4.2.1 Test on Synthetic Data

First of all, synthetic data is used to mainly verify the implementation of HOG feature
extraction and multi-class classifiers used in this thesis work, namely, AdaBoost and its
weak learner Perceptron. There are totally 3 classes of synthetic images created, which
are rectangle, ellipse and triangle. These geometric objects vary in size, rotation angle,
transformation and position in the image window, etc.

The datasets used for experiments are described in Table 4.1. Every class of these geomet-
ric objects has 200 samples, so there are totally 600 samples, in which 20% (120 samples)
are kept for testing purpose and the other 80% (480 samples) are used as the training set
and the validation set.

Dataset #Samples Class#

Rectangular 200 1

Ellipse 200 2

Triangle 200 3

Table 4.1: Synthetic data of each class used for verification experiments.

The experimental results for classifying synthetic data are given in Table 4.2 and 4.3.

Dataset #Samples Classification rate (%)

Training set 432 100

Validation set 48 100

Testing set 120 100

Table 4.2: Classification rates for synthetic images using HOG features.
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Class#

Type-I
training
error
(%)

Type-II
training
error
(%)

Type-I
valid.
error
(%)

Type-II
valid.
error
(%)

Type-I
testing
error
(%)

Type-II
testing
error
(%)

1 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 0.00 0.00

Table 4.3: Type I and II errors for each class in experiment on synthetic data.

As a result, it is verified that the HOG feature extraction and the AdaBoost classifier
work in good condition.

4.2.2 Test on Dataset-1

In this experiment, visual band face images of 3 poses (front, left and right) are considered.
The purpose of this experiment is to first try simple cases of classification of object poses,
which is a 3-class problem here. The datasets used are described in Table 4.4, in which
20% (366 samples) are kept for testing purpose and the other 80% (1467 samples) are
used as the training set and the validation set.

Dataset #Samples Class#

Visual face front 771 1

Visual face left 593 2

Visual face right 469 3

Table 4.4: Visual face images of 3 poses in Dataset-1.

The experimental results for classifying 3-pose visual face images are given in Table 4.5
and 4.6.
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Dataset #Samples Classification rate (%)

Training set 1320 100

Validation set 147 98.33

Testing set 366 95.73

Table 4.5: Classification rates on Dataset-1 using HOG features.

Class#

Type-I
training
error
(%)

Type-II
training
error
(%)

Type-I
valid.
error
(%)

Type-II
valid.
error
(%)

Type-I
testing
error
(%)

Type-II
testing
error
(%)

1 0.00 0.00 1.33 0.33 3.07 0.67

2 0.00 0.00 0.33 0.67 0.67 3.33

3 0.00 0.00 0.00 0.67 0.53 0.27

Table 4.6: Type I and II errors in experiment on Dataset-1.

It can observed that, the classification model using HOG features for visual images per-
forms well in this 3-class problem, since the classification rate of testing set has reached as
high as 95.73%. Based on the result, the classification can be thus extended to problems
with more pose classes.

4.2.3 Test on Dataset-2

Classifying car poses is also a topic that attracts much interests. In this experiment,
visual band car images of 4 poses are considered, which are front, left, right and rear. So
far, no infrared thermal car images have been collected to make the sense of fusion as
comparison, therefore the result from this part may probably be used in future works.

The datasets used are described in Table 4.7, in which 20% (510 samples) are kept for
testing purpose and the other 80% (2053 samples) are used as the training set and the
validation set.
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Dataset #Samples Class#

Visual car front 515 1

Visual car left 451 2

Visual car right 595 3

Visual car rear 993 4

Table 4.7: Visual car images of 4 poses in Dataset-2.

The experimental results for classifying 4-pose visual car images are given in Table 4.8
and 4.9.

Dataset #Samples Classification rate (%)

Training set 1849 99.86

Validation set 204 94.66

Testing set 510 94.18

Table 4.8: Classification rates on Dataset-2 using HOG features.

Class#

Type-I
training
error
(%)

Type-II
training
error
(%)

Type-I
valid.
error
(%)

Type-II
valid.
error
(%)

Type-I
testing
error
(%)

Type-II
testing
error
(%)

1 0.04 0.09 2.40 2.25 2.94 1.43

2 0.03 0.02 0.34 0.34 0.55 1.10

3 0.00 0.00 0.44 0.69 1.14 0.55

4 0.06 0.03 2.16 2.06 1.20 2.75

Table 4.9: Type I and II errors in experiment on Dataset-2.

As illustrated in Table 4.8 and 4.9, the experiment on visual car images has obtained
comparable results with that of 3-pose visual face images. This means the classification
model using visual images is not limited to classifying face poses only, thus the applications
can be extended in the future.
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4.2.4 Test on Dataset-3

The major purpose of this experiment is to verify the Gabor feature extraction. Also,
parameters for face representation from infrared images using Gabor wavelets are deter-
mined. In this case, face images in infrared thermal band are used, which also have 3 pose
classes, i.e. front, left and right. The datasets used are described in Table 4.10, in which
20% (235 samples) are kept for testing purpose and the other 80% (941 samples) are used
as the training set and the validation set.

Dataset #Samples Class#

Infrared face front 350 1

Infrared face left 443 2

Infrared face right 383 3

Table 4.10: Thermal face images of 3 poses in Dataset-3.

The experiments are done with different parameter combinations, e.g. 4 frequency bands
without DC component, 1 frequency band with or without DC component, etc. Optimal
parameter setting is found that using 1 center frequency at 1

2
√

2
with DC component gives

the overall best performance. So, the corresponding experimental results for classifying
3-pose thermal face images are given in Table 4.11 and 4.12.

Dataset #Samples Classification rate (%)

Training set 847 86.66

Validation set 94 84.04

Testing set 235 83.40

Table 4.11: Classification rates on Dataset-3 using Gabor features.
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Class#

Type-I
training
error
(%)

Type-II
training
error
(%)

Type-I
valid.
error
(%)

Type-II
valid.
error
(%)

Type-I
testing
error
(%)

Type-II
testing
error
(%)

1 2.60 5.79 1.06 8.51 2.13 7.23

2 5.67 3.78 3.19 7.45 4.68 8.09

3 5.08 3.78 11.70 0.00 9.79 1.28

Table 4.12: Type I and II errors in experiment on Dataset-3.

The results in this experiment seem not so good, but the reason is obvious, the images are
not cropped so many irrelevant background information has been encoded as well. With a
tight bounding box of the object, the performance will be improved, which can be shown
in the next experiment.

4.2.5 Test on Dataset-4

As a final stage of the experiments, the dataset built up during this thesis work is used.
Since it contains the same object poses in both visual and infrared band, comparisons can
be made between classifications using visual images only, using infrared images only and
applying feature level fusion from both image types.

Classification Using Visual Images Only

This part of work is similar to the previous experiment on visual face images, the only
difference is that this time the face poses have been extended to 5 classes, with two more
categories in upward and downward views. The datasets used are described in Table 4.13,
in which 20% (484 samples) are kept for testing purpose and the other 80% (1938 samples)
are used as the training set and the validation set.
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Dataset #Samples Class#

Visual face front 506 1

Visual face left 500 2

Visual face right 500 3

Visual face upward 456 4

Visual face downward 460 5

Table 4.13: Visual face images of 5 poses in Dataset-4.

The experimental results for classifying 5-pose visual face images are given in Table 4.14
and 4.15.

Dataset #Samples Classification rate (%)

Training set 1744 99.47

Validation set 194 92.23

Testing set 484 94.01

Table 4.14: Classification rates on Dataset-4 (visual) using HOG features.

Class#

Type-I
training
error
(%)

Type-II
training
error
(%)

Type-I
valid.
error
(%)

Type-II
valid.
error
(%)

Type-I
testing
error
(%)

Type-II
testing
error
(%)

1 0.13 0.34 2.64 2.18 3.33 1.07

2 0.01 0.04 0.62 1.14 0.45 0.68

3 0.01 0.05 0.62 1.04 0.33 0.62

4 0.13 0.09 1.19 1.71 0.50 1.83

5 0.27 0.04 2.69 1.71 1.38 1.80

Table 4.15: Type I and II errors in experiment on Dataset-4 (visual) using HOG features.
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Classification Using Infrared Images Only

This part of work is similar to the previous experiment on infrared thermal face images,
the major differences are that this time the face poses have been extended to 5 classes,
with two more categories in upward and downward views, and the images have been
cropped with tight bounding boxes. The datasets used are described in Table 4.16, in
which 20% (484 samples) are kept for testing purpose and the other 80% (1938 samples)
are used as the training set and the validation set.

Dataset #Samples Class#

Infrared face front 506 1

Infrared face left 500 2

Infrared face right 500 3

Infrared face upward 456 4

Infrared face downward 460 5

Table 4.16: Infrared face images of 5 poses in Dataset-4.

The experimental results for classifying 5-pose infrared face images are given in Table 4.17
and 4.18.

Dataset #Samples Classification rate (%)

Training set 1744 96.05

Validation set 194 89.64

Testing set 484 87.19

Table 4.17: Classification rates on Dataset-4 (infrared) using Gabor features.
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Class#

Type-I
training
error
(%)

Type-II
training
error
(%)

Type-I
valid.
error
(%)

Type-II
valid.
error
(%)

Type-I
testing
error
(%)

Type-II
testing
error
(%)

1 2.06 1.83 3.42 3.11 3.31 4.96

2 0.06 0.11 1.14 1.55 1.24 1.65

3 0.00 0.06 0.52 1.04 0.62 0.83

4 1.38 0.86 3.63 2.59 3.72 3.10

5 0.63 1.26 1.55 2.07 3.93 2.27

Table 4.18: Type I and II errors in experiment on Dataset-4 (infrared) using Gabor fea-
tures.

This time, one can easily observe that with tight bounding boxes, the classification per-
formance using infrared images has been improved, even with more pose classes.

Classification Applying Feature Fusion

As the final stage of the thesis work, HOG features extracted from visual face images and
Gabor features derived from infrared face images are fused by the scheme discussed in the
previous chapter. In brief, their feature elements are firstly selected by PCA to keep the
principal components and reduce the feature dimensions, respectively. In this thesis work,
the resultant dimensions of HOG feature vectors are higher than that of Gabor features,
which means HOG features have gain more weight in the fusion scheme. After that, they
are each normalized to have unit norm and combined together into a union-vector. This
union-vector is processed by Fisher linear discriminant to produce the final fused features
for classification.

The datasets used are the same as described in Table 4.13 and 4.16. The experimental
results for classifying 5-pose face images using feature level fusion are given in Table 4.19
and 4.20.
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Dataset #Samples Classification rate (%)

Training set 1744 100

Validation set 194 95.34

Testing set 484 97.11

Table 4.19: Classification rates on Dataset-4 using feature fusion.

Class#

Type-I
training
error
(%)

Type-II
training
error
(%)

Type-I
valid.
error
(%)

Type-II
valid.
error
(%)

Type-I
testing
error
(%)

Type-II
testing
error
(%)

1 0.00 0.00 2.07 1.55 1.86 0.62

2 0.00 0.00 0.00 0.52 0.00 0.41

3 0.00 0.00 0.52 0.52 0.21 0.21

4 0.00 0.00 1.55 1.55 0.00 0.83

5 0.00 0.00 0.52 0.52 0.83 0.83

Table 4.20: Type I and II errors in experiment on Dataset-4 using feature fusion.

4.3 Evaluations

From the experimental results, one can see that in test on Dataset-4, classification applying
feature level fusion has achieved best performance, when compared to using single features
for any type of images in Dataset-4. Classification using HOG features for visual images
in Dataset-4 follows up and the classification using Gabor features for infrared images in
Dataset-4 falls behind. This can be easily observed in Figure 4.6.
To note that the classification rate for testing set of Dataset-4 has achieved 97.11% when
using feature fusion, which is more than 3% higher than that of using HOG features for
visual images. The reason behind this is quite simple, by fusion at feature level, reliabil-
ity and robustness has been improved since HOG features from visual band and Gabor
features from infrared band have provided redundant and complementary information for
each other.
Classification on infrared images using Gabor feature has reached lowest accuracy, which
is probably because the parameters for building the bank of Gabor filters are still not
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Figure 4.6: Classification rates on Dataset-4 in bar chart for comparison.

optimally selected. In fact, the parameters assigned in this implementation are obtained
by choosing the best one from a limited number of experiments. As a result, this empirical
approach may not effectively derive the optimal parameter settings, so some analytical
way could be used instead for improved performance in the infrared band. This may also
lead to further boosted results on classification in feature fusion mode.
Also, it should be noticed that, when compared the experimental results on Dataset-3 and
the single Gabor features on Dataset-4, one can see that with or without tight bounding
box for the objects in the images has made quite a difference. That is, the classification
rates on Dataset-4 (infrared only) is over 5% higher in average than that of Dataset-3.
To conclude, tight bounding boxes has eliminated irrelevant background information and
unwanted noise to a great extent.
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Conclusions

This thesis has made use of two types of images: one is from the visual band and another
is from the thermal infrared band. Due to different properties and characteristics in these
two types of images, different types of features are extracted. For visual band images,
HOG is used as the main feature descriptor. For thermal IR images, Gabor features are
used.

For classification of object poses, classifiers are tested separately by using visual band
images only, and thermal IR images only. Performance is then evaluated for these two
types of classifiers. Attempts are also made on classifiers through fusing these two types
of features in visual and IR images.

Experimental results have shown that the feature extraction and classification models
in this thesis work provide robust performance. In particular, when using feature level
fusion of HOG features from visual images and Gabor features from infrared images, the
classification of human face in 5 poses in this thesis work achieves best result, which is
followed by classification using HOG features alone of visible light images, and Gabor
features alone of infrared thermal images.

Suggestions of Future Work

For future work, how to enhance system performance against partial occlusion should
be considered. In this thesis work, for simplicity, it is assumed that all the objects in
the images are fully displayed and no partial occlusion happens. However, when facing
practical issues, partial occlusion can not be avoided. If only part of the object in the
image is available for processing, HOG features and Gabor features used in this thesis
may not be so efficient in feature representation since they are both based on the global
information of the entire image. As a result, some key point or region of interest (ROI)
based features can be exploited, e.g. SIFT, to better describe the objects that are being
analyzed and classified, especially when partial occlusion occurs.
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Then, based on the robustness and effectiveness of classifying object poses in images, the
system can be extended to analyze and classify objects in videos or image sequences.
Besides, it has been shown in this thesis work that tight bounding box around the object
can sufficiently eliminate the irrelevant background information and unwanted noise for
improved classification. However, during this thesis, most work on cropping the images
has been done manually, which is extremely time consuming and inefficient, especially
when handling large datasets. Therefore, an efficient and automatic way to crop the
objects with tight bounding boxes from images should be found.
Moreover, other level of fusion can also be tried, e.g. pixel level fusion and decision
level fusion. For decision level, the classification system built in this thesis can produce
multiple predictions in parallel, so it is natural to exploit decision level fusion for enhanced
performance. Possible approaches may make use of confidence level of each classifier, or
simply produce the final decision on majority vote. The possibility of multi-level fusion
can also be discussed.
Lastly, how to develop a faster and an on-line training algorithm can be investigated,
since off-line training is used in this thesis work and the running time is extremely long.
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