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Abstract
Keywords: ANN regression, PLS regression, RBF, LCIA modelling, ReCiPe, EI99

This work has investigated the ability of molecular structure-based (MSB) models to
predict the ReCiPe indicators for environmental impact assessment. A dataset of 189
observations and 28 molecular descriptors (MDs) has been used to predict four endpoint
indicators and 18 midpoint indicators. The endpoint indicators were: Ecosystem quality
(EQ), human health (HH), resource depletion (R) and the total ReCiPe score (T).
Linear models in form of a partial least squares (PLS) regression and nonlinear radial
basis function artificial neural networks (ANNs) have been compared. It has been found
that ANNs perform significantly better than linear models. The human health (HH)
indicator as well as the total (T) ReCiPe indicator could be predicted with a satisfactory
precision with a coefficient of determination of 0.52 and 0.44 and model size of 15 and
13 molecular descriptors (MDs) respectively. The structure of the ANN and as well as
the most important MDs has been analysed. It has been found that there is a tendency
to include some oxygen related functional groups, nitrogen and the molecular weight for
HH and T. The results were compared with results for the EI99 indicator from literature
to investigate whether it is more useful to predict the total ReCiPe indicator directly,
or to correlate it with a good prediction of the total EI99 indicator. A correlation of
r2 = 0.92 between EI99 and ReCiPe has been found. This correlation is useful, provided
there is a good prediction of the EI99 indicator. The dataset that has been used in this
work predicts the ReCiPe indicator with a higher precision than the EI99 indicator,
which makes is more convenient to model the ReCiPe indicator for this particular case
directly. The analysis of the results has also indicated weaknesses in the modelling
procedure, suggesting improvements for future applications.
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1 Introduction
The global standard of living is deeply rooted in the chemical industry, let it be the food
production, technology or dyestuff. Due to its demand for energy as well as emission
of greenhouse gasses and hazardous chemicals, the chemical industry poses a threat
for environmental safety. Because of its omnipresence and scale, it also bears a huge
potential of improvement. Legislation therefore aims at setting environmental standards
for the production of chemicals, which are supposed to help achieving climate goals.
Finding room for improvement in chemical production is often a big challenge due to
a lack of data about energy consumption or the environmental footprint of the used
materials, the so called life cycle inventory (LCI). Life cycle assessment (LCA) is a tool
that provides an insight in environmental issues concerned with chemicals, based on
a holistic analysis of the chemical’s LCIs, from its origins, up to the factory gate, or
even waste treatment. A complete LCA is based on reliable inventory data. Such data
are retrieved from an analysis of energy flows, chemical reactants, catalysts etc. This
analysis is often costly and time consuming. Especially for more complex chemicals, such
as pharmaceuticals, many steps of the chemical process are confidential. This results in
data gaps in the LCI, which pose a hurdle in the assessment of the life cycle. In order
to still be able to collect environmental impact metrics, these gaps can be closed by
predictive modelling. The analysis of how the LCI affects the environment, humanity
and resources is called life cycle impact analysis (LCIA) . This work aims to predict the
LCIA data by using “short-cut” models alternatively to complex process-based models.
These “short-cut” models are based on the molecular structure of a chemical product
and are therefore called molecular structure based (MSB) models.

1.1 Scope
In 2008 Wernet et al. published a work in which LCIA data from molecular structure
based (MSB) models were successfully modelled, comparing the modelling performance
of artificial neural networks (ANN) and linear models [1]. A summary of these results
is given in Table 1.1. Wernet et al. used MSB models to predict the indicator data
of the so-called Eco-Indicator 99 (EI99) . He has shown that artificial neural networks
perform significantly better than linear models as can be seen in Table 1.1. His results
have contributed to build the so called Finechem tool [2], a tool that uses a determined
set of molecular descriptors (Finechem MDs) to predict the EI99 scores. In a similar
approach like that of Werent et al. (2008, 2009), this works aims at predicting the
so-called ReCiPe indicator, since the ReCiPe indicator is a more up to date life cycle
assessment method [3]. The main goals are to find suitable linear or nonlinear models,
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CHAPTER 1. INTRODUCTION

Table 1.1: Wernet et al.’s results for MSB modelling LCIA data of the Eco-Indicator
99 [1]. EI99 Total: Total Endpoint score for the EI99, EI99 HH: Human
health score, EI99 EQ: Ecosystem quality score, EI99 R: Resource score

EI99 Total EI99 HH EI99 EQ EI99 R

ANN MLR ANN MLR ANN MLR ANN MLR
CD 0.46 0.25 0.55 0.13 0.61 -0.01 0.56 0.35
SCD 0.36 0.47 0.28 0.46 0.28 0.88 0.27 0.41

that predict the ReCiPe indicators, isolating the most important molecular descriptors
(MDs) for such models, and finally comparing these results with the results of Wernet
et al. for the EI99. Furthermore, there is the ambition to answer the following question.
From a practical point of view, is it more convenient to model the ReCiPe indicator
directly or is it better to use the results of Wernet et al. and the Finechem tool as well
as a correlation between EI99 and ReCiPe? In the following a short overview over life
cycle assessment, molecular descriptors as well as the basics of predictive modelling is
given.

1.2 Life Cycle Assessment
Life cycle assessment (LCA) has become a prevalent tool to categorise a vast spectrum of
products in their impact on human health, ecosystem diversity and resource availability
[3]. Especially studying the environmental impact of consumer products dates back to
the 1960s, where two products, fulfilling the same need had to be judged in better or
worse with regard to their environmental impact [4]. A common example would be
selling water in glass or PET bottles. Glass bottles are reusable while PET bottles can
be recycled at best. However, the glass bottle production might require more energy for
there is more material used and it has a higher melting point than PET. On the other
hand, PET is indirectly produced from fossil sources, the production of which is also
harmful to the environment. Obviously, it is not easy to judge which of these two is
the better solution for selling the consumer product “bottled water”. LCA is a method
to assess such problems and to help decision makers to chose a product or production
path based on the LCA results.

1.2.1 Methodology of LCA
Life cycle assessment can be summarised in four steps [5]:

1. Define the goal and scope

2. Analyse of the life cycle inventory (LCI)

3. Life cycle impact analysis (LCIA) of midpoint and endpoint.

2



CHAPTER 1. INTRODUCTION

4. Interpret the results

The definition of the goal and scope seems arbitrary but is cardinal to LCA. Taking the
purpose of this work for instance, it is to provide a powerful tool to quickly estimate the
environmental impact of chemicals when used in the production of consumer products.
In the LCI (life cycle inventory) step one analyses certain impact metrics, such as the
amount of carbon dioxide emitted per unit mass of the product. In the life cycle impact
analysis (LCIA) these indicators are projected onto the outcome for either midpoint or
endpoint indicators. For the midpoint indicators the LCI results are combined with an
output, that describes a direct consequence. That is described in Figure 1.1(b), where
the LCI data for carbon dioxide, methane, nitrous oxide and CFC gases are used to
calculate the infrared radiative forcing, a midpoint indicator that describes the amount
of solar energy absorbed by the atmosphere. Endpoint indicators use the midpoint
indicators to interpret them according to their impact on human health, ecosystems, and
resources, see Figure 1.1(a) and 1.1(b). Their collective values form a single score, such as
the total ReCiPe score. The outcome of LCIA is influenced by the physical model behind
the midpoint/endpoint calculations and therefore is different for all available methods.
Wernet et al. used MSB models to predict the endpoint indicators for the EI99 and this
work for the ReCiPe indicators. The results in both works will be compared in section
3.4.
The ReCiPe data were taken from the Ecoinvent 3.3 database [6]. Table 1.2 is a list of the
endpoint and midpoint indicators on which a MSB modelling approach was performed.

1.3 Molecular Descriptors
This work focuses on “black box” models. That means that there is no scientific mech-
anism behind the model. It is simply fitting of data of molecular descriptors (MDs) to
output data. However, depending on what output data are modeled the type of input
data can have a significantly different influence. Take for instance an energy-related
indicator, such as the global warming potential GWP . The global warming potential
of a molecule is vastly influence by the energy used in its production process. Because
often there is a thermal separation process necessary, bigger sized molecules will tend to
yield a bigger GWP. Molecules containing toxic atoms will tend to have a big influence
on indicators that measure toxicity, molecules that contain for example sulfur will have
a big influence in indicators that measure terrestrial acidity. The mechanism behind
the calculations of the indicators are not part of this work so the exact relationships
between input and output cannot be investigated. Still, there are certain trends as
explained above that are expected to be observed even when dealing with “black box”
models. It is a paramount challenge of MSB modelling to find correlations between
MDs and the LCIA indicators. Due to the black box characteristics one cannot predict
quantitatively, which MDs will contribute how much to the output. Still, if there is a
clear dominance of several MDs, there should be an approach to explain that correlation
in order to use that information in future modelling. For example, if it is found that
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Figure 1.1: A qualitative display of the working principle of the ReCiPe LCIA
method [3]. In (a) the LCI data are displayed which are then trans-
formed in the environmental mechanism part 1 into the midpoint in-
dicators and from there through the environmental mechanism part 2
into the endpoint indicators. In (b) there is a more detailed example
of how the LCI data of greenhouse gas emissions form the infrared ra-
diative forcing midpoint indicator, which then influences the endpoint
indicator for ecosystem quality.
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Table 1.2: The ReCiPe indicators used in this work. All are retrieved from the
ecoinvent 3.3 database [6].

Indicator Name Abbreviation Unit
Endpoint
Ecosystem Quality EQ points
Human Health HH points
Resources R points
Total Total points
Midpoint
agricultural land occupation ALOP m2/a
climate change (also global warming potential) GWP100 kg CO2 − Eq
fossil depletion FDP kg oil− Eq
freshwater ecotoxicity FETPinf kg 1, 4−DC.
freshwater eutrophication FEP kg P− Eq
human toxicity HTPinf kg 1, 4−DC.
ionising radiation IRP_ HE kg U235− Eq
marine ecotoxicity METPinf kg 1, 4−DC.
marine eutrophication MEP kg N− Eq
metal depletion MDP kg Fe− Eq
natural land transformation NLTP m2

ozone depletion ODPinf kg CFC− 11.
particulate matter formation PMFP kg PM10− Eq
photochemical oxidant formation POFP kg NMVOC
terrestrial acidification TAP100 kg SO2 − Eq
terrestrial ecotoxicity TETPinf kg 1, 4−DC.
urban land occupation ULOP m2/a
water depletion WDP m3

5



CHAPTER 1. INTRODUCTION

molecular size related MDs have a high influence, a future model could be particularly
rich in such MDs.

1.4 Modelling
Mathematical modelling aims to find a function y = f(β, x) that uses an input variable
x as well as the model parameters β and is able to calculate an output y. If the rela-
tionship between x and y is not known in details, an empirical model is used to fit the
model parameters with empirical data. This process is called regression analysis. Em-
pirical models were used in this work to predict the ReCiPe indicators using molecular
descriptors of organic chemicals. In the following a short qualitative introduction into
modelling is given with a more detailed discussion of the used regression techniques in
section 2.4.

1.4.1 Introduction to Modelling
In science is often important to know the influence one or more quantities have on the
physical, chemical or biological properties of a system. Either to describe a certain
behaviour mathematically, to design an experiment or scale up a plant. Consequently,
mathematical models can either describe a system using empirical data, or predict how
variations in input values affect a system. For example, a descriptive model can describe
the correlation between the height of a child and the height of its parents. A researcher
could ask the question, whether tall parents will also have tall children and might come
up with a simple linear model as in Equation (1.1). It describes the height of the child
H as a linear function of the height of the parents x.

H = β1 · x+ β0 (1.1)

The parameter β1 is a constant that describes how strongly the parent’s height x in-
fluences the child’s height H. In order to estimate β and β0 empirical data can be
used to perform a regression analysis. When these data are collected and β1 and β0 are
estimated, one can judge the descriptive power by analysing how well the model fits the
real data. Figure 1.2 displays how well the model in Equation (1.1) fits an imaginary
data set. A commonly used metric to describe the goodness of the fit is the r2. With
r2 = 0.97 the model fits the empirical data quite well. However, this is a pure measure
of the descriptive power of the model. A more complex application of modelling is the
so called predictive modelling, where available data are used to fit a model as above,
which also has to be representative of new, unseen data.

The above example focuses on description of cause and effect. One could also go further
and try to predict an effect with a predictive model. This is often done, when collecting
the necessary data is too risky, costly or cumbersome. Consequently, predictive models
are used to guide ones decisions in process development or design of experiments. In
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Figure 1.2: An example for a descriptive model, fitting the height of the children H
to the height of the parents x. One can see that the descriptive power is
high with r2 = 0.97. All the data are arbitrarily chosen for explanatory
purposes and do not reflect real data.

1896 Svante Arrhenius tried to develop a theory to explain the development of ice ages
[7]. He also came along the influence greenhouse gases have on the temperature of the
earth. His research resulted in a model that correlates the amount of carbon dioxide in
the earths atmosphere with the change in radiative forcing ∆F . Today this model has
been adjusted to Equation (1.2) [8]:

∆F (t) = α ln
(
C(t)
C0

)
, (1.2)

where C(t) is the CO2 concentration in the atmosphere over the time t and C0 the
concentration at time 0. The model parameter α can be modelled using experimental
data for ∆F and C using regression analysis. Arrhenius concluded that burning fossil
fuels would increase the CO2 content in the air and result in a global warming. Con-
ducting such an experiment in real life would prove much too time consuming and risky
as one would put the global ecosystem at risk. Going into details here is not important.
It is however important, that Arrhenius was able to model that an increase of CO2
in the earth’s atmosphere raises the global temperature and so he would have advised
against a global scale experiment. Since over 100 years later the carbon dioxide content
has actually risen and the mean temperature has been monitored, we know now that
Arrhenius prediction was right. His model has proven predictive enough for this purpose.

Arrhenius model is an example of a model that predicts a relationship between cause and
effect and where the actual grand scale experiment (in this case increasing the amount of
CO2 in the atmosphere) is too risky. Predicting life cycle indicators is similar. Assuming
a decision maker wants to chose between process A, B and C while the best cumulative
energy demand (CED) of each process decides over which process will be implemented.
Obviously, it is too costly to build all three processes and measure the CED. Instead one

7
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could use a reliable model that predicts the CED for all processes and use it as a basis for
one’s decision. Arrhenius example shows one more aspect about modelling. The climate
is a deeply complex system and Arrhenius was hardly able to give predictions that are
as accurate as the predictions derived from modern models. However, he was essentially
right about global warming. This leads to the understanding, that with a large amount
of data and computational power, one can fit and predict data to an arbitrary precision.
Yet, there will always remain an error at hand. This error needs to be monitored to
judge the models predictive power. Basically, in predictive modelling one needs to be
aware of the model’s prediction error, and whether said error is small enough for the
model to serve one’s purpose.

“Essentially, all models are wrong, but some are useful”
-George E.P. Box [9]

1.4.2 Mathematical Basics of Modelling
A statistical model uses independent input variables xj with j = 1, ..., p to predict an
output variable y. Therefore y depends on the input xj and is also called a dependent
variable or target variable. The most straightforward modelling approach is to minimise
the difference between a calculated or modelled output y∗ and the actual output y taken
from an empirical data set. Accordingly, the difference between y and y∗ is called the
error ε. The calculated model output y∗ depends on what type of model is used and how
the input variables xj are weighted, i.e. how big their influence on y is. For instance,
one can use a linear model with multiple input variables xj:

y∗ = β0 +
p∑
j=1

(βjxj) = f(βββ,x), (1.3)

ε = y − y∗, (1.4)

Where βj are the model parameters and β0 the bias. For empirical models β0 and βj
must be estimated through a regression technique. In this work linear models have
been applied in a partial least squares (PLS) regression. LCI data are based on the
steps a chemical goes through in an industrial process. These are often non-linear with
respect to the molecular descriptors and artificial neural network (ANN) have proven
useful for this application [10],[1]. Consequently, ANNs have been used in this work to
model non-linear models as they seem to be most promising. For an overview of these
regressions see section 2.4.

Empirical models require a data set X containing data for the input variables v1 to vp
as well as a set representing the output variables Y. As such, an observation (row in
X) is given the subscript i, while the variable (column in X) is given j as a subscript.

8
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There are a total of p variables and n observations or data points.

X =


x1,1 x1,2 · · · x1,p
x2,1 x2,2 · · · x2,p
... ... . . . ...

xn,1 xn,2 · · · xn,p

 ,y =


y1
y2
...
yn


This work focuses on predictive modelling as described above. It is therefore necessary
to assess the predictive power of the models. A common procedure is to split the data
sets X and y into a training and a validation set (such as in [1] and [11]). The training
sets Xtr and ytr are used to regress the estimated model parameters βββ∗, i.e. to build or
“train” the model. After the training, the independent validation sets Xval and yval are
used to assess the predictive power, or “validate” the model.

1. Split the data sets X and y into a training and a validation set:
X = {Xtr,Xval}, y = {ytr,yval}

2. Regress the training set and asses the goodness of the fit:
y∗
tr = f (βββ∗,Xtr), εεεtr = ytr − y∗

tr

3. Use the same model as above for validation:
y∗
val = f (βββ∗,Xval), εεεval = yval − y∗

val

It is very important for the validation set to be representative of the training set, so
that every validation is an interpolation, rather than an extrapolation. Practically, there
are several conditions to be fulfilled to reach a satisfactory splitting into training and
validation set. Most obvious is that an observation in the validation set mustn’t be an
outlier with regard to the training set. Furthermore, the values of the variables in both
sets need to be distributed similarly and contain about the same information content
with regard to the output variable. Also, both sets need to confine a range of realistic
input values that spans wide enough for a practical application. That means, chemic-
als of different sizes, weights and composition should be used to have a model that is
representative of many chemicals that are used in industry. Section 2.3 explains how
these hurdles were overcome and the splitting was performed. With an amount of data
and variables that is big enough one will be able to train the model to an arbitrary
precision. However, the predictive properties are assessed in the validation step. Since
the parameters are fitted using the training set, it is expected to perform better than
the validation set, i.e. εtr ≤ εval. There can be cases, where this doesn’t apply. For
instance, when some points that perform really well in the training set can also be found
in the validation set, or when some points in the training set perform really bad.

Up to this point it has been assumed that the model requires all the available input
variables. However, in the case of black box models it is often unknown, which para-
meters actually contribute to the output. In other words, one often just assumes that
an input variable influences the output variable. This might lead to what is known as

9
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Model size

training error

validation error

Figure 1.3: Qualitative display of the behaviour of the training and validation error
with increasing model size. One can see that while the model becomes
bigger the model is slowly over-fitted and εtr tends to zero. Meanwhile
the over-fitted model returns a validation performance that increases
with model size.

over-fitting the model. When many variables and relatively less data are available, the
model parameters are adjusted so well, that the empirical output data are fitted with
very high precision. This may be due to the fact, that input variables have been in-
cluded in the model, that actually have nothing to do with the cause and effect relation
a model aims to investigate. As a consequence the input data are so to say “learned
by heart” and not used to build a predictive model. Figure 1.3 qualitatively shows how
the training error approaches zero with increasing model size. Contrary, the validation
error has a minimum value, at a point where the model is not at full size but reduced
to its most important parameters. This minimum may well be a plateau in practice,
rather than a sharp valley [12].

From Figure 1.3 one can see that is cardinal to not simply trust the model with the
best training performance but to also train a number of reduced models to actually find
the minimum validation error and therefore the maximum predictive performance of
the model. Section 2.6 describes the methods that have been used to find the optimal
molecular descriptors (MDs) given a fixed size of the model. All in all validating a model
serves two purposes:

1. It makes sure, that a model can reliably predict effects and is therefore useful in
the future.

2. It serves the variable selection of the multivariate model f(βββ,X), as over-fitting is
detected through the validation performance.

10



2 Methods
In the following the methodology will be explained with the scope on the data for the
molecular descriptors (MDs), an overview of the statistics and the used methods. A
detailed mathematical explanation would at some points be beyond the scope of this
thesis and literature for further reading is recommended. All calculations have been
performed in Matlab 2016b.

2.1 Data Collection
The data for the ReCiPe indicators have been taken from the ecoinvent 3.3 database.
The used chemicals were restricted to all those that were confined to Europe (ReR and
all its subcatogiries). A list of all the chemicals is given in the appendix. Finding a
suitable set of MDs was approached in two ways: First, the finechem data, already used
by Wernet et al., where calculated for the selected chemicals. For this calculation, the
“finechem tool”, provided by ETHZ was used. It is based on Wernet’s work and cal-
culates a set of important MDs for organic chemicals [1], [11]. Second, an independent
set of MDs was searched. A complex set of MDs was found, provided by the “Milano
Chemometrics and QSAR Research Group” [13], this will be refered as the “MOLE
db” data. Since the performance of both sets was unsatisfactory, both sets have been
combined, that is the finechem data were kept and the most promising MDs from the
MOLE db data were added. A list of MDs, that were use can be found in Table 2.1. The
MDs have been grouped in four categories. Size and mass related, number of atoms,
functional groups, and electronics. The size and mass related MDs are expected to have
an influence based on their steric behaviour. The way a molecule is polarised influences
the interactions, i.e. the attractive and repulsive forces. These characteristics are in-
fluenced by some atoms, functional groups, as well as the electronic MDs. Depending
on the production process behind the synthesis of groups and atomic compounds, their
influence may also vary.

2.2 Statistical Basics and Nomenclature
Given a sample with n data points xi the arithmetic mean x̄ can be defined as:

x̄ =
n∑
i=1

xi
n

(2.1)

Note that x̄ differs from the expectation value µ in the way that it is based on a finite
set of empirical data. As this work is based on empirical data the statistical metrics
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Table 2.1: Overview of the MDs used, categorised in size, atoms, groups and elec-
tronic MDs. Their abbreviations are stated in parenthesis.

Molecular Descriptors
Size/Mass Atoms Groups Electronic

Molecular Weight (MW) #Nitrogen Atoms (N) #Rings (Rings) #Double Bonds (DB)
Van-der-Waals Volume scaled
on Carbon (VdW-V)

#Halogenes (Halogenes) Hetero in Rings (HR) #Number of Donor Atoms for
H-bonds (DonorH)

#Atoms (Atoms) #Tertiary and Quartary C-
Atoms (T/Q-C)

#Functional Groups (FunctG) #Number of Acceptor Atoms
for H-bonds (AcceptorH)

Average Molecular Weight
(AvMW)

#O in Carbonyl (OwCarb) #Hydroxyl Groups (OH) Sanderson Electronegativity
scaled on Carbon (E-)

#O without Carbonyl
(Ow/oCarb)

#Carboxyl Groups (COOH) Polarizabilites scaled on Car-
bon (Pol)

#Oxygen Atoms (O) #Amine and Amide (Am/Ad)
#Chlorine Atoms (Cl) #Nitro Groups (NO)

#Ether Groups (Ether)
#Ester and Amide (Est/Ad)
#Cyanide Groups (Cyanide)
#Keto and Aldehyde (CO)
#Other Functional Groups
(OtherFun)

are based on the arithmetic mean rather than the expectation value. Based on x̄ the
sample variance S2 can be calculated [14]:

S2 =
∑n
i=1 (xi − x̄)2

n− 1 (2.2)

Accordingly the sample standard deviation S is defined as the square root of the sample
variance.

When the data points have multiple dimension the expressions in 2.1 and 2.2 need
to be adjusted. In multivariate statistics the variance of one variable with respect
to other variables needs to be defined. This is called the covariance Cov in vector
notation or Covij respectively in scalar notation. Observation vectors containing only
one observation of all variables will also be in vector notation, i.e. xi and variable vectors
containing one variable j are xj. The arithmetic mean X̄ of the matrix X is a vector
containing the arithmetic mean of all columns according to (2.1):

X̄ = [x̄1, . . . x̄j, . . . x̄p] (2.3)
Using (2.3) the covariance matrix can be defined as [14]:

Cov =

n∑
i=1

(
xi − X̄

) (
xi − X̄

)T
n− 1 (2.4)

with n as the number of observations. The goodness of a model can be assesed by
several metrics. Here the coefficient of determination CD [12] is the metric of choice.

CD = 1− (y− y∗)T (y− y∗)
(y− ȳ)T (y− ȳ)

= 1− SSE

SST
(2.5)
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The numerator of the fraction is also called the sum square of errors (SSE) that measures
the over all distance of the predicted output y∗ and the output data y. The denominator
is the total sum of squares (SST), that calculates the distance between the output data
and their arithmetic mean.

The sample correlation r between a variable x and y is calculated as:

r = Cov(x, y)
SxSy

(2.6)

2.3 Splitting
As explained in section 1.4.2 the data set is split into a training and validation set. In
the following the pretreatment of the data as well as splitting criteria are explained.

2.3.1 Pretreatment
The data have been pretreated in order to set reasonable proportions (normalisation), to
remove outliers (outlier detection) and avoid singularities (noise addition). Pretreatment
of the data is of paramount importance and can make the difference between a useful
model and no model at all [15].

Normalisation

To compensate in differences in magnitude, the data has been normalised according to
equation (2.7). This is a regular transformation method that provides and easy way
to compare data regardless of their physical unit or order of magnitude [16]. The data
range now from zero to one.

Xnorm = X−min(X)
max(X)−min(X) (2.7)

Even though equation (2.7) uses the subscript norm, this will not be used in the further
discussion, as all data can be regarded as normalised.

Z-test statistics

Some of the target values yi had much greater values than most of the rest. To deal with
such outliers a z-test outlier detection has been performed according to [17]. Here the
data in y are subtracted by their mean ȳ and divided by the sample standard deviation
S. The Null-hypothesis is that the z-scores in the vector z have an expectation value of
0 and a standard deviation of 1.

z = y− ȳ
S

(2.8)
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Figure 2.1: An example for the importance of the outlier detection. In (a) the fit is
good according to the r2 and the trend of the data is well represented.
In (b) the outliers weight much more than the data that lay closely
together. While the results for the r2 seem to stand for a good fit, one
can see that the actual data trend is badly represented.

For this application a z-score of 2 has been chosen as the upper limit. According to
[18] the probability of the interval of z = [0, 2] incorporating a measured value is 97.7%.
Accordingly, all observations with zi ≥ 2 have been discarded. Note that for every
ReCiPe indicator the sets have been split isolated from the other ReCiPe indicators.
That means that if for example the EQ indicator has an outlier at observation i, for
another indicator observation i might not be an outlier. Figure 2.1 shows how important
outlier detection is. One can see two data sets, one containing no outliers, and the other
one containing outliers. On the r2 one can see that they’re fitted well by a linear
model. However in Figure 2.1(b) the outliers steepen the fit and make it obviously
unrepresentative of the actual data. While in a two-dimensional space this can be
displayed well, in the three-dimensional space and higher, a fit may seem good according
to some metric, but is actually strongly influenced by a few outliers which hides the true
trend of the majority of the data.

Noise

The data matrix in this application contains many zero elements. This is due to several
integer variables, such as the number of oxygen atoms, that are zero for many chemicals.
In the splitting as well as in the modelling part, it was necessary to calculate the inverse
of the data matrix X or the covariance matrix Cov. Noise has been added to avoid
inaccurate results due to singular matrices. The added noise is randomly distributed
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between 10−6 and 10−5.

2.3.2 Creating N Random Splits
In order to be able to validate the model it is important to split the data into a training
and a validation set such that the validation is “representative” of the training set. The
first approach is to chose a validation set, so that its output variables lay strictly within
the range of the output variables of the training set. This way one makes sure that
the validation is always an interpolation within a range of output variables rather than
an extrapolation that exceeds the output variables of the training set. Furthermore, a
calibration interval is an obligation for any predictive model. So for every data point
yi,val of the output variable of the validation set the following inequality must be valid:

min(ytr) ≤ yi,val ≤ max(ytr) ∀ i ∈ nval

Additionally the training set is usually chosen to be larger than the validation set. In
this case about for times. (Obviously, for a number of observation n, that is not divisible
by 4, this factor is a little higher).

ntr = 4nval,

With nval and ntr being the observations in the validation and training set respectively.
Not only does the output variable of the validation set have to be in the same (or
smaller) range than the output variable of the training set, also the input matrices for
training and validation set have to be in a “close” range. For a multivariate dataset this
is hard to imagine because the distances are not measured along a one dimensional axis
any more.

Two multivariate distance measures are available: the euclidean and the mahalanobis
distance. Both calculate the distance of a data point xi = [xi,1, · · ·xi,j, · · ·xi,p] to the
mean value X̄ of the whole data set. The advantage of the mahalanobis distance is
shown in Figure 2.2. The mahalanobis distance takes into account how much a variable
varies with the other variables, i.e. the covariance matrix Cov. Figure 2.2 shows a
generic data set with two variables x1 and x2 with fixed distance thresholds, indicated
by circles. Assuming that the middle circle is the maximum criterion for an outlier
detection, in Figure 2.2 (a) many data points would be considered outliers due to their
strong variation in x1 and due to the fact, that the data points are not circular but
elliptically distributed. It is clear that the distance criterion needs to be adjusted. The
correlation of the data needs to be regarded to provide a credible distance measure.
This is achieved in the mahalanobis distance. It adjusts to the distribution of the data
in the p dimensional space as well as to the magnitude of the variables [19]. In Equation
(2.9) and (2.10) the general expressions for the euclidean distance DEi and mahalanobis
distance DMi of every data point i are given.

DEi =
√(

xi − X̄
) (

xi − X̄
)T

(2.9)
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Figure 2.2: (a) A simulated set of data with three circles representing equal eu-
clidean distance from the sample mean. (b) A simulated set of data
with three ellipses representing equal mahalanobis distance from the
sample mean[19]. One can see that the mahalanobis distance takes the
covariance of the variables into account and adjusts to the shape of the
data.

DMi =
√(

xi − X̄
)

Cov−1
(
xi − X̄

)T
(2.10)

To set the validation set in an appropriate mahalanobis distance to the training set, the
mahalanobis distance of every observation in the validation set xi,val to the mean of the
training set X̄tr has been taken.

DMi,val−tr =
√(

xi,val − X̄tr

)
Cov−1

tr

(
xi,val − X̄tr

)T
(2.11)

In order to find validation sets that were representative of the training set in the sense
of the above criteria, the following procedure has been applied:

1. Randomly createN splits, such that ntr = 4nval and min(ytr) ≤ yi,val ≤ max(ytr) ∀ i ∈
nval

2. Calculate the mahalanobis distance DMi,val−tr ∀ i ∈ nval. If DMi,val−tr is an
outlier according to the z-score, replace xi,val with a random data point of the
training set. Repeat the calculation of the mahalanobis distance until DMi,val−tr
is no outlier ∀ i ∈ nval

This way it has been made sure that N random split have been created, where the
validation set is representative of the training set according to the above conditions.
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Besides the above mentioned conditions for a split, there are two more criteria that have
been applied: the entropy and the ITSS criterion. If these criteria have been fulfilled,
the splits have been kept, if not they were discarded. The goal was to have about
100 splits after applying the entropy and ITSS criterion. Accordingly, a bigger number
of N random splits, that fulfil the requirements above, had to be created. Since the
entropy and ITSS criteria were quite strict N had to be in the order of N ≈ 2000−4000
to actually reach the desired 100 splits. Before those two criterions could be applied,
the input as well as the output space had to be discretised. Discretisation means that
the values of a variable are distributed among bins of equal size. Since the variables
have already been normalised and take on values between zero and one, these bins
also will be between zero and one. A discretisation has been performed, such that the
number of bins, or the resolution, resulted in maximum entropy for the training set.
The entropy is defined below. The resolution is the size one bin spans. For example a
variable between zero and one that is distributed among five bins has a resolution of 0.2.
Again it is important that the validation set is a good proxy for the training set. Ergo,
the resolution of the discretisation in the training set must be equal to the one in the
validation set. Otherwise the discretisation will be different for training and validation
set.

2.3.3 Entropy Criterion
In his paper “A mathematical theory of communication”, Shannon defined the statistical
entropy of a variable x according to Equation (2.12) [20].

H(x) ≡ E[I(x)] (2.12)

Where I[x] is the information content in the variable x. Explicitly this can be refor-
mulated using the probability p(xi) that x takes on n discrete values x1 to xn and it
is therefore an analogy to the thermodynamic entropy introduced by Boltzmann and
Gibbs in 1870 [21].

H(x) = −
n∑
i=1

p(xi)log2(p(xi)) (2.13)

The probability p(xi) is simply the number of occurrences Ni of the value xi divided by
the total number of occurrences N . Note that this could also be applied to continuous
variable, if they were rendered by a continuous function. Since empirical data are
discontinuous they should be distributed among N discrete bins with the occurrences
Ni.

p(xi) = Ni

N
(2.14)

According to the definition in Equation (2.12) the entropy represents the information
content that lays within the variable x. As an example, assume that a variable can
only take on one value x1, that would mean that p(x1) = 1. With regard of Equation
(2.13), this would result in an entropy of H(x) = 0, since the logarithm of one is zero.

17



CHAPTER 2. METHODS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H([X
tr
, Y

tr
] )

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

H
(X

va
l, 

Y
va

l])

r = 0.75

Figure 2.3: An example for the entropy correlation criterion for the training and
validation set. On the abscissa the entropy of the training set and on
the ordinate for the validation set for each column of the input matrix.
The correlation coefficient is r = 0.75 and the split is accepted.

Now assume a variable that can take on n discrete values with equal probability, i.e.
p(x1) = 1/n, . . . , p(xn) = 1/n (for example a perfect coin or dice). The entropy of
this variable would be the maximum entropy, H(x) = 1 since it it impossible to predict
which value the variable will take on.

For comparing the training and validation sets it is now cardinal that all variables
have a more or less equally distributed entropy. That means that the entropy of the
variables in the training and validation set should correlate. As a threshold a correlation
r according to Equation (3.2) of 0.7 has been set, meaning that all splits with r < 0.7
have been discarded. Figure 2.3 gives an example of the entropy of each variable for the
training set versus the validation set. The correlation coefficient r is 0.75 which is above
the entropy criterion and the split will be kept. The entropy criterion is applied for a
matrix consisting of all the input variables Xtr and Xval as well as the output variables
ytr and yval.

2.3.4 ITSS Criterion
In 1998 Sridhar et al. proposed an “information theoretic subset selection” (ITSS)
to identify important variables before training an ANN [22]. By identifying the most
important variables the input space could be reduced and the training accelerated while
containing a satisfying performance. The ITSS criterion is also based on information
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theory and the entropy according to Equation (2.13). Analogously, the combined entropy
of two discrete variables x and y can be defined:

H(x,y) = −
∑
i

∑
j

p(xi, yj)log2(p(xi, yj)), (2.15)

with p(xi, yi) being the probability that x takes on xi while y takes on yi. Note that
x is a vector containing observations of only one variable. The input matrix X for the
modelling has p variables. The ITSS criterion is subsequently applied to all columns xj
of X. For explanatory reasons the index j is left away for now. Using the entropies, an
asymmetric dependency coefficient (ADC) U(y|x) can be defined according to [22].

U(y|x) ≡ H(y) +H(x)−H(y,x)
H(y) (2.16)

The ADC measures how much information about y is stored in x. The maximum,
U(y|x) = 1 means that x fully describes y, while U(y|x) = 0 stands for no information
at all. The ADC can be used as a selection criterion for the training/validation set
splits. In this application it is not used for a single input variable x any more, but
for each column xj of the input matrix X. For each training set the ADC has been
calculated. For every split those variables, that are responsible for an ADC of over 5%
were selected. For example in the following case, variables one, three and four would be
selected for the split s1 and all variables would be selected for the split s2.

Us1(y|X) =


U(y|X1)
U(y|X2)
U(y|X3)
U(y|X4)

 =


0.4
0.01
0.29
0.3

 , Us2(y|X) =


U(y|X1)
U(y|X2)
U(y|X3)
U(y|X4)

 =


0.5
0.06
0.13
0.31


Each variable that is selected in one split occurs one more time. That means, that
the frequency of occurrence F (vj) of each variable vj is monitored. The above example
would therefore have frequencies of F (v2) = 1 and F (v1, v3, v4) = 2. Furthermore, the
mean contribution C(vj) of each variable was calculated as well, using only values of
ADC of over 5%. The importance of each variable is now described as a sort of weight
W (v), which is the product of frequency of occurrence and the mean contribution. Take
the above example again:

F(v) =


2
1
2
2

 , C(v) =


0.45
0.06
0.21
0.305

→W(v) =


0.9
0.06
0.42
0.61


Those variables, who’s weight lays above the average were called important (in the above
example that would be variable one and four, since the average of the weight is 0.49).
For a split to be selected, i.e. for a validation set to be representative of the training
set according to the ITSS criterion, the important variables in the validation set have
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to contribute to 60% of the information content the important variables contribute to
the training set. That way one makes sure, that about the same input variables are
most descriptive of the output variable in both sets. The procedure is summarised in
the following:

1. Calculate U s
j,tr = U(ytr|xj,tr) ∀j and U s

j,val = U(yval|xj,val) ∀j for all splits s.

2. Select only those splits with sum(Us
tr) ∧ sum(Us

val) ≥ 0.7 to ensure that only sets
are used where the input variables are descriptive of the output variable.

3. Count for every set all variables vj with U s(y|xj) ≥ 0.05 to exclude variables with
low information content.

4. For all training sets count the frequency of occurrence Fj,tr = Ftr(vj) of each
variable vj, after having discarded the ones with low information content in 3.

5. Take the average value of all variables that contribute to more than 5%: Ctr =
means

([
U1
tr, . . .Us

tr, . . .UN
tr

]
without all U s

j,tr < 0.05
)

6. Calculate the weights: Wj,tr = Fj,tr · Cj,tr.

7. Define the important variables to be: Vimportant = vj if Wj,tr ≥
(
W̄tr

)
8. Set the contribution c of the important variables to the information content in the

training sets: c = sum
(
Ctr(v∗

j )
)
∀v∗

j ∈ Vimportant

9. Keep all splits s that fulfill the ITSS criterion: sumj∗ (Us
val) ≥ 0.6 · c ∀v∗

j ∈
Vimportant

2.4 Linear Regressions Methods
The principle of multiple linear regression (MLR) is to calculate parameters βββ that fit
the input data in X to the target data y according to a linear model [12]:

y = β0 + β1 ·X1 + ...+ βp ·Xp = Xβββ (2.17)

With βββ = [β0, β1, ..., βp]T . Here β0 is the so called bias and β1 to βp the model parameters
for variable 1 to variable p. The difference between the calculated target variable y∗

and the actual target data y is called the error εεε.

y∗ = y + εεε (2.18)

With equation (2.17) follows equation (2.19).

y∗ = Xβββ + εεε (2.19)

The minimisation of the error has been performed by OLS and PLS regression.
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2.4.1 Ordinary Least Squares Regression
The OLS regression defines an objective function Φ according to equation (2.20), that
is the squared distance of the true output y to the estimated output y∗.

Φ = εεεTεεε (2.20)

The objective function Φ needs to be minimised now with respect to the parameters βββ.
The optimised parameters are then called βββ∗:

βββ∗ = arg minβββ (Φ) (2.21)

One can show that Equation (2.21) can be reformulated to the analytic expression [12]:

βββ∗ =
(
XTX

)−1
XTy (2.22)

Of course, this is provided, that
(
XTX

)
is invertible, i.e. that X has full column rank.

Since zero columns or linearly dependent columns are avoided in the calculations, this
always applies. The OLS regression has been used in the regression of the weights of
the ANN. For time reasons there were no data collected that show its performance in
the modelling of ReCiPe indicators. All the linear modelling was performed in a PLS
regression.

2.4.2 Partial Lest Squares Regression
Before introducing the partial least squares (PLS) regression it is important to quickly
go over the principal component analysis (PCA). Since this methodology part cannot
cover any details further reading is advised (such as: Kim. H. Esbensen et al. “Mul-
tivariate Data Analysis - in practice” [15] and Rosipal, R., and N. Kramer. “Overview
and Recent Advances in Partial Least Squares.”[23] ).

Principal Component Analysis

The purpose of multivariate data analysis is often to find the influence of one variable,
or better its measurement data in column m of the data matrix X. This influence is
related to the covariance Covm,j of m with respect to the other column j. Take a three
dimensional input matrix with the data displayed in Figure 2.4. On the right hand side
in Figure 2.4(a) one can see the data in the three dimensional input space. Figure 2.4(b)
shows how a line is drawn in the direction of the biggest covariance.

The newly created axis PC1 is called the first principal component (PC) . This way
one can reduce the input space to a number of PCs that display the input space with a
satisfactory precision, measured by the covariance covered by the PCs. A big advantage
of this procedure is, that noise, i.e. PCs, that have only very small covariance, can
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(a) (b)

Figure 2.4: Schematic representation of the PCA in a three-dimensional space. The
first PC covers most of the phenomena observed in {x1, x2, x3} as can
be seen in (b)[15].

be excluded. In PCA regression and PLS regression these PCs are treated as input
variables in a (linear) regression. All in all, the PCA decomposes the p dimensional
input space of orthogonal variables into a input space of maximal rank(X) and minimal
one orthogonal PCs. Since the PCs are spanned in the order of descending covariance,
the covariance decreases with every PC, until all phenomena in X are covered, or only
stochastic noise is left. Mathematically the PCA describes X as follows:

X = TPT + E or (2.23)

X =



t1,1
...
ti,1
...
tn,1

 ·
(
p1,1 · · · p1,j · · · p1,p

)
+ . . .+



t1,k
...
ti,k
...
tn,k

 ·
(
pk,1 · · · pk,j · · · pk,p

)
+ . . .+ E,

Where TPT is called the structure and E the noise. The structure consists of the
score matrix T as well as the loadings matrix P. PCA now aims to find a score vector
ti = (ti,1, . . . , ti,m) for every observation xi = (xi,1, . . . , xi,p) with the weight pk =
(pk,1, . . . , pk,p)

ti,k = xi · pk for i = 1, . . . , n , k = 1, . . . ,m, (2.24)

such that t1 inherits the maximum possible variance from X. Since in Equation (2.24)
the loadings pk are dependent on ti,k, PCA is an iterative procedure, for which several
numeric algorithms are available.
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Figure 2.5: Conceptual decomposition of X and y for PLS regression. X is decom-
posed in the loading matrix T and the weights P. The decomposition
of y into U and Q affects the loading weights W, which are used to
calculate T [15].

Partial Least Squares Regression

The above explained PCA aims to find phenomena within the input matrix X. In
multivariate regression however, the influence of each variable xj on the output data y
is of particular interest. Consider the input matrix X and the output vector y, which
can be decomposed according to PCA in their scores and loadings matrices T, P, U
and Q [23]. (Note that this explanation focuses on one dimensional target variables,
but the same applies for multi-dimensional target variables).

X = TPT + E (2.25)
y = UQT + F (2.26)

With the residuals E and F. X and y are not decomposed independently but rather
in a way that the decompositions affect themselves. So is the starting point t1 for the
PCA of X replaced by u1. The weights in P are then calculated, using the “new” start-
ing values of u1 and then called W. Based on the new weights W the scores t1 are
calculated independently and then replace u1. This makes clear that both decomposi-
tions affect each other in the PLS regression. Figure 2.5 shows the structure of the PLS
decomposition. P are the loadings of X and W the loading weights.

As in PCA the loadings P represent the relationship between the scores T and X.
However, the loading weights W represent the relationship between the input data X
and the output data y. The set of loadings Q describe the regression between y and its
scores U. The loadings and loading weights are the key parameters when it comes to
regressing a linear model, such as in Equation (2.17). Equivalent to the OLS regression
an expression for βββ∗ can be derived [15].

βββ∗ = W
(
PTW

)−1
QT (2.27)

Going into detailed explanation of the PLS regression and the underlying mathematics
would be too much at this point. For further reading see: Kim. H. Esbensen et al.
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“Multivariate Data Analysis - in practice” [15] and Rosipal, R., and N. Kramer. “Over-
view and Recent Advances in Partial Least Squares.”[23].

The PLS regression has been performed using the Matlab function “plsregress”[24],
which uses the SIMPLS algorithm [25]. Note that, when a PLS regression is performed,
the model size does not reflect on the number of MDs included in the model, but on
the number of PCs that are calculated in the iterative procedure. Depending on the
covariance of the different MDs with respect to y, the PCs are composed more or less
of the MDs.

2.5 Artificial Neural Networks
Artificial neural networks (ANN) are a fast and efficient way to model non-linear re-
lationships [26]. They are expected to perform outstandingly better than the linear
methods when non-linear processes are modeled, since they inherently are non-linear
networks [27]. ANNs are rooted in the natural neural networks, such as in animal
brains. An input is activated and processed through different nodes, forming differ-
ent layers. Every node is constituted of a transfer function and has interconnections
between the nodes of different layers. The output is then a function of a complex neural
structure that has formed during the training phase. Just as a trained animal brain
needs to deal with new inputs a well trained ANN is expected to perform well in the
validation process. Figure 2.6 shows the basic structure of an ANN.

The boxes are called input layer and store the input to the network. This work uses the
fuzzy input partitioning which is explained below. The circles are the neurons or nodes,
that process the information in the hidden layer with a transfer function for which a
radial basis function (RBF) is used. The hidden layer is connected and weighted to the
output layer. The weights w are calculated by a OLS regression. The creation of an
ANN consists of two steps [27]. First the network size has to be determined, i.e. the
number of hidden layers and the neurons. Second all parameters, associated with the
neurons and the links are regressed, so that the training error is minimised. In this work
the number of hidden nodes is determined by a fuzzy partition of the input space, also
see [27] and [28] and there is only one hidden layer.

Building the Grid

Before an ANN is trained one must span the grid of inactive nodes for the p dimensional
input space. These nodes form the grid, compare Figure 2.6, that will be activated in
the training procedure. For each variable the nodes are equidistantly distributed with
an optimal resolution. That means that for different variables, i.e. different columns of
the grid matrix Cgrid, there is a different number of nodes whose values are normalised
and span between zero and one. Take for instance three variables, that have an optimal
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Figure 2.6: Basic structure of an ANN [27]. The inputs are activated in the input
layer (here a fuzzy partitioning algorithm is used) and then passed to
a hidden layer where the nodes transfer the input. The output layer
is a linear combination of the hidden layer, with the weights w being
calculated by OLS regression.

discrete resolution of 2,4 and 5. Their grid matrix Cgrid will look as follows:

Cgrid =



0 0 0
0.5 0.25 0.2
1 0.5 0.4
0 0.75 0.6
0 1 0.8
0 0 1


Which of these nodes are activated will be decided by the actual input values of the
training set. These will activate nodes according to the fuzzy partitioning of the input
space.
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Fuzzy Partitioning of the Input Space

Fuzzy partitioning is used for systems with great uncertainty. Other than in a discret-
isation procedure, where values of a variable are distributed among discrete bins, a fuzzy
partitioning describes a value with a membership function. That means that a value
can “more or less” belong to a discrete point in space, depending on the value of said
membership function. Take p input variables xj with values j = 1, 2, . . . p and partition
it into cj triangular fuzzy sets A1

j , A
2
j , . . . , A

cj

j . The membership function µA(x) of the
fuzzy set is described as [28]:

µA(x) =

1− |x− a|
δa

, if x ∈ [a− δa, a+ δa]
0, otherwise

, (2.28)

where a is the center element to which the value µA(x) = 1 is assigned and δa the half of
the respective width (compare Figure 2.7). The membership function is calculated for
every observation in the training set and the node with the highest membership function
will be activated by said observation.

Figure 2.7: Display of a fuzzy partition between values of a two dimensional variable
x [28]. On can see that the the selection of the membership function in-
fluences the number of fuzzy sets, that are activated. The dashed circle
indicates the reach of the membership function of the fuzzy partitioning
and the full circle the reach of the membership function if the euclidean
distance had been used.

Figure 2.7 shows two important aspects about the fuzzy input space. Firstly the grid.
Each variable xj spans a grid of cj nodes, in Figure 2.7 that’s two variables, with a
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grid size of 5. The size of the grid is therefore determined by how many nodes each
variable should be partitioned over. After the grid is spanned, the actual n observations
of xj decide over which nodes are activated and how strongly they activate the center
according to the membership function. The dashed circle in Figure 2.7 shows the range
of values a variable must have in order to activate the grid point (a1,3, a2,3). After the
grid and the activated grid points have been calculated the weights between the hidden
and the output layers are regressed by determining the respective width of each activated
node using the P-nearest neighbour statistics.

P-nearest Neighbour Statistics and Weight Regression

The width σl of each hidden node is calculated, so that it covers all input values that
activate it. This procedure allows a smooth fit of the desired outputs [29].

σl =
 1
P

P∑
p=1
‖ x̂l − x̂p ‖2

1/2

(2.29)

Where x̂l is the lth activated center point and x̂p its P-nearest neighbour. That means
that if for variable x the lth center has been activated by the fuzzy partitioning method,
there are P more activated centers left for that variable. After the determination of the
width of the hidden layer nodes σl the weights of each output node i with respect to the
hidden node l can be regressed. The linear function for the estimated output values y∗

i

is described by:

y∗
i =

L∑
l=1

wi,lfl(ν) + β0 (2.30)

With β0 being the bias, wi,l the weight of the output i and the hidden node l and f(ν)
the radial basis function (RBF). In this work the Gaussian function has been chosen, as
suggested by [27]:

f(ν) = exp
(
− ν

σ2
l

)
(2.31)

Here the parameter ν is the euclidean distance from the input value xi to the centers it
activated x̂l,i.

ν2 =
n∑
i=1

(xi − x̂l,i) (2.32)

To regress the weights wi,l the OLS regression is used as in Equation (2.22). The val-
idation happens by using the same activated nodes x̂l and widths σl but calculating ν2

with the observations in the validation set.

There are several key points that need to be understood when dealing with ANNs. The
first one being the training. Based on the resolution of the input variables, a grid of
inactive nodes is built. The input data in the training set will then activate certain grid
points in the multidimensional space. Imagine a four dimensional grid with 10 nodes
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for each variable i.e. 10 intervals (compared to the 28 dimensional input space in this
work this is quite small). Such a multidimensional grip consists of 10,000 nodes. Now
take a training input of 100 observations. The performance of the validation is vastly
influenced by how many nodes will be activated by the training set. Imagine every
observation in the training set will activate a single node. This means that any data
point, that is similar to the training set (e.g. data points in the validation set) would
most likely also activate a new node, since there are 9,900 inactive nodes left. However,
observations in the validation set do not activate new nodes but are given a value for σl
according to Equation (2.29). Chances that the observations in the validation set will
lay far apart from the activated nodes are therefore relatively high. This means that
any point in the validation set has a low distance value from the activated nodes and
will perform badly when it comes to predicting the target variable of the validation set.
The ANN has been over-fitted. It has only learned the training set by heart and was not
able to generalise the input in the training to the validation input and therefore is not
practically applicable. If the 100 observations in the training set activate significantly
less then 100 nodes, the training input has been grouped and generalised. If now the
validation set is representative of the training set, chances are high that the input of the
validation set lays close to the activated nodes, which will result in a good validation
performance. The number of activated nodes is therefore an important characteristic
of the ANN and should be monitored in order to understand the behaviour of the
training and validation. The distance of the grid points affect the number of activated
nodes. This distance is a function of the resolution of the training input. Therefore, the
resolution of the input variables has been an optimisation parameter together with the
weights and the selection of molecular descriptors.

2.6 Mixed Integer Programming
Assume that one wants to build a model that only contains a fixed number of MDs in
order to avoid over-fitting as explained in section 1.4.2 or to find the most important
MDs according to their contribution to the output. This process is called mixed integer
programming (MIP) . It can be displaced easily by using the example of a linear model:

y∗ = β0 + z1 · β1x1 + . . .+ zp · βpxp s.t. zmin ≤
p∑
i

zi ≤ zmax zi ∈ {0, 1}, (2.33)

where zi to zp are decision variables, taking on discrete values between zero and one,
ergo they decide whether a MD is included in the model or not. The overall amount
of MDs in the model is restricted by zmax and zmin. Note that for the PLS regression
zi does not correspond to a selected MD but to a principal component PC. For the
implementation of MIP the genetic algorithm (GA) in Matlab has been used. The
exact functionality is explained in the MathWorks R© documentation [30]. The GA has
been used to do the parameter selection as well as fit the optimal parameters βββ∗ at the
same time and find the optimal resolution for the ANN regression.
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3 Results and Discussion
In the following the results for the modelling are presented. There will be a comparison
between the PLS and the ANN regression, an analysis of the different indicators as well
as a comparison between the results of Wernet et al. Furthermore, they will be an
assessment of the most important molecular descriptors as well as the ANN structure.

3.1 Comparing PLS and ANN Regression
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Figure 3.1: Screening of only 10 splits over the whole model dimension in steps of 5
MDs for the total ReCiPe score. One can see that the error behaves as
expected for such a case, with a decreasing training error (over-fitting)
and a minimum validation error at the ideal model size. (a) shows the
model behaviour for the ANN regression, (b) for the PLS regression.

Before rigorous training, a first, more shallow screening has been performed for two
reasons. The first one being selecting the ideal regression method, i.e. analysing which
method is most promising for a deeper look. Second, the screening aimed to determ-
ine the ideal model size for further analysis. The model size has been increased from
MD = 3, 8, . . . , 28. These data have been used to find the area of best validation per-
formance for each indicator separately and to look in said area more deeply. In Figure
3.1 the validation and training performance over the number of MDs is shown for the
total ReCiPe score. One can see nicely, that the training and validation error behave
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Figure 3.2: A comparison between the performance of the best CDs for a screening
using the ANN ans PLS regression. The CDs are the best of the median
of ten splits in a screening through MD = 3, 8, ..., 28, the errorbars
indicate the 25% best and worst values. The ANNs perform significantly
better, with CDs vastly over the level of significance for α = 0.05.

as expected, see section 1.4.2. The training error decreases with increasing model size,
while the validation error goes through a minimum. Figure 3.1(a) shows the ANN per-
formance and Figure 3.1(b) the PLS performance. Figure 3.1 is an example to see the
model behaviour over increasing model size. A summary of this screening is given in
Figure 3.2. The median of the 10 splits has been taken and the maximum CD is plot-
ted in Figure 3.2. The error bars are 25% upper and 25% lower bound respectively.
As mentioned in section 2.5, ANNs are expected to perform better than linear models,
which is confirmed by the data in Figure 3.2. The CD for the ANN is not only higher
but also in most cases above the level of significance, other than the CD for the PLS
regression.

Because the ANN models perform significantly better, they have been investigated more
thoroughly. In the wider area around the minimum validation error the reduced model
has been calculated for 30 different training/validation splits over a range of MDs, that
lay around the minimum validation error. Figure 3.3 shows the validation performance
(blue bars) as well as the maximum training CD (red squares). The bars have been
grouped by decreasing validation error for the endpoint indicators R, HH, EQ (dark
blue). The midpoint indicators (lighter blue) are put in groups that form the basis
for the calculation of the endpoint indicators. Note that since the GWP100 influences
the human health as well as the ecosystem quality, it appears twice in Figure 3.3. Be-
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cause the water depletion as well as the marine eutrophication don’t influence any of
the endpoint indicators, they’re grouped together at the end of the plot. To put the
endpoint indicators and their respective midpoint indicators face-to-face as in Figure
3.3 is interesting from a practical point of view, regardless whether the results are good
or not. Imagine someone wants to model the total ReCiPe score but doesn’t succeed. If
it was possible to model the other endpoint indicators, R, HH, EQ, one could compose
a total ReCiPe score out of these other endpoint indicators according to the weighting
approaches of the ReCiPe method. Similar thinking is applied below, when the results
of Wernet et al. and the results of this work are put in contrast.

The optimisation of the parameters as well as the ideal model size has been performed
by minimising the validation error. Originally it was intended to minimise the training
error, however this procedure was unsuccessful. The major drawback is now that it
is more likely that the training performance is worse than the validation performance.
Obviously, when a model performs better in the validation than in the training it does
not behave according to the expected performance as discussed in section 1.4.2 . It is
hard to imagine that one would trust a model which cannot be trained well but can be
validated well. If this happens a good or better validation performance seems somewhat
coincidental since the model is predictive but not descriptive.

Figure 3.3 shows that the resource indicator (R) performs well in the validation (CDval =
0.53), however has a particularly large error bar as well as a very bad training per-
formance. Human health (HH) as well as the total (T) score performs satisfactorily
(CDval = 0.52 and CDval = 0.44) concerning the validation performance and also good
when comparing the validation with the training performance. The ecosystem quality
(EQ) indicator is below the significance level (CDval = 0.36). Among the midpoint
indicators of the HH indicator the ODPinf, HTPinf, PMFP and IRP_ HE perform well
(CDval = 0.54, 0.52, 0.47 and 0.46). The GWP100 has a good validation performance
but is trained badly. For the EQ indicator only the TAP100 midpoint indicator has a
good performance (CDval = 0.47). The others are either performing badly in the valida-
tion or the training. The two singled out midpoint indicators, MEP and WDP, as well as
the midpoint indicators of the R endpoint indicator, MDP and FDP, don’t perform well.

The resource indicator has a quite peculiar behaviour. When one looks at the MDs
used in this work, compare Table 2.1, one would not expect a good performance when
it comes to resource depletion. There are no MDs concerning metals or minerals such
as iron or copper which is why a correlation between the MDs and the metal depletion
(MDP) indicator would be unexpected. It seems convenient to apply similar thinking
to the fossil depletion (FDP) indicator: Even though organic chemicals are often de-
rived from fossil fuels, the amount of carbon, the molecular weight etc. does not give a
insight of how much comes from fossil fuels and how much from biological feed stock.
However, the fact, that the vast majority of molecules is derived from fossil feed stock
de-validates that point. But, the amount of carbon stored in the molecule could be
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Figure 3.3: The models have been validated in the area of ideal model size for 30
splits. The median CD of these 30 splits have been taken for all model
sizes and the maximum value, at ideal model size, is displayed in the
blue bars. The CDEnd,val is in a darker blue and the CDMid,val in
a lighter blue. The bars have been grouped to have an overview on
how the endpoint indicators are composed. The red squares are the
training performance at the same model size as the optimum validation
performance. The error bars are 25% upper and lower bound. The
dashed line shows the level of significance. For the endpoint indicators
the HH and T indicators perform satisfactorily. The best and worst
10% have been left out in the calculation of the median to avoid extreme
values.

small compared to the amount of carbon used in the production process which could
disguise the relationship between the MDs and the FDP indicator. Still the model has
succeeded to predict the data of the validation set. The low causality between the
MDs in the resource depletion indicator confirms that even though the validation error
is low the training error is much worse. Even though the R indicator could not be
modeled well, it shows nicely, that R is composed of MDP and FTP. All three seem to
have similar validation and training performance. It is unfortunate, that MDP and FDP
don’t perform better, since R could be calculated from reliable results of MDP and FDP.

The human health (HH) indicator shows a good validation and training performance.
The respective midpoint indicators appear to lay on average around on the same level as
the HH indicator. However, some of them have much larger error bars, and the GWP100
performs significantly worse in the training set than in the validation set. This shows
one major advantage of the ReCiPe method, which is a midpoint as well as an endpoint
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oriented method. Predicting the endpoint scores may not be dependent on predicting
well each one of the respective midpoint scores. A future modelling approach could try
to improve the performance of the GWP100 and try to fuse the results of the midpoint
indicators to return values for the HH indicator. It would be interesting to see, whether
the directly modelled HH indicator performs better or worse, than the one that has been
calculated from its midpoint indicators.

For the ecosystem quality (EQ) indicator a trend is observable as well. EQ behaves
similarly to an average of its midpoint indicators. A successful modelling of the EQ
indicator in this case is however not possible, because most of the midpoint indicators
perform badly. If they performed well, the results for the midpoint indicator’s prediction
could be summed up to yield a reasonable EQ indicator.

The total indicator behaves as expected with a performance that lies between the other
three endpoint indicators. This is a good sign because the total indicator can still per-
form well even though the resource and ecosystem quantity indicator perform badly.
Again if the other three and point indicators performed good enough and the total in-
dicator not, the R, HH and EQ could be summed up to result in the total indicator.

Figure 3.4 shows the coefficient of determination for the HH and T indicator over a
model size of MD = 7 to 18. The best validation performance for HH is reached at
MD = 15 and for the T indicator MD = 13. Consequently, this is the model size which
will be referred to in the following as ideal model size and which will be used for the
further analysis.
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Figure 3.4: Coefficient of determination over a range of model sizes betweenMD =
7 to MD = 18. The ideal size of HH (a) is MD = 15 and for T (b)
MD = 13.

33



CHAPTER 3. RESULTS AND DISCUSSION

3.2 Model Structure and Stability
The reliability of a model can be assessed through different means. One of them being
looking for MDs that were included in the model with increasing model size and then
analysing whether these MDs have been kept or discarded with increased model size. If
a MD is included and then kept that is an indicator that it has a significant influence on
the model output and that said influence is not coincidental. If a MD is included and
in the next bigger model, i.e. a model grown by one dimension, is again discarded, then
its addition in the previous steps seems somewhat arbitrary. A MD can be discarded
for two reasons. First, there could be MDs that have a similar contribution to the
output which would mean that several MDs are exchangeable. An example would be
the number of atoms and the molecular weight, which are both size related MDs and
will therefore have a similar contribution. The other reason could be that there is only
an apparent contribution of this particular MD and it is just randomly included to
be able to fit the model. However, an increase in validation performance would be a
contradiction to this point. An increase in validation performance is always an indicator
that a MD has an actual contribution to the output and has not only been included to
for the purpose of over-fitting. Additionally, some MDs might contribute only a little
to the output. Then the MDs with high contribution would be included in the model
and then some with lower contribution. The selection of the lower contributing MDs
may well depend on the split or noise which is why they may differ from split to split.
Consider the total ReCiPe score. Figure 3.5(a) shows a map that colours the frequency
of occurrence for every MD in different green shades from light to dark. When a MD
is selected the respective rectangle is coloured green. Therefore, for a model size of
seven, the ideal case would be that the same seven MDs are selected throughout the
whole set of 30 splits. Stability of the model can be assessed by analysing how close
one gets to that and how often MDs are discarded after being selected. In Figure 3.5(a)
this means that when one row, that is one MD, is coloured green, i.e. selected in the
reduced model, its colour shade should ideally become darker and darker from left to
right. Note that this is an average and is not giving insight in the different splits. One
can see that the colour is trending to become darker from left to right. However, there
are many spots where for a bigger model less of the same MD selected, i.e. where the
colour shade becomes lighter when going further to the right. This is an indicator, that
MDs are discarded again after being selected and shows that the model stability is not
ideal. A more detailed and quantitative overview is given in Figure 3.5(b) again for the
total ReCiPe indicator. One can see how many of the included MDs are kept while the
model increases from a model dimension of MD = 7 to 18. If the model size increases
from MD = 7 to 8, there is a maximum of 7 MDs that can be kept for each split. The
ratio of kept MDs on the y-axis in Figure 3.5(b) shows the average ratio over 30 splits
of the amount of kept MDs (R) with respect to the model size, before it was increased:

R = #MDs kept

Model Size− 1 (3.1)
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Figure 3.5: This figure shows trends in keeping or discarding MDs after they have
been included in the model for the total ReCiPe indicator. With every
increasing step, the MDs are newly selected. A perfectly stable model
would always select the same MDs as before, while including one new
MD. (a) shows the colour map over increasing model size MD. (b)
shows an average percentage over 30 splits of how many MDs are kept
in the next bigger model. The error bars are one standard deviation.

Figure 3.5(a) shows that there is a general trend to keep MDs which have been selected.
But in Figure 3.5(b) it is clearly visible, that the amount of MDs kept is on average
lower than the ideal case (100%) which shows that it is not safe to say that MDs are
generally kept after being selected. That means, that even though there may be general
preferences for MDs through the 30 splits, a single model will not generally value MDs
higher than others. So, even though the total ReCiPe score has a good performance the
future focus should be on increasing the stability in the MD selection process.

Another key indicator to understand the behaviour of an ANN model is the number of
activated grid points. As discussed in section 2.5 an ANN spans a grid of center points,
which are activated by the training input. If the validation set is similar to the training
set concerning the input and output data, the validation input data will be close (see
membership function in Equation 2.28) to the centers that have been activated by the
training set. If a model is over-fitted, i.e. it has a good training and a bad validation
performance, there will be many activated centers, close to the number of observations
in the training set. Subsequently, the training set has been learned by heart and no
general or predictive model has been built. Table 3.1 shows the mean activated grid
size as well as the standard deviation for the endpoint indicators. Since the training
set has 141 observations, the maximum grid size would be 141 (total over fitting). In-
terestingly, the mean grid size as well as the standard deviation is very close for all
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endpoint indicators. Also, the mean grid size is quite small, compared to the maximum
grid size of 141. Definitely there is no over fitting happening, as one can also see in the
training CD in Figure 3.3. This is due to the fact that not the training error but the
validation error has been optimised. The mean grid sizes are so similar and do not show
any correlation with the model behaviour in Figure 3.3 so that the different behaviour
of the different endpoint indicators cannot be explained by the size of the activated grid.

Table 3.1: The mean number of activated grid points for the four endpoint indicat-
ors ecosystem quality (EQ), human health (HH), resource depletion (R)
and total score (T). Maximum grid size: 141.

EQ HH R T
mean grid size 24 28 26 25
standard deviation 5.28 4.93 4.12 4.8

One observation that indicates a rather stable behaviour of the model for the total
ReCiPe score is the reproducibility of the results as well as the relatively small error
bar. If one performs the calculations for the same 30 splits again, the model performance
with always lie in the same area as in Figure 3.3. That has been successfully tested. As
mentioned above the optimal validation performance has been searched in a wide valley
of maximum MDs, i.e. maximum model size. The distribution of the training and the
validation CD in this valley over 30 splits for the total ReCiPe score is plotted in Figure
3.6. The training CD tends to have more occurrences in the higher values as well as a
higher mean CD, indicated by the bold vertical line. The dashed lines are one standard
deviation. The training performance is on average better and also has a similar standard
deviation. Still for both training and validation set the standard deviation is not large,
which makes the model seem more reliable.
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(a) (b)

Figure 3.6: The CD for the training (a) and validation (b) set for 30 splits and
modeled sizes of MD = 7, . . . , 18 for the total ReCiPe score. Bold line:
CD, dashed line: CD ± s

3.3 Analysis of the MDs
One very important aspect about the modelling is to investigate which MDs contribute
most to the information stored in the input about the output. As such it is very import-
ant to be aware of the descriptors that are selected for the reduced model, i.e. the model
with the lowest validation error. As displayed in Figure 3.4 the optimal model size lays
atMD = 15 and 13 for the human health and total indicator. For these reduced models,
the frequency of occurence of the MDs has been counted over the 30 splits and ranked.
Figure 3.7(a) shows the frequency of occurrences for the HH indicator and Figure 3.7(b)
for the T indicator.

When looking at Figure 3.10, there is a descent in the frequency of occurrences over
the different MDs, that leads to the conclusion, that some MDs are more important
than others. For the HH and T indicator the oxygen in carbonyl groups is the most
frequently used MD. It is hard to say whether this influence is based on the oxida-
tion process (Hydro formulation or others) or based on the alternated structure of the
molecule concerning sterical and polarisability issues. It seems unrealistic, that the Ow-
Carb ranks so high due to its production process, because carbonyls can be a feedstock
for the production of carboxylic acids groups, which rank for both indicators among the
lowest. If the production was responsible for the high contribution, the COOH would
be expected to occur more often. For both indicators Nitrogen occurres the second
most often as well. Nitrogen can be introduced in the model over different functional
groups, such as amines, amides and nitro groups. Interestingly, the nitro groups rank
low for both indicators. Also the amines and amides don’t occur particularly often. If a
reactant, catalysts, or energy in the production of amines, amides or nitro compounds
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Figure 3.7: Frequency of occurrences for the MDs of the HH and T indicator.

were causing this high occurrence of the nitrogen MD, any of them would be expected to
rank higher than the others. Additionally, there is a vast spectrum of production paths
to synthesise any sort of nitrogen groups. Another explanation could be the sterical and
polarizability behaviour of nitrogen. This however is regarded in the acceptor for hydro-
gen atoms (AcceptorH) as well as the polarisability and Van-der-Waals Volume which
rank medium or low. Consequently, it is hard to find a causality between the indicator
and the nitrogen MD even though there is a clear correlation. The molecular weight
ranks fourth or third respectively. The heavier the molecule gets the more synthesis
steps are needed in its production path and the more energy is needed to thermally
treat such a molecule. Because in most chemical processes a thermal separation is part
of the process the molecular weight is expected to have a high influence on energy-related
indicators, which influence both the HH and the T indicator. The fact that the molecu-
lar weight ranks high makes it seem logical, that bigger molecules yield bigger scores for
the HH and T indicator. Contradictive to this however is, that the VdW-V MD as well
as the number of atoms don’t appear as frequently for both indicators. Summarising,
there is neither a clear tendency towards size related MDs nor to polarisability related
MDs. This makes it seem more logical, that MDs related to specific molecules such as
the amount of nitrogen atoms, the amount of oxygen atoms and carbonyl groups, or
also the amount of ether groups contribute so much based on their production process
rather than the way they shape or polarise the molecule. Additionally, when considering
section 3.2 the selection of important MDs doesn’t seem very reliable. It has been found
that the MDs tend to be exchanged with other MDs when the model size is increased
and therefore MDs that seem selected frequently in Figure 3.10 could be replaced when
the model size is increased. This would mean that they only seem to be important. If
the frequency of occurrence of the MDs is analysed over a whole range of model sizes, the
ones that occur frequently have a higher credibility, since they have not been discarded
that often. Of course this range of model sizes should also be a range of good validation
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performance. Figure 3.8 shows the frequency of occurrence of the MDs over a range of
model sizes of MD = 7 to 18. This range is the range that has been determined as area
of maximum validation performance and therefore any MDs selected frequently in this
area appear to be important.
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Figure 3.8: Frequency of occurrences for the MDs of HH and T for MD = 7 to 18.
Other than in Figure 3.10 the distinction between the N and OwCarb
in (a) and the OwCarb in (b) MDs is sharper now.

The frequency of occurrence is now less steep which has of course to do with the re-
placement of MDs when the model size is increased. However, for the HH indicator
the MDs N and OwCarb separate themselves more clearly from the others. The same
applies for the OwCarb MD for the T indicator. This leads to the conclusion that these
MDs actually are highly important. The ones that are selected less frequently now will
have experienced exchange with other while the model size grew. Ergo, they are less
important.

Despite the conclusions drawn before, it is hard to derive a clear tendency about which
MDs are most important and why. Another insight in the the importance of MDs is
given by the ADC, as mentioned in section 2.3. The ADC gives the information content
of one variable stored in one variable with respect to an output variable. It depends on
the resolution of the discrete variables. To see how the ADC selects the most important
MDs compared to the neural network, the optimised resolution from the neural network
has been averaged and rounded to the nearest integer. The MD selection according to
the ADC can be seen in Figure 3.9. There are two interesting observations. The first
one is that size and polarisability related MDs contribute the most to the target variable
(polarizability, molecular weight, donor hydrogen in Figure 3.9(a) and Van-der-Waal’s
volume, donor hydrogen and molecular weight in Figure 3.9(b)). Second, again the ni-
trogen and oxygen in carbonyl groups has been selected for the HH indicator and also
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the oxygen in carbonyl again for the T indicator. The OwCarb MD has appeared in all
three figures now: The analysis of the most frequently selected MDs for the ideal model
size and the area of the ideal model size, as well as the analysis of the most important
MDs according to the ADC. The same applies for the number of nitrogen atoms (here
only for the HH indicator, because the N MD has not been selected for the ADC of
the T indicator). The importance of OwCarb and N can therefore not be ignored and
would be a most interesting part of future investigation and modelling. The tendency
of the ADC to include mass and size related MDs is only confirmed for the MW, which
is selected frequently. The fact, that it doesn’t appear as frequent as the OwCarb and
N MD could be explained that it is replaced with other, similar MDs (such as the num-
ber of atoms or the average molecular weight). It is definitely a factor when it comes
to modelling ReCiPe indicators and should always be considered in future applications.
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Figure 3.9: The ADC determines, which input variables contribute how much to
the target variable in terms of entropy.

When looking at the results for the validation and training performance in Figure 3.3,
it could be explained to some extend, why several indicators behave better than others.
The analysis of the MDs gives another opportunity to approach an explanation. One
of the best performing midpoint indicators was the ODPinf, which describes the ozone
depletion. Figure 3.10(a) shows that the average molecular weight is distinctly more
frequently selected than other MDs. A reasonable question would be, if such a distinction
applies mostly to well predicted indicators. I.e: when MDs are clearly selected, can
the indicator be modelled well? This is contradicted by Figure 3.10(b). It shows the
frequency of occurrence for the MEP indicator, which performed very badly in terms
of training and validation. Still there is a clear tendency to include the MDs: HR, N,
Est/Ad and Rings in the model. Subsequently, if the selection of MDs is distinct (such
as in Figure 3.10), it doesn’t automatically mean, that the respective indicators have
been predicted well or vice versa. Accordingly, there must be another reason, why some

40



CHAPTER 3. RESULTS AND DISCUSSION

indicators performed better than others. A detailed analysis could be performed by
regarding the rigorous calculation methods that the ReCiPe indicators are based on.
Maybe keeping these mechanisms in mind while performing the black box modelling
will help future works to find a reasonable explanation for the different validation and
training performances.
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Figure 3.10: Frequency of occurrences for the MDs of ODPinf and MEP. There is
a distinctly higher selection of some MDs for both indicators, even
though ODPinf performs well and MEP badly.

3.4 Comparing EI99 with ReCiPe
For a practical application, modelling the ReCiPe score directly might not be the ideal
way to go. Since Wernet et al. have already successfully modelled the EI99 indicator, it
could be more convenient to make use of his model, which has already been established.
In order to do that it is possible to predict the EI99 indicator, and then correlate it with
the ReCiPe indicator. Using the finechem tool, a set of 627 molecules has been used to
build a correlation between the EI99 and the ReCiPe indicator. It was possible to use
this bigger set because here there was no local restriction. That means that data from all
over the world has been used and not just data from Europe. Figure 3.11 shows that the
EI99 and ReCiPe indicator correlate very nicely for this set of chemicals. The function
for the linear correlation is given in Equation (3.2). The coefficient of determination for
this correlation is 0.92.

tReCiPe = 1.2862 · tEI99 + 0.0285 (3.2)

After this correlation has been established, the finechem tool has been used to predict
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Figure 3.11: Correlation between the total score of the EI99 and ReCiPe indicator,
with help from Dr. Sara Badr. Apparently, the two indicators correl-
ate very well and a predictive model or the EI99 indicator could also
be predictive for the ReCiPe indicator.

Table 3.2: Comparison of Wernet et al.’s results for the EI99 indicator [1] and the
results for this work for the ReCiPe indicator. As the EQ and R indicat-
ors did not perform well, they are left out. Wernet’s results are based on
the the average of a LOOCV and the results of this work on the median
of a validation, using a validation set.

Total Human Health
C̄DLOOCV (EI99) 0.46 0.55
ĈD (ReCiPe) 0.44 0.52

the EI99 indicator. These predictions have been plugged in the above correlation to
predict the ReCiPe indicator. Even though the finechem tool is based on Wernet et
al.’s successful work, the data used in this work could only predict the EI99 with a per-
formance of CD = 0.0593. Using the predicted EI99 scores yields a CD for the ReCiPe
prediction of 0.0697. In this case directly modelling the ReCiPe indicator is therefore a
much better idea since it has been done successfully with CD = 0.44.

These results show that the used data set can significantly influence the model perform-
ance. Assuming that the above data set could be well predicted by the model of Wernet
et al., what would yield better results: modelling the ReCiPe indicator directly or cor-
relating it with the EI99 indicator predicted by Wernet et al.? In order to assess this
question the two results can be compared. Still, there remains one hurdle. Wernet et
al.’s results are based on a leave one out cross validation (LOOCV) [1]. This procedure
tends to return better results. In order to have comparable data a LOOCV has been
performed using the models that have been optimised above. In order to do that, a
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fixed resolution of the variables has been selected, that is the average of the resolution
of the 30 splits. However, this did not yield good performances for the validation or
training. Next, the number of sets has become a optimisation parameter again, this time
for the LOOCV. It has been tried to optimise for the training error (as it is the default
procedure) as well as the validation error. As before, the optimisation for the training
error did not result in anything near a good validation performance. Optimising the
validation error yielded training performances that were again worse than the validation
performances throughout the whole set of indicators. Consequently it is not possible to
compare Wernet et al.’s results with these results quantitatively. Table 3.2 shows the
results for Wernet et al.’s LOOCV C̄DLOOCV and the median of the validation perform-
ances ĈD for the HH and T indicator. Even though the methods are different, the two
results seem similar. Remember, that the LOOCV tends to have better results for the
validation. As a conclusion, it has been successful to model the total and the human
health indicator for the ReCiPe method directly. The results are in a comparable range
to Wernet et al.’s results and therefore it is unlikely, that correlating the EI99 prediction
with the ReCiPe will not render a better validation performance than predicting the
ReCiPe indicator directly.
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4 Conclusion and Outlook
This work was aiming to investigate the behaviour of linear and nonlinear models. Using
a data set of 189 observations and 28 molecular descriptors it has been found that non-
linear artificial neural networks perform significantly better than linear models whose
parameters have been regressed using PLS regression. Particularly the human health
and total ReCiPe score where modelled keeping a good coefficient of determination for
the validation set as well as for the training set. The optimisation has been done with
regard to the validation error which has the advantage of yielding a good validation
performance. However, it has been found that it may happen that the training perform-
ance is worse in this procedure which makes the model impractical. It would be more
straightforward to train the model by optimising the training error but this resulted
in largely over fitted models that had no predictive power. For any future modelling
it is interesting to know that optimising the validation error can yield good predictive
performance but may result in useless models with a training error that is worse than
the validation error. Consequently, even though it seems convenient to optimise the
validation error the default should stay in optimisation with respect to the training
error. Maybe in the future it will still be possible to avoid extreme over fitting as it
has happened here and end up with models that have a coefficient of determination for
the training set which is strictly better than for the validation set. The artificial neural
networks have been trained by optimising the weights between the hidden and output
layer. It has been tried to keep the resolution of the discrete input variables constant
at the optimal resolution with respect to the entropy. However, similar as above this
did not result in good models. As a result, the resolution has become a part of the op-
timisation. Even though this resulted in a better performance, it means that for every
training validation split a different resolution will be selected. Meaning that there is no
clear rule for setting the resolution but rather an empirical mean out of the 30 optim-
ised resolution sets. Also here it is good to know that this approach has worked, but it
would be more convenient to have an ANN regression done under constant resolution.
Furthermore, this resulted in problems when a LOOCV has been performed. Also here
the resolution had to be an optimisation parameter. For future works finding a fixed
resolution could be a major task. It would make things easier because otherwise for
every split there needs to be an optimisation with respect to the resolution which poses
a contradiction to the objective of a general model.

Analysing the molecular descriptors it has been found that nitrogen, oxygen in carbonyl
groups, and the molecular weight have a high influence. It is hard to say why nitrogen
and oxygen in carbonyl groups have such influence while other atoms don’t. However,
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the selection of the molecular weight and also the fact that the ADC mainly selects size,
mass and polarisability MDs, shows that these MDs do have a tendency to contribute
a lot. For any future modelling they should definitely be included in a screening for op-
timal molecular descriptors. Generally the screening for optimal molecular descriptors
has been challenged by the fact that many of them have been exchanged with other MDs
when the model size has been changed. This makes it questionable if the MDs that seem
important actually do contribute as much as it seems. Still, the above mentioned MDs
have been big players in all three screenings that have been performed (The frequency
of occurrence for the ideal model size, the frequency of occurrence for a range of model
sizes of good validation performance and the ADC). The identification of important
MDs would however be more reliable, if it was a possible to build models, that are more
stable, when it comes to keeping MDs when the model size is increased. Together with
a constant resolution, this stability could be a major scope for approaches that follow
this work.

It has been a big success, that the total ReCiPe indicator could be predicted with a
performance CD = 0.44, that is comparable to the performance of the prediction of the
EI99 indicator CD = 0.46. The ReCiPe is a more up to data indicator and could be
more prevalent for decision makers and legislation. It could be shown that it is better to
predict the ReCiPe indicator directly, rather than through a correlation with the EI99
indicator. Still, it remains questionable if the predictive performance is good enough for
a model that can be used in practise.

Concluding, two of the major goals of this work have been reached. Firstly, it has
been found that it is possible to predict the total ReCiPe score with a satisfactory
performance using artificial neural networks. Second, the structure of the ANNs as well
as the selected molecular descriptors could be analysed. It was possible to find MDs
that are most likely relevant and most important, structural weaknesses and room for
improvement has been assessed.
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Table 5.1: List of the chemicals used as well as their molecular descriptors taken
from the finechem tool [2] as well as the mole DB database [13]

Chemical Name Molecular Descriptors

MW N X R C HR FG OwC Ow/oC O OH COOH Am/Ad NO Cl Eth Est/AdCy CO DB OF DH AH VdW A MW E- Pol

’glyphosate’ 169 1 0 0 0 0 6 0 5 5 0 1 1 0 0 0 0 0 0 0 4 4 6 9.83 18 9.39 1.93 1.10
’chloronitrobenzene’ 157 1 1 1 0 0 2 0 2 2 0 0 0 1 1 0 0 0 0 0 0 0 2 9.61 13 1.21 1.39 9.92
’benzyl chloride’ 126 0 1 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 9.78 14 9.00 1.39 1.05
’benzal chloride’ 161 0 2 1 1 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1.08 15 1.07 1.52 1.18
’dimethyl sulfox-
ide’

78 0 0 0 0 0 2 0 1 1 0 0 0 0 0 0 0 0 0 0 2 0 1 5.39 10 7.80 1.01 6.39

’ethylene glycol
diethyl ether’

118 0 0 0 0 0 2 2 0 2 0 0 0 0 0 2 0 0 0 0 0 0 2 1.12 22 5.36 2.18 1.22

’trichloropropane’ 147 0 3 0 0 0 3 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 7.47 11 1.34 1.15 8.65
’2,4-
dichlorotoluene’

161 0 2 1 1 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1.08 15 1.07 1.52 1.18

’o-
dichlorobenzene’

147 0 2 1 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 9.18 12 1.23 1.23 1.00

’p-
dichlorobenzene’

147 0 2 1 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 9.18 12 1.23 1.23 1.00

’ethylene glycol
dimethyl ether’

90 0 0 0 0 0 2 2 0 2 0 0 0 0 0 2 0 0 0 0 0 0 2 8.02 16 5.63 1.61 8.72

’melamine’ 126 6 0 1 0 3 3 0 0 0 0 0 3 0 0 0 0 0 0 0 0 6 6 8.97 15 8.40 1.56 9.03
’butane-1,4-diol’ 90 0 0 0 0 0 2 0 2 2 2 0 0 0 0 0 0 0 0 0 0 2 2 8.02 16 5.63 1.61 8.72
’dioxane’ 88 0 0 1 0 2 2 2 0 2 0 0 0 0 0 2 0 0 0 0 0 0 2 7.42 14 6.29 1.42 7.95
’ethylene brom-
ide’

108 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 4.58 7 1.54 6.94 5.26

’1-butanol’ 74 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 7.50 15 4.93 1.47 8.26
’o-chlorotoluene’ 126 0 1 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 9.78 14 9.00 1.39 1.05
’diethyl ether,
without water, in
99.95% solution
state’

74 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 7.50 15 4.93 1.47 8.26

’imidazole’ 68 2 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 5.59 9 7.56 9.09 5.77
’phthalimide’ 147 1 0 2 2 1 5 0 2 2 0 0 2 0 0 0 2 0 0 0 0 1 3 1.12 16 9.19 1.65 1.14
’pyrazole’ 68 2 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 5.59 9 7.56 9.09 5.77
’methylene di-
phenyl diisocy-
anate’

250 2 0 2 2 0 2 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 4 2.04 29 8.62 2.94 2.10

’N-methyl-2-
pyrrolidone’

99 1 0 1 0 1 2 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 2 8.90 16 6.19 1.60 9.51

’alpha-naphthol’ 144 0 0 2 2 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1.29 19 7.58 1.89 1.35
’1-pentanol’ 88 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 9.10 18 4.89 1.76 1.00
’propyl amine’ 59 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 1 6.39 13 4.54 1.26 7.06
’1-propanol’ 60 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 5.90 12 5.00 1.19 6.50
’4-tert-
butyltoluene’

148 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.58 27 5.48 2.61 1.71

’captan’ 300 1 3 2 2 1 11 0 2 2 0 0 2 0 3 0 2 0 0 2 1 0 3 1.69 23 1.30 2.43 1.86
’triethylene
glycol’

150 0 0 0 0 0 4 2 2 4 2 0 0 0 0 2 0 0 0 0 0 2 4 1.22 24 6.25 2.45 1.31

’epichlorohydrin’ 92 0 1 1 0 1 2 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 5.70 9 1.02 9.35 6.23
’o-nitrophenol’ 139 1 0 1 0 0 2 0 3 3 1 0 0 1 0 0 0 0 0 0 0 1 3 9.73 15 9.27 1.59 9.88
’2,4-
dichlorophenol’

163 0 2 1 0 0 3 0 1 1 1 0 0 0 2 0 0 0 0 0 0 1 1 9.69 13 1.25 1.36 1.05

’toluene diisocy-
anate’

174 2 0 1 1 0 2 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 4 1.32 19 9.16 1.96 1.34

’maleic anhyd-
ride’

98 0 0 1 0 1 3 0 3 3 0 0 0 0 0 0 0 0 0 2 0 0 3 6.14 9 1.09 9.89 6.12

’anthranilic acid’ 137 1 0 1 1 0 2 0 2 2 0 1 1 0 0 0 0 0 0 0 0 3 3 1.08 17 8.06 1.74 1.12
’monoethanolamine’ 61 1 0 0 0 0 2 0 1 1 1 0 1 0 0 0 0 0 0 0 0 3 2 5.30 11 5.55 1.11 5.74
’o-aminophenol’ 109 1 0 1 0 0 2 0 1 1 1 0 1 0 0 0 0 0 0 0 0 3 2 9.30 15 7.27 1.51 9.74
’phthalic anhyd-
ride’

148 0 0 2 2 1 1 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 3 1.07 15 9.87 1.58 1.09

’2-butanol’ 74 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 7.50 15 4.93 1.47 8.26
’o-
chlorobenzaldehyde’

140 0 1 1 1 0 2 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 9.70 13 1.08 1.34 1.02

’p-chlorophenol’ 128 0 1 1 0 0 2 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 1 8.70 12 1.07 1.24 9.23
’chloropropionic
acid’

108 0 1 0 0 0 2 0 2 2 0 1 0 0 1 0 0 0 0 0 0 1 2 6.21 10 1.08 1.07 6.68

’2-cyclopentone’ 82 0 0 1 0 0 3 1 0 1 0 0 0 0 0 0 0 0 0 2 0 0 1 7.31 12 6.83 1.20 7.74
’acetone cyano-
hydrin’

85 1 0 0 1 0 2 0 1 1 1 0 0 0 0 0 0 1 0 0 0 1 2 7.30 13 6.54 1.31 7.74

’2-methyl-1-
butanol’

88 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 9.10 18 4.89 1.76 1.00

’isobutanol’ 74 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 7.50 15 4.93 1.47 8.26
’2-methyl-2-
butanol’

88 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 9.10 18 4.89 1.76 1.00

’methacrylic acid’ 86 0 0 0 1 0 3 0 2 2 0 1 0 0 0 0 0 0 0 2 0 1 2 6.82 12 7.17 1.23 7.19
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’isohexane’ 86 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.02 20 4.30 1.92 1.13
’alpha-picoline’ 93 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 8.79 14 6.64 1.38 9.29
’naphthalene sulf-
onic acid’

208 0 0 2 2 0 1 0 3 3 0 0 0 0 0 0 0 0 0 0 0 1 3 1.50 22 9.45 2.26 1.61

’isopropylamine’ 59 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 1 6.39 13 4.54 1.26 7.06
’isopropanol’ 60 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 5.90 12 5.00 1.19 6.50
’aminopyridine’ 94 2 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 2 8.19 13 7.23 1.30 8.54
’2-pyridinol’ 95 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 2 7.70 12 7.92 1.22 7.98
’3-methyl-1-
butanol’

88 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 9.10 18 4.89 1.76 1.00

’p-nitrophenol’ 139 1 0 1 0 0 2 0 3 3 1 0 0 1 0 0 0 0 0 0 0 1 3 9.73 15 9.27 1.59 9.88
’4-methyl-2-
pentanone’

100 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1.01 19 5.26 1.86 1.10

’atrazine’ 215 5 1 1 0 3 3 0 0 0 0 0 2 0 1 0 0 0 0 0 0 2 5 1.64 27 7.96 2.73 1.73
’acetaldehyde’ 44 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 3.71 7 6.29 7.09 3.98
’acetic acid,
without water,
in 98% solution
state’

60 0 0 0 0 0 1 0 2 2 0 1 0 0 0 0 0 0 0 0 0 1 2 4.22 8 7.50 8.43 4.43

’acetone, liquid’ 58 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 5.31 10 5.80 9.97 5.74
’acetonitrile’ 41 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 3.59 6 6.83 5.99 3.77
’acrolein’ 56 0 0 0 0 0 3 1 0 1 0 0 0 0 0 0 0 0 1 2 0 0 1 4.71 8 7.00 8.10 4.98
’acrylic acid’ 72 0 0 0 0 0 3 0 2 2 0 1 0 0 0 0 0 0 0 2 0 1 2 5.22 9 8.00 9.43 5.43
’acrylonitrile’ 53 1 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 1 4.59 7 7.57 6.99 4.77
’aniline’ 93 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 1 8.79 14 6.64 1.38 9.29
’anthraquinone’ 208 0 0 3 4 0 2 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 1.74 24 8.67 2.42 1.80
’benzaldehyde’ 106 0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 9.31 14 7.57 1.40 9.74
’benzene’ 78 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.79 12 6.50 1.16 8.29
’benzoic acid’ 122 0 0 1 1 0 1 0 2 2 0 1 0 0 0 0 0 0 0 0 0 1 2 9.82 15 8.13 1.53 1.02
’bisphenol A,
powder’

228 0 0 2 3 0 2 0 2 2 2 0 0 0 0 0 0 0 0 0 0 2 2 2.08 33 6.91 3.27 2.20

’butyl acetate’ 116 0 0 0 0 0 1 0 2 2 0 0 0 0 0 0 1 0 0 0 0 0 2 1.06 20 5.80 1.99 1.15
’butyl acrylate’ 128 0 0 0 0 0 3 0 2 2 0 0 0 0 0 0 1 0 0 2 0 0 2 1.16 21 6.10 2.10 1.25
’chloromethyl
methyl ether’

80 0 1 0 0 0 2 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 4.70 8 10.00 8.35 5.23

’chloroacetic
acid’

94 0 1 0 0 0 2 0 2 2 0 1 0 0 1 0 0 0 0 0 0 1 2 4.92 8 1.18 8.74 5.30

’monochlorobenzene’ 112 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 8.19 11 1.02 1.10 8.77
’trichloromethane’ 119 0 3 0 0 0 3 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 4.27 5 2.38 5.69 5.13
’cyanoacetic acid’ 85 1 0 0 0 0 2 0 2 2 0 1 0 0 0 0 0 1 0 0 0 1 3 5.62 9 9.44 9.65 5.67
’cyclohexane’ 84 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.59 18 4.67 1.73 1.06
’cyclohexanol’ 100 0 0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1.01 19 5.26 1.86 1.10
’cyclohexanone’ 98 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 9.50 17 5.76 1.67 1.03
’dichloromethane’ 84 0 2 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 3.28 4 21.00 4.44 3.88
’dimethyl malon-
ate’

132 0 0 0 0 0 2 0 4 4 0 0 0 0 0 0 2 0 0 0 0 0 4 9.45 17 7.76 1.79 9.86

’dimethyl sulfate’ 126 0 0 0 0 0 5 0 4 4 0 0 0 0 0 0 0 0 0 0 3 0 4 6.93 13 9.69 1.40 7.74
’N,N-
dimethylformamide’

73 1 0 0 0 0 2 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 2 6.30 12 6.08 1.21 6.74

’DTPA, di-
ethylenetriam-
inepentaacetic
acid’

393 3 0 0 0 0 8 0 10 10 0 5 3 0 0 0 0 0 0 0 0 5 13 2.81 50 7.86 5.25 2.92

’ethanol, without
water, in 99.7%
solution state,
from ethylene’

46 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 4.31 9 5.11 8.97 4.74

’ethyl acetate’ 88 0 0 0 0 0 1 0 2 2 0 0 0 0 0 0 1 0 0 0 0 0 2 7.42 14 6.29 1.42 7.95
’ethyl benzene’ 106 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.10 18 5.89 1.74 1.18
’ethylene glycol’ 62 0 0 0 0 0 2 0 2 2 2 0 0 0 0 0 0 0 0 0 0 2 2 4.82 10 6.20 1.03 5.19
’formaldehyde’ 30 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 2.11 4 7.50 4.21 2.21
’formic acid’ 46 0 0 0 0 0 1 0 2 2 0 1 0 0 0 0 0 0 0 0 0 1 2 2.63 5 9.20 5.55 2.67
’glycerine’ 92 0 0 0 0 0 3 0 3 3 3 0 0 0 0 0 0 0 0 0 0 3 3 6.93 14 6.57 1.45 7.40
’adipic acid’ 146 0 0 0 0 0 2 0 4 4 0 2 0 0 0 0 0 0 0 0 0 2 4 1.10 20 7.30 2.07 1.16
’hydroquinone’ 110 0 0 1 0 0 2 0 2 2 2 0 0 0 0 0 0 0 0 0 0 2 2 8.82 14 7.86 1.43 9.19
’p-nitrotoluene’ 137 1 0 1 1 0 1 0 2 2 0 0 0 1 0 0 0 0 0 0 0 0 2 1.08 17 8.06 1.74 1.12
’nitrobenzene’ 123 1 0 1 0 0 1 0 2 2 0 0 0 1 0 0 0 0 0 0 0 0 2 9.22 14 8.79 1.45 9.43
’hydroxylamine’ 33 1 0 0 0 0 2 0 1 1 0 0 0 0 0 0 0 0 0 0 2 3 2 2.11 5 6.60 5.31 2.22
’methyl iodide’ 141 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3.32 4 3.53 3.90 4.80
’isobutyl acetate’ 116 0 0 0 1 0 1 0 2 2 0 0 0 0 0 0 1 0 0 0 0 0 2 1.06 20 5.80 1.99 1.15
’phenyl isocy-
anate’

119 1 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2 9.70 14 8.50 1.42 9.98

’isopropyl acet-
ate’

102 0 0 0 0 0 1 0 2 2 0 0 0 0 0 0 1 0 0 0 0 0 2 9.02 17 6.00 1.71 9.72

’cumene’ 120 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.26 21 5.71 2.03 1.36
’methylamine’ 31 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 1 3.19 7 4.43 6.86 3.53
’methane sulfonic
acid’

96 0 0 0 0 0 1 0 3 3 0 0 0 0 0 0 0 0 0 0 0 1 3 4.82 9 1.07 9.84 5.53

’methyl methac-
rylate’

100 0 0 0 1 0 3 0 2 2 0 0 0 0 0 0 1 0 0 2 0 0 2 8.42 15 6.67 1.52 8.95

’methyl acetate’ 74 0 0 0 0 0 1 0 2 2 0 0 0 0 0 0 1 0 0 0 0 0 2 5.82 11 6.73 1.13 6.19
’methylcyclohexane’ 98 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.12 21 4.67 2.02 1.23
’triethyl amine’ 101 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1.12 22 4.59 2.13 1.23
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’dimethylamine’ 45 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 4.79 10 4.50 9.74 5.29
’trimethylamine’ 59 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 6.39 13 4.54 1.26 7.06
’dipropyl amine’ 101 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1.12 22 4.59 2.13 1.23
’diethanolamine’ 105 1 0 0 0 0 3 0 2 2 2 0 1 0 0 0 0 0 0 0 0 3 3 9.01 18 5.83 1.82 9.72
’diethylene
glycol’

106 0 0 0 0 0 3 1 2 3 2 0 0 0 0 1 0 0 0 0 0 2 3 8.53 17 6.24 1.74 9.17

’triethanolamine’ 149 1 0 0 0 0 4 0 3 3 3 0 1 0 0 0 0 0 0 0 0 3 4 1.27 25 5.96 2.53 1.37
’acetanilide’ 135 1 0 1 0 0 2 0 1 1 0 0 1 0 0 0 1 0 0 0 0 1 2 1.19 19 7.11 1.90 1.25
’o-cresol’ 108 0 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 9.90 16 6.75 1.59 1.05
’glyoxal’ 58 0 0 0 0 0 2 2 0 2 0 0 0 0 0 0 0 0 2 0 0 0 2 3.63 6 9.67 6.55 3.67
’xylene’ 106 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.10 18 5.89 1.74 1.18
’pentaerythritol’ 136 0 0 0 1 0 4 0 4 4 4 0 0 0 0 0 0 0 0 0 0 4 4 1.06 21 6.48 2.16 1.14
’pentane’ 72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.59 17 4.24 1.63 9.58
’phenol’ 94 0 0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 8.31 13 7.23 1.30 8.74
’phenyl acetic
acid’

136 0 0 1 1 0 1 0 2 2 0 1 0 0 0 0 0 0 0 0 0 1 2 1.14 18 7.56 1.82 1.20

’benzyl alcohol’ 108 0 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 9.90 16 6.75 1.59 1.05
’piperidine’ 85 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 8.98 17 5.00 1.65 9.82
’propanal’ 58 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 5.31 10 5.80 9.97 5.74
’propionic acid’ 74 0 0 0 0 0 1 0 2 2 0 1 0 0 0 0 0 0 0 0 0 1 2 5.82 11 6.73 1.13 6.19
’propylene glycol,
liquid’

76 0 0 0 0 0 2 0 2 2 2 0 0 0 0 0 0 0 0 0 0 2 2 6.42 13 5.85 1.32 6.95

’pyridine’ 79 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7.19 11 7.18 1.09 7.53
’purified tereph-
thalic acid’

166 0 0 1 2 0 2 0 4 4 0 2 0 0 0 0 0 0 0 0 0 2 4 1.18 18 9.22 1.90 1.21

’ethyl tert-butyl
ether’

102 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1.07 21 4.86 2.05 1.18

’tert-butyl amine’ 73 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 1 7.98 16 4.56 1.55 8.82
’tetrahydrofuran’ 72 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 6.90 13 5.54 1.29 7.50
’toluene, liquid’ 92 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.39 15 6.13 1.45 1.01
’trichloroacetic
acid’

163 0 3 0 0 0 4 0 2 2 0 1 0 0 3 0 0 0 0 0 0 1 2 6.30 8 2.04 9.36 7.03

’trifluoroacetic
acid’

114 0 3 0 0 0 4 0 2 2 0 1 0 0 0 0 0 0 0 0 0 1 5 4.55 8 1.43 9.96 4.24

’urea, as N’ 60 2 0 0 0 0 3 0 1 1 0 0 2 0 0 0 0 0 0 0 1 4 3 4.10 8 7.50 8.42 4.22
’vinyl acetate’ 86 0 0 0 0 0 3 0 2 2 0 0 0 0 0 0 1 0 0 2 0 0 2 6.82 12 7.17 1.23 7.19
’styrene’ 104 0 0 1 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1.04 16 6.50 1.55 1.11
’2-nitroaniline’ 138 2 0 1 0 0 2 0 2 2 0 0 1 1 0 0 0 0 0 0 0 2 3 1.02 16 8.63 1.66 1.04
’4-tert-
butylbenzaldehyde’

162 0 0 1 3 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1.57 26 6.23 2.55 1.68

’acetic anhydride’ 102 0 0 0 0 0 1 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 3 7.33 13 7.85 1.36 7.64
’acetoacetic acid’ 102 0 0 0 0 0 2 1 2 3 0 1 0 0 0 0 0 0 0 0 0 0 3 7.33 13 7.85 1.36 7.64
’acetyl chloride’ 78 0 1 0 0 0 2 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 4.40 7 1.11 7.41 4.84
’aclonifen’ 264 2 1 2 0 0 4 1 2 3 0 0 1 1 1 1 0 0 0 0 0 2 4 1.34 5 5.28 7.52 1.21
’bromopropane’ 122 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 6.18 10 1.22 9.82 7.02
’butadiene’ 54 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 5.79 10 5.40 9.64 6.29
’butane’ 58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.99 14 4.14 1.34 7.81
’butene, mixed’ 56 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 6.39 12 4.67 1.15 7.05
’chloroacetyl
chloride’

112 0 2 0 0 0 3 0 1 1 0 0 0 0 2 0 0 0 0 0 0 0 1 4.80 6 1.87 6.78 5.33

’chlorothalonil’ 265 2 4 1 2 0 6 0 0 0 0 0 0 0 4 0 0 2 0 0 0 0 2 1.31 13 2.04 1.44 1.39
’chlorotoluron’ 212 2 1 1 1 0 5 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1 3 1.65 26 8.15 2.62 1.75
’cyanogen chlor-
ide’

61 1 1 0 0 0 2 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 2.69 3 2.03 3.42 2.87

’dimethyl ether’ 46 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 4.31 9 5.11 8.97 4.74
’dimethyl sulfide’ 62 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 4.88 9 6.89 8.72 5.94
’dipropylene
glycol mono-
methyl ether’

148 0 0 0 0 0 3 2 1 3 1 0 0 0 0 2 0 0 0 0 0 0 4 1.33 26 5.69 2.60 1.45

’EDTA, ethyl-
enediaminetet-
raacetic acid’

292 2 0 0 0 0 6 0 8 8 0 4 2 0 0 0 0 0 0 0 0 4 10 2.03 36 8.11 3.80 2.10

’ethylamine’ 45 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 1 4.79 10 4.50 9.74 5.29
’ethylene dichlor-
ide’

98 0 2 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 4.88 7 14.00 7.32 5.64

’ethylene oxide’ 44 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 3.71 7 6.29 7.09 3.98
’ethylene, aver-
age’

28 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 3.20 6 4.67 5.76 3.53

’ethylenediamine’ 60 2 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 4 2 5.78 12 5.00 1.18 6.30
’glycine’ 75 1 0 0 0 0 2 0 2 2 0 1 1 0 0 0 0 0 0 0 0 3 3 5.22 10 7.50 1.05 5.43
’isoproturon’ 206 2 0 1 2 0 4 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 3 1.93 33 6.24 3.26 2.06
’lactic acid’ 90 0 0 0 0 0 2 0 3 3 1 1 0 0 0 0 0 0 0 0 0 2 3 6.33 12 7.50 1.26 6.64
’metaldehyde’ 176 0 0 1 0 4 4 4 0 4 0 0 0 0 0 4 0 0 0 0 0 0 4 1.48 28 6.29 2.84 1.59
’metamitron’ 202 4 0 2 1 3 9 0 1 1 0 0 0 0 0 0 0 0 0 0 1 2 5 1.11 3 6.73 4.86 9.61
’methyl ethyl
ketone’

72 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 6.90 13 5.54 1.29 7.50

’methyl formate’ 60 0 0 0 0 0 1 0 2 2 0 0 0 0 0 0 1 0 0 0 0 0 2 4.22 8 7.50 8.43 4.43
’methyl tert-
butyl ether’

88 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 9.10 18 4.89 1.76 1.00

’metolachlor’ 283 1 1 1 2 0 4 1 1 2 0 0 1 0 1 1 1 0 0 0 0 0 3 2.40 40 7.08 3.98 2.58
’napropamide’ 271 1 0 2 2 0 3 1 1 2 0 0 1 0 0 1 1 0 0 0 0 0 3 2.50 41 6.61 4.06 2.65
’pendimethalin’ 281 3 0 1 2 0 3 0 4 4 0 0 1 2 0 0 0 0 0 0 0 1 5 2.28 39 7.21 3.97 2.39
’phosgene, liquid’ 98 0 2 0 0 0 3 0 1 1 0 0 0 0 2 0 0 0 0 0 0 0 1 3.20 3 3.27 3.90 3.57
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’propylene’ 42 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 4.79 9 4.67 8.64 5.29
’propylene oxide,
liquid’

58 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 5.31 10 5.80 9.97 5.74

’prosulfocarb’ 251 1 0 1 1 0 3 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 2 2.26 38 6.61 3.73 2.47
’sodium formate’ 68 0 0 0 0 0 1 0 2 2 0 0 0 0 0 0 0 0 0 0 1 0 2 5.71 15 4.53 1.42 6.34
’thionyl chloride’ 118 0 2 0 0 0 4 0 1 1 0 0 0 0 2 0 0 0 0 0 2 0 1 3.28 3 3.93 3.97 4.22
’vinyl chloride’ 62 0 1 0 0 0 3 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 3.89 6 1.03 6.07 4.39
’chlorodifluoromethane’86 0 3 0 0 0 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 3.11 5 1.72 6.09 3.27
’methanol, from
biomass’

32 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 2.71 6 5.33 6.09 2.98

’acetylene’ 26 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.60 4 6.50 3.88 2.76
’methane, 96% by
volume’

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.20 5 3.20 4.76 2.53

’tetrachloroethylene’ 165 0 4 0 0 0 6 0 0 0 0 0 0 0 4 0 0 0 0 2 0 0 0 5.67 5 33.00 6.07 6.61
’methylchloride’ 50 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2.89 5 10.00 5.07 3.39
’trichloroethylene’ 131 0 3 0 0 0 5 0 0 0 0 0 0 0 3 0 0 0 0 2 0 0 0 5.27 6 2.18 6.70 6.13

Table 5.2: Corresponding data to Figure 3.2 with the median of 10 split for the
validation coefficient of determination ĈDval for the PLS and ANN re-
gression.

Indicators PLS ANN
ĈDval 25% ub 75% lb ĈDval 25% ub 75% lb

EQ 0.16 0.21 0.11 0.36 0.44 0.27
HH 0.28 0.33 0.16 0.58 0.66 0.47
R 0.30 0.38 0.25 0.54 0.57 0.50
Total 0.18 0.26 0.12 0.43 0.49 0.33
ALOP 0.08 0.14 0.00 0.38 0.40 0.28
GWP100 0.24 0.31 0.15 0.39 0.48 0.32
FDP 0.33 0.41 0.25 0.50 0.55 0.47
FETPinf 0.28 0.35 0.21 0.51 0.53 0.44
FEP 0.22 0.26 0.13 0.39 0.43 0.33
HTPinf 0.29 0.36 0.18 0.50 0.53 0.41
IRP_ HE 0.24 0.29 0.18 0.46 0.49 0.43
METPinf 0.26 0.33 0.20 0.48 0.53 0.35
MEP 0.10 0.12 0.06 0.31 0.36 0.25
MDP 0.32 0.40 0.24 0.53 0.55 0.45
NLTP 0.25 0.29 0.15 0.42 0.45 0.32
ODPinf 0.19 0.32 0.00 0.68 0.95 0.49
PMFP 0.31 0.38 0.23 0.48 0.50 0.46
POFP 0.31 0.36 0.23 0.45 0.48 0.41
TAP100 0.27 0.35 0.20 0.48 0.50 0.44
TETPinf 0.08 0.13 0.04 0.29 0.31 0.21
ULOP 0.27 0.32 0.22 0.47 0.48 0.43
WDP 0.10 0.15 -0.04 0.29 0.36 0.25
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Table 5.3: The results of the ANN regression for each indicator. ĈD is the median
CD, which has been calculated, leaving the best and worst 10% out.

ĈDval ĈDtr 25% lb 25% ub
Ecosystem Quality 0.3599 0.3270 0.2881 0.6852
Human Health 0.5194 0.5100 0.4332 0.5095
Resources 0.5288 0.3166 0.3471 0.4170
Total 0.4402 0.4727 0.4778 0.5545
agricultural land occupation 0.2848 0.3677 0.2221 0.3166
climate change (also global warming potential) 0.5004 0.3762 0.4036 0.5305
fossil depletion 0.5301 0.3734 0.4815 0.5349
freshwater ecotoxicity 0.4583 0.3861 0.3733 0.4715
freshwater eutrophication 0.4445 0.3803 0.3354 0.4451
human toxicity 0.5029 0.4470 0.4257 0.5228
ionising radiation 0.4803 0.4926 0.4085 0.5036
marine ecotoxicity 0.5138 0.3697 0.4485 0.5374
marine eutrophication 0.3136 0.1076 0.2150 0.3032
metal depletion 0.5396 0.3397 0.4351 0.5340
natural land transformation 0.3894 0.2230 0.3015 0.2767
ozone depletion 0.5715 0.6016 0.4400 0.3356
particulate matter formation 0.4825 0.4467 0.4144 0.0978
photochemical oxidant formation 0.4269 0.3878 0.3948 0.2967
terrestrial acidification 0.4456 0.5776 0.3837 0.4669
terrestrial ecotoxicity 0.3074 0.1832 0.2026 0.3108
urban land occupation 0.4908 0.4308 0.4397 0.4656
water depletion 0.2761 0.3830 0.2050 0.2828
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Table 5.4: Ideal Model size for the Total indicator: The number of sets over which
the input variables are distributed for the ANN input. This is an optim-
isation parameter and the ANNs can be reproduced using these values.

Input Variable number of sets for each split

’MW’ 19 11 7 8 16 20 18 16 9 18 20 6 17 19 16 14 20 10 7 13 7 12 11 6 8 15 14 18 18 17
’N’ 6 4 6 6 4 5 7 8 8 5 8 8 10 5 4 9 4 8 10 4 8 7 6 5 7 9 8 8 9 9
’Halogenes’ 5 8 7 4 4 9 7 6 6 8 7 7 10 9 10 5 8 8 6 6 10 6 7 4 7 7 6 10 9 5
’Rings’ 6 10 6 8 10 6 8 5 9 8 8 9 4 8 6 6 10 6 10 8 5 6 6 6 8 10 5 4 9 7
’T/Q-C’ 10 10 8 7 4 4 5 9 8 5 7 6 7 7 9 6 10 5 9 6 5 7 10 6 7 4 9 6 5 7
’HR’ 8 4 6 6 6 6 7 9 9 9 8 6 6 7 5 4 9 8 5 7 8 7 6 9 9 5 9 6 8 9
’FunctG’ 5 9 6 7 7 5 8 9 7 5 10 8 10 9 7 6 6 6 10 5 8 6 9 4 4 6 6 7 9 8
’OwCarb’ 6 8 10 7 10 9 8 5 7 7 8 6 8 5 8 7 9 4 4 5 9 9 8 10 7 8 5 5 8 5
’Ow/oCarb’ 10 5 5 4 9 6 5 6 5 8 7 5 7 5 4 10 4 8 5 6 9 5 8 8 6 10 8 6 6 6
’O’ 9 6 5 4 9 5 9 5 7 6 9 10 10 4 4 7 7 9 10 7 7 8 5 7 5 10 7 9 5 7
’OH’ 8 7 4 5 10 9 6 6 6 9 10 10 6 4 10 10 7 6 7 6 6 7 10 10 6 6 9 9 6 5
’COOH’ 4 7 4 10 8 8 8 5 9 9 6 6 8 7 6 7 4 9 5 5 9 7 10 4 9 7 9 7 5 7
’Am/Ad’ 9 7 8 7 5 9 6 6 7 10 5 7 6 8 4 7 9 4 4 8 7 9 5 9 7 8 4 4 6 6
’NO’ 4 4 8 5 8 6 7 4 5 6 4 6 7 4 7 4 4 7 10 5 8 7 8 4 6 8 8 9 4 6
’Cl’ 6 10 4 6 10 9 6 6 6 7 6 8 8 4 6 10 7 6 10 5 5 7 8 5 7 7 8 8 5 7
’Ether’ 7 8 7 7 5 6 4 4 7 6 4 6 6 7 10 7 7 7 5 4 5 9 9 6 4 7 5 8 9 7
’Est/Ad’ 7 4 4 10 9 4 6 7 6 6 9 4 8 10 8 6 10 8 4 6 5 9 4 10 5 8 6 4 9 6
’Cyanide’ 7 6 7 7 9 7 7 5 9 4 4 6 6 4 7 8 6 7 4 9 8 9 5 7 9 6 8 4 8 7
’CO’ 7 5 5 9 8 7 5 9 9 6 10 10 5 7 8 7 4 5 4 8 7 7 8 9 6 7 6 5 4 6
’DB’ 7 6 5 6 5 9 7 4 6 9 5 6 7 4 8 8 4 6 9 9 9 5 7 6 6 6 9 8 7 5
’OtherFun’ 8 10 8 5 4 10 4 9 8 6 4 9 8 9 10 8 5 6 10 6 10 6 6 9 6 4 5 5 8 8
’DonorH’ 8 9 8 8 10 9 9 7 8 8 5 10 5 4 7 6 10 7 10 8 5 8 10 4 9 10 6 10 10 7
’AcceptorH’ 8 8 9 8 6 5 6 7 7 7 7 5 7 6 10 7 4 9 10 9 6 4 6 7 6 6 9 10 10 7
’VdW-V’ 5 15 6 14 16 19 10 16 10 10 14 12 19 6 12 6 9 18 5 15 11 14 17 10 9 11 14 13 10 7
’Atoms’ 6 10 5 8 4 4 4 10 4 6 7 4 9 7 10 8 5 8 8 10 8 8 10 5 5 4 7 9 8 9
’AvMW’ 19 11 17 15 6 4 18 12 14 7 10 16 5 8 15 15 19 13 10 7 8 8 9 5 10 8 11 12 7 11
’E-’ 6 5 7 17 15 16 6 16 12 5 5 19 11 7 8 11 18 19 15 10 19 19 5 11 18 14 14 11 7 11
Pol’ 18 4 14 14 6 18 9 16 8 9 15 9 18 5 10 7 18 12 14 8 11 14 10 5 12 16 10 14 16 16
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Table 5.5: Ideal Model size for the Total indicator: The number of sets over which
the input variables are distributed for the ANN input. This is an optim-
isation parameter and the ANNs can be reproduced using these values.

Input Variable number of sets for each split

’MW’ 15 19 15 12 7 16 13 18 11 18 5 9 11 14 15 14 10 4 5 19 8 20 12 18 6 19 5 7 9 4
’N’ 10 6 10 8 8 5 9 5 9 5 10 10 9 5 6 9 8 10 4 4 9 7 8 9 9 8 4 10 10 7
’Halogenes’ 6 4 7 5 8 5 5 9 4 7 5 9 8 9 8 10 7 4 4 6 7 4 6 6 4 10 9 7 8 4
’Rings’ 7 6 9 8 8 8 7 5 8 8 10 8 9 7 10 5 9 4 4 7 6 10 4 8 10 7 6 4 8 10
’T/Q-C’ 9 8 7 8 5 8 5 6 8 7 10 7 9 7 10 9 10 10 4 6 9 6 10 5 10 9 5 8 9 6
’HR’ 4 6 10 8 8 5 8 7 9 6 9 5 5 7 9 5 5 7 4 9 10 8 10 9 7 10 6 10 10 8
’FunctG’ 9 9 4 7 4 4 4 9 8 7 7 5 6 10 6 5 8 4 9 4 6 7 9 5 5 9 4 9 4 5
’OwCarb’ 10 9 10 8 9 6 8 4 8 7 9 6 8 7 7 10 10 10 5 7 10 9 5 4 10 9 9 9 9 4
’Ow/oCarb’ 10 9 10 7 5 4 10 8 6 9 7 6 8 5 10 6 7 4 9 4 5 8 9 9 4 5 6 5 8 9
’O’ 9 5 5 8 7 6 6 6 7 6 8 6 6 7 10 6 10 5 7 9 7 8 7 4 6 5 6 5 8 4
’OH’ 6 7 8 8 8 4 6 7 10 8 10 5 10 4 8 7 6 7 6 5 6 8 9 6 7 8 7 7 7 9
’COOH’ 10 4 4 7 8 4 8 7 7 4 8 7 5 8 8 7 8 4 10 10 7 5 4 10 6 5 9 10 7 6
’Am/Ad’ 5 5 5 5 5 5 9 10 7 4 7 6 8 7 9 6 9 10 10 4 4 8 4 5 10 8 7 10 8 6
’NO’ 6 6 6 7 10 6 4 7 5 7 8 6 8 7 4 8 9 5 4 10 6 8 10 10 4 9 6 8 8 7
’Cl’ 10 6 5 6 9 8 7 7 9 8 8 8 6 6 5 9 6 5 4 7 6 6 9 6 5 6 7 6 6 8
’Ether’ 7 7 10 7 10 7 7 9 7 8 8 7 4 7 4 9 8 10 4 4 8 9 8 5 8 6 10 8 10 10
’Est/Ad’ 9 4 4 8 7 6 4 6 10 5 10 7 8 10 4 9 8 7 7 6 10 8 7 9 6 6 5 8 5 4
’Cyanide’ 9 9 6 5 5 9 4 8 5 6 8 6 6 8 5 7 5 7 6 8 5 5 8 4 5 5 9 8 6 8
’CO’ 4 8 4 5 9 7 6 6 5 5 7 10 7 8 6 8 6 9 7 9 6 6 10 8 5 7 9 9 6 5
’DB’ 10 9 6 6 8 8 5 8 8 4 8 8 9 10 6 10 4 9 8 7 4 8 6 6 8 5 8 7 9 9
’OtherFun’ 4 7 9 8 7 8 8 7 9 6 4 6 8 9 9 6 7 4 5 7 6 8 8 6 10 6 5 4 5 4
’DonorH’ 10 8 10 8 10 6 8 9 5 8 6 6 6 9 8 5 7 7 8 6 9 7 9 6 7 10 5 6 5 4
’AcceptorH’ 5 9 5 8 6 7 5 9 7 6 8 7 7 9 8 5 10 5 4 6 8 4 4 7 5 9 8 4 9 7
’VdW-V’ 9 5 9 12 8 8 13 7 10 14 18 7 14 20 5 16 4 18 4 5 17 9 15 17 20 10 12 17 9 9
’Atoms’ 9 7 9 10 5 5 6 4 6 8 8 7 7 6 10 6 5 7 5 5 4 5 6 9 7 9 5 4 9 10
’AvMW’ 11 18 14 7 13 6 14 6 16 12 6 14 12 17 16 13 10 11 6 10 7 6 12 14 7 6 13 5 7 9
’E-’ 9 11 13 7 6 15 15 8 9 6 11 15 15 5 13 7 13 15 15 12 9 12 20 17 15 18 12 10 12 16
Pol’ 4 17 12 16 10 16 8 8 6 14 13 11 11 12 8 17 10 7 11 19 10 15 10 10 20 17 20 20 16 10
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Table 5.6: Frequency of occurrence of the MDs for all indicators.
EQ HH R Total ALOP GWP100 FDP FETPinf FEP HTPinf IRP_HE

’MW’ 155 189 184 218 57 67 99 60 64 44 56
’N’ 262 258 170 214 42 106 83 56 53 63 36
’Halogenes’ 158 165 121 169 54 54 83 76 74 51 77
’Rings’ 114 183 75 183 71 66 57 79 56 72 30
’T/Q-C’ 167 109 33 145 25 53 62 56 29 38 17
’HR’ 161 187 159 205 59 54 88 48 27 50 55
’FunctG’ 140 117 91 150 75 58 78 66 88 59 73
’OwCarb’ 254 233 97 260 88 88 97 51 79 81 58
’Ow/oCarb’ 178 175 119 206 49 57 86 51 74 60 78
’O’ 148 139 107 137 53 47 80 48 49 48 77
’OH’ 186 157 134 78 68 47 82 60 45 50 63
’COOH’ 123 131 41 105 56 42 51 43 32 37 32
’Am/Ad’ 145 141 88 134 32 35 57 45 34 48 52
’NO’ 114 109 17 76 34 24 38 27 34 26 50
’Cl’ 177 165 193 154 57 56 98 81 80 44 71
’Ether’ 152 185 70 216 58 56 89 51 59 54 53
’Est/Ad’ 133 174 83 152 47 48 65 44 41 53 40
’Cyanide’ 165 144 88 175 50 50 73 51 56 49 42
’CO’ 129 144 44 175 39 36 73 41 42 59 46
’DB’ 145 146 44 80 71 45 57 66 63 83 78
’OtherFun’ 150 175 115 176 67 48 90 49 53 89 47
’DonorH’ 207 183 60 136 57 39 68 35 59 26 48
’AcceptorH’ 179 175 148 180 54 70 85 44 68 46 81
’VdW-V’ 152 142 129 154 54 47 86 50 57 48 49
’Atoms’ 163 117 61 164 38 55 69 58 49 58 43
’AvMW’ 141 164 63 153 47 45 69 50 39 68 42
’E-’ 151 135 73 153 51 65 69 57 49 44 47
Pol’ 151 158 93 152 47 42 68 57 47 52 59

METPinf MEP MDP NLTP ODPinf PMFP POFP TAP100 TETPinf ULOP WDP

’MW’ 47 26 44 20 49 76 45 65 56 73 64
’N’ 47 68 56 61 33 83 67 84 75 57 56
’Halogenes’ 65 23 100 47 71 76 25 65 59 77 77
’Rings’ 43 48 55 33 48 83 63 52 50 68 55
’T/Q-C’ 36 32 17 11 27 39 50 31 52 35 45
’HR’ 71 74 57 27 46 45 28 48 54 32 48
’FunctG’ 80 26 60 18 38 73 34 58 51 67 63
’OwCarb’ 50 40 49 31 38 74 40 73 61 74 88
’Ow/oCarb’ 69 23 68 45 70 59 27 77 64 60 61
’O’ 57 26 63 39 72 61 28 47 65 65 53
’OH’ 56 32 72 25 49 38 33 45 43 62 29
’COOH’ 40 29 45 25 52 41 21 43 54 45 41
’Am/Ad’ 30 15 56 46 44 53 30 52 41 58 39
’NO’ 24 6 16 21 57 40 17 49 52 37 37
’Cl’ 84 27 90 38 56 63 25 70 42 90 80
’Ether’ 49 42 53 27 51 52 33 65 61 49 63
’Est/Ad’ 39 59 33 39 52 36 22 47 57 33 37
’Cyanide’ 53 29 32 23 48 41 21 52 28 39 28
’CO’ 60 27 46 21 66 35 26 48 45 41 37
’DB’ 80 19 59 27 59 43 11 39 58 67 69
’OtherFun’ 85 22 61 53 59 47 38 54 62 44 76
’DonorH’ 32 14 42 39 49 33 16 41 40 56 32
’AcceptorH’ 64 27 76 55 56 88 35 56 62 81 62
’VdW-V’ 50 31 47 20 60 45 38 50 54 43 61
’Atoms’ 44 32 48 31 53 44 32 53 54 37 52
’AvMW’ 56 30 55 24 108 63 26 56 71 36 49
’E-’ 54 39 53 23 68 49 31 35 48 38 48
Pol’ 35 34 47 31 51 50 38 45 41 36 50
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