s

‘;I\ﬁ/ﬁ% CHALMERS

4/ igﬁ% UNIVERSITY OF TECHNOLOGY

Evaluation of a bidirectional GAN
on high dimensional data

With applications for financial data simulation

Master’s thesis in Engineering Mathematics and Computational Science

MARCUS SAJLAND

DEPARTMENT OF MATHEMATICAL SCIENCES

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2022
www.chalmers.se

www.chalmers.se

MASTER’S THESIS 2022

Evaluation of a bidirectional GAN on high
dimensional data

With applications for financial data simulation

MARCUS SAJLAND

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Mathematical Sciences
Division of Applied Mathematics and Statistics
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2022

Evaluation of a bidirectional GAN on high dimensional data
With applications for financial data simulation

MARCUS SAJLAND

© MARCUS SAJLAND, 2022.

Supervisor: Richard Henricsson, Svenska Handelsbanken AB
Examiner: Patrik Albin, Department of Mathematical Sciences, Chalmers Univer-
sity of Technology

Master’s Thesis 2022

Department of Mathematical Sciences

Division of Applied Mathematics and Statistics
Chalmers University of Technology

SE-412 96 Gothenburg

Telephone +46 31 772 1000

Typeset in BKTEX
Printed by Chalmers Reproservice

Gothenburg, Sweden 2022

v

Evaluation of a bidirectional GAN on high dimensional data
With applications for financial data simulation

MARCUS SAJLAND

Department of Mathematical Sciences

Chalmers University of Technology

Abstract

In statistics and machine learning it is well known that as the dimensionality of a
space increases, an exponentially greater amount of data is necessary to accurately
analyze it. This is a problem currently faced by Svenska Handelsbanken AB. As
they aim to simulate future markets, they require methods of estimating densities
of historical markets in order to generate new data points on which to produce
the simulations. This thesis investigated the ability of a novel machine learning
algorithm to generate data that manages to capture tail dependencies that common
statistical models fail to do. The performance was first measured on a simulated
data set where the means and variances were already known, followed by measuring
the performance on real market data. The results on the market data made it clear
that the algorithm was not capable of capturing tail dependencies as desired as it
generally generated points of much smaller variance than the original data. However,
the results on the simulated data implied that on a data set of roughly only ten times
the size, which in machine learning is not extremely large, the algorithm would likely
generate data according to the original distribution much more consistently.

Keywords: machine learning, deep learning, generative adversarial networks, curse
of dimensionality, manifold learning, financial time series.

Acknowledgements

I would like to thank my supervisor, Richard Henricsson, at Svenska Handelsbanken
AB for the arragement of this project and for his engagement throughout the course
of it. I would also like to thank Per Sundin of Svenska Handelsbanken AB for his
assistance and for introducing me to the work he does. Lastly, I would like to thank
Qiao Liu from Stanford University, the creator of the Roundtrip algorithm, for his
willingness to answer questions over email and provide me with tips for my specific
use of the algorithm.

Marucs Sajland, Gothenburg, August 2022

vii

List of Figures

List of Tables

1 Introduction

3

Contents

1.1 Background
1.2 Machine learning and generative adversarial networks
1.3 The curse of dimensionality
1.4 Problem settingo Lo
1.5 Limitations and assumptions
1.6 Related work
1.7 Ethical considerations 0oL
Theory
2.1 Statistics
2.1.1 Importance sampling
2.1.2 Kullback-Leibler divergence and Jensen-Shannon divergence
2.1.3 Taildependence
2.2 Machine learning Lo Lo
2.2.1 Fully connected networks
2.2.2 Manifold learning
2.2.3 Generative adversarial networks
224 Roundtrip
2241 Overview
2.2.4.2 Hyperparameters
2243 LearmingGand H
2.2.44 Density estimationo
Methods
3.1 Tools
3.2 Data
3.2.1 Simulated data oo
3.2.2 Financial time series data
3.3 Roundtrip Algorithm o
3.3.1 Algorithm modifications
3.3.2 Hpyerparameter tuning L
3.4 Evaluation

xi

xiii

15
15
15
15
16
17
17
17
18

ix

Contents

3.4.1 Simulated data
3.4.2 Marketdata
4 Results
4.1 Simulated data
42 Realdata
4.2.1 Hyperparameter tuning
4.2.2 Marketdata
4.2.3 Market simulation

5 Discussion

5.1 Simulated data
5.1.1 Latent space investigation
5.1.2 Evaluation

52 Market data
5.2.1 Hyperparameter tuning
5.2.2 Evaluation

5.3 Simulated data vs market data

5.4 Market simulation results

5.5 Tail dependencies and the curse of dimensionality
5.6 Roundtrip’s potential use in financial applications

6 Conclusion

Bibliography

21
21
27
27
28
28

33
33
33
33
34
34
34
35
35
36
36

39

41

2.1

2.2

2.3

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

List of Figures

Diagram of a multilayer perceptron containing two hidden layers. The
input layer has four nodes, the two hidden layers have ten nodes each,
and the output layer has 2 nodes.

Diagram of a GAN. Random noise is sampled from latent spaze Z
and fed to the generator G. The outcome, G(z), is then evaluated by
the discriminator D to determine whether it is real or fake.

Diagram of the Roundtrip algorithm. G and H represent the forward
and backward mapping generators, respectively, while D, and D,
represent the two discriminators.

Generated data based on 300 training points with dimension means
[-0.20, -0.10, 0.10, 0.20] and covariance matrix as described in the
section 3. L L e

Generated data based on 3,000 training points with dimension means
[-0.20, -0.10, 0.10, 0.20] and covariance matrix as described in the
section 3. L

Generated data based on 300 training points with dimension means
[0.80, 0.90, 1.10, 1.20] and covariance matrix as described in the sec-
tion 3. . . . e

Generated data based on 3,000 training points with dimension means
[0.80, 0.90, 1.10, 1.20] and covariance matrix as described in the sec-
tion 3. e

Grid showing which combinations of o and /3 were used in the random
search for hyperparameter tuning.

Scatter plot showing all generated data points along with the origi-
nal data points for Index Sweden and Index Norway. The marginal
histograms show the respective 1-dimensional distributions.

Scatter plot showing all generated data points along with the orig-
inal data points for Index Sweden and Index World. The marginal
histograms show the respective 1-dimensional distributions.
Scatter plot showing all generated data points along with the original

data points for Index Nordic and Index SE Swap 7 year. The marginal
histograms show the respective 1-dimensional distributions.

X1

List of Figures

xii

4.9 The figure shows 20 year simulations of four different markets. The
histograms represent the distribution of the returns of 10,000 simu-
lations in the format of multiples of growth. For example, 50 on an
x-axis would mean that the 20 year simulation resulted in a growth
of that market by a factor of 50.

3.1
3.2

4.1
4.2

4.3

4.4

4.5

List of Tables

Means of simulated data o0
Covariance matrix for simulated data points

Means of generated data for each dimension
Estimated covariance matrix for generated points with means from
setl and training on 300 data points
Estimated covariance matrix for generated points with means from
set2 and training on 300 data points
Estimated covariance matrix for generated points with means from
setl and training on 3,000 data points
Estimated covariance matrix for generated points with means from
set2 and training on 3,000 data points L.

xiii

List of Tables

Xiv

1

Introduction

This section aims to provide the reader with an understanding of the purpose of
this project, a brief background of the field of machine learning, and the aim and
limitations of the project. Finally, some of the related research is explained and the
ethical considerations are taken into account.

1.1 Background

An effective way to investigate how a model, program, or technology of some kind
would perform under certain scenarios is to run simulations. Of course, this implies
understanding what each of these scenarios actually are and the mechanics behind
them. Sometimes they are well understood, say, when investigating how a simple
pendulum swings, as gravity, friction, and air resistance are quiet easily incorporated
into a model. In other cases, however, it is not so easy. Financial markets are one
example which do not obey any natural laws and which are dependent on more
factors than one could reasonably account for in a model. One of the most obvious
ways to simulate financial markets is to look at how they have behaved in the past
and to use this to build an understanding of the mechanisms driving the markets,
and to then base simulations on this. Given that there exist decades worth of data,
it is not too difficult to provide a relatively accurate estimate of where the markets
will be tomorrow or next week: probably somewhere similar to today, when looking
at the big picture. But to simulate the markets twenty years into the future is a
much more difficult task, and one that is very much relevant, especially for Svenska
Handelsbanken AB.

The bank offers customers the option to invest money with the bank’s proprietary
investment models, which seek relatively safe long term returns. In order to get
an understanding of risk levels and possible outcomes at the time of investment,
the bank requires simulations of the financial markets which are as accurate as
possible. As these models are aimed at the long term, it is necessary to simulate the
markets a couple decades into the future with the help of a couple decades worth
of data, which, as mentioned already, is an enormously difficult task. Up until now,
Handelsbanken has made use of statistical models to create an understanding of how
and why markets behave the way they do, meaning that they have used traditional
methods to estimate the densities of financial time series data.

1. Introduction

1.2 Machine learning and generative adversarial
networks

Artificial intelligence, or Al as a field of research has been around for many decades,
after John McCarthy proposed for it to be the topic of a summer research project
at Dartmouth University in 1955 [1]. In the decades that followed, the field has
had several ups and down. Periods of intense research have been followed by so
called Al winters’ on two occasions, when lack of confidence in the field dried up
funding for research, but during the past two decades Al research has boomed, and
especially the field of machine learning [2]. As opposed to hard-coding rules for the
machine to follow, such as the 1989 Cyc project [3], machine learning utilizes raw
data to learn for itself. Relatively simple algorithms, such as logistic regression, are
included in the field of machine learning, but in recent years much effort has been
put into the so-called area of deep learning. This category of machine learning often
utilizes neural networks, which loosely resemble networks of real neurons, to learn
at a much deeper level, which is aided by the increased availability of data [4].

In 2014 Ian Goodfellow et al. proposed Generative Adversarial Networks, or GANs,
a form of deep learning that generates data with similar characteristics as the input
data [5]. An example of its use would be using pictures of faces as input data which
would result in the algorithm generating pictures of faces that look realistic but
are not actually real. The way it works is that the network comprises two neural
networks that compete against each other. Given some real input data, such as
an image, one of the networks, called the generator, aims to create images similar
to the input data from random noise. Meanwhile, the other network, called the
discriminator, aims to tell the real and fake data apart. At first this is easy for
the discriminator as the generated fake images are very unrealistic, but as the two
networks compete against each other they both get better until eventually the gen-
erator creates images realistic enough to trick the discriminator. GANs have become
very popular and people have attempted to expand upon them by giving them the
power to actually estimate densities, which is not possible with the standard GAN
[6], [7]. Building on this concept, Qiao Liu et al. proposed Roundtrip [8] in 2021
which combines two GANSs, in the form of a bidirectional GAN, and has demon-
strated even better performance. While these types of generative networks are often
used to produce images of some sort, they can also be used for other data such as
financial time series data. This essentially means that by feeding a network with
this type of market data it can generate more market data.

1.3 The curse of dimensionality

A common problem in density estimation is what is referred to as the curse of dimen-
sionality. This comes from the fact that as the dimensionality of a data set increases,
an exponentially greater amount of data is needed to accurately analyze it. This
happens as the available data becomes more and more sparse so enormous amounts
of data are needed to estimate densities of high dimensional data. Roundtrip po-
tentially provides a way to better tackle this problem which could allow for much

1. Introduction

more accurate correlations to be found among financial time series [8].

1.4 Problem setting

The aim of this thesis is thus to investigate whether or not the Roundtrip algorithm
can be used to generate realistic market data that captures correlations between
markets that the statistical methods currently used by the bank fail to capture.

1.5 Limitations and assumptions

This project is solely be concerned with the generation and simulation of the finan-
cial time series data. It is not concerned with how this data is then used in the
various models. It does also not delve deeply into how the bank currently produces
simulated data, although the project’s scope does include comparing the results of
the methodologies with the hope that the data produced from this project is better.
As this project heavily uses machine learning, it is important to set specific limita-
tions for the neural networks as well. The Roundtrip algorithm was implemented as
well as possible but to a reasonable extent, meaning that rigorous examination of
specifics such as different cost functions and other components was not done. This
thesis makes use of the available Roundtrip source code as it is efficiently imple-
mented already, although it was altered slightly. When it comes to code pertaining
to the financial industry it is common that there are stringent requirements on speed.
This is, however, not the case with this project. The bank performs the simulations
every couple of months so whether it takes a couple of minutes or a couple of hours
to execute makes no difference.

The Roundtrip algorithm is capable of producing density estimates as demonstrated
in the original paper, but this is done implicitly, meaning that it is not possible to
extract a probability density function from which to generate data later on. Instead,
data is generated by feeding noise to the fully trained generator, in a similar manner
to how images would be created.

One major assumption and simplification that deserves mentioning is that Roundtrip
was trained on time series data which is assumed to be stationary, meaning the data
is assumed to not depend on time. While this is a large simplification, it is sufficient
to gain an understanding of how effective Roundtrip can be in capturing correlations
between the time series. If the algorithm is to be put to use outside of this project,
though, it is worth keeping in mind the assumptions made here.

1.6 Related work

As already mentioned there have been several attempts to build upon GANs to
allow for them to estimate densities [4], [7]. Furthermore, there have been many
investigations into how to reduce the impact of the curse of dimensionality, although
it is a problem that is proving difficult to solve in a feasible way [9].

1. Introduction

The problem of market simulation can be generalized to generating synthetic time
series data, which has applications from finance to health care to the automotive in-
dustry [10], [11]. A common theme in this field seems to be GANs, but it seems that a
lot of research goes into applying GANs in a more intricate way, much like Roundtrip
does. For example, one way to generate entire time series fragments, which can be
seen as simulations, instead of individual data points is to use conditional GANs.
These are trained in the same way as a normal GAN but are conditioned on the
training data. This has been taken further as recurrent neural networks, or RNNs,
are used for the generator and discriminator in the application of medicine [12]. In
a similar way, Wasserstein GANs, or WGANSs, have become popular for time series
generation. [13] made use of this technique in an interesting way by converting time
series data to grayscale images in order to generate new images that are then trans-
lated back to be presented in a time series form. The trends in the synthetic data
sphere are relatively prominent and have room for much experimentation, and a
good overview of is provided in [14]. As for the curse of dimensionality, there is also
a lot of room for improvement. [15] provides an interesting example of a framework
for dimension reduction for use in predictive maintenance for machines, and using
manifold learning. In this case, discontinuity is an important feature of the data and
an obstacle to overcome, which can be likened to discontinuities in certain financial
data sets, such as options or swaps. It is also another example of how the problems
in financial data generation and simulation are very similar to many other fields,
and how the solution methods may very well be used across the different areas as
well. In general it seems to be common to solve the problem of dimensionality in
one step and then proceed with time series generation, which is different from the
way in which it is done in Roundtrip. This break down may provide more options to
solve the issue of the curse of dimensionality in the specific case of the 330 point 23
dimensional data set used in this thesis, and if not it may at least be worth investi-
gating further. Regardless, the areas of time series generation and of dimensionality
reduction are prominent in many fields and the methodologies mentioned here are
but a few of what is available and what will be available in the near future.

1.7 Ethical considerations

The ethical aspects to take into consideration to are mostly related to the uncertainty
of machine learning algorithms. Like most algorithms within the field, Roundtrip
can be seen as a black box in some ways, where abstractions make it difficult to
understand what is really happening. It is also important to note that results from
studies such as this one do not always translate to other data sets, meaning that
good performance on the data used in this project does not imply that similar results
would be obtained with other market data.

2

Theory

This section aims to introduce all the theory that is necessary to properly understand
this thesis. This section is broken down into two parts. Theory relevant to statistics
will be covered first, and this will be followed by theory relevant to machine learning,
as a great deal of the statistical theory is used in the machine learning part.

2.1 Statistics

2.1.1 Importance sampling

Importance sampling is a method that allows for properties of a certain distribution
to be found while not actually being able to sample from this distribution. Samples
are instead taken from another given distribution. This is extremely useful when
looking at tail probabilities which would require a high number of samples if using
the original distribution, but can instead be done with far fewer samples when
picking a more suitable distribution to sample from.

Let X : © — R be a random variable in a probability space (€2, F, P), then a
common way to estimate the expected value of X under probability distribution P
would be by sampling from this distribution as

1.
i=1

where the subscript P indicates that it is the expected value under probability
measure P. In some cases, however, it may be difficult or impossible to collect these
samples. It can therefore be useful to choose a second random variable, Y, such
that Ep[Y] = 1 under probability measure P, and Y > 0. The probability P¥ can
then be defined to satisfy

Ep,|X]| = Epy[X/Y], (2.2)

meaning that Ep,[X] can be estimated by sampling the random variable X /Y under
probability measure P¥. This is advantageous when it holds that

varp|X] > varpy [X/Y]. (2.3)

5

2. Theory

2.1.2 Kullback-Leibler divergence and Jensen-Shannon di-
vergemnce
The Kullback-Leibler divergence, or KL divergence, is a measure of how different

two probability distributions are [16]. For two probability distributions P and @ in
a probability space X the KL divergence can be formulated as

P(z
reX Q()
and in essence tells the expected logarithmic difference between the two probabilities
measured under probability P. Another fairly similar measure of difference is the
Jensen-Shannon divergence, or JS divergence [17]. It can be formulated as

(2.4)

JSD(PI|Q) = 3 D(P|IM) + L D(Q||M), (2.5)

with M = (P + Q).

2.1.3 Tail dependence

Tail dependence refers to the fact that random variables which exhibit little de-
pendence can show correlation in their movements in extreme scenarios. This is a
common phenomenon among stocks and financial markets and is difficult to accu-
rately model.

2.2 Machine learning

2.2.1 Fully connected networks

The most simple form of neural network is a fully connected network, also referred
to as a a multilayer perceptron. It is made up of layers of nodes, where each node
represents some mathematical operation. There exists one input layer, one output
layer, and at least one layer in between, called a hidden layer. Figure 2.1 makes
clear the general structure of a multilayer perceptron.

Vectorized data is fed to the network, creating the input layer. As the data is prop-
agated forward, each node takes on some so-called activation value, given through
the formula

a —U(Zw ak” +bl) (2.6)

where the superscript represents the layer number and the subscript represents the
node number. The term w;;, represents the weight of the connection between the
k™ node in the (I — 1)" layer and the j”* node in the I"* layer. The term b}
represents the bias of the j* node in the I*" layer, which can be seen as a constant
that makes training the network easier [18]. The function o is called the activation
function, that simply determines how the weighted sum is transformed. In essence,
the activation of any given neuron is determined by a transformation of the sum of

6

2. Theory

Input Layer e R* Hidden Layer e ™ Hidden Layer e R™ Qutput Layer e R?

Figure 2.1: Diagram of a multilayer perceptron containing two hidden layers. The
input layer has four nodes, the two hidden layers have ten nodes each, and the
output layer has 2 nodes.

all the neurons, each multiplied by a weight, from the previous layer added together
with a bias. This means that the input data is used for calculating the values in the
first hidden layer, and the these values are then used in calculating the values in the
second hidden layer, and so on. Eventually, the values for the output layer can be
calculated.

To train a network it is necessary that the data used is labelled, making the algorithm
what is referred to as supervised. When the input data has passed through the neural
network and output values § have been generated, they can be compared to their
label, or what they should really be, represented by y. By minimizing some loss
function, measuring the difference between the obtained output and the desired
output, the network can be improved. A common loss function is the mean squared
error (MSE), given by

MSE =3 (ui - 4", (2.7)

N —in

with n representing the number of output values and ¢ indicating the specific value.
Having this measure, it is possible to perform backpropagation, which is the process
of one layer at a time moving through the network backwards and updating the
weights. This is where methods such as stochastic gradient descent come in, which
essentially amount to iteratively decreasing the value of the loss function. There
are many ways in which this procedure can differ, but the premise is the same.
One common aspect to alter is how the loss function is descended, and a relevant
alternative is the Adam optimizer [19].

2. Theory

2.2.2 Manifold learning

It is common for data sets to be of a high dimensionality. This, on the one hand,
allows for great detail in the data, but on the other hand, may cause difficulties in
understanding patterns from the data. It is not always the case, however, that a
higher dimensionality really does give more insight, as some dimensions may prove to
be meaningless. For example, a two dimensional plane of data points can be rolled or
twisted in any number of ways and embedded in three dimensions [20]. An observer
of this three dimensional case may not see that in reality the data points come from
a two dimensional plane, and this can lead to difficulties in understanding the data.
Essentially, the data exists on a two dimensional manifold in three dimensional
space. The process of reducing the dimensionality in this way is referred to as
manifold learning, or as nonlinear dimensionality reduction. There are supervised
ways of doing this, but in machine learning it is common to let the machine learning
algorithm figure this out by itself.

2.2.3 Generative adversarial networks

The foundation of this project lies in generative adversarial networks, or GANs [5].
GANs are a type of machine learning framework that pit two neural networks, a
generator and a discriminator, against each other. The way it works is that based
off of example data the generator aims to produce results with the same distribution
as the data, while the discriminator aims to tell the artificially produced data apart
from the real data. As training progresses and the discriminator gets better at telling
real data apart from artificially produced data, the generator gets better and better
at producing realistic data.

Real

X
data

I:> Real/Fake

7= G | e

G(z)

Figure 2.2: Diagram of a GAN. Random noise is sampled from latent spaze Z and
fed to the generator G. The outcome, G(z), is then evaluated by the discriminator
D to determine whether it is real or fake.

The way this works mathematically is that the generator, (G, and discriminator,
D, play a minimax game where the generator aims to minimize the value function
V(G, D) while the discriminator aims to maximize it, with V' (G, D) given by

8

2. Theory

V(G, D) = Expyora[[1(D(x))] + Egrop, [In(1 — D(G(2)))]. (2.8)

When the input into the discriminator is real data, © ~ pguq, the label should be 1,
and when the input is fake data that has been created by the generator from noise,
the label should be 0. This is very similar to the cross entropy loss function that is
commonplace in machine learning. The function

mingmazpV (G, D) = Exep,,,, In(D(x))] + Epep [In(1 — D(G(2)))] (29)

thus implies that if the discriminator is good then V (G, D) is large since In(D(x))
will get a label close to 1 and In(1 — D(G(z))) will get a label close to 0. The
opposite holds for the generator. Therefore, by training the discriminator to be as
accurate as possible the system will by default create good fake data, which is the
goal.

By differentiating the value function with respect to the discriminator and keeping
G fixed it can be found that the optimal value of the discriminator is

Pdata (X)

Di(x) =) 2.10
G() pdata(x) + pg(X) ()
Substituting this into the value function gives
V(G D) =By [ln(— 22y g (1~ — By gy
Pdata (X) + pg (X) Pdata (X) + pg (X)
ata\ X X
o lin(— 20y Py oy

Pdata (X> + Pg (X) Pdata (X) + Py (X>

Now the minimax game can be reformulated as D maximizing V (G, D). This result
bears a lot of resemblance to a formulation of the Jensen-Shannon divergence,

2p1 1 2ps
)]+ 5B, [In()]s
p1+ D2 2 P1+ D2
where p; and po are probability distributions. The value function V(G, D) can be
rearranged to fit this form but resulting in an additional —2[n2 term. This gives

that

1
JS(lepQ) = §Em~p1 [ln((2'13)

mingV (G, D) = 2J5(Pdata||Pg) — 2In2, (2.14)

and since it holds that the minimum value for any JS divergence is zero it is clear
that the optimal value for the value function is —2In2. This occurs when pgqta = py-
The training is executed in a loop where each iteration consists of two parts. First
the loss function for the discriminator is optimized using stochastic gradient ascent,
and then once this is finished the same is done for the generator but with gradient
descent. The difference here is of course because the discriminator wants to maximize
the value function while the generator wants to minimize it. The training can be
better understood with the help of the following pseudo code.

It is important to note that while the discriminator is updated k times in every
iteration of the training loop, the generator is updated only once. This is due to

9

2. Theory

Algorithm 1 Training of a GAN

for no. training iterations do
for k steps do
- Choose m noise samples from z
- Choose m data samples from x
- Ascend stochastic gradient of D:

Vo d 3, [mw(x%) Cin(1 - D(G(z@m]

end for
- Choose m noise samples from z
- Descend stochastic gradient of G:

Vo1, [mu _ D<G<z<i>>>>]

end for

the difference in gradients and it is a hyperparameter that needs to be adjusted on
a case by case basis.

2.2.4 Roundtrip

2.2.4.1 Overview

The Roundtrip algorithm, proposed by Liu et al. [8] is at the core of this project.
This is a deep generative model which generates both data and density estimates.
This is an improvement over many generative networks as they often only generate
data but cannot estimate the density itself.

Roundtrip is essentially set up as a bidirectional GAN, where data is passed through
the two GANSs creating a roundtrip. In the latent space a random variable z € R™
with a known density p,(z), say Gaussian, is used as input for the first generator,
G, and the output is then fed to a discriminator, D,, along with a sample from
the actual data, x € R"™ with density px(x), for which the density estimation is
desired. A second generator, H, then maps the actual data from the data space to
the latent space, creating a backwards transformation. Once again, this generated
latent variable along with the actual latent variable is fed to a discriminator, D,.
The dimension of the latent variable, m, is generally set to be less than that of
the actual data, n. Thus the algorithm essentially uses manifold learning by letting
the generators produce a manifold. Before the desired density estimation can be
performed it is necessary to learn the generators G and H by training the network
in a way similar to standard GANS.

10

2. Theory

2.2.4.2 Hyperparameters

As with GANSs in general, Roundtrip utilizes classic multi-layer perceptrons for the
generative and discriminative networks. The specifics of each of these four networks
can easily be altered, but the original paper, [8], builds G with 10 layers with 512
nodes in each layer, and H with 10 layers with 256 nodes in each. The discriminator
in the data space, D,, is made up of four layers with 256 nodes in each, while the
discriminator in the latent space, D,, is made up of two layers with 128 nodes in
each. The activation function used is always leaky-ReLu. Each of these choices can
be seen as a hyperparameter of the overall system.

2.2.4.3 Learning G and H

To start off it is necessary to train the two generators. This is approached in the
normal way, which is by minimizing some loss function. The total loss function used
to train Roundtrip comprises several parts, the first of which pertain to the genera-
tors and discriminators specifically. These loss functions describing the adversarial
training are denoted as

Laan(G) = Eqpupz) (Dx(G(z) — 1)°

Lean(Dx) = EX~p(X)< x(x) —) + Ezp(z)Di(G<Z))
LGAN(H) - EXNp X)((H()) .
LGAN(Dz) -]Ezwp(z)(DZ() - 1) + EXNP(X)DZ<G(X))

It is worth pointing out that the loss functions used here differ from the loss functions
normally used for GANs. Liu et al mention that the change of loss functions is due
to a recommendation by LSGAN [21]. A roundtrip-loss is also defined in order
to minimize the distance that a data point travels when transforming between the
two spaces. The L, norm can be used to measure distance as the model assumes
Gaussian errors, allowing for the roundtrip-loss to be defined as

(2.15)

Z

Lrr(G, H) = al[x — G(H(x))||3 + |z — H(G(2))]]3, (2.16)
where a and (8 are constants that act as hyperparameters in the overall model.
Having defined both the adversarial training loss functions and the Roundtrip loss

function they can be combined to form the full training loss functions, which are
defined as

L(G,H) = Lgan(G) + Lean(H) + Lpr(G, H) (2.17)
L(Danz) = LGAN<DX) + LGAN<DZ> ’
leading to the overall minimization problem
nL(G, H
Gome Dt pr— | areminl(G) (2.18)
argminL(D,, D,)

The parameters of the four networks are updated iteratively throughout the training
process until the average log likelihood on an already chosen validation set shows
no further improvement.

11

2. Theory

2.2.4.4 Density estimation

Given that the G and H are learned, the task of density estimation can be performed.
The density of the latent variable, p,(z), is from the beginning set to be Gaussian.
The generator G is then assumed to produce a mapping G(z) = X with an error
following a Gaussian distribution, that is

X=%X+¢e ¢~ N(0,0?). (2.19)

As mentioned already, given that m < n, this process can be viewed as allowing the
generator GG to learn a manifold and estimate the density of the data as a Gaussian
mixture on the manifold. Choosing p,(z) to be standard Gaussian, that is

pa(z) = (V2r) "eap(—(1/2)||2]3, (2.20)

allows for the conditional density of the data to be modelled as

Puia(xl2) = (V27) " exp(~(1/20%)[x — G(2)| 3 (2:21)

The density of the data can be estimated then by integrating this with respect to z,
giving a final density of

1

) o [ean(—(lalf + ik~ G2

(2.22)

px(x) = /pz\z(XIZ)pz(z)dz = (

Thus the desired density is obtained by evaluating the above integral. Liu et al.
propose both importance sampling and Laplace approximation for doing so, but
in the results of [8] it is clear that importance sampling consistently outperforms
Laplace approximation in this task.

It is worth noting that Roundtrip only implicitly estimates the desired density,
meaning that the estimated density can only be observed. It cannot be used as a
PDF or CDF to generate data with this density. Data generation is, however, still
easily performed as once the generator GG is learned it can be used to generate as
much data as desired.

12

2. Theory

re® 1

@« 0 @ N

Latent Data
<:| space space I::>

R

T H &

S

Figure 2.3: Diagram of the Roundtrip algorithm. G and H represent the forward
and backward mapping generators, respectively, while D, and D, represent the two
discriminators.

13

2. Theory

14

3

Methods

This section begins by describing the tools and programs used, the choice of data
and how this data was collected. It carries on by giving a brief description of the
modifications done to the Roundtrip algorithm, including hyperparameter tuning,
and finishes off by explaining how evaluation of results was done.

3.1 Tools

The execution of this project was conducted with the help of the Python program-
ming language, as well as the packages NumPy [22], Pandas [23], and Matplotlib
[24]. The access to the Roundtrip source code was made available on Github by the
original author, and this code was altered slightly to fit the data used in this thesis.

3.2 Data

The goal of this thesis was to investigate whether or not the Roundtrip algorithm
is suitable for generating realistic financial data that captures correlations more
accurately than the methods that the bank uses currently. Therefore, real market
time series data was of course used, but before this it was instructive to use fake,
or simulated, data with a known distribution. This allows for the algorithm to
be tested in a variety of circumstances which might give insight into its general
behavior, before being used on market data of which the distribution is not known.
From here on the term "market data" will be used to describe the historical market
data provided by Handelsbanken, while the term "simulated data' will be refer to the
fake data that the algorithm will first be tested on. The term "generated data" will
refer to the data that the Roundtrip algorithm produces. Context will tell whether
the "generated data' refers to data generated after training on "market data" or
on "simulated data'. The one exception to this is in certain plots, where the term
'original data" is used to denote the data on which the algorithm was trained.

3.2.1 Simulated data

The data that Roundtrip was first tested on is a simple set with a multivariate
Gaussian distribution. This choice is motivated by the fact that in [8] Roundtrip
performed relatively well on data with some form of Gaussian distribution and would
therefore make it easy to understand which changes result in worsened performance.
More specifically, the data that was used is four dimensional with the mean for each

15

3. Methods

dimension given by one of the two sets as shown in table 3.1 and covariance matrix
shown in table 3.2.

Dimension 1 Dimension 2 Dimension 3 Dimension 4
set1 -0.20 -0.10 0.10 0.20
set2 0.80 0.90 1.10 1.20

Table 3.1: Means of simulated data

Dimension 1 Dimension 2 Dimension 3 Dimension 4
Dimension 1 0.01 0.005 0.004 0.005
Dimension 2 0.005 0.02 0.003 0.005
Dimension 3 0.004 0.003 0.03 0.004
Dimension 4 0.005 0.005 0.004 0.04

Table 3.2: Covariance matrix for simulated data points

The means were chosen to somewhat loosely resemble returns in financial data, with
the difference between them being that in setl the values represent annual returns
normalized to 0, while in set2 they represent annual returns normalized to 1. The
outcome of this comparison allows for an understanding of how data should be
normalized when fed to the Roundtrip algorithm, if there is any difference at all.
Normalization of data is a common practice in machine learning as it can make allow
for faster training, although it is still not fully understood why [25]. There are quite
a few ways in machine learning to normalize data, but due to the fact that returns
can be negative as well as positive, some methods were ruled out and the stated
method is used. Further investigation into how normalizing should be performed
could be of future interest. The covariance matrix was chosen rather arbitrarily, but
with the single goal of ensuring that variances were not unrealistically large. Exper-
imentation was first done with randomized covariance matrices but upon analyzing
the randomly generated resulting data it was determined that the data points were
in general not representative of realistic financial data, thus defeating the purpose.
For each of the two sets of means, two sets of data were generated, the first with 300
data points, and the second with 3,000 data points. These choices are motivated
by the fact that the available financial data contains a little over 300 data points
for each time series, so understanding how Roundtrip performs on so little data is
important. This could then be compared to a data set 10 times larger, with the goal
of understanding how the behavior changes when more data is available. It seems
evident that performance will simply improve, but understanding in which ways can
be useful for other potential applications of the algorithm, especially considering
that the data set used as the market data was unusually small.

3.2.2 Financial time series data

Roundtrip was also be tested on market time series data. This data set contains
23 separate time series with 330 data points in each. This can be interpreted as

16

3. Methods

330 23-dimensional points. The different time series include indices such as Sweden,
the Nordics, Emerging Markets, VIX, and so on. As with much financial data,
there exists strong correlations between many of the dimensions, especially when
comparing, for example, Swedish and Nordic data, as Swedish data is part of Nordic
data. The full list of separate time series included are shown in the list below.

» Barcta index « SE REPO
o Emgerging markets index « SE STIBOR 3M
o Europe index o SE Swap 1 year

o GSCI commodity index
o Hedgefund index

e Noridc index

o North America index

o Norway index

o Pacific index

o SE Swap 2 year
o SE Swap 3 year
o SE Swap 5 year
o SE Swap 7 year
o SE Swap 10 year

¢ Sweden index « SE Swap 30 year
o World index o USD SEK exchange rate
o SE CPI o VIX

The market index values in and of themselves are difficult to make use of, but
the change in the values is the main point of interest. Therefore, the data set was
restructured in such a way that it recorded only the relative differences between data
points by dividing a value by the value before it. For example, an index value of 100
at one time step and a value of 105 at the next time step would yield a value of 1.05
after restructuring. Then, according to the what was found after experimentation
with simulated data, this was either to be left as 1.05, having the data normalized
to 1, or to be normalized to 0, meaning it would transform into 0.05.

3.3 Roundtrip Algorithm

3.3.1 Algorithm modifications

The Roundtrip algorithm was described in detail in section 2.2.4 but there are
several aspects of the algorithm to take note of still. Primarily, throughout the ex-
perimentation with the algorithm, learning rates and constants pertaining to specific
components of Roundtrip would remain constant, and were in fact unchanged from
the original implementation in [8]. These include learning rates within the separate
GANSs as well as the optimizers for the neural networks making up the components
of the GANs. One could very well use something other than the Adam Optimizer,
or use it but with a different hyperparameter, but that is not included in this the-
sis. The reason for this is the Adam optimizer has in general demonstrated strong
performance [19].

3.3.2 Hpyerparameter tuning

This thesis does, on the other hand, consider how the two hyperparameters, o and £,
affect the algorithm. [8] did not experiment with altering these two hyperparameters

17

3. Methods

and instead left them both at values of 10. Two classic ways of choosing hyperpa-
rameters for hyperparameter tuning are gird search and random search. Grid search
implies choosing hyperparameter values located at predetermined evenly distributed
points, in this case on a two dimensional grid. Due to the time it takes to iterate
through each grid point it is often more efficient to perform the hyperparameter
tuning through a random search [26]. For this 9 pairs of hyperparameter values
were chosen at random from integers in the interval of 1 to 20, with the tenth pair
being (10,10), with the idea that the values from the original paper of (10,10) are
located near the center.

The hyperparameter tuning was evaluated by looking at the average log likelihood
for each case, and the hyperparameter pair giving the highest average log likelihood
value was chosen to be used for generating data. Hyperparameter tuning was only
done on the market data, as the simulated data was evaluated using the same values
of a and § as in the original paper, which is 10.

3.4 Evaluation

3.4.1 Simulated data

Evaluating how Roundtrip performed on the simulated data was first done by visu-
ally interpreting the data generated by the algorithm. Since the simulated data set
was four dimensional, the data generated by Roundtrip would also be four dimen-
sional. One way of quickly gaining an understanding of the algorithm’s behavior was
to plot all 2-dimensional combinations of the generated data along with the corre-
sponding plot for the simulated data. In total that resulted in 6 such combinations.
This was done for all four simulated data sets, meaning for both means of setl and
set2 and for each of these with both 300 and 3,000 data points. The goal was that
this would give an intuitive understanding of how the market data should later be
normalized and an understanding of how much the performance varied with data
set size.

Of particular interest were the tail dependencies as these often prove extremely
difficult to estimate using traditional methods. This is due to the fact that far fewer
data points belong to the tail of any given distribution, so in general even if the
joint distribution of two data sets can be estimated relatively well, it does not at all
mean that the tails can be estimated well. If Roundtrip was able to generate data
with similar tail dependencies as the original data, then the algorithm in a sense
proves itself capable of helping to reduce the ’curse of dimensionality’. From the
generated data it was also easy to calculate the mean in each dimension which could
be compared to the known mean, and the covariance of the generated data could be
estimated using NumPy and then compared to the actual covariance matrix.
Additionally, the algorithm was tested with two, three, and four latent space vari-
ables as input. It is known that the simulated data was 4-dimensional making it
realistic to assume that the scenario with four latent space variables would result in
the best performance, but it would nonetheless be investigated in case the algorithm
exhibits any peculiar behavior. Applying machine learning algorithms to small data
sets is often extremely challenging and therefore it was of utmost importance to

18

3. Methods

gauge the performance under these various aspects that would normally not be of
particular interest.

3.4.2 Market data

The performance on the market data was evaluated visually in the same way as the
performance on the simulated data. As the generated data set was 23-dimensional
and thus contained far too many 2-dimensional combinations to include them all,
only some were to be evaluated and included for further discussion. Once again, the
tail dependencies were of great interest. The number of latent space variables was
set to 10 as this was similar to an example in the original source code.

Finally, to compare the results with the current methods used by Handelsbanken,
Roundtrip was used to generate 10,000 20-year simulations for each index. Given
that only 28 years worth of monthly data is available, simulating each index 20
years into the future is a difficult task but is ultimately the purpose of the project.
The 10,000 simulations were shown in the form of a histogram, that is, evaluated
visually and with common sense and compared to the current simulations performed
by the bank. If Roundtrip fails to deliver reasonable simulations the 2-dimensional
plots could potentially be used to give some insight into why. This way of simulating
markets, buy taking the generated points straight from the output and compounding
them, is a fairly naive but straightforward way of performing the simulation. It is
very possible that the bank could make use of the generated data and process it in
some other way to incorporate it into their own simulation methods.

19

3. Methods

20

4

Results

In this section the results from testing the Roundtrip algorithm on simulated data
will be covered first, followed by the results from the market data. The point of
the simulated data is to allow Roundtrip to be tested on a data set where the
distribution is known. This can be seen as a safe environment to test Roundtrip in,
or as a playground that can be used to gauge general properties of the algorithm
before applying it on market data.

4.1 Simulated data

The first part of the results focuses on the data generated from training Roundtrip
on simulated data. The results are presented in figures 4.1, 4.2, 4.3, and 4.4, where
each figure shows the six possible 2-dimensional combinations. The simulated data
on which the algorithm was first trained is included in the plots as well to make the
comparison easy.

Figure 4.1 shows the outcome of training Roundtrip on 300 data points where the
first dimension has a mean of -0.20, the second dimension has a mean of -0.10, the
third has a mean of 0.10, and the fourth has a mean of 0.20. Figure 4.2 shows
the outcome of training data with the same characteristics but with 3000 training
points. 4.3 shows the case for 300 training points with means 0.80, 0.90, 1.10, and
1.20, while 4.4 shows the case for the same means but with 3000 training data points.
For all four scenarios the covariance matrix presented in the section 3 is used.

21

4. Results

Dimension 1 vs Dimension 2

Generated Data
e Original Data

-1.0 -0.8 -0.6 -0.4 -0.2

0.0
Dimension 1 vs Dimension 4

Dimension 1 vs Dimension 3

2.0

1.5 A

1.0 A

0.5 4

0.0 4

—0.5

—1.0 A

_15 .

e Generated Data
Original Data

-1.0 -0.8 -0.6 -0.4 -0.2

0.0
Dimension 2 vs Dimension 3

2.0
2.04 © Generated Data g o ¢ e Generated Data .
e Original Data .. e °° 1.59 e Original Data
1.5 - '
pH 10-
1.0 L
2 0.5- °°
0.5 4)
(S
Y 0.04,,
0.0 4 % .
el -05
—054 "o .
° —-1.0 A
-1.04 °
° —-1.5 | o
-1.0 -0.8 -0.6 -04 -0.2 0.0 -1.0 -0.5 0.0 0.5 1.0
Dimension 2 vs Dimension 3 Dimension 2 vs Dimension 3
2.0 e, © Generated Data 2.0 e ¢ Generated Data
Original Data 4 e Original Data
1.5 1 1.5 1 3 !
1.0 4 1.0 1
[]
0549 2 ° 0.5
L]
0.0{ V& 0.04"°
o8 ° L4
L]
054 o -0.5 1 ‘
—1.0 - . A —1.0 -
L] L]

Figure 4.1: Generated data based on 300 training points with dimension means
[-0.20, -0.10, 0.10, 0.20] and covariance matrix as described in the section 3.

22

4. Results

Dimension 1 vs Dimension 2

e ®
0.4 A °
[]
0.2 1 *
(]
[]
0.0 A L
o
-0.24,
L[]
_04 - (]
°° i o Generated Data
-064 °° . « o Original Data
—-0.6 -0.4 -0.2 0.0 0.2
Dimension 1 vs Dimension 4
1.00{ e Generated Data
e Original Data .
0.75 A
L]
0504 *
0.25 A 2
° L[]
L]
0.00 A : 3
—0.25 A i
L[] .‘
° []
—0.50 A . .
L]
-0.6 -0.4 -0.2 0.0 0.2
Dimension 2 vs Dimension 3
1.004 o Generated Data’
e Original Data e o
0.75 A . i S) b .
0.50 - v L
L]
0.25 ~
[]
0.00 ©
—0.25 A
—0.50 A [y

Dimension 1 vs Dimension 3

1.0
L]

0.8 4 .

Generated Data
Original Data

-0.6 -0.4

-0.2

0.0 0.2

Dimension 2 vs Dimension 3
1.0

o Generated Data °
0.819 o OriginalData ~ ¢o

-0.6 -04 -0.2

0.0

0.2 0.4

Dimension 2 vs Dimension 3

Generated Data
Original Data

0.5 1.0

Figure 4.2: Generated data based on 3,000 training points with dimension means
[-0.20, -0.10, 0.10, 0.20] and covariance matrix as described in the section 3.

23

4. Results

Dimension 1 vs Dimension 2

Dimension 1 vs Dimension 3

YS * e Generated Data 2] .: e Generated Data
6 - 2% o Original Data Original Data
34°)
[)
4 54
[]
1 m
2 A ° . K
01 o °
0 ¢ 1 2
o
° L]
(]
—2 R -2 A M
() [e=}
0 2 4 6 8 0 2 4 6 8
Dimension 1 vs Dimension 4 Dimension 2 vs Dimension 3
o []
4 e] s &
4 ° ‘u‘. ® o
3 4 S off °
° 34
[]
2 A 0’; 2 - "
14 ° o 14 °
O - 8
0 .;
_1 4
_1 . o
=2 1 Generated Data 24 Generated Data
3 . e Original Data % e Original Data
0 2 4 6 8 -2 0 2 4 6
Dimension 2 vs Dimension 3 Dimension 2 vs Dimension 3
2 3 K TP LI 44 e GeneratedData , ° ¢ oo
V. . e Original Data
3 3 T
[]
21 21
c
11 e oo © 1
0 04 °a ,
-1 -1,
27 ., Generated Data =2 1 o
.. ° °
3 . . e Original Data 3 ®
-2 0 2 4 6 -2 0 2 4

Figure 4.3: Generated data based on 300 training points with dimension means
[0.80, 0.90, 1.10, 1.20] and covariance matrix as described in the section 3.

24

4. Results

Dimension 1 vs Dimension 2

e Generated Data °

1.4 Original Data ,*

1.2 A

1.0 A

0.8 1

064 °

0.4 0.6 0.8 1.0 1.2
Dimension 1 vs Dimension 4

2.00 A

.:‘. PRI X

1.75 A

1.50 A
1.25 A
1.00 A

0.75 A

Generated Data
e Original Data

0.50 - .

0.25

0.4 0.6 0.8 1.0 1.2
Dimension 2 vs Dimension 3

2.00 A

1.75 A

1.50 A

1.25 4

1.00 A

0.75 A

0.50 4 . ®, e Generated Data
e Original Data

0.25 T T T T T T
1.0 1.2 1.4

Dimension 1 vs Dimension 3

1.8
1.6
1.4 1
1.2
1.0 A
0.8 4
0.6

0.4 4

o ¢ Generated Data
e Original Data

0.6 0.8 1.0 1.2
Dimension 2 vs Dimension 3

1.8
1.6
1.4 1
1.2 1
1.0 A
0.8 4
0.6 -

0.4 4

Generated Data
® e Original Data

06 08 10 12 1.4
Dimension 2 vs Dimension 3

2.00 A

1.75 4

1.50 4

1.25 A

1.00 4

0.75 A

0.50 A

e Generated Data
e Original Data

15

Figure 4.4: Generated data based on 3,000 training points with dimension means
[0.80, 0.90, 1.10, 1.20] and covariance matrix as described in the section 3.

25

4. Results

From the generated points it was also possible to use the NumPy Python package
to find the mean along with estimates of covariance matrices. The means are shown
in table 4.1 in the same way as was presented in the section 3. The estimated
covariance matrices are presented in tables 4.2, 4.3, 4.4 and 4.5 where each table
presents the estimated covariance matrix for one of the two sets of means and for
training sets of either 300 or 3,000 data points.

Dimension 1 Dimension 2 Dimension 3 Dimension 4
set1 300 -0.27089 -0.07958 0.10014 0.20842
set1 3,000 -0.21579 -0.09983 0.10635 0.19871
set2 300 1.25380 0.88402 0.70818 0.45902
set2 3,000 0.81312 0.88398 1.10578 1.19748

Table 4.1: Means of generated data for each dimension

Dimension 1 Dimension 2 Dimension 3 Dimension 4
Dimension 1 | 0.02541578 0.00963698 -0.01135291 0.02871501
Dimension 2 | 0.0096398 0.08465109 0.04558333 -0.01287723
Dimension 3 | -0.01135291 0.04558333 0.18560274 -0.0096426
Dimension 4 | 0.02871501 -0.01287723 -0.0096426 0.18427518

Table 4.2: Estimated covariance matrix for generated points with means from set1
and training on 300 data points

Dimension 1 Dimension 2 Dimension 3 Dimension 4
Dimension 1 | 1.49744783 -0.71773465 -0.2320037 0.39673559
Dimension 2 | -0.71773465 1.83260892 0.37307454 0.51586191
Dimension 3 | -0.2320037 0.37307454 1.06024278 0.65766823
Dimension 4 | 0.39763559 0.51586191 0.65766823 1.15120257

Table 4.3: Estimated covariance matrix for generated points with means from set2
and training on 300 data points

Dimension 1 Dimension 2 Dimension 3 Dimension 4
Dimension 1 | 0.0091938 0.00675771 0.00078229 0.00444305
Dimension 2 | 0.00675771 0.02219179 0.00499066 0.00558318
Dimension 3 | 0.00078229 0.00499066 0.02781123 0.0040292
Dimension 4 | 0.00444305 0.00558318 0.0040292 0.04061673

Table 4.4: Estimated covariance matrix for generated points with means from set1
and training on 3,000 data points

26

4. Results

Dimension 1 Dimension 2 Dimension 3 Dimension 4
Dimension 1 | 0.01312451 0.00591715 0.00452181 0.00434858
Dimension 2 | 0.00591715 0.01841133 0.00363017 0.00351549
Dimension 3 | 0.00452181 0.00363017 0.03018594 0.00211967
Dimension 4 | 0.00434858 0.00351549 0.00211967 0.03744074

Table 4.5: Estimated covariance matrix for generated points with means from set?2
and training on 3,000 data points

4.2 Real data

4.2.1 Hyperparameter tuning

The first part of applying the Roundtrip algorithm to market data is hyperparameter
tuning. For the sake of efficiency the random search algorithm was chosen on a two
dimensional grid with each dimension consisting of all integers from 1 to 20. 9 points
were generated randomly using NumPy, with the tenth point being (10,10) as used
in the original paper. The resulting points are presented in figure 4.5.

Random Search Values

o
18)
o
16 -
14 e
12
10)
o
o
8 -
o
6 .
4 e
® a
2 v
0

0 2 4 6 8 10 12 14 16 18
Alpha

Figure 4.5: Grid showing which combinations of o and 8 were used in the random
search for hyperparameter tuning.

Evaluation of the performance with each set of hyperparameters was based on the
log-likelihood value generated by the algorithm. Roundtrip was tested several times
for each hyperparameter combination, and in the end the different hyperparam-
eter combinations differed in their respective log-likelihood value extremely little.
Nonetheless, the hyperparameter combination that resulted in the best performance

27

4. Results

was with o = 5 and § = 3, and this combination was thus chosen to be used for the
remainder of the result generation.

4.2.2 Market data

Observing the properties of all possible combinations of 23 dimensions is a bit over-
whelming, so this section is limited to three 2-dimensional index comparisons: Swe-
den vs Norway, Sweden vs World, and Nordic vs SE Swaps 7 years. Figures 4.6, 4.7,
and 4.8 provide 2-dimensional scatter plots showing the generated synthetic data
along with the original data on which the algorithm was trained. The 2-dimensional
combinations presented were chosen because they demonstrate the different ways
in which the algorithm can behave. Along with each scatter plot are two marginal
histograms which make clear the 1-dimensional distribution of both the generated
data and the original data in each case.

4.2.3 Market simulation

In figure 4.9 the results of 10,000 20 year simulations are presented in the form of
histograms for four separate markets. This allows for a clear visualization of the
distribution of the simulation results. The results are presented in such a way that
the histograms represent by what multiple the market changes by after 20 years.
As can be seen in the upper left histogram, Roundtrip generated data results in 20
year simulations where the majority of the simulations indicate that the market will
grow by a factor of around 5,000. In the same way, the simulations for the world
index indicate that it will end up at a value of around 0.00015 of the current state.

28

4. Results

count

Index Norway

250 A
200 A
150 4
100 A

50 A

—0.15-0.10 —-0.05 0.00 0.05 0.10 0.15

0.20

0.1+

0.0 4

—0.1 A

—0.2 1

e Generated data °
e Real data ° ° °

+0.2 4

—-0.15-0.10 —0.05 0.00 0.05 0.10 0.15
Index Sweden

0.20

0

100 200
count

300

Figure 4.6: Scatter plot showing all generated data points along with the original
data points for Index Sweden and Index Norway. The marginal histograms show
the respective 1-dimensional distributions.

29

4. Results

250 A
200 A

150 4

count

100 A

50 A

-0.15-0.10 —-0.05 0.00 0.05 0.10 0.15 0.20

e Generated data o °

-
0104 ° Real data . 10

0.05 A
0.00 A

—0.05 A

Index World

—0.10 A

—0.15 A

—0.209 o« -0.20

—-0.15-0.10 —0.05 0.00 0.05 0.10 0.15 0.20 0 100 200
Index Sweden count

Figure 4.7: Scatter plot showing all generated data points along with the original
data points for Index Sweden and Index World. The marginal histograms show the
respective 1-dimensional distributions.

30

4. Results

Index SE Swap 7 year

300 A
200 A
100 A
0 T T T T T
-0.2 -0.1 0.0 0.1 0.2
31 « Generated data o 37
e Real data
2 A 2 A
L]
1 o 14
L]
e o oo °
° D, e0 .
01 4 o ° ..0.. we b et 0
°g® e
' (]
[] ®
_1 - _1 -
L]
_2 4 _2 .
—3 ° -3
-0.2 -0.1 0.0 0.1 0.2 0 100 200
Index Nordic count

Figure 4.8: Scatter plot showing all generated data points along with the original
data points for Index Nordic and Index SE Swap 7 year. The marginal histograms
show the respective 1-dimensional distributions.

31

4. Results

Index Sweden 20 year simulation

800 -

600 -

400 -

200 A

5000 10000 15000 20000 25000

Index Nordic 20 year simulation

700 +

600 -

500 -

400 A

300 A

200 A

100 A

0.0002 0.0003 0.0004 0.0005 0.0006 0.0007

Index Norway 20 year simulation

25 50 75 100 125 150 175

Index World 20 year simulation

800 -

600 -

400 A

200 4

0 - T T T T
0.00000.00010.00020.00030.00040.00050.00060.0007

Figure 4.9: The figure shows 20 year simulations of four different markets. The
histograms represent the distribution of the returns of 10,000 simulations in the
format of multiples of growth. For example, 50 on an x-axis would mean that the
20 year simulation resulted in a growth of that market by a factor of 50.

32

O

Discussion

This section aims to provide the reader with a thorough understanding of the im-
portance and significance of the results and to connect the results to the overall goal
of the thesis. The section finishes off by mentioning some other potential uses for
the Roundtrip algorithm that have not been investigated in this thesis.

5.1 Simulated data

5.1.1 Latent space investigation

The simulated data was first used to test in a very simple way how Roundtrip
performs with different latent space dimensions. Given that the simulated data is
in reality made up of four distinct dimensions, each with their own unique mean, it
should in theory not be possible for Roundtrip to perform any sort of dimensionality
reduction on the data. This would mean that using a two or three dimensional latent
space should give worse results. The results from this experiment, however, seem to
not be indicative of anything as in hindsight it would be more interesting to perform
this with a greater number of dimensions in the data space than four. As the results
of this give no greater insight into how Roundtrip performs in general, the results
were not necessary of further analysis.

5.1.2 Evaluation

The point of the simulated data was to give a general understanding of how the
Roundtrip algorithm might behave when applied on the fairly simple multivariate
normally distributed data. The two major points of interest are how the data should
be normalized and how big of an effect training data set size has on performance.
How the data should be normalized is of interest because when Roundtrip is later
on applied to market data there are not a lot of data points, so it is essential that its
application is done correctly. Comparing figures 4.1 and 4.3, the two scenarios where
only 300 training examples were used, it is right away obvious that Roundtrip per-
forms better when returns are normalized to zero as opposed to one. The generated
data in figure 4.1 is confined to a much narrower range than in figure 4.3.

As can easily be predicted, Roundtrip also performs significantly better when 3,000
data points were fed into it as opposed to 300. It is noteworthy, however, that with
3,000 training examples the difference between normalizing the data to zero or one
is significantly reduced. It may seem trivial to compare performance between a data
set and one that is ten times larger, but in reality 3,000 training samples is still very

33

5. Discussion

small, especially when compared to [8] where the least number of training examples
used is nearly 40,000. Given the improvement when ramping up the number of
training examples to 3,000, it means that even if the algorithm were to perform
poorly on the market data with 330 examples of monthly data, it may be very
useful if weekly data can be collected, to take just one example.

One particularly striking feature of the results with the simulated data is how
Roundtrip generated data is confined to certain regions. For example, in figure
4.1 in all plots containing 'Dimension 1’, the generated data is contained in a cone-
like region, even though the data on which the algorithm was trained exhibits no
such attribute. It is extremely difficult to know with certainty what is occurring to
cause this though and would require detailed monitoring of every step of the training
progress.

Upon observing tables 4.1 - 4.5 the trends picked up upon by the plots are made
even more clear. Means of generated data are much more accurate for when 3,000
data points were trained on for both setl and set2. For the cases with 300 training
points it is again obvious that setl had much better performance, as set2 seems to
have generated means nowhere close to the true values.

5.2 Market data

5.2.1 Hyperparameter tuning

Investigation of the market data began with performing hyperparameter tuning for
the learning rates o and 3. Evaluation was done through the average log-likelihood,
but varying the two values resulted in only a negligible difference in performance.
Nonetheless, the combination that gave the best log-likelihood value, with v = 5
and § = 3, was chosen. A potential explanation for the similar performance for
all hyperparameter combinations is that training with only 330 23-dimensional data
points is already so difficult that performance cannot be achieved beyond a certain
level. For larger data sets it could therefore be advantageous to perform hyper-
parameter tuning in a much more rigorous manner. It is also worth mentioning
again that besides v and [no hyperparameters were altered from the original im-
plementation in [8] as there are far too many factors that can be changed to be
encompassed in this project, such as number of layers and nodes in the generators
and discriminators, for example.

5.2.2 Evaluation

With 23 dimensions of data available it is unreasonable to investigate the relation-
ships between all of them, so three were chosen for further analysis. Figures 4.6,
4.7 and 4.8 show how market data on which Roundtrip was trained compares to the
generated data for the corresponding indices. The points depict returns from one
time step to the next, normalized to zero, meaning that an index with value 100 at
one time point and 110 the next would show a return of 0.1. Looking first at figure
4.6, comparing the Swedish and Norwegian indices, it is clear that the generated
data is much more concentrated than the market data, and thus fails to capture the

34

5. Discussion

points corresponding to more extreme returns. Focusing on the marginal histograms
makes it clear that the generated data is centered relatively close to the center of
the market data, but its variance is significantly lower.

Figure 4.7 instead compares the Swedish index to that of the world, so the x-axis
shows the same distribution as in Figure 4.6 but the y-axis is different. Right away
it is clear that the distribution of the generated data along the y-axis is significantly
shifted away from the market data. The scatter plot also portrays a distribution of
the generated data with an almost inverse correlation to the market data, failing to
capture the more extreme points from the market data but also generating points
in a region where the market data showed nothing.

Finally, Figure 4.8 presents a slightly better distribution than the two previous
figures as it compares the Nordic index with the index for SE Swaps of 7 years. It
is important here to not be fooled by the apparently narrow distribution along the
y-axis of both the market data and the generated data, as the scale is actually much
large than that of the x-axis. The histogram representing the swaps shows that
the generated data is centered accurately when compared to the market data, but
along the x-axis the histogram makes it evident that the generated data is centered
a bit to the left of the market data. Both axes, however, demonstrate a similar
characteristic as figures 4.6 and 4.7, namely that the generated data is confined to
a much narrower range than the market data.

5.3 Simulated data vs market data

The behavior of Roundtrip when trained on the simulated data is remarkably dif-
ferent from the behavior when trained on market data. The most obvious aspect is
that in all cases when the algorithm was trained on market data, the generated data
was confined to a smaller region than the actual market data was, meaning that the
market data showed far more extreme values. This is the opposite of the case when
trained on simulated data, as the generated data shows far more extreme values. A
possible reason for this is that the simulated data was created according to a random
multivariate normal distribution, and the generator G in the Roundtrip algorithm
assumes an error in the mapping that is normally distributed as well. How this
particular mechanism affects the outcome is worth deeper investigation.

5.4 Market simulation results

The final and most essential test of Roundtrip was whether or not it can be used
to simulate financial markets, by taking the generated returns and using them to
simulate how a market would evolve over many years. The simulation results in
this study are used according to the method laid out in the section 3, meaning
that generated results represent growth or decay, and these are then compounded
to create the final result. Figure 4.9 depicts simulated returns after 20 years for
10,000 simulations and how these returns are distributed. Four indices, Sweden,
Norway, Nordic, and World are shown. All histograms except that for the Norwegian
index show very unrealistic results, with returns of multiples of several thousands

35

5. Discussion

or extreme decays. The returns for the Norwegian index can be considered very
high but are nonetheless not nearly as unreasonable as they are centered at around
a multiple of approximately 40. Considering that the Norwegian index has grown
by a factor of about 15 over the past 28 years, the results would mean that over
the coming 20 years the market will grow about 2.7 times more than it has grown
over the past 28. In general, though, it is quite clear from figure 4.9 that with the
amount of data used in this project and with the same set up of the algorithm,
market simulation is not a feasible task. Roundtrip’s failure to pick up on the more
extreme data points in figures 4.6, 4.7 and 4.8 becomes all the more important
when the points are compounded to build the simulated market. No advanced
mathematical tools are necessary to confirm this, as common sense is enough to
determine that one market growing by a factor of several thousand while another
decays by a factor of several thousand is not a realistic or usable result. It could be
possible, however, to take the generated data points and alter them in some way to
such that certain characteristics are preserved but the simulations are more realistic.
Due to the fact that it is proprietary data, the exact results from the simulations
that Handelsbanken currently run are not included in this report. It is the case,
though, that the banks current methods produce far more realistic predictions for
the financial markets over the coming decades.

5.5 Tail dependencies and the curse of dimension-
ality

With 330 data points of 23 dimensions each it was not possible for Roundtrip to
provide sufficient insight into the tail dependencies between the various market in-
dices and thereby help resolve the Curse of Dimensionality. Distributions of the
generated data were consistently too narrow and thus automatically failed to cap-
ture the dependencies of the more extreme points. It can also be assumed that this
failure in part led to the extreme results in the simulations, as small inconsistencies
in the tails compound over time. Worthy of further investigation is how altering the
number of latent space variables would affect the outcome as this was not included
in the evaluation on real market data. As described in [8], G effectively learns the
manifold on which the data actually lies, and the Roundtrip algorithm works to
map the forward and backward transformation as efficiently as possible. Tuning
this could potentially be of interest each time a new data set is used, but since there
exists no direct way into gauging the optimal number of latent space variables, it is
very much a procedure of trial and error.

5.6 Roundtrip’s potential use in financial appli-
cations
None of this is to say that Roundtrip is not worthwhile other applications in the

financial industry. As demonstrated with figures 4.1 - 4.4, even increasing the size
of the available training data by a factor of 10 makes a noticeable difference in

36

5. Discussion

Roundtrip’s performance. Trying to capture tail dependencies with only 330 data
points of 23 dimensions is an extremely ambitious task, as in [8] the data sets
on which the algorithm trains generally contain over 40,000 data points. Another
application could be in outlier detection. While not investigated in this thesis, [§]
goes through Roundtrip’s performance in outlier detection when tested on three
data sets and compares this to the performance with two common outlier detection
methods, namely one-class SVM and Isolation Forest. Roundtrip performs well in
these tasks and does at least as well as the methods it is compared to. This means
that it could potentially be used in areas such as fraud detection and anomaly
detection in trading data, to name just two examples. Lastly, trying to alter the
generated results as mentioned above in such a way that certain characteristics
are preserved but simulation results are more accurate could be an interesting topic.
This would mean combining the Roundtrip theory with other statistical techniques.

37

5. Discussion

38

O

Conclusion

This thesis investigated the potential use of the Roundtrip framework presented in
[8] for the purpose of simulating financial markets more accurately than Handels-
banken’s current proprietary models. Training the model on simulated data provided
insight into the behavior of the algorithm, and following this, Roundtrip was trained
on real market data and then used to generate new data. The generated data was
not able to accurately capture tail dependencies in a way that would aid the bank,
and this most likely led to the inability to simulate markets over a longer period.
It is quite clear, however, from the results of training Roundtrip on simulated data
that increasing the size of the data sets by only a factor of 10 would yield much bet-
ter results, meaning that providing the algorithm with daily data would potentially
result in useful market simulations. The Roundtrip algorithm can certainly not be
ruled out for use in financial services as this thesis aimed for the very ambitious goal
of helping to reduce the curse of dimensionality, which is by no means an easy task.
Lastly, while not investigated in this thesis, Roundtrip has other potential uses as it
allows for outlier detection as well, which has various applications such as anomaly
detection in trading data.

39

6. Conclusion

40

1]

[12]

[13]

[14]

Bibliography

J. McCarthy, M. L. Minsky, N. Rochester, and C. E. Shannon, “A proposal
for the dartmouth summer research project on artificial intelligence, august 31,
1955,” Al magazine, vol. 27, no. 4, pp. 12-12, 2006.

J. Hendler, “Avoiding another ai winter,” IEEE Intelligent Systems, vol. 23,
no. 02, pp. 2-4, 2008.

D. B. Lenat, R. V. Guha, K. Pittman, D. Pratt, and M. Shepherd, “Cyc: toward
programs with common sense,” Communications of the ACM, vol. 33, no. 8,
pp. 3049, 1990.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no.
7553, pp. 436-444, 2015.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” Advances in neural
information processing systems, vol. 27, 2014.

T. Liang, “How well can generative adversarial networks learn densities: A
nonparametric view,” arXiv preprint arXiv:1712.08244, 2017.

S. Arora and Y. Zhang, “Do gans actually learn the distribution? an empirical
study,” arXiv preprint arXiv:1706.08224, 2017.

Q. Liu, J. Xu, R. Jiang, and W. H. Wong, “Density estimation using deep
generative neural networks,” Proceedings of the National Academy of Sciences,
vol. 118, no. 15, p. 2101344118, 2021.

F. Bach, “Breaking the curse of dimensionality with convex neural networks,”
The Journal of Machine Learning Research, vol. 18, no. 1, pp. 629-681, 2017.
S. Dash, R. Dutta, I. Guyon, A. Pavao, A. Yale, and K. P. Bennett, “Synthetic
event time series health data generation,” arXiv preprint arXiv:1911.06411,
2019.

D. Parthasarathy, K. Béackstrom, J. Henriksson, and S. Einarsdéttir, “Con-
trolled time series generation for automotive software-in-the-loop testing using
gans,” in 2020 IEEE International Conference On Artificial Intelligence Testing
(AlTest). TEEE, 2020, pp. 39-46.

C. Esteban, S. L. Hyland, and G. Rétsch, “Real-valued (medical) time series
generation with recurrent conditional gans,” arXiv preprint arXiv:1706.02633,
2017.

E. Brophy, Z. Wang, and T. E. Ward, “Quick and easy time series generation
with established image-based gans,” arXiv preprint arXiv:1902.05624, 2019.
D. Zhang, M. Ma, and L. Xia, “A comprehensive review on gans for time-series
signals,” Neural Computing and Applications, pp. 1-21, 2022.

41

Bibliography

[15]

[16]
[17]
[18]

[19]

[22]

[23]

[24]

[25]

[26]

42

O. O. Aremu, D. Hyland-Wood, and P. R. McAree, “A machine learning ap-
proach to circumventing the curse of dimensionality in discontinuous time series
machine data,” Reliability Engineering € System Safety, vol. 195, p. 106706,
2020.

D. J. MacKay, D. J. Mac Kay et al., Information theory, inference and learning
algorithms. Cambridge university press, 2003.

F. Nielsen, “On the jensen-shannon symmetrization of distances relying on
abstract means,” Entropy, vol. 21, no. 5, p. 485, 2019.

M. A. Nielsen, Neural Networks and Deep Learning. Determination Press,
2015, http://www.neuralnetworksanddeeplearning.com.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

Y. Ma and Y. Fu, Manifold learning theory and applications. CRC press Boca
Raton, 2012, vol. 434.

X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley, “Least squares
generative adversarial networks,” in Proceedings of the IEEFE international con-
ference on computer vision, 2017, pp. 2794-2802.

C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern,
M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del
Rio, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy,
W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming
with NumPy,” Nature, vol. 585, no. 7825, pp. 357-362, Sep. 2020. [Online].
Available: https://doi.org/10.1038/s41586-020-2649-2

W. McKinney, “Data structures for statistical computing in python,” in Pro-
ceedings of the 9th Python in Science Conference, S. van der Walt and J. Mill-
man, Eds., 2010, pp. 51 — 56.

J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science
& Engineering, vol. 9, no. 3, pp. 90-95, 2007.

S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How does batch normaliza-
tion help optimization?” Advances in neural information processing systems,
vol. 31, 2018.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

http://www.neuralnetworksanddeeplearning.com
https://doi.org/10.1038/s41586-020-2649-2
http://www.deeplearningbook.org

DEPARTMENT OF SOME SUBJECT OR TECHNOLOGY
CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden
www.chalmers.se

CHALMERS

UNIVERSITY OF TECHNOLOGY

www.chalmers.se

	List of Figures
	List of Tables
	Introduction
	Background
	Machine learning and generative adversarial networks
	The curse of dimensionality
	Problem setting
	Limitations and assumptions
	Related work
	Ethical considerations

	Theory
	Statistics
	Importance sampling
	Kullback-Leibler divergence and Jensen-Shannon divergence
	Tail dependence

	Machine learning
	Fully connected networks
	Manifold learning
	Generative adversarial networks
	Roundtrip
	Overview
	Hyperparameters
	Learning G and H
	Density estimation

	Methods
	Tools
	Data
	Simulated data
	Financial time series data

	Roundtrip Algorithm
	Algorithm modifications
	Hpyerparameter tuning

	Evaluation
	Simulated data
	Market data

	Results
	Simulated data
	Real data
	Hyperparameter tuning
	Market data
	Market simulation

	Discussion
	Simulated data
	Latent space investigation
	Evaluation

	Market data
	Hyperparameter tuning
	Evaluation

	Simulated data vs market data
	Market simulation results
	Tail dependencies and the curse of dimensionality
	Roundtrip's potential use in financial applications

	Conclusion
	Bibliography

