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Identification-based Control of Engine Oil Pressure
JULIUS GRESHAKE
Department of Electrical Engineering
Chalmers University of Technology

Abstract

Current solutions for controlling engine oil pressure rely on model-free controllers that
are tuned following tuning heuristics. Due to the complex structure of modern engine
oil systems, the tuning process is often time-consuming and difficult. This thesis
investigates if optimal control strategies based on black-box system identification of
the engine oil system achieve desirable performance and how such controllers compare
to currently used model-free control approaches. For this purpose, estimation data is
first collected on a test rig that allows isolated experiments on the engine oil system.
Using the collected data, linear state-space and polynomial models with varying
complexity are identified and evaluated with regards to accuracy and general validity
across the operation range of the system. Several linear-quadratic integral controllers
are designed after selecting a suitable underlying model. Their ability to follow
reference steps and reject disturbances is tested at varying operating conditions
of the test rig. The results of these tests are compared to those achieved by a
proportional-integral (PI) controller serving as a comparison baseline.

Linear models were able to reproduce the behaviour of the real system with a
maximum accuracy of 65%. The two-state state-space (SS2) model was chosen for
the subsequent step of model-based controller design due to its low complexity and
marginal accuracy reduction compared to the other identified models. Two of the
developed controller designs resulted in consistently improved reference tracking
and disturbance rejection compared to the PI controller. For the system under
consideration, tuning the model-based controllers was found to be more intuitive
than the tuning process for the PI controller.

Keywords: system identification, model-based control, optimal control
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1. Introduction

The current state of oil pressure control and the problem statement for this thesis
are presented in the first section of this chapter. Next, the limitations of the thesis
work are outlined and a quick note on the topic of confidentiality is given. The final
section explains the overall structure of the thesis.

1.1. Problem Description
The engine oil system is one of the most important parts of a heavy-duty engine and
plays a key role in lubricating moving parts, cooling down hot components, absorbing
sound, limiting mechanical energy consumption, cleaning the inner side of the engine
and protecting components against corrosion. The actuators of the engine oil system
should be controlled in a way that guarantees the engine to be always supplied
with appropriate amounts of oil. The oil pressure demand is determined through
measurements of the engine’s rotational speed, produced torques and possibly other
factors which are fed into lookup tables usually provided by original equipment
manufacturers (OEMs). Failure to meet the oil pressure demand can result in
durability issues and harm the engine [1]. By only providing as much oil to the
engine as requested at any given moment, energy loss can be significantly reduced
and fuel consumption can be lowered [2]. Thus, the goals of this thesis are in line with
“Sustainable Development Goal 12” of the United Nations: responsible consumption
and production. Since heavy-duty engines are used on a large and global scale, even
small reductions in fuel consumption can have a big impact.

Adequate controllers must attain stability, provide suitable set-point tracking and offer
good disturbance rejection over a wide range of operating conditions; PI- and PID-
control is currently the industry standard for this task. These model-free controllers
deliver acceptable performance and allow heuristic tuning without requiring explicit
knowledge of the system’s internal dynamics. For improved reference tracking
and disturbance rejection or an increased robustness against changing operating
conditions, advanced methods from scientific fields like optimal control or robust
control are available. These are model-based control approaches that require a
mathematical description of the system dynamics to derive the control laws that
decide on how to operate the system’s actuators.
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1. Introduction

The required models can be derived from so-called "first principles" such as Newton’s
axioms, but the high degree of complexity of the engine oil system complicates this
approach. This thesis investigates how well the system dynamics can be reproduced
by models obtained through a black-box system identification process, which algo-
rithmically derives the system dynamics from measurements of the system’s inputs
and outputs.

Additionally, the performance of model-based controllers based on such estimated
models is compared to that of model-free controllers. The designed controllers are
evaluated with regards to their reference tracking and disturbance rejection abilities.

1.2. Limitations
There are other system identification strategies such as white-box and grey-box
modelling, which allow model identification based on partial knowledge of the true
system dynamics, however this thesis will only investigate the improvements in
control performance based on black-box-modelled system dynamics.

Additionally, it is possible to identify nonlinear models with the above strategies,
which can be used for nonlinear control approaches such as exact feedback linearization
or backstepping. Neither nonlinear system identification nor nonlinear control will
be covered in this thesis. Instead, linear approximations of the system dynamics will
be estimated from the system’s input output measurements and will subsequently
be used for linear control strategies.

As a final limitation, the system’s basic configuration (i.e. the amount, location and
type of sensors and actuators) is considered to be immutable. Introducing additional
actuators to the system or changing the arrangement of those currently in use could
lead to better overall performance, but such changes to the engine oil system are
beyond the scope of this thesis.

1.3. Confidentiality
For reasons of confidentiality, this thesis will not describe the structure and compo-
nents of the engine oil system in detail. In addition, output values will be rescaled
and no model equations or controller gain matrices will be disclosed to avoid sharing
internals of the Volvo Group.
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1. Introduction

1.4. Thesis Structure
After this introductory chapter, background information about the considered system
as well as the applied scientific theory is provided in Chapter 2. The methods used
for the system identification process and the obtained results are presented in the
third chapter. Building on these results, Chapter 4 outlines the control design process
and Chapter 5 shows the evaluation of the designed controllers. In Chapter 6, the
overall results and potential further research directions are discussed.
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2. Background Information

This chapter begins with two sections containing basic information about the oil
engine system and the component rig used for obtaining experimental data. These
sections are followed by an overview of the scientific concepts that are required for
achieving the goals laid out in the introduction.

2.1. Engine Oil System
From a control perspective, the engine oil system considered in this thesis has a
multiple input multiple output (MIMO) structure. There are two locations in the
engine with independent oil pressure requirements. These pressure requirements
are updated continuously based on measurements external to the system such as
engine speed and motor torque. At both target locations, the current oil pressure is
monitored through pressure sensors. Their readings constitute the two outputs of
the control system and will be referred to as y1 and y2 throughout this thesis.

The oil pressure at the two target locations can be influenced by two actuators. They
are controlled by the input signals u1 and u2, which are generated by an electronic
control unit (ECU) and range from 0% to 100%. The ECU calculates these input
values based on the sensor readings from y1 and y2 and the control strategy that is
used. Because the control unit for the engine oil system is a digital device operating
at a fixed frequency, discrete system descriptions and control strategies will be used
in this thesis.

An abstraction of the system layout is shown in Figure 2.1. Due to the sequential
arrangement of the two actuators, the MIMO system can not be simplified into two
independent single input single output (SISO) systems, a technique that is used
where possible to reduce model complexity and facilitate the design of controllers.

2.2. Component Rig
The experimental data used throughout this thesis is obtained from a component
rig, which allows the isolated testing of the engine oil pump.
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2. Background Information

Target 2

Target 1

Oil Pan

ECU

Actuator 1Actuator 2

y2
y1

u2

u1

Figure 2.1.: Schematic of the engine oil system

Component rigs provide several advantages over testing in a fully assembled vehicle:

• Lower operational costs

• Less expertise needed for operation

• Less risk for (and damage in case of) critical operational errors

• Higher availability

The main drawback of this testing method is the difference in system behaviour
compared to a fully assembled vehicle. This means that results obtained on a
component rig are not directly transferrable to a real vehicle. Additionally, some of
the system properties and behaviours may depend on the interactions of the engine
oil system with other vehicle components, which are not included in the component
rig.

Despite these limitations, the use of a component rig is an important first step when
exploring new control strategies as it allows to quickly generate results and rule out
unpromising approaches.

2.3. System Identification
System identification is the process of deriving dynamical models from observed
input and output data [3], as opposed to manually creating these models by math-
ematically describing the physical phenomena that govern the system behaviour
[4]. Due to the large scope of this scientific field, this section will be limited to
explanations regarding the estimation of linear models from measured time-domain
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2. Background Information

data. Additional information on nonlinear system identification and identification
from frequency-domain data can be found in [5, 6].

MATLAB’s System Identification Toolbox will be used for this thesis, which contains
implementations for a wide variety of system identification algorithms.

2.3.1. Data Collection

There are multiple works concerned with identifying optimal input patterns for a
system so that a minimal amount of input output data can be used for system
identification [7, 8]. This is especially relevant for industrial applications, where the
system identification process would require interrupting production. If there are no
such concerns (which is the case here, since tests can be conducted on the component
rig), a pseudo-random binary sequence (PRBS) input signal as proposed in [9] can be
used. Using this type of signal as the system input ensures that the system dynamics
are revealed in the produced output measurements and can then be identified [10].

2.3.2. Model Selection

Before running the system identification algorithms, the general structure of the
model that will be estimated has to be chosen. Depending on the model structure,
additional options such as the model order can be set.

State-space Models

The state-space representation is a compact mathematical description of a system’s
dynamic properties through first-order differential or difference equations [11]. In
discrete time, these equations are as follows:

x[n+ 1] = Ax[n] + Bu[n]
y[n+ 1] = Cx[n] + Du[n]

(2.1)

The number of system inputs and outputs determines the size of the u and y vectors
respectively. Each entry of the x vector represents a system state and the size of
this vector is referred to as the order of the state-space model. For the system
identification process, the state-space order can be chosen freely and is usually
determined experimentally.

The form of the state-space matrices can be influenced through an additional function
parameter in MATLAB. Choosing a canonical observer form causes C to be an
identity matrix and D to contain only zeros [10]. In this configuration the system
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2. Background Information

states are equivalent to the system outputs, which is particularly useful for state
feedback design, where the measured system outputs can be used directly without
the added step of state estimation through an observer structure or a Kalman Filter.

Polynomial Models

Polynomial models are transfer function representations of systems that have the
following general structure [12]:

ny∑
j=1

Alj(q)yj(t) =
nu∑
i=1

Bli(q)

Fli(q)
ui (t− nki) +

Cl(q)

Dl(q)
el(t) (2.2)

In this equation, nu and ny are the numbers of system inputs and outputs, while
e(t) represents a white-noise term. The ith system input ui(t) is affected by the
transport delay nki. To account for multiple system outputs, the subscript l denotes
the lth output equation.

Alj , Bli, Cl, Dl and Fli contain the polynomial orders for the combination of input
and output denoted by their respective subscripts. Each polynomial is a function
of q, a time-shift operator equivalent to the operator z found in the Z-transform.
Assuming that A is of degree na for l = ny = 1, we get:

A(q) = 1 + a1q
(−1) + · · ·+ anaq

(−na) (2.3)
A(q)y(t) = y(t) + a1y(t− 1) + · · ·+ anay(t− na) (2.4)

The other polynomials follow the same structure (with the notable exception of B,
which omits the leading 1).

By using specific combinations of polynomials, we obtain the model structures
autoregressive with exogenous input (ARX), autoregressive moving average with
exogenous input (ARMAX) and Box-Jenkins (BJ):

• ARX: Polynomials A and B

• ARMAX: Polynomials A, B and C

• BJ: Polynomials B, C, D and F
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2. Background Information

Black-box and grey-box estimation

With grey-box estimation, partial knowledge about the model structure can be used
to pre-define some of the model parameters such as specific entries of the state-
space matrices or known poles of the polynomial transfer functions [13]. Black-box
estimation on the other hand implies no previous knowledge about the system,
meaning that all model parameters are determined algorithmically. Only black-box
estimation is used in this thesis.

2.3.3. Identification Process

While there are specific algorithms for the identification of each model structure,
the general procedure of the system identification process remains the same: the
difference between the measured system outputs and those generated by the estimated
model is iteratively minimized [14]. In MATLAB, this difference is determined by
the following general quadratic cost function, parameterized by the parameter vector
θ:

V (θ) =
1
N

N∑
t=1

eT (t, θ)W (θ)e(t, θ) (2.5)

In this equation, N represents the number of recorded datapoints used for the system
identification process, e(t, θ) is the error vector (a row-vector with ny rows) and
W (θ) is a weighting matrix that can be used to adjust the weighting of the error
terms for each output.

2.3.4. Model Fit

For the identified model, a fit percentage is calculated according to the following
equation [15]:

Fit Percentage = 100
(

1− ‖ymeasured − ymodel‖
‖ymeasured −mean (ymeasured)‖

)
(2.6)

With a fit percentage of 100%, the identified model recreates the measured output
signal perfectly when provided with the recorded input data. A fit percentage of 0%
is equivalent to a model that just takes the mean value of the measured data.

After the model estimation process is finished, MATLAB reports the final fit percent-
age achieved on the provided dataset. Additionally, the fit percentage of an estimated
model on a separate validation dataset can be calculated, which is an important step
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in order to identify and avoid overfitting. Overfitting is a phenomenon where an
identified model is able to achieve a good fit on the data used during the estimation
process but fails to recreate the measured outputs of other datasets that were not
used during the estimation process [16]. It signals a lack of general validity of the
model and is an indicator that the chosen model order (and thus the number of
parameters of the underlying model) is too high.

2.4. Linear-quadratic Control
Linear-quadratic control is a control strategy from the field of optimal control that
aims to minimize the quadratic cost functional J, which (in discrete time) is defined
as follows [17]:

J(u) =
∞∑

n=1

(
x[n]TQx[n] + u[n]TRu[n] + 2x[n]TNu[n]

)
(2.7)

In J , the matrices Q, R and N can be chosen freely to weigh the impact of the system
states, the system inputs and their cross-relation respectively. The discrete-time
Algebraic Riccati Equation (ARE) associated with the above cost function is:

ATPA− P −
(
ATPB +N

) (
BTPB +R

)−1 (
BTPA+NT

)
+Q = 0 (2.8)

After solving this equation for P , the optimal state feedback law in the form of
u[n] = −Kx[n] that minimizes the cost function Equation (2.7) can be calculated:

K =
(
BTPB +R

)−1 (
BTPA+NT

)
(2.9)

A controller that implements this feedback law is called linear-quadratic regulator
(LQR). Figure 2.2 shows an LQR in the block notation common for describing
control systems.

System

−K

+

+

Kr

x

u
r y

Figure 2.2.: LQR Structure

- 9 -



2. Background Information

To ensure reference tracking for non-zero set points, the reference signal r is pre-
multiplied with the matrix Kr, which is the inverse of the closed-loop transfer matrix
Hc [17]:

Kr = H−1
c =

(
D+C (I − (A−BK))−1

B
)−1

(2.10)

2.4.1. LQI Control

When an LQR is used to control a system with slightly different dynamics than those
used to determine the LQR’s gain matrices K and Kr, undesired behaviour of the
controlled system in the form of steady-state errors can be observed. To avoid this,
the LQR structure can be extended by including the integral of the tracking error e
[18].

The resulting linear-quadratic integral (LQI) controller eliminates steady-state errors
in the case of disturbances or modelling inaccuracies. The LQI controller structure
is shown in Figure 2.3.

System−K∫+

−

u
e

r
y

x

Figure 2.3.: LQI Structure

2.4.2. Tuning Procedure

Bryson’s rule (named after its creator Arthur Bryson [19]) can be used to choose
the initial values of the Q- and R-matrices of the quadratic cost function J (with N
usually set to 0). If vi is the largest expected value for state xi, then the diagonal
element Qii is set to v−2

i . All off-diagonal matrix entries are set to 0. A similar
procedure can be applied for the entries of the R matrix, where vi represents the
biggest allowed control signal for input ui. This strategy limits the summands of the
cost function J to a theoretical maximum of 1, ensuring an equal influence of every
state and every input on the total cost.

Further adjustments to the matrix entries can be made by understanding them as
indicators for the penalization weights on the controlled states (for Q) and controller
inputs (for R). If reactions to reference changes or accumulated integral errors are
perceived as too slow, the corresponding entries of the Q-matrix can be increased.
Similarly, if the generated control values cause oscillations due to noise at steady
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state or because the output signal limits are reached too frequently, the entries of
the R-matrix can be increased.

2.5. Control Performance Metrics
There are many methods for evaluating the performance of a controlled system. Its
time behaviour can be formally analysed through metrics related to its step response.
In addition, the output error integral can be calculated, which is a more general
measure of a controller’s ability to minimize the error between reference signals and
system outputs.

2.5.1. Step Response

The step response describes the system behaviour after applying a Heaviside step
function to its reference signal [20]. A typical step response is shown in Figure 2.4.
The recorded output signals can be analysed to extract (among others) the following
metrics:









































 
 
 
 
 
 
 
 





















































Overshoot = b / a 
110%
100%
90%

b

a

Settling Time

Rise Time

10%

t

Figure 2.4.: A typical step response with rise time, settling time and overshoot
highlighted
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Rise Time

The rise time is defined as the time it takes for the signal to rise from a lower ratio
of the step size (usually 10% to 30%) to a higher ratio of the step size (usually 90%
or 95%) and is thus a general performance metric of a controlled system.

Settling Time

The settling time is a second performance metric defined as the time it takes the
output signal to settle within an error band (usually 5% to 10%) of the desired
output value. The error band can be chosen depending on the general level of signal
noise and the process-specific error tolerances.

Overshoot

The overshoot is given as a percentage of the step amplitude and is defined as the
ratio b

a in Figure 2.4, describing the maximum relative error that can be observed
after applying a step reference signal to the controlled system. If the output signal
is never larger than the step amplitude (or stays within a pre-defined error band),
the overshoot is considered to be 0.

2.5.2. Output Error Integral

The area between the reference signal and the measured output can be calculated
and used as a general measure of how well the reference trajectory is followed over a
given time period. The integral of |yref − ymeas| is used to ensure that diversions
from the reference signal in both directions increase this error term. For time-discrete
signals, the integral can be approximated using the trapezoidal rule.
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3. System Identification

The methods used for data collection and preparation are explained in the first
section of this chapter. The results are then presented and discussed in sections 2
and 3. Finally, one of the identified models is chosen to be used for designing the
model-based controllers in the following chapter.

3.1. Methodology

3.1.1. Data Collection and Pre-processing

Neither the base reference values of the system’s outputs nor the system’s desired
operating range can be directly transferred from the fully assembled vehicle to the
component rig (as mentioned in Section 2.2). To define suitable base reference values
for the component rig, the range of values that can be observed on each of its outputs
is determined first. The outputs’ base reference values are then set to the midpoint
of their respective value ranges. Next, the output extrema of the fully assembled
vehicle are expressed as percentages of their respective base reference value (e.g. the
largest observable y1 value is 155% of its base reference value). These relative ranges
can then be applied to the component rig’s new base reference values to determine
its desired operating range.

A PRBS signal is added to each actuator control signal to generate the input output
data that will be used for system identification. The amplitudes of these PRBS
signals are chosen such that the resulting output values cover the entire desired
operating range. A section of one recorded dataset is shown in Figure 3.1.

There can be slight variations in the recorded output levels between the different
datasets, caused by external factors such as the ambient temperature of the component
rig. To ensure that these variations do not negatively affect the system identification
process, all datasets are centered around 0. The gradual temperature increase of the
engine oil during operation can cause linear trends in the recorded data that are not
related to the input output dynamics. These trends can be identified and removed
by comparing the output values at the beginning and the end of the recorded dataset.
Figure 3.2 shows the same dataset section after applying these pre-processing steps.
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3. System Identification
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Figure 3.1.: Section of an input output dataset before pre-processing
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Figure 3.2.: Section of an input output dataset after pre-processing
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To get a comprehensive overview of the system dynamics, this data collection
procedure is repeated for a total of 12 combinations of oil temperatures and engine
speeds, which are listed in Table 3.1. The datasets will be referred to by their indices
in the following sections.

Table 3.1.: System Identification Testing Conditions
Index Oil Temperature Engine Speed

1 18°C 1000 rpm
2 18°C 1500 rpm
3 18°C 2000 rpm
4 38°C 1000 rpm
5 38°C 1500 rpm
6 38°C 2000 rpm
7 47°C 1000 rpm
8 47°C 1500 rpm
9 47°C 2000 rpm
10 56°C 1000 rpm
11 56°C 1500 rpm
12 56°C 2000 rpm

3.1.2. Estimation and Validation

The system identification process should generate a model that captures the system
dynamics with a sufficient degree of accuracy across all testing conditions. If that
is not possible, underlying structures in the obtained measurement data should be
revealed that allow splitting the data into subsets and estimate a model for each of
these subsets. To achieve these goals, two methods for separating the collected input
output datasets into estimation and validation data were developed.

Single Dataset Estimation

For single dataset estimation (SDE) each of the datasets is used separately to estimate
a model, yielding 12 models in total. Each of these models can then be validated
on the remaining datasets that were not used during the estimation process. An
illustration of this method is shown in Figure 3.3.

The obtained fit percentages can be arranged into a matrix, with each row representing
one model (estimated on the dataset corresponding to the row number) and each
column entry of that row showing the fit percentage for this combination of model
and dataset. For the diagonal entries of the matrix, the fit percentage returned
by the estimation process is used. All other matrix entries contain a validation fit
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1 2 3 ... 12Model 1

1 2 3 ... 12Model 2

1 2 3 ... 12Model 3
... ... ... ... ...

1 2 3 ... 12Model 12

n Dataset n

Estimation Data

Validation Data

Figure 3.3.: Illustration of the SDE method

percentage that shows how well the model can recreate the output data of datasets
that were not used during the estimation process.

The fit percentage matrix provides valuable insights into both the generated models
as well as the underlying datasets. Overfitting is revealed when a model’s diagonal
matrix entry is significantly higher than the remaining entries of this row, whereas
consistently high fit values in an entire row signify the general validity of this row’s
model. Low fit values in an entire column show that this dataset is particularly
difficult to recreate, which can reveal errors in the data collection process or indicate
nonlinear system behaviour. A block-diagonal structure, where some models only
result in good fit percentages on neighbouring datasets, is an indicator that better
control performance may be achieved by splitting up the dataset, identifying multiple
models and applying techniques like gain scheduling or robust control.

Combined Dataset Estimation

For combined dataset estimation (CDE), each dataset is split in half to create
two subsets of the data, one for estimation and one for validation. All estimation
subsets are combined into one large estimation dataset that is provided to the system
identification algorithm. This estimated model is then validated separately on each
of the validation datasets. An illustration of this method is shown in Figure 3.4.

Conceptually, CDE has the advantage of estimating a model from a large dataset
that encompasses data from all relevant operating conditions, whereas SDE can be
regarded as a tool for identifying specific operating conditions (and the corresponding
dataset and model) that are representative of a larger operating range.
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1Datasets 2 3 ... 12

Estimation Data

1 2 3 12...Validation Data

Figure 3.4.: Illustration of the CDE method

3.2. Results
The system identification results obtained from the estimation of a two-state state-
space (SS2) model are presented in detail to demonstrate the process used for
analysing the system identification results. The same process has been used to
inspect the remaining models, but the discussion of their results will be limited to
more general observations and comparisons in Sections 3.2.2 and 3.2.3. The relevant
plots for these models can be found in Appendix A.

3.2.1. Two-state State-space Model

SDE

Figure 3.5 shows a heatmap visualisation of the fit percentage matrix of the SS2
model. It is noticeable that columns 1 to 3, which represent the datasets collected
at cold oil temperature, have consistently low fit percentages of around 50%. This
could indicate nonlinear system behaviour at cold oil temperatures, which can not
be captured and recreated by a linear model.

In Figure 3.6, the row-average of the fit percentage matrix is visualised, showing the
mean fit percentage across all datasets for every estimated model. There is little
variation here, with the lowest and highest mean fits only separated by 5 percentage
points. The model estimated on dataset 6 achieves the highest average fit of 58.1%.
This model will be used for the following inspections and comparisons and will be
referred to as SDE6 for clarity.

For the initial model assessment via the fit percentage matrix, the fit percentages
of y1 and y2 are averaged. After identifying model 6 as the model with the highest
average fit percentage, the model’s individual output fits are inspected to ensure
that both y1 and y2 are modelled well. This analysis is shown in Figure 3.7. While
there is some variation between the fit percentages of y1 and y2, the discrepancy is
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Figure 3.5.: SS2 model - fit percentage matrix obtained through SDE
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Figure 3.6.: SS2 model - row averages of the fit percentage matrix
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only once larger than 10 percentage points (on dataset 5) and the average across all
validations is almost identical at just over 58%.
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Figure 3.7.: SS2 model (SDE6) - detailed output fit percentages

CDE

As explained in Section 3.1, CDE only estimates a single model and thus does not
produce a fit percentage matrix. The estimated model’s individual fit percentages
for y1 and y2 are shown in Figure 3.8. Compared to the best model of the SDE, the
discrepancies between the output fits are slightly higher and tend to favour y1 over
y2. This is also evident in the mean values of the output fit percentages, where a
difference of 3.5 percentage points can now be observed between y1 and y2.
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Figure 3.8.: SS2 model (CDE) - detailed output fit percentages
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Comparison of SDE and CDE

After confirming that both SDE and CDE produce models with acceptable fit
differences between y1 and y2, the average of the two output fit percentages will
be used again for the remaining comparisons. In Figure 3.9 the per-dataset fit
percentages for the SDE6 model and the CDE model are shown.
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Figure 3.9.: SS2 model - fit percentage comparison between SDE6 and CDE

For this combination of datasets and model choice, the difference between the two
estimation strategies is negligible. Nonetheless, some effects of the two different
approaches can be observed. The SDE6 model is only able to achieve a better fit
percentage than the CDE model on three datasets (one of them being dataset 6, on
which the model was estimated and where a good fit is thus expected). This can be
attributed to the fact that during the system identification process, the CDE model
is iteratively optimized on a dataset comprising data from all operating conditions.
The advantage of the SDE method lies in the number of models created. This allows
picking a model that is also able to achieve a good fit on datasets from operating
conditions it has not encountered before, sometimes even surpassing the performance
of the CDE model.

3.2.2. Higher-order state-space models

Next, the effect of the state-space order on the obtained model fit is investigated.
For this purpose, state-space models with an order of n = 4, 6, 8, 10 (referred to as
SSn) are identified and compared to the SS2 model. Figure 3.10 shows the average
fit across all datasets of those state-space models, both for the best model obtained
through SDE and the single CDE model.

While there are marginal improvements in model accuracy when using 4 states
(+3-4% over SS2) and 6 states (+5-6% over SS2) for the state-space representation,
there are no discernible benefit when further increasing the number of states to 8 or
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Figure 3.10.: Mean fit across all datasets for state-space models of different orders

10. In Figure 3.11 the poles and zeros of the SS10 CDE model are plotted together
with a circle that indicates the confidence region for 2 standard deviations for each
of them. The overlapping confidence regions of poles and zeros that can be observed
are an indicator that this pole-zero pair can be removed without a noticeable impact
on model accuracy, proving that there is no benefit in increasing the model order
further.
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3.2.3. Polynomial models

Polynomial models were investigated alongside traditional state-space models, more
specifically the polynomial model structures ARX, ARMAX and BJ. For each of
them, orders 1 to 3 were applied to all polynomials used in the respective model
structure, indicated by the number after the acronym.

Figure 3.12 shows the average fit across all datasets for all estimated polynomial
models. The best average fit percentage of 65% is achieved by the BJ model of
order 2, demonstrating that the tested polynomial models only result in single-digit
improvements in model accuracy for this dataset.
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Figure 3.12.: Mean fit across all datasets for polynomial models of different orders

The fit percentages achieved by SDE and CDE are again in close proximity to each
other, with the notable exception of ARX models with orders 1 and 3 and the
BJ model of order 3, where the models obtained through CDE fail to recreate the
measured data with sufficient accuracy.

3.3. Discussion
Despite the wide range of investigated models, it was not possible to increase the
average fit percentage across all datasets beyond 65%. Figure 3.13 shows a comparison
of a validation dataset’s measured system outputs and the system outputs generated
by an estimated SS2 model based on the same input data. The estimated model is
able to capture the general input output dynamics, but sometimes fails to accurately
recreate the signals (e.g. from 17s to 21s or between 41s and 45s).

The system behaviour that can not be recreated by these models is most likely not
linear in nature. Initial experiments confirm this assumption by demonstrating that
model accuracy can be increased further by estimating nonlinear models such as
wavelet- or treepartition-based models. Since nonlinear models require a conceptually
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Figure 3.13.: SS2 - simulated outputs (blue) and measured outputs (grey)

different control approach, they will not be further investigated and discussed in this
thesis but can be explored in future work.

Across all models, the observable differences between SDE and CDE were marginal.
A clear benefit of SDE is the generated fit percentage matrix, which offers valuable
insight in the quality of the underlying data and can reveal block-diagonal structures
that can then be used to separate the collected data into smaller subsets. This was
however not necessary for the component rig test system.

3.4. Model Choice for Controller Design
Choosing an underlying model is a fundamental first step of model-based control.
The structure of the model as well as additional information such as the model’s
accuracy influence the subsequent step of designing a controller.

For this thesis, the SS2 model structure was chosen. It provides a fit percentage that
is within single-digit range of the maximum achieved fit and has the benefit of low
overall complexity. Since the model was estimated in observable canonical form, the
system states are identical to the measured system outputs, simplifying the design
of state feedback control.

Neither state-space models of higher orders nor the estimated polynomial models
offer any substantial gains in model accuracy and the increased number of states
would require a more complex controller structure including state estimation through
an observer or a Kalman Filter.
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The detailed comparison of the SDE and CDE methods in Section 3.2.1 showed a
close similarity of the models obtained with the two strategies. The SDE model was
ultimately chosen over the CDE model, since its average validation fit percentages
for y1 and y2 were closer to each other (as shown in Figures 3.7 and 3.8).
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This chapter outlines the decision process behind the chosen control strategies, along
with some system-specific implementation details and the comparison baseline for
the following evaluation chapter.

4.1. Linear-quadratic Control
The results from the previous chapter show that the chosen model does not capture
the full dynamics of the engine oil system. While an LQR delivers good performance
on accurately modelled systems, it results in steady-state errors in the presence of
modelling inaccuracies, making it inadequate for satisfactory control of the engine
oil system.

The deficiencies of the chosen model can be regarded as disturbances to the system,
thus making LQI control a suitable choice for this control problem. Pure LQI control
as proposed by [18] shows worse reference tracking performance than the tested
LQR. For this reason, a version of LQI control that includes a feedforward term was
implemented as well. This controller will be referred to as LQIf for the remainder of
the thesis; its structure is shown in Figure 4.1.

LQI

Kr

+

+

y

r

uLQI

uf

uLQIf

Figure 4.1.: Structure of the LQIf controller

For LQIf control, the control output generated by the LQI structure is augmented
by the reference value r multiplied by Kr, which is determined the same way as in
traditional LQR control (Section 2.4). It should be noted that only the first two
columns of the 2-by-4 LQI-K-matrix are used for determining the transfer function
of the closed loop system, since columns three and four are related to the integral of
the control error.

- 26 -



4. Controller Design

4.2. Input Output Offsets
As described in Section 3.1, all models were estimated on data centered around the
base operating output values, an approach that is conceptually similar to the manual
derivation of a linearized model around a given operating point. Consequently,
the obtained models describe the deviation dynamics from this operating point.
Controllers based on such models expect reference and state signals that are offset
in a similar way and will produce control signals that have to be added back to
the input offsets subtracted before estimation. This results in the controller layout
shown in Figure 4.2.

Controllery offsets
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−

+
−

+
+

u offsets
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y

u

yecu

recu

uecu

Figure 4.2.: Controller layout with applied offsets

4.3. Dynamic System State
The system state that is used inside the controllers is determined as follows:

x = y = yECU − [y offsets] (4.1)

During testing it was found that a second method of calculating the system state can
lead to performance improvements compared to traditional LQI control: by using the
reference values in place of the static y offsets, a more aggressive controller behaviour
can be achieved:

x = yECU − rECU

= (yECU − [y offsets])− (rECU − [y offsets])
= y− r

(4.2)

Using this method, a change in reference values changes the system states, which are
then brought back to a zero-equilibrium by the controller. It should be noted that
this method assumes that the system’s equilibrium point can be freely shifted within
the operating range without changing the system dynamics.

In the following comparisons, the controllers using this dynamic state calculation
method will be marked with a trailing letter d.
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4.4. Comparison Baseline
The model-based controllers will be compared to a model-free proportional-integral
(PI) controller, which approximates the currently used control strategies for the
engine oil system and uses the same input signals as the linear-quadratic controllers:
the measured system outputs and the integral of the control error. To ensure a fair
comparison, an equal amount of time is spent on the tuning of the model-based
controllers and the baseline controller.
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This chapter begins with an explanation of the test scenarios used for evaluating
the controllers on the component rig. The test results are then presented and the
performance of the model-based controllers is compared to that of the model-free PI
controller. The results are then summarized and discussed further in the last section.

5.1. Methodology
As stated in Section 1.1, controllers of the engine oil system need to provide good
reference tracking and disturbance rejection. For each of these requirements, separate
test scenarios have been created with the goal of allowing a comparison of the
controllers that is as fair and objective as possible.

Despite the differences between the component rig and the full engine oil systems
that were discussed in Section 2.2, the results from these tests are indicative of the
controller’s behaviour in a fully assembled vehicle.

5.1.1. Reference Tracking

The reference tracking ability of the designed controllers is determined by 4 separate
tests in which the reference values for y1 and y2 are modified. The reference
trajectories of the first 2 step tests are shown in Figure 5.1. Each reference test is
made up of 11 individual steps with target values of ±20%, ±40% and ±60% of the
baseline reference value. After reaching the maximum step size at step 6, the pattern
is reversed. The time between steps is set to 10 seconds to give the output values
enough time to settle around the reference value for most jumps while keeping the
overall testing time within a reasonable limit. Cases where the reference value could
not be reached in time are accounted for by setting the settling time for the affected
step to 11 seconds. This method penalizes every non-settled step equally which
could potentially lead to inaccuracies: two controllers reaching 120% and 150% of
the reference value both get a settling time of 11s. During testing such occurrences
were very rare, making this approximation acceptable for this specific use case.
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Figure 5.1.: Reference trajectories of tracking performance tests 1 and 2

By modifying the reference values in a step pattern (instead of e.g. ramping them
up over a certain timespan), metrics such as settling time and overshoot can be
determined for each reference change, which allow a more in-depth and standardized
evaluation of the tested controllers.

Besides the independent stepping of the reference values, two additional step tests
were carried out where the reference values for y1 and y2 were stepped at the same
time. The simultaneous step tests were conducted twice, with both reference values
stepping in the same direction during Test 3 and in opposite directions during Test
4 (Figure 5.2). To ensure that the reference values can be reached before the next
step starts, the step amplitudes for these tests have been slightly decreased to ±15%,
±30% and ±45%.

For each step, the rise time, settling time and overshoot are determined. While
the metrics change depending on the step size, these variations were found to be
independent of the tested controller. For this reason, the results are then simply
averaged across the 11 steps. Additionally, the total control error over the course of
the entire test is evaluated by a trapezoidal integral approximation as described in
Section 2.5.2.

5.1.2. Disturbance Rejection

To test the controllers’ disturbance rejection abilities, the input signal offsets shown
in Figure 4.2 are modified, which causes a sudden jump in the system’s output
values. Analysing how quickly the system is able to return to the (unchanged) output

- 30 -



5. Controller Evaluation

0 50 100
0.5

1

1.5
y 1

R
ef
er
en
ce

Test 3

0 50 100
0.5

1

1.5

time [s]

y 2
R
ef
er
en
ce

0 50 100
0.5

1

1.5

Test 4

0 50 100
0.5

1

1.5

time [s]

Figure 5.2.: Reference trajectories of tracking performance tests 3 and 4

reference values gives insights into each controller’s ability to reject unexpected
system disturbances. During each input’s disturbance test, their respective offset
value was changed 4 times, as shown in Figure 5.3.

Since the reference values for the outputs stay constant during these tests, each input
disturbance can be regarded as a step with an amplitude of 0. Following this analogy,
the settling time of such a step represents how quickly an output has returned back
to its reference value. The settling time of the output corresponding to the disturbed
input is first inspected in isolation, but the maximum of the settling times of both
outputs is used as an additional metric to account for the actuators’ cross-influences.
Similar to the reference tracking tests, a failure to settle within 10 seconds after the
disturbance occurred is accounted for by setting the settling time for that interval
to 11 seconds. Finally, the overall disturbance error is evaluated by a trapezoidal
integral approximation as described in Section 2.5.2.

It should be noted that other system disturbances can occur, such as a disturbance
on the system output. Only input disturbance rejection is evaluated here to limit the
scope of testing and due to technical reasons regarding the ease of implementation
on the component rig.

5.2. Results
In this section, the controllers are evaluated with regards to ease of tuning and
their performance in the reference tracking and disturbance rejection test scenarios.
The engine speed was set to 1500 rpm during testing since initial tests showed no
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Figure 5.3.: Input offset values during disturbance tests

discernible difference between results obtained at 1000 rpm, 1500 rpm and 2000 rpm.
All tests were then conducted at oil temperatures of 19°C, 38°C, 47°C and 56°C.
To get an overview of the performance of all tested controllers, the average results
across these four oil temperatures are shown here. Detailed results broken down by
controller type, temperature and test scenario can be found in Appendix B.

5.2.1. Controller Tuning

While an equal amount of time has been spent on tuning all controllers to ensure a
fair comparison, the tuning process for the model-based controllers is considerably
more intuitive.

The layout of the engine oil system (Figure 2.1) results in a more difficult tuning
process for the model-free controllers since the controller for one input influences
the behaviour of the entire system and thus the tuning requirements for the other
input. Model-based tuning of PI controllers is also possible but was not applied here
to give a more realistic comparison between the currently employed method for oil
pressure control and the new model-based strategies.

When using Bryson’s rule for the initial values and with an understanding of the
impact of the Q- and R-matrices’ entries, the tuning process of linear-quadratic
controllers is more straightforward in this case. The Kr-matrix of the LQIf controllers
can be scaled up and down independently from the main feedback matrix if required,
which adds a bit of complexity compared to pure LQI control.
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All controllers have been tuned with the goal of optimizing overall performance
for the described testing scenarios. For real-world applications, tuning is usually
carried out in accordance with the maximum step amplitude of reference values and
process-related limits for overshoot percentages and rise times. The controllers can
then be tuned to stay within these limits during operation.

5.2.2. Reference Tracking

A comparison of the rise times achieved by the considered controllers is shown in
Figure 5.4. LQId and LQIf show consistent rise time reductions of up to 58% over
the PI controller, while LQI has a noticeably higher rise time in Test 1 and LQIfd
shows a slightly increased rise time in Test 2.
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Figure 5.4.: Average rise times for each controller

Similar trends can be observed for the settling times, which are depicted in Figure 5.5.
The lowest times are again achieved by LQId and LQIf. The LQI controller takes 0.7
seconds longer to settle than the PI controller in Test 1 but demonstrates improved
settling times on the remaining tests. The LQIfd’s settling times are very close to
those of the PI controller in Tests 2 and 3, but improvements can be seen on Tests 1
and 4.

Figure 5.6 shows the average overshoot percentages for the reference tracking tests.
The overshoot percentages of Test 2 are more than twice as high than those of Test 1.
Since signal y2 is almost an order of magnitude smaller than signal y1, measurement
noise has a higher relative impact on the signal, affecting the perceived overshoot.
On Tests 1 and 2, all model-based controllers achieve lower overshoot than the PI
controller. The LQI controller has the lowest overshoot values across all tests, the
remaining model-based controllers achieve lower overshoot percentages than the PI
controller on Test 4 but higher overshoot percentages on Test 3.

As a final metric for the controllers’ reference tracking ability, the approximated
integral of the absolute control error is shown in Figure 5.7. The best performance is
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Figure 5.5.: Average settling times for each controller
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Figure 5.6.: Average overshoot percentages for each controller
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achieved by the controllers LQId and LQIf, which both achieve a reduction of the
integral value of ca. 40% compared to the PI controllers. The LQIfd controller’s
results are similar, although slightly worse in Tests 2 to 4. The LQI controller is on
par with the PI controller during Test 1, features better error integrals on Tests 2
and 4 but a worse result on Test 3.
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Figure 5.7.: Average control error integral for each controller

Overall, the controllers LQId and LQIf achieved the best results, which only performed
worse on a single test and metric combination (overshoot on Test 3). The results for
the other two model-based controllers were usually slightly better than those of the
PI controller but fell behind the model-free controller’s performance for several test
and metric combinations.

In Figure 5.8 the reference tracking results from Tests 1 and 2 at 56°C are shown
for the PI, LQId and LQIf controllers. The effects of the system layout are clearly
visible in Test 2, where the reference steps on y2 cause noticeable disturbances on
y1. While the disturbance peaks are of similar height for all three controllers, the
model-based controllers are able to return to the baseline much quicker than the
PI controller. The improvements in rise time are especially noticeable on the larger
steps of both tests.

In the plot of Tests 3 and 4 (shown in Figure 5.9), the overshoot differences observed
in the bar charts are very pronounced. The PI controller has noticeable overshoot
in Test 4 that is drawn out across the larger steps. In Test 3, the model-based
controllers show clear overshoot during the larger steps but are able to settle around
the reference value a lot quicker.
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Figure 5.8.: Reference tracking tests 1 and 2 at 56°C, 1500 rpm
PI (blue) vs. LQId (red) vs. LQIf (yellow)
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5.2.3. Disturbance Rejection

Figure 5.10 shows the average settling time achieved by each controller for Test 1
(disturbance at u1) and Test 2 (disturbance at u2). For this metric, only the settling
time of the output corresponding to the disturbed input, i.e. y1 for u1 and y2 for u2,
has been considered. The plot clearly shows that all model-based controllers improve
upon the baseline performance of the PI controller. For disturbances on u1, the LQI
controllers without a feedforward component show a greater reduction than the LQIf
controllers. The best result on Test 2 was achieved by the LQIfd controller, with
LQId and LQIf following close behind.
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Figure 5.10.: Average settling time for each controller (disturbed output only)

In Figure 5.11 the maximum settling time of both outputs is considered instead. The
most notable changes can be seen in the results of the PI controller, whose results
increase by 0.6s for Test 1 and 0.9s for Test 2. For the model-based controllers results
are mostly the same, with the biggest change being a 0.2s increase in the LQIf’s
result for Test 1.
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Figure 5.11.: Average settling time for each controller (maximum of both outputs)

The control error integrals are shown in Figure 5.12. The results are in line with the
previous comparisons and show clear improvements for all model-based controllers
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(around 30% on Test 1 and 20% on Test 2). The LQId controller achieves the best
performance in both tests.
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Figure 5.12.: Average control error integral for each controller

For the PI, LQId and LQIf controllers, the disturbance tests are shown in detail in
Figure 5.13. In Test 1, the effects of the disturbances on y1 are less severe during
model-based controller tests, while y2 is mostly affected by signal noise. Disturbances
on u2 clearly affect both output signals. The PI controller tends to overcorrect the
deviation on y1 resulting in the longer overall settling time that could be observed
in the previous graphs. On y1 the disturbance peaks are usually the same height,
but the model-based controllers are again able to return the signal to its original
reference point quicker than the PI controller.
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Figure 5.13.: Disturbance rejection tests at 19°C, 1500 rpm
PI (blue) vs. LQId (red) vs. LQIf (yellow)
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5.3. Discussion
Table 5.1 showcases the results of the previous section. Evidently, the controllers LQId
and LQIf achieve the most consistent improvements for all considered criteria. The
increased effort required for their implementation is outweighed by the measurable
gains in performance and the more intuitive tuning process. A performance decrease
compared to the PI controller could only be observed on the overshoot metric of
one of the four test scenarios. This is additionally relativized by the applied tuning
process, which favoured overall control performance at the cost of overshoot in some
scenarios. If the controllers are implemented in an industrial context, the controller
tuning can be adjusted to meet specific requirements.

The information about the system dynamics that was gained from the system
identification step can be fully utilized in the feedforward term of the LQIf controller,
giving it an inherent advantage over the model-free PI controller. Any modelling
inaccuracies are compensated by the LQI controller’s inherent steady-state error
correction.

From Figures 5.8, 5.9 and 5.13 it is clear that the dynamic state calculation applied
in the LQId controller yields similar results. Whenever there is a change in reference
values, the system state changes as well. This change in system state is then acted
upon by the controller’s K matrix.

The LQI controller acts only on the accumulated integral error and thus suffers from
slower overall performance which is somewhat remedied by its good performance
with regards to overshoot. The combination of the feedforward component and the
dynamic system state required less aggressive overall tuning for the LQIfd controller,
negating any beneficial effects these two modifications have when used in isolation.

It should be noted that model-free controllers like the PI controller considered
here have a long history of being used across industries and benefit from the low
overall complexity of the approach. When proposing the use of more involved control
strategies, the results thus have to be clearly in favour of the new method to overcome
decision inertia within the industry.
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Table 5.1.: Comparison of all tested control strategies
Effort Reference Tracking Disturbance Rejection

Controller Implementation Tuning Performance Overshoot Error Performance Error

PI

LQI

LQId

LQIf

LQIfd

Worst → → → Best
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6. Conclusion

In this chapter, the achieved results are summarized and possibilities for additional
research and improvements are discussed.

6.1. Contributions
In Chapter 3, the capabilities of linear system identification for the investigated
engine oil system were explored. Linear models were able to recreate the system
behaviour of the collected datasets with a maximum accuracy of 65%. The system
behaviour unexplained by the identified models is presumably nonlinear in nature.
The estimation of state-space models with high orders and polynomial ARX, ARMAX
and BJ models resulted only in single-digit accuracy gains compared to a two-state
state-space model, which was able to recreate the measured output data with an
accuracy of 58% across all datasets.

The two-state state-space model was used to design linear-quadratic controllers,
whose performance was compared to that of a model-free PI controller in Chapter 5.
Controlling the engine oil system with model-based controllers resulted in quicker
rise and settling times in reference tracking tests, faster return to the reference value
during input disturbance tests and a reduction of the control error integral in both
of these test cases.

6.2. Further Research
An important next step is applying the methods devised in this thesis to a fully
assembled test vehicle to investigate the degree to which the results of this thesis
are directly transferrable. If the fit percentage matrix of the SDE reveals a block-
diagonal structure, gain scheduling can be applied to the linear quadratic controllers
or a robust control approach can be tested. Observer structures or state-estimation
through a Kalman Filter can be combined with the linear-quadratic controllers for
added noise reduction or if higher-order state-space models result in a noticeable
increase in model accuracy.
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6. Conclusion

Other works have successfully demonstrated an automated controller tuning approach
for linear-quadratic controllers based on Bayesian optimization [21]. The described
method focuses on optimizing information gain from each tuning step, making it
highly suitable for industrial applications.

In initial tests, the identified models were able to predict the system behaviour for a
limited time horizon with a high degree of accuracy. This indicates that a combination
of the existing system identification process with model predictive control (MPC)
strategies could lead to good results and should thus be investigated in future projects.
It should be noted that MPC requires more implementation effort and potentially
significant additional computational resources, as it is a fundamentally different
control strategy than the state feedback controllers tested in this thesis.

Finally, the methods of this thesis can be extended through nonlinear system identifi-
cation and nonlinear control strategies, both of which have been successfully applied
to similar tasks in other works [22, 23].
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B. Additional Controller Evaluation
Plots
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